Last number
№2 2025
The structure, hardness and tribological characteristics of the electrospark coating based on high nitrogen structural steel of the Fe–C–Cr–Mn–Mo–Ni–V alloying system were studied. It was found that the maximum thickness of the coating based on steel is 34,5 μm. Samples with a single-layer coating of 18 μm thick have the best wear resistance. Application of the coating helps to increase the wear resistance of 30KhGSN2A steel by more than 3 times.
2. Sevalnev G.S. Beryllium-containing steels – perspective material with a high level of physical and mechanical properties. Aviation materials and technologies, 2023, no. 3 (72), paper no. 02. Available at: http://www.journal.viam.ru (accessed: January 24, 2024). DOI: 10.18577/2713-0193-2023-0-3-15-29.
3. Bogachev I.A., Sulyanova E.A., Sukhov D.I., Mazalov P.B. Microstructure and properties investigations of Fe–Cr–Ni stainless steel obtained by selective laser melting. Trudy VIAM, 2019, no. 3 (75), paper no. 01. Available at: http://www.viam-works.ru (accessed: July 31, 2024). DOI: 10.18577/2307-6046-2019-0-3-3-13.
4. Voznesenskaya N.M., Tonysheva O.A., Eliseev E.A. Modern structural steels of cryogenic purpose and influence of some alloying elements on their properties (review). Trudy VIAM, 2020, no. 1, paper no. 01. Available at: http://www.viam-works.ru (accessed: July 31, 2024). DOI: 10.18577/2307-6046-2020-0-1-3-14.
5. Bannykh I.O., Ashmarin A.A., Betzofen S.Ya. et al. Optimization of chemical composition and parameters of thermomechanical processing of TRIP steels based on new methods of X-ray tensiometry, texture and phase analysis. Metally, 2022, no. 6, pp. 66–72.
6. Kaplanskii Yu.Yu., Mazalov P.B. World trends in the development of refractory high-entropy alloys for heat-loaded units of aerospace technics (review). Aviation materials and technologies, 2022, no. 2 (67), paper no. 03. Available at: http://www.journal.viam.ru (accessed: July 25, 2024). DOI: 10.18577/2713-0193-2022-0-2-30-42.
7. Yeh J.-W., Chen Y.-L., Lin S.-J., Chen S.-K. High-entropy alloys – a new era of exploitation. Materials Science Forum, 2007, vol. 560, pp. 1–9. DOI: 10.4028/www.scientifi c.net/MSF.560.1.
8. Cantor B., Chang I.T.H., Knight P., Vincent A.J.B. Microstructural development in equiatomic multicomponent alloys. Materials Science and Engineering: A, 2004, vol. 375–377, pp. 213–218. DOI: 10.1016/j.msea.2003.10.257.
9. Cantor B. Multicomponent and high entropy alloys. Entropy, 2014, vol. 16, no. 9, pp. 4749–4768.
10. Zakirova L.I., Laptev A.B. Properties of protective electroplating coatings for replacement of cadmium on steel fixing parts (review). Part 1. Morphology and corrosion resistance. Aviaсionnye materialy i tehnologii, 2020, no. 3 (60), pp. 37–46. DOI: 10.18577/2071-9140-2020-0-3-37-46.
11. Laptev A.B., Zakirova L.I., Degovets M.L. Properties of protective galvanic coatings for replacement of cadmium on steel fixing parts (review). Part 2. Hydrogen embrittlement and frictional characteristics. Aviacionnye materialy i tehnologii, 2020, no. 4 (61), pp. 35–40. DOI: 10.18577/2071-9140-2020-0-4-35-40.
12. Filonnikov A.L., Rinchinova S.V. Borating as a method of strengthening the working surfaces of technological equipment. Simvol nauki, 2019, no. 1, pp. 33–35.
13. Baptista A., Silva F., Porteiro J. et al. Sputtering physical vapour deposition (PVD) coatings: A critical review on process improvement and market trend demands. Coatings. 2018, vol. 8, no. 11, p. 402.
14. Holleck H., Schier V. Multilayer PVD coatings for wear protection. Surface and Coatings Technology, 1995, vol. 76, pp. 328–336.
15. Rashev Ts.V. High-nitrogen became. Metallurgy under pressure. Sofia: Prof. Marin Drinov, 1995, 272 p.
16. Sevalnev G.S., Gromov V.I., Dulnev K.V., Sevalneva T.G. Contact endurance of nitrogenous austenitic-martensitic steels with different hardening mechanism. Aviation materials and technologies, 2024, no. 2 (75), paper no. 01. Available at: http://www.journal.viam.ru (accessed: July 31, 2024). DOI: 10.18577/2713-0193-2024-0-2-3-14.
17. Sevalnev G.S., Antsyferova M.V., Dulnev K.V., Sevalneva T.G., Vlasov I.I. Influence of nitrogen concentration on the structure and properties of sparingly alloyed structural steel. Aviacionnye materialy i tehnologii, 2020, no. 2 (59), pp. 10–16. DOI: 10.18577/2071-9140-2020-0-2-10-16.
18. Antsyferova M.V., Bannykh I.O., Lukin E.I. et al. Structure and properties of high-strength low-alloy martensitic steels with super-equilibrium nitrogen content. Electrometallurgiya, 2023, no. 5, pp. 2–11. DOI: 10.31044/1684-5781-2023-0-5-2-11.
19. Bakradze M.M., Voznesenskaya N.M., Leonov A.V. et al. Development and study of high-strength corrosion-resistant steel for bearing parts. Metallurg, 2019, no. 11, pp. 39–44.
20. Leonov A.V., Voznesenskaya N.M., Tonysheva O.A. Influence of heat treatment parameters on the properties and microstructure of high-strength corrosion-resistant steel with super-equilibrium nitrogen content. Stal, 2022, no. 11, pp. 35–39.
21. Gadalov V.N., Filonovich A.V., Shkatov V.V. et al. Description of the electric spark alloying process (generalized model). Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta, 2016, no. 4 (21), pp. 58–66.
22. Verkhoturov A.D., Ivanov V.I., Dorokhov A.S., Konevtsov L.A. Influence of the nature of electrode materials on the erosion and properties of the alloyed layer. Criteria for assessing the effectiveness of electric spark alloying. Inzhenernye tekhnologii i sistemy, 2018, vol. 28, no. 3, pp. 302–320.
23. Alymov M.I., Stolin A.M., Bazhin P.M. Study of the structure and properties of protective coatings obtained by the method of electric spark alloying with SHS electrodes (review). Zavodskaya laboratoriya. Diagnostika materialov, 2022, vol. 88, no. 2, pp. 40–48.
Currently, the problem of expanding the use of cast magnesium alloys in promising products of aerospace and military equipment is relevant. High demands are placed on parts made of magnesium alloys for mechanical; towards corrosion and technological characteristics and operating conditions. The main task for technologists, developing serial and new materials and technologies for production of alloys of the Mg–Al–Zn–Mn system is to obtain alloys with an equiaxed fine-dispersed structure that ensures high properties in castings and parts.
2. Kablov E.N. New generation materials and digital technologies for their processing. Vestnik Rossiyskoy akademii nauk, 2020, vol. 90, no. 4, pp. 331–334.
3. Kablov E.N., Akinina M.V., Volkova E.F., Mostyaev I.V., Leonov A.A. The research of aspects of phase composition and fine structure of magnesium alloy ML9 in the as-cast and heat-treated conditions. Aviacionnye materialy i tehnologii, 2020, no. 2 (59), pp. 17–24. DOI: 10.18577/2071-9140-2020-0-2-17-24.
4. Kablov E.N., Belov E.V., Trapeznikov A.V., Leonov A.A., Zaitsev D.V. Strengthening features and aging kinetics of high-strength cast aluminum alloy AL4MS based on Al–Si–Cu–Mg system. Aviation materials and technologies, 2021, no. 2 (63), paper no. 03. Available at: http://www.journal.viam.ru (accessed: August 20, 2024). DOI: 10.18577/2713-0193-2021-0-2-24-34.
5. Mukhina I.Yu., Uridiya Z.P., Trofimov N.V. Сorrosion-resistant casting magnesium alloys. Aviacionnye materialy i tehnologii, 2017, no. 2 (47), pp. 15–23. DOI: 10.18577/2071-9140-2017-0-2-15-23.
6. Duyunova V.A., Volkova E.F., Uridiya Z.P., Trapeznikov A.V. Dynamics of the development of magnesium and cast aluminum alloys. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 225–241. DOI: 10.18577/2071-9140-2017-0-S-225-241.
7. Trofimov N.V., Tokarev M.S., Mukhina I.Yu., Uridia Z.P. Development trends of modern technologies for modifying magnesium alloy systems Mg–Al–Zn–Mn. Trudy VIAM, 2024, no. 1 (131), paper no. 03. Available at: http://www.viam-works.ru (accessed: August 21, 2024). DOI: 10.18577/2307-6046-2024-0-1-27-34.
8. Chukhrov M.V. Modification of magnesium alloys. Moscow: Metallurgyia, 1972, 176 p.
9. Emli E.F. Fundamentals of production and processing technology of magnesium alloys. Moscow: Metallurgiya, 1972, 488 p.
10. Method of modifying magnesium alloys of the Mg–Al–Zn–Mn system: pat. RU 2623965 C2; appl. 23.12.15; publ. 27.06.17.
11. Method of modifying magnesium alloys: pat. RU 2241775 C1; appl. 26.11.03; publ. 10.12.04.
12. Method for modifying magnesium alloys of the Mg–Al–Zn–Mn system: pat. RU 2030470 C1; appl. 12.05.92; publ. 10.03.95.
13. Method for modifying magnesium alloys: pat. RU 2617078 C1; appl. 13.10.15; publ. 19.04.17.
14. Method for modifying magnesium alloys: pat. RU 2610579 C1; appl. 29.09.15; publ. 13.02.17.
15. Method for grinding grain of magnesium alloys with different aluminum content: pat. CN 114293054 A; appl. 12.08.21; publ. 12.02.22.
16. New application of magnesium-aluminum spinel: pat. CN 108531760 A; appl. 17.04.18; publ. 14.09.18.
17. Modifier of magnesium alloy and method of its production: pat. СN 102676898 C; appl. 18.05.12; publ. 19.09.12.
18. Modifier for magnesium-aluminum alloy and method of its production: pat. CN 115505804 А; appl. 28.09.22; publ. 23.12.22.
19. Method of producing high-strength aluminum and magnesium alloys: pat. CN 108624788 A; appl. 17.03.17; publ. 09.10.18.
20. Amelin A.S. Criterial assessment of shrinkage porosity in magnesium alloy castings. XLIII Int. Youth Scientific Conf. «Gagarin Readings 2017». Moscow: MAI, 2017, p. 435.
21. Duyunova V.A. Methods of protecting magnesium alloys in domestic foundry production from the 1930s to the present. Liteyshchik Rossii, 2010, no. 10, pp. 35–37.
22. Korobkov K.S., Polyansky I.P. Influence of heat treatment modes on the structure and mechanical properties of magnesium alloy ML5pch castings. Sovremennye materialy, tekhnika i tekhnologii, 2022, no. 4 (43), pp. 397–398.
23. Yarovaya E.I., Leushin I.O., Spasskaya M.M., Larin M.A. Efficiency of foundry process control. Chernye metally, 2018, no. 3, pp. 29–33.
24. Moiseev K.V., Smykov A.F., Berezhnoy D.V. Automated design of a feed system for large-sized case castings made of light alloys. Tekhnologiya legkikh splavov, 2011, no. 1, pp. 69–72.
The article presents a review of the scientific literature on quenching sensitivity of wrought heat-treatable aluminum alloys of the Al–Mg–Si system (6XXX series). The analysis of the current state and the latest achievements in this field of research is carried out. The factors influencing the quenching sensitivity are considered, and some aspects of the effect of the quenching rate on aging process and properties of these alloys are described. It is revealed that an important trend in the study of phase transformations of alloys of the 6XXX series during quenching process is the use of differential scanning calorimetry and mathematical modeling.
2. Ostermann F. Technology of aluminum application. Moscow: NP «APRAL», 2019, 872 p.
3. Nechaykina T.A., Oglodkov M.S., Ivanov A.L., Kozlova O.Yu., Yakovlev S.I., Shlyapni-
kov M.A. Features of hardening of wide cladding sheets from V95p.ch. aluminum alloy on a continuous heat treatment line. Trudy VIAM, 2021, no. 11 (105), paper no. 03. Available at: http://www.viam-works.ru (accessed: April 25, 2024). DOI: 10.18577/2307-6046-2021-0-11-25-33.
4. Nefedova Yu.N., Shlyapnikova T.A., Ivanov A.L., Sedelnikov V.V. Methods for reducing residual stresses during hardening of high-strength aluminum alloys. Trudy VIAM, 2023, no. 7 (125), paper no. 03. Available at: http://www.viam-works.ru (accessed: April 25, 2024). DOI: 10.18577/2307-6046-2023-0-7-23-33.
5. Mai Xuan D., Gnevko A.I., Puchkov Yu.A. Study of cryogenic treatment influence on residual stresses and properties of D16 aluminium alloy. Aviacionnye materialy i tehnologii, 2020, no. 2 (59), pp. 25–31. DOI: 10.18577/2071-9140-2020-0-2-25-31.
6. Lumley R. Fundamentals of aluminium metallurgy: recent advances. Cambridge: Woodhead Publishing, 2018, 578 р.
7. Zakharov E.D., Davydov V.G., Egorova L.S. et al. Study of the stability of solid solutions of alloys of the Al–Mg–Si system. Tekhnologiya legkikh splavov, 1967, no. 2. pp. 12–17.
8. Davydov V.G., Zakharov V.V., Zakharov E.D., Novikov I.I. Diagrams of isothermal decomposition of a solution in aluminum alloys: reference book. Ed. I.I. Novikov. Moscow: Metallurgiya, 1973, 152 p.
9. Zakharov V.V. Stability of a solid solution in aluminum alloys. Tsvetnye metally, 2007, no. 11, pp. 100–107.
10. Dons A.L., Lohne O. Quench sensitivity of AlMgSi-alloys containing Mn or Cr. MRS Online Proceedings Library, 1983, vol. 21, pp. 723–728.
11. Staley J.T. Quench factor analysis of aluminum alloys. Materials Science and Technology, 1987, vol. 3 (11), pp. 923–935.
12. Bratland D.H., Grong O., Shercliff H. et al. Modelling of precipitation reactions in industrial processing. Acta Materialia, 1997, vol. 45, nо. 1, pp. 1–22.
13. Tiryakioglu M. Quench sensitivity of aluminum alloys. Conference: Quenching and Distortion Control Technology, 1999, pp. 1–11. Available at: https://www.researchgate.net/publication/
259851071_Quench_Sensitivity_of_Aluminum_Alloys (accessed: April 25, 2024).
14. Strobel K., Easton M., Sweet L. et al. Relating quench sensitivity to microstructure in 6000 series aluminium alloys. Materials Transactions, 2011, vol. 52, no. 5, pp. 914–919.
15. Strobel K., Easton M., Lay M. et al. Quench sensitivity in a dispersoid-containing Al–Mg–Si alloy. Metallurgical and Materials Transactions A, 2019, vol. 50, pp. 1957–1969.
16. Kassner M.E., Geantil P., Li X. A study of the quench sensitivity of 6061‐T6 and 6069‐T6 aluminum alloys. Journal of Metallurgy, 2011, vol. 2011, no. 1, p. 747198.
17. Shang B.C., Yin Z.M., Wang G. et al. Investigation of quench sensitivity and transformation kinetics during isothermal treatment in 6082 aluminum alloy. Materials & Design, 2011, vol. 32, no. 7, pp. 3818–3822.
18. Li H.Y., Zeng C., Han M. et al. Time–temperature–property curves for quench sensitivity of 6063 aluminum alloy. Transactions of Nonferrous Metals Society of China, 2013, vol. 23, no. 1, pp. 38–45.
19. Li S., Huang Z., Chen W. et al. Quench sensitivity of 6351 aluminum alloy. Transactions of Nonferrous Metals Society of China, 2013, vol. 23, no. 1, pp. 46–52.
20. Milkereit B., Starink M.J. Quench sensitivity of Al–Mg–Si alloys: a model for linear cooling and strengthening. Materials & Design, 2015, vol. 76, pp. 117–129.
21. Milkereit B., Starink M., Rometsch P. et al. Review of the Quench Sensitivity of Aluminium Alloys: Analysis of the Kinetics and Nature of Quench-Induced Precipitation. Materials, 2019, vol. 12, p. 4083. DOI: 10.3390/ma12244083.
22. Vander Voort G.F. Atlas of time-temperature diagrams for nonferrous alloys. Almere: ASM International, 1991, p. 474.
23. Birol Y. The effect of processing and Mn content on the T5 and T6 properties of AA6082 profiles. Journal of Materials Processing Technology, 2006, vol. 173, no. 1, pp. 84–91.
24. Steele D., Evans D., Nolan P., Lloyd D.J. Quantification of grain boundary precipitation and the influence of quench rate in 6XXX aluminum alloys. Materials Characterization, 2007, vol. 58, no. 1, pp. 40–45.
25. Svenningsen G., Larsen M., Nordlien J., Nisancioglu K. Effect of thermomechanical history on intergranular corrosion of extruded AlMgSi (Cu) model alloy. Corrosion science, 2006, vol. 48, no. 12, pp. 3969–3987.
26. Lang P., Falahati A., Ahmadiet M.R. et al. Modeling the influence of cooling rate on the precipitate evolution in Al–Mg–Si (Cu) alloys. Materials Science and Technology. Columbus, 2011, pp. 284–291.
27. Milkereit B., Wanderka N., Schick C., Kessler O. Continuous cooling precipitation diagrams of Al–Mg–Si alloys. Materials Science and Engineering: A, 2012, vol. 550, pp. 87–96.
28. Giersberg L., Milkereit B., Schick C., Kessler O. In Situ Isothermal Calorimetric Measurement of Precipitation Behaviour in Al–Mg–Si Alloys. Materials Science Forum, 2014, vol. 794, pp. 939–944.
29. Milkereit B., Giersberg L., Kessler О., Schick C. Isothermal time-temperature precipitation diagram for an aluminum alloy 6005A by in situ DSC experiments. Materials, 2014, vol. 7, pp. 2631–2649.
30. Castany P., Diologent F., Rossol A. et al. Influence of quench rate and microstructure on bendability of AA6016 aluminum alloys. Materials Science and Engineering: A, 2013, vol. 559, pp. 558–565.
31. Saito T., Marioara C., Royset J. et al. The effects of quench rate and pre-deformation on precipitation hardening in Al–Mg–Si alloys with different Cu amounts. Materials Science and Engineering: A, 2014, vol. 609, pp. 72–79.
32. Strobel K., Lay M., Easton M. et al. Effects of quench rate and natural ageing on the age hardening behaviour of aluminium alloy AA6060. Materials Characterization, 2016, vol. 111, pp. 43–52.
33. Fröck H., Milkereit B., Wiechmann P. et al. Influence of solution-annealing parameters on the continuous cooling precipitation of aluminum alloy 6082. Metals, 2018, vol. 8, no. 4, pp. 265.
34. Fan Z., Lei X., Wang L. et al. Influence of quenching rate and aging on bendability of AA6016 sheet. Materials Science and Engineering: A, 2018, vol. 730, pp. 317–327.
35. Milkereit B., Kessler O., Schick C. Recent Advances in Thermal Analysis and Calorimetry of Aluminum Alloys. Handbook of Thermal Analysis and Calorimetry, 2018, vol. 6,
pp. 735–779.
36. Yang Z., Mallow S., Banhart J., Kessler O. Probing precipitation in aluminium alloys during linear cooling via in-situ differential scanning calorimetry and electrical resistivity measurement. Thermochimica Acta, 2024, vol. 739, p. 179815.
37. Kahlenberg R., Schuster R., Garcia-Arango N. et al. Revisiting High-Energy X-Ray Diffraction and Differential Scanning Calorimetry Data of En Aw-6082 with Mean Field Simulations. Available at: http://www.papers.ssrn.com/sol3/papers.cfm?abstract_id=4862542 (accessed: April 25, 2024).
38. Zhang X., Zhou X., Nilsson J.O. Corrosion behaviour of AA6082 Al–Mg–Si alloy extrusion: The influence of quench cooling rate. Corrosion Science, 2019, vol. 150, pp. 100–109.
39. Frodal B.H., Christiansen E., Myhr O.R. et al. The role of quench rate on the plastic flow and fracture of three aluminium alloys with different grain structure and texture. International Journal of Engineering Science, 2020, vol. 150, p. 103257.
40. Liu S., Wang X., Pan Q. et al. Investigation of microstructure evolution and quench sensitivity of Al–Mg–Si–Mn–Cr alloy during isothermal treatment. Journal of Alloys and Compounds, 2020, vol. 826, p. 154144.
41. Yuan B., Li G., Guo M., Zhuang L. Fast age-hardening response of Al–Mg–Si–Cu–Zn–Fe–Mn alloy via coupling control of quenching rate and pre-aging. Journal of materials research and technology, 2021, vol. 14, pp. 1518–1531.
42. Yang Z., Jiang X., Zhang X. et al. Natural ageing clustering under different quenching conditions in an Al–Mg–Si alloy. Scripta Materialia, 2021, vol. 190, pp. 179–182.
43. Miesenberger B., Kozeschnik E., Milkereit B. et al. Computational analysis of heterogeneous nucleation and precipitation in AA6005 Al-alloy during continuous cooling DSC experiments. Materialia, 2022, vol. 25, p. 101538.
44. Xia C., Deng S., Ni C. et al. Study on laminar structure and process on high strength brazed aluminum alloy for heat exchangers. Vacuum, 2023, vol. 215, p. 112303.
45. Ma Y., Liu C., Miao K. et al. Effects of cooling rate and cryogenic temperature on the mechanical properties and deformation characteristics of an Al–Mg–Si–Fe–Cr alloy. Journal of Alloys and Compounds, 2023, vol. 947, p. 169559.
46. Yang M., Ruan Z., Lin H. et al. Quantified effect of quench rate on the microstructures and mechanical properties of an Al–Mg–Si alloy. Journal of Materials Research and Technology, 2023, vol. 24, pp. 6753–6761.
47. Eskin D.G., Massardier V., Merle P. A study of high-temperature precipitation in Al–Mg–Si alloys with an excess of silicon. Journal of materials science, 1999, vol. 34, pp. 811–820.
48. Sbitneva S.V., Lukina E.А., Zaytsev D.V. Investigation of the features of the decomposition of a solid solution during aging of alloys of the Al–Mg–Si–Cu system. Trudy VIAM, 2021, no. 12 (106), paper no. 02. Available at: http://www.viam-works.ru (accessed: March 18, 2024). DOI: 10.18577/2307-6046-2021-0-12-14-20.
49. Kablov E.N., Dynin N.V., Benarieb I. et al. Promising aluminum alloys for brazed structures of aircraft equipment. Zagotovitelnye proizvodstva v mashinostroyenii, 2021, no. 4, pр. 179–192.
50. Kutsal U., Arslan Y., Ozaydin O. et al. Heat Treatment Simulation of Aluminum Alloy Wheels and Investigation of Process Steps. International Journal of Metalcasting, 2024, vol. 18, no. 2, pp. 1556–1572.
The article presents the results of the analysis of thermoplastic polyurethane samples in aviation kerosene TS-1 under various conditions. The results of the analysis of samples by gel permeation chromatography suggest the presence in the sample of components with unreacted functional groups that allow to reduce the impact of degradation factors under mild conditions. The study of the complex influence of more active factors using additional methods of analysis allowed us to better estimate the mechanism of material degradation and various characteristics of its decomposition zone.
2. Kuznetsov D.A. Segmented polyurethane-imide copolymers containing aromatic and aliphatic blocks: thesis, Cand. Sc. (Chem.). St. Petersburg, 2022, 124 p.
3. Gorbunova M.A., Anokhin D.V., Badamshina E.R. Modern achievements in the field of production and use of thermoplastic partially crystalline polyurethanes with shape memory effect. Vysokomolekulyarnye soyedineniya. Ser.: B, 2020, vol. 62, no. 5, pp. 323–347.
4. Lipatov Yu.S., Kercha Yu.Yu., Sergeeva L.M. Structure and properties of polyurethanes. Kiyv: Naukova Dumka, 1970, 279 p.
5. Shilnikova N.V. Development of technologies for obtaining composite materials based on polyurethanes and natural cork: thesis, Cand. Sc. (Tech.). Kazan, 2002, 142 p.
6. Kablov E.N. The strategic directions of development of materials and technologies of their processing for the period to 2030. Aviacionnye materialy i tehnologii, 2012, no. S, pp. 7–17.
7. Dedov A.V., Kolotilin D.V., Rybakov Yu.N. Permeability of thermoplastic polyurethanes for aviation kerosene storage tanks. Plasticheskie massy, 2021, no. 9–10, pp. 45–47.
8. Zhdanov A.V. Analysis of modern technologies for the manufacture of pulsed-type individual housing construction. Biotekhnosfera, 2011, no. 4 (16), pp. 35–37.
9. Chaykun A.M., Sergeyev A.V., Pravada E.S. Elastomeric-fabric materials for products of special equipment (review). Trudy VIAM, 2023, no. 6 (124), paper no. 03. Available at: http://www.viam-works.ru (accessed: August 26, 2024). DOI: 10.18577/2307-6046-2023-0-6-25-37.
10. Kablov E.N. The role of fundamental research in creating new generation materials. XXI Mendeleev Congress on General and Applied Chemistry: in 6 vols. St. Petersburg, 2019, vol. 4, p. 24.
11. Kablov E.N. The role of chemistry in creating new generation materials for complex technical systems. XX Mendeleev Congress on General and Applied Chemistry. Ekaterinburg, 2016, pp. 25–26.
12. Nesterov S.V., Bakirova I.N., Samuilov Ya.D. Thermal and thermo-oxidative degradation of polyurethanes: mechanisms, influencing factors, and basic methods for increasing thermal stability. Review based on materials from domestic and foreign publications. Vestnik Kazanskogo tekhnologicheskogo universiteta, 2011, no. 14, pp. 10–23.
13. Gallyamov A.A. Structure, properties and application of polyurethane degradation products by di- and polyamines: thesis, Cand. Sc. (Tech.). Ekaterinburg, 2016, 163 p.
14. Ponomarenko S.A., Shimkin A.A. Chromatographic methods of analysis: application possibilities in the aviation industry (review). Zavodskaya laboratoriya. Diagnostika materialov, 2017, no. 83 (4), pp. 5–13.
15. Trathnigg B. Size-exclusion chromatography of polymers. Encyclopedia of Analytical Chemistry. Ed. Meyers R.A. Chichester: Wiley, 2000, pp. 8008–8034.
16. Shimkin A.A., Ponomarenko S.A., Mukhametov R.R. Study of the curing process of diphthalonitrile binder. Zhurnal prikladnoy khimii, 2016, vol. 89, no. 2, pp. 256–264.
17. Lem K.W., Haw J.R., Curran S. et al. Effect of Hard Segment Molecular Weight on Dilute Solution Properties of Ether Based Thermoplastic Polyurethanes. Nanoscience and Nanoengineering, 2013, no. 1 (3), pp. 123–133.
18. Nguyen T.Q., Kausch H.H. GPC Data Interpretation in Mechanochemical Polymer Degradation. International Journal of polymer analysis and characterization, 1997, vol. 4 (5), pp. 447–470. DOI: 10.1080/10236669808009728.
19. Novikov V.U., Kozitsky D.V., Deev I.S., Ivanova V.S., Kobets L.P. Multifractal analysis of the structure of polymethyl methacrylate studied by scanning electron microscopy. Plasticheskie massy, 2001, no. 1, pp. 7–9.
20. Makushchenko I.S., Kozlov I.А., Smirnov D.N., Kurshev E.V., Lonskii S.L. Influence of cor-rosion inhibitors on the microstructure and vulcanization kinetics of polisulfide sealant. Trudy VIAM, 2024, no. 4 (134), paper no. 09. Available at: http://www.viam-works.ru (accessed: August 26, 2024). DOI: 10.18577/2307-6046-2024-0-4-123-132.
21. De Bruijn J.C.M., Meijer H.D.F. The design and application of a microfoil tensile test apparatus for monitoring the degree of ultraviolet degradation of polymers. Review of Scientific Instruments, 1991, no. 62, pp. 1620–1623.
22. Thermoplastic polyurethane. Available at: https://www.vitur33.ru/publications/articles/articles_9.html (accessed: August 26, 2024).
23. Yuan Y., Lin W., Xu L., Wang W. Recent Progress in Thermoplastic Polyurethane/MXene Nanocomposites: Preparation, Flame-Retardant Properties and Applications (review). Molecules, 2024, no. 29 (16). DOI: 10.3390/molecules29163880.
24. Kablov E.N., Semenova L.V., Petrova G.N., Larionov S.A., Perfilova D.N. Polymer composite materials on a thermoplastic matrix. Izvestiya vysshikh uchebnykh zavedeniy. Ser.: Khimiya i khimicheskaya tekhnologiya, 2016, vol. 59, no. 10, pp. 61–71.
25. Kablov E.N., Kondrashov S.V., Melnikov A.A., Schur P.A. Application of functional and adaptive materials obtained by 3D printing (review). Trudy VIAM, 2022, no. 2 (108), paper no. 03. Available at: http://www.viam-works.ru (accessed: August 26, 2024). DOI: 10.18577/2307-6046-2022-0-2-32-51.
26. A guide to thermoplastic polyurethanes (TPU). Available at: https://huntsman-pimcore.equisolve-dev.com/Documents/PU_Elastomers_Guide_to_TPU.pdf (accessed: August 26, 2024).
27. Petrova G.N., Perfilova D.N., Starostina I.V., Sapego Yu.A. Research of ways of combination polyurethane thermoplastics with fluoropolymers. Trudy VIAM, 2019, no. 7 (79), paper no. 02. Available at: http://www.viam-works.ru (accessed: August 26, 2024). DOI: 10.18577/2307-6046-2019-0-7-12-25.
28. Kornev V.A., Rybakov Yu.N., Chirikov S.I. Structure and applicability assessment of thermoplastic elastomers for technical means of pumping and storing fuel. Problemy sovremennoy nauki i obrazovaniya, 2015, no. 11 (41), pp. 84–88.
29. Production of polyurethane products. Aviation and rocket science. Reference information. Available at: https://npu-systems.ru/proizvodstvo-poliuretana/aviation-and-rocket-science-polyurethane (accessed: August 26, 2024).
30. State Standard 10227–2013. Jet fuel. Technical conditions. Moscow: Standartinform, 2014, 14 p.
31. Jet fuels (additives to jet fuels). Available at: https://necton-sea.ru/articles/reaktivnye_topliva_
(prisadki_k_reaktivnym_toplivam)/ (accessed: August 26, 2024).
32. All about kerosene TS-1. Available at: https://him-eksport.ru/info/articles/statia-o-kerosine-TS-1/ (accessed: August 26, 2024).
33. Chemical resistance of polyurethane and thermoplastic polyurethane. Available at: https://esfonta.ru/index.php/poleznaya-informatsiya/khimicheskaya-ustojchivost-poliuretanov-i-tpu (accessed: August 26, 2024).
34. Kablov E.N., Deev I.S., Efimov V.A., Kavun N.S., Kobets L.P., Nikishin E.F. Influence of atmospheric factors and mechanical stresses on microstructural features of destruction of polymer composite materials. VII Scientific Conference on Hydroaviation «Gidroaviasalon-2008». Moscow, 2008, pp. 279–286.
35. Kablov E.N., Kulagina G.S., Zhelezina G.F., Lonskii S.L., Kurshev E.V. Microstructure research of the unidirectional organoplastic based on Rusar-NT aramid fibers and epoxy-polysulfone binder. Aviacionnye materialy i tehnologii, 2020, no. 4 (61), pp. 19–26. DOI: 10.18577/2071-9140-2020-0-4-19-26.
36. Kurshev E.V., Lonskii S.L., Mekalina I.V. Influence of long climatic aging on microstructure of surface of organic glass in semi-arid and subtropical climate. Trudy VIAM, 2018, no. 3 (109), paper no. 02. Available at: http://www.viam-works.ru (accessed: August 26, 2024). DOI: 10.18577/2307-6046-2022-0-3-15-26.
37. Zhang Y. A spectroscopic study of the degradation of polyurethane coil coatings: dissertation PhD. London: Queen Mary University of London, 2012, 227 p.
38. Deev I.S., Kuklin E.A. Features of the formation of the microphase structure of polymethyl methacrylate organic glasses and its changes under aging conditions. Materialovedenie, 2014, no. 4, pp. 43–50.
39. Deev I.S., Kobets L.P. Structure formation in filled thermosetting polymers. Kolloidnyy zhurnal, 1999, vol. 61, no. 5, pp. 650–660.
40. Deev I.S., Kobets L.P. Microstructure of epoxy matrices. Mechanics of composite materials, 1986, no. 1, рр. 3–8.
41. State Standard R 57941–2017. Polymer composites. Infrared spectroscopy. Qualitative analysis. Moscow: Standartinform, 2017, 24 p.
42. State Standard R 57268.3–2016 (ISO 16014-3:2012). Polymer composites. Determination of average molecular weight and molecular weight distribution of polymers by size-exclusion chromatography. Part 3. Low-temperature method. Moscow: Standartinform, 2016, 18 p.
43. Tarasevich B.N. IR spectra of the main classes of organic compounds: reference materials. Moscow, 2012, 54 p.
44. Moroi G. Influence of ion species on the thermal degradation of polyurethane interaction products with transition metal ions. Journal of Analytical and Applied Pyrolysis, 2004, vol. 71 (2), pp. 485–500.
Sintered materials of the following composition (NdWPrpDyzCex)–(Fe1-yCoy)–B (w ≤ 0,44; p ≤ 0,45; x ≤ 0,13; z ≤ 0,41; y ≤ 0,26) were studied. Hysteresis curves of demagnetization by induction and magnetization are given. It was found that the admixture of neodymium and cerium in the studied quantities does not adversely affect the magnetic characteristics of sintered materials. Thus, suitable sintered materials can be made from insufficiently purified rare earth metals, although the value of the temperature coefficient of induction of materials of such composition is insufficient for use in navigation devices.
2. Hirosawa S., Matsuura Yu., Yamamoto H. et al. Magnetization and magnetic anisotropy of R2Fe14B measured on single crystals. Journal of Applied Physics, 1986, vol. 59, pp. 873–879.
3. Buschow K.H.J., de Mooij D.B., Sinnema S. et al. Magnetic and crystallographic properties of ternary rare earth compounds of the type R2Co14B. Journal of Magnetism and Magnetic Materials, 1985, vol. 51, pp. 211–217.
4. Boltich E.B., Oswald E., Huang M.Q. et al. Magnetic characteristics of R2Fe14B systems prepared with high purity rare earths (R = Ce, Pr, Dy and Er). Journal of Applied Physics, 1985, vol. 57, pp. 4106–4108.
5. Matusevich V.A., Getya A.N., Sharaban Yu.V. Application of high-coercivity permanent magnets in aircraft units. Elektrotekhnika i Elektromekhanika, 2006, no. 1, pр. 33–35.
6. Sinnema S., Franse J.J.M., Radwanski R.J. et al. Magnetic measurements on R2Fe14B and R2Co14B compounds in high field. Journal de Physique, 1985, vol. 46, pp. C6-301‒C6-304.
7. Abache C., Oesterreicher H. Magnetic properties of compounds R2Fe14B. Journal of Applied Physics, 1985, vol. 57, pp. 4112–4114.
8. Korolev D.V., Piskorskii V.P., Valeev R.A., Bakradze M.M., Dvoretskaya E.V., Koplak O.V., Morgunov R.B. Rare-earth RE–TM–B micromagnets engineering (review). Aviation materials and technology, 2021, no. 1 (62), paper no. 05. Available at: http://www.journal.viam.ru (accessed: July 29, 2024). DOI: 10.18577/2713-0193-2021-0-1-44-60.
9. Faria R.N., Davies B.E., Brown D.N. et al. Microstructural and magnetic studies of cast and annealed Nd and PrFeCoBZr alloys and HDDR materials. Journal of Alloys and Compounds, 2000, vol. 296, pp. 223–228.
10. Cherednichenko I.V., Bavina M.A., Bondarenko Yu.A., Shurygin V.D., Ovchinnikov A.D., Galimullin S.A. Influence of directed crystallization parameters on structure and properties of Alnico 5-7 alloy permanent magnets. Trudy VIAM, 2023, no. 11 (129), paper no. 08. Available at: http://www.viam-works.ru (accessed: June 27, 2024). DOI: 10.18577/2307-6046-2023-0-11-77-89.
11. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
12. Kablov E.N., Ospennikova O.G., Vershkov A.V. Rare metals and rare earth elements – materials of modern and future high technologies. Trudy VIAM, 2013, no. 2, paper no. 01. Available at: http://www.viam-works.ru (accessed: June 27, 2024).
13. Lapteva K.A., Tolmachev I.I. Calculation of the demagnetizing factor during longitudinal magnetization in magnetic particle testing. Izvestiya Tomskogo politekhnicheskogo universiteta, 2012, vol. 321, no. 2, pp. 140–144.
14. Sato M., Ishii Y. Simple and approximate expressions of demagnetizing factors of uniformly magnetized rectangular rod and cylinder. Journal of Applied Physics, 1989, vol. 66, no. 2, pp. 983–985.
15. Chen D., Brug J.A., Goldfarb R.B. Demagnetizing factor for cylinder. IEEE Transactions on Magnetics, 1991, vol. 27, no. 4, pp. 3601–3619.
16. Valeev R.A., Korolev D.V., Morgunov R.B., Piskorsky V.P. The effect of high concentrations of cobalt on the properties of magnets Pr–Dy–Fe–Co–B and Nd–Dy–Fe–Co–B. Trudy VIAM, 2022, no. 10 (116), paper no. 06. Available at: http://www.viam-works.ru (accessed: June 27, 2024). DOI: 10.18577/2307-6046-2022-0-10-66-75.
17. Perigo E.A., Takiishi H., Motta C.C. et al. On the squareness factors behavior of RE‒FeB (RE=Nd or Pr) magnets above room temperature. IEEE Transactions on Magnetics, 2000, vol. 45, no. 10, pp. 4431‒4434.
18. Yujing Z., Tranyu M., Mi Y. et al. Squareness factors of demagnetization curves for multi-main-phase Nd‒Ce‒Fe-B magnets with different Ce contents. Journal of Magnetism and Magnetic Materials, 2019, vol. 487. DOI: 10/1016/j.jmmm.2019.165355.
19. Valeev R.A., Korolev D.V., Morgunov R.B., Piskorsky V.P. The contribution of phases to the magnetization of sintered materials Nd–Dy–Fe-Co–B. Trudy VIAM, 2022, no. 11 (117), paper no. 06. Available at: http://www.viam-works.ru (accessed: June 27, 2024). DOI: 10.18577/2307-6046-2022-0-11-60-68.
20. Kablov E.N., Petrakov A.F., Piskorsky V.P., Valeev R.A., Nazarova N.V. Influence of dysprosium and cobalt on the temperature dependence of magnetization and phase composition of materials of the Nd‒Dy‒Fe‒Co‒B system. Metallovedenie i termicheskaya obrabotka metallov, 2007, no. 4, pp. 3–10.
21. Corfield M.R., Williams A.J., Harris I.R. The effect on long annealing at 1000°C for 24 h on the microstructure and magnetic properties of Pr‒Fe‒B/Nd‒Fe‒B magnets based on Nd16Fe76B8 and Pr16Fe76B8. Journal of Alloys and Compounds, 2000, vol. 296, pp. 138–147.
22. Faria R.N., Davies B.E., Brown D.N. et al. Microstructural and magnetic studies of cast and annealed Nd and Pr‒Fe‒Co‒B‒Zr alloys and HDDR materials. Journal Alloys and Compounds, 2000, vol. 296, pp. 223–228.
23. Urusov V.S. Theoretical crystal chemistry. Moscow: Moscow State Univ. Press, 1987, 275 p.
24. Cook B.A., Harringa J.L., Laabs F.C. et al. Diffusion of Fe, Co, Nd and Dy in R2(Fe1‒xCox)14B where R=Nd or Dy. Journal of Magnetism and Magnetic Materials, 2001, vol. 233, pp. L136‒L141.
25. Smirnov B.M., Son E.E., Tereshonok D.V. Diffusion and mobility of atomic particles in liquid. Zhurnal eksperimentalnoy i teoreticheskoy fiziki, 2017, vol. 152, is. 5, pp. 1065–1072.
26. Kryukov Ya.V., Samsonov N.Yu., Yatsenko V.A. Russian rare earth industry: should we adopt China’s experience? EKO, 2018, no. 10 (532), pp. 138–152. DOI: 10.30680/ЭСО0131-7652-2018-10-138-152.
The main methods and materials for applying ceramic layers of heat-protective coatings are considered. The main methods (electron beam method, magnetron sputtering method and atmospheric plasma spraying method) of manufacturing materials for applying ceramic layers of heat-protective coatings for various applications are considered. There are shown methods to increase sphericity and strength of particles for powder materials, which increase stability and reproducibility of the plasma spraying process.
2. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
3. Denisova V.S., Malinina G.A., Vlasova O.V., Vinogradova A.Yu. The influence of silicon tetraboride additives on properties of heat-resistant coatings for nickel alloys protection. Aviacionnye materialy i tehnologii, 2019, no. 2 (55), pp. 68–73. DOI: 10.18577/2071-9140-2019-0-2-68-73.
4. Doronin O.N., Gorlov D.S., Azarovsky E.N., Kochetkov A.S. Study of the structure and properties of a heat-resistant coating at high-temperature deformation of samples from titanium intermetallic alloy. Aviation materials and technology, 2021, no. 1 (62), paper no. 06. Available at: http://www.journal.viam.ru (accessed: August 30, 2024). DOI: 10.18577/2713-0193-2021-0-1-61-70.
5. Kablov E.N., Muboyadzhyan S.A. Heat-resistant and heat-protective coatings for high-pressure turbine blades of advanced gas turbine engines. Metally, 2012, no. 1, pp. 5–13.
6. Loshchinin Yu.V., Budinovskiy S.A., Razmakhov M.G. Heat conductivity of heat-protective coatings ZrO2–Y2O3 alloyed by REM oxides obtained by magnetronny application. Aviaсionnye materialy i tehnologii, 2018, no. 3, pp. 42–49. DOI: 10.18577/2071-9140-2018-0-3-42-49.
7. Doronin O.N., Artemenko N.I., Stekhov P.A., Voronov V.A. Deposition of ceramic layers of heat protection coatings based on the system Gd2O3–ZrO2–HfO2 and Sm2O3–Y2O3–HfO2. Aviation materials and technologies, 2022, no. 3 (68), paper no. 10. Available at: http://www.journal.viam.ru (accessed: August 30, 2024). DOI: 10.18577/2713-0193-2022-0-3-108-119.
8. Liu Q., Huang S., He A. Composite ceramics thermal barrier coatings of yttria stabilized zirconia for aero-engines. Journal of materials science & technology, 2019, vol. 35, no. 12, pp. 2814–2823. DOI: 10.1016/j.jmst.2019.08.003.
9. Zhang B., Chen K., Baddour N., Patnaik P. Failure and life evaluation of EB-PVD thermal barrier coatings using temperature-process-dependent model parameters. Corrosion Science, 2019, vol. 156, pp. 1–9. DOI: 10.1016/j.corsci.2019.04.020.
10. Ma X., Rivellini K., Ruggiero P., Wildridge G. Toward durable thermal barrier coating with composite phases and low thermal conductivity. Journal of Thermal Spray Technology, 2020, vol. 29, pp. 423–432. DOI: 10.1007/s11666-020-00979-x.
11. Shi L., Sun Z., Lu Y. The combined influences of film cooling and thermal barrier coatings on the cooling performances of a film and internal cooled vane. Coatings, 2020, vol. 10, no. 9, p. 861. DOI: 10.3390/coatings10090861.
12. Herman H. Powders for thermal spray technology. KONA Powder and Particle Journal, 1991, vol. 9, pp. 187–199. DOI: 10.14356/kona.1991024.
13. Evaporated material condensation in vacuum (arc, magnetronny, electron beam methods). Available at: http://www.helpiks.org (accessed: September 23, 2024).
14. Amaya C., Prias-Baragan J.J., Aperador W. Thermal conductivity of yttria-stabilized zirconia thin films with a zigzag microstructure. Journal of Applied Physics, 2017, vol. 121, p. 245110.
15. Saint-gobain coating solutions. Available at: http://www.coatingsolutions.saint-gobain.com (accessed: September 23, 2024).
16. Chevallier J., Chalk C. Modelling evaporation in electron-beam physical vapour deposition of thermal barrier coatings. Emergent Materials, 2021, vol. 4, no. 6, pp. 1499–1513. DOI: 10.1007/s42247-021-00284-5.
17. Budinovskiy S.A., Doronin O.N., Kosmin A.A., Benklyan A.S. Influence of the state of the YSZ target on its sputtering rate during deposition of a TBC ceramic layer by the UOKS-3 unit. Aviation materials and technologies, 2021, no. 2 (63), paper no. 09. Available at: http://www.journal.viam.ru (accessed: August 30, 2024). DOI: 10.18577/2713-0193-2021-0-2-85-92.
18. Mehta A., Vasudev H., Singh S. et al. Processing and advancements in the development of thermal barrier coatings: a review. Coatings, 2022, vol. 12, no. 9, p. 1318. DOI: 10.3390/coatings12091318.
19. Gaedike B., Guth S., Kern F. et al. Deposition of 3YSZ-TiC PVD coatings with high-power impulse magnetron sputtering (HiPIMS). Applied Sciences, 2021, vol. 11, no. 6, p. 2753. DOI: 10.3390/app11062753.
20. Kaziev A., Kolodko V., Lisenkov V., Tumarkin A. Cu Metallization of Al2O3 Ceramic by Coating Deposition from Cooled-and Hot-Target Magnetrons. Coatings, 2023, vol. 13, no. 2, p. 238. DOI: 10.3390/coatings13020238.
21. Heydari P. A review on functionally graded-thermal barrier coatings (FG-TBC) fabrication methods in gas turbines. American Journal of Mechanical and Materials Engineering, 2022, vol. 6, no. 2, pp. 18–26. DOI: 10.11648/j.ajmme.20220602.12.
22. Li R. High-Temperature oxidation resistance and molten salt corrosion study of YSZ, CeYSZ, and YSZ/CeYSZ thermal barrier coatings by atmospheric plasma spraying. Coatings, 2024, vol. 14, no. 1, р. 102. DOI: 10.3390/coatings14010102.
23. Artemenko N.I. Research of the operation modes of the Metco F4 serial plasma-gun using plasma-forming gases argon and nitrogen. Trudy VIAM, 2018, no. 5 (65), paper no. 09. Available at: http://www.viam-works.ru (accessed: September 25, 2024). DOI: 10.18577/2307-6046-2018-0-5-76-89.
24. Artemenko N.I., Tatarnikov S.V., Doronin O.N. Investigation of the influence of the parameters of applying the ceramic layer of the ZrO2–7 % Y2O3 heat-shielding coating by plasma spraying on the productivity of the technological process. Trudy VIAM, 2023, no. 4 (122), paper no. 07. Available at: http://www.viam-works.ru (accessed: August 30, 2024). DOI: 10.18577/2307-6046-2023-0-4-69-80.
25. Druzhnova Ya.S. Development of methods for thermal spraying of hardening tires based on tungsten and chromium carbides (review). Trudy VIAM, 2022, no. 10 (116), paper no. 09. Available at: http://www.viam-works.ru (accessed: September 30, 2024). DOI: 10.18577/2307-6046-2022-0-10-100-115.
26. Stunda-Zujeva A., Irbe Z., Berzina-Cimdina L. Controlling the morphology of ceramic and composite powders obtained via spray drying – A review. Ceramics International, 2017, vol. 43, pp. 11543–11551.
At present, the most appropriate way to prevent mechanical damage to the screens of indicating devices is to use protective glasses on a polymer base, which can be integrated into the finished design. To improve the quality of displayed information, it is necessary to reduce the intensity of glare, as well as to ensure maximum light transmission of these products, which can be achieved by applying optical coatings. This paper presents the results of research on obtaining a four-layer anti-reflective coating based upon TiО2 and SiО2 on a polymer film with and without an adhesive layer, and presents their characteristics.
2. Chizhov P.N., Petrachkov D.N., Shatalin V.A. et al. Influence of the polycarbonate sheet molding method on the optical characteristics of aircraft glazing products. Aviation materials and technologies, 2023, no. 2 (71), paper no. 05. Available at: http://www.journal.viam.ru (accessed: September 02, 2024). DOI: 10.18577/2713-0193-2023-0-2-63-76.
3. Smirnova O.V., Erofeeva S.B. Polycarbonates. Moscow: Khimiya, 1975, 288 p.
4. Sivukhin D.V. General course of physics: in 5 vols. 3rd ed. Moscow: FIZMATLIT, 2005, vol. 4: Optics, 792 p.
5. Ilyina E., Lukin P. Effect of protective screen on light distribution of luminaire. Poluprovodnikovaya svetotekhnika, 2012, vol. 4, no. 18, pp. 44–47.
6. Optical interference coatings. Eds. N. Kaiser, H.K. Pulker. Berlin: Springer-Verlag, 2003, 503 р. DOI: 10.1007/978-3-540-36386-6.
7. Koglin J.E., Christensen F.E., Craig W.W. et al. NuSTAR hard X-ray optics. Proceedings of SPIE. San Diego, 2005, р. 5900. DOI: 10.1117/12.618601.
8. Harry G.M., Armandula H., Black E. et al. Thermal noise from optical coatings in gravitational wave detectors. Applied Optics, 2006, vol. 45, no. 7, p. 1569–1574. DOI: 10.1364/ao.45.001569.
9. Shanmugam N., Pugazhendhi R., Elavarasan R.M. et al. Anti-reflective coating materials: A holistic review from PV perspective. Energies, 2020, vol. 13, no. 10, p. 2631. DOI: 10.3390/en13102631.
10. Lequime M., Nadji S., Stojcevski D. et al. Determination of the optical constants of a dielectric layer by processing in situ spectral transmittance measurements along the time dimension. Applied Optics, 2017, vol. 56, p. 181. DOI: 10.1364/ao.56.00c181.
11. Nadji S.L., Lequime M., Begou T. et al. Use of a broadband monitoring system for the determination of the optical constants of a dielectric bilayer. Applied Optics, 2018, vol. 57, p. 877. DOI: 10.1364/ao.57.000877.
12. Dvoretskaya E.V., Korolev D.V., Piskorskii V.P., Valeev R.A., Koplak O.V., Morgunov R.B. Magnetron sputtering of the iron shell and microinclusions in microwires PrDyFeCoB. Aviation materials and technologies, 2022, no. 2 (67), paper no. 08. Available at: http://www.journal.viam.ru (accessed: September 02, 2024). DOI: 10.18577/2713-0193-2022-0-2-85-96.
13. Bogatov V.A., Krynin A.G., Shchur P.A. Influence of the leakage value in the vacuum chamber on the parameters of reactive magnetron discharge and properties of titanium oxide coatings. Aviacionnye materialy i tehnologii, 2019, no. 1 (54), pp. 17–22. DOI: 10.18577/2071-9140-2019-0-1-17-22.
14. Konstantinova Yu.A. Anti-reflective coatings for solar batteries. Nauchnye issledovaniya: ot teorii k praktike, 2015, no. 3, pp. 198–200.
15. Tsekhanovskaya M.S., Sheinberger A.A., Kutsenko K.V., Ivanichko S.P. Anti-reflective coatings for semiconductor electro-optical devices based on InP. XIX Int. scientific-practical. conf. Tomsk: Tomsk State Univ. of control systems and radioelectronics, 2023, pp. 177–179.
16. Troitsky B.B., Lokteva A.A., Lopatin M.A. et al. Production of antireflective coatings from mesoporous silicon dioxide on silicate glass at low gel firing temperatures. Fizika i khimiya stekla, 2013, vol. 39, no. 5, pp. 715–722.
17. Melnikov A.A., Shchur P.A. Transparent conductive antireflective coatings based on ITO, SiO2, TiO2. Trudy VIAM, 2019, No. 8 (80), paper no. 07. Available at: http://www.viam-works.ru (accessed: September 03, 2024). DOI: 10.18577/2307-6046-2019-0-8-56-66.
18. Kleinhempel R., Wahl A., Thielsch R. Large area AR coating on plastic substrate using roll to roll methods. Surface and Coatings Technology, 2011, vol. 205, рр. S502 S505. DOI: 10.1016/j.surfcoat.2010.10.064.
19. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
20. Kablov E.N. New Generation Materials – the Basis for Innovation, Technological Leadership, and National Security of Russia. Intellekt i tekhnologii, 2016, no. 2 (14), pp. 16–21.
21. Kablov E.N. Chemistry in aviation materials science. Rossiyskiy khimicheskiy zhurnal, 2010, vol. LIV, no. 1, pp. 3–4.
22. Kablov E.N. What is the innovations. Nauka i zhizn, 2011, no. 5, рр. 2–6.
23. Laptev A.B., Pavlov M.R., Zeleneva T.O. Light sources for simulating the aging of polymer materials under the influence of solar radiation. Trudy VIAM, 2024, no. 5 (135), paper no. 07. Available at: http://www.viam-works.ru (accessed: September 10, 2024). DOI: 10.18577/2307-6046-2024-0-5-71-82.
24. Kuzmichev A.I. Magnetronnye spraying systems. Kyiv: Avers, 2008, book 1: Introduction in physics and equipment of magnetron sputtering, 244 р.
The paper presents the results of experimental determination of friction coefficient and wear rate of nitride-reinforced nickel and copper matrix CMs in friction pairs with different steel grades under varying load and sliding speed. It is shown that irrespective of the matrix material, nitride-reinforced MCMs have a high friction coefficient. At low sliding velocities and load, the adhesion mechanism of friction prevails, but with the increase of these parameters, the share of abrasion mechanism of friction increases. As an additional study, the structures of the investigated MCMs were analyzed.
2. Kablov E.N. New generation materials and digital technologies for their processing. Vestnik RAN, 2020, vol. 90, no. 4, pp. 331–334.
3. Nitrides: guidelines for students of mechanical specialties. Comp. A.E. Ivantsov, G.A. Rozhkova. Kazan: KSTU, 2006, 20 p.
4. Manegin Yu.V., Gulyaev I.A., Kolesnikova O.Yu., Omelchenko A.V. Powder steels and alloys with nitride hardening. Tekhnologiya metallov, 2002, no. 12, pp. 5–12.
5. Kardonina N.I., Kolpakova A.S. Study of the phase and structural composition of high-nitrogen iron-based powders. Izvestiya vysshikh uchebnykh zavedeniy. Chernaya metallurgiya, 2000, no. 2, pp. 15–18.
6. Komarova A.I., Vityaz P.A., Komarova V.I. Improving the tribomechanical properties of MAO coatings by modifying them with titanium nitride. VIII Int. scientific and technical. conf. «High technology at the current stage of mechanical engineering development». Moscow, 2016, pp. 89–92.
7. Kharina G.V., Anakhov S.V. Chemical properties of structural metals and alloys: textbook. Ekaterinburg: RSVPPU, 2019, 152 p.
8. Mikhailenko Ya.I. Course of general and inorganic chemistry. Moscow: Vysshaya shkola, 1966, 664 p.
9. Artemyev A.A. Formation of the structure of abrasion-resistant alloys under the influence of ultrafine titanium nitride particles. XIV Rus. annual conference of young researchers and postgraduates «Physical chemistry and technology of inorganic materials». Moscow: IMET RAS, 2017, pp. 7–9.
10. Valeev R.A., Korolev D.V., Morgunov R.B., Piskorsky V.P. The effect of high concentrations of cobalt on the properties of magnets Pr–Dy–Fe–Co–B and Nd–Dy–Fe–Co–B. Trudy VIAM, 2022, no. 10 (116), paper no. 06. Available at: http://www.viam-works.ru (accessed: August 16, 2024). DOI: 10.18577/2307-6046-2022-0-10-76-89.
11. Burkovskaya N.P., Sevostyanov N.V., Bolsunovskaya T.A., Efimochkin I.Yu. Improvement of materials for sliding bearings of internal combustion engines (review). Trudy VIAM, 2020, no. 1 (85), paper no. 08. Available at: http://www.viam-works.ru (accessed: August 16, 2024). DOI: 10.18577/2307-6046-2020-0-1-78-91.
12. Evgenov A.G., Shurtakov S.V., Chumanov I.R., Leshchev N.E. New wear-resistant cobalt-based alloy: effect of silicon and carbon on structure and tribotechnical characteristics. Part 1. Aviation materials and technologies, 2021, no. 4 (65), paper no. 07. Available at: http://www.journal.viam.ru (accessed: August 16, 2024). DOI: 10.18577/2713-0193-2021-0-4-59-69.
13. Starunov A.V., Astakhova M.N., Balakai V.I. New composite material based on nickel-cobalt alloy containing silicon oxide as an alloying component. XII Int. Sci.-prac. conf. «Modern instrumental systems, information technologies and innovations»: in 4 vols. Kursk, 2015, vol. 4, pp. 88–90.
14. Kablov E.N., Kulagina G.S., Zhelezina G.F., Lonskii S.L., Kurshev E.V. Microstructure research of the unidirectional organoplastic based on Rusar-NT aramid fibers and epoxy-polysulfone binder. Aviacionnye materialy i tehnologii, 2020, no. 4 (61), pp. 19–26. DOI: 10.18577/2071-9140-2020-0-4-19-26.
15. Smirnov V.M., Shalunov E.P. Properties and structure of composite metal matrix materials based on powder copper obtained by reactive mechanical alloying. VII Int. Conf. «Deformation and destruction of materials and nanomaterials». Moscow: IMET RAS, 2017, pp. 437–439.
16. Lovshchenko F.G., Lovshchenko G.F., Fedosenko A.S. Regularities of formation of structure and phase composition of mechanically alloyed composite powder materials for gas-thermal spraying methods. Vestnik Belorussko-Rossiyskogo universiteta, 2016, no. 1 (50), pp. 36–47.
17. Chernigovskaya M.A., Pozdnyakova V.G. On the method for determining the structure of polymer composite materials. Sovremennye tekhnologii i nauchno-tekhnicheskiy progress, 2022, no. 9, pp. 77–78.
18. Kuksenova L.I., Lapteva V.G., Kolmakov A.G., Rybakova L.M. Friction and Wear Test Methods. Moscow: Intermet Inzhiniring, 2001, 152 p.
19. Buckley D. Surface Phenomena in Adhesion and Frictional Interaction. Moscow: Mashinostroenie, 1986, 359 p.
20. Kragelsky I.V., Dobychin M.N., Kombalov V.S. Fundamentals of friction and wear calculations. Moscow: Mashinostroenie, 1987, 526 p.
21. Litvinov V.N., Mikhin N.M., Myshkin N.K. Physicochemical Mechanics of Selective Transfer during Friction. Moscow: Nauka, 1979, 187 p.
22. Bely A.V. Structure and Methods of Formation of Wear-Resistant Surface Layers. Moscow: Mashinostroenie, 1991, 208 p.
23. Rybakova L.M., Kuksenova L.I. Structure and Wear Resistance of Metal. Moscow: Mashinostroenie, 1982, 216 p
24. Kislyi P.S., Bodnaruk N.I., Borovikova M.S. et al. Cermets. Kyiv: Naukova Dumka, 1985, 272 p.
25. Kudrya A.V., Sokolovskaya E.A., Perezhogin V.Yu., Ha N.N. Some practical considerations related to computer procedures for image processing in materials science. Vektor nauki Tolyattinskogo gosudarstvennogo universiteta, 2019, no. 4 (50), pp. 35–44.
Based on the known thermodynamic dependencies, formulas for calculating changes in the surface temperature of a sample and the evaporation time of free moisture from its surface under the influence of wind are derived. Calculations allow, using meteorological data, to estimate the actual value of the sample temperature and the time until complete removal of free moisture from the surface at low air humidity or, conversely, the humidification time at high humidity during climatic tests of materials. The use of the derived dependencies will allow us to take into account the influence of liquid precipitation and wind when predicting the climatic resistance of materials.
2. Kablov E.N., Startsev V.O., Laptev A.B. Aging of polymer composite materials: textbook. Moscow: NRC «Kurchatov Institute» – VIAM, 2023, 520 p.
3. Kablov E.N. New generation materials and digital technologies for their processing. Vestnik Rossiyskoy akademii nauk, 2020, vol. 90, no. 4, pp. 331–334.
4. Kablov E.N., Kondrashov S.V., Melnikov A.A., Schur P.A. Application of functional and adaptive materials obtained by 3D printing (review). Trudy VIAM, 2022, no. 2 (108), paper no. 03. Available at: http://www.viam-works.ru (accessed: November 20, 2023). DOI: 10.18577/2307-6046-2022-0-2-32-51.
5. Laptev A.B., Pavlov M.R., Novikov A.A., Slavin A.V. Current trends in the development of testing materials for resistance to climate factors (review). Part 1. Testing of new materials. Trudy VIAM, 2021, no. 1 (95), paper no. 12. Available at: http://www.viam-works.ru (accessed: November 20, 2023). DOI: 10.18577/2307-6046-2021-0-1-114-122.
6. Whiteside M., Herndon J.M. Unequivocal Detection of Solar Ultraviolet Radiation 250-300 nm (UV-C) at Earth's Surface. European Journal of Applied Sciences, 2023, vol. 11, no. 2, pp. 455–472. DOI: 10.14738/aivp.112.14429.
7. Myagkov M.S. Climate analysis in architectural design: textbook. Moscow: MARChI, 2016, 118 р.
8. Startsev V.O., Nechaev A.A. The influence of natural and accelerated weathering on the nanomodified CFRP’S strength. Aviation materials and technologies, 2023, no. 3 (72), paper no. 11. Available at: http://www.journal.viam.ru (accessed: May 10, 2024). DOI: 10.18577/2713-0193-2023-0-3-134-151.
9. Babich V.F., Bryk M.T., Veselovsky R.A. et al. Physicochemistry of multicomponent polymer systems: in 2 vols. Ed. Yu.S. Lipatov. Kyiv: Naukova Dumka, 1986, vol. 2: Polymer mixtures and alloys, 376 p.
10. Lebedev E.V., Lipatov Yu.S., Rosovitsky V.F. et al. Physicochemistry of multicomponent polymer systems: in 2 vols. Ed. Yu.S. Lipatov. Kyiv: Naukova Dumka, 1986, vol. 1: Filled polymers, 384 p.
11. Bertenev G.M., Frenkel S.Ya. Physics of polymers. Ed. A.M. Elyashevich. Leningrad: Khimiya, 1990, 432 p.
12. Enthalpy. The Great Russian Encyclopedia: in 35 vol. Moscow: The Great Russian Encyclopedia, 2017, vol. 35, p. 348.
13. Landau L.D., Lifshits E.M. Statistical Physics: in 4 parts. 5th ed. Moscow: Fizmatlit, 2002, part 1, 616 p.
14. Gorshkov V.I., Kuznetsov I.A. Fundamentals of Physical Chemistry. 3rd ed. Moscow: Binom. Laboratoriya Znaniy, 2009, 408 p.
15. Steadman R.G. Norms of apparent temperature in Australia. Meteorological Magazine, 1994, vol. 43, pp. 1–16.
16. Lakomkin V.Yu., Smorodin S.N., Gromova E.N. Heat and mass transfer equipment of enterprises (drying units): textbook. St. Petesburg: VShTE SPbGUPTD, 2016, 142 p.
17. Laptev A.G., Dremicheva E.S., Safina G.G. Calculation of the process of evaporative cooling of water in open circulation cycles: practical course. Kazan: Kazan State Power Engineering Univ., 2018, 28 p.
18. Gunich S.V., Yanchukovskaya E.V. Mathematical modeling and computer calculation of chemical-engineering processes: examples and problems: in 2 vols. Irkutsk: Irkutsk State Tech. Univ., 2010, vol. 1, 215 p.
19. Dytnersky Yu.I. Processes and apparatuses of chemical engineering: textbook for universities: in 2 parts. Moscow: Khimiya, 1995, рart 2: Mass transfer processes and apparatuses, 635 p.
20. Methodology for calculating water management balances of water bodies. Available at: https://sudact.ru/law/prikaz-mpr-rf-ot-30112007-n-314/metodika-rascheta-vodokhoziaistvennykh-balansov-vodnykh/?ysclid=lw4sxyifv7662570439 (accessed: May 13, 2024).
21. Physical quantities: handbook. Ed. I.S. Grigorieva, E.Z. Meilikhova. M.: Energoatomizdat, 1991, 450 p.
22. Polosin I.I., Novoseltsev B.P., Shershnev V.N. Theoretical foundations of creating a microclimate in a room. Voronezh, 2005, 143 p.
23. Construction climatology: Building codes and regulations 23-01–99: approved by the Ministry of Construction and Housing Communal Services of the Rus. Federation. 24.12.2020: comes into effect from 25.06.2021. Moscow: Standartinform, 2021, 146 p.
24. Gennes P.G., Wyart F.B., Quéré D. Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves. Physics Today, 2004, no. 57, pp. 12–66. DOI: 10.1063/1.1878340.
Heat-resistant alloys and steels
Sevalnev G.S., Oblivantsev K.D., Dulnev K.V., Sevalneva T.G. Structure and properties of electrospark coating based on high-nitrogen structural steel
Light-metal alloys
Mukhina I.Yu., Leonov A.A., Trofimov N.V., Tokarev M.S. Tableted modifier for casting magnesium alloys
Benarieb I., Puchkov Yu.A., Sbitneva S.V., Shorstov S.Yu., Shumeyko R.M. Quench sensitivity of wrought heat-treatable aluminum alloys of the Al–Mg–Si system (review)
Polymer materials
Ponomarenko S.A., Kurshev E.V., Lonskii S.L. Investigation of degradation mechanisms of thermoplastic polyurethane by storage at long times in aviation kerosene TS-1 by gel permeation chromatography, optic and scanning electron microscopy, and FTIR spectroscopy
Composite materials
Potapov M.V., Valeev R.A., Morgunov R.B., Piskorsky V.P. Properties of sintered magnets (Pr, Nd, Ce, Dy)(Fe, Co)B obtained from unrefined rare earth metals
Protective and functional
coatings
Artemenko N.I., Benklyan A.S., Stekhov P.A., Alexandrov D.A. Materials for applying ceramic layers of heat-protective coatings
Sorokin I.A., Solovyanchik L.V., Mekalina I.V., Tsapenko A.N. Optically transparent polymer films with anti-reflective coating
Material tests
Sevostyanov N.V., Budanova E.S., Khvatov V.D., Fomichev A.N. Tribotechnical features of metal composite materials reinforced with nitrides
Laptev A.B., Sadkov V.R., Nikolaev E.V., Zeleneva T.O. Effect of wind on temperature and moisture content of material samples during climatic tests