Last number
№12 2025
At the development stage, the composition of a polymer binder from the rheological point of view is based on the choice of viscosity at different temperatures and the duration of exposure to temperature. The main methods to determine the viscosity value of a polymer binder are rheological testing methods, implemented using rheological equipment of various brands, and measuring systems of different configurations. The study shows practical use of rheological equipment of various brands in control analysis, possibilities of rotational and oscillatory rheometry for determining binder curing modes in prepregs.
2. Severs E.T. Rheology of polymers. Moscow: Khimiya, 1966, 200 p.
3. Schramm G. Fundamentals of practical rheology and rheometry. Moscow: KolosS, 2003, 312 p.
4. Guseva M.A., Petrova A.P. Possibilities of rheology in the study of binders for PCM. Vse materialy. Entsiklopedicheskiy spravochnik, 2021, no. 7, pp. 38–45.
5. Kablov E.N., Antipov V.V. The Role of New Generation Materials in Ensuring the Technological Sovereignty of the Russian Federation. Vestnik Rossiyskoy akademii nauk, 2023, vol. 93, no. 10, pp. 907–916.
6. Kablov E.N., Laptev A.B., Prokopenko A.N., Gulyaev A.I. Relaxation of polymeric composite materials under the prolonged action of static load and climate (review). Part 1. Binders. Aviation materials and technologies, 2021, no. 4 (65), paper no. 08. Available at: http://www.journal.viam.ru (accessed: March 28, 2025). DOI: 10.18577/2713-0193-2021-0-4-70-80.
7. Guseva M.A., Prokopova L.A., Khaskov M.A. Determination of melting temperatures of solid polymers by the rheological method. Zavodskaya laboratoriya. Diagnostika materialov, 2021, vol. 87, no. 7, pp. 38–43.
8. Tkachyk A.I., Kyznecova P.A., Donetskiy K.I., Karavaev R.Yu. Some technological features of manufacturing polymer composite materials by non-autoclave molding of prepregs. Trudy VIAM, 2024, no. 12 (142), paper no. 04. Available at: http://www.viam-works.ru (accessed: March 28, 2025). DOI: 10.18577/2307-6046-2024-0-12-44-55.
9. Galygin V.E., Baronin G.S., Tarov V.P., Zavrazhin D.O. Modern technologies for the production and processing of polymer and composite materials: textbook. Tambov: Publ. House of TSTU, 2012, 180 p.
10. Kablov E.N., Kondrashov S.V., Melnikov A.A., Pavlenko S.A., Guseva M.A., Pykhtin A.A., Larionov S.A. Investigation of the influence of the thermal regime of FDM printing on the structuring and warping of polyethylene samples. Trudy VIAM, 2021, no. 7 (101), paper no. 06. Available at: http://www.viam-works.ru (accessed: March 28, 2025). DOI: 10.18577/2307-6046-2021-0-7-48-58.
11. Morozova V.S., Ivanov М.S., Shestakov A.M., Pavlukovich N.G. The influence of the melt flow of polyetheretherketone on the characteristics of carbon fiber plastic based on it. Trudy VIAM, 2024, no. 1 (131), paper no. 05. Available at: http://www.viam-works.ru (accessed: March 28, 2025). DOI: 10.18577/2307-6046-2024-0-1-44-51.
12. Kuznetcova P.A., Tkachuk A.I., Lyubimova A.S., Eldjaeva G.B. Characteristics of the molten epoxy resin system VSE-62, processed by the injection methods, for the manufacture of highly loaded structural polymer composite materials. Trudy VIAM, 2023, no. 5 (123), paper no. 04. Available at: http://www.viam-works.ru (accessed: March 28, 2025). DOI: 10.18577/2307-6046-2023-0-5-43-53.
13. Guseva M.A., Ibragimov Z.D. Selection of curing system when developing epoxy compositions with energy-efficient curing mode. Trudy VIAM, 2024, no. 3 (133), paper no. 05. URL: http://www.viam-works.ru (accessed: March 28, 2025). DOI: 10.18577/2307-6046-2024-0-3-52-62.
14. Guseva M.A. Application of Rheological Methods in the Development of Polymer Binders and Industrial Control. Reports of the XXXI Symposium on Rheology. Moscow: TIPS RAS, 2024, p. 87.
15. Guseva M.A. Rheological Approach to the Development of Polymer Binders for Polymeric Composites. Reports of the VIII All-Rus. Sci. and Tech. Conf. «Polymer Composite Materials and New Generation Production Technologies». Moscow: NRC «Kurchatov Institute» – VIAM, 2024, p. 173.
The results of cross-sectional microhardness measurements grade binders (compositions I–VII) are presented. Volumetric anisotropy coefficients are calculated, and the correlation between polymer matrix microhardness and the indenter scratch resistance parameter is studied. A comparative analysis of microhardness changes in the height direction of the samples and sclerograms obtained using an ST-01 laboratory scratch tester is conducted. For the low-flammability hot melt adhesive binder (composition VII), the optimal two-stage curing mode is selected, and the degree of polymer conversion is determined.
2. Kablov E.N. Science as a Branch of the Economy. Nauka i zhizn, 2009, no. 10, pp. 6–10.
3. Kablov E.N. Composites: Today and Tomorrow. Metally Evrazii, 2015, no. 1, pp. 36–39.
4. Startsev V.O., Antipov V.V., Slavin A.V., Gorbovets M.A. Modern domestic polymer composite materials for aviation industry (review). Aviation materials and technologies, 2023, no. 2 (71), paper no. 10. Available at: http://www.journal.viam.ru (accessed: September 23, 2025). DOI: 10.18577/2713-0193-2023-0-2-122-144.
5. Mishkin S.I. Application of carbon fiber plastics in constructions of pilotless devices (review). Trudy VIAM, 2022, no. 5 (111), paper no. 08. Available at: http://www.viam-works.ru (accessed: September 30, 2025). DOI: 10.18577/2307-6046-2022-0-5-87-95.
6. Raskutin A.E. Development strategy of polymer composite materials. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 344–348. DOI: 10.18577/2071-9140-2017-0-S-344-348.
7. Isaev A.Yu., Rubtsova E.V., Kotova E.V., Sutyagin M.N. Research of properties of glues and glue binding, made with use of modern domestic component base. Trudy VIAM, 2021, no. 3 (97), paper no. 05. Available at: http://www.viam-works.ru (accessed: April 09, 2025). DOI: 10.18577/2307-6046-2021-0-3-58-67.
8. Kutsevich K.E., Dementeva L.A., Lukina N.F., Tyumeneva T.Yu. Adhesive prepregs as promising materials for parts and assemblies from polymeric composite materials. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 379–387. DOI: 10.18577/2071-9140-2017-0-S-379-387.
9. Chursova L.V., Tsybin A.I., Grebeneva T.A. Binders for polymer composite and functional materials. Previous experience, current status and development prospects. Novosti materialovedeniya. Nauka i tekhnika, 2017, no. 2 (26), pp. 34–46. Available at: http://www.materialsnews.ru (accessed: April 09, 2025).
10. Sopotov R.I., Gorbunova I.Yu., Onuchin D.V. et al. Effect of polysulfone and polyethersulfone modifiers on the thermomechanical properties of epoxyamine binder. Uspekhi v khimii i khimicheskoy tekhnologii, 2015, vol. 29, no. 10, pp. 62–64.
11. Kablov E.N., Chursova L.V., Babin A.N. et al. Developments of FSUE VIAM in the field of melt binders for polymer composite materials. Polimernye materialy i tekhnologii, 2016, vol. 2, no. 2, pp. 37–42.
12. Kopitsyna M.N., Bessonov I.V., Kotomin S.V. Crack resistance of epoxy binders modified with thermoplastic polysulfone and furfural acetone resin. Inzhenernyy zhurnal: nauka i innovatsii, 2016, no. 12, pp. 1–9.
13. Khasbulatova Z.S. Aromatic polysulfones. Plasticheskiye massy, 2009, no. 4, pp. 20–23.
14. Kostromina N.V., Olikhova Yu.V., Malakhovsky S.S., Gorbunova I.Yu. Development of epoxy binders modified with heat-resistant thermoplastics for the creation of reinforced composite materials. Plasticheskiye massy, 2022, no. 9–10, pp. 17–19.
15. Borodulin A.S. Plasticizers for epoxy adhesives and binders. Klei. Germetiki. Tekhnologii, 2012, no. 7, pp. 31–35.
16. Malysheva G.V., Marakhovskiy P.S., Barinov D.Ya., Nikolaev E.V. Optimization of the curing modes of fiber-glass based on epoxy binder. Aviation materials and technologies, 2023, no. 2 (71), paper no. 08. Available at: http://www.journal.viam.ru (accessed: October 06, 2025). DOI: 10.18577/2713-0193-2023-0-2-94-103.
17. Bolshakov V.A., Antyufeeva N.V. Evaluation of the curing process model of the adhesive binder in prepreg. Aviation materials and technologies, 2023, no. 4 (73), paper no. 07. Available at: http://www.journal.viam.ru (accessed: October 08, 2025). DOI: 10.18577/2713-0193-2023-0-4-66-77.
18. Medvedeva K.A., Cherezova E.N. Study of new aminophenolic compounds as hardeners for epoxy oligomers. Fundamentalnye issledovaniya, 2013, no. 6, part 5, pp. 1085–1088.
19. Semenychev V.V., Salakhova R.K. Device for assessing coating properties. Zavodskaya laboratoriya. Diagnostika materialov, 2017, vol. 83, no. 2, pp. 60–65.
20. Salakhova R.K., Kirilin S.G., Tikhoobrazov A.B., Smirnova T.B. Scratch testing of electrolytic nickel coatings on a carbon fiber substrate. Vestnik Samarskogo universiteta. Aerokosmicheskaya tekhnika, tekhnologii i mashinostroyenie, 2021, vol. 20, no. 4, pp. 100–114.
21. Zabolotnov A.S., Gostev S.S., Maklakova I.A. et al. Influence of Crystalline Structure on a Set of Physicomechanical Characteristics of Composite Materials Based on Ultra-High Molecular Weight Polyethylene. Vysokomolekulyarnye soyedineniya. Ser.: B, 2023, vol. 65, no. 5, pp. 341–346.
22. Matveeva L.Yu., Yastrebinskaya A.V. Relationship between Supramolecular Structure and Properties of Polymer Composite Materials Based on Thermosetting Binders. Vestnik BGTU im. V.G. Shukhova, 2017, no. 12, pp. 49–54.
23. Veshkin E.A., Slavin A.V., Postnova M.V., Apalkova A.V. The role of temperature-time curing conditions in the formation of unidirectional and equally strong carbon fiber plastics properties. Aviation materials and technologies, 2025, no. 2 (79), paper no. 05. Available at: http://www.journal.viam.ru (accessed: October 16, 2025). DOI: 10.18577/2713-0193-2025-0-2-59-71.
The article examines the differences in approaches of domestic aircraft developers to the formation of requirements for the design and production of cabin floor panels and baggage and cargo compartment made of polymer composite materials. The article examines the analysis of requirements for floor panels and baggage and cargo compartment of modern domestic aircraft: MS-21-300, SSJ-NEW, Il-114-300, Tu-214 and other models, taking into account world experience. The problems of unification of technical requirements and the possibility of using domestic developments in the design of various types of aircraft are considered.
2. Order of the Government of the Russian Federation of July 25, 2022 No. 1693-r «Comprehensive Program for the Development of the Air Transport Industry of the Russian Federation until 2030». Available at: http://government.ru/docs/all/141773/ (accessed: August 12, 2025).
3. Veshkin E.A., Satdinov R.A., Barannikov A.A. Modern materials for the aircraft cabin. Trudy VIAM, 2021, no. 9 (103), pp. 33–42. Available at: http://www.viam-works.ru (accessed: August 26, 2025). DOI: 10.18577/2307-6046-2021-0-9-33-42.
4. Shokin G.I., Shershak P.V., Andryunina M.A. Experience in the Development and Implementation of Production of Aircraft Honeycomb Floor Panels from Domestic Materials. Aviatsionnaya promyshlennost, 2017, no. 1, pp. 32–39.
5. Barannikov A.A., Veshkin E.A., Postnov V.I., Strelnikov S.V. On the Production of PCM Floor Panels for Aircraft (review article). Izvestiya Samarskogo nauchnogo tsentra RAN, 2017, vol. 19, no. 4 (2), pp. 198–213.
6. Feigenbaum Yu.M., Butushin S.V., Bozhevalov D.G., Sokolov Yu.S. Composite Materials and the History of Their Implementation in Aircraft Structures. Nauchnyy vestnik GosNII GA, 2015, no. 7 (318), pp. 24–37.
7. Barbotko S.L., Kirillov V.N., Shurkova E.N. Fire safety evolution for polymer composites of aeronautical application. Aviacionnye materialy i tehnologii, 2012, no. 3, pp. 56–63.
8. Dushin M.I., Ermolaev A.M., Katyrev I.Ya. et al. Carbon fiber-reinforced plastics in floor panels of three-layer construction. Aviatsionnaya promyshlennost, 1978, no. 6, pp. 8–12.
9. Strelnikov S.V., Petukhov V.I., Postnov V.I., Shvets N.I. New solutions in the technology of manufacturing prepregs for interior panels. Izvestiya Samarskogo nauchnogo tsentra RAN, 2011, vol. 13, no. 4 (2), pp. 498–507.
10. Komarov V.A., Kutsevich K.E., Pavlova S.A., Tyumeneva T.Yu. Optimization of Three-Layer Honeycomb Floor Panels Made of Low-Combustibility Polymer Composite Materials Based on High-Strength Carbon and Glass Fibers and an Adhesive Binder. Vestnik Samarskogo universiteta. Aerokosmicheskaya tekhnika, tekhnologii i mashinostroenie, 2020, no. 3, pp. 51–72.
11. Komarov V.A., Pavlova S.A. Consideration of Stiffness Requirements in the Design of Three-Layer Aircraft Floor Panel Structures Made of High-Strength Composite Materials. Vestnik Samarskogo universiteta. Aerokosmicheskaya tekhnika, tekhnologii i mashinostroyenie, 2021, no. 2. pp. 45–52.
12. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
13. Kan A.Ch., Zhelezina G.F., Kulagina G.S., Ayupov T.R. Fire safety of structural organic plastics reinforced with aramid fabrics. Aviation materials and technologies, 2022, no. 4 (69), pp. 51–60. Available at: http://www.journal.viam.ru (accessed: October 16, 2025). DOI: 10.18577/2713-0193-2022-0-4-51-60.
14. Flitelam UNS2 Technical Data. Available at: https://www.yumpu.com/pt/document/view/52337885/aim-composites-ltd-flitelam-uns2-technical-data-lindberg-lund-as (accessed: September 04, 2025).
15. Ilyushenkov S.F., Batizat D.V., Sereduta P.I. Development of three-layer honeycomb floor panels for passenger aircraft made of polymer composites. Polimernye materialy, 2025, no. 3 (310), pp. 14–21.
16. Starkov A.I., Kutsevich K.E., Tyumeneva T.Yu., Petrova A.P. Low-combustibility adhesive prepregs designed for the manufacture of integral and three-layer honeycomb structures aircraft technology. Trudy VIAM, 2022, no. 5 (111), paper no. 04. Available at: http://www.viam-works.ru (accessed: October 16, 2025). DOI: 10.18577/2307-6046-2022-0-5-41-52.
17. Sarychev I.A., Serkova E.A., Khmelnitsky V.V., Zastrogin O.B. Thermosetting binders for aircraft floor panel materials (review). Trudy VIAM, 2019, no. 7 (79), paper no. 03. Available at: http://www.viam-works.ru (accessed: September 04, 2025). DOI: 10.18577/2307-6046-2019-0-7-26-33.
18. Product Data Sheets. Available at: https://www.thegillcorp.com/product/ (accessed: September 04, 2025).
19. Order of the Government of the Russian Federation dated July 4, 2023 No. 1789-r «Comprehensive scientific and technical program for the full innovation cycle «New composite materials: design and production technologies». Available at: http://government.ru/docs/all/148638/ (accessed: October 16, 2025).
20. Startsev V.O., Antipov V.V., Slavin A.V., Gorbovets M.A. Modern domestic polymer composite materials for aviation industry (review). Aviation materials and technologies, 2023, no. 2 (71), pp. 122–144. Available at: http://www.journal.viam.ru (accessed: October 16, 2025). DOI: 10.18577/2713-0193-2023-0-2-122-144.
This paper presents the results of a study of the characteristics and microstructure of samples of cold-curing polymer syntactic filler grade VPZ-25. Based on the results of testing the samples, a comparative analysis of the characteristics of VPZ-25 with the characteristics of a foreign analogue of cold-curing polymer filler was performed. Based on the results of preliminary testing of VPZ-25, a technology for filling honeycomb panels with VPZ-25 polymer filler for aircraft components was developed under various conditions.
2. Slivinsky V.I., Tkachenko G.V., Slivinsky M.V. Efficiency of Using Honeycomb Structures in Aircraft. Vestnik Sibirskogo gosudarstvennogo aerokosmicheskogo universiteta im. akademika M.F. Reshetneva, 2005, no. 3, pp. 169–173.
3. Alfutov N.A., Zinoviev P.A., Popov B.G. Calculation of Multilayer Plates and Shells from Composite Materials. Moscow: Mashinostroenie, 1984, 264 p.
4. Shershak P.V., Kosarev V.A., Kurilenko N.V. The influence of the height of the polymer honeycomb core on the rigidity of three-layer honeycomb floor panels of aircraft. Aviatsionnaya promyshlennost, 2016, no. 2, pp. 49–52.
5. Kablov E.N. The role of chemistry in the creation of new-generation materials for complex technical systems. Report of the XX Mendeleev Congress on General and Applied Chemistry. Ekaterinburg: Ural Branch of the Russian Academy of Sciences, 2016, pp. 25–26.
6. Malysheva G.V., Marakhovskiy P.S., Barinov D.Ya., Nikolaev E.V. Optimization of the curing modes of fiber-glass based on epoxy binder. Aviation materials and technologies, 2023, no. 2 (71), paper no. 08. Available at: http://www.journal.viam.ru (accessed: 28.10.2025). DOI: 10.18577/2713-0193-2023-0-2-94-103.
7. Belinis P.G., Lukyanenko Yu.V., Rogozhnikov V.N., Tsykun R.G., Donetskiy K.I. Design research on a constructural multilayer woven preform of an integral panel fragment for aircraft. Aviation materials and technologies, 2023, no. 3 (72), paper no. 09. Available at: http://www.journal.viam.ru (accessed: October 29, 2025). DOI: 10.18577/2713-0193-2023-0-3-114-124.
8. Postnov V.I., Veshkin E.A., Makrushin K.V., Sudin Yu.I. Technological features of manufacturing polymer composite materials of main rotor blades for a light helicopter. Aviation materials and technologies, 2023, no. 1 (70), paper no. 06. Available at: http://www.journal.viam.ru (accessed: October 30, 2025). DOI: 10.18577/2713-0193-2023-0-1-82-92.
9. Sutubalov A.I., Podzhivotov N.Yu., Shershak P.V., Yakovlev N.O. Evaluation of homogeneity of physical and mechanical properties of semi-finished products for aviation purpose. Aviation materials and technologies, 2024, no. 1 (74), paper no. 10. Available at: http://www.journal.viam.ru (accessed: November 05, 2025). DOI: 10.18577/2713-0193-2024-0-1-121-135.
10. Panin V.F., Gladkov Yu.A. Structures with Filler: Handbook. Moscow: Mashinostroenie, 1991, 272 p.
11. Endogur A.I., Weinberg M.V., Ierusalimsky K.M. Honeycomb Structures. Selection of Parameters and Design. Moscow: Mashinostroenie, 1986, 200 p.
12. Panin V.F. Structures with Honeycomb Filler. Moscow: Mashinostroenie, 1982, 152 p.
13. Mikhailin Yu.M. Fibrous Polymer Composite Materials in Engineering. St. Petersburg: Scientific Foundations and Technologies, 2013, 715 p.
14. Minakov V.T., Postnov V.I., Shvets N.I., Zastrogina O.B., Petukhov V.I., Makrushin K.V. Features of the manufacture of three-layer honeycomb panels with a hot-curing polymer filler. Aviatsionnye materialy i tekhnologii, 2009, no. 3, pp. 6–9.
15. Shershak P.V., Shokin G.I., Egorov V.N. Technological Features of the Production of Three-Layer Honeycomb Aircraft Floor Panels. Aviatsionnaya promyshlennost, 2014, no. 3, pp. 34–42.
16. Airworthiness standards for air-planes of the transport category: AP-25: utv. Postanovleniyem 35-y sessii Soveta po aviatsii i ispolzovaniyu vozdushnogo prostranstva 23.10.2015. 5-ye izd. s popravkami 1–8. M.: Aviaizdat, 2015, 290 р.
17. Ilyushenkov S.F., Tsvetkov V.E., Sereduta P.I., Tsvetkova N.N. Modern design and technological developments of aircraft interior elements. Polimernye materialy, 2024, no. 12, pp. 36–42.
18. Ilyushenkov S.F., Batizat D.V., Sereduta P.I. Development of three-layer honeycomb floor panels for passenger aircraft made of polymer composites. Polimernye materialy, 2025, no. 3 (310), pp. 14–21.
19. Kapustianskaia M.A., Lyubimova A.S., Kovalenko A.V., Sidelnikov N.K., Tkachuk A.I., Slavin A.V. Development of a cold-curing polymer syntatic filler with enhanced physico-mechanical properties. Trudy VIAM, 2024, no. 11 (141), paper no. 04. Available at: http://www.viam-works.ru (accessed: November 05, 2025). DOI: 10.18577/2307-6046-2024-0-11-33-43.
20. Epocast 1618-D/B. Available at: https://freemansupply.com/products/liquid-tooling-materials/epoxy-aerospace-syntactics/epocast-1618-epoxy-syntactic (accessed: November 05, 2025).
The article presents the features and regularities of the technology of obtaining highly heat-resistant low shrinkage silicon carbide by forming zones with different thermal conductivity in the porous structure of the material, increasing the strength and resistance to oxidation at temperatures up to 1600 °C, preventing the reduction of SiO2 by silicon carbide at high temperatures.
The dependences of density, linear shrinkage and amount of binder during of pre-sintered ceramic samples on the specific surface of silicon carbide powders are presented. The effect of pre-sintered ceramic density on the strength of samples at temperatures of 20, 1400 and 1500 °C is demonstrated. Data are presented on the effect of impregnation of silicon carbide with a silicon organic compound and high-temperature treatment of ceramic samples in a nitrogen environment and in air on increasing the strength characteristics and resistance of ceramics to oxidation.
2. Vikulin V. Production of Si3N4-Based Articles and Their Application in Aerospace Industry. Advances in Science and Technology, 2006, vol. 45, pp. 1751–1758.
3. Bhatnagar A. World of Materials. Lightweight Ballistic Materials. Moscow: Tekhnosfera, 2000, 392 p.
4. Molded porous ceramic article containing SiC and proses for the production there of: pat. 7648932B2 US; appl. 07.05.06; publ. 19.01.10.
5. Method for producing an abrasive compact: pat. 2176191 B1 EP; appl. 23.07.08; publ. 21.04.10.
6. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 1018577/ 2071-9140-2015-0-1-3-33.
7. Ceramic oxidation-resistant composite material and products made from it: pat. 2560046 C1 Rus. Federation; appl. 10.07.14; publ. 20.08.15.
8. Ceramic composite material and products made from it: pat. 2700428 C1 Rus. Federation; appl. 17.09.17; publ. 18.07.18.
9. Heat-resistant low-shrinkage material based on silicon carbide: a.s. 197832 USSR; appl. 19.08.81; publ. 17.09.82.
10. Vikulin V., Leshuk T. Material based chemically strengthened silicon carbide. Refractories and Industrial Ceramics, 1992, vol. 32, no. 9–10, pp. 510–515.
11. Vikulin V., Leshchuk T. Materials based on chemically strengthened silicon carbide. Ogneupory i tekhnicheskaya keramika, 1991, no. 10, pp. 8–12.
12. Method for processing products from ceramic materials based on silicon carbide and/or carbon: pat. 2276661 Rus. Federation; appl. 28.07.04; publ. 20.05.06.
13. Vikulin V., Romashin A., Leshuk Т. Si3N4–Si composite ceramics and chemically toughened SiC for engine components. Cеramics in Energy Applications. 2nd International conference proceedings. London, 1994, pp. 21–32.
14. Vikulin V., Kostina L., Leshchuk T., Shtarev G. Low-shrinkage silicon carbide products. Designs and technologies for producing products from non-metallic materials. Moscow: VIMI, 1988, pp. 33–34.
15. Suvorov S., Chaykun E., Gusarov V. Multilayer oxidation-resistant materials based on silicon carbide. Oborudovanie, materialy, protsessy. Moscow: VIMI, 1989, is. 3, pp. 29–30.
16. Protective siliconoxinitride coating for porous refractories: pat. 4187344А US; appl. 27.09.78; publ. 05.02.80.
17. Method for protecting the surface of silicon carbide during high-temperature etching: a. s. 270080 USSR; appl. 05.03.74; publ. 12.05.75.
18. Materials based on low-shrinkage silicon carbide: a. s. 235082 USSR; appl. 27.02.84; publ. 24.03.85.
19. Doorbar Ph.J., Kyle-Henney S. Development of Continuosly-Rreinforced Metal Matrix Composite for Aerospace Applications. Comprehensive Composite Materials II, 2018, vol. 4, pp. 439–463. DOI: 10.1016/В 978-0-12-803581-8.09983-5.
Materials of Fe–Ni–Al–Co and Pr–Nd–Dy–Fe–Co–B systems were studied in the article. Sintering and further heat treatment in the form of high temperature annealing, cooling in a magnetic field, and a stepwise annealing were performed. The effect of heat treatment on the magnetic properties of the samples, as well as the temperature coefficient of induction were investigated. It is shown that these sintered materials are similar in magnitude to AlNiCo magnets. The negative effect of neodymium impurity on the thermal stability of the material has been revealed. In order to improve temperature stability, it is necessary to increase the cobalt content.
2. Cherednichenko I.V., Bavina M.A., Bondarenko Yu.A., Shurygin V.D., Ovchinnikov A.D., Galimullin S.A. Influence of directed crystallization parameters on structure and properties of Alnico 5-7 alloy permanent magnets. Trudy VIAM, 2023, no. 11 (129), paper no. 08. Available at: http://www.viam-works.ru (accessed: October 29, 2024). DOI: 10.18577/2307-6046-2023-0-11-77-89.
3. Zhukov A.S., Zhumagalieva A.A., Khromenkov M.V. et al. Structure and properties of magnetic materials manufactured by selective laser melting. Fundamentalnye problemy sovremennogo materialovedeniya, 2020, vol. 17, no. 2, pp. 251–256. DOI: 10.25712/ASTU.111-1416.2020.02.0116.
4. Liu Z., Miller M.K., Ping L. et al. Architecture and magnetism of alnico. Acta Materialia, 2014, vol. 74, pp. 224–233.
5. Rehman S.U., Jiang Q., He L. et al. Synthesis, microstructures, magnetic properties and thermal stabilities of isotropic alnico ribbons. Journal of Magnetism and Magnetic Materials, 2018, vol. 466, p. 2777–2782. DOI: 010.1016/j.jmmm.2018.07.020.
6. Bin S., Bingbing L., Chunhong L. et al. Microstructure and distribution of low content elements in AlNiCo 9. Materials Science Forum, 2017, vol. 898, pp. 1669–1674.
7. Sajjad U.R., Qingzheng J., Qiulan T. et al. Evolution of microstructure, magnetic properties and thermal stabilities of isotropic alnico ribbons. IEEE Transactions on Magnetics, 2020, vol. 56, no. 2, pp. 127–132.
8. Vasilevsky N.I. Development of a dynamically adjustable gyroscope taking into account its vibration characteristics. Miass: South Ural State Univ., 2018, 77 p.
9. Chirkin D.S., Roslovets P.V., Tatarinov F.V. et al. Reducing the drift of a dynamically tuned gyroscope from launch to launch. Inzhenerniy zhurnal: nauka i innovatsii, 2017, no. 1, pp. 1–14. DOI: 10.18698/2308-6033-2017-01-1579.
10. Kablov E.N., Ospennikova O.G., Piskorskij V.P. et al. Ring magnets with radial texture for dynamically tuned gyroscopes. Aviacionnye materialy i tehnologii, 2014, no. S5, pp. 89–94. DOI: 10.18577/2071-9140-2014-0-s5-89-94.
11. Jianjun T., Huanhui Q., Shengen Z. et al. Magnetic properties and microstructure of radially oriented Sm(Co, Fe, Cu, Zr)Z ring magnets. Materials Letters, 2007, vol. 61, pp. 5271–5274.
12. Anhua L., Wei L., Huijie W. et al. The study on thermal expansion of sintered Sm2Co17 magnets. IEEE Transaction on Magnetics, 2009, vol. 45, no. 10, pp. 4402–4404.
13. Gorlov D.S., Cherednichenko I.V., Valeev R.A., Chesnokov D.V. Improving the corrosion resistance of RЕM–Fe–B magnets. Trudy VIAM, 2021, no. 10 (104), paper no. 10. Available at: http://www.viam-works.ru (accessed: October 29, 2024). DOI: 10.18577/2307-6046-2021-0-10-97-107.
14. Demin S.A., Zavarzin S.V., Cherednichenko I.V., Kozlov I.A. Protective anticorrosive coating of magnets of the REM–Fe–B system. Trudy VIAM, 2022, no. 6 (112), paper no. 08. Available at: http://www.viam-works.ru (accessed: October 29, 2024). DOI: 10.18577/2307-6046-2022-0-6-96-107.
15. Pedziwiatr A.T., Wallace W.E. Structure and magnetism of the R2Fe14–xCoxB ferromagnetic Systems (R=Dy and Er). Journal of Magnetism and Magnetic Materials, 1986, vol. 66, pp. 63–68.
16. Kablov E.N., Ospennikova O.G., Rezchikova I.I., Valeev R.A. et al. Comparison of the temperature stability of SmCo and PrDy–FeCo–B magnets. Aviacionnye materialy i tehnologii, 2015, no. S2 (39), pp. 42–46. DOI: 10.18577/2071-9140-2015-0-S2-42-46.
17. Meeran R., Kamal R. A Mossbauer spectroscopic study of Nd2(Fe1-xCox)B at x = 0,13 between 100 K and 700 K. Journal of the Less-Common Metals, 1987, vol. 128, pp. 343–350.
18. Zubair A., Shan T., Mozaffar H. Tailoring magnetic properties in 60Fe–27Co–2Mo–1Ti magnetic alloy by Ni and Hf additive. Journal of Magnetism and Magnetic Materials, 2021, vol. 538, p. 169257. DOI: 10.1016/j.jmmm.2021.168266.
19. Efremov D.B., Gerasimova A.A. Production of magnets from the material of the Fe–Cr–Co system by selective laser sintering. Izvestiya vysshikh uchebnykh zavedeniy. Chernaya metallurgiya, 2021, vol. 64, no. 10, pp. 721–727. DOI: m10.17073/0368-0797-2021-10-721-727.
20. Generalova K.N. Regularities of phase transformations and properties of powder magnetic materials based on the Fe–Cr–Co–Si system and non-stoichiometric Cu–Au alloy: thesis, Cand. Sc. (Tech.). Perm: Publ. House of PNIPU, 2019, 138 p.
21. Marinescu M., McGinnis K., Liu J.F. et al. High (BH)max permanent magnets with near-zero reversible temperature coefficient of BR. Proceedings of 20th International Workshop on rare earth permanent magnets and their applications. Grete, 2008, pp. 1–6.
22. Ray A.E. Metallurgical behavior of Sm(Co, Fe, Cu, Zr)z alloys. Journal of Applied Physics, 1984, vol. 55, pp. 2094–2096.
23. Masato S., Setsuo F., Hitoshi Y. et al. Permanent magnet materials based on the rare earth-iron-boron tetragonal compounds. IEEE Transactions on Magnetics, 1984, vol. 20, pp. 1584–1589.
24. Jiang S.Y., Chen H.Y., Cheng S.F. et al. Magnetic properties of R–Fe–B and R–Fe–Co–Al–B magnets (R=Pr and Nd). Journal of Applied Physics, 1988, vol. 64, pp. 5510–5512.
25. Piskorsky V.P., Burkhanov G.S., Ospennikova O.G. et al. Calculation of the temperature coefficient of induction of nanostructured magnetic hard materials Pr–Dy–Fe–Co–B by the molecular field method. Metally, 2010, no. 1, pp. 64–67.
26. Kablov E.N., Antipov V.V. The role of new generation materials in ensuring the technological sovereignty of the Russian Federation. Vestnik Rossiyskoy akademii nauk, 2023, vol. 93, no. 10, pp. 907–916.
27. Herbst J.F. R2Fe14B materials: intrinsic properties and technological aspects. Reviews of Modern Physics, 1991, vol. 63, no. 4, pp. 819–898.
28. Faria R.N., Davies B.E., Brown D.N. et al. Microstructural and magnetic studies of cast and annealed Nd and PrFeCoBZr alloys and HDDR materials. Journal of Alloys and Compounds, 2000, vol. 296, pp. 223–228.
29. Valeev R.A., Korolev D.V., Morgunov R.B., Piskorsky V.P. The effect of high concentrations of cobalt on the properties of magnets Pr–Dy–Fe–Co–B and Nd–Dy–Fe–Co–B. Trudy VIAM, 2022, no. 10 (116), paper no. 06. Available at: http://www.viam-works.ru (accessed: October 29, 2024). DOI: 10.18577/2307-6046-2022-0-10-66-75.
30. Kablov E.N. Trends and guidelines for innovative development of Russia: collection of information materials. 3rd ed., rev. and add. Moscow: VIAM, 2015, 720 p.
Polymer composite materials are increasingly being used in the manufacture of rehabilitation equipment for the disabled, particularly in the production of prostheses and orthoses, including the use of prepregs processed by vacuum molding. The demand for materials in this industry is growing steadily, with imported materials primarily used, and import substitution is becoming increasingly important. NRC «Kurchatov Institute» – VIAM has developed a series of materials that can be used in this industry.
2. Onishchenko G.G., Kablov E.N., Ivanov V.V. Scientific and technological development of Russia in the context of achieving national goals: problems and solutions. Innovatsii, 2020, no. 6 (260), pp. 3–16.
3. Raskutin A.E. Russian polymer composite materials of new generation, their exploitation and implementation in advanced developed constructions. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 349–367. DOI: 10.18577/2071-9140-2017-0-S-349-367.
4. Kablov E.N., Antipov V.V. The role of new generation materials in ensuring the technological sovereignty of the Russian Federation. Vestnik Rossiyskoy akademii nauk, 2023, vol. 93, no. 10, pp. 907–916.
5. Order of the Federal Service for Environmental, Technological and Nuclear Supervision of December 15, 2020 No. 536 «On approval of federal norms and rules in the field of industrial safety «Industrial safety rules for the use of equipment operating under excess pressure». Available at: http://www.infobm.ru/upload/Правила%20промышленной%20безопасности%20при%20исполь-зовании%20оборудования.pdf (accessed: October 10, 2025).
6. Mikhaylin Yu.A. Fibrous polymer composite materials in engineering. St. Petersburg: Scientific Foundations and Technologies, 2013, 720 p.
7. Babaevsky P.G., Vinogradov V.M., Golovkin G.S. et al. Structural Plastics (Therapeutic Plastics). Ed. E.B. Trostyanskaya. Moscow: Khimiya, 1974, 304 p.
8. Berring N.S., Renieri M.P., Bond G.G., Palmer D.J. Autoclave vs. Non-Autoclave: A comparison of hat-stiffened subcomponents by static and fatigue testing and related non-destructive evaluations. 2012 SAMPE International Symposium and Exhibition-Emerging Opportunities: Materials and Process Solutions. Baltimore, MD, 2012, pp. 23–25.
9. Donetskiy K.I., Karavaev R.Yu., Bystrikova D.V., Gracheva A.D., Tkachuk A.I. Semipregs and carbon fiber reinforced plastics based on them. Trudy VIAM, 2025, no. 8 (150), paper no. 08. Available at: http://www.viam-works.ru (accessed: October 21, 2025). DOI: 10.18577/2307-6046-2025-0-8-85-99.
10. Donetskyi K.I., Timoshkov P.N., Safronov A.M., Goncharov V.A., Mishchun M.I. Autoclave-free molding of prepregs. Konstruktsii iz kompozitsionnykh materialov, 2022, no. 1 (165), pp. 29–34.
11. Tkachyk A.I., Kyznecova P.A., Donetskiy K.I., Karavaev R.Yu. Some technological features of manufacturing polymer composite materials by non-autoclave molding of prepregs. Trudy VIAM, 2024, no. 12 (142), paper no. 04. Available at: http://www.viam-works.ru (accessed: October 20, 2025). DOI: 10.18577/2307-6046-2024-0-12-44-55.
12. Yakobson Ya.S., Kuzhekin A.P., Samoilov D.V., Shishkin B.V. Energy-saving lower limb prostheses. Rossiyskiy zhurnal biomekhaniki, 1999, vol. 3, no. 2, p. 129.
13. Osipenko M.A., Nyashin Yu.I., Rudakov R.N. Mathematical modeling and optimization of the design of an elastic element of a foot prosthesis. Rossiyskiy zhurnal biomekhaniki, 1999, vol. 3, no. 2, pp. 87–88.
14. Borisov I.M., Reznik S.V. Development of a composite structure for biomechanical purposes. Vestnik Rossiyskogo universiteta druzhby narodov. Ser.: Inzhenernyye issledovaniya, 2021, vol. 22, no. 4, pp. 348–354. DOI: 10.22363/2312-8143-2021-22-4-348-354.
15. Tkachuk A.I., Donetsky K.I., Terekhov I.V., Karavaev R.Yu. The use of thermosetting matrices for the manufacture of polymer composite materials by the non-autoclave molding methods. Aviation materials and technology, 2021, no. 1 (62), paper no. 03. Available at: https://www.journal.viam.ru (accessed: October 20, 2025). DOI: 10.18577/2713-0193-2021-0-1-22-33.
16. Mukhametov R.R., Petrova A.P. Thermosetting binders for polymer composites (review). Aviacionnye materialy i tehnologii, 2019, no. 3 (56), pp. 48–58. DOI: 10.18577/2071-9140-2019-0-3-48-58.
17. Mikhailin Yu.A. Thermosetting Binders of Polymeric Composites. Polimernye materialy, 2009, no. 2, pp. 40–45.
18. Panina N.N., Chursova L.V., Babin A.N., Grebeneva T.A., Gurevich Ya.M. Main Methods of Modifying Epoxy Polymer Materials in Russia. Vse materialy. Entsiklopedicheskiy spravochnik, 2014, no. 9, pp. 10–17.
19. Chursova L.V., Panina N.N., Grebeneva T.A., Kutergina I.Yu. Epoxy Resins, Hardeners, Modifiers, and Binders Based on Them. St. Petersburg: Profession, 2020, 550 p.
20. Mostovoy A.S. Formulation modification of epoxy resins using new highly effective plasticizers. Sovremennye naukoyemkie tekhnologii, 2015, no. 7, pp. 66–70.
21. Chebotareva E.G., Ogrel L.Yu. Modern trends in the modification of epoxy polymers. Fundamentalnye issledovaniya, 2008, no. 4, pp. 102–104.
22. Bobylev V.A. Special epoxy resins for adhesives and sealants. Klei. Germetiki. Tekhnologii, 2005, vol. 5, pp. 8–12.
23. Zagora A.G. Use of dicyandiamide in epoxy adhesives, binders and polymer composite materials based on them (review). Klei. Germetiki. Tekhnologii, 2020, no. 4, pp. 35–37.
24. Li H., Neville K. Reference Guide to Epoxy Resins. Moscow: Energia, 1973, 108 p.
25. Galimzyanova R.Yu. Modern Composite Materials in the Production of Medical Equipment: A Textbook. Kazan: Kazan National Research Tech. Univ., 2021, 89 p.
26. Romo H.D. Specialized prostheses for activities: an update. Clinical Orthopaedic Related Research, 1999, vol. 361, pp. 63–70.
27. Timoshkov P.N., Usacheva M.N., Khrulkov A.V., Grigorieva L.N. Prospects for the use of polymer composite materials in the manufacture of prostheses (review). Plasticheskie massy, 2021, no. 5-6, pp. 40–43. DOI: 10.35164/0554-2901-2021-5-6-40-43.
28. Scholz M.-S., Blanchfield J.P., Bloom L.D. et al. The use of composite materials in modern orthopedic medicine and prosthetic devices: A review. Composites Science and Technology, 2011, vol. 71, pp. 1791–1803.
29. Nolan L. Carbon fibre prostheses and running in amputees: a review. The Journal of Foot and Ankle Surgery, 2008, vol. 14 (3), pp. 125–129.
30. McCarvill S. Essay: prosthetics for athletes. The Lancet, 2005, vol. 366 (1), pp. 10–11.
31. Berry D.A. Composite material for orthotics and prosthetics. Orthotics and Prosthetics, 1987, vol. 40 (4), pp. 3543.
32. Tryggvason H., Starker F., Lecompte Ch., Jonsdottir F. Modeling and simulation in the design process of a prosthetic foot. Proceedings of the 58th SIMS. Reykjavik, 2017, pp. 398–404.
The article presents the stages of crack development in the structure of carbon fiber reinforced polymer (CFRP) when impact loads are applied. The fracture process is a sequence of events in which the rate of formation and consolidation of defects occurs depending on the fundamental constants of the material. The mechanisms of damage formation for polymer composite materials (PCMs) with different reinforcement architectures are significantly different. Typical types of destruction are shown. The practical necessity of identifying, among other factors affecting the impact resistance of carbon fiber reinforced polymer, environmental influences is substantiated.
2. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
3. Raskutin A.E. Russian polymer composite materials of new generation, their exploitation and implementation in advanced developed constructions. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 349–367. DOI: 10.18577/2071-9140-2017-0-S-349-367.
4. Startsev V.O., Antipov V.V., Slavin A.V., Gorbovets M.A. Modern domestic polymer composite materials for aviation industry (review). Aviation materials and technologies, 2023, no. 2 (71), paper no. 10. Available at: http://www.journal.viam.ru (accessed: February 26, 2025). DOI: 10.18577/2713-0193-2023-0-2-122-144.
5. Slavin A.V., Donetskiy K.I., Khrulkov A.V. Prospects for the use of polymer composite materials in aircraft structures in 2025–2035 (review). Trudy VIAM, 2022, no. 11 (117), paper no. 08. Available at: http://www.viam-works.ru (accessed: March 11, 2025). DOI: 10.18577/2307-6046-2022-0-11-81-92.
6. Kablov E.N., Antipov V.V. The role of new generation materials in ensuring the technological sovereignty of the Russian Federation. Vestnik Rossiyskoy akademii nauk, 2023, vol. 93, no. 10, pp. 907‒916. DOI: 10.31857/S0869587323100055.
7. Zhelezina G.F., Solovieva N.A., Kulagina G.S., Shuldeshova P.M. Study of the possibility of increasing the impact resistance of thin-sheeted carbon fiber-reinforced plastics due to clading with aramid organoplastics. Aviation materials and technologies, 2021, no. 4 (65), paper no. 04. Available at: http://www.journal.viam.ru (accessed: March 11, 2025). DOI: 10.18577/2713-0193-2021-0-4-35-42.
8. Vildeman V.E., Staroverov O.A., Tretyakov M.P. Deformation and fracture of polymer composite materials under preliminary cyclic and low-speed impact effects. Reports XXXI Int. Innovation Conf. of Young Scientists and Students on Mechanical Engineering Problems (December 4–6, 2019, Moscow). Moscow, 2020, pp. 75–78.
9. Gunyaeva A.G., Kurnosov A.O., Slavin A.V. Experience in the use of polymer composite materials developed by NRC «Kurchatov Institute» – VIAM in engines for civil aircraft. Aviation materials and technologies, 2024, no. 4 (77), paper no. 06. Available at: http://www.journal.viam.ru (accessed: March 11, 2025). DOI: 10.18577/2713-0193-2024-0-4-82-94.
10. Imametdinov E.Sh., Gulyaev I.N., Kondrashov S.V., Terekhov I.V. Increasing the impact resistance of carbon fiber reinforced plastics based on the VSE-1212 epoxy matrix. Polymer composite materials and production technologies of the new generation: Proc. of the V All-Rus. sc. and tech. conf. (November 19, 2021, Moscow). Moscow: NRC «Kurchatov Institute» – VIAM, 2021, pp. 97–113.
11. Vasilchuk E.A., Gylyaev I.N., Yakovlev N.O., Mishkin S.I. Influence of collision speed on the residual durability of CFRP. Trudy VIAM, 2024, no. 9 (139), paper no. 09. Available at: http://www.viam-works.ru (accessed: April 04, 2025). DOI: 10.18577/2307-6046-2024-0-9-93-104.
12. Jefferson A.J., Srinivasan S.M., Arokiarajan A., Nath D.H. Parameters influencing the impact response of fiber-reinforced polymer matrix composite materials: A critical review. Composite Structures, 2019, vol. 224, no. 3, art. 111007.
13. Zheng D. Low velocity impact analysis of composite laminated plates: Doctor of Philosophy Dissertation. Akron, 2007, 143 p.
14. Tita V., de Carvalho J., Vandepitte D. Failure analysis of low velocity impact on thin composite laminates: Experimental and numerical approaches. Composite Structures, 2008, vol. 83, no. 4, pp. 413–428.
15. Nash N. Improving the performance of out-of-autoclave composite laminates using an interlaminar toughening technique: Doctor of Philosophy Dissertation. Limerick, 2016, 349 p.
16. Ramji A. Damage tolerance enhancement of thermoset composites modified with thermoplastic veil interleaves: Doctor of Philosophy Dissertation. Cranfield, 2019, 241 p.
17. Schultheisz C.R., Waas A.M. Compressive failure of composites, part I: Testing and micromechanical theories. Progress in Aerospace Sciences, 1996, vol. 32, no. 1, pp. 1–42.
18. Shah S.Z.H., Karuppanan S., Megat-Yusoff P.S.M., Sajid Z. Impact resistance and damage tolerance of fiber reinforced composites: A Review. Composite Structures, 2019, vol. 217, pp. 100–121.
19. Anderson T.L. Fracture mechanics: fundamentals and applications. Fourth edition. Boca Raton: CRC Press, 2017, 684 p. DOI: 10.1201/9781315370293.
20. Quan D., Alderliesten R., Dransfeld C. et al. Enhancing the fracture toughness of carbon fibre/epoxy composites by interleaving hybrid meltable/non-meltable thermoplastic veils. Composite Structures, 2020, vol. 252, art. 112699.
21. Yang B., Chen Y., Lee J. et al. In-plane compression response of woven CFRP composite after low-velocity impact: Modelling and experiment. Thin-Walled Structures, 2021, vol. 158, p. 107186.
22. Sun X.C., Hallett S.R. Failure mechanisms and damage evolution of laminated composites under compression after impact (CAI): Experimental and numerical study. Composites Part A: Applied Science and Manufacturing, 2018, vol. 104, pp. 41–59.
23. Jung K.-H., Kim D.-H., Kim H.-J. et al. Finite element analysis of a low-velocity impact test for glass fiber-reinforced polypropylene composites considering mixed-mode interlaminar fracture toughness. Composite Structures, 2017, vol. 160, pp. 446–456.
24. Boon Y.D., Joshi S.C. A review of methods for improving interlaminar interfaces and fracture toughness of laminated composites. Materials Today Communications, 2020, vol. 22, p. 100830.
25. Körbelin J., Derra M., Fiedler B. Influence of temperature and impact energy on low velocity impact damage severity in CFRP. Composites Part A: Applied Science and Manufacturing, 2018, vol. 115, pp. 76–87.
26. Körbelin J., Dreiner C., Fiedler B. Impact of temperature on LVI-damage and tensile and compressive residual strength of CFRP. Composites Part C: Open Access, 2020, vol. 3, p. 100074.
27. Startsev V.O. The degradation of polymer composite materials in seawater (review). Aviation materials and technologies, 2023, no. 1 (70), paper no. 12. URL: http://www.journal.viam.ru (accessed: March 11, 2025). DOI: 10.18577/2713-0193-2023-0-1-148-170.
28. Benli S., Sayman O. The Effects of Temperature and Thermal Stresses on Impact Damage in Laminated Composites. Mathematical and Computational Applications, 2011, vol. 16, no. 2, pp. 392–403.
29. Fernandes O., Dutta J., Pai Y. Effect of various factors and hygrothermal ageing environment on the low velocity impact response of fibre reinforced polymer composites: A comprehensive review. Cogent Engineering, 2023, vol. 10, no. 1. DOI: 10.1080/23311916.2023.2247228.
30. Ma S., He Y., Hui L., Xu L. Effects of hygrothermal and thermal aging on the low-velocity impact properties of carbon fiber composites. Advanced Composite Materials, 2019, vol. 29, pp. 1–18.
31. Berketis K., Tzetzis D., Hogg P.J. The influence of long term water immersion ageing on impact damage behaviour and residual compression strength of glass fibre reinforced polymer (GFRP). Materials & Design, 2008, vol. 29, no. 7, pp. 1300–1310.
The article shows the influence of the factors of a moderately warm and very cold climates on the physical and mechanical properties of the material. The glass transition temperature decreases by 1 °C after 10 years of exposure in a very cold climate, and decreases by 3–6 °C in a moderately warm climate, compared to the initial state. Extreme climatic conditions have a more aggressive effect on composite reinforcement with an increase in diameter from 6 to 8 mm than in Gelendzhik, due to an increase in elastic stresses in the volume of the material. There is a significant decrease in the strength of σt by 15,4 %, σc by 14,9 % in Yakutsk conditions after exposure in an open area for 10 years.
2. State Standard R 27.102–2021. Reliability in Engineering. Object Reliability. Terms and Definitions. Moscow: RST, 2021, 35 p.
3. State Standard 25870–83. Macroclimatic regions of the globe with cold and temperate climates. Zoning and statistical parameters of climatic factors for technical purposes. Moscow: Publ. House of Standards, 1984, 176 p.
4. Startsev O.V., Lebedev M.P., Kychkin A.K. Aging of polymer composite materials in extremely cold climates. Izvestiya Altayskogo gosudarstvennogo universiteta, 2020, no. 1 (11), pp. 41–51. DOI: 10.14258/izvasu(2020)1-06.
5. Marakhovskiy P.S., Barinov D.Ya., Maltseva E.Yu. The effect of reinforcing additives on the structure and thermophysical properties of ice composite materials. Aviation materials and technologies, 2023, no. 4 (73), paper no. 11. Available at: http://www.journal.viam.ru (accessed: December 25, 2024). DOI: 10.18577/2713-0193-2023-0-4-111-121.
6. Hakimian A., Mohebinia M., Nazari M. et al. Freezing of few nanometers water droplets. Nature Communications, 2021, vol. 12, no. 1, pp. 1–8. DOI: 10.1038/s41467-021-27346-w.
7. Matveeva L.Yu., Yastrebinskaya A.V. Relationship between the supramolecular structure and properties of polymer composite materials based on thermosetting binders. Vestnik BGTU im. V.G. Shukhova, 2017, no. 12, pp. 49–54. DOI: 10.12737/article_5a27cba0904cd3.84567882.
8. Skachkov Yu.B. Dynamics of long-term changes in air temperature extremes in Yakutsk. Integrity and resource in extreme conditions, 2024, no. 1, pp. 185–187. DOI: 10.24412/cl-37269-2024-1-185-187.
9. Kablov E.N., Laptev A.B., Prokopenko A.N., Gulyaev A.I. Relaxation of polymeric composite materials under the prolonged action of static load and climate (review). Part 1. Binders. Aviation materials and technologies, 2021, no. 4 (65), paper no. 08. Available at: http://www.journal.viam.ru (accessed: January 10, 2025). DOI: 10.18577/2713-0193-2021-0-4-70-80.
10. Startsev V.O., Valevin E.O., Gulyaev A.I. The influence of polymer composite materials’ surface weathering on its mechanical properties. Trudy VIAM, 2020, no. 8 (90), paper no. 07. Available at: http://www.viam-works.ru (accessed: January 10, 2025). DOI: 10.18577/2307-6046-2020-0-8-64-76.
11. Ivanov М.S., Morozova V.S., Pavlukovich N.G. The influence of operational factors on the properties of carbon fiber based on polyetheretherketone. Aviation materials and technologies, 2024, no. 2 (75), paper no. 08. Available at: http://www.journal.viam.ru (accessed: January 10, 2025). DOI: 10.18577/2713-0193-2024-0-2-99-108.
12. Startsev V.O., Kutsevich K.E., Khrulev K.A., Molokov M.V. Predicting the surface temperature of composite material samples based on adhesive prepregs when exposed to climatic conditions. Klei. Germetiki. Tekhnologii, 2017, no. 9, pp. 24–31.
13. Kablov E.N., Startsev V.O. Measurement and forecasting of materials samples’ temperature during weathering in different climatic zones. Aviacionnye materialy i tehnologii, 2020, no. 4 (61), pp. 47–58. DOI: 10.18577/2071-9140-2020-0-4-47-58.
14. Ammar M.A. Bond Durability of Basalt Fibre-Reinforced Polymers (BFRP) bars under freeze-and-thaw conditions: Thesis. Quebec, 2014, 105 p.
15. Parnas R., Shaw M., Liu Q. Basalt Fiber Reinforced Polymer Composites: Technical Report NETCR63. Institute of Materials Science, University of Connecticut, 2007, 133 p.
16. Alaimo G., Valenza A., Enea D., Fiore V. The durability of basalt fibres reinforced polymer (BFRP) panels for cladding. Materials and Structures, 2016, vol. 49, no. 6, pp. 2053–2064. DOI: 10.1617/s11527-015-0633-3.
17. Wu G., Wang X., Wu Z. et al. Durability of basalt fibers and composites in corrosive environments. Journal of Composite Materials, 2015, vol. 49, no. 7, pp. 873–887. DOI: 10.1177/0021998314526628.
18. Liu Q., Shaw M.T., Parnas R.S., McDonnell A.-M. Investigation of Basalt Fiber Composite Mechanical Properties for Applications in Transportation. Polymer Composites, 2006, vol. 27, pp. 41–48. DOI: 10.1002/pc.20162.
19. Dhand V., Mittal G., Rhee K.Y. et al. A short review on basalt fiber reinforced polymer composites. Composites. Part B: Engineering, 2015, vol. 73, no. 5, pp. 166–180. DOI: 10.1016/j.compositesb.2014.12.011.
20. Chikhradze N.M., Japaridze L.A., Abashidze G.S. Properties of basalt plastics and of composites reinforced by hybrid fibers in operating conditions. Composites and their applications. Intech Open, 2012, pp. 243–268. DOI: 10.5772/48289.
21. Matykiewicz D., Lewandowski K., Dudziec B. Evaluation of thermomechanical properties of epoxy–basalt fibre composites modified with zeolite and silsesquioxane. Composite Interfaces, 2017, vol. 24, no. 5, pp. 489–498.
22. ACI 440.3R-04. Guide test methods for fiber-reinforced polymers (FRPs) for reinforcing or strengthening concrete structures. Farmington Hills: The American Concrete Institute, 2004, 40 p.
23. Akatenkov R.V., Aleksashin V.M., Anoshkin I.V., Babin A.N., Bogatov V.A., Grachev V.P., Kondrashov S.V., Minakov V.T., Rakov E.G. Criterion of the application efficiency of functionalized carbon nanotubes for improving the physico-mechanical properties of epoxy resins. Aviacionnye materialy i tehnologii, 2010, no. 3, pp. 22–27.
24. Korolev G.V., Mogilev M.M., Golikov I.V. Network polyacrylates. Microheterogeneous structures, physical networks, deformation and strength properties. Moscow: Khimiya, 1995, 275 p.
25. Kychkin A.K., Popov V.V., Kychkin A.A. Study of the influence of extremely cold climate on the properties of basalt-plastic rods. Izvestiya Samarskogo nauchnogo tsentra Rossiyskoy akademii nauk, 2020, vol. 22, no. 2 (94), pp. 25–31. DOI: 10.37313/1990-5378-2020-22-2-25-31.
26. Kychkin A.K., Popov V.V., Kychkin A.A. Climatic resistance of basalt-composite reinforcement. Nauka i obrazovanie, 2017, no. 1 (85), pp. 71–74.
27. Kablov E.N., Lebedev M.P., Startsev O.V., Golikov N.I. Climatic testing of materials, structural elements, machinery and equipment under conditions of extremely low temperatures. Proc. VI Eurasian Symposium on Strength of Materials and Machines for Cold Climate Regions EURASTRENCOLD–2013. Yakutsk, 2013, pp. 5–7.
The article presents the results of investigation of the following properties of fiber: geometric cross-sectional characteristics, crystal structure, mass fraction of the dressing, linear density and fiber density, geometric cross-sectional characteristics of microplastics, tensile strength, modulus of elasticity and elongation at break of the microplastics. For carbon fiber reinforced plastic (CFRP) the following properties were determined: ultimate strength and modulus of elasticity under tension and bending, compressive strength, in-plane and interlaminar shear strength, curved beam strength, transversal strength, residual compressive strength after impact, specific interlaminar fracture toughness under Mode I and Mode II loading conditions. At the same time the microstructures of carbon fiber plastics were studied.
2. Petrova A.P., Malysheva G.V. Adhesives, adhesive binders, and adhesive prepregs: a textbook. Ed. by E.N. Kablov. Moscow: VIAM, 2017, 472 p.
3. Isaev A.Yu., Rubtsova E.V., Kotova E.V., Sutyagin M.N. Research of properties of glues and glue binding, made with use of modern domestic component base. Trudy VIAM, 2021, no. 3 (97), paper no. 05. Available at: http://www.viam-works.ru (accessed: May 18, 2025). DOI: 10.18577/2307-6046-2021-0-3-58-67.
4. Bolshakov V.A., Antyufeeva N.V. Evaluation of the curing process model of the adhesive binder in prepreg. Aviation materials and technologies, 2023, no. 4 (73), paper no. 07. Available at: http://www.journal.viam.ru (accessed: May 20, 2025). DOI: 10.18577/2713-0193-2023-0-4-66-77.
5. Perov N.S. Design of polymeric materials on the molecular principles. II. The molecular mobility in the cross-linked complex systems. Aviacionnye materialy i tehnologii, 2017, no. 4 (49), pp. 30–36. DOI: 10.18577/2071-9140-2017-0-4-30-36.
6. Starkov A.I., Kutsevich K.E., Tyumeneva T.Yu., Petrova A.P. Low-combustibility adhesive prepregs designed for the manufacture of integral and three-layer honeycomb structures aircraft technology. Trudy VIAM, 2022, no. 5 (111), paper no. 04. Available at: http://www.viam-works.ru (accessed: May 18, 2025). DOI: 10.18577/2307-6046-2022-0-5-41-52.
7. Malysheva G.V., Grashchenkov D.V., Guzeva T.A. Evaluation of technological use efficiency of adhesives and glue prepregs in the manufacture of three-layer panels. Aviacionnye materialy i tehnologii, 2018, no. 4 (53), pp. 26–30. DOI: 10.18577/2071-9140-2018-0-4-26-30.
8. Mishkin S.I. Application of carbon fiber plastics in constructions of pilotless devices (review). Trudy VIAM, 2022, no. 5 (111), paper no. 08. Available at: http://www.viam-works.ru (accessed: May 20, 2025). DOI: 10.18577/2307-6046-2022-0-5-87-95.
9. Method for producing film adhesives and adhesive prepregs with a thermosetting polymer binder and a device for implementing it: pat. 2254172С1 Rus. Federation; appl. 31.05.04; publ. 20.06.05.
10. Garcia F.G., Soares B.G., Pita V.J.R.R. et al. Mechanical properties of epoxy networks based on DGEBA and aliphatic amines. Journal of Applied Polymer Science, 2007, no. 3, pp. 2047–2055. DOI: 10.1002/app.24895.
11. Brostow W., Goodman S.H., Wahrmund J. Handbook of Thermoset Plastics. 3rd ed. Plastics Design Library, 2014, pp. 191–252. DOI: 10.1016/978-1455731077.
12. Zhao X., Huang Z., Song P. et al. Curing kinetics and mechanical properties of fast curing epoxy resins with isophorone diamine and N-(3 aminopropyl)-imidazole. Journal of Applied Polymer Science, 2019, vol. 136, pp. 1–10. DOI: 10.1002/APP.47950.
13. Zhao X., Huang Z., Song P. et al. Curing kinetics and mechanical properties of epoxy resin /1-benzyl-2-methylimidazole / isophorone diamine system. Thermochimica Acta, 2020, vol. 690, p. 178657. DOI: 10.1016/j.tca.2020.178657.
14. Aufray M. Physico-chemical characterization of epoxy-amine / metal interphases, characterization of their constituents: Dissertation PhD. L’Institut National das Sciences Appliques de Lyon, 2005, 186 p. Available at: https://www.researchgate.net/publication/281600273 (accessed: May 18, 2025).
15. Sidorina A.I., Safronov A.M. Study of the resistance of carbon fibers to oxidation. Trudy VIAM, 2022, no. 7 (113), paper no. 06. Available at: http://www.viam-works.ru (accessed: May 20, 2025). DOI: 10.18577/2307-6046-2022-0-7-63-73.
16. Varshavsky V.Ya. Carbon Fibers. Moscow: Varshavsky V.Ya., 2005, 496 p.
17. Carbon Fibers and Carbon Composites. Ed. E. Fitzer. Moscow: Mir, 1988, 338 p.
18. Tagawa M., Ohmae N., Umeno M. et al. Surface Characterization of Carbon Fibers Exposed to 5 eV Energetic Atomic Oxygen Beam Studied by Wetting Force Measurements. Japanese Journal of Applied Physics, 1991, vol. 30, pp. 2134–2138.
The influence of the composition of the powder mixture and of the heat treatment modes upon the formation of thermodiffusional aluminium-zinc coatings has been investigated. It was found that at a temperature of 450°С the coatings have aluminium based outer layer, at a temperature of 380 °С the aluminum content in the zinc is about 10 %. The obvious influence of the composition of the mixture and of the heat treatment regime on the corrosion properties has not been established, the corrosion current is in the order of 10–6 А/cm2, and the corrosion potential is about 0,9 V in 3 % NaCl solution.
2. Kablov E.N., Startsev O.V., Medvedev I.M. Review of international experience on corrosion and corrosion protection. Aviacionnye materialy i tehnologii, 2015, no. 2 (35), pp. 76–87. DOI: 10.18577/2071-9140-2015-0-2-76-87.
3. Kablov E.N., Antipov V.V. The role of new generation materials in ensuring the technological sovereignty of the Russian Federation. Vestnik Rossiyskoy akademii nauk, 2023, vol. 93, no. 10, pp. 907–916.
4. Vinogradov S.S., Nikiforov A.A., Demin S.A., Chesnokov D.V. Protection against corrosion of carbon steel. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 242–263. DOI: 10.18577/2071-9140-2017-0-S-242-263.
5. Zakirova L.I., Laptev A.B. Properties of protective electroplating coatings for replacement of cadmium on steel fixing parts (review). Part 1. Morphology and corrosion resistance. Aviaсionnye materialy i tehnologii, 2020, no. 3 (60), pp. 37–46. DOI: 10.18577/2071-9140-2020-0-3-37-46.
6. Laptev A.B., Zakirova L.I., Degovets M.L. Properties of protective galvanic coatings for replacement of cadmium on steel fixing parts (review). Part 2. Hydrogen embrittlement and frictional characteristics. Aviacionnye materialy i tehnologii, 2020, no. 4 (61), pp. 35–40. DOI: 10.18577/2071-9140-2020-0-4-35-40.
7. Kablov E.N., Nikiforov A.A., Demin S.A., Chesnokov D.V., Vinogradov S.S. Advanced Coatings for Corrosion Protection of Carbon Steels. Stal, 2016, no. 6, pp. 70–81.
8. Proskurin E.V., Gorbunov N.S. Diffusion Zinc Coatings. Moscow: Metallurgiya, 1972, 248 p.
9. Kablov E.N., Khmeleva K.M., Zavarzin S.V., Kozlov I.A., Lonskii S.L. The effect of heat treatment on the characteristics of aluminium-zinc coatings obtained by the cold spray method. Aviation materials and technologies, 2022, no. 1 (66), paper no. 07. Available at: http://www.journal.viam.ru (ассеssed: April 07, 2025). DOI: 10.18577/2713-0193-2022-0-1-78-91.
10. Astalyukhina A.S., Pikalov E.S. Characteristics of modern methods of applying protective zinc coatings. Uspekhi sovremennogo estestvoznaniya, 2015, no. 11-1, pp. 11–14.
11. Evgenov A.G., Shurtakov S.V., Prager S.M., Malinin R.Yu. On the development of a universal calculation method for assessing the degradation of recycled metal powder materials, depending on the cyclicity of use in the selective laser melting process. Aviacionnye materialy i tehnologii, 2020, no. 4 (61), pp. 3–11. DOI: 10.18577/2071-9140-2020-0-4-3-11.
12. Composition of powder mixture for thermal diffusion treatment of steel products, method of thermal diffusion treatment of steel products: pat. RU2685841C1 Rus. Federation; appl. 15.10.18; publ. 23.04.19.
13. Zhigunov K.V. General patterns of diffusion saturation processes during thermochemical treatment. Mashinostroitel, 2004, no. 1, pp. 26–27.
14. Shen T.H., Tsai C.Y., Lin C.S. Growth behavior and properties of Zn–Al pack cementation coatings on carbon steels. Surface and Coatings Technology, 2016, vol. 306, pp. 455–461.
15. Mahdavi A. Corrosion Resistance of Boronized, Aluminized, and Chromized Thermal Diffusion-Coated Steels in Simulated High-Temperature Recovery Boiler Conditions. Coatings, 2018, vol. 8 (8), p. 257.
16. Sun A., Xiaoming S., Li H., Wang Q. Interface microstructure and mechanical properties of zinc–aluminum thermal diffusion coating on AZ31 magnesium alloy. Materials & Design, 2015, vol. 1004–1005, pp. 154–157.
17. Method of diffusion galvanizing of metal parts: pat. RU2593252C2 Rus. Federation; appl. 29.12.14; publ. 10.08.16.
18. Beckert M., Klemm H. Methods of metallographic etching. Trans. from Germ. 2nd ed., rev. and add. Moscow: Metallurgiya, 1988, 268 p.
19. Eliseev E.A., Sevalnev G.S., Doroshenko A.V., Druzhinina M.E. Influence of time-temperature parameters of long-duration exposure on transformations in structural steels (review). Aviation materials and technologies, 2021, no. 2 (63), paper no. 02. Available at: http://www.journal.viam.ru (accessed: 07.04.2025). DOI: 10.18577/2713-0193-2021-0-2-15-23.
20. Natrup F., Graf W. Sherardizing: corrosion protection of steels by zinc diffusion coatings. Thermochemical Surface Engineering of Steels. Elsevier Ltd., 2015, pp. 737–750.
21. Xue Q., Sun C., Yu J. et al. Microstructure evolution of a Zn-Al coating co-deposited on low-carbon steel by pack cementation. Journal of Alloys and Compounds, 2017, vol. 699, pp. 1012–1021.
22. Kovalenko V.S. Metallographic reagents: handbook. Moscow: Metallurgiya, 1981, 120 p.
23. Khmeleva K.M., Zavarzin S.V., Kozlov I.A., Lonskiy S.L. Effect of heat treatment on the corrosion properties of aluminum-zinc coatings obtained by the CGD method. Climate-2022: modern approaches to assessing the impact of external factors on materials and complex technical systems: Proc. VII All-Rus. sc. and tech. conf. Moscow: NRC «Kurchatov Institute» – VIAM, 2022, pp. 171–192.
The issues of improving the accuracy of visual corrosion monitoring are relevant and are not yet fully resolved. The main approaches to the quantitative assessment of corrosion damage to metal under paint coatings have been developed. The methods involving photography with a resolution over 30 megapixels and training the program on samples both without and with visible corrosion foci using modern computer vision technologies, neural network architectures and image processing methods will make it possible to automate and improve the accuracy of quantitative assessment of paint coatings damage.
2. Kablov E.N., Startsev O.V., Medvedev I.M., Panin S.V. Corrosive aggressiveness of the coastal atmosphere. Part 1. Influencing factors (review). Korroziya: materialy, zashchita, 2013, no. 12, pp. 6–18.
3. Choi K.Y., Kim S.S. Morphological analysis and classification of types of surface corrosion damage by digital image processing. Corrosion Science, 2005, vol. 47, no. 1, pp. 1–15.
4. Pidaparti R.M., Aghazadeh B.S., Whitfield A. et al. Classification of corrosion defects in NiAl bronze through image analysis. Corrosion Science, 2010, vol. 52, no. 11, pp. 3661–3666.
5. Codaro E.N., Nakazato R.Z., Horovistiz A.L. et al. An image processing method for morphology characterization and pitting corrosion evaluation. Materials Science and Engineering: A, 2002, vol. 334, pp. 298–306.
6. Codaro E.N., Nakazato R.Z., Ribeiro R.B. An image analysis study of pit formation on Ti–6Al–4V. Materials Science and Engineering: A, 2003, vol. 341, pp. 202–210.
7. Tao L., Song S., Zhang X. et al. Image analysis of atmospheric corrosion of field exposure high strength aluminium alloys. Applied Surface Science, 2008, vol. 254, no. 21, pp. 6870–6874.
8. Wang S., Song S. Image analysis of atmospheric corrosion exposure of zinc. Materials Science and Engineering: A, 2004, vol. 385, no. 1–2, pp. 377–381.
9. Vinogradov S.S., Terkulova Yu.A., Kurdyukova E.A., Nikiforov A.A. Wear-proof, antifriction and fretting-resistant coating based on Ni–B. Trudy VIAM, 2015, no. 1, paper no. 02. Available at: http://www.viam-works.ru (accessed: May 01, 2025). DOI: 10.18577/2307-6046-2015-0-1-2-2.
10. Kablov E.N. New generation materials and digital technologies for their processing. Vestnik RAN, 2020, vol. 90, no. 4, pp. 331–334.
11. Kablov E.N., Bakradze M.M., Gromov V.I., Voznesenskaya N.M., Yakusheva N.A. New high strength structural and corrosion-resistant steels for aerospace equipment developed by FSUE «VIAM» (review). Aviacionnye materialy i tehnologii, 2020, no. 1 (58), pp. 3–11. DOI: 10.18577/2071-9140-2020-0-1-3-11.
12. Jamaludin A.A., Imran S., Mahadi Md.A. et al. Computer Vision and Image Processing Approaches for Corrosion Detection. Journal of Marine Science and Engineering, 2023, vol. 11, аrt. 1954. DOI: 10.3390/jmse11101954.
13. Aijazi A.K., Malaterre L., Tazir M.L. et al. Detecting and analysing corrosion spots on the hull of large marine vessels using colored 3D lidar point clouds. International Society for Photogrammetry and Remote Sensing, 2016, vol. 1, pp. 153–160.
14. Petricca L., Moss T., Figueroa G., Broen S. Corrosion Detection Using A.I: A Comparison of Standard Computer Vision Techniques and Deep Learning Model. Computer Science & Information Technology, 2016, vol. 6, pp. 91–99. DOI: 10.5121/csit.2016.60608.
15. Idris S.A., Jafar F.A., Jamaludin Z., Blar N. Improvement of corrosion detection using vision system for pipeline inspection. Applied Mechanics and Materials, 2015, vol. 761, аrt. 1.
16. Ortiz A., Bonnin-Pascual F., Garcia-Fidalgo E. Visual inspection of vessels by means of a micro-aerial vehicle: an artificial neural network approach for corrosion detection. Robot 2015: Second Iberian Robotics Conference. Heidelberg: Springer, 2016, 320 р.
17. Igoe D., Parisi A.V. Characterization of the corrosion of iron using a smartphone camera. Instruments Science Technology, 2016, vol. 44 (2), pp. 139–147. DOI: 10.1080/10739149.2015.1082484.
18. Son H., Hwang N., Kim C. Rapid and automated determination of rusted surface areas of a steel bridge for robotic maintenance systems. Automation in Construction, 2014, vol. 42, pp. 13–24. DOI: 10.1016/j.autcon.2014.02.016.
19. Alkanhal T.A. Image processing techniques applied for pitting corrosion analysis. International Journal of Research in Engineering and Technology, 2014, vol. 3 (1), рр. 315–336.
20. Grengg C., Müller B., Staudinger C. et al. High-resolution optical pH imaging of concrete exposed to chemically corrosive environments. Cement and Concrete Research, 2019, vol. 116, pp. 231–237.
21. Laptev A.B., Kogan A.M., Nikolaev E.V. et al. Mathematical modeling of the processes of production and aging of polymer composite materials. Izvestiya Natsionalnoy akademii nauk Belarusi. Seriya fiziko-tekhnicheskikh nauk, 2024, vol. 69, no. 1, pp. 65–75. DOI: 10.29235/1561-8358-2024-69-1-65-75.
22. Startsev V.O., Kutsevich K.E., Khrulev K.A., Molokov M.V. Prediction of the surface temperature of samples of composite materials based on adhesive prepregs when exposed to climatic conditions. Klei. Germetiki. Tekhnologii, 2017, no. 9, pp. 24–31.
23. Laptev A.B., Zakirova L.I., Zagorskikh O.A., Pavlov M.R., Gorbovets M.A. Methods of investigation of the processes of corrosion-mechanical destruction and hydrogenation of metals (review). Part 2. Formation of passive films and hydrogen sulfide cracking of steels. Trudy VIAM, 2022, no. 5 (111), paper no. 12. Available at: http://www.viam-works.ru (accessed: May 20, 2025). DOI: 10.18577/2307-6046-2022-0-5-138-146.
24. Gorbovets M.A., Nikolaev E.V., Startsev V.O. Climate testing of Arctic materials. Part 1. Requirements for materials. Aviation materials and technologies, 2024, no. 4 (77), paper no. 12. Available at: http://www.journal.viam.ru (accessed: May 20, 2025). DOI: 10.18577/2713-0193-2024-0-4-180-188.
25. Gorbovets M.A., Nikolaev E.V., Startsev V.O. Climate testing of Arctic materials. Part 2. Test requirements. Aviation materials and technologies, 2025, no. 1 (78), paper no. 12. Available at: http://www.journal.viam.ru (accessed: May 20, 2025). DOI: 10.18577/2713-0193-2025-0-1-138-147.
Using laboratory samples as an example, a damage development model combining the assessment of the durability of the nucleation and propagation stages was tested. The LCF criterion based on the energy criterion determines the durability of the first stage of the kinetic diagram. The choice of the initial crack length for calculating the second stage is determined by the beginning of the linear section of the kinetic diagram. To calculate the residual durability, it is necessary to have a curve of the dependence of the SIF on the crack length for the geometry of the sample, the type of loading and the shape of the crack. The durability prediction error for the proposed model was 20 %.
2. Kablov E.N., Evgenov A.G., Petrushin N.V. Next-Generation Materials and Digital Additive Technologies for the Production of Resource Parts in FGUP VIAM: III. Adaptation and Creation of Materials. Russian Metallurgy (Metally), 2023, vol. 2023, pp. 743–751.
3. Kablov E.N., Evgenov A.G., Bakradze M.M. Next-Generation Materials and Digital Additive Technologies for the Production of Resource Parts in FGUP VIAM: I. Synthesis Materials and Technologies. Russian Metallurgy (Metally), 2022, vol. 2022, pp. 611–618.
4. Kablov E.N., Evgenov A.G., Petrushin N.V. On the Mechanism of Formation of the Fine Structure of a Track in Selective Laser Melting. Metal Science and Heat Treatment, 2023, vol. 65, pp. 104–115.
5. Beretta S. More than 25 years of extreme value statistics for defects: Fundamentals, historical developments, recent applications. International Journal of Fatigue, 2021, vol. 151, p. 106407. DOI: 10.1016/j.ijfatigue.2021.106407.
6. Movenko D.A., Shurtakov S.V. Microcrack formation and controlling in nickel superalloys processed by selective laser melting (review). Aviation materials and technologies, 2022, no. 2 (67), paper no. 04. Available at: http://www.journal.viam.ru (accessed: November 11, 2024). DOI: 10.18577/2713-0193-2022-0-2-43-51.
7. Rogers J., Elambasseril J., Wallbrink C. et al. The impact of surface orientation on surface roughness and fatigue life of laser-based powder bed fusion Ti-6Al-4V. Additive Manufacturing, 2024, vol. 85, p. 104149. DOI: 10.1016/j.addma.2024.104149.
8. Macoretta G., Romanelli L., Santus C. et al. Modelling of the surface morphology and size effects on fatigue strength of L-PBF Inconel 718 by comparing different testing specimens. International Journal of Fatigue, 2024, vol. 181, p. 108120. DOI: 10.1016/j.ijfatigue.2023.108120.
9. Rivolta B., Gerosa R., Panzeri D. Selective laser melted 316L stainless steel: Influence of surface and inner defects on fatigue behavior. International Journal of Fatigue, 2023, vol. 172, p. 107664. DOI: 10.1016/j.ijfatigue.2023.107664.
10. Demina Yu.A., Beletsky E.N., Bolotnikov A.I. Influence of surface condition on the mechanical properties and fracture kinetics of 316L steel samples obtained by selective laser melting. Deformatsiya i razrushenie materialov, 2024, no. 12, pp. 26–38. DOI: 10.31044/1814-4632-2024-12-26-38.
11. Kethamukkala K., Meng C., Chen J., Liu Y. Crack growth-based life prediction for additively manufactured metallic materials considering surface roughness. International Journal of Fatigue, 2023, vol. 176, p. 107914. DOI: 10.1016/j.ijfatigue.2023.107914.
12. Kryzhevich G.B., Filatov A.R. Model of elastoplastic deformation of aluminum alloys and criteria for low-cycle fatigue of structures. Trudy Krylovskogo gosudarstvennogo nauchnogo tsentra, 2018, special is. no. 2, pp. 85–95. DOI: 10.24937/2542-2324-2018-2-S-I-85-95.
13. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
14. Evgenov A.G., Bazyleva O.A., Golovlev N.A., Zaitsev D.V. Features of structure and property of alloys on the basis of Ni3Al intermetallic compound, half-scientists method SLM. Trudy VIAM, 2018, no. 12 (72), paper no. 03. Available at: http://www.viam-works.ru (accessed: December 10, 2024). DOI: 10.18577/2307-6046-2018-0-12-25-36.
15. Ospennikova O.G., Naprienko S.A., Medvedev P.N., Zaitsev D.V., Rogalev A.M. Features of the formation of the structural-phase state of the EP648 alloy during selective lase manufacture. Trudy VIAM, 2021, no. 8 (102), paper no. 01. Available at: http://www.viam-works.ru (accessed: January 21, 2025). DOI: 10.18577/2307-6046-2021-0-8-3-11.
16. Erasov V.S., Oreshko E.I. Fatigue tests of metal materials (review). Part 1. Main definitions, loading parameters, representation of results of tests. Aviacionnye materialy i tehnologii, 2020, no. 4 (61), pp. 59‒70. DOI: 10.18577/2071-9140-2020-0-4-59-70.
17. Erasov V.S., Oreshko E.I. Tests for fatigue of metal materials (review). Part 2. Analysis of the Basquin–Manson–Coffin equation. Methods of testing and processing of results. Aviation materials and technology, 2021, no. 1 (62), paper no. 08. Available at: http://www.journal.viam.ru (accessed: 10.12.2024). DOI: 10.18577/2713-0193-2021-0-1-80-94.
18. The electronic reference on modeling of structural mechanics. Comsol Multiphysics. Available at: https://www.comsol.com (accessed: December 01, 2024).
19. Kujawski D. A deviatoric version of the SWT parameter. International Journal of Fatigue, 2014, vol. 67, pp. 95–102. DOI: 10.1016/j.ijfatigue.2013.12.002.
20. Simo J.C., Hughes T.J.R. Computational Inelasticity. New York: Springer, 1998, 392 р.
21. Levenberg К. A method for the solution of certain nonlinear problems in least squares. Quarterly of Applied Mathematics, 1944, vol. 2, pp. 164–168.
22. Marquardt D.W. An algorithm for least-squares estimation of nonlinear parameters. Journal of the Society for Industrial and Applied Mathematics, 1963, vol. 11, pp. 431–441.
An improved method for determining the adhesive bond strength between carbon fibers and an epoxy matrix using a loop pull-out test is considered. This modified test method makes it possible to determine the adhesive strength of fibers in the form of bundles and control the pressure during the formation of an adhesive contact. The adhesive strength of two grades of domestic carbon fibers with an epoxy binder was determined using the loop pull-out test. After the test, the failure zone was examined using an optical microscope.
2. Rudskoy A.I. Technological heredity in the production and operation of structural materials. Tekhnologiya metallov, 2019, no. 2, pp. 2–10.
3. Davydova I.F., Kablov E.N., Kavun N.S. Heat-resistant non-flammable polyimide fiberglass laminates for aviation and rocketry products. Vse materialy. Entsiklopedicheskiy spravochnik, 2009, no. 7, pp. 2–11.
4. Kablov E.N. The role of fundamental research in the creation of new generation materials. Report of XXI Mendeleev Congress on General and Applied Chemistry: in 6 vols. St. Petersburg, 2019, vol. 4, p. 24.
5. Tkachuk A.I., Donetsky K.I., Terekhov I.V., Karavaev R.Yu. The use of thermosetting matrices for the manufacture of polymer composite materials by the non-autoclave molding methods. Aviation materials and technology, 2021, no. 1 (62), paper no. 03. Available at: https://www.journal.viam.ru (accessed: August 02, 2025). DOI: 10.18577/2713-0193-2021-0-1-22-33.
6. Khrulkov A.V., Donetsky K.I., Melnikov D.A., Klimenko O.N., Slavin A.V. Prepreg tack as a function of various parameters during laying out blanks of parts and samples from polymer composite materials. Trudy VIAM, 2025, no. 3 (145), paper no. 04. Available at: http://www.viam-works.ru (accessed: April 04, 2025). DOI: 10.18577/2307-6046-2025-0-3-33-46.
7. Startsev V.O., Antipov V.V., Slavin A.V., Gorbovets M.A. Modern domestic polymer composite materials for aviation industry (review). Aviation materials and technologies, 2023, no. 2 (71), paper no. 10. Available at: http://www.journal.viam.ru (accessed: April 02, 2025). DOI: 10.18577/2713-0193-2023-0-2-122-144.
8. Erasov V.S., Sibayev I.G. Scheme for the development and evaluation of properties of structural aviation composite materials. Aviation materials and technologies, 2023, no. 1 (70), paper no. 05. Available at: http://www.journal.viam.ru (accessed: April 02, 2025). DOI: 10.18577/2713-0193-2023-0-61-81.
9. Veshkin E.A. Technologies for non-autoclave molding of low-porosity polymer composite materials and large-sized structures made from them: thesis, Cand. Sc. (Tech.). Moscow, 2016, 146 p.
10. Kogan D.I., Chursova L.V., Panina N.N. et al. Promising polymer materials for structural composite products with energy-efficient molding mode. Plasticheskie massy, 2020, no. 3–4, pp. 52–54.
11. Tkachuk A.I., Lyubimova A.S., Kuznetcova P.A. Opportunities of the development of plant-based epoxy resins (review). Trudy VIAM, 2022, no. 8 (114), paper no. 04. Available at: http://www.viam-works.ru (accessed: April 02, 2025). DOI: 10.18577/2713-0193-2022-0-8-49-64.
12. Mukhametov R.R., Petrova A.P. Thermosetting binders for polymer composites (review). Aviacionnye materialy i tehnologii, 2019, no. 3 (56), pp. 48–58. DOI: 10.18577/2071-9140-2019-0-3-48-58.
13. Gulyayev A.I. Fiber-matrix adhesion strength measurement using nanoindentation (review). Trudy VIAM, 2019, no. 3 (75), paper no. 08. Available at: http://www.viam-works.ru (accessed: January 15, 2025). DOI: 10.18577/2307-6046-2019-0-3-68-78.
14. Zhandarov S.F., Pisanova E.V., Dovgyalo V.A. Measuring the adhesion of carbon and glass fibers to thermoplastic polymers by stretching a composite with a single fiber. Plasticheskie massy, 1997, no. 2, pp. 6–8.
15. Nelyub V.A., Guskov A.M., Belov P.A. Towards the design of carbon fiber reinforced plastics for tension taking into account the adhesion of the fiber to the matrix. Aktualnye problemy gumanitarnykh i estestvennykh nauk, 2014, no. 12-1, pp. 62–66.
16. Nelyub V.A. Experimental assessment of the modulus of elasticity of the adhesive bond of the epoxy matrix – carbon fiber with metal coating system. Sovremennye naukoemkie tekhnologii, 2019, no. 6, pp. 96–100.
17. Borodulin A.S., Nelyub V.A., Malysheva G.V. et al. Strength of the Polymer–Fiber Interface in Structural Composite Materials. Russian Metallurgy (Metally), 2023, vol. 13, pp. 2155–2159.
18. Gorbatkina Yu.A. Adhesive strength in polymer-fiber systems. Moscow: Khimiya, 1987, 192 p.
19. Gorbatkina Yu.A., Zhuravleva O.A., Ivanova-Mumzhieva V.G., Chebotarev V.P. The influence of the molecular weight of polysulfone on the adhesion of epoxy polysulfone binders to fibers. Plasticheskie massy, 2017, no. 5–6, pp. 14–17.
20. Sergeev A.Yu., Turusov R.A., Baurova N.I. Determination of the adhesive strength of joints using the example of testing samples by pulling fibers out of the matrix. Kompozity i nanostruktury, 2017, no. 1, pp. 52–62.
21. Oreshko E.I., Erasov V.S., Yakovlev N.O., Utkin D.A. Methods for determining the mechanical characteristics of materials using indentation (review). Aviation materials and technology, 2021, no. 1 (62), paper no. 10. Available at: http://www.journal.viam.ru (accessed: April 02, 2025). DOI: 10.18577/2713-0193-2021-0-1-104-118.
22. Erasov V.S., Sibayev I.G., Sutubalov A.I., Popkova E.A., Gorbovets M.A. Methods of mechanical testing to determine the strength of carbon fibers. Aviation materials and technologies, 2024, no. 2 (75), paper no. 11. Available at: http://www.journal.viam.ru (accessed: April 02, 2025). DOI: 10.18577/2713-0193-2024-0-2-137-148.
23. Gulyaev A.I., Erasov V.S., Oreshko E.I., Utkin D.A. Analysis of the destruction of carbon fiber when pushing out a multifilament cylinder. Plasticheskie massy, 2021, no. 1, pp. 28–35.
24. Hardiman M., Vaughan T.J., McCarthy C.T. The effect of fibre constraint in the nanoindentation of fibrous composite microstructures: A finite element investigation. Computational Materials Science, 2012, vol. 64, pp. 162–167.
25. Hu Z., Farahikia M., Delfanian F. Fiber bias effect on characterization of carbon fiber-reinforced polymer composites by nanoindentation testing and modeling. Journal of Composite Materials, 2015, vol. 49, p. 3359.
26. Bechel V.T., Sottos N.R. A comparison of calculated and measured debond lengths from fiber push-out tests. Composites Science and Technology, 1998, vol. 58, pp. 1727–1739.
27. Kotomin S.V., Obidin I.M., Pavlyuchkova E.A. Calculation of the strength of the adhesive bond of reinforcing fibers with polymers using the «loop» method. Mekhanika kompozitnykh materialov, 2022, vol. 58, no. 1, pp. 197‒212.
28. Kotomin S.V., Obidin I.M., Pavlyuchkova E.A. Scale factor when testing adhesive-adhesive joints of heteroaramid threads using the «loop» method. Klei. Germetiki. Tekhnologii, 2023, no. 11, pp. 35–40.
29. Zhelezina G.F., Tikhonov I.V., Chernykh T.E. et al. Third generation aramid fibers Rusar NT for reinforcing organotextolites for aviation purposes. Plasticheskie massy, 2019, no. 3–4, pp. 43–46.
30. Perepelkin K.E. Reinforcing fibers and fibrous polymer composites. St. Petersburg: Scientific principles and technologies, 2009, 380 p.
31. Donetskiy K.I., Karavayev R.Yu., Raskutin A.Ye., Dun V.A. Carbon fibers composite material on the basis of volume reinforcing triax braiding preformes. Trudy VIAM, 2019, no. 1 (73), paper no. 07. Available at: http://www.viam-works.ru (accessed: May 12, 2025). DOI: 10.18577/2307-6046-2019-0-1-55-63.
Polymer materials
Guseva M.A. Practical use of the rheological method in determining the conditions of production control and curing modes in the development of polymer binders
Salakhova R.K., Veshkin E.A., Apalkova A.V., Simirgina N.D. Study of cured hot melt adhesive epoxy binders by sclero- and microhardness methods
Composite materials
Barannikov A.А., Veshkin E.A., Shershak P.V., Galiullin An.R. Floor panels of the cabin and baggage and cargo compartment from polymer composite materials for modern domestic aircraft. Part 1. Diversity of requirements of domestic aircraft developers for cabin and baggage and cargo compartment floor panels from polymer composite materials
Kopylov A.V., Kovalenko A.V., Sidelnikov N.K.,Kurnosov A.O., Slavin A.V. Studying the characteristics of VPZ-25 cold-curing polymer filler and developing a technology for filling honeycomb panels for aircraft components
Vikulin V.V., Gvozdev S.S. Features of obtaining a highly heat-resistant low shrinkage material based on chemically strengthened silicon carbide
Potapov M.V., Buzenkov A.V., Morgunov R.B.,Piskorsky V.P. Magnets with high temperature stability for navigation
Donetskiy K.I., Karavaev R.Yu., Gracheva A.D., Saburov F.A., Tkachuk A.I., Sedov E.V., Shebbo M.F.M. Development of carbon and glass prepreg processed by vacuum molding with low curing temperature for the manufacture of rehabilitation equipment for the disabled
Ivanov D.D., Gubin A.M. Damage of carbon fiber reinforced polymer after low-energy impact: a review of failure mechanism and influence of operating conditions
Marakhovskiy P.S., Kychkin A.A., Skuridina N.S., Kychkin A.K., Gabyshev A.A. Basalt-plastic rod aging investigation in moderately warm and very cold climates after 10 years of exposure in open areas
Starkov A.I., Kutsevich K.E., Isaev A.Yu., Vahrusheva Ya.A., Putilina P.M. Investigation of the properties of high-strength standard modulus carbon fiber produced in China
Protective and functional
coatings
Sofronova D.A., Yaroshevskaya V.N., Koltsova M.A., Lonskii S.L., Knyazev A.V., Kurshev E.V. The implication of powder mixture composition and heat treatment duration on the properties of thermal diffusion aluminium-zinc coating
Laptev A.B., Matishov G.G., Shcherbakova A.V., Lapshin I.G., Gubaidullin I.M. Development of a method for quantitative assessment of paint coatings damage using computer image recognition
Material tests
Ryzhkov P.V., Gorbovets M.A. Application of energy criterion to evaluate fatigue life of nickel alloy obtained by selective laser melting
Ivankov R.R., Sidorina A.I., Kotomin S.V. Determination of the strength of the adhesive bond between Russian carbon fibers and an epoxy matrix using the «loop» pull-out test