Articles
Homogenizing annealing of ingots is held to dissolve the nonequilibrium excess phases, eliminating intergranular segregation and reduce internal stresses in the ingots of aluminum alloys. Simultaneously, there is a process of disintegration of solid solution of aluminum small additions of transition metals( manganese, chromium, zirconium) to form dispersoids. The influence of different modes of homogenization on the volume fraction of nonequilibrium structural components, the properties of the 1933 alloy ingot at elevated temperatures, density of distribution and size of Al3Zr dispersoid are represented.
2. Kablov E.N. Aviakosmicheskoe materialovedenie [Aerospace materials science] //Vse materialy. Jenciklopedicheskij spravochnik. 2008. №3. S. 2–14.
3. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33.
4. Vahromov R.O., Tkachenko E.A., Popova O.I. Vliyanie osnovnyh legirujushhih komponentov, mikrodobavok i primesej na svojstva kovochnyh splavov sistemy Al–Zn–Mg–Cu [Influence of the main alloyng elements, microadditives and impurities on the properties of forging alloys of Al–Zn–Mg –Cu system] //Tsetnye Metally. 2013. №5 (845). S. 61–65.
5. Antipov V.V., Senatorova O.G., Tkachenko E.A., Vahromov R.O. Alyuminievye deformiruemye splavy [Aluminum deformable alloys] //Aviacionnye materialy i tehnologii. 2012. №S. S. 167–182.
6. Tarasov Yu.N., Vahromov R.O. Primenenie alyuminievyh splavov, razrabotannyh pod rukovodstvom akademika I.N. Fridlyandera, v otechestvennoj aviacionnoj tehnike [Application of aluminium alloys, developed under the guidance of аcademician I. N. Fridlyander, in Russian aviation engineering] //Tsvetnye Metally. 2013. № 9 (849). S. 37–39.
7. Tarasov Yu.M., Antipov V.V. Novye materialy VIAM – dlya perspektivnoj aviacionnoj tehkniki proizvodstva OAO «OAK» [The VIAM new materials – for perspective aviation engineering of production of JSC «OAK»] //Aviacionnye materialy i tehnologii. 2012. №2. S. 5–6.
8. Vahromov R.O., Tkachenko E.A., Popova O.I., Milevskaya T.V. Obobshhenie opyta primeneniya i optimizaciya tehnologii izgotovleniya polufabrikatov iz vysokoprochnogo alyuminievogo splava 1933 dlya silovyh konstrukcij sovremennoj aviacionnoj tehniki [Summarizing of the experience of usage and optimization of manufacturing technology semi-fished product of high strength aluminum alloy 1933 for the primary structures of modern aircraft] //Aviacionnye materialy i tehnologii. 2014. № 2. S. 34–39.
9. Fridlyander I.N. Alyuminievye deformiruemye konstrukcionnye splavy [Aluminum deformable constructional alloys] //Metallurgiya. 1979. 208 s.
10. Gomogenizaciya slitkov alyuminievyh splavov [Homogenization of ingots of aluminum alloys]. TR 50-31-70. M.: VILS.1970. 24 s.
11. Fridlyander I.N. Metallovedenie alyuminievyh splavov [Metallurgical science of aluminum alloys]. M.: Nauka. 1985. 238 s.
12. Belov N.A. Fazovyj sostav promyshlennyh i perspektivnyh alyuminievyh splavov [Phase structure of industrial and perspective aluminum alloys]. M.: Izd. dom MISiS. 2010. 511 s.
13. Vahromov R.O., Tkachenko E.A., Antipov V.V. Zakonomernosti formirovaniya struktury i svojstv kovochnyh splavov sistemy Al–Zn–Mg–Cu c razlichnym soderzhaniem osnovnyh legiruyushhih komponentov, mikrodobavok i primesej [Regularities of formation of structure and properties of forging alloys of Al–Zn–Mg–Cu system with various maintenance of the main alloying components, microadditives and impurity] //Vestnik Samarskogo gosudarstvennogo ajerokosmicheskogo universiteta im. akademika S.P. Koroleva (Nacional'nogo issledovatel'skogo universiteta). 2012. № 5–1 (36). S. 215–222.
14. Vakhromov R.O., Tkachenko E.A., Antipov V.V. Research and Development of High-Strength of Al–Zn–Mg–Cu Alloys //Proceedings 13th International Conference on Aluminum Alloys. 2012. P. 1514–1520.
15. Lima S.T., Yun S.J., Namb S.W. Improved quench sensitivity in modified aluminum alloy 7175 for thick forging applications //Materials Science and Engineering, A. 2004. V. 371 (1–2). P. 82−90.
16. Robinson J.S., Cudd R.L., Tanner T.D. Quench sensitivity and tensile property inhomogeneity in 7010 forgings //Journal of Materials Processing Technology. 2001. V. 119 (1−3). P. 261−267.
17. Li Pei-yue, Bai-qing Xiong, Yong-an Zhang, Zhi-hui Li, Bao-hong Zhu, Feng Wang, Hong-wei Liu. Quench sensitivity and microstructure character of high strength AA7050 //Transactions of Nonferrous Metals Society of China. 2012. V. 22 (2). P. 268−274.
18. Yu-lin Zheng, Cheng-bo Li, Sheng-dan Liu, Yun-lai Deng, Xin-ming Zhang. Effect of homogenization time on quench sensitivity of 7085 aluminum alloy //Transactions of Nonferrous Metals Society of China. 2014. V. 24. P. 2275−2281.
19. Xin-ming Zhang, WenJun Liu, ShengDan Liu, MingZhe Zhou. Effect of processing parameters on quench sensitivity of an AA7050 sheet //Materials Science and Engineering, A. 2011. V. 528.
P. 795–802.
20. Li X.M., Starink M.J. Identification and analysis of intermetallic phases in overaged Zr-containing and Cr-containing Al−Zn−Mg−Cu alloys//Alloys Compd. 2011.V. 509. P. 471−476.
21. Marlaud T., Deschamps A., Bley F., Lefebvre W., Baroux B. Influence of alloy composition and heat treatment on precipitate composition in Al−Zn−Mg−Cu alloys //Acta Materialia. 2010. V. 58 (1). P. 248−260.
22. Conserva M., DI Russo E., Caloni O. Comparison of the Influence of Chromium Zirconium on the Quench Sensitivity of Al–Zn–Mg–Cu Alloys //Metallurgical Transactions. 1971. V. 2. 1227 p.
23. Cposob izgotovleniya izdelij iz aljuminievyh deformiruemyh splavov [A way of production of products from aluminum deformable alloys]: pat. 2284367. Ros. Federaciya; opubl. 27.01.05.
The article provides an overview of the main methods of obtaining aluminum-zirconium alloys are marked with their advantages and disadvantages. The equipment and brand materials, which are used in the manufacture of zirconium master alloys, shows the influence of the characteristics of the equipment and the selection of raw materials to the process of obtaining ligatures. The conclusions of the most promising methods of obtaining Al–Zr master alloys.
2. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative development of FSUE «VIAM» SSC of RF on realization of «Strategic directions of development of materials and technologies of their processing for the period until 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33.
3. Kablov E.N., Ospennikova O.G., Vershkov A.V. Redkie metally i redkozemelnye elementy – materialy sovremennyh i budushhih vysokih tehnologij [Rare metals and rare-earth elements – materials for modern and future high technologies] //Trudy VIAM. 2013. №2. St. 01 (viam-works.ru).
4. Kablov E.N. Materialy dlya izdeliya «Buran» – innovacionnye resheniya formirovaniya shestogo tehnologicheskogo uklada [Materials for «Buran» spaceship – innovative solutions of formation of the sixth technological mode] //Aviacionnye materialy i tehnologii. 2013. №S1. S. 3–9.
5. Kornysheva I.S., Volkova E.F., Goncharenko E.S., Muhina I.Ju. Perspektivy primenenija magnievyh i litejnyh alyuminievyh splavov [Prospects of application of the magnesian and foundry aluminum] //Aviacionnye materialy i tehnologii. 2012. №S. S. 212–222.
6. Mironov V.M., Byshkvarko G.S., Kitari G.G. Proizvodstvo ligatur dlya alyuminievyh i magnievyh splavov [Production of ligatures for aluminum and magnesian alloys]. Tula: Glavnaja redakcija cvetnoj metallurgii. 1963. 84 s.
7. Sposob prigotovleniya ligatury alyuminij–tugoplavkij metal [A way of preparation of a ligature aluminum–refractory metal]: pat. 2232827 Ros. Federacija; opubl. 03.02.2003.
8. Baranov V.N., Lopatina E.S., Drozdova T.N. i dr. Issledovanie vliyaniya parametrov litya na strukturu splava sistemy Al–Zr [Research of influence of parameters of molding on structure of an alloy of Al–Zr system] //Litejnoe proizvodstvo. 2011. №11. S. 16–18.
9. Ligatura [Ligature]: pat. 2026935 Ros. Federaciya; opubl. 06.04.1995.
10. Grigorev V.M. Issledovanie cirkonijsoderzhashhih splavov alyuminiya [Research zirconium containing alloys of aluminum] //Cvetnaya metallurgiya. 2011. №3. S. 30–39.
11. Jacenko S.P., Skachkov V.M., Varchenja P.A. Poluchenie ligatur na osnove alyuminiya metodom vysokotemperaturnyh obmennyh reakcij v rasplavah solej [Receiving ligatures on the basis of aluminum by method of high-temperature exchange reactions in fusions of salts] //Rasplavy. 2010. №2. S. 89–94.
12. Moskvitin V.I., Popov D.A., Mahov S.V. Termodinamicheskie osnovy alyuminotermicheskogo vosstanovleniya cirkoniya iz ZrO2 v hloridno-ftoridnyh rasplavah [Thermodynamic basics of aluminothermic zirconium reduction from ZrO2 in chloride-fluoride melts] //Tsvetnye Metally. 2012. №4. S. 43–46.
13. Mahov S.V., Moskvitin V.I., Popov D.A. Osnovy kinetiki i tehnologii alyuminotermicheskogo polucheniya Al–Zr ligatury iz ZrO2 v hloridno-ftoridnyh solevyh rasplavah [Basis of kinetics and technology of aluminothermic obtaining of AI–Zr ligature from ZrO2 in chloride-fluoride salt melts] // Tsvetnye Metally. 2014. №11. S. 20–25.
14. Altman M.B. Metallurgiya litejnyh alyuminievyh splavov [Metallurgy of foundry aluminum alloys]. M.: Metallurgiya. 1977. 240 s.
15. Denisov V.M., Pinigin V.V., Antonova L.T. i dr. Alyuminij i ego splavy v zhidkom sostoyanii [Aluminum and its alloys in a liquid state]. Ekaterinburg: UrO RAN. 2005. 266 s.
16. Jacenko S.P., Ovsjannikov B.V., Ardashev M.A. Cementacionnoe poluchenie «Master-splava» iz ftoridno-hloridnyh rasplavov [Cementation receiving «Master alloy» from fluoride and chloride fusions] //Rasplavy. 2006. №5. S. 29–36.
17. Agafonov S.N., Krasikov S.A., Ponomarenko A.A. Fazoobrazovanie pri alyumotermicheskom vosstanovlenii ZrO2 [Phase formation at aluminothermic restoration of ZrO2] //Neorganicheskie materialy. 2012. №8. S. 927.
18. Belov N.A., Alabin A.N. Perspektivnye splavy s dobavkami cirkoniya i skandiya [Perspective alloys with additives of zirconium and scandium] //Tsvetnye metally. 2007. №2. S. 24–26.
19. Sposob polucheniya cirkonievoj ligatury [Way of receiving a zirconium ligature]: pat. 2201991 Ros. Federaciya; opubl. 10.04 2003.
20. Ljakishev N.P., Pliner Ju.L., Ignatenko G.F. Alyuminotermiya [Aluminothermy]. M.: Metallurgiya. 1978. 424 s.
21. Napalkov V.I., Mahov S.V., Popov D.A. Proizvodstvo ligatur dlya alyuminievyh splavov [Production of ligatures for aluminum alloys] //MiTOM. 2011. №10. S. 26–30.
The paper presents the results of a study of the technological characteristics of the formation of a composite material based on aluminum, reinforced with discrete boron fibers. Since boron has anomalously large neutron- absorption cross- section, the coating of a composite material with the addition of boron can be used as protection against thermal neutrons of gamma detectors of the outer surface of downhole geophysical devices. With the development of new technologies equipment decreases in size, the number of devices increases and free space in which protection system is placed becomes less. The use of this material allows manufacturing protective coating with a thickness of 1,5 mm and it provides much higher attenuation of the thermal neutron flux than currently used materials with a layer thickness of 5 mm. The results of test for thermocycling of composite material samples with different volume fraction of reinforcing agent (from 30 to 50 vol. %) are shown.
2. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative development of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33.
3. Kablov E.N. Himiya v aviacionnom materialovedenii [Chemistry in aviation materials science] //Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 3–4.
4. Kablov E.N. Aviakosmicheskoe materialovedenie [Aerospace materials science] //Vse materialy. Jenciklopedicheskij spravochnik. 2008. №3. S. 2–14.
5. Kablov E.N. Sovremennye materialy – osnova innovacionnoj modernizacii Rossii [Modern materials – a basis of innovative modernization of Russia] //Metally Evrazii. 2012. №3. S. 10–15.
6. Tarasov Ju.M., Antipov V.V. Novye materialy VIAM – dlya perspektivnoj aviacionnoj tehniki proizvodstva OAO «OAK» [New materials VIAM – for the perspective aircraft equipment of production of JSC «OAK»] //Aviacionnye materialy i tehnologii. 2012. №2. S. 5–6.
7. Kablov E.N., Gerasimov V.V., Visik E.M., Demonis I.M. Rol napravlennoj kristallizacii v resursosberegayushhej tehnologii proizvodstva detalej GTD [Role of the directed solidification in the resource-saving production technologies of details of GTE] //Trudy VIAM. 2013. №3. St. 01 (viam-works.ru).
8. Shmotin Ju.N., Starkov R.Ju., Danilov D.V., Ospennikova O.G., Lomberg B.S. Novye materialy dlya perspektivnogo dvigatelya OAO «NPO „Saturn”» [New materials for the perspective engine of JSC «NPO „Saturn”»] //Aviacionnye materialy i tehnologii. 2012. №2. S. 6–8.
9. Kurganova Ju.A. Perspektivy razvitija metallomatrichnyh kompozicionnyh materialov promyshlennogo naznacheniya [Prospects of development of metalmatrix composite materials of industrial function] //Servis v Rossii i za rubezhom. 2012. T. 30. №3. S. 235–240.
10. Kurganova Ju.A., Chernysheva T.A., Kobeleva L.I., Kurganov S.V. Jekspluatacionnye harakteristiki aljumomatrichnyh dispersnouprochnennyh kompozicionnyh materialov i perspektivy ih ispolzovaniya na sovremennom rynke konstrukcionnyh materialov [Operational characteristics the alum-matrix the disperse hardened of composite materials and prospect of their use in the modern market of constructional materials] //Metally. 2011. №4. S. 71.
11. Chawla N., Chawla K.K. Metal Matrix Composites /In: Springer Sсience+Business Media. Inc. 2006. 401 p.
12. Filippov E.M., Polak L.S. Prikladnaya yadernaya geofizika [Applied nuclear geophysics]. M.: Izd-vo AN SSSR. 1962. 579 s.
13. Aliev A.N., Drynkin V.I., Lejkunskaja D.I., Kasatkin V.A. Yaderno-fizicheskie konstanty dlya nejtronnogo aktivacionnogo analiza [Nuclear and physical constants for the neutron activation analysis]: Spravochnik. M.: Atomizdat. 1969. 326 s.
An analysis of state-of-art technology solutions in the area of radiotransparent glass-ceramic materials based on aluminosilicate systems was made. The development of glass-ceramic materials fabrication methods was overviewed from glass to ceramic technology. It was shown that direct controlled crystallisation performance provides fabrication of materials with unique combination of physical-mechanical, thermophysical and functional properties. The examples of sol-gel fabrication of aluminosilicate ceramics were given. Advantages and disadvantages of different technological methods used for radiotransparent pyrocerams fabrication were discussed. Technological problems of creating complex constructions made of radiotransparent pyrocerams were overviewed.
2. Kablov E.N., Grashhenkov D.V., Isaeva N.V., Solncev S.S. Perspektivnye vysokotemperaturnye keramicheskie kompozicionnye materialy [Perspective high-temperature ceramic composite materials] //Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 20–24.
3. Kablov E.N., Shhetanov B.V., Ivahnenko Ju.A., Balinova Ju.A. Perspektivnye armirujushhie vysokotemperaturnye volokna dlya metallicheskih i keramicheskih kompozicionnyh materialov [The perspective reinforcing high-temperature fibers for metal and ceramic composite materials] //Trudy VIAM. 2013. №2. St. 05 (viam-works.ru).
4. Kablov E.N., Gerasimov V.V., Visik E.M., Demonis I.M. Rol napravlennoj kristallizacii v resursosberegajushhej tehnologii proizvodstva detalej GTD [Role of the directed crystallization in the resource-saving production technology of details of GTE] //Trudy VIAM. 2013. №3. St. 01 (viam-works.ru).
5. Uvarova N.E., Grashhenkov D.V., Isaeva N.V., Orlova L.A., Sarkisov P.D. Vysokotemperaturnye radioprozrachnye materialy: segodnya i zavtra [High-temperature radiotransparent materials: today and tomorrow] //Aviacionnye materialy i tehnologii. 2010. №1. S. 16–21.
6. Kablov E.N., Grashhenkov D.V., Isaeva N.V., Solncev S.S., Sevastyanov V.G. Vysokotemperaturnye konstrukcionnye kompozicionnye materialy na osnove stekla i keramiki dlya perspektivnyh izdelij aviacionnoj tehniki [High-temperature constructional composite materials on the basis of glass and ceramics for perspective products of the aircraft equipment] //Steklo i keramika. 2012. №4. S. 7–11.
7. Corning U.S., Zanotto E.D. A Bright future for glass-ceramics //American ceramic society bulletin. 2010. V. 89. №8. P. 19–27.
8. Suzdaltsev E.I. Radio transparent, heat-resistant materials for the 21th century //Refractories and Industrial Ceramics. 2002. V. 43. №3–4. Р. 103–110.
9. Radioprozrachnyj steklokristallicheskij material dlya aviacionnoj tehniki [Radiotransparent glass crystal material for the aircraft equipment]: pat. 2440936 Ros. Federaciya; opubl. 27.01.2012.
10. Method of making ceramics and product thereof: pat. 2920971 US; publ. 12.01.1960.
11. Sposob izgotovleniya antennogo obtekatelya iz steklokeramiki lithium aluminiumo silicat sostava [Way of production of an antenna fairing from glass ceramics of lithium aluminosilicate structure]: pat. 2326094 Ros. Federaciya; opubl. 10.06.2008.
12. Refractory glass ceramics: pat. 7867932 US; publ. 05.03.2009.
13. Suzdaltsev E.I., Zaichuk N.V., Rozhkova T.I. The Waste Used in the Production of Glass Ceramics of Lithium Alumina-silicate Composition //Refractories and Industrial Ceramics. 2003. V. 44. №4. P. 273–276.
14. Suzdaltsev E.I., Kharitonov D.V. Intensified Sintering of Lithium Aluminosilicate Ceramics //Refractories and Industrial Ceramics. 2004. V. 45. №2. P. 88–90.
15. Solovev V.I., Ahlestin E.S., Sysoev E.R., Tryapkin A.A. Perspektivy razvitiya poroshkovoj tehnologii sitallov [Prospects of development of powder technology of sitall] //Steklo i keramika. 1992. №3. S. 12–14.
16. Sintered cordierite glass-ceramic bodies: pat. 8394732 US; pabl. 12.03.2013.
17. Suzdalcev E.I., Haritonov D.V., Dmitriev A.V. Sostojanie rabot v oblasti sinteza radioprozrachnyh materialov i perspektivy sozdanija novyh kompozicij s uluchshennymi radiotehnicheskimi harakteristikami [Condition of works in the field of synthesis of radiotransparent materials and prospect of creation of new compositions with the improved radio engineering characteristics] //Konstrukcii iz kompozicionnyh materialov. 2008. №2. S. 45–54.
18. Sarkisov P.D., Grashhenkov D.V., Orlova L.A., Uvarova N.E., Popovich N.V. Sovremennye dostizheniya v oblasti sozdaniya vysokotemperaturnyh radioprozrachnyh materialov [Modern achievements in the field of creation of high-temperature radiotransparent materials] //Tehnika i tehnologiya silikatov. 2009. T. 16. №1. S. 2–10.
19. Chanikova A.S., Voropaeva M.V., Alekseeva L.A., Orlova L.A., Samsonov V.I. Sovremennoe sostoyanie razrabotok v oblasti radioprozrachnyh kordieritovyh sitallov (obzor) [Current state of developments in the field of radio transparent cordierite glass-ceramic (review)] //Aviacionnye materialy i tehnologii. 2014. №S6. S. 45–51.
20. Keramicheskij material [Ceramic material]: pat. 540844 Ros. Federaciya; opubl. 30.12.1976.
21. Sposob polucheniya keramiki iz kvarcevogo stekla [Way of receiving ceramics from quartz glass]: pat. 614073 SSSR; opubl. 05.07.1978.
22. Suzdaltsev E.I. Glass Ceramics of β-Spodumene Composition with Controlled Dielectric Constant //Refractories and Industrial Ceramics. 2002. V. 43. №5–6. Р. 176–178.
23. Suzdaltsev E.I., Rozhkova T.I. Materials with Controlled Dielectric Constants Based on a Glass Ceramic of Lithium Alumina-silicate Composition //Refractories and Industrial Ceramics. 2003. V. 44. №4. P. 260–262.
24. Shamsudin Z., Hodzic A., Soutis C., Hand R.J., Hayes S.A., Bond I.P. Characterization of Thermo-mechanical Properties of MgO–Al2O3–SiO2 Glass Ceramic with Different Heat Treatment Temperatures //Journal of Materials Science. 2011. V. 46. №17. P. 5822–5829.
25. Patzig C., Höche T., Hu Y., Ikeno H., Krause M., Dittmer M., Gawronski A., Rüssel C., Tanaka I., Henderson G.S. Zr coordination change during crystallization of MgO–Al2O3–SiO2–ZrO2 glass ceramics //Journal of Non-Crystalline Solids. 2014. №384. Р. 47–54.
26. Fernandes H.R., Tulyaganov D.U., Ferreira J.M.F. The role of P2O5, TiO2 and ZrO2 as nucleating agents on microstructure and crystallization behavior of lithium disilicate-based glass //Journal of materials science. 2013. №48. Р. 765–773.
27. Yun Mo Sung, Jong-Sub Lee, Kee-Chun Shin. The role of precursor nuclei in the crystallization of aluminosilicate glasses //Journal of materials science letters. 2000. V. 19. P. 675–677.
28. Shabanova G.N., Taranenkova V.V., Korogodskaya A.N., Khristich E.V. Structure of the
BaO–Al2O3–SiO2 system (review) //Glass and Ceramics. 2003. V. 60. №1–2. P. 43–46.
29. Orlova L.A., Popovich N.V., Uvarova N.E., Poleari A., Sarkisov P.D. High-temperature Resistant Glass-ceramics Based on Sr-anorthite and Tialite Phases //Ceramics International. 2012. V. 38. №8. P. 6629–6634.
30. Sigaev V.N. Kafedre himicheskoj tehnologii stekla i sitallov 80 let: yunost umeet – zrelost mozhet [To chair of chemical technology of glass and sitall of 80 years: youth is able – the maturity can] //Steklo i keramika. 2013. №4. S. 6–13.
31. Sarkisov P.D., Orlova L.A., Popovich N.V., Brunch R., Chajnikova A.S., Klinkmyuller K., Shchegoleva N.E. Processy spekaniya i kristallizacii pri poluchenii stronciyanortitovoj steklokeramiki [Processes of agglomeration and crystallization when receiving strontianite glass ceramics] //Steklo i keramika. 2012. №8. S. 14–16.
32. Ceramic material: pat. 5642868 US; publ. 01.07.1997.
33. Bansal N.P., Hyatt M.J. Crystallization and Properties of Sr–Ba Aluminosilicate Glass-Ceramic Matrices /In: NASA Technical memorandum 10764 Prepared for the 15th Annual Conference on Composites and Advanced Ceramics sponsored by the American Ceramiс Society. Cocoa Beach, Florida. 1991.
34. Yun Mo Sung, Woo Chul Kwak. Influence of Various Heating Procedures on the Sintered Density of Sr-celsian Glass-ceramic //Journal of Materials Science Letters. 2002. V. 21. №11. P. 841–843.
35. Yun Mo Sung. Monocelsian formation in the SrO–Al2O3–2SiO2 glass //Journal of Materials Science Letters. 2000. V. 19. P. 453–454.
36. Yun Mo Sung. Crystallization characteristics of SrO–Al2O3–SiO2–B2O3 glass //Journal of materials science letters. 2001. V. 20. P. 2235–2237.
37. Yun Mo Sung. Phase formation kinetics in SrO–Al2O3–SiO2–B2O3 glass //Journal of materials science. 2002. V. 37. P. 699–703.
38. Yun Mo Sung, Sungtae Kim. Sintering and crystallization of off-stoichiometric SrO–Al2O3–2SiO2 glasses //Journal of materials science. 2000. V. 35. P. 4293–4299.
39. Yun Mo Sung. Crystallization of celsian glasses of (SrO–Al2O3–2SiO2)–(Al2O3) pseudobinary compositions //Journal of materials science letters. 2001. V. 20. P. 839–840.
40. Yun Mo Sung. Mechanical properties of off-stoichiometric celsian glass-ceramics //Journal of materials science letters.1999. V. 18. P. 1229–1232.
41. Uvarova N.E., Orlova L.A., Lebedeva Ju.E., Grashhenkov D.V. Primenenie metoda elektronnogo paramagnitnogo rezonansa dlya izucheniya strukturnyh izmenenij v processe geleobrazovaniya pri poluchenii keramiki i steklokeramiki zol-gel metodom [Application of a method of an electronic paramagnetic resonance for studying of structural changes in process of jellification when receiving ceramics and glass ceramics sol-gel by method] //Aviacionnye materialy i tehnologii. 2011. №3. S. 26–30.
42. Grashhenkov D.V., Solncev S.St., Shhegoleva N.E., Naumova A.S., Gaponov B.N. Steklokeramicheskij kompozicionnyj material [Glass-ceramic composite material] //Aviacionnye materialy i tehnologii. 2012. №S. S. 368–372.
43. Shhegoleva N.E., Grashhenkov D.V., Vaganova M.L., Solncev S.S. Perspektivnyj steklokeramicheskij kompozicionnyj material [Perspective glass-ceramic composite material] //Tehnika i tehnologija silikatov. 2014. T. 21. №1. S. 6–11.
44. Shhegoleva N.E., Vaganova M.L., Grashhenkov D.V. Primenenie rentgenofazovogo analiza dlja izuchenija processa kristallizacii pri poluchenii kalcijaljumosilikatnoj keramiki zol-gel metodom [Application of the X-ray phase analysis for studying of process of crystallization when receiving calcium aluminosilicate ceramics sol-gel by method] //Perspektivnye materialy. 2014. №5. S. 16–21.
45. Orlova L.A., Chajnikova A.S., Popovich N.V., Lebedeva Ju.E. Kompozity na osnove ayumosilikatnoj steklokeramiki s diskretnymi napolnitelyami [Composites on the basis of aluminosilicate glass ceramics with discrete fillers] //Steklo i keramika. 2013. №4. S. 41–46.
46. Lebedeva Ju.E., Grashhenkov D.V., Popovich N.V., Orlova L.A., Chajnikova A.S. Razrabotka i issledovanie termostabilnyh pokrytij, poluchennyh zol-gel metodom v sisteme Y2O3–Al2O3–SiO2, dlja SiC-soderzhashhih materialov [Development and research of thermostable coating received by sol-gel method in Y2O3–Al2O3–SiO2 system for SiC-based matireals] //Trudy VIAM. 2013. №12. St. 03 (viam-works.ru).
47. Solncev St.S., Rozenenkova V.A., Mironova N.A., Soloveva G.A. Vysokotemperaturnye pokrytiya na osnove sol-gel tehnologii [High-temperature coatings on basis of sol-gel technology] //Trudy VIAM. 2014. №1. St. 03 (viam-works.ru).
48. Lebedeva Ju.E., Popovich N.V., Orlova L.A. Zashhitnye vysokotemperaturnye pokrytiya dlya kompozicionnyh materialov na osnove SiC [Protective high-temperature coverings for composite materials on the basis of SiC] //Trudy VIAM. 2013. №2. St. 06 (viam-works.ru).
49. Kablov E.N., Grashhenkov D.V., Uvarova N.E. Issledovaniya metodom infrakrasnoj spektroskopii strukturnyh izmenenij gelej v processe termicheskoj obrabotki pri poluchenii vysokotemperaturnyh steklokeramicheskih materialov po zol-gel tehnologii [Researches by method of infrared spectroscopy of structural changes of gels in the course of heat treatment when receiving high-temperature glass-ceramic materials on technology sol-gel] //Aviacionnye materialy i tehnologii. 2011. №2. S. 22–25.
50. Romashin A.G., Rusin M.Yu., Borodai F.Ya. Structural Ceramic and Fibrous Materials Based on Quartz Glass //Refractories and Industrial Ceramics. 2004. V. 45. №6. P. 387–391.
51. Xian Xin Li, Ying Sun, Jia Lu Li, Ming Ma. Research Progress of SiO2 Matrix Composites Materials for Radomes //Advanced Materials Research. 2012. V. 430–432. P. 1119–1122.
Properties of thermoplastic binder on the basis of superstructural thermoplastics are given in the article. The algorithm of actions is described at selection of binder on the basis of thermoplastics for manufacture of PCM. On example of polysulphone the influence of molecular weight on thermal-physical, mechanical and rheological properties of the thermoplastic binder is studied. Influence of physical condition of binder (powder, film, fiber, granules) on manufacturing technology of prepregs of PCM is shown.
2. Kablov E.N. Himiya v aviacionnom materialovedenii [Chemistry in aviation materials science] //Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 3–4.
3. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33.
4. Kablov E.N. Nauka kak otrasl ekonomiki [Science as economy industry] //Nauka i zhizn. 2009. №10. S. 6–12.
5. Petrova G.N., Beider E.Ya. Konstrukcionnye materialy na osnove armirovannyh termoplastov [Constructional materials on the basis of the reinforced thermoplastics] //Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 4–40.
6. Nozdrina L.V., Korotkova V.I., Beider Je.Ja. Termoplastichnye polimery dlya konstrukcionnyh materialov. Obzor [Thermoplastic polymers for constructional materials. Review] //Tehnologiya. Ser. «Konstrukcii iz kompozicionnyh materialov». 1991. №1. S. 3–10.
7. Mihajlin Yu.A. Konstrukcionnye polimernye kompozicionnye materialy [Constructional polymeric composite materials]. SPb.: Nauchnye osnovy i tehnologii. 2008. S. 100–570.
8. Perov B.V. Termoplasty, napolnennye voloknami [The thermoplastics filled with fibers] /V kn. Termoplasty konstrukcionnogo naznachenija; Pod red. E.B. Trostjanskoj. M.: Himija. 1975. S. 187–216.
9. Termoplasty konstrukcionnogo naznachenija [Thermoplastics of constructional assignment] /Pod red. E.B. Trostjanskoj. M.: Himija. 1975. 240 s.
10. Dovgjalo V.A., Zinovev S.N., Pomerantseva K.P., Yurkevich O.R. O vliyanii tehnologii prepregov na konstrukcionnye svojstva ugleplastikov [About influence of technology of prepregs on constructional properties ugleplastikov] //Doklady AN BSSR. 1986. T. 30. №3.
S. 237–239.
11. Gunyaev G.M., Chursova L.V., Komarova O.A., Gunyaeva A.G. Konstrukcionnye ugleplastiki, modificirovannye nanochasticami [Constructional coal the plastics modified by nanoparticles] //Aviacionnye materialy i tehnologii. 2012. №S. S. 277–286.
12. Kerber M.L., Vinogradov V.M., Golovkin G.S., Gorbatkina Ju.A. i dr. Polimernye kompozicionnye materialy: struktura, svojstva, tehnologiya [Polymeric composite materials: structure, properties, technology]. SPb.: Professiya. 2008. S. 30–32, 62–72.
13. Zelenskij E.S., Kuperman A.M., Lebedeva O.V. Armirovannye plastiki na osnove termoplastichnyh svjazujushhih [The reinforced plastics on the basis of the thermoflexible binding] //Tehnologiya. Ser. «Konstrukcii iz kompozicionnyh materialov». 1991. №1. S. 10–21.
14. Mihajlin Yu.A. Termoplastichnye kompozicionnye materialy [Термопластичные композиционные материалы] //Polimernye materialy. 2007. №7. S. 8.
15. Perepelkin K.E. Armirujushhie volokna i voloknistye polimernye kompozity [Reinforcing fibers and fibrous polymeric composites]. M.: Nauchnye osnovy i tehnologii. 2009. 658 s.
16. Polimernye kompozicionnye materialy. Svojstva. Struktura. Tehnologii [Polymeric composite materials. Properties. Structure. Technologies] /Pod red. A.A. Berlina. SPb.: Professiya. 2009. 560 s.
17. Berlin A.A., Volfson S.A., Oshmyan V.G., Enikolopov N.S. Principy sozdaniya kompozicionnyh polimernyh materialov [Principles of creation of composite polymeric materials]. M.: Himiya. 1990. 238 s.
18. Gunyaev G.M., Kablov E.N., Aleksashin V.M. Modificirovanie konstrukcionnyh ugleplastikov uglerodnymi nanochasticami [Modifying constructional coal of plastics carbon nanoparticles] //Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 5–11.
19. Krutko E.T., Prokopchuk N.R. Perspektivnye puti sozdaniya novyh termostojkih materialov na osnove poliimidov [Perspective ways of creation of new heat-resistant materials on the basis of polyimide] //Trudy BGTU. Ser. «Himiya, tehnologiya organicheskih veshhestv i biotehnologii». 2013. №4. S. 145–149.
20. Petrova N.A. Stekloplastiki i ih syrevoe obespechenie v Rossii [Fibreglasses and their raw providing in Russia] //Polimernye materialy. 2008. №11. S. 33–36.
21. Petrova G.N., Beider Je.Ja., Izotova T.F., Malyshenok S.V. Kompozicionnye termoplastichnye materialy – sposoby polucheniya i pererabotki [Composite thermoflexible materials – ways of receiving and processing] //Vse materialy. Enciklopedicheskij spravochnik. 2013. №10. S. 10–17.
22. Beider E.Ya., Petrova G.N., Izotova T.F., Gureeva E.V. Kompozicionnye termoplastichnye materialy i penopoliimidy [Thermoplastic composite materials and foam polyimides] //Trudy VIAM. 2013. №11. St. 01 (viam-works.ru).
23. Beider E.Ya., Malyshenok S.V., Petrova G.N. Kompozicionnye termoplastichnye materialy – svojstva i sposoby pererabotki [Composite thermoflexible materials – properties and ways of processing] //Plasticheskie massy. 2013. №7. S. 56–60.
24. Uglerodnye volokna i uglekompozity [Carbon fibers and coal composites]: Per. s ang. /Pod red. Je. Fitcera. M.: Mir. 1988. 336 s.
25. Beider E.Ya., Petrova G.N., Izotova T.F., Barbotko S.L. Stekloplastiki na termoplastichnoj matrice [Glass reinforced plastics on the basis of thermoplastic matrix] //Trudy VIAM. 2013. №7. St. 03 (viam-works.ru).
26. Agafonova A.S., Kondrashov S.V. Osobennosti tehnologii izgotovlenija monolitnogo stekloplastika radiotehnicheskogo naznachenija (MSRT) [Features of a technology to manufacture monolithic glass-fiber plastics intended for radio engineering] //Aviacionnye materialy i tehnologii. 2014. №1. S. 30–33.
27. Komarov G.A. Sostojanie, perspektivy i problemy primenenija PKM v tehnike [Condition, perspectives and problems of application of PKM in equipment] //Polimernye materialy. 2009. №2. S. 5–9.
28. Davydova I.F., Kavun N.S. Stekloplastiki ‒ mnogofunkcionalnye kompozicionnye materialy [Fibreglasses ‒ multipurpose composite materials] //Aviacionnye materialy i tehnologii. 2012. №S. S. 253–260.
29. Petrova G.N. Napravlennaja modifikacija polisulfonov i sozdanie na ih osnove litevyh i kompozicionnyh materialov [The directed updating of polysulphones and creation on their basis of lityevy and composite materials]: Avtoref. dis. k.t.n. M.: VIAM. 2011. S. 10–27.
30. Petrova G.N., Beider E.Ya., Chebotarev V.P., Lovkov S.S., Sazikov V.I. Regulirovanie svojstv polisulfonov za schet modifikacii [Regulation of properties of polysulphones at the expense of updating] //Plasticheskie massy. 2010. №12. S. 23–27.
31. Gunyaev G.M., Gofin M.Ya. Uglerod-uglerodnye kompozicionnye materialy [Carbon-carbon composite materials] //Aviacionnye materialy i tehnologii. 2013. №S1. S. 62–90.
32. Mihajlin Yu.A. Termoustojchivye polimery i polimernye materialy na ih osnove [Thermosteady polymers and polymeric materials on their basis] //Polimernye materialy. 2005. №8. S. 12–23.
33. Beider E.Ya., Petrova G.N., Izotova T.F. Vliyanie appretov na svojstva termoplastichnyh stekloplastikov [An influence of coupling agent on properties of thermoplastic glass reinforced plastics] //Trudy VIAM. 2014. №9. St. 07 (viam-works.ru).
34. Beider E.Ya., Petrova G.N., Dykun M.I. Appretirovanie uglerodnyh volokon-napolnitelej termoplastichnyh karboplastikov [Dressing of carbon fibers – fillers of thermoplastic carbon reinforced plastics] //Trudy VIAM. 2014. №10. St. 03 (viam-works.ru).
35. Zaborskaya L.V., Yurkevich O.R., Dovgyalo V.A., Pisanova E.V. Issledovanie zakonomernostej sovmeshheniya dispersnogo polisulfona s armiruyushhimi voloknami pri poluchenii kompozitnyh materialov [Research of patterns of combination of disperse polysulphone with reinforcing fibers when receiving composite materials] //Mehanika kompozitnyh materialov. 1991. №3. S. 403–407.
36. Ustinov V.A., Beider E.Ya. Primenenie kompozicionnyh materialov s termoplastichnoj matricej [Application of composite materials with thermoflexible matrix] //Konstrukcii iz kompozicionnyh materialov. 1991. №1. S. 21–28.
37. Petrova G.N., Beider E.Ya., Perfilova D.N., Rumyanceva T.V. Pozharobezopasnye litevye termoplasty i termojelastoplasty [Fire safety of injection molding thermoplastics and TPE materials] //Trudy VIAM. 2013. №11. St. 02 (viam-works.ru).
38. Abrosimov A.P. Evropejskij rynok termoplastichnyh elastomerov i sovremennye tendencii [European market of thermoflexible elastomer and current trends] //Promyshlennoe proizvodstvo i ispolzovanie elastomerov. 2010. №3. S. 29–34.
39. Petrova G.N., Perfilova D.N. i dr. Termoplastichnye jelastomery dlya zameny rezin [Thermoflexible elastomer for replacement of rubbers] //Aviacionnye materialy i tehnologii. 2012. №S. S. 302–308.
40. Petrova G.N., Rumyanceva T.V. i dr. Termoelastoplasty – novyj klass polimernyh materialov [Thermoelastoplastics – new class of polymeric materials] //Aviacionnye materialy i tehnologii. 2010. №4. S. 20–25.
41. Volfson S.I. Dinamicheski vulkanizovannye termoelastoplasty [Dynamically vulkanizovanny thermoelastoplastics]. M.: Nauka. 2004. S. 5–12.
42. Novokshonov V.V., Musin I.N., Kimelblat V.I. Optimizaciya svojstv maslostojkih termoplastichnyh elastomernyh kompozicij [Optimization of properties of oilproof thermoflexible elastomeric compositions] //Plasticheskie massy. 2009. №3. S. 24–27.
43. Mihajlin Yu.A., Kerber M.L., Gorbunova I.Yu. Svyazujushhie dlya polimernyh kompozicionnyh materialov [Binding for polymeric composite materials] //Plasticheskie massy. 2002. №2. S. 14–21.
44. Richardson M. Promyshlennye polimernye kompozicionnye materialy [Промышленные полимерные композиционные материалы]. M.: Himiya. 1980. 472 s.
45. Beider E.Ya. Aerodispersnye pokrytiya v izdeliyah aviacionnoj tehniki [Aero disperse coverings in products of aviation engineering]: Avtoref. dis. … k.t.n. M.: VIAM. 1970. S. 10–25.
46. Yurkevich O.R. Osnovy tehnologii kompozicionnyh materialov i pokrytij, formiruemyh v gazodispersnyh polimernyh potokah [Bases of technology of composite materials and the coverings created in gazodispersny polymeric flows]: Avtoref. dis. … d.t.n.: Gomel: IMMS. 1985. S. 12–36.
47. Yurkevich O.R. O haraktere rastekaniya polimernoj kapli po poverhnosti tverdogo tela [About nature of spreading of polymeric drop on surface of solid body] //Novoe v reologii polimerov. 1981. Ch. 2. S. 126–128.
48. Golovkin G.S., Goncharenko V.A., Dmitrenko V.P. Volokonnaya tehnologiya termoplastichnyh kompozicionnyh materialov [Fiber technology of thermoflexible composite materials]. M.: MAI. 1993. 232 s.
49. Golovkin G.S., Rybkina E.G. i dr. Tkanye polufabrikaty organoplastov iz plavkih i neplavkih volokon [Woven semi-finished products of organic laminates from fusible and not fusible fibers] /V sb. Voprosy aviacionnoj nauki i tehniki. Ser. «Aviacionnye materialy». M.: VIAM. 1988. №1. S. 15–20.
50. Mihajlin Yu.A. Termoreaktivnye svyazuyushhie PKM [Thermosetting binding PKM] //Polimernye materialy. 2008. №10. S. 14–19.
The results of works on development of high-strength polymer composite material of new generation on the basis of a carbon UD fiber and hotmelt resin fulfilled at VIAM are represented in article. Comparative elastic and strength characteristics of the cured composite are submitted. The received results show that the developed carbon composite VKU-25 is not inferior import analogs on is elastic and strength properties .
2. Hrulkov A.V., Dushin M.I., Popov Ju.O., Kogan D.I. Issledovaniya i razrabotka avtoklavnyh i bezavtoklavnyh tehnologij formovaniya PKM [Researches and development autoclave and out-of-autoclave technologies of formation of PCM] //Aviacionnye materialy i tehnologii. 2012. №S. S. 292–301.
3. Grashhenkov D.V., Chursova L.V. StrategiYa razvitiYa kompozicionnyh i funkcionalnyh materialov [Strategy of development of composite and functional materials] //Aviacionnye materialy i tehnologii. 2012. №S. S. 231–242.
4. Grishina O.I., Kochetov V.N., Shavnev A.A., Serpova V.M. Aspecty primeneniya vysokoprochnyh i vysokomodulnyh voloknistyh metallicheskih kompozitsionnyh materialov aviatsionnogo naznacheniya (obzor) [Aspects of application of high-strength and high-modulus fiber metal composite materials for aeronautical purpose (review)] //Trudy VIAM. 2014. №10. St. 05 (viam-works.ru).
5. Timoshkov P.N., Hrulkov A.V. Sovremennye tehnologii pererabotki polimernyh kompozitsionnyh materialov, poluchaemyh metodom propitki rasplavnym svyazuyushchim [Modern technologies of hotmelt polymer composite materials processing] //Trudy VIAM. 2014. №8. St.04 (viam-works.ru).
6. Dement’eva L.A., Serezhenkov A.A., Lukina N.F., Kutsevich K.E. Svoistva i naznachenie kompozitsionnyh maerialov na osnove kleevyh prepregov [Properties and appointment of composite materials based on adhesive prepregs]// Trudy VIAM. 2014. №8. St. 06 (viam-works.ru).
7. Muhametov R.R., Ahmadieva K.R., Kim M.A., Babin A.N. Rasplavnye svyazujushhie dlya perspektivnyh metodov izgotovleniya PKM novogo pokoleniya [Melt binding for perspective methods of production of PCM of new generation] //Aviacionnye materialy i tehnologii. 2012. №S. S. 260–265.
8. Dushin M. I., Hrulkov A.V., Raskutin A.E. K voprosu udaleniya izlishkov svyazuyushchego pri avtpklavnim formovanii izdeliy iz polimernyh kompozitsionnyh materialov [To question of removal of excesses binding at avtoklavny formation of products from polymeric composite materials]// Trudy VIAM. 2013. №1. St. 03 (viam-works.ru).
9. Kablov E.N. Materialy i himicheskie tehnologii dlya aviacionnoj tehniki [Materials and chemical technologies for the aircraft equipment] //Vestnik Rossijskoj akademii nauk. 2012. T. 82. №6. S. 520–530.
10. Sposob poluchenija izdeliya iz kompozicionnogo materiala [A way of receiving a product from composite material]: pat. 2448808 Ros. Federaciya; opubl. 05.10.2010.
11. Postnov V.I., Petuhov V.I., Kazakov I.A., Abramov P.A., Postnov A.V., Senatorova O.G., Zhelezina G.F. Izgotovlenie iz MPKM konstruktivnyh elementov planera samoleta i osobennosti ih formoobrazovaniya [Production from MPKM of constructive elements of a glider of the plane and feature of their shaping] //Aviacionnye materialy i tehnologii. 2009. №3. S. 10–19.
12. Dushin M.I., Hrulkov A.V., Muhametov R.R. Vybor tehnologicheskih parametrov avtoklavnogo formovaniya detalej iz polimernyh kompozicionnyh materialov [A choice of technological parameters of autoclave formation of details from polymeric composite materials] //Aviacionnye materialy i tehnologii. 2011. №3. S. 20–26.
13. Raskutin A.E. Konstrukcionnye ugleplastiki na osnove novyh svyazuyushhih rasplavnogo tipa i tkanej PORCHER [Constructional coal plastics on the basis of new binding melt type and PORCHER fabrics] //Novosti materialovedeniya. Nauka i tehnika. 2013. №5. St. 01 (materialsnews.ru).
14. Kablov E.N. Sovremennye materialy – osnova innovacionnoj modernizacii Rossii [Modern materials – a basis of innovative modernization of Russia ] //Metally Evrazii. 2012. №3. S. 10–15.
15. Kablov E.N. Materialy i tehnologii VIAM v konstruktsiyah perspectivnih dvigatelei razrabotki OAO «Aviadvigatel» [Materials and VIAM technologies in designs of perspective engines of development of JSC «Aviadvigatel»] //IB «Permskie aviatsionnye dvigateli». 2014. №31. S. 43–47.
The article presents information about fiberglass for interior of passenger aircraft developed at VIAM. The basic requirements of fire safety for such materials are pointed out. Methods for determining the combustibility and smoke generation of polymer materials are considered. Main characteristics of fireproof materials based on various types of binders and glass materials are represented. The technology of manufacture of interior panels of different curvature by using the method «crush core» is described.
2. Kirin K.M. Perspektivnye pozharobezopasnye tekstilnye materialy dlya primeneniya v grazhdanskoj aviatsii [Perspective the fire safe textile materials for application in civil aviation]: avtoref. dis. … kand. tehn. M.: GOU VPO RosZITLP. 2004. 16 s.
3. Gunyaev G.M., Krivonos V.V., Rumyancev A.F., Zhelezina G.F. Polimernye kompozicionnye materialy v konstrukciyah letatelnyh apparatov [Polymer composire materials in aircraft structure] //Konversiya v mashinostroenii. 2004. №4 (65). S. 65–69.
4. Barbotko S.L., Dementeva L.A., Serzhenkov A.A. Gorjuchest steklo- i ugleplastikov na osnove kleevyh prepregov [Flammability glass and carbon fiber based adhesive prepregs] //Klei. Germetiki. Tehnologii. 2008. №7. S. 29–31.
5. Surnin E.G., Kondrashov Je.K. Pozharobezopasnye dekorativno-otdelochnye materialy [Fire safe decorative and finishing materials] /V kn. Aviacionnye materialy. Izbrannye trudy «VIAM» 1932–2002: Jubilejnyj nauch.-tehnich. sb. M.: MISIS–VIAM. 2002. S. 271–281.
6. Veshkin E.A., Postnov V.I., Zastrogina O.B., Satdinov R.A. Tehnologiya uskorennogo formovaniya sotovyh panelej interera samoleta [Technology of the accelerated formation of cellular panels of an interior of the plane] //Izvestiya Samarskogo nauchnogo centra Rossijskoj akademii nauk. 2013. T. 15. №4 (4). S. 799–805.
7. Avrasin Ya.D., Borodin M.Ya., Kiselev B.A. Stekloplastiki v aviastroenii [Fibreglasses in aircraft industry] //Aviacionnaja promyshlennost'. 1982. №8. S. 80–84.
8. Sokolov I.I., Kogan D.I., Raskutin A.E., Babin A.N., Filatov A.A., Morozov B.B. Mnogoslojnye konstrukcii so sferoplastikami [Multilayered designs with the sphere plasticity] //Konstrukcii iz kompozicionnyh materialov. 2014. №1. S. 37–42.
9. Kablov E.N. Materialy i himicheskie tehnologii dlya aviacionnoj tehniki [Materials and chemical technologies for the aircraft equipment] //Vestnik Rossijskoj akademii nauk. 2012. T. 82. №6. S. 520–530.
10. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33.
11. Kablov E.N. Himiya v aviacionnom materialovedenii [Chemistry in aviation materials science] //Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 3–4.
12. Zastrogina O.B., Shvets N.I., Postnov V.I., Serkova E.A. Fenolformaldegidnye svjazuyushhie novogo pokoleniya dlya materialov interera [Phenolformaldehyde binding new generation for interior materials] //Aviacionnye materialy i tehnologii. 2012. №S. S. 265–272.
13. Strelnikov S.V., Zastrogina O.B., Veshkin E.A., Shvets N.I. K voprosu o sozdanii vysokoeffektivnyh tehnologij izgotovleniya panelej interera v krupnoserijnom proizvodstve [To a question of creation of highly effective manufacturing techniques of panels of an interior in a large-lot production] //Aviacionnye materialy i tehnologii. 2011. №4. S. 18–24.
14. Serkova E.A., Shvets N.I., Zastrogina O.B., Postnov V.I., Petuhov V.I., Barbotko S.L., Veshkin E.A. Bystrootverzhdaemoe fenolformaldegidnoe svyazujushhee, pererabatyvaemoe po «crush-core» tehnologii, dlya pozharobezopasnyh materialov interera [Quickly cured phenolformaldehyde binding, processed on technology «crush-core», for the fire of safe materials of an interior] /V sb. tezisov dokl. HIH konf. «Konstrukcii i tehnologii poluchenija izdelij iz nemetallicheskih materialov». Obninsk. 2010. S. 70–71.
15. Dolmatovskij M.G., Sokolov I.I. Osobennosti razrusheniya sotovyh panelej so sferoplastikami [Features of destruction of cellular panels with the sphere plasticity] //Aviacionnye materialy i tehnologii. 2008. №4. S. 19–24.
Investigation of simultaneous determination of content of surface and dissolved hy-drogen in aluminum and low aluminum alloys was provided by method of heating in an inert gas of argon in electrode impulse furnace of analyzer Leco RHEN-602 followed by detection in the conductivity cell. Operation modes of electrode impulse furnace, allowing complete extraction of surface hydrogen at the first step, and then extraction of dissolved hydrogen from aluminum and low aluminum alloy, were chosen. The measurement procedure was developed using the results of the determination of surface and dissolved hydrogen in different aluminum alloys.
2. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative development of FSUE «VIAM» SSC of RF on realization of «Strategic directions of development of materials and technologies of their processing for the period until 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33.
3. Kornysheva I.S., Volkova E.F., Goncharenko E.S., Muhina I.Ju. Perspektivy primeneniya magnievyh i litejnyh alyuminievyh splavov [Prospects of application of magnesian and foundry aluminum alloys] //Aviacionnye materialy i tehnologii. 2012. №S. S. 212–222.
4. Antipov V.V. Strategiya razvitiya titanovyh, magnievyh, berillievyh i alyuminievyh splavov [Strategy of development of titanic, magnesian, beryllium and aluminum alloys] //Aviacionnye materialy i tehnologii. 2012. №S. S. 157–167.
5. Kablov E.N., Ospennikova O.G., Vershkov A.V. Redkie metally i redkozemelnye elementy – materialy sovremennyh i budushhih vysokih tehnologij [Rare metals and rare-earth elements – materials for modern and future high technologies] //Trudy VIAM. 2013. №2. St. 01 (viam-works.ru).
6. Goncharenko E.S., Trapeznikov A.V., Ogorodov D.V. Litejnye alyuminievye splavy (k 100-letiju so dnja rozhdenija M.B. Altmana) [Aluminum casting alloys (on the 100th anniversary of the birth of M. B. Altman)] //Trudy VIAM. 2014. №4. St. 02 (viam-works.ru).
7. Antipov V.V., Senatorova O.G., Tkachenko E.A., Vahromov R.O. Alyuminievye deformiruemye splavy [Aluminum deformable alloys] //Aviacionnye materialy i tehnologii. 2012. №S. S. 167–182.
8. Kablov E.N. Korroziya ili zhizn [Corrosion or life] //Nauka i zhizn. 2012. №11. S. 16–21.
9. Kablov E.N. Aviakosmicheskoe materialivedenie [Aerospace materials science] //Vse materialy. Entsiklopedicheskiy spravochnik. 2008. №3. S. 2–14.
10. Tarasov Yu.M., Antipov V.V. Novye materialy VIAM – dlya perspektivnoj aviacionnoj tehkniki proizvodstva OAO «OAK» [The VIAM new materials – for perspective aviation engineering of production of JSC «OAK»] //Aviacionnye materialy i tehnologii. 2012. №2. S. 5–6.
11. Fridlyander I.N., Grushko O.E., Antipov V.V., Kolobnev N.I., Hokhlatova L.B. Aluminiy-litievye splavy [Aluminum-lithium alloys] /V kn.: 75 let Aviatsionnye materialy. Izbrannye Trudy «VIAM» 1932–2007: Yubileynyi nauch.-tehnich. sb. М.: VIAM. 2007. S. 163–171.
12. Kablov E.N. Sovremennye materialy – osnova innovatsionnoy modernizatsii Rossii [Modern materials – basis of innovative modernization of Russia] //Metally Evrazii. 2012. №3. S. 10–15.
13. Kablov E.N., Lukin V.I., Zhegina I.P., Ioda E.N., Loskutov V.M. Osobennosti I perspektivy svarki alyuminiy-litievyh splavov [Features and perspectives of welding of alyuminiylitiyevy alloys] /V sb. Aviatsionnye materialy i tehnologii. Vyp.: «Tehnologiya proizvodstva aviatsionnyh metallicheskih materilov». M.: VIAM. 2002. S. 3–12.
14. Antipov V.V., Kolobnev N.I., Hohlatova L.B. Razvitie alyuminijlitievyh splavov i mnogostupenchatyh rezhimov termicheskoj obrabotki [Development aluminum lithium alloys and multistage modes of thermal processing] //Aviacionnye materialy i tehnologii. 2012. №S. S. 183–195.
15. Klochkova Ju.Ju., Grushko O.E., Lancova L.P., Burlyaeva I.P., Ovsyannikov B.V. Osvoenie v promyshlennom proizvodstve polufabrikatov iz perspektivnogo aljuminijlitievogo splava V-1469 [Development in industrial production of semi-finished products from perspective alyuminiylitiyevy alloy V-1469] //Aviacionnye materialy i tehnologii. 2011. №1. S. 8–12.
Heat-resistant nickel alloys (HRNA) are one of the promising materials, which are used in aviation engineering for manufacture of a wide range of parts and structures for various purposes. Improvement in heat resistance of HRNA depends on the conditions of their production and chemical composition. In this regard control of the composition of HRNA in the process of their production by method of express-analysis is an extremely important problem. The developed method of optical emission analysis provides relative error at determination of the content of alloying elements not more than 5% at values of the mass fraction of more than 1%.
2. Kablov E.N., Lomberg B.S., Ospennikova O.G. Sozdanie sovremennyh zharoprochnyh materialov i tehnologij ih proizvodstva dlya aviacionnogo dvigatelestroeniya [Creation of modern heat resisting materials and technologies of their production for aviation engine-building] //Krylya Rodiny. 2012. №3–4. S. 34–38.
3. Kablov E.N., Ospennikova O.G., Petrushin N.V., Visik E.M. Monokristallicheskij zharoprochnyj nikelevyj splav novogo pokoleniya s nizkoj plotnostyu [Single-crystal nickel-based superalloy of a new generation with low-dencsity] //Aviacionnye materialy i tehnologii. 2015. №2 (35). S. 14–25.
4. Kablov E.N., Petrushin N.V., Svetlov I.L., Demonis I.M. Nikelevye litejnye zharoprochnye splavy novogo pokoleniya [Nickel foundry heat resisting alloys of new generation] //Aviacionnye materialy i tehnologii. 2012. №S. S. 36–52.
5. Lomberg B.S., Ovsepjan S.V., Bakradze M.M., Mazalov I.S. Vysokotemperaturnye zharoprochnye nikelevye splavy dlya detalej gazoturbinnyh dvigatelej [High-temperature heat resisting nickel alloys for details of gas-turbine engines] //Aviacionnye materialy i tehnologii. 2012. №S. S. 52–57.
6. Kablov E.N., Petrushin N.V., Svetlov I.L., Demonis I.M. Litejnye zharoprochnye nikelevye splavy dlya perspektivnyh aviacionnyh GTD [Foundry heat resisting nickel alloys for perspective aviation GTE] //Tehnologiya legkih splavov. 2007. №2. S. 6–16.
7. Shmotin Ju.N., Starkov R.Ju., Danilov D.V., Ospennikova O.G., Lomberg B.S. Novye materialy dlya perspektivnogo dvigatelya OAO «NPO „Saturn”» [New materials for the perspective engine of JSC «NPO „Saturn”»] //Aviacionnye materialy i tehnologii. 2012. №2. S. 6–8.
8. Kablov E.N., Ospennikova O.G., Petrushin N.V. Novyj monokristallicheskij intermetallidnyj (na osnove γʹ-fazy) zharoprochnyj splav dlya lopatok GTD [New single crystal heat-resistant intermetallic γʹ-based alloy for GTE blades] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 34–40.
9. Sidorov V.V., Rigin V.E., Filonova E.V., Timofeeva O.B. Structurnye isslidovaniya i svoistva monokristallov splavov VZhM4-VI i VZhM5-VI [The structure investigations and properties of VGM4-VI and VGM5-VI single crystal alloys with increased phosphorus quantity] // Trudy VIAM. 2014. №3. St. 02. (viam-works.ru).
10. Lomberg B.S., Bakradze M.M., Chabina E.B., Filonova E.V. Vzaimosvjaz struktury i svojstv vysokozharoprochnyh nikelevyh splavov dlya diskov gazoturbinnyh dvigatelej [Interrelation of structure and properties of high-heat resisting nickel alloys for disks of gas-turbine engines] //Aviacionnye materialy i tehnologii. 2011. №2. S. 25–30.
11. Chabina E.B., Filonova E.V., Lomberg B.S., Bakradze M.M. Struktura sovremennyh deformiruemyh nikelevyh splavov [Structure of modern deformable nickel alloys] //Vse materialy. Jenciklopedicheskij spravochnik. 2012. T. 6. S. 22–27.
12. Petrushin N.V., Eljutin E.S., Chabina E.B., Timofeeva O.B. O fazovyh i strukturnyh prevrashhenijah v zharoprochnyh renijsoderzhashhih splavah monokristallicheskogo stroeniya [About phase and structural transformations in heat resisting the reniysoderzhashchikh alloys of a single-crystal structure] //Litejnoe proizvodstvo. 2008. №7. S. 1–7.
13. Letov A.F., Karachevcev F.N., Gundobin N.V., Titov V.I. Razrabotka standartnyh obrazcov sostava splavov aviacionnogo naznacheniya [Development of standard samples of structure of alloys of aviation appointment] //Aviacionnye materialy i tehnologii. 2012. №S. C. 393–398.
14. Letov A.F., Karachevcev F.N. Opyt razrabotki standartnyh obrazcov aviacionnyh splavov [Experience of development of standard samples of aviation alloys] //Mir izmerenij. 2012. №8. S. 31–35.
15. Karachevcev F.N., Letov A.F., Procenko O.M., Jakimova M.S. Razrabotka standartnyh obrazcov sostava aviacionnyh splavov [Development of standard samples of structure of aviation alloys] //Standartnye obrazcy. 2013. №4. S. 30–34.
The results of comparative tests of two meltings of cold rolled tape from VNS-9-Sh steel on intergranular corrosion and pitting corrosion are considered in this work. Possibility of preparation of the tape surface by means of etching in various acid solutions in order to manufacture metalpolymeric composite material is investigated. Values of a roughness and influence of etching on plasticity of material are defined.
2. Kablov E.N. Materialy i himicheskie tehnologii dlja aviacionnoj tehniki [Materials and chemical technologies for aviation engineering] //Vestnik Rossijskoj akademii nauk. 2012. T. 82. №6. S. 520–530.
3. Kablov E.N. Aviacionnoe materialovedenie: itogi i perspektivy [Aviation materials science: results and perspectives] //Vestnik Rossijskoj akademii nauk. 2012. T. 72. №1. S. 3–12.
4. Dushin M. I., Hrulkov A.V., Muhametov R.R., Chursova L.V. Osobennosti izgotovleniya izdelij iz PKM metodom propitki pod davleniem [Features of manufacturing of products from PCM impregnation method under pressure] //Aviacionnye materialy i tehnologii. 2012. №1. S. 18–26.
5. Hrulkov A.V., Dushin M.I., Popov Yu.O., Kogan D.I. Issledovaniya i razrabotka avtoklavnyh i bezavtoklavnyh tehnologij formovaniya PKM [Researches and development autoclave and out-of-autoclave technologies of formation of PCM] //Aviacionnye materialy i tehnologii. 2012. №S. S. 292–301.
6. Grigorev M.M., Kogan D.I., Tverdaya O.N., Panina N.N. Osobennosti izgotovleniya PKM metodom RFI [Features of manufacturing of PCM RFI method] //Trudy VIAM. 2013. №4. St. 03 (viam-works.ru).
7. Muhametov R.R., Ahmadieva K.R., Chursova L.V., Kogan D.I. Novye polimernye svyazujushhie dlya perspektivnyh metodov izgotovleniya konstrukcionnyh voloknistyh PKM [New polymeric binding for perspective methods of manufacturing of constructional fibrous PCM] //Aviacionnye materialy i tehnologii. 2011. №2. S. 38–42.
8. Muhametov R.R., Ahmadieva K.R., Kim M.A., Babin A.N. Rasplavnye svyazujushhie dlya perspektivnyh metodov izgotovleniya PKM novogo pokoleniya [Melt binding for perspective methods of production of PCM of new generation] //Aviacionnye materialy i tehnologii. 2012. №S. S. 260–265.
9. Gunyaev G.M., Kablov E.N., Aleksashin V.M. Modificirovanie konstrukcionnyh ugleplastikov uglerodnymi nanochasticami [Modifying constructional ugleplastikov carbon nanoparticles] //Rossijskij himicheskij zhurnal. 2010. T. 54. №1. S. 5–11.
10. Kablov E.N., Kondrashov S.V., Yurkov G.Yu. Perspektivy ispolzovaniya uglerodsoderzhashhih nanochastic v svyazuyushchih dlya polimernyh kompozicionnyh materialov [Perspectives of use of carbon-containing nanoparticles in binding for polymeric composite materials] //Rossijskie nanotehnologii. 2013. T. 8. №3–4. S. 24–42.
11. Kirillov V.N., Startsev O.V., Efimov V.A. Klimaticheskaya stojkost i povrezhdaemost polimernyh kompozicionnyh materialov, problemy i puti resheniya [Climatic firmness and damageability of polymeric composite materials, problems and solutions] //Aviacionnye materialy i tehnologii. 2012. №S. S. 412–423.
12. Kirillov V.N., Efimov V.A., Shvedkova A.K., Nikolaev E.V. Issledovanie vliyaniya klimaticheskih faktorov i mehanicheskogo nagruzheniya na strukturu i mehanicheskie svojstva PKM [Research of influence of climatic factors and mechanical loading on structure and the PCM mechanical properties] //Aviacionnye materialy i tehnologii. 2011. №4. S. 41–45.
13. Stolyankov Yu.V., Ishodzhanova I.V., Antyufeeva N.V. K voprosu o defektah obrazcov dlya ispytanij ugleplastikov [On the question of carbon fiber reinforced plastics (CFRP) test specimen flaws] //Trudy VIAM. 2014. №10. St. 10 (viam-works.ru).
14. Terentev V.F., Slizov A.K., Prosvirnin D.V. i dr. Vliyanie skorosti deformirovaniya rastyazheniem na mehanicheskie svojstva i fazovyj sostav trip-stali VNS-9-Sh [Influence of speed of deformation by stretching on mechanical properties and phase composition of VNS-9-Sh trip-steel] //Deformaciya i razrushenie materialov. 2014. №10. S. 40–43.
15. Voznesenskaya N.M., Kapitanenko D.V., Tonysheva O.A., Eliseev E.A. Optimizaciya tehnologicheskih rezhimov polucheniya tonkih listov i lenty iz korrozionnostojkoj stali VNS-9-Sh [Optimization of technological modes of receiving thin sheets and tape from the VNS-9-Sh corrosion-resistant steel] //Metally. 2014. №1. S. 46–51.
16. Gurvich L.Ya., Lashhevskij V.B. Korroziya i zashhita splavov v morskih usloviyah [Corrosion and protection of alloys in sea conditions] /V sb. Voprosy aviacionnoj nauki i tehniki. Ser. «Aviacionnye materialy». M.: VIAM. 1985. S. 64–81.
In this paper, the possibility for determination of small amounts of phosphorous in the lead-based VPr18 solder used for soldering wires is shown. Small amounts of phosphorous additives can improve corrosion resistance and strength of the material. Thus solder can operate up to temperatures of 270°C. Welding and solder quality depend on the solder composition by major alloying and impurity elements. In this connection it is necessary to clearly regulate the chemical composition of solders and control the content of chemical elements in their composition. A method of determination of small amounts (0,007 wt. %) of phosphorus in the solder VPr18 was developed. When the content of of phosphorus in the the solder material is large it is necessary to build another calibration graph.
2. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative development of FSUE «VIAM» SSC of RF on realization of «Strategic directions of development of materials and technologies of their processing for the period until 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33.
3. Kablov E.N., Mubojadzhjan S.A. Zharostojkie i teplozashhitnye pokrytiya dlya lopatok turbiny vysokogo davleniya perspektivnyh GTD [Heat-resistant and heat-shielding coverings for shovels of the turbine of a high pressure of perspective GTE] //Aviacionnye materialy i tehnologii. 2012. №S. S. 60–70.
4. Kablov E.N., Bondarenko Ju.A., Echin A.B., Surova V.A. Razvitie processa napravlennoj kristallizacii lopatok GTD iz zharoprochnyh splavov s monokristallicheskoj i kompozicionnoj strukturoj [Development of process of the directed crystallization of shovels of GTE of heat resisting alloys with single-crystal and composite structure] //Aviacionnye materialy i tehnologii. 2012. №1. S. 3–8.
5. Kablov E.N., Evgenov A.G., Rylnikov V.S., Afanasev-Hodykin A.N. Issledovanie melkodispersnyh poroshkov pripoev dlya diffuzionnoj vakuumnoj pajki, poluchennyh metodom atomizacii rasplava [Research of fine powders of the solders for the diffusive vacuum soldering received by a fusion atomization method] //Vestnik MGTU im. N.Je. Baumana. Ser. «Mashinostroenie». 2011. №SP2. S. 79–87.
6. Sorokin L.I. Svarivaemost zharoprochnyh splavov, primenjaemyh v aviacionnyh gazoturbinnyh dvigatelyah [The weldability of the heat resisting alloys applied in aviation gas-turbine engines] //Svarochnoe proizvodstvo. 1997. №4. S. 4–11.
7. Lukin V.I., Semenov V.N., Starova L.L. i dr. Obrazovanie gorjachih treshhin pri svarke zharoprochnyh splavov [Formation of hot cracks when welding heat resisting alloys] //MiTOM. 2007. №12. S. 7–14.
8. Rylnikov V.S. Voprosy po pajke, reshennye v processe izgotovleniya izdeliya «Buran» [Some problems of brazing solved in the course of manufacture of «Buran» reusable spaceship] //Aviacionnye materialy i tehnologii. 2013. №S1. S. 33–34.
9. Lukin V.I., Banas I.P., Kovalchuk V.G., Golev E.V. Argono-dugovaja svarka vysokoprochnoj cementuemoj stali VNS-63 [TIG welding of high-strengthened cemented steel VNS-63] //Trudy VIAM. 2013. №8. St. 01 (viam-works.ru).
10. Afanasev-Hodykin A.N., Lukin V.I., Rylnikov V.S. Vysokotehnologichnye polufabrikaty zharoprochnyh pripoev (lenty i pasty na organicheskom svyazujushhem) [Hi-tech semi-finished high-temperature solders (tape and paste on an organic)] //Trudy VIAM. 2013. №9. St. 02 (viam-works.ru).
11. Rylnikov V.S., Afanasev-Hodykin A.N., Galushka I.A. Tehnologiya pajki konstrukcii tipa «blisk» iz raznoimennyh splavov [Technology of braze design type «blisk» from dissimilar alloys] //Trudy VIAM. 2013. №10. St. 02 (viam-works.ru).
12. Rylnikov V.S., Afanasev-Hodykin A.N., Krasikov M.I. Issledovanie remontnoj tehnologii ispravleniya defektov pajanyh soedinenij toplivnyh kollektorov [Research of repair technology of defects correction of soldered joints of fuel collector] //Trudy VIAM. 2013. №12. St. 02 (viam-works.ru).
13. Khorunov V.F., Maksimova S.V. Paika zharoprochnykh splavov na sovremennom etape [The soldering of hot strength alloys at the present stage] //Svarochnoe proizvodstvo. 2010. №10. S. 24–27.
14. Lukin V.I., Banas I.P., Kovalchuk V.G., Golev E.V. Argono-dugovaya svarka visokoprochnoi cementuemoy staly VNS-63 [Argon-arc welding of high-strength VNS-63 cemetey steel] // Trudy VIAM. 2013. №8. St. 01 (viam-works.ru).
15. Krivusha L.S., Sukhomlin M.M., Vorobev G.M. Problema kachestva payanykh soedineniy I razrabotka pripoev [Problem of quality of sweated connections and development of solders] //Avtomatocheskaya svarka. 2005. №3. S. 48–53.
The technique of microwave sample preparation of chrome for determination of a mass fraction of Si, P, Fe, Cu, Zn, As, Sn, Sb, Pb and Bi by mass spectrometry with inductively coupled plasma method (IСP-MS) is described, and also test for content of these elements in a chrome sample is carried out. Compositions of mixes for dissolution, an order of addition of reagents and parameters of microwave decomposition are chosen. Spectral interferences are eliminated by means of reaction-collision cell application. The correctness of measurement techniques is verified by the «added–found» method. Range of the determination contents made 0,00001–0,18 mass %.
2. Kolokolcev V.M., Golcov A.S., Stolyarov A.M. Vybor novogo sostava zharoiznosostojkogo chuguna [Choice of new composition of heat and wear resistant cast iron] //Litejnoe proizvodstvo. 2013. №6. S. 2–7.
3. Litejnyj splav na osnove alyuminiya [Foundry alloy on the basis of aluminum]: pat. 2385358 Ros. Federaciya; opubl. 27.03.10.
4. Splav dlya izgotovleniya shtampovogo instrumenta [Alloy for production of the stamp tools]: pat. 2392341 Ros. Federaciya; opubl. 20.06.10.
5. Amirhanova N.A., Hamzina A.R. Povyshenie korrozionnoj stojkosti splava JeP648k vysokotemperaturnoj gazovoj korrozii [Increase of corrosion resistance of alloy EP648k of high-temperature gas corrosion] //Vestnik PNIPU. Aerokosmicheskaya tehnika. 2014. №36.
S. 38–48.
6. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33.
7. Kablov E.N., Ospennikova O.G., Vershkov A.V. Redkie metally i redkozemelnye elementy – materialy sovremennyh i budushhih vysokih tehnologij [Rare metals and rare-earth elements – materials for modern and future high technologies] //Trudy VIAM. 2013. №2. St. 01 (viam-works.ru).
8. Min P.G., Sidorov V.V. Opyt pererabotki litejnyh othodov splava ZhS32-VI na nauchno-proizvodstvennom komplekse FGUP «VIAM» po izgotovleniyu lityh prutkovyh (shihtovyh) zagotovok [The experience of GS32-VI alloy scrap recycling at the VIAM scientific and production complex for cast bars production] //Aviacionnye materialy i tehnologii. 2013. №4. S. 20–25.
9. Kablov E.N., Bondarenko Ju.A., Echin A.B., Surova V.A. Razvitie processa napravlennoj kristallizacii lopatok GTD iz zharoprochnyh splavov s monokristallicheskoj i kompozicionnoj strukturoj [Development of process of the directed crystallization of shovels of GTE of heat resisting alloys with single-crystal and composite structure] //Aviacionnye materialy i tehnologii. 2012. №1. S. 3–8.
10. Min P.G., Sidorov V.V. Rafinirovanie othodov zharoprochnogo nikelevogo splava ZhS32-VI ot primesi kremniya v usloviyah vakuumnoj indukcionnoj plavki [Refining of scrap of Ni-base superalloy GS32-VI to eliminate silicon impurity under conditions of vacuum induction melting] //Trudy VIAM. 2014. №9. St. 01 (viam-works.ru).
11. Kablov E.N., Lomberg B.S., Ospennikova O.G. Sozdanie sovremennyh zharoprochnyh materialov i tehnologij ih proizvodstva dlja aviacionnogo dvigatelestroenija [Creation of modern heat resisting materials and technologies of their production for aviation engine-building] //Krylja Rodiny. 2012. №3–4. S. 34–38.
12. Hu J., Wang H. Determination of Trace Elements in Super Alloy by ICP-MS //Mikrochim. Acta. 2001. V. 137. P. 149–155.
13. Lejkin A.Ju., Jakimovich P.V. Sistemy podavleniya spektralnyh interferencij v mass-spektrometrii s induktivno svjazannoj plazmoj [Systems of suppression of spectral interferences in mass spectrometry with inductively connected plasma] //Zhurnal analiticheskoj himii. 2012. T. 67. №8. S. 752–762.
14. MI 1.2.052–2013. Metodika izmerenij massovoj doli primesej Р, Mn, Fe, Cu, Zn, Ga, As, Se, Ag, Cd, Sn, Sb, Te, Tl, Pb, Bi v nikelevyh splavah metodom mass-spektrometrii s induktivno svyazannoj plazmoj [Measurement technique of a mass fraction of impurity Р, Mn, Fe, Cu, Zn, Ga, As, Se, Ag, Cd, Sn, Sb, Te, Tl, Pb, Bi in nickel alloys by a mass spectrometry method with inductively connected plasma].
15. Pupyshev A.A., Surikov V.T. Mass-spektrometriya s induktivno svjazannoj plazmoj. Obrazovanie ionov [Mass spectrometry with inductively connected plasma. Formation of ions]. Ekaterinburg: UrO RAN. 2006. 276 s.
16. Tormysheva E.A., Smirnova E.V., Ermolaeva T.N. Opredeleniya oksidov zheleza (III), kalciya i alyuminiya v magnezialnyh ogneuporah metodom AJeS s ISP v usloviyah mikrovolnovogo razlozheniya proby [Definitions of oxides of iron (III), calcium and aluminum in magnesian refractory materials by method of the NPP with ISP in the conditions of microwave decomposition of test] //Vestnik Voronezhskogo gosudarstvennogo universiteta. 2010. №1. S. 51–55