Last number
№3 2025
The influence of additives in the base electrolyte, operating voltage and temperature of the electrolyte on the quality of the process of electrolyte-plasma polishing of parts manufactured by selective laser sintering from a metal powder composition of aluminum alloy grade VAS1 was studied. Electrolyte-plasma polishing of a structurally similar sample of a «bracket» type part was carried out. A technology has been developed for electrolyte-plasma polishing of parts manufactured by the selective laser sintering method from metal powder composition aluminum alloy grade VAS1.
2. Kablov E.N., Evgenov A.G., Petrushin N.V., Bazyleva O.A., Mazalov I.S., Dynin N.V. New generation materials and digital additive technologies for the production of resource parts of FSUE VIAM. Part 3. Adaptation and creation of materials. Elektrometallurgiya, 2022, no. 4, pp. 15–25. DOI: 10.31044/1684-5781-2022-0-4-15-25.
3. Kablov E.N., Evgenov A.G., Petrushin N.V., Bazyleva O.A., Mazalov I.S. New-generation materials and digital additive technologies for the production of resource parts of FSUE VIAM. Part 4. Development of heat-resistant materials. Elektrometallurgiya, 2022, no. 5, pp. 8–19. DOI: 10.31044/1684-5781-2022-0-5-8-19.
4. Shchetinina N.D., Kuznetsova P.E., Dynin N.V., Selivanov A.A. Aluminum alloys with additions of Sc and Zr in additive manufacturing (review). Aviation materials and technologies, 2021, no. 3 (64), paper no. 03. Available at: http://www.journal.viam.ru (accessed: September 10, 2024). DOI: 10.18577/2713-0193-2021-0-3-19-34.
5. Peskova A.V., Sukhov D.I., Mazalov P.B. Examination of the formation of the titanium alloy VT6 structure obtained by additive manufacturing. Aviacionnye materialy i tehnologii, 2020, no. 1 (58), pp. 38–44. DOI: 10.18577/2071-9140-2020-0-1-38-44.
6. Nerush S.V., Sviridov A.V., Afansiev-Khodykin A.N., Galushka I.A., Tarasov S.A. Development of brazing technology for parts obtained by additive technologies from cobalt based metal powder composition. Aviation materials and technologies, 2022, no. 2 (67), paper no. 02. Available at: http://www.journal.viam.ru (accessed: September 10, 2024). DOI: 10.18577/2713-0193-2022-0-2-18-29.
7. Marakhovskij P.S., Barinov D.Ya., Shorstov S.Yu., Vorobev N.N. On creation of physical and mathematical models of heat and mass transfer during manufacturing by additive technologies (review). Aviation materials and technologies, 2022, no. 2 (67), paper no. 10. Available at: http://www.journal.viam.ru (accessed: September 10, 2024). DOI: 10.18577/2713-0193-2022-0-2-111-119.
8. Galvanic coatings in mechanical engineering: a reference book in 2 vols. Ed. M.A. Shluger. Moscow: Mashinostroenie, 1985, vol. 1, 240 p.
9. Mirzoev R.A., Davydov A.D. Anodic processes of electrochemical and chemical processing of metals: a textbook. St. Petersburg: Publ. house of the Polytech. Univ., 2013, 382 p.
10. Kulikov I.S., Vaschenko S.V., Kamenev A.Ya. Electrolytic-plasma processing of materials. Minsk: Belarusian Navuka, 2010, 232 p.
11. Method of electrolytic-plasma processing of products made of aluminum and aluminum alloys: pat. 7291 Republic of Belarus; appl. 16.07.15; publ. 28.02.17.
12. Zakharov S.V., Korotkikh M.T. Electrolyte-plasma polishing of complex-shaped products made of aluminum alloy D16. Vestnik Kontserna VKO «Almaz–Antey», 2017, no. 3, pp. 83–87.
13. Pogrebnyak A.D., Tyurin Yu.N., Boyko A.G. et al. Electrolyte-plasma treatment and coating of metals and alloys. Uspekhi fiziki metallov, 2005, vol. 6, pp. 273–344.
14. Volenko A.P., Boychenko O.V., Chirkunova N.V. Electrolyte-plasma treatment of metal products. Vektor nauki TGU, 2012, no. 4 (22), pp. 144–147.
15. Grilikhes S. Ya. Degreasing, etching and polishing of metals. Ed. P.M. Vyacheslavov. 5th ed., rev. and add. Leningrad: Mashinostroenie, 1983, 101 p.
The article presents the results of a study of the relationship between the microstructure of V95och alloy ingots after homogenization annealing in single- and two-stage modes with the parameters of technological plasticity in the temperature range of 350–450 °C. There has been stablished the dependence from the homogenization mode of the structure and properties of sheets with a thickness of more than 6 mm made of V95och alloy, aged in a new experimental mode and a serial aging mode T2. We selected the modes of homogenization annealing and aging that ensure achievement of the highest level of service characteristics of sheets.
2. Kablov E.N., Antipov V.V. The Role of New Generation Materials in Ensuring the Technological Sovereignty of the Russian Federation. Vestnik Rossiyskoy akademii nauk, 2023, vol. 93, no. 10, pp. 907–916.
3. Antipov V.V. Prospects for development of aluminium, magnesium and titanium alloys for aerospace engineering. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 186–194. DOI: 10.18577/2071-9140-2017-0-S-186-194.
4. Tarasov Yu.M., Antipov V.V. The VIAM new materials – for perspective aviation engineering of production of JSC «OAK». Aviacionnye materialy i tehnologii, 2012, no. 2, pp. 5–6.
5. Duyunova V.A., Nechaikina T.A., Oglodkov M.S., Yakovlev A.L., Leonov A.A. Promising developments in the field of lightweight materials for modern aerospace technology. Tekhnologiya legkikh splavov, 2018, no. 4, pp. 28–43.
6. Antipov V.V., Serebrennikova N.Yu., Konovalov A.N., Nefedova Yu.N. Perspectives of application of fiber metal laminate materials based on aluminum alloys in aircraft design. Aviacionnye materialy i tehnologii, 2020, no. 1 (58), pp. 45–53. DOI: 10.18577/2071-9140-2020-0-1-45-53.
7. Senatorova O.G., Antipov V.V., Bronz A.V. et al. High-strength and super-strong alloys of the traditional Al–Zn–Mg–Cu system, their role in technology and development possibilities. Tekhnologiya legkikh splavov, 2016, no. 2, pp. 43–49.
8. Oglodkov M.S., Romanenko V.A., Benarieb I., Rudchenko A.S., Grigoryev M.V. Study of industrial semi-finished products from advanced aluminum-lithium alloys for aircraft products. Aviation materials and technologies, 2023, no. 3 (72), paper no. 05. Available at: http://www.journal.viam.ru (accessed: September 20, 2024). DOI: 10.18577/2713-0193-2023-0-3-62-77.
9. Senatorova O.G., Uksusnikov A.N., Legoshina S.F., Ivanov A.L., Sidelnikov V.V. Effect of various small additives on the structure and properties of sheets made of high-strength alloys of the Al–Zn–Mg–Cu system. Aviacionnye materialy i tehnologii, 2002, is.: Promising aluminum, magnesium and titanium alloys for aerospace engineering, pp. 91–95.
10. Nikitin V.I. Genetic engineering technologies – a new direction in the production of aluminum alloys. Proc. scientific-technical. conf. «New directions of development of production and consumption of aluminum and its alloys». Samara, 2000, pp. 158–165.
11. Aviation materials: handbook in 13 vols. Ed. E.N. Kablov. 7th ed., rev. and add. Moscow: VIAM, 2008, vol. 4: Aluminum and Beryllium Alloys, Part 1: Wrought Aluminum Alloys, book 2, pp. 35–66.
12. Fridlyander I.N. Metallurgy of Aluminum Alloys. Moscow: Nauka, 1985, 238 p.
13. Kolobnev N.I., Ber L.B., Tsukanov S.L. Heat Treatment of Wrought Aluminum Alloys. Moscow: NP «APRAL», 2020, 552 p.
14. Wei Wang, Ralph T. Shuey. Homogenization Model for 7xxx Aluminum Alloy. Proceedings of the 12th International Conference on Aluminium Alloys. Yokohama, 2010, pp. 264–269.
15. Nechaykina T.A., Oglodkov M.S., Ivanov A.L., Kozlova O.Yu., Yakovlev S.I., Shlyapnikov M.A. Features of hardening of wide cladding sheets from V95p.ch. aluminum alloy on a continuous heat treatment line. Trudy VIAM, 2021, no. 11 (105), paper no. 03. Available at: http://www.viam-works.ru (accessed: September 20, 2024). DOI: 10.18577/2307-6046-2021-0-11-25-33.
16. Astashkin A.I., Zaitsev D.V., Selivanov A.A., Tkachenko E.A. The influence of homogenization annealing оn the structural phase evolution and technological plasticity of aluminum alloy 1163 ingots. Trudy VIAM, 2024, no. 7 (137), paper no. 02. Available at: http://www.viam-works.ru (accessed: September 20, 2024). DOI: 10.18577/2307-6046-2024-0-7-12-23.
17. Fridlyander I.N., Berstenev V.V., Tkachenko E.A. et al. Effect of heat treatment and deformation on grain size and mechanical properties of duralumin alloys. Metallovedenie i termicheskaya obrabotka metallov, 2003, no. 7, pp. 3–6.
18. Nechaikina T.A., Blinova N.E., Ivanov A.L., Kozlova O.Yu., Kozhekin A.E. Research of the effect of homogenization and quench hardening modes on the structure and mechanical properties of retail rings from alloy В95o.ch.-T2. Trudy VIAM, 2018, no. 10 (70), paper no. 04. Available at: http://www.viam-works.ru (accessed: September 20, 2024). DOI: 10.18577/2307-6046-2018-0-10-27-36.
19. Yu-lin Zheng, Cheng-bo Li, Shengdan Liu et al. Effect of homogenization time on quench sensitivity of 7085 aluminum alloy. Transactions of Nonferrous Metals Society of China, 2014, vol. 24, pp. 2275−2281.
20. Aryshenskiy V.Yu., Grechnikova A.F., Drits A.M., Sosedkov S.M. Selection of technological parameters for reducing the grain size in the base and cladding of cladding sheets made of aluminum alloys. Tekhnologiya legkikh splavov, 2010, no. 3, pp. 21–30.
21. Tkachenko E.A., Senatorova O.G., Milevskaya T.V., Ivanov A.L. Influence of grain size on the complex of properties of clad cladding cold-rolled sheets made of base alloys 1163 and B95pch. Tsvetnye metally, 2014, no. 13, pp. 57–63.
In present work the study of technology particularities of high-strength titanium alloy rolling sheets VT23 under conditions of the National Research Center «Kurchatov Institute» – VIAM. Computer modeling in a special software package was used to develop the alloy rolling regimes. Samples of the VT23 alloy were rolled at different temperatures, as a result, optimal regimes of hot and warm pressure treatment were obtained. The mechanical properties and structure of the obtained sheets were analyzed, which satisfy the required values.
2. Kablov E.N., Bakradze M.M., Gromov V.I., Voznesenskaya N.M., Yakusheva N.A. New high strength structural and corrosion-resistant steels for aerospace equipment developed by FSUE «VIAM» (review). Aviacionnye materialy i tehnologii, 2020, no. 1 (58), pp. 3–11. DOI: 10.18577/2071-9140-2020-0-1-3-11.
3. Nochovnaya N.A., Shiryaev A.A., Sharapkin D.S. Complex of mechanical and operational properties of rolled blanks from metastable-β-titanium alloy VT47. Aviation materials and technologies, 2022, no. 3 (68), paper no. 05. Available at: http://www.journal.viam.ru (accessed: September 17, 2024). DOI: 10.18577/2713-0193-2022-0-3-50-59.
4. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-91.
5. Khorev A.I. Complex-alloyed titanium alloy VT23 for universal use. Tekhnologiya mashinostroyeniya, 2007, no. 7, pp. 23–40.
6. Kablov E.N., Putyrskiy S.V., Yakovlev A.L., Krokhina V.A., Naprienko S.A. Study of fatigue fracture resistance of stampings made of high-strength titanium alloy VT22M, manufactured with final deformation in the (α+β)- and β-regions. Titan, 2021, vol. 70, no. 1, pp. 26–33.
7. Aviation materials: handbook in 13 vols. Moscow: VIAM, 2010, vol. 6: Titanium alloys, 95 p.
8. Brun M.Ya., Belov S.P., Glazunov S.G. et al. Metallurgy of titanium alloys. Moscow: Metallurgiya, 1994, 351 p.
9. Krokhina V.A., Arislanov А.A., Putyrskiy S.V., Anisimova A.Yu. Investigation of the regularities of the formation of the structure of rods made of titanium alloy VT6 depending on various technological schemes of manufacture. Aviation materials and technologies, 2023, no. 4 (73), paper no. 04. Available at: http://www.journal.viam.ru (accessed: September 17, 2024). DOI: 10.18577/2713-0193-2023-0-4-36-44.
10. Skugorev A.V., Kapitanenko D.V., Shishkov S.Yu., Melnikova D.A. Formation of the structure and mechanical properties of high-alloy titanium alloys during isothermal stamping in air. Titan, 2021, vol. 3 (72), pp. 34–40.
11. Shvetsov O.V., Kondratiev S.Yu. Influence of hardening and aging modes on the operational properties of VT23 alloy. Nauchno-tekhnicheskie vedomosti SPbGU. Estestvennye i inzhenernye nauki, 2018, vol. 24, no. 2, pp. 119–133.
12. Razuvaev E.I., Moiseev N.V., Kapitanenko D.V., Bubnov M.V. Modern technologies of plastic working of metals. Trudy VIAM, 2015, no. 2, paper no. 03. Available at: http://www.viam-works.ru (accessed: September 25, 2024). DOI: 10.18577/2307-6046-2015-0-2-3-3.
13. Duyunova V.A., Oglodkov M.S., Putyrskiy S.V., Kochetkov A.S., Zueva O.V. Modern technologies for melting titanium alloy ingots (review). Aviation materials and technologies, 2022, no. 1 (66), paper no. 03. Available at: http://www.journal.viam.ru (accessed: September 17, 2024). DOI: 10.18577/2713-0193-2022-0-1-30-40.
14. Tsepin M.A., Begnarsky V.V., Lisunets N.L., Sinitsyn M.V., Erokhov M.A. Using specialized programs in developing technological processes for metal forming. Tsvetnye metally, 2007, no. 5, pp. 98–101.
15. Stebunov S.A., Biba N.V. Qform – a program created for technologists. Kuznechno-shtampovoe proizvodstvo. Obrabotka metallov davleniem, 2004, no. 9, pp. 38–43.
Polymer composite materials are gradually replacing metals, including in such important structures as an aircraft wing or a fuselage. One of the technological stages in the manufacture of blanks for future parts is the process of laying out the prepreg on the tooling. When laying out, the stickiness of the prepreg plays an important role. The stickiness of the prepreg to the substrate should be such that it does not separate from it during transportation and is easily separated when moving onto the tooling. An analysis of the stickiness level depending on temperature, compaction force, and the speed of separation from the substrate is given in this article.
2. Slavin A.V., Donetskiy K.I., Khrulkov A.V. Prospects for the use of polymer composite materials in aircraft structures in 2025–2035 (review). Trudy VIAM, 2022, no. 11 (117), paper no. 08. Available at: http://www.viam-works.ru (accessed: September 05, 2024). DOI: 10.18577/2307-6046-2022-0-11-81-92.
3. Kablov E.N. The role of fundamental research in the creation of new generation materials. Reports of the XXI Mendeleev Congress on General and Applied Chemistry: in 6 vols. St. Petersburg, 2019, vol. 4, p. 24.
4. Onishchenko G.G., Kablov E.N., Ivanov V.V. Scientific and technological development of Russia in the context of achieving national goals: problems and solutions. Innovatsii, 2020, no. 6 (260), pp. 3–16.
5. Tkachuk A.I., Donetsky K.I., Terekhov I.V., Karavaev R.Yu. The use of thermosetting matrices for the manufacture of polymer composite materials by the non-autoclave molding methods. Aviation materials and technology, 2021, no. 1 (62), paper no. 03. Available at: https://www.journal.viam.ru (accessed: August 02, 2024). DOI: 10.18577/2713-0193-2021-0-1-22-33.
6. Bolshakov V.A., Antyufeeva N.V. Evaluation of the curing process model of the adhesive binder in prepreg. Aviation materials and technologies, 2023, no. 4 (73), paper no. 07. Available at: http://www.journal.viam.ru (accessed: August 02, 2024). DOI: 10.18577/2713-0193-2023-0-4-66-77.
7. Startsev V.O., Antipov V.V., Slavin A.V., Gorbovets M.A. Modern domestic polymer composite materials for aviation industry (review). Aviation materials and technologies, 2023, no. 2 (71), paper no. 10. Available at: http://www.journal.viam.ru (accessed: August 02, 2024). DOI: 10.18577/2713-0193-2023-0-2-122-144.
8. Mukhametov R.R., Petrova A.P. Thermosetting binders for polymer composite materials: textbook. Ed. E.N. Kablov. Moscow: NRC «Kurchatov Institute» – VIAM, 2021, p. 363.
9. Tkachuk A.I., Lyubimova A.S., Kuznetcova P.A. Opportunities of the development of plant-based epoxy resins (review). Trudy VIAM, 2022, no. 8 (114), paper no. 04. Available at: http://www.viam-works.ru (accessed: November 08, 2023). DOI: 10.18577/2307-6046-2022-0-8-49-64.
10. Kogan D.I., Chursova L.V., Panina N.N. et al. Promising polymeric materials for structural composite products with energy-efficient molding mode. Plasticheskie massy, 2020, no. 3–4, pp. 52–54.
11. Veshkin E.A. Technologies for non-autoclave molding of low-porosity polymer composite materials and large-sized structures made of them: thesis, Cand. Sc. (Tech.). Moscow, 2016, 146 p.
12. Erasov V.S., Sibayev I.G. Scheme for the development and evaluation of properties of structural aviation composite materials. Aviation materials and technologies, 2023, no. 1 (70), paper no. 05. Available at: http://www.journal.viam.ru (accessed: December 04, 2023). DOI: 10.18577/2713-0193-2023-0-1-61-81.
13. Postnov V.I., Veshkin E.A., Makrushin K.V., Sudin Yu.I. Technological features of manufacturing polymer composite materials of main rotor blades for a light helicopter. Aviation materials and technologies, 2023, no. 1 (70), paper no. 06. Available at: http://www.journal.viam.ru (accessed: December 04, 2023). DOI: 10.18577/2713-0193-2023-0-1-82-92.
14. Raskutin A.E. Russian polymer composite materials of new generation, their exploitation and implementation in advanced developed constructions. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 349–367. DOI: 10.18577/2071-9140-2017-0-S-349-367.
15. Budelmann D., Schmidt C., Meiners D. Adhesion-cohesion balance of prepreg tack in thermoset automated fiber placement. Part 1: Adhesion and surface wetting. Composites Part C, 2023, no. 12, art. 100396.
16. Budelmann D., Schmidt C., Meiners D. Prepreg tack: A review of mechanisms, measurement, and manufacturing implication. Polymer Composites, 2020, no. 41, pp. 3440–3458. DOI: 10.1002/pc.25642.
17. Budelmann D. Tack of epoxy resin films for aerospace-grade prepregs: Influence of resin formulation, B-staging and toughening. Polymer Testing, 2022, no. 114, art. 107709.
18. Gerasimov S.B. Development of polymer composite materials for the manufacture of large-sized complex-profile products using the automated laying method: thesis, Cand. Sc. (Techn.). Moscow, 2000, p. 24.
19. Budelmann D., Schmidt C., Steuernagel L., Meiners D. Adhesion-cohesion balance of prepreg tack in thermoset automated fiber placement. Part 2: Ply-ply cohesion through contact formation and autohesion. Composites Part C, 2023, no. 12, art. 100396.
20. Postnov V.I., Nikitin K.E., Petukhov V.I., Burkhan O.L., Orzaev V.G. Method and device for determining the tack of prepregs. Aviacionnye materialy i tehnologii, 2009, no. 3, pp. 29–33.
21. Strelnikov S.V., Petukhov V.I., Postnov V.I., Shvets N.I. New solutions in the technology of manufacturing prepregs for interior panels. Izvestiya Samarskogo nauchnogo tsentra RAN, 2011, vol. 13, no. 4 (2), pp. 498–507.
22. Measuring techniques for prepreg tackiness: A COMPARATIVE STUDY SAMPE Europe Conference 2023 Madrid – Spain. Available at: https://www.researchgate.net/publication/374949895_Measuring_techniques_for_ prepreg_tackiness_A_comparative_study (available at: September 17, 2024).
23. Crossley R.J., Schubel P.J., Warrior N.A. The experimental determination of prepreg tack and dynamic stiffness. Composite Part A: Applied Science Manufacture, 2012, no. 43, pp. 423–434.
24. Heinecke F., Willberg C. Manufacturing-induced imperfections in composite parts manufactured via automated fiber placement. Experimental Mechanics, 2010, no. 50, pp. 599–606.
25. Experimental analysis of prepreg tack. Available at: https://inria.hal.science/hal-01131583/ (available at: September 17, 2024).
26. Tackiness characterization of thermoset prepreg materials. Available at: https://spectrum.library.concordia.ca/id/eprint/987702/1/Dodongeh_MASc_S2021.pdf (available at: September 17, 2024).
27. Mishkin S.I., Klimenko O.N., Kutcevich K.E. Determination of stickiness of prepregs on the basis of carbon fillers the sounding method. Trudy VIAM, 2018, no. 3 (109), paper no. 04. Available at: http://www.viam-works.ru (accessed: August 05, 2024). DOI: 10.18577/2307-6046-2022-0-3-35-43.
Tests of details of airplanes of Sukhoi Design Bureau are executed. Details are made of prepregs of antifriction material and constructive organoplastiсs. Efficiency of antifriction material and constructional organoplastiсs for raising resistance to antifriction loss and for increasing resource of moving elements of an airplane mechanization, as well as fixed parts, which are in contact, are shown. The possibility of production of mechanization elements of an airplane by means of the co-forming prepregs of antifriction and constructive organoplastiсs has been proved.
2. Kablov E.N., Shevchenko Yu.N., Grinevich A.V. Problems of certification of aviation materials at the present stage. 75 years. Aviation materials. Selected works of VIAM 1932–2007. Ed. E.N. Kablov. Moscow: VIAM, 2007, pp. 388–396.
3. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
4. Startsev V.O., Antipov V.V., Slavin A.V., Gorbovets M.A. Modern domestic polymer composite materials for aviation industry (review). Aviation materials and technologies, 2023, no. 2 (71), paper no. 10. Available at: http://www.journal.viam.ru (accessed: January 26, 2024). DOI: 10.18577/2713-0193-2023-0-2-122-144.
5. Antipov V.V., Serebrennikova N.Yu., Konovalov A.N., Nefedova Yu.N. Perspectives of application of fiber metal laminate materials based on aluminum alloys in aircraft design. Aviacionnye materialy i tehnologii, 2020, no. 1 (58), pp. 45–53. DOI: 10.18577/2071-9140-2020-0-1-45-53.
6. Gunyaeva A.G., Kurnosov A.O., Gulyaev I.N. High-temperature polymer composite materials developed FSUE «VIAM» for aerospace engineering: past, present and future (review). Trudy VIAM, 2021, no. 1 (95), paper no. 05. Available at: http://www.viam-works.ru (accessed: February 05, 2024). DOI: 10.18577/2307-6046-2021-0-1-43-53.
7. Sagomonova V.A., Tselikin V.V. Vibration damping material with perforated constraining layer. Aviation materials and technologies, 2023, no. 3 (72), paper no. 10. Available at: http://www.journal.viam.ru (accessed: February 05, 2024). DOI: 10.18577/2713-0193-2023-0-3-125-133.
8. Sidorina A.I. Woven metal-carbon reinforcing fillers for PCM. Aviation materials and technologies, 2023, no. 3 (72), paper no. 08. Available at: http://www.journal.viam.ru (accessed: March 01, 2024). DOI: 10.18577/2713-0193-2023-0-3-101-113.
9. Marakhovskiy P.S., Barinov D.Ya., Maltseva E.Yu. The effect of reinforcing additives on the structure and thermophysical properties of ice composite materials. Aviation materials and technologies, 2023, no. 4 (73), paper no. 11. Available at: http://www.journal.viam.ru (accessed: March 01, 2024). DOI: 10.18577/2713-0193-2023-0-4-111-121.
10. Gurtovik I.G., Sokolov V.I., Trofimov N.N., Shalgunov S.I. Radio-transparent products made of fiberglass. Moscow: Mir, 2002, 368 p.
11. Bitkin V.E., Zhidkova O.G., Komarov V.V. Selection of materials for the manufacture of dimensionally stable load-bearing structures. Vestnik Samarskogo universiteta. Aerokosmicheskaya tekhnika, tekhnologii i mashinostroyeniye, 2018, vol. 17, no. 1, pp. 100–117. DOI: 10.18287/22541-7533-2018-17-1-100-117.
12. Zhelezina G.F., Voynov S.I., Solovieva N.A., Kulagina G.S. Aramid organotextolites for impact-resistant aircraft structures. Zhurnal prikladnoy khimii, 2019, vol. 92, is. 3, pp. 358–364.
13. Kulagina G.S., Zhelezina G.F., Levakova N.M. Antifriction organoplastics for high-loaded friction knots. Trudy VIAM, 2019, no. 2 (74), paper no. 09. Available at: http://www.viam-works.ru (accessed: February 14, 2024). DOI: 10.18577/2307-6046-2019-0-2-89-96.
14. Nasonov F.A., Kulagina G.S., Demina A.S., Zhelezina G.F., Morozov B.B., Solovyova N.A., Shuldeshova P.M. Application of composites with special self-lubricating antifriction coatings in the aviation industry. XLIII All-Russian. conf. «Science and Technology»: in 2 vols. Moscow: RAS, 2023, vol. 1, pp. 21–27.
15. Mikhailov Yu.S. Increasing the efficiency of swept wing mechanization. Scientific Bulletin of MSTU GA, 2020, vol. 23, no. 6, pp. 101–18. DOI: 10.26467/2079-0619-2020-23-6-101-120.
16. Su-57 – Russian fifth-generation fighter. Available at: https://dzen.ru/a/YW4C16Kc_DqzBOeC (accessed: February 01, 2024).
17. Kulagina G.S., Nasonov F.A., Zhelezina G.F., Demina A.S., Solovieva N.A., Morozov B.B., Shuldeshova P.M., Filatov A.A. Technology of flexible structural elements of aircraft developed by Sukhoi Design Bureau using prepregs of antifriction and structural organoplastics. XLIV All-Rus. Conf. «Science and Technology», dedicated to the 300th anniversary of the Russian Academy of Sciences and the 100th anniversary of Academician V.P. Makeev: in 2 vols. Moscow: RAS, 2024, vol. 1, pp. 91–99.
18. The Best Sukhoi Aircraft: Documentary Series. Issue: Su-57 (broadcast on 04.12.2023). Zvezda TV Channel: official website. Available at: https://tvzvezda.ru/video/films-online/20241301629-lnBa9.html/20231241017-6J1p9.html (accessed: February 01, 2024).
19. Akulin P.V. Accumulation of Damage in Composite Panels under Low-Cycle Loading. Vestnik MAI, 2023, vol. 30, no. 2, pp. 4–90. DOI: 10.34759/vst-2023-2-84-90.
20. Soborejo A.B.O. Use of entropy principles in estimating reliability functions for creep rupture characteristics of engineering materials all high temperatures. Proc. Internat. Conf. «Strength of Metals and Alloys». Tokyo, 1967, pp. 252–256.
21. Dudchenko A.A., Lurie S.A., Halim K. Multiscale modeling on damage mechanics of laminated composite materials. Proc. of conference «Damage in composite materials: Simulation and non-destructive testing». Stuttgart, 2006, pp. 23–26.
22. Movchan A.A. Micromechanical approach to the problem of describing the accumulation of anisotropic scattered damage. Mekhanika tverdogo tela, 1990, no. 3, pp. 252–256.
23. Movchan A.A. Problem of strength of thin-walled structures. Moscow: MAI Publ. House, 1989, pp. 20–24.
24. Kablov E.N., Startsev V.O. Effect of internal stresses on the aging of polymer composite materials. Review. Mekhanika kompozitnykh materialov, 2021, vol. 57, no. 5, pp. 805–822.
25. Kablov E.N., Laptev A.B., Prokopenko A.N., Gulyaev A.I. Relaxation of polymeric composite materials under the prolonged action of static load and climate (review). Part 1. Binders. Aviation materials and technologies, 2021, no. 4 (65), paper no. 08. Available at: http://www.journal.viam.ru (accessed: July 29, 2024). DOI: 10.18577/2713-0193-2021-0-4-70-80.
26. Vasiliev V.V. Mechanics of structures made of composite materials. Moscow: Mashinostroyenie, 1988, 272 p.
27. Skudra A.M., Bulavs F.Ya. Creep of reinforced plastics. Moscow: Khimiya, 1982, 214 p.
In the article has been studied dependence of properties of consolidated plates of carbon fiber reinforced thermoplastic based on polyetheretherketone and woven carbon filler on the technological parameters of manufacture: pressure and temperature of pressing, time and cooling rate under pressure, as well as the melt flow rate of polyetheretherketone at a given temperature. The influence of technological molding parameters on the level of consolidation of carbon fiber reinforced thermoplastic plates was assessed using non-destructive testing methods and by determination of their mechanical properties.
2. Erasov V.S., Sibayev I.G. Scheme for the development and evaluation of properties of structural aviation composite materials. Aviation materials and technologies, 2023, no. 1 (70), paper no. 05. Available at: http://www.journal.viam.ru (accessed: September 13, 2024). DOI: 10.18577/2713-0193-2023-0-1-61-81.
3. Startsev V.O., Antipov V.V., Slavin A.V., Gorbovets M.A. Modern domestic polymer composite materials for aviation industry (review). Aviation materials and technologies, 2023, no. 2 (71), paper no. 10. Available at: http://www.journal.viam.ru (accessed: 13.09.2024). DOI: 10.18577/2713-0193-2023-0-2-122-144.
4. Gunyaev G.M., Kablov E.N. Structural carbon fiber reinforced plastics at the turn of the century. Aviation materials. Selected works of «VIAM» 1932–2002. Moscow: VIAM, 2002, pp. 242–247.
5. Kablov E.N. Trends and guidelines for innovative development of Russia: collection of scientific and information materials. 3rd ed. Moscow: VIAM, 2015, 720 p.
6. Kablov E.N. What to make the future of? New generation materials, technologies for their creation and processing – the basis of innovations. Krylya Rodiny, 2016, no. 5, pp. 8–18.
7. Sorokin A.E., Ivanov M.S., Sagomonova V.A. Thermoplastic polymer composite materials based on polyetheretherketones of various manufacturers. Aviation materials and technologies, 2022, no. 1 (66), paper no. 04. Available at: http://www.journal.viam.ru (accessed: October 02, 2024). DOI: 10.18577/2713-0193-2022-0-1-41-50.
8. Ivanov M.S., Sorokin A.E. Sheet thermoplastic carbon fiber based on polyetheretherketone for the manufacture of aircraft engine nacelle parts by thermoforming. Proc. V All-Rus. scientific-technical conf. «Polymer composite materials and production technologies of the new generation». Moscow: NRC «Kurchatov Institute» – VIAM, 2021, art. 03.
9. Beev A.A., Khashirova S.Yu., Beeva D.A., Shokumova M.U. Powdered aromatic polyetheretherketones and copolyetheretherketones. Plasticheskie massy, 2022, no. 7–8, pp. 6–9. DOI: 10.35164/0554-2901-2022-7-8-6-9.
10. Mikitaev A.K., Salamov A.Kh., Beev A.A., Beeva D.A. Filling of polyetheretherketones (PEEK) as a method for producing composites with high performance properties. Plasticheskie massy, 2017, no. 5–6, pp. 6–9. DOI: 10.35164/0554-2901-2017-5-6-6-9.
11. Lyashenko E.Yu., Yakovleva K.A., Andreeva T.I. et al. Composite materials based on polyetheretherketone. Plasticheskie massy, 2023, no. 1–2, pp. 11–13. DOI: 10.35164/0554-2901-2023-1-2-11-13.
12. Kharaev A.M., Bazheva R.Ch. Polyetheretherketones: synthesis, properties, application (review). Plasticheskie massy, 2018, no. 7–8, pp. 15–23. DOI: 10.35164/0554-2901-2018-7-8-15-23.
13. May R. Polyetheretherketones. Encyclopedia of Polymer Science and Technology. Wiley, 2008, pp. 1–9. DOI: 10.1002/0471440264.pst266.
14. Method for producing polyetheretherketone: pat. 2673242 Rus. Federation; appl. 27.06.18; publ. 23.11.18.
15. Kolpachkov E.D., Petrova A.P., Kurnosov A.O., Sokolov I.I. Methods of molding aviation products from PCM (review). Trudy VIAM, 2019, no. 11 (83), paper no. 03. Available at: http://www.viam-works.ru (accessed: September 13, 2024). DOI: 10.18577/2307-6046-2019-0-11-22-36.
16. Illig A., Shvatsman P. Thermoforming: A Practical Guide. St. Petersburg: Profession, 2007, 288 p.
17. Wilkinson S.L. Optimisation of the stamp forming process for thermoplastic composites. University of Bristol, 2021, 167 р.
18. De Almeida O., Bessard E., Bernhart G. Influence of processing parameters and semi-finished product on consolidation of carbon/PEEK laminates. 15th European Conference on Composite Materials. 2012. URL: https://www.researchgate.net/publication/287042143 (accessed: September 13, 2024).
19. Pavlukovich N.G., Ivanov М.S., Morozova V.S., Donskih I.N. Investigation of the thermal stability of the melt polyetheretherketone PEEK-50P and carbon fiber based on it. Aviation materials and technologies, 2024, no. 2 (75), paper no. 07. Available at: http://www.journal.viam.ru (accessed: September 13, 2024). DOI: 10.18577/2713-0193-2024-0-2-90-98.
20. Vasconcelos G.C., Mazur R.L., Ribeiro B., Botehlo E. Evaluation of Decomposition Kinetics of Poly (Ether-Ether-Ketone) by Thermogravimetric Analysis. Materials Research, 2014, vol. 17 (1), pp. 227–235.
21. Demidov A.A., Krupnina O.A., Mikhaylova N.A., Kosarina E.I. Investigation of polymer composite material samples by x-ray computed tomography and processing of tomograms with the image of the volume fraction of porosity. Trudy VIAM, 2021, no. 5 (99), paper no. 11. Available at: http://www.viam-works.ru (accessed: September 13, 2024). DOI: 10.18577/2307-6046-2021-0-5-105-113.
The first part of the review considers the main types of preceramic organosilicon polymers and the types of their polymer derived ceramics formed during pyrolysis. An analysis of scientific-technical literature and patent sources of information on methods of synthesis, chemical modification, physico-chemical properties, main manufacturers and areas of application of organosilicon polymers is carried out. The main structural factors of preceramic polymers are described, which make it possible to vary the entire complex of physico-chemical properties of a ceramic material in a wide range.
2. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
3. Elsayed H., Carraro F., Agnoli S. et al. Direct ink writing of silica-carbon-calcite composite scaffolds from a silicone resin and fillers. Journal of the European Ceramic Society, 2018, vol. 38, pp. 5200–5207. DOI: 10.1016/j.jeurceramsoc.2018.07.049.
4. Gailevicius D., Padolskyte V., Mikoliunaite L. et al. Additive-manufacturing of 3D glass-ceramics down to nanoscale resolution. Nanoscale Horizons, 2019, vol. 4, no. 3, pp. 647–651. DOI: 10.1039/C8NH00293B.
5. Kablov E.N. The Present and Future of Additive Technologies. Metally Evrazii, 2017, no. 1, pp. 2–6.
6. Kablov E.N. Additive Technologies – the Dominant of the National Technological Initiative. Intellekt i tekhnologii, 2015, no. 2 (11), pp. 52–55.
7. Tumbleston J.R., Shirvanyants D., Ermoshkin N. et al. Continuous liquid interface production of 3D objects. Science, 2015, vol. 347, pp. 1349–1352. DOI: 10.1126/science.aaa2397.
8. Malaev I.A., Pivovarov M.L. Additive technologies: application in medicine and pharmacy. Vestnik farmatsii, 2019, no. 2 (84), pp. 98–107.
9. Camargo I.L., Morais M.M., Fortulan C.A., Branciforti M.C. A review on the rheological behavior and formulations of ceramic suspensions for vat photopolymerization. Ceramics International, 2021, vol. 47, pp. 11906–11921. DOI: 10.1016/j.ceramint.2021.01.031.
10. Turchenko M.V., Lebedeva Yu.E., Belyachenkov I.O., Prokofiev V.A. Obtaining of ceramic materials by stereolithography method. Trudy VIAM, 2023, no. 9 (127), paper no. 07. Available at: http://www.viam-works.ru (accessed: August 13, 2024). DOI: 10.18577/2307-6046-2023-0-9-79-89.
11. Lacelle T., Sampson K.L., Sarvestani H.Y. et al. Additive manufacturing of polymer derived ceramics: Materials, methods, and applications. APL Materials, 2023, vol. 11, pp. 1–29. DOI: 10.1063/5.0151661.
12. Ainger F.W., Herbert J.M. The Preparation of Phosphorus-Nitrogen Compounds as Non-Porous Solids. Special Ceramics: Proceedings of a Symposium held at the British Ceramic Research Association. 1960, vol. 1, рр. 168–182.
13. Production of Shaped Articles of Homogeneous Mixtures of Silicon Carbide and Nitride: pat. 3853567 US; appl. 19.04.72; publ. 02.04.73.
14. Yajima S., Hayashi J., Imori M. Continuous Silicon Carbide Fiber of High Tensile Strength. Materials Science, Chemistry, 1975, vol. 4, no. 9, pp. 931–934. DOI: 10.1246/cl.1975.931.
15. Shestakov A.M. Ceramics based on organosilicon polymers-precursors: methods of preparation and properties (review). Trudy VIAM, 2020, no. 11 (93), paper no. 9. Available at: http://www.viam-works.ru (accessed: August 06, 2024). DOI: 10.18577/2307-6046-2020-0-11-76-92.
16. Blum Y.D., MacQueen D.B., Kleebe H.-J. Synthesis and Characterization of Carbon-Enriched Silicon Oxycarbides. Journal of the European Ceramic Society, 2005, vol. 25, no. 2–3, pp. 143–149. DOI: 10.1016/j.jeurceramsoc.2004.07.019.
17. Kleebe H.-J., Gregori G., Babonneau F. et al. Evolution of C-Rich SiCO Ceramics. Part I. Characterization by Integral Spectroscopic Techniques: Solid-State NMR and Raman Spectroscopy. International Journal of Materials Research, 2006, vol. 97, no. 6, pp. 699–709. DOI: 10.1515/ijmr-2006-0115.
18. Colombo P., Mera G., Riedel R., Soraru G.D. Polymer-derived ceramic: 40 years of research and innovation in advanced ceramics. Journal American ceramic society, 2010, vol. 93, pp. 1805–1837. DOI: 10.1111/j.1551-2916.2010.03876.x.
19. Sokolov N.N. Methods of synthesis of polyorganosiloxanes. Moscow–Leningrad: State Energy Publ. House, 1959, 200 p.
20. Sobolevsky M.V., Skorokhodov I.I., Grinevich K.P. et al. Oligoorganosiloxanes. Properties, production, application. Moscow: Khimiya, 1985, 264 p.
21. Mukhametov R.R., Petrova A.P. Thermosetting binders for polymer composite materials: a tutorial. Ed. E.N. Kablov. Moscow: NRC «Kurchatov Institute» – VIAM, 2021, 528 p.
22. Shiriakina Yu.M., Kitaeva N.S., Afanaseva E.A., Butuzov A.V. Amphiphilic compounds and hydrophobization (review). Trudy VIAM, 2022, no. 7 (113), paper no. 09. Available at: http://www.viam-works.ru (accessed: August 01, 2024). DOI: 10.18577/2307-6046-2022-0-7-99-115.
23. Shitov R.О., Butuzov А.V. Commercial silicone resin (review). Part 1. Trudy VIAM, 2023, no. 2 (120), paper no. 01. Available at: http://www.viam-works.ru (accessed: August 06, 2024). DOI: 10.18577/2307-6046-2023-0-2-3-19.
24. Chernyshev E.A., Talanov V.N. Chemistry of organoelement monomers and polymers. Moscow: KolosS, 2011, 439 p.
25. Egorova E.V., Vasilenko N.G., Demchenko N.V. et al. Polycondensation of alkoxysilanes in an active medium – a universal method for obtaining polyorganosiloxanes. Doklady Akademii nauk, 2009, vol. 424, no. 2, pp. 200–204.
26. Tarasova E.M., Butuzov A.V., Cherkasova A.A., Ivanov P.V. Study of chemical assembly of macromolecules in polycondensation of difunctional dimethylsilanes. Tonkie khimicheskie tekhnologii, 2016, vol. 11, no. 1, pp. 59–66.
27. Method for producing polyorganosiloxanes: pat. 2547827 Rus. Federation; appl. 16.07.13; publ. 10.04.15.
28. Baney R.H., Maki I., Akihito S., Toshio S. Silsesquioxanes. Chemical Reviews, 1995, vol. 95, no. 5, pp. 1409–1430.
29. Hurd C.B. Studies on siloxanes. 1. The specific volume and viscosity in relation to temperature and constitution. Journal of the American Chemical Society, 1946, vol. 68, no. 3, pp. 364–370.
30. Rasaki S.A., Xiong D., Xiong S. et al. Photopolymerization-based additive manufacturing of ceramics: A systematic review. Journal of advanced ceramics, 2021, vol. 10, no. 3, pp. 442–471.
31. Zhang H., Pantano C.G. Synthesis and Characterization of Silicon Oxycarbide Glasses. Journal of the American Ceramic Society, 1990, vol. 73, no. 4, pp. 958–963.
32. Storozhenko P.A., Tsirlin A.M., Gubin S.P. et al. New oxygen-free pre-ceramic polymers – nano-metal polycarbosilanes and nanosized fillers – unique materials for increasing the strength and oxidation resistance of carbon graphites and stabilizing high-strength and high-temperature ceramics. Kriticheskie tekhnologii. Membrany, 2005, no. 4 (28), pp. 68–74.
33. Method for producing polycarbosilane: pat. 2108348 Rus. Federation; appl. 30.09.96; publ. 10.04.98.
34. Tsirlin A.M., Florina E.K., Popova N.A. et al. Basic patterns of synthesis of fiber-forming polycarbosilanes and technical requirements for them. Khimicheskie volokna, 1992, no. 4, pp. 16–18.
35. Li H.B., Zhang L.T., Cheng L.F. et al. Polymer–ceramic conversion of a highly branched liquid polycarbosilane for SiC-based ceramics. Journal of materials science, 2008, vol. 43, pp. 2806–2811. DOI: 10.1007/s10853-008-2539-8.
36. Wang Y.C., Xiao P., Zhou W. et al. Microstructures, dielectric response and microwave absorption properties of polycarbosilane derived SiC powders. Ceramics International, 2018, vol. 44, pp. 3606–3613. DOI: 10.1016/j.ceramint.2017.11.101.
37. Storozhenko P.A., Shcherbakova G.I., Tsirlin A.M. et al. Synthesis of nanozirconium oligocarbosilanes. Neorganicheskiye materialy, 2006, vol. 42, no. 10, pp. 1269–1277.
38. Shcherbakova G.I., Blokhina M.Kh., Storozhenko P.A. et al. Pre-ceramic nanohafnium oligocarbosilanes. Neorganicheskiye materialy, 2014, vol. 50, no. 4, pp. 457–464.
39. Gubin S.P., Moroz E.M., Boronin A.I. et al. Nanoparticles of Ti and Zr in organosilicon polymer ceramic precursors. Mendeleev Communication, 1999, vol. 9, no. 2, pp. 59–61. DOI: 10.1070/MC1999v009n02ABEH001040.
40. Ryzhova O.G., Polivanov A.N., Timofeev I.A. Polyorganosilazanes: present and future. Vse materialy. Entsiklopedicheskiy spravochnik, 2010, no. 10, pp. 47–55.
41. Method for producing oligoborosilazanes: pat. 2546664 Rus. Federation; appl. 30.12.13; publ. 10.04.15.
42. Krüger C.R., Rochow E.G. Polyorganosilazanes. Journal of Polymer Science. Part A: General Papers, 1964, vol. 2, no. 7, pp. 3179–3189. DOI: 10/1002/pol.1964.100020717.
43. Seyferth D., Stewart R.M. Synthesis and Polymerization of Cyclotetrasilazanes. Applied Organometallic Chemistry, 1997, vol. 11, no. 10–11, pp. 813–832.
44. Method for manufacturing a hafnium-containing silazane polymer and a method for manufacturing a ceramic from said polymer: pat. US 5296418; appl. 23.10.92; publ. 22.03.94.
45. Kotrelev G.V., Petrov V.S., Zhdanov A.A. et al. Effect of titanium and zirconium atoms in the chain of oligomethylsilazanes on the process of their thermal destruction under dynamic heating in vacuum. Vysokomolekulyarnye soyedineniya. Ser. A, 2000, vol. 42, no. 2, pp. 312–319.
46. Gordetsov A.S., Kozyukov V.P., Vostokov I.A. et al. Synthesis and properties of silicon-, germanium-, tin-, and lead-containing carbodiimides and cyanamides. Uspekhi khimii, 1982, vol. 51, no. 5, pp. 848–878.
47. Kolesnikova A.B., Mitrofanov M.Yu., Gruzinova E.A., Muzafarov A.M. Synthesis and modification of polysilylcarbodiimides. Vysokomolekulyarnye soyedineniya. Ser. A, 2007, vol. 49, no. 9, рp. 1628–1634.
48. Kirilin A.D., Gavrilova A.V., Sheludyakov V.D., Shamina M.G., Storozhenko P.A. Synthesis of chlorine-free oligoorganosilylcarbodiimides for the creation of Si/C/N ceramics. Plasticheskie massy, 2010, no. 11, pp. 36–38.
49. Haag P., Lechler R., Weidlein J. Substitution Reactions of Bis(trimethylelement)Carbodiimides of Silicon and Germanium with Metal Chloride and Dimethylmetal Chlorides of Sb, Al, Ga, and In. Zeitschrift für Anorganische und Allgemeine Chemie, 1994, vol. 620, no. 1, pp. 112–116.
50. Method for producing polyorganosilylcarbodiimides: pat. 2412214 C2 Rus. Federation; appl. 03.02.09; publ. 20.02.11.
Comparative tests of the resistance of fiberglass VPS-53/T-25 to aging were conducted during exposure in natural conditions of moderately warm and moderate climate for 3 and 6 months and to simulating effects in two modes of laboratory accelerated tests. It was found that during 6 months of exposure the strength of fiberglass decreased by 7 %, while the moisture diffusion coefficient increased by 60 and 120 % accordingly. The prospects of using Fick and Langmuir models for comparing the effects of composite materials aging during tests in natural and laboratory conditions were shown.
2. Kablov E.N., Valueva M.I., Zelenina I.V., Khmelnitskiy V.V., Aleksashin V.M. Carbon plastics based on benzoxazine oligomers – perspective materials. Trudy VIAM, 2020, no. 1, paper no. 07. Available at: http://www.viam-works.ru (accessed: August 15, 2024). DOI: 10.18577/2307-6046-2020-0-1-68-77.
3. Gunyaeva A.G., Kurnosov A.O., Gulyaev I.N. High-temperature polymer composite materials developed FSUE «VIAM» for aerospace engineering: past, present and future (review). Trudy VIAM, 2021, no. 1 (95), paper no. 05. Available at: http://www.viam-works.ru (accessed: August 15, 2024). DOI: 10.18577/2307-6046-2021-0-1-43-53.
4. Kablov E.N., Antipov V.V. The Role of New Generation Materials in Ensuring the Technological Sovereignty of the Russian Federation. Vestnik Rossiyskoy akademii nauk, 2023, vol. 93, no. 10, pp. 907–916.
5. Shershak P.V., Yakovlev N.O., Sutubalov A.I. Standards for testing polymer composite materials. Part 1. Tensile properties. Aviation materials and technologies, 2023, no. 3 (72), paper no. 12. Available at: http://www.journal.viam.ru (accessed: August 15, 2024). DOI: 10.18577/2713-0193-2023-0-3-152-166.
6. Shershak P.V., Sutubalov A.I., Yakovlev N.O., Sherstyuk F.A. Standards test methods for polymer matrix composite materials. Part 2. Compression properties. Aviation materials and technologies, 2024, no. 2 (75), paper no. 12. Available at: http://www.journal.viam.ru (accessed: August 15, 2024). DOI: 10.18577/2713-0193-2024-0-2-149-166.
7. Kablov E.N., Startsev O.V., Krotov A.S., Kirillov V.N. Climatic aging of composite aviation materials: 3. Significant aging factors. Russian Metallurgy (Metally), 2012, no. 4, pp. 323–329.
8. Kablov E.N., Laptev A.B., Prokopenko A.N., Gulyaev A.I. Relaxation of polymeric composite materials under the prolonged action of static load and climate (review). Part 1. Binders. Aviation materials and technologies, 2021, no. 4 (65), paper no. 08. Available at: http://www.journal.viam.ru (accessed: August 15, 2024). DOI: 10.18577/2713-0193-2021-0-4-70-80.
9. Mishurov K.S., Pavlovskiy K.A., Imametdinov E.Sh. Environmental effects on properties of CFRP (carbon fiber reinforced plastic) VKU-27l. Trudy VIAM, 2018, no. 3 (63), paper no. 07. Available at: http://www.viam-works.ru (accessed: August 15, 2024). DOI: 10.18577/2307-6046-2018-0-3-60-67.
10. Startsev V.O., Nechaev A.A. The influence of natural and accelerated weathering on the nanomodified CFRP’S strength. Aviation materials and technologies, 2023, no. 3 (72), paper no. 11. Available at: http://www.journal.viam.ru (accessed: August 15, 2024). DOI: 10.18577/2713-0193-2023-0-3-134-151.
11. Ivanov М.S., Morozova V.S., Pavlukovich N.G. The influence of operational factors on the properties of carbon fiber based on polyetheretherketone. Aviation materials and technologies, 2024, no. 2 (75), paper no. 08. Available at: http://www.journal.viam.ru (accessed: August 15, 2024). DOI: 10.18577/2713-0193-2024-0-2-99-108.
12. Heinrick M., Crawford B., Milani A.S. Degradation of Fibreglass Composites under Natural Weathering Conditions. MOJ Polymer Science, 2017, vol. 1, no. 1, pp. 18–24.
13. Nishizaki I., Kishima T., Sasaki I. Deterioration of mechanical properties of pultruded FRP through exposure tests. Third International Conference on Durability & Field Applications of FRP Composites for Construction. Quebec, 2007, pp. 159–166.
14. Nishizaki I., Sasaki I., Tomiyama T. Outdoor exposure tests of pultruded CFRP plates. Proceedings of the 6th International Conference on FRP Composites in Civil Engineering (CICE 2012). Rome, 2012, paper 11-096.
15. Cruz R., Correia L., Dushimimana A. et al. Durability of Epoxy Adhesives and Carbon Fibre Reinforced Polymer Laminates Used in Strengthening Systems: Accelerated Ageing versus Natural Ageing. Materials, 2021, vol. 14, no. 6, p. 1533.
16. Kablov E.N., Startsev V.O., Laptev A.B. Aging of polymer composite materials. Moscow: NRC «Kurchatov Institute» – VIAM, 2023, 520 p.
17. Aviation materials: reference book in 13 vols. Ed. E.N. Kablov. Moscow: VIAM, 2015, vol. 13: Climatic and microbiological resistance of non-metallic materials, 270 p.
18. Startsev O.V., Vapirov Y.M., Lebedev M.P., Kychkin A.K. Comparison of Glass-Transition Temperatures for Epoxy Polymers Obtained by Methods of Thermal Analysis. Mechanics of Composite Materials, 2020, vol. 56, no. 2, pp. 227–240.
19. Koval’ T.V., Veligodskii I.M., Gromova A.A. Change in the Properties of BSR-3M Binder in VKU-46 Carbon-Fiber-Reinforced Polymer after Prolonged Climatic Aging. Polymer Science. Ser.: D, 2023, vol. 16, no. 3, pp. 687–693.
20. Korkees F. Moisture absorption behavior and diffusion characteristics of continuous carbon fiber reinforced epoxy composites: a review. Polymer-Plastics Technology and Materials, 2023, vol. 62, no. 14, pp. 1789–1822.
21. Loos A.C., Springer G.S. Moisture Absorption of Graphite-Epoxy Composites Immersed in Liquids and in Humid Air. Journal of Composite Materials, 1979, vol. 13, no. 2, pp. 131–147.
22. Mei J., Tan P.J., Liu J. et al. Moisture absorption characteristics and mechanical degradation of composite lattice truss core sandwich panel in a hygrothermal environment. Composites Part A: Applied Science and Manufacturing, 2019, vol. 127, art. 105647.
23. Scott P., Toumpanaki E., Lees J.M. Solution Uptake in Cylindrical Carbon-Fibre-Reinforced Polymer (CFRP) Tendons. Advances in Polymer Technology, 2022, vol. 2022, art. 1981256.
24. Almudaihesh F., Holford K., Pullin R., Eaton M. A comparison study of water diffusion in unidirectional and 2D woven carbon/epoxy composites. Polymer Composites, 2022, vol. 43, no. 1, pp. 118–129.
25. Bone J.E., Sims G.D., Maxwell A.S. et al. On the relationship between moisture uptake and mechanical property changes in a carbon fibre/epoxy composite. Journal of Composite Materials, 2022, vol. 56, no. 14, pp. 2189–2199.
26. Aithal S., Hossagadde P.N., Kini M.V., Pai D. Durability study of quasi-isotropic carbon/epoxy composites under various environmental conditions. Iranian Polymer Journal, 2023, vol. 32, no. 7, pp. 873–885.
27. Hussnain S.M., Shah S.Z.H., Megat-Yusoff P.S.M., Hussain M.Z. Degradation and mechanical performance of fibre-reinforced polymer composites under marine environments: A review of recent advancements. Polymer Degradation and Stability, 2023, vol. 215, art. 110452.
28. Mayandi K., Rajini N., Ayrilmis N. et al. An overview of endurance and ageing performance under various environmental conditions of hybrid polymer composites. Journal of Materials Research and Technology, 2020, vol. 9, no. 6, pp. 15962–15988.
29. Kychkin A.K., Gavrilieva A.A., Vasilieva A.A. et al. Assessment of Extremely Cold Subarctic Climate Environment Destruction of the Basalt Fiber Reinforced Epoxy (BFRE) Rebar Using Its Moisture Uptake Kinetics. Polymers, 2021, vol. 13, no. 24, аrt. 4325.
30. Kychkin A.K., Gavrilieva A.A., Kychkin A.A. et al. The Initial Stage of Climatic Aging of Basalt-Reinforced and Glass-Reinforced Plastics in Extremely Cold Climates: Regularities. Polymers, 2024, vol. 16, no. 7, art. 866.
31. Kychkin A.K., Gavrilyeva A.A., Vasilyeva E.D. et al. Study of glass and basalt textolites by the kinetics of moisture sorption and desorption after exposure to cold climate conditions. Vestnik mashinostroyeniya, 2024, vol. 103, no. 4, pp. 336–342.
32. State Standard R 51369–99. Test methods for resistance to climatic external influencing factors of machines, devices and other technical products. Tests for exposure to humidity. Moscow: Publishing House of Standards, 2000, 15 p.
33. Koval T.V., Veligodsky I.M., Gromova A.A. Study of the plasticizing effect of moisture on the properties of VSE-34 binder based PCMS after 5 years exposure in the different climate zones. Trudy VIAM, 2021, no. 9 (103), paper no. 11. Available at: http://www.viam-works.ru (accessed: August 15, 2024). DOI: 10.18577/2307-6046-2021-0-9-105-116.
34. Startsev V.O., Molokov M.V., Postnov V.I., Starostina I.V. Assessment of the influence of climatic impact on the properties of fiberglass VPS-53K. Izvestiya Samarskogo nauchnogo tsentra Rossiyskoy Akademii nauk, 2017, vol. 19, no. 4 (2), pp. 220–228.
35. State Standard 9.707–81. Unified system of protection against corrosion and aging. Polymer materials. Methods of accelerated tests for climatic aging. Moscow: Publ. house of standards, 1990, 79 p.
36. State Standard 16350–80. Zoning and statistical parameters of climatic factors for technical purposes. Moscow: Publ. house of standards, 1981, 150 p.
37. State Standard R 51370–99. Methods of testing resistance to climatic external influencing factors of machines, devices and other technical products. Testing for exposure to solar radiation. Moscow: Publ. House of Standards, 2000, 11 p.
38. Carslow G., Eger D. Thermal conductivity of solids. Moscow: Nauka, 1964, 488 p.
39. Lykov A.V. Theory of thermal conductivity. Moscow: Vysshaya shkola, 1967, 600 p.
40. Crank J. The mathematics of diffusion. 2nd ed. Oxford: Clarendon press, 1975, 414 p.
41. Bonniau P., Bunsell A.R. A comparative study of water absorption theories applied to glass epoxy composites. Journal of Composite Materials, 1981, vol. 15, no. 5, pp. 272–293.
42. Carter H.G., Kibler K.G. Langmuir-type model for anomalous moisture diffusion in composite resins. Journal of Composite Materials, 1978, vol. 12, no. 5, pp. 118–131.
43. Glaskova T.I., Guedes R.M., Morais J.J., Aniskevich A.N. A comparative analysis of moisture transport models as applied to an epoxy binder. Mechanics of Composite Materials, 2007, vol. 43, no. 4, pp. 377–388.
The article provides an analysis of domestic and foreign methods of mechanical testing of structural aviation composite materials and coatings on a slice. The types of cross-section fittings and their main differences are presented. The development of testing methods by instrumental indentation and scratching (sclerometry) is shown, in which destruction occurs by cutting the material with an indenter. A typical slice diagram in the coordinates «load‒displacement of the punch», diagrams of embedding and scratching with indentors, photographs of scratches without destruction and with traces of destruction on the deformable surface are presented.
2. Erasov V.S., Oreshko E.I. Mechanical testing and properties of structural aircraft metal materials: a tutorial. Ed. E.N. Kablov. Moscow: NRC «Kurchatov Institute» – VIAM, 2023, 344 p.
3. Methods of testing, monitoring and research of engineering materials: a reference in 3 vols. Ed. A.T. Tumanov. Moscow: Mashinostroenie, 1974, vol. II: Methods of studying mechanical properties of metals, pp. 45–49.
4. Industry standard 1 31101‒80. Bolts, screws and studs. Specifications. Moscow, 1980, 28 p. Available at: https://standartgost.ru (accessed: July 16, 2024).
5. Industry standard 1 00552‒72. Bolts, screws made of titanium alloy. Technical conditions. Moscow, 1972, 16 p. Available at: https://standartgost.ru (accessed: July 16, 2024).
6. Industry standard 1 90148‒74. Metals. Shear Test Method. Moscow, 1975, 8 p. Available at: https://standartgost.ru (accessed: July 16, 2024).
7. MIL-STD-1312/13A. Fastener Test Methods. Method 13. Double Shear Test. Department of Defense of the USA. Washington. 1997, 10 p.
8. MIL-STD-1312-20. Fastener Test Method. Method 20. Single Shear. Aerospase Industries Association of America, Inc., 1997, 14 p.
9. ASTM F606/F606M-2016. Standard Test Methods for Determining the Mechanical Properties of Externally and Internally Threaded Fasteners, Washers, Direct Tension Indicators, and Rivets. American Society for Testing and Materials, 2013, 19 p.
10. ASTM B565-04. Standard Test Method for Shear Testing of Aluminum and Aluminum-Alloy Rivets and Cold-Heading Wire and Rods. American Society for Testing and Materials, 2015, 5 p.
11. ASTM B831-19. Test Method for Shear Testing of Thin Aluminum Alloy Products. American Society for Testing and Materials, 2019, 5 p.
12. State Standard R 57968‒2017. Polymer composites. Method for testing samples for shear. Moscow: Standartinform, 2018, 15 p.
13. Device for testing plastics for shear: pat. RU 167675 U1 Russian Federation; appl. 04.08.16; publ. 10.01.17.
14. ASTM D732-17. Standard Test Method for Shear Strength of Plastics by Punch Tool. American Society for Testing and Materials, 2010, 4 p.
15. Konovalov V.V. Methodology for certification of structural metal materials of aircraft airframes. Trudy TSAGI, 2013, is. 2725, pp. 21–80.
16. State Standard 21318–75. Microhardness measurement by scratching with diamond tips. Moscow: Publ. House of Standards, 1976, 30 p.
17. Golovin Yu.I. Nanoindentation and mechanical properties of materials at the submicro- and nanoscale. Recent results and achievements (Review). Fizika tverdogo tela, 2021, vol. 63, is. 1, pp. 3–42. DOI: 10.21883/FTT.2021.01.50395.171.
18. ISO 14577-1:2015. Metallic materials – Instrumented indentation test for hardness and materials parameters – Part 1: Test method. International Organization for Standardization, 2015, 54 p.
19. ISO 14577-2:2015. Metallic materials ‒ Instrumented indentation test for hardness and materials parameters – Part 2: Verification and calibration of testing machines. International Organization for Standardization, 2015, 32 p.
20. ISO 14577-3:2015. Metallic materials ‒ Instrumented indentation test for hardness and materials parameters ‒ Part 3: Calibration of reference blocks. International Organization for Standardization, 2015, 16 p.
21. ISO 14577-4:2016. Metallic materials ‒ Instrumented indentation test for hardness and materials parameters – Part 4: Test method for metallic and non-metallic coatings. International Organization for Standardization, 2016, 26 p.
22. ASTM D7027-20. Standard Test Method for Evaluation of Scratch Resistance of Polymeric Coatings and Plastics Using an Instrumented Scratch Machine. American Society for Testing and Materials, 2020, 9 p.
23. ASTM E2546-15. Standard Practice for Instrumented Indentation Testing. American Society for Testing and Materials, 2023, 23 p.
24. ASTM G171-03. Standard Test Method for Scratch Hardness of Materials Using a Diamond Stylus. American Society for Testing and Materials, 2017, 7 p.
25. State Standard R 56232‒2014. Determination of the stress-strain diagram by the instrumental indentation of a ball. General requirements. Moscow: Standartinform, 2018, 41 p.
26. State Standard R 8.748‒2011 (ISO 14577-1:2002). State system for ensuring the uniformity of measurements. Metals and alloys. Measurement of hardness and other characteristics of materials by instrumental indentation. Part 1. Test method. Moscow: Standartinform, 2018, 28 p.
27. State Standard R 8.904‒2015. State system for ensuring the uniformity of measurements. Measurement of hardness and other characteristics of materials by instrumental indentation. Part 2. Verification and calibration of hardness testers. Moscow: Standartinform, 2018, 30 p.
28. State Standard R 8.907–2015. State verification scheme for hardness measuring instruments according to the Martens and indentation scales. Moscow: Standartinform, 2018, 8 p.
29. Marchenkov A.Yu., Terentyev E.V. Scale effect in scratch tests of materials with different deformable volumes. Zavodskaya laboratoriya. Diagnostika materialov, 2017, vol. 83, no. 9, pp. 66‒69.
30. Brinkevich D.I., Prosolovich V.S., Yankovsky Yu.N. et al. Sclerometric method for measuring the microhardness of photoresist on silicon. Pribory i metody izmereniy, 2016, vol. 7, no. 1. 77–84. DOI: 10.21122/2220-9506-7-1-77-84.
31. Lvova N.A., Kravchuk K.S., Shirokov I.A. Algorithms for processing scratch images in the sclerometry method. Fizika tverdogo tela, 2013, vol. 55, is. 8, pp. 1570–1577.
32. Useinov A., Reshetov V., Maslenikov I., Kravchuk K. ISO is easy! Nanoindustriya, 2015, no. 7, pp. 52–60.
33. Useinov S.S. Measuring the hardness of structural materials by indentation and sclerometry methods on the submicron and nanometer scales: thesis abstract, Cand. Sc. (Tech.). Moscow: FGU TISNUM, 2010, 27 p.
34. Sutubalov A.I., Podzhivotov N.Yu., Shershak P.V., Yakovlev N.O. Evaluation of homogeneity of physical and mechanical properties of semi-finished products for aviation purpose. Aviation materials and technologies, 2024, no. 1 (74), paper no. 10. Available at: http://www.journal.viam.ru (accessed: July 17, 2024). DOI: 10.18577/2713-0193-2024-0-1-121-135.
35. Erasov V.S., Sibayev I.G. Scheme for the development and evaluation of properties of structural aviation composite materials. Aviation materials and technologies, 2023, no. 1 (70), paper no. 05. Available at: http://www.journal.viam.ru (accessed: July 19, 2024). DOI: 10.18577/2713-0193-2023-0-1-61-81.
36. EN 1071-3. Advanced technical ceramics – Methods of test for ceramic coating – Part 3: Determination of adhesion and other mechanical failure modes by scratch test. European committee for standardization, 2005, 11 p.
37. ISO 20502-2005(E). Fine ceramics (advanced ceramics, advanced technical ceramics) – Determination of adhesion of ceramic coatings by scratch testing. International Organization for Standardization, 2005, 8 p.
38. ISO 1518-1:2023(E). Paints and varnishes – Determination of scratch resistance – Part 1: Constant-loading method. International Organization for Standardization, 2005, 6 p.
39. ASTM D7187-20. Standard Test Method for Measuring Mechanistic Aspects of Scratch/Mar Behavior of Paint Coatings by Nanoscratching. American Society for Testing and Materials, 2020, 12 p.
40. ASTM C1624-22. Standard Test Method for Adhesion Strength and Mechanical Failure Modes of Ceramic Coatings by Quantitative Single Point Scratch Testing. American Society for Testing and Materials, 2022, 28 p.
41. Snarsky A.S., Krylenko A.V. Determination of physical and mechanical characteristics of a material by non-destructive testing. Fundamentalnye nauki. Mekhanika, 2005, no. 10, pp. 133–137.
42. Gogolinsky K.V., Syasko V.A. Methods and means for monitoring mechanical properties of micro- and nanometer coatings and modified surface layers. Available at: https://ntcexpert.ru/documents/
metody-pokrytij.pdf?ysclid=lwkg18gy4p195748077 (accessed: July 19, 2024).
43. Golovin Yu.I., Tyurin A.I. Nano- and microhardness of solids – modern problems. Vestnik TGU, 2000, vol. 5, is. 2–3, pp. 251–253.
44. Berkovich E.S., Kraposhina L.B. New IMASH device – interference depth gauge – for testing microhardness by indentation depth. New in the field of microhardness testing. Moscow: Nauka, 1974, pp. 93–100.
45. Oreshko E.I., Erasov V.S., Utkin D.A., Avtayeva Ya.V. The equipment for definition of physicomechanical characteristics of materials by press-in method (review). Aviation materials and technologies, 2021, no. 4 (65), paper no. 12. Available at: http://www.journal.viam.ru (accessed: July 19, 2024). DOI: 10.18577/2713-0193-2021-0-4-107-124.
46. Oreshko E.I., Erasov V.S., Yakovlev N.O., Utkin D.A. Methods for determining the mechanical characteristics of materials using indentation (review). Aviation materials and technology, 2021, no. 1 (62), paper no. 10. Available at: http://www.journal.viam.ru (accessed: July 19, 2024). DOI: 10.18577/2713-0193-2021-0-1-104-118.
47. Lapitskaya V.A., Kuznetsova T.A., Chizhik S.A., Grinchuk P.S. Determination of crack resistance using AFM. Reports XIII Int. Conf. «Methodological aspects of scanning probe microscopy». Minsk, 2018, pp. 260–266.
48. Shershak P.V., Sutubalov A.I., Yakovlev N.O., Sherstyuk F.A. Standards test methods for polymer matrix composite materials. Part 2. Compression properties. Aviation materials and technologies, 2024, no. 2 (75), paper no. 12. Available at: http://www.journal.viam.ru (accessed: July 19, 2024). DOI: 10.18577/2713-0193-2024-0-2-149-166.
49. Monakhov A.D., Gulyaev M.M., Gladysheva N.E., Kopteltseva O.Yu., Avtaev V.V., Yakovlev N.O., Gulina I.V. Application of the digital image correlation method for constructing deformation diagrams in true coordinates. Izvestiya vysshikh uchebnykh zavedeniy. Tsvetnaya metallurgiya, 2023, vol. 29, no. 3, рр. 79–88. DOI: 10.17073/0021-3438-2023-3-79-88.
50. Anton Paar Scratch Testers. Available at: http://www.anton-paar.com (accessed: July 19, 2024).
Light-metal alloys
Dobrynin D.A., Pavlova T.V. Electrolyte-plasma polishing of parts made by selective laser sintering from metal powder composition of aluminum alloy grade VAS1. Part 2
Astashkin A.I., Babanov V.V., Selivanov A.A., Tkachenko E.A. Influence of homogenization modes of ingots and heat treatment of sheets from alloy V95oсh-Т2 on their structure and properties
Yashin M.S., Kapitanenko D.V. Investigation of thermo-mechanical parameters of hot and warm rolling of titanium alloy VT23 type
Polymer materials
Khrulkov A.V., Donetsky K.I., Melnikov D.A., Klimenko O.N., Slavin A.V. Prepreg tack as a function of various parameters during laying out blanks of parts and samples from polymer composite materials
Kulagina G.S., Nasonov F.A., Zhelezina G.F., Demina A.S., Solovyeva N.A., Morozov B.B., Shuldeshova P.M., Filatov A.A. Antifriction and constructional organoplastics for elements of designs of airplanes of development Sukhoi design bureau
Composite materials
Ivanov M.S., Morozova V.S., Pavlukovich N.G. Influence of technological modes of manufacture on properties of consolidated plates of carbon fiber reinforced thermoplastic based on polyetheretherketone
Butuzov A.V., Semina A.V. Preceramic polymers for the production of ceramic products by vat photopolymerization. Part 1. Methods of production and properties
Startsev V.O., Startsev O.V., Pavlov M.R., Nechaev A.A. Strength and moisture resistance of fiberglass plastic VPS-53/T-25 at the initial stage of natural and accelerated aging
Material tests
Erasov V.S., Sibayev I.G., Sutubalov A.I. Slice testing of structural aviation materials and coatings