Last number
№8 2024
The effects of mutual diffusion, expressed in the nature of the temperature dependences of viscosity and other thermophysical characteristics of the melt of a filament based on polyetheretherketone (PEEK) and liquid crystal polymers (LCP), including depending on the printing speed and the content of the LC phase, are considered and substantiated. Relaxation transitions inside the fiber itself and the film obtained from it by 3D printing are characterized. It has been shown that the introduction of LCP into a thermoplastic matrix based on PEEK can stabilize the viscous behavior of the melt of a thread during its solidification.
2. Onishchenko G.G., Kablov E.N., Ivanov V.V. Scientific and technological development of Russia in the context of achieving national goals: problems and solutions. Innovatsii, 2020, no. 6 (260), pp. 3–16.
3. Kablov E.N., Kondrashov S.V., Melnikov A.A., Pavlenko S.A., Guseva M.A., Pykhtin A.A., Larionov S.A. Investigation of the influence of the thermal regime of FDM printing on the structuring and warping of polyethylene samples. Trudy VIAM, 2021, no. 7 (101), paper no. 06. Available at: http://www.viam-works.ru (accessed: August 18, 2023). DOI: 10.18577/2307-6046-2021-0-7-48-58.
4. Kondrashov S.V., Pykhtin A.A., Larionov S.A., Sorokin A.E. Influence of the technological FDM-modes of the press and structure of used materials on physic-mechanical characteristics of FDM-models (review). Trudy VIAM, 2019, no. 10 (82), paper no. 04. Available at: http://www.viam-works.ru (accessed: August 18, 2023). DOI: 10.18577/2307-6046-2019-0-10-34-49.
5. Pykhtin A.A., Sorokin A.E., Larionov S.A., Lonskii S.L. Study of the influence of non-covalent modifiers on the structure and properties of polymer filaments for FDM-printing based on ABS-plastic and carbon nanoparticles. Trudy VIAM, 2021, no. 10 (104), paper no. 04. Available at: http://www.viam-works.ru (accessed: August 18, 2023). DOI: 10.18577/2307-6046-2021-0-10-36-44.
6. Kirin B.S., Lonskii S.L., Petrova G.N., Sorokin A.E. Materials for the 3D-printing on the basis of polyetheretherketones. Trudy VIAM, 2019, no. 4 (76), paper no. 03. Available at: http://viam-works.ru (accessed: August 18, 2023). DOI: 10.18577/2307-6046-2019-0-4-21-29.
7. Armillotta A., Bellotti M., Cavallaro M. Warpage of FDM parts: Experimental tests and analytic model. Robotics and Computer–Integrated Manufacturing, 2018, vol. 50, pp. 140–152.
8. Alsoufi M., El-Sayed A. Warping Deformation Of Desktop 3D Printed Parts Manufactured By Open Source Fused Deposition Modeling (FDM) System. International Journal of Mechanical and Mechatronics Engineering, 2017, vol. 17, pp. 7–16.
9. Schumacher C., Schöppner V., Fels C. A method to evaluate the process-specific warpage for different polymers in the FDM process. PROCEEDINGS OF PPS-34: The 34th International Conference of the Polymer Processing Society – Conference Papers, 2019, vol. 2065, no. 1, pp. 0300571–0300575.
10. Deberdeev T.R., Akhmetshina A.I., Karimova L.K. et al. Heat-resistant polymeric materials based on liquid crystal compounds. Vysokomolekulyarnye soyedineniya. Ser.: S, 2020, vol. 62, no. 2, pp. 145–165. DOI: 10.31857/S230811472002003X.
11. Lyashenko E.Yu., Yakovleva K.A., Andreeva T.I. et al. Composite materials based on polyetheretherketone. Plasticheskie massy, 2023, no. 1–2, pp. 11–13. DOI: 10.35164/0554-2901-2023-1-2-11-13.
12. D’amore A., Kenny J.M., Nicolais L. Dynamic-Mechanical and Dielectric Characterization of PEEK Crystallization. Polymer Engineering and Science, 1990, vol. 30, no. 5, pp. 314–320.
13. Fougnies C., Dosie`re M., Koch M.H.J., Roovers J. Cold Crystallization of Narrow Molecular Weight Fractions of PEEK. Macromolecules, 1999, vol. 32, pp. 8133–8138.
14. Jonas A., Legras R. Relation between PEEK Semicrystalline Morphology and Its Subglass Relaxations and Glass Transition. Macromolecules, 1993, vol. 26, pp. 813–824.
15. Williams M.L., Landel R.F., Ferry J.D. The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. Journal of the American Chemical Society, 1955, vol. 77, pp. 3701–3705.
16. Lannunziata E., Colucci G., Minetola P., Giubilini A. Effect of annealing treatment and infill percentage on 3D printed PEEK samples by Fused Filament Fabrication. The International Journal of Advanced Manufacturing Technology, 2024, vol. 131, pp. 5209–5222.
17. Gardea F., Glaz B., Riddick J. et al. Thermally activated energy dissipation in semi-crystalline polymer nanocomposites. Composites Science and Technology, 2016, vol. 134, pp. 275–286.
18. Choupin T. Mechanical perfomances of PEKK thermoplastic composites linked to their processing parameters: PhD thesis. Paris: Ecole nationale superieure d’arts et métiers, 2017, p. 16.
19. Gotsisa A.D., Odriozola M.A. Extensional viscosity of a thermotropic liquid crystalline polymer. Journal of Rheology, 2000, vol. 44, no. 5, pp. 1205–1223.
20. Vanaei H.R., Raissi K., Deligant M. et al. Toward the understanding of temperature effect on bonding strength, dimensions and geometry of 3D-printed parts. Journal of Materials Science, 2020, vol. 55, no. 29, pp. 14677–14689.
21. Ma Q., Pyda M., Mao B., Cebe P. Relationship between the rigid amorphous phase and mesophase in electrospun fibers. Polymer, 2013, vol. 54, no. 10, pp. 2544–2554.
22. Calleja G., Jourdan A., Ameduri B., Habas J.-P. Where is the glass transition temperature of poly(tetrafluoroethylene)? A new approach by dynamic rheometry and mechanical tests. European Polymer Journal, 2013, vol. 49, no. 8, pp. 2214–2222.
23. Righetti M.C. Amorphous Fractions of Poly(lactic acid). Synthesis, Structure and Properties of Poly(lactic acid). Advances in Polymer Science, 2017, vol. 279, pp. 195–234.
24. Sirota E.B. Polymer Crystallization: Metastable Mesophases and Morphology. Macromolecules, 2007, vol. 40, no. 4, pp. 1043–1048.
25. Androsch R., Di Lorenzo M.L., Schick C., Wunderlich B. Mesophases in polyethylene, polypropylene, and poly(1-butene). Polymer, 2010, vol. 51, no. 21, pp. 4639–4662.
26. Kiss G. Anomalous Temperature Dependence of Viscosity of Thermotropic Polyesters. Journal of Rheology, 1986, vol. 30, no. 3, pp. 585–599.
27. Shabaev A.S., Zhansitov A.A., Khakyasheva E.V., Khashirova S.Yu. Study of Thermo-Oxidative Transformations of Unstabilized and Stabilized Poly(ether ether ketone). Polymer Science, Series B, 2019, vol. 61, no. 5, pp. 582–588.
28. Al Lafi A.G., Parker D.J., Hay J.N. The crosslinking of poly (ether ether ketone): Thermally and by irradiation. Journal of Applied Polymer Science, 2015, vol. 132, p. 41999.
29. Tsotra P., Toma M., Pascual A. et al. Thermo-oxidative degradation of PEEK at high temperatures. ECCM18 – 18th European Conference on Composite Materials, 2018, pp. 1–8.
30. Zhou Z., Zhang S., Mu J. et al. Effect of Antioxidants on the Stability of Poly(ether ether ketone) and the Investigation on the Effect Mechanism of the Antioxidants to Poly(ether ether ketone. Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, 2012, vol. 49, pp. 571–577.
31. Patel P., Hull T.R., McCabe R.W. et al. Mechanism of Thermal Decomposition of Poly(Ether Ether Ketone) (PEEK) from a Review of Decomposition Studies. Polymer Degradation and Stability, 2010, vol. 95, pp. 709–718.
The results of studies of the optimal component composition of the sealing harness material and the assessment of the effect of each component on the physico-mechanical characteristics of the resulting mixtures are described. Compositions based on dimethylvinylsiloxane rubber with ingredients such as covelos, carbon black and diatomite,chalk, BMK-5 copolymer and TMFT product, dicumyl peroxide are considered. Based on the conducted studies of experimental compositions, the ingredients most applicable for further development of the optimal formulation of the sealing material used in autoclave molding have been determined.
2. Evdokimov A.A. Polymer composite material manufactured using vacuum infusion technology with shaping at temperatures up to 40 °C: thesis, Cand. Sc. (Tech.). Moscow, 2020, 116 p.
3. Valueva M.I., Zelenina I.V., Nacharkina A.V., Ahmadieva K.R. Technological features of obtaining high temperature polyimide carbons. Foreign experience (review). Trudy VIAM, 2022, no. 6 (112), paper no. 08. Available at: http://www.viam-works.ru (accessed: February 16, 2024). DOI: 10.18577/2307-6046-2022-0-6-80-95.
4. CYCOM 2237 Polyimide Resin System. Technical Data Sheet. Available at: https://www.solvay.com/en/product/cycom-2237 (accessed: February 15, 2024).
5. Valueva M.I., Zelenina I.V., Zharinov M.A., Akhmadieva K.R. World market of high temperature polyimide carbon plastic (review). Trudy VIAM, 2019, no. 12 (84), paper no. 08. Available at: http://www.viam-works.ru (accessed: February 16, 2024). DOI: 10.18577/2307-6046-2019-0-12-67-69.
6. Mukhametov R.R., Petrova A.P. Thermosetting binders for polymer composites (review). Aviacionnye materialy i tehnologii, 2019, no. 3 (56), pp. 48–58. DOI: 10.18577/2071-9140-2019-0-3-48-58.
7. Tkachuk A.I., Donetsky K.I., Terekhov I.V., Karavaev R.Yu. The use of thermosetting matrices for the manufacture of polymer composite materials by the non-autoclave molding methods. Aviation materials and technology, 2021, no. 1 (62), paper no. 03. Available at: https://journal.viam.ru (accessed: February 15, 2024). DOI: 10.18577/2713-0193-2021-0-1-22-33.
8. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
9. Kablov E.N. The role of chemistry in the creation of new generation materials for complex technical systems. Reports of the XX Mendeleev Congress on General and Applied Chemistry. Ekaterinburg: Ural Branch of the Russian Academy of Sciences, 2016, pp. 25–26.
10. Kablov E.N., Antipov V.V. The role of new generation materials in ensuring the technological sovereignty of the Russian Federation. Vestnik Rossiyskoy akademii nauk, 2023, vol. 93, no. 10, pp. 907–916.
11. Chaykun A.M., Bobrova I.I., Gerasimov D.M., Sergeyev A.V. Elastomers for sealing harness materials: properties, methods of receiving and feature of manufacturing. Trudy VIAM, 2023, no. 7 (125), paper no. 05. Available at: http://www.viam-works.ru (accessed: February 16, 2024). DOI: 10.18577/2307-6046-2023-0-7-56-68.
12. Schetz M. Silicone rubber. Moscow: Khimiya, 1975, 400 p.
13. Dolgov O. N., Voronkov M.G., Grinblat M.P. Organosilicon liquid rubbers and materials based on them. Leningrad: Khimiya, 1975, 112 p.
14. The big handbook of the rubber manufacturer: in 2 parts. Edы. S.V. Reznicenko, Yu.L. Morozov. Moscow: Tekhinform, 2012, part 1, 2, 1385 p.
15. Rubber and resin. Science and technology: trans. from Engl. Eds. A.A. Berlin and Yu.L. Morozov. Dolgoprudny: Intellect, 2011, 768 p.
16. Kornev A.E., Bukanov A.M., Sheverdyaev O.N. Technology of elastomer materials. Moscow: Istek, 2009, 502 p.
17. Hoffman V. Vulcanization and vulcanizing agents. Leningrad: Khimiya, 1968, 464 p.
18. Rubber technology: formulation and testing: trans. from Engl. Ed. J.S. Dik. St. Petersburg: Scientific foundations and technologies, 2010, 620 p.
19. Agayants I.M. Five centuries of rubber and rubber. Moscow: Modern-A, 2002, 432 p.
Results of research of the properties of VK-106 epoxy thixotropic adhesive intended for connection of products from heat-shrinkable materials with the shells of electric plaits and the bodies of electric connectors at melting point temperature with the subsequent curing of adhesive joint at room temperature are presented. The data on keeping of strength characteristics of the adhesive joints executed with use of VK-106 adhesive, after influence of external factors in comparison with the initial characteristics are provided.
2. Kablov E.N. Main directions of development of materials for aerospace engineering of the 21st century. Perspektivnye materialy, 2000, no. 3, pp. 27–36.
3. Kablov E.N. New generation materials and digital technologies for their processing. Vestnik Rossiyskoy akademii nauk, 2020, vol. 90, no. 4, pp. 331–334.
4. Kablov E.N. The role of fundamental research in creating new generation materials. Reports of the XXI Mendeleev Congress on General and Applied Chemistry: in 6 vols. St. Petersburg, 2019, vol. 4, p. 24.
5. Kablov E.N., Laptev A.B., Prokopenko A.N., Gulyaev A.I. Relaxation of polymeric composite materials under the prolonged action of static load and climate (review). Part 1. Binders. Aviation materials and technologies, 2021, no. 4 (65), paper no. 08. Available at: http://www.journal.viam.ru (accessed: March 21, 2024). DOI: 10.18577/2713-0193-2021-0-4-70-80.
6. Grashhenkov D.V., Chursova L.V. Strategy of development of composite and functional materials. Aviacionnye materialy i tehnologii, 2012, no. S, pp. 231–242.
7. Antipov V.V., Serebrennikova N.Yu., Konovalov A.N., Nefedova Yu.N. Perspectives of application of fiber metal laminate materials based on aluminum alloys in aircraft design. Aviacionnye materialy i tehnologii, 2020, no. 1 (58), pp. 45–53. DOI: 10.18577/2071-9140-2020-0-1-45-53.
8. Aviation materials: a reference book in 13 vols. Ed. E.N. Kablov. 7th ed., add. and rev. Moscow: VIAM, 2019, vol. 10: Adhesives, sealants, rubbers, hydraulic fluids, part 1: Adhesives, adhesive prepregs, 276 p.
9. Petrova A.P., Malysheva G.V. Adhesives, adhesive binders and adhesive prepregs: a textbook. Ed. E.N. Kablov. Moscow: VIAM, 2017, 472 p.
10. Petrova A.P., Donskoy A.A. Adhesives. Sealants. St. Petersburg: Professional, 2008, 589 p.
11. Muhametov R.R., Ahmadieva K.R., Chursova L.V., Kogan D.I. New polymeric binding for perspective methods of manufacturing of constructional fibrous PCM. Aviacionnye materialy i tekhnologii, 2011, no. 2, pp. 38–42.
12. Petrova A.P. Foaming adhesives and their application in aircraft manufacturing. Klei. Germetiki. Tekhnologii, 2015, no. 1, pp. 2–5
13. Isaev A.Yu., Pavlyuk B.Ph., Petrova A.P., Lukina N.Ph., Balabanova O.S. Effect of modification of cold cured epoxy adhesives with elastomers on the resource strength of adhesive joint. Trudy VIAM, 2020, no. 9 (91), paper no. 03. Available at: http://www.viam-works.ru (accessed: March 21, 2024). DOI: 10.18577/2307-6046-2020-0-9-27-34.
14. Malysheva G.V., Grashchenkov D.V., Guzeva T.A. Evaluation of technological use efficiency of adhesives and glue prepregs in the manufacture of three-layer panels. Aviacionnye materialy i tehnologii, 2018, no. 4 (53), pp. 26–30. DOI: 10.18577/2071-9140-2018-0-4-26-30.
15. Kablov E.N., Minakov V.T., Anikhovskaya L.I. Adhesives and materials based on them for repair of aircraft structures. Aviatsionnye materialy i tekhnologii, 2002, no. 1, pp. 61–65.
16. Shershak P.V., Yakovlev N.O., Shokin G.I., Kutsevich K.E., Popkova E.A. Evaluation method and factors influencing the bonding quality between face and honey-comb cores in floor and interior aircraft panels. Aviacionnye materialy i tehnologii, 2020, no. 2 (59), pp. 81–88. DOI: 10.18577/2071-9140-2020-0-2-81-88.
17. Dementyeva L.A., Tyumeneva T.Yu., Sharova I.A. Low-flammability adhesives for aviation equipment. VI Int. Conf. «Low-flammability polymeric materials». Vologda, 2011, pp. 102–104.
18. Zastrogina O.B., Shvets N.I., Serkova U.A., Veshkin E.A. Fire-safe materials based on phenol-formaldehyde binders. Klei. Germetiki. Tekhnologii, 2017, no. 7, pp. 22–27.
19. Akhmadieva K.R., Petrova А.P., Shosheva A.L., Bokov V.V. Heat-resistant polyimide adhesive of constructive purposes. Trudy VIAM, 2023, no. 6 (124), paper no. 02. Available at: http://www.viam-works.ru (accessed: February 21, 2024). DOI: 10.18577/2307-6046-2023-0-6-15-24.
20. Kutsevich K.E., Tyumeneva T.Yu., Petrova A.P. Influence of fillers on properties of adhesive prepregs and PCM on their basis. Aviacionnye materialy i tehnologii, 2017, no. 4 (49), pp. 51–55.
21. Zastrogina O.B., Serkova E.А., Sarychev I.A., Vavilova M.I. Influence of Russian and Chinese vinyflex on the properties of the VFT binder and fiberglass based on it. Aviacionnye materialy i tehnologii, 2020, no. 3 (60), pp. 3–9. DOI: 10.18577/2071-9140-2020-0-3-3-9.
22. Anikhovskaya L.I., Minakov V.T. Adhesives and adhesive prepregs for advanced aerospace products. Aviation materials. Selected works of VIAM 1932–2002. Moscow: MISIS; VIAM, 2002, pp. 315–325.
23. Donskoy A.A., Baritko N.V. Low-density self-extinguishing sealants. Klei. Germetiki. Tekhnologii, 2006, no. 9, pp. 10–12.
24. Batizat V.P., Anikhovskaya L.I., Dementyeva L.A. Adhesives for bonding metal and composite structures. Aviatsionnaya promyshlennost, 1983, no. 11, pp. 15–17.
25. Batizat V.P., Anikhovskaya L.I., Vlasova V.I. et al. Features of the application of high-strength structural adhesives. Aviation materials. Moscow: VIAM, 1982, pp. 207–211.
26. Sytyj Yu.V., Sagomonova V.A., Kislyakova V.I., Bolshakov V.A. New vibro absorbing materials. Aviacionnye materialy i tehnologii, 2012, no. 2, pp. 51–54.
27. Petrova A.P. Main stages of gluing technology. Klei. Germetiki. Tekhnologii, 2014, no. 2, pp. 24–30.
28. Fridlyander I.N., Anikhovskaya L.I., Senatorova O.G., Sidelnikov V.V., Dementyeva L.A. Composite adhesive and layered metal-polymer composites. Mechanical Engineering: Encyclopedia in 40 vols. Moscow: Mashinostroenie, 2001, vol: II-3: Non-ferrous metals and alloys. Сomposite metallic materials. Eds. I.N. Fridlyander, E.N. Kablov, pp. 814–831.
29. Karimova S.A., Pavlovskaya T.G., Petrova A.P. Surface preparation of aluminum alloys using anodic oxidation. Klei. Germetiki. Tekhnologii, 2014, no. 1, pp. 34–38.
30. Kochergin Yu.S., Grigorenko T.I., Kulik T.A. Properties of epoxy adhesives modified with oligosulfones. Klei. Germetiki. Tekhnologii, 2005, no. 11, pp. 3–7.
31. Kurshubadze I.V., Petrova A.P. Performance of adhesive joints in marine subtropical conditions. Klei. Germetiki. Tekhnologii, 2005, no. 12, pp. 14–17.
32. Petrova A.P., Dementyeva L.A., Kutsevich K.E., Buznik V.M. On the possibility of using materials based on adhesive prepregs in Arctic conditions. Klei. Germetiki. Tekhnologii, 2015, no. 2, pp. 12–16.
33. Shvedkova A.K., Petrova A.P., Buznik V.M. Climatic resistance of composite materials based on adhesive prepregs in continental arctic conditions. Klei. Germetiki. Tekhnologii, 2016, no. 1, pp. 19–25.
34. Petrova A.P., Lukina N.F., Isaev A.Yu., Smirnov O.I. The effect of the adhesive primer EP-0234 on the properties of adhesive compounds obtained using adhesive VK-36. Trudy VIAM, 2022, no. 6 (112), paper no. 04. Available at: http://www.viam-works.ru (accessed: June 28, 2024). DOI: 10.18577/2307-6046-2022-0-6-39-48.
Complex research of corrosion resistance of the hybrid layered metal polymer material «aluminum–organoplastiс» has been conducted according to the techniques accepted for different classes of materials: metals, polymer composites, adhesive compounds. It is established that the hybrid material has corrosion on surface and at the ends of the samples such as a metal alloy has. An there is also a number of features which are caused by layered structure of the metal composite, the permeability of layers of organoplastic to moisture and electrolytes.
2. Podzhivotov N.Y., Kablov E.N., Antipov V.V. et al. Laminated Metal-Polymeric Materials in Structural Elements of Aircraft. Inorganic Materials: Applied Research, 2017, vol. 8, no. 2, pp. 211–221.
3. Kablov E.N., Antipov V.V., Klochkova Yu.Yu. New-generation aluminum-lithium alloys and layered aluminum-glass plastics based on them. Tsvetnye metally, 2016, no. 8 (884), pp. 86–91. DOI: 10.17580/tsm.2016.08.13.
4. Mashinskaya G.P., Zhelezina G.F. Alor. The Great Russian Encyclopedia: in 35 vols. Moscow, 2005, vol. 1, р. 518.
5. Antipov V.V., Serebrennikova N.Yu., Konovalov A.N., Nefedova Yu.N. Perspectives of application of fiber metal laminate materials based on aluminum alloys in aircraft design. Aviacionnye materialy i tehnologii, 2020, no. 1 (58), pp. 45–53. DOI: 10.18577/2071-9140-2020-0-1-45-53.
6. Mashinskaya G.P., Zhelezina G.F., Senatorova O.G. Laminated Fibrous Metal – Polymer Composites. Soviet Advanced Composites Technology Series. Eds. J.N. Fridleander, I.H. Marshall. 1995, no. 3: Metal Matrix Composites, pp. 487–570.
7. Gunnink J.W., Vlot A., De Vries T.J., Van Der Hoeven W. Glare technology development 1997–2000. Applied Composite Materials, 2002, no. 9, pp. 201–219.
8. Kablov E.N., Antipov V.V., Girsh R.I., Serebrennikova N.Yu., Konovalov A.N. Engineered layered materials based on sheets of aluminum-lithium alloys and fiberglass in the structures of new-generation aircraft. Vestnik mashinostroyeniya, 2020, no. 12, pp. 46–52.
9. Zhelezina G.F., Voynov S.I., Solovieva N.A., Kulagina G.S. Aramid organo-textolites for impact-resistant aircraft structures. Zhurnal prikladnoy khimii, 2019, vol. 92, no. 3, pp. 358–364. DOI: 10.1134/S0044461819030101.
10. Zhelezina G.F., Kolobkov A.S., Kulagina G.S., Kan A.Ch. Damping properties of hybrid layered metal-polymer materials based on aluminum, titanium alloys and organoplastics layers. Trudy VIAM, 2021, no. 2 (96), paper no. 02. Available at: http://www.viam-works.ru (accessed: March 25, 2023). DOI: 10.18577/2307-6046-2021-0-2-10-19.
11. Akmeev A.R., Gulyaev I.N., Ilyichev A.V., Ivanov N.V. Research of mechanical behavior of metal composite (aluminum and carbon fiber-reinforced polymer) with an adaptive reinforcement scheme. Aviacionnye materialy i tehnologii, 2017, no. 3 (48), pp. 43–49. DOI: 10.18577/2071-9140-2017-0-3-43-49.
12. Yakovlev A.L., Nochovnaya N.A., Putyrskij S.V., Krohina V.A. Titanium-polymer laminated materials. Aviacionnye materialy i tehnologii, 2016, no. S2, pp. 56–62. DOI: 10.18577/2071-9140-2016-0-S2-56-62.
13. Arislanov A.A., Goncharova L.J., Nochovnaya N.А., Goncharov V.A. Prospects for the use of titanium alloys in laminated composite materials. Trudy VIAM, 2015, no. 10, paper no. 04. Available at: http://www.viam-works.ru (accessed: February 12, 2024). DOI: 10.18577/2307-6046-2015-0-10-4-4.
14. Kablov E.N., Startsev V.O. Effect of Internal Stresses on Aging of Polymer Composite Materials. Review. Mekhanika kompozitnykh materialov, 2021, vol. 57, no. 5, pp. 805–822.
15. Startsev O.V., Krotov A.S., Senatorova O.G., Anikhovskaya L.I., Antipov V.V., Grashchenkov D.V. Sorption and Diffusion of Moisture in Layered Metal-Polymer Composite Materials of the SIAL Type. Materialovedenie, 2011, no. 12, pp. 38–44.
16. Startsev V.O., Plotnikov V.I., Antipov Yu.V. Reversible influence of moisture on the mechanical properties of PCM after weathering. Trudy VIAM, 2018, no. 5 (65), paper no. 12. Available at: http://www.viam-works.ru (accessed: February 12, 2024). DOI: 10.18577/2307-6046-2018-0-5-110-118.
17. Aviation materials: a reference book in 13 vols. Ed. E.N. Kablov. 7th ed., add. and rev. Moscow: VIAM, 2015, vol. 13: Climatic and microbiological resistance of non-metallic materials, 270 p.
18. Kablov E.N., Startsev V.O. Systematical analysis of the climatics influence on mechanical properties of the polymer composite materials based on domestic and foreign sources (review). Aviacionnye materialy i tehnologii, 2018, no. 2 (51), pp. 47–58. DOI: 10.18577/2071-9140-2018-0-2-47-58. DOI: 10.18577/2071-9140-2018-0-2-47-58.
19. Antipov V.V., Kurs M.G., Girsh R.I., Serebrennikova N.Yu. Climatic field tests of SIAL type metal-polymer composition materials in marine climate. Aviacionnye materialy i tehnologii, 2019, no. 4 (57), pp. 56–64. DOI: 10.18577/2071-9140-2019-0-4-56-64.
20. Kablov E.N., Startsev O.V., Medvedev I.M. Review of international experience on corrosion and corrosion protection. Aviacionnye materialy i tehnologii, 2015, no. 2 (35), pp. 76–87.
21. Kablov E.N., Startsev O.V., Medvedev I.M., Panin S.V. Corrosive aggressiveness of the coastal atmosphere. Part 1. Influencing factors (review). Korroziya: materialy, zashchita, 2013, no. 12, pp. 6–18.
22. Kablov E.N., Startsev O.V., Medvedev I.M. Corrosive aggressiveness of the coastal atmosphere. Part 2. New approaches to assessing the corrosivity of coastal atmospheres. Korroziya: materialy, zashchita, 2016, no. 1, pp. 1–15.
23. Kablov E.N., Startsev V.O. Climatic aging of polymer composite materials for aviation purposes. I. Assessment of the influence of significant influencing factors. Deformatsiya i razrushenie materialov, 2019, no. 12, pp. 7–16.
24. Startsev V.O., Antipov V.V., Slavin A.V., Gorbovets M.A. Modern domestic polymer composite materials for aviation industry (review). Aviation materials and technologies, 2023, no. 2 (71), paper no. 10. Available at: http://www.journal.viam.ru (accessed: February 10, 2024). DOI: 10.18577/2713-0193-2023-0-2-122-144.
25. Startsev V.O. The degradation of polymer composite materials in seawater (review). Aviation materials and technologies, 2023, no. 1 (70), paper no. 12. (accessed: March 15, 2024). DOI: 10.185577/2713-0193-2023-0-1-148-170.
26. Method for measuring parameters of freely damped oscillations of a torsional pendulum: pat. RU 2258912 Rus. Federation; appl. 14.05.03; publ. 20.08.05.
27. Duyunova V.A., Kozlov I.A., Oglodkov M.S., Kozlova A.A. Modern trends in the anodic oxidation of aluminum-lithium and aluminum alloys (review). Trudy VIAM, 2019, no. 8 (80), paper no. 09. Available at: http://www.viam-works.ru (accessed: March 05, 2024). DOI: 10.18577/2307-6046-2019-0-8-79-89.
28. Fomina M.A., Volkov I.A., Vdovin A.I., Yamshchikov E.I. Study of protective capacity anodic oxide coating with environmental friendly improved filling technology. Aviation materials and technologies, 2023, no. 4 (73), paper no. 10. Available at: http://www.journal.viam.ru (accessed: February 12, 2024). DOI: 10.18577/2713-0193-2023-0-4-101-110.
Solid oxide fuel cells attract the attention of developers due to their high energy efficiency, environmental friendliness and a wide variety of types of fuel used. The publication is devoted to the current state of the issue in the field of materials development for solid oxide fuel cells (SOFC). Ceramic oxide materials used for the anode, cathode and electrode of fuel cells are considered. It is shown that interest in solid oxide fuel cells will steadily grow, while small-sized SOFC up to nanoelements will have a special perspective.
2. Jaiswal N., Tanwar K., Suman R. et al. A brief review on ceria based solid electrolytes for solid oxide fuel cells Journal of Alloys and Compounds, 2019, vol. 781, pp. 984–1005. DOI: 10.1016/j.jallcom.2018.12.015.
3. Zhang W., Hu Y.H. Progress in proton-conducting oxides as electrolytes for low-temperature solid oxide fuel cells: From materials to devices Energy Science and Engineering, 2021. DOI: 10.1002/ese3.886.
4. Dwivedi S. Solid oxide fuel cell: Materials for anode, cathode and electrolyte International Journal of Hydrogen Energy, 2020, vol. 45, no. 44, pp. 23988–24013. DOI: 10.1016/j.ijhydene.2019.11.234.
5. Zavorotnaya U.M., Ponomarev I.I., Volkov Yu.A., Sinitsyn V.V. Development of high-performance hydrogen-air fuel cell with flourine-free sulfonated co-polynaphthoyleneimide membrane Membranes, 2023, vol. 13, p. 485. DOI: 10.3390/ membranes13050485.
6. Hussain S., Yangping L. Review of solid oxide fuel cell materials: cathode, anode, and electrolyte Energy Transitions, 2020, vol. 4, pp. 113–126. DOI: 10.1007/s41825-020-00029-8.
7. Kim J., Kim J., Yoon K.J. et al. Solid oxide fuel cells with zirconia/ceria bilayer electrolytes via roll calendering process Journal of Alloys and Compounds. 2020, vol. 846, art. 156318. DOI: 10.1016/j.jallcom.2020.156318.
8. Fan L., Zhu B., Su P.-Ch., He Ch. Nanomaterials and technologies for low temperature solid oxide fuel cells: Recent advances, challenges and opportunities Nano Energy, 2018, vol. 45, pp. 148–176. DOI: 10.1016/j.nanoen.2017.12.044.
9. Li J., Lu Y., Mushtaq N. et al. Analyzing the composite heterostructure as an efficient electrolyte for low-temperature ceramic fuel cells Journal of Alloys and Compounds, 2024, vol. 980, art. 173597. DOI: 10.1016/j.jallcom.2024.173597.
10. Sun Ch., Hui R., Roller J. Cathode materials for solid oxide fuel cells: a review Journal of Solid State Electrochemistry, 2010, vol. 14, pp. 1125–1144. DOI: 10.1007/s10008-009-0932-0.
11. Trofimenko N.E., Ullmann H. Oxygen stoichiometry and mixed ionic-electronic conductivity of Sr1‒aCeaFe1‒bCobO3‒x perovskite-type oxides Journal of the European Ceramic Society, 2000, vol. 20, pp. 1241–1250.
12. Zhi M., Lee S., Miller N. et al. An intermediate-temperature solid oxide fuel cell with electrospun nanofber cathode Energy and Environmental Science, 2012, no. 5, pp. 7066–7071. DOI: 10.1039/C2EE02619H.
13. Agarkov D.A., Bredikhin S.I. Solid oxide fuel cells (SOFC) and power plants based on them Energoekspert, 2021, no. 3, pp. 6–8.
14. Lyskov N.V., Kotova A.I., Petukhov D.I. et al. A new electrochemically active and stable electrode based on praseodymium molybdate for symmetric SOFCs Elektrokhimiya, 2022, vol. 58, no. 11, pp. 746–755. DOI: 10.31857/S0424857022110093.
15. Composite electrode material for electrochemical devices: pat. 2523550 Rus. Federation; appl. 22.03.13; publ. 20.07.14.
16. Gallyamov A.N., Kazantsev A.L., Skovorodnikov P.V., Poilov V.Z. Review of modern functional materials used in solid oxide fuel cells operating on hydrogen fuel Vestnik PNI PU. Ser.: Khimicheskaya tekhnologiya i biotekhnologiya, 2022, no. 4, pp. 38–61. DOI: 10.15593/2224-9400/2022.4.04.
17. Lomonova E.E., Kulebyakin A.V., Tabachkova N.Yu. Solid electrolytes for solid oxide fuel cells (SOFC). Available at: https://econobninsk.ru/images/prezentatsii/ИОФ_РАН_МИСИС_Ломонова_Табачкова_Твёрдые_электролиты_для_ТОТЭ_Обнинск_09-09-2021.pdf (accessed: April 19, 2024).
18. Kolchina L.M. Synthesis and high-temperature properties of multicomponent cuprates – promising cathode materials for solid oxide fuel cells: thesis, Cand. Sc. (Chem.). Moscow, 2017, 134 p.
19. Morales M., Segarra M. Materials Issues for Solid Oxide Fuel Cells Design Handbook of Clean Energy Systems. John Wiley & Sons, Ltd., 2015, pp. 1–17. DOI: 10.1002/9781118991978.hces190.
20. Method for producing anode substrates with a developed microstructure used in multichannel SOFCs: pat. 2777101 Rus. Federation; appl. 29.12.21; publ. 01.08.22.
21. Soloviev A.A., Sochugov N.S., Ionov I.V., Shipilova A.V., Kovalchuk A.N. Magnetron formation of Ni‒YSZ anodes of solid oxide fuel cells Elektrokhimiya, 2014, vol. 50, no. 7, pp. 724–732. DOI: 10.7868/S0424857014070160.
22. Agarkova E.A., Zadorozhnaya O.Yu., Burmistrov I.N. et al. Fabrication and electrochemical characteristics of SOFCs based on supporting two-layer anode substrates obtained by casting on a moving belt Elektrokhimiya, 2022, vol. 58, no. 2, pp. 76–84. DOI: 10.31857/S0424857022020037.
23. Simonenko T.L. Synthesis and study of solid electrolytes based on ZrO2, CeO2 and BaCe(Zr)O3 doped with magnesium, yttrium and gadolinium oxides: thesis, Cand. Sc. (Thech.). St. Petersburg, 2018, 160 p.
24. Affandi N.S.M., Osman N. Short review on global trends in SOFC scenario and future perspective Materials Today: Proceedings, 2022, vol. 66 (10), pp. 3981–3984. DOI: 10.1016/j.matpr.2022.04.824.
25. Global Solid Oxide Fuel Cell Market Share, Size, Growth, Trends, Analysis, Forecast: By Type: Planar, Tubular; By Application: Portable, Stationary, Transport; By End User: Residential, Commercial and Industrial, Data Centres, Military and Defence; Regional Analysis; Competitive Landscape; Key Trends and Developments in the Market; 2024–2032. Available at: https://markwideresearch.com/solid-oxide-fuel-cell-market/ (accessed: March 26, 2024).
26. Batista R.M., Ferreira A.M.D.C., Muccillo E.N.S. Sintering and electrical conductivity of gadolinia-doped ceria Ionics, 2016, vol. 22, pp. 1159–1166. DOI: 10.1007/s11581-016-1648-7.
27. Solovyev A.A., Rabotkin S.V., Shipilova A.V., Ionov I.V. Magnetron Sputtering of Gadolinium-doped Ceria Electrolyte for Intermediate Temperature Solid Oxide Fuel Cells International Journal of Electrochemical Science, 2019, vol. 14, pp. 575–584. DOI: 10.20964/2019.01.03.
28. Agarkov D.A. Study of the relationship between microstructure and charge transfer processes in composite electrodes of SOFCs of planar geometry: Thesis, Cand. Sc. (Phys. & Math.). Chernogolovka, 2016, 171 p.
29. Agarkov D., Borik M., Komarov B. et al. Long-Term Conductivity Stability of Electrolytic Membranes of Scandia Stabilized Zirconia Co-Doped with Ytterbia Membranes, 2023, vol. 13, p. 586. DOI: 10.3390/membranes13060586.
30. Kablov E.N., Antipov V.V. The Role of New Generation Materials in Ensuring the Technological Sovereignty of the Russian Federation Vestnik Rossiyskoy akademii nauk, 2023, vol. 93, no. 10, pp. 907–916.
31. Sokolov A.V., Deynega G.I., Kuzmina N.A. Influence of Sc2O3 additive on sintering temperature and properties of ZrO2–Y2O3 system oxide ceramics. Aviacionnye materialy i tehnologii, 2020, no. 1 (58), pp. 64–69. DOI: 10.18577/2071-9140-2020-0-1-64-69.
32. Doronin O.N., Artemenko N.I., Stekhov P.A., Voronov V.A. Deposition of ceramic layers of heat protection coatings based on the system Gd2O3–ZrO2–HfO2 and Sm2O3–Y2O3–HfO2. Aviation materials and technologies, 2022, no. 3 (68), paper no. 10. Available at: http://www.journal.viam.ru (accessed: March 26, 2024). DOI: 10.18577/2713-0193-2022-0-3-108-119.
33. Lebedeva Yu.E., Shchegoleva N.E., Voronov V.A., Solntcev S.S. Al2O3 and ZrO2 ceramic materials obtained by sol-gel method. Trudy VIAM, 2021, no. 4 (98), paper no. 05. Available at: http://www.viam-works.ru (accessed: March 26, 2024). DOI: 10.18577/2307-6046-2021-0-4-61-73.
34. Babashov V.G., Maksimov V.G., Varrik N.M., Samorodova O.N. Studying of structure and pro-perties of samples of ceramic composite materials on the basis of mullite. Aviacionnye materialy i tehnologii, 2020, no. 1 (58), pp. 54–63. DOI: 10.8577/2071-9140-2020-0-1-54-63.
When producing ceramic products with complex shapes, traditional methods cannot compete with additive manufacturing methods. This is due to both the complexity of manufacturing molds and injection molds, and the need for subsequent mechanical processing, which significantly complicates and increases the cost of the process of obtaining a product. This article discusses the layer-by-layer deposition technology (FDM). Its main advantages and disadvantages are given. The results of producing ceramic polymer filament and products made from it using FDM technology are presented.
2. Evdokimov S.A., Shchegoleva N.E., Sorokin O.Yu. Ceramic materials aviation engineering (review). Trudy VIAM, 2018, no. 12 (72), paper no. 06. Available at: http://www.viam-works.ru (accessed: May July 02, 2024). DOI: 10.18577/2307-6046-2018-0-12-54-61.
3. Kablov E.N. No new materials – no future. Metallurg, 2013, no. 12, pp. 4–8.
4. Kablov E.N. Main results and directions of development of materials for advanced aviation equipment. 75 years. Aviation materials. Moscow: VIAM, 2007, pp. 20–26.
5. Andrianov N.T., Balkevich V.L., Belyakov A.V. et al. Chemical technology of ceramics: textbook for universities. Ed. I.Ya. Guzman. Moscow: Stroymaterialy, 2012, 496 p.
6. Semerikov I.S., Gerasimova E.S. Physical Chemistry. Construction Materials: a textbook for universities, Moscow: URAYT; Ekaterinburg: Publ. House of the Ural. Univ., 2018, 204 p.
7. Kablov E.N., Grashchenkov D.V., Isaeva N.V., Solntsev S.S., Sevastyanov V.G. Promising high-temperature ceramic composite materials. Rossiyskiy khimicheskiy zhurnal, 2010, vol. LIV, no. 1, pp. 20–24.
8. Kablov E.N. Trends and Guidelines for Innovative Development of Russia: collection of information materials. 3rd ed., rev. and add. Moscow: VIAM, 2015, 720 p.
9. Gorelov V.A., Alekseev S.V. Features of mechanical processing of parts from ceramic materials. Izvestiya Moskovskogo gosudarstvennogo tekhnicheskogo universiteta MAMI, 2012, no. 2, pp. 64–67.
10. Glazunov V.S., Cherepanova M.V. Application of additive technologies in the production of ceramic products. Vestnik Permskogo natsionalnogo issledovatelskogo politekhnicheskogo universiteta. Ser.: Khimicheskaya tekhnologiya i biotekhnologiya, 2018, no. 4, pp. 174–187.
11. Kirillova N.K., Alekseeva A.N., Egorova A.D. Application of additive technologies in construction and in the manufacture of ceramic products. Vestnik Belgorodskogo gosudarstvennogo tekhnologicheskogo universiteta im. V.G. Shukhova, 2020, no. 2, pp. 131–141.
12. Ilyushchenko A.F. Additive technologies and powder metallurgy. New materials and technologies: powder metallurgy, composite materials, protective coatings, welding: Proc. Int. Sci.-Tech. Conf. (September 14–16, 2022, Minsk). Minsk: Belarusian Science, 2022, рp. 17–34.
13. Cherepanova M.V., Skovorodnikov P.V., Khazeev A.A. Application of additive technologies in the production of ceramic products of complex shapes. Nauchnyy almanakh, 2018, no. 10 (2), pp. 73–76.
14. Lakhdar Y., Tuck C., Binner J., Terry A., Goodridge R. Additive manufacturing of advanced ceramic materials. Progress in Materials Science, 2021, vol. 116, pp. 736–742.
15. Travitzky N., Bonet A., Dermeik B. et al. Additive manufacturing of ceramic based materials. Advanced engineering materials, 2014, vol. 16, no. 6, рp. 729–754.
16. Krasheninnikov M.A. Features of additive technologies for product design. Traditions and innovations in construction and architecture. Construction technologies: collection of articles. Samara: Samara State arch.-tech. Univ, 2017, pp. 98–102.
17. Istomin A.V. Study of the distribution of aluminum oxide nanopowder in a polymer solution. Aviation materials and technologies, 2024, no. 1 (74), paper no. 06. Available at: http://www.journal.viam.ru (accessed: July 01, 2024). DOI: 10.18577/2713-0193-2024-0-1-78-88.
18. Sorokin A.E., Ivanov M.S., Sagomonova V.A. Thermoplastic polymer composite materials based on polyetheretherketones of various manufacturers. Aviation materials and technologies, 2022, no. 1 (66), paper no. 04. Available at: http://www.journal.viam.ru (accessed: July 01, 2024). DOI: 10.18577/2713-0193-2022-0-1-41-50.
19. Sokolov A.V., Deynega G.I., Kuzmina N.A. Influence of Sc2O3 additive on sintering temperature and properties of ZrO2–Y2O3 system oxide ceramics. Aviacionnye materialy i tehnologii, 2020, no. 1 (58), pp. 64–69. DOI: 10.18577/2071-9140-2020-0-1-64-69.
20. Startsev V.O., Antipov V.V., Slavin A.V., Gorbovets M.A. Modern domestic polymer composite materials for aviation industry (review). Aviation materials and technologies, 2023, no. 2 (71), paper no. 10. Available at: http://www.journal.viam.ru (accessed: July 01, 2024). DOI: 10.18577/2713-0193-2023-0-2-122-144.
21. Goncharova O.N., Berezhnoy Yu.M., Bessarabov E.N. et al. Additive technologies – a dynamically developing production. Inzhenernyy vestnik Dona, 2016, vol. 43, no. 4 (43), p. 123.
22. Murtazina S.A. Modern production technologies and types of ceramic products. Bulletin of the Kazan Technological University, 2015, vol. 18, no. 13, pp. 135–137.
23. Dolgin A.S., Bogdanov S.P., Makogon A.I. 3D printing with corundum pastes. Functional materials: synthesis, properties, application: collection of abstracts of the XIX All-Rus. youth scientific conf. (December 1–3, 2020, St. Petersburg). St. Petersburg: LEMA, 2020, pp. 147–148.
24. Piterskov P.P., Pobirokhin G.S. 3D printing with ceramics. Application area. Methods. Coll. proc. of the VII Congress of young scientists (April 17–20, 2018, St. Petersburg). SPb: St. Petersburg. National University of Information Technologies, Mechanics and Optics, 2018, рp. 168–171.
25. Smirnov A., Kuznetsova E.V., Khmyrov R.S. et al. Study of mechanical properties under tension of ceramic-polymer composites obtained by the method of layer-by-layer fusion deposition. Advanced technologies and materials: proc. Int. scientific-practical conf. (September 21–23, 2022, Sevastopol). Sevastopol: Sevastopol State Univ., 2022, pp. 199–202.
26. Smirnov A., Kuznetsova E.V., Podrabinnik N.N. et al. Production of filament based on aluminum oxide and polylactide for 3D printing of objects with complex geometry. Priority areas of innovative activity in industry: Coll. Sci. Art. VIII Int. sci. conf. (August 30–31, 2021, Kazan). Kazan: Konvert, 2021, p. 45.
27. Smirnov A., Kuznetsova E.V., Podrabinnik N.N. et al. Development and study of ceramic-polymer filament for 3D printing by the fused deposition method. Advanced technologies and materials: Proc. Int. Sci. And Practical Conf. (October 6–8, 2021, Sevastopol). Sevastopol: Sevastopol State Univ., 2021, pp. 228–232.
28. Furong N., Xiaole Y., Yuanbing L. et al. Fused deposition modeling of Si3N4 ceramics: A cost-effective 3D-printing route for dense and high performance non-oxide ceramic materials. Journal of the European Ceramic Society, 2022, vol. 42, no. 15, рр. 7369–7376.
29. Abdullah A., Noraihan T., Dasmawati M. et al. Mechanical and physical properties of highly ZrO2/β-TCP filled polyamide 12 prepared via deposition modeling (FDM) 3D printer for potential craniofacial reconstruction application. Materials Letters. 2017, vol. 189, рр. 307–309.
30. Furrong N., Xiaole Y., Yuanbing L. et al. Fused deposition modeling of dense complex-shaped SiCp/Al composites with excellent properties. Materials Letters. 2024, vol. 364, рр. 1363–1367.
31. He Q., Jiang J., Yang X. et al. Additive manufacturing of dense zirconia ceramics by fused deposition modeling via screw extrusion. Journal of the European Ceramic Society, 2021, vol. 41, no. 1, pp. 1033–1040.
32. Guan Z., Yang X., Liu P. et al. Additive manufacturing of zirconia ceramic by fused filament fabrication. Ceramics International, 2023, vol. 49, no. 17, pp. 27742–27749.
33. Garshin A.P., Bogdanov S.P., Dolgin A.S., Makagon A.I. Use of ceramic pastes based on core-shell powders for 3D printing. Powder metallurgy: surface engineering, new powder composite materials. Welding: Reports of the 12th Int. Symposium (April 7–9, 2021, Minsk): in 2 parts. Minsk: Belarusian science, 2021, part 1, pp. 370–376.
34. Sagun A.I. Development of thermoplastic feedstock for 3D printing from aluminum oxide. Problems of mechanics: theory, experiment and new technologies: Reports. XVII All-Rus. conf. young scientists (February 26, 2023, Novosibirsk – Sheregesh). Ed. E.I. Kraus. Novosibirsk: Novosibirsk National Research State Univ., 2023, pp. 165–166.
35. Jinsong C., Enquan B., Dazhi H. et al. Extrusion Freeforming-Based 3D Printing of Ceramic Materials. Materials Transactions, 2020, vol. 61, no. 11, pp. 2236–2240.
36. Vozarova M., Neubauer E., Baca L. et al. Preparation of fully dense boron carbide ceramics by Fused Filament Fabrication (FFF). Journal of the European Ceramic Society, 2023, vol. 43, no. 5, pp. 1751–1761.
Thermal indicators include substances that have the ability to sharply change their color at a certain temperature, called the transition temperature. These materials are of significant interest to researchers and manufacturers as they have potential for many technological applications such as aerospace, functional coatings, military applications, printing technologies, «smart» windows, temperature sensors, etc. The nomenclature and variety of thermal indicator substances are constantly evolving, as evidenced by the annual increase in scientific and technical literature publications on this topic.
2. Kablov E.N., Muboyadzhyan S.A. Heat resisting and heat-protective coverings for turbine blades of high pressure of perspective GTE. Aviacionnye materialy i tehnologii, 2012, no. S, pp. 60–70.
3. Kablov E.N. Materials and chemical technologies for aviation equipment. Vestnik Rossiyskoy akademii nauk, 2012, vol. 82, no. 6, pp. 520–530.
4. Krasnov I.S., Lozhkova D.S., Dalin M.A. Evaluation of deficiency of titanium alloy forgings for probabilistic calculation of gas turbine engine disks fracture risk. Aviation materials and technologies, 2021, no. 2 (63), paper no. 12. Available at: https: //journal.viam.ru (accessed: May 06, 2024). DOI: 10.18577/2713-0193-2021-0-2-115-122.
5. Skupov A.A., Sviridov A.V., Golev E.V., Stekolnikova E.Yu. Laser welding of heat-resistant alloy nickel base for gas turbine elements engines. Aviation materials and technologies, 2023, no. 4 (73), paper no. 01. Available at: http://www.journal.viam.ru (accessed: May 06, 2024). DOI: 10.18577/2713-0193-2023-0-4-3-13.
6. Kablov E.N., Khmeleva K.M., Zavarzin S.V., Kozlov I.A., Lonskii S.L. The effect of heat treatment on the characteristics of aluminium-zinc coatings obtained by the cold spray method. Aviation materials and technologies, 2022, no. 1 (66), paper no. 07. Available at: http://www.journal.viam.ru (ассеssed: May 06, 2024). DOI: 10.18577/2713-0193-2022-0-1-78-91.
7. Zuev A.V., Zarichnyak Yu.P., Barinov D.Ya., Krasnov L.L. Measurement of thermophysical properties of flexible thermal insulation. Aviation materials and technology, 2021, no. 1 (62), paper no. 11. Available at: http://www.journal.viam.ru (accessed: May 06, 2024). DOI: 10.18577/2713-0193-2021-0-1-119-126.
8. Hassabo A.G., Bakr M., Zayed M., Othman H.A. Chromic Dyes for SMART Textile: A Review. Letters in Applied NanoBioScience, 2023, vol. 12, is. 4, pp. 161–173.
9. Durasevic V. Smart dyes for medical textiles. Advances in Smart Medical Textiles. Ed. L. van Langenhove. Cambridge: Woodhead Publishing, 2016, pp. 19–55.
10. Karlessi T., Santamouris M., Apostolakis K. et al. Development and testing of thermochromic coatings for buildings and urban structures. Solar Energy, 2009, vol. 83, is. 4, pp. 538–551.
11. Dawson T.L. Changing colours: now you see them, now you don’t. Coloration Technology, 2010, vol. 126 (4), pp. 177–188.
12. Day J.H. Thermochromism. Chemical Review, 1963, vol. 63, is. 1, pp. 65–80.
13. Kiri P., Hyett G., Binions R. Solid state thermochromic materials. Advanced Materials Letters, 2010, vol. 1, is. 2, pp. 86–105.
14. Kukushkin Yu.N. Chemistry of coordination compounds. Moscow: Vysshaya shkola, 1985, 455 p.
15. Abramovich V.G., Kartavtsev V.F. Color indicators of temperature. Moscow: Energiya, 1978, 216 p.
16. Negussie A.H., Morhard R., Rivera J. et al. Thermochromic phantoms and paint to characterize and model image-guided thermal ablation and ablation devices: a review. Functional Composite Materials, 2024, vol. 5, аrt. 1.
17. Belenkiy E.F., Riskin I.V. Chemistry and technology of pigments. Moscow: Khimiya, 1974, 625 p.
18. Nikiforov A.L., Karasev E.V., Bulgakov V.V., Zhivotyagina S.N. Use of thermochromic materials as signaling means of fire prevention in electrical installations. Pozharovzryvobezopasnost, 2015, vol. 24, no. 9, pp. 41–47.
19. Granqvist C.G., Lanseker P.C., Mlyuka N.R. et al. Progress in chromogenics: New results for electrochromic and thermochromic materials and devices. Solar Energy Materials and Solar Cells, 2009, vol. 93, no. 12, pp. 2032–2039.
20. Alamri S.N. The temperature behavior of smart windows under direct solar radiation. Solar Energy Materials and Solar Cells, 2009, vol. 93, no. 9, pp. 1657–1662.
21. Cui H.N., Costa M.F., Teixeira V. et al. Electrochromic coatings for smart windows. Surface Science, 2003, vol. 532–535, pp. 1127–1131.
22. Wu S., Sun H., Duan M. et al. Applications of thermochromic and electrochromic smart windows: Materials to buildings. Cell Reports Physical Science, 2023, vol. 4, pp. 1–33.
23. Choi S., Larrabee J.A. Thermochromic Tetrachlorocuprate (II): An Advanced Integrated Laboratory Experiment. Journal of Chemical Education, 1989, vol. 66, no. 9, рр. 774–776.
24. Temperature indicator anti-corrosion coating: pat. 2586701 Rus. Federation; appl. 26.06.14; publ. 27.12.15.
25. Method of manufacturing a temperature indicator: pat. 2579834 Rus. Federation; appl. 11.02.15; publ. 10.04.16.
26. Uleva S.N., Nikiforov A.L., Nakonechny S.N., Tsirkina O.G. Problems of implementing visual control of thermal operating modes of process equipment to prevent emergency situations. Pozharnaya i avariynaya bezopasnost, 2021, no. 1 (20), pp. 32–38.
27. Leonov A.P., Bolgova V.A. Visualization of Local Overheating Spots in Cable Insulation. Naukovedenie, 2014, no. 2 (21), pp. 1–8. Available at: https://naukovedenie.ru/PDF/118TVN214.pdf (accessed: May 06, 2024).
28. Lagutin A., Sorokin E. Assessment of the State of Contact Joints of Outdoor Switchgear Using Thermal Indicators. Elektroenergiya. Peredacha i raspredelenie, 2023, no. 1 (28), pp. 40–43.
29. Vlasov S. N., Tereshkov A. S., Klimov A. S. Monitoring the Presence of Pores Using Thermochromic Materials. Results of Modern Scientific Research and Development: XIII All-Rus. Scientific and Practical Conf. Penza, 2021, pp. 62–64.
30. Pierce J.W., Goodenough J.B. Structure of Orthorhombic V0,95Cr0,05O2. Physical Review B, 1972, vol. 5, is. 10, pp. 4104–4112.
31. Ivanayskiy V.V. On the Possibilities of the Temperature Indicator Method in Research of Induction Surfacing Technology. Vestnik Altayskogo gosudarstvennogo agrarnogo universiteta, 2018, no. 11 (169), pp. 108–112.
32. Guzman G. Thermochromic transition-metal oxides. Sol-gel technologies for glass producers and users. Eds M.A. Aegerter, M. Mennig. New York: Springer, 2004, pp. 271–276.
33. Johan O.D., Hassin M.M. Investigation on Dielectric Constant of Zinc Oxide. Modern Applied Science, 2009, vol. 3, no. 2, pp. 110–116.
34. Mirnaya M.R., Ivanov K.A. Development and practical application of temperature indicator paints in a real experiment. Mir izmereniya, 2011, no. 12, pp. 26–30.
35. Inorganic reversible temperature indicator: pat. 2561737 Rus. Federation; appl. 12.09.14; publ. 10.09.15.
36. Hossain S., Sadoh A., Ravindra N.M. Principles, properties and preparation of thermochromic materials. Material Science & Engineering International Journal, 2023, vol. 7, is. 3, pp. 146–156.
37. Jeong J., Min K.S., Kumar R.S. et al. Synthesis of novel betaine dyes for multi chromic sensors. Journal of Molecular Structure, 2019, vol. 1187, pp. 151–163.
38. Abdellaoui H., Raji M., Chakchak H. et al. Thermochromic composite materials: synthesis, properties and applications. Polymer Nanocomposite-Based Smart Materials. From Synthesis to Application. Eds. R. Bouhfid, A.K. Qaiss, M. Jawaid. Cambridge: Woodhead Publishing, 2020, pp. 61–78.
39. Talvenmaa P. Introduction to chromic materials. Intelligent Textiles and Clothing. Ed. H.R. Mattila. Cambridge: Woodhead Publishing, 2006, pp. 193–205.
40. Zhao Y., Li L. Colorimetric properties and application of temperature indicator thermochromic pigment for thermal woven textile. Textile Research Journal, 2018, vol. 89, pp. 3098–3111.
The results of a study of the effect of a constant or pulse mode of operation of a negative potential inverter during gradient deposition of the protective coating of the composition SDP-1+VSDP-13 on resistance to sulfide oxide corrosion (SOC) at a temperature of 950 °С based on 30 cycles and scale resistance at a temperature of 1100 °Сbased on 200 hours are presented. It was found that the increased resistance of the «alloy–coating composition» to the effects of SOC and scale resistance are shown by coatings applied under constant operation of the inverter and with an increased potential of 70 V.
2. Kablov E.N., Antipov V.V. The role of new-generation materials in ensuring the technological sovereignty of the Russian Federation. Vestnik Rossiyskoy akademii nauk, 2023, vol. 93, no. 10. рp. 907–916.
3. Kablov E.N., Petrushin N.V., Svetlov I.L., Demonis I.M. Nickel foundry heat resisting alloys of new generation. Aviacionnye materialy i tehnologii, 2012, no. S, pp. 36–52.
4. Bazyleva O.A., Arginbayeva E.G., Lutskaya S.A., Dmitriev N.S. Foundry intermetallic alloy based on Ni3Al compound for turbine blades gas turbine engines. Aviation materials and technologies, 2022, no. 2 (67), paper no. 01. Available at: http://www.journal.viam.ru (accessed: June 25, 2024). DOI: 10.18577/2713-0193-2022-0-2-5-17.
5. Bondarenko Yu.A. Trends in the development of high-temperature metal materials and technologies in the production of modern aircraft gas turbine engines. Aviacionnye materialy i tehnologii, 2019, no. 2 (55), pp. 3–11. DOI: 10.18577/2071-9140-2019-0-2-3-11.
6. Echin A.B., Bondarenko Yu.A., Kolodyazhny M.Yu., Surova V.A. Review of perspective high-temperature superalloys based on refractory non-metallic materials for production of gas turbine engines. Aviation materials and technologies, 2023, no. 3 (72), paper no. 03. Available at: http://www.journal.viam.ru (accessed: June 25, 2024). DOI: 10.18577/2713-0193-2023-0-3-30-41.
7. Svetlov I.L., Petrushin N.V., Epishin A.I., Karashaew M.M., Elyutin E.S. Single crystals of nickel-based superalloys alloyed with rhenium and ruthenium (review). Part 1. Aviation materials and technologies, 2023, no. 1 (70), paper no. 03. Available at: http://www.journal.viam.ru (accessed: June 25, 2024). DOI: 10.18577/2713-0193-2023-0-1-30-50.
8. Muboyadzhyan S.A., Kablov E.N., Budinovsky S.A. Vacuum-plasma technology for producing protective coatings from complex-alloyed alloys. Metallovedenie i termicheskaya obrabotka metallov, 1995, no. 2, pp. 15–18.
9. Budinovsky S.A., Muboyadzhyan S.A. Efficiency of two-stage ion-plasma technology for producing alloyed diffusion aluminide coatings on heat-resistant nickel alloys. Metallovedenie i termicheskaya obrabotka metallov, 2003, no. 5, pp. 27–32.
10. Zavarzin S.V., Oglodkov M.S., Chesnokov D.V., Kozlov I.A. Hot corrosion and protection of materials of gas turbine engines (review). Trudy VIAM, 2018, no. 3 (109), paper no. 11. Available at: http://www.viam-works.ru (accessed: June 25, 2024). DOI: 10.18577/2307-6046-2022-0-3-121-134.
11. Kachanov E.B., Tamarin Yu.A. Coatings for protection of turbine blades from sulfide corrosion. Tekhnologiya legkikh splavov, 2005, no. 1–4, pp. 171–180.
12. Medvedev I.M., Nikitin Ya.Yu., Puzanov A.I., Laptev A.B. Hot corrosion testing methods for high-temperature alloys (review). Trudy VIAM, 2018, no. 11 (71), paper no. 11. Available at: http://www.viam-works.ru (accessed: June 25, 2024). DOI: 10.18577/2307-6046-2018-0-11-93-100.
13. Kosmin A.A., Budinovskiy S.A., Muboyadzhyan S.A. Heat and corrosion resistant coating for working turbine blades from promising high-temperature alloy VZhL21. Aviacionnye materialy i tehnologii, 2017, no. 1 (46), pp. 17–24. DOI: 10.18577/2071-9140-2017-0-1-17-24.
14. Muboyadzhyan S.A., Budinovskij S.A. Ion-plasma technology: prospective processes, coatings, equipment. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 39–54. DOI: 10.18577/2071-9140-2017-0-S-39-54.
15. Budinovsky S.A., Lyapin A.A., Benklyan A.S. Pilot-industrial ion-plasma installations MESh-50 and MAP-R for applying protective coatings to parts of transport and power gas turbine units. Inzhenernyy zhurnal: nauka i innovatsii, 2021, no. 10, pp. 1–13. DOI: 10.18698/2308-6033-2021-10-2120.
The work determined the impurities of platinum group metals (Ru, Rh, Pd, Os, Ir, Pt) and gold in complex-alloyed nickel alloys using inductively coupled plasma mass spectrometry. The method for dissolving a sample and preparing it for analysis is presented. Spectral interferences are eliminated using a reaction-collision cell and a mathematical correction method. The accuracy of the results was confirmed by comparative analysis with data obtained using high-resolution mass spectrometry with a glow discharge.
2. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
3. Min P.G., Vadeev V.E. The development and introduction into serial production of the new superalloy VZhL125 for the advanced aviation engines vanes. Aviation materials and technologies, 2023, no. 1 (70), paper no. 01. Available at: http://www.journal.viam.ru (accessed: June 04, 2024). DOI: 10.18577/2713-0193-2023-0-1-3-16.
4. Kablov E.N., Petrushin N.V., Svetlov I.L., Demonis I.M. Casting heat-resistant nickel alloys for advanced aviation gas turbine engines. Tekhnologiya legkikh splavov, 2007, no. 2, pp. 6–16.
5. Svetlov I.L., Petrushin N.V., Epishin A.I., Karashaew M.M., Elyutin E.S. Single crystals of nickel-based superalloys alloyed with rhenium and ruthenium (review). Part 1. Aviation materials and technologies, 2023, no. 1 (70), paper no. 03. Available at: http://www.journal.viam.ru (accessed: June 04, 2024). DOI: 10.18577/2713-0193-2023-0-1-30-50.
6. Svetlov I.L., Petrushin N.V., Epishin A.I., Karashaew M.M., Elyutin E.S. Single crystals of nickel-based superalloys alloyed with rhenium and ruthenium (review). Part 2. Aviation materials and technologies, 2023, no. 2 (71), paper no. 01. Available at: http://www.journal.viam.ru (accessed: June 04, 2024). DOI: 10.18577/2713-0193-2023-0-2-3-22.
7. Kablov E.N., Chabina E.B., Morozov G.A., Muravskaya N.P. Conformity assessment of new materials using high-level RMs and MI. Kompetentnost, 2017, no. 2, pp. 40–46.
8. State Standard 12228.1–78. Ruthenium. Spectral analysis method. Moscow: Publ. House of Standards, 1977, pp. 1–3.
9. Van Meel K., Smekens A., Behets M., Kazandjian P., Van Grieken R. Determination of platinum, palladium, and rhodium in automative catalysts using high-energy secendory target X-ray fluorescence spectrometry. Analytical Chemistry, 2007, vol. 79, no. 16, pp. 6383–6389.
10. Tsogas G.Z., Giokas D.L., Vliessidies A.G., Evmiridis N.P. On the re-assessment of the optimum conditions for the determination of platinum, palladium and rhodium in environmental samples by electrothermal atomic absorbtion spectrometry and microwave digestion. Talanta, 2008, vol. 76, pp. 635–641.
11. Tyutyunnik O.A., Nabiullina S.N., Anosova M.O., Kubrakova I.V. Determination of trace contents of platinum group elements and gold in ultramafic rocks using AG-X8 and LN-RESIN sorbents by inductively coupled plasma mass spectrometry. Zhurnal analiticheskoy khimii, 2020, vol. 75, no. 6, pp. 527–536.
12. Leikin A.Yu., Karandashev V.K., Lisovsky S.V., Volkov I.A. Use of a reaction-collision cell for the determination of impurity elements in rare earth metals by ICP-MS. Zavodskaya laboratoriya. Diagnostika materialov, 2014, vol. 80, no. 5, pp. 6–9.
13. Grebneva-Balyuk O.N., Kubrakova I.V. Determination of platinum group elements in geological objects by inductively coupled plasma mass spectrometry: possibilities and limitations. Zhurnal analiticheskoy khimii, 2020, vol. 75, no. 3, pp. 195–208.
14. Menshikov V.I., Vlasova V.N., Lozhkin V.I., Sokolnikova Yu.V. Determination of platinum group elements in rocks by ICP-MS with external calibration after separation of matrix elements on the KU-2-8 cation exchanger. Analytics and Control. 2016, vol. 20, no. 3, pp. 190–201.
15. Pupyshev A.A., Epova E.N. Spectral interference of polyatomic ions in the method of mass spectrometry with inductively coupled plasma. Analitika i kontrol, 2001, vol. 5, no. 4, pp. 335–369.
This paper proposes an approach to estimating the density of solid materials at elevated temperatures, based on measuring the temperature coefficient of linear expansion. Measurements of metal powder compositions of alloys EP741NP, VZh178P and VZh159 were carried out. The temperature dependences of the density of the powders under study were established in the temperature range from 200 to 1100 ºС and the correctness of the results obtained was assessed. The features of the experiment are shown, and the advantages and disadvantages of the proposed measurement method are considered.
2. Kablov E.N. No future without new materials. Metallurg, 2013, no. 12, рp. 4–8.
3. Kablov E.N., Bakradze M.M., Gromov V.I., Voznesenskaya N.M., Yakusheva N.A. New high strength structural and corrosion-resistant steels for aerospace equipment developed by FSUE «VIAM» (review). Aviacionnye materialy i tehnologii, 2020, no. 1 (58), pp. 3–11. DOI: 10.18577/2071-9140-2020-0-1-3-11.
4. Garibov G.S., Vostrikov A.V., Grits N.M., Fedorenko E.A. Development of new granulated heat-resistant nickel alloys for the production of disks and shafts of aircraft engines. Tekhnologiya legkikh splavov, 2010, no. 2, pp. 34–44.
5. Garibov G.S., Grits N.M. V.I. Dobatkin and metallurgy of granules of heat-resistant nickel alloys. Tekhnologiya legkikh splavov, 2015, no. 2, pp. 34–39.
6. Loshchinin Yu.V., Pakhomkin S.I., Razmakhov M.G. Phase transformation temperatures and calorimetric analysis of powder compositions of nickel-based superalloys. Aviacionnye materialy i tehnologii, 2020, no. 1 (58), pp. 79–85. DOI: 10.18577/2071-9140-2020-0-1-79-85.
7. Vostrikov A.V., Lomberg B.S., Letnikov M.N., Ovsepyan S.V. Modern heat-resistant deformable nickel alloys of VIAM for gas turbine engine parts. All-Rus. Sci. and Tech. Conf. «Modern heat-resistant deformable nickel alloys and technologies for their production». Moscow: NRC «Kurchatov Institute» – VIAM, 2021, pp. 5–14.
8. Volkov A.M., Vostrikov A.V., Bakradze M.M. Development principles and alloying features of p/m Ni-base superalloys for jet-engine disks application. Trudy VIAM, 2016, no. 8, paper no. 2. Available at: http://www.viam-works.ru (accessed: March 06, 2024). DOI: 10.18577/2307-6046-2016-0-8-2-2.
9. Sukhov D.I., Nerush S.V., Efimochkin I.Yu., Karachevchev F.N., Bogachev I.A. Production of MMC based on VZh159 alloy by selective laser melting. Aviation materials and technologies, 2021, no. 2 (63), paper no. 07. Available at: http://www.journal.viam.ru (accessed: March 06, 2024). DOI: 10.18577/2713-0193-2021-0-2-62-72.
10. Movenko D.A., Shurtakov S.V. Microcrack formation and controlling in nickel superalloys processed by selective laser melting (review). Aviation materials and technologies, 2022, no. 2 (67), paper no. 04. Available at: http://www.journal.viam.ru (accessed: March 06, 2024). DOI: 10.18577/2713-0193-2022-0-2-43-51.
11. Volkov A. M., Shestakova A. A., Bakradze M. M. The comparison of powder produced by gas atomization and by plasma rotate electrode process in the point of production disk billets from Ni-base superalloys. Trudy VIAM, 2018, no. 11 (71), paper no. 02. Available at: http://www.viam-works.ru (accessed: March 06, 2024). DOI: 10.18577/2307-6046-2018-0-11-12-19.
12. Bakradze М.М., Volkov А.М., Shestakova А.А., Letnikov M.N., Bubnov M.V. The features of the grains size changing in the p/m Ni-base superalloy for disks application produced via different technologies. Trudy VIAM, 2018, no. 2, paper no. 01. Available at: http://www.viam-works.ru (accessed: March 06, 2024). DOI: 10.18577/2307-6046-2018-0-2-1-1.
13. Koshelev V.Ya., Garibov G.S., Sukhov D.I. Basic regularities of the process of producing granules of heat-resistant alloys by plasma spraying of a rotating workpiece. Tekhnologiya legkikh splavov, 2015, no. 3, pp. 97–103.
14. Sokolovsky S.S., Astapovich O.S. Selection of the method and means for measuring the density of porous composite materials with open pores. 12th Int. Sci. and Tech. Conf. «Instrument Engineering–2019». Minsk: Belarusian National Tech. Univ., 2019, pp. 228–229.
15. Gainullin Ren.Kh., Gainullin Rish.Kh., Tsvetkova E.M. et al. Mathematical justification of the technological parameters of the device for measuring the apparent density of porous materials. Lesnoy vestnik, 2022, vol. 26, no. 4, pp. 128–134. DOI: 10.18698/2542-1468-2022-4-128-134.
16. Gainullin Ren.Kh., Gainullin Rish. Kh., Tsvetkova E.M. et al. Method for measuring the volume and determining the density of porous materials. Sistemy. Metody. Tekhnologii, 2021, no. 2 (50), pp. 106–110. DOI: 10.18324/2077-5415-2021-2-106-110.
17. Chaplygin V.Yu. Methodology for studying metal powders obtained by electrical discharge dispersion. Sovremennye materialy, tekhnika i tekhnologii, 2016, no. 1 (4), p. 225–231.
18. State Standard R 52802–2007. Heat-resistant granulated nickel alloys. Brands. Moscow: Standartinform, 2008, 10 p.
19. State Standard 5632–2014. Stainless steels and alloys, corrosion-resistant, heat-resistant and heat-resistant. Brands. Moscow: Standartinform, 2015, 57 p.
20. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
Gurov D.A., Tsapenko A.N., Pavlukovich N.G. Effect of mutual stabilization of polyetheretherketone and thermotropic liquid crystal polymers in polymer composites based on them for 3D printing
Evdokimov A.A., Gerasimov D.M., Vakhrusheva Yа.A., Venediktova M.A., Bogdan L.M. Investigation of the effect of components on the properties of sealing harness material for autoclave molding of polymer composite materials
Lukina N.F., Isayev A.Yu., Smirnov O.I., Salando R.P.Properties of VK-106 adhesive for fastening of heat-shrinkable tubes in the design of electric plaits
Composite materials
Zhelezina G.F., Kulagina G.S., Kan A.Ch., Solovyova N.A.Research of corrosion resistance of the hybrid layered metal polymeric materials
Balinova Yu.A., Lugovoy A.A., Butakov V.V.Application trends of high temperature refractory oxides for solid oxides fuel cells
Turchenko M.V., Lebedeva Yu.E., Kolmogorov A.Yu., Gurov D.A., Chainikova A.S.Possibility of using layer-by-layer deposition technology (FDM) to produce ceramic products
Protective and functional
coatings
Fomina M.A., Sibileva S.V., Demin S.A., Vasiliev A.S.Thermal indicator materials and their application
Gorlov D.S., Chesnokov D.V., Zaklyakova O.V., Cheredinov P.D.The effect of the operating mode of the negative potential source during gradient deposition of the protective coating on the resistance to sulfide oxide corrosion and scale resistance
Material tests
Beznosyuk A.N., Alekseev A.V. Determination of platinum group elements in nickel alloys by inductively coupled plasma mass spectrometry method
Shorstov S.Yu., Dmitriev N.S., Razmakhov M.G., Skuridina N.S. Methodological features of studying the density of metal powder compositions at high temperature