Last number
№8 2025
The study is devoted to the analysis of structural instability of heat-resistant nickel-based superalloys with a high content of γ′-phase (about 50 % and higher) obtained by selective laser melting (SLM). Two new alloy compositions differing only in Re and C content were used for the experiments. The results show that both alloys are crack-free after SLM, while exhibiting a pronounced cellular microstructure. In alloy 1, columnar grains with uniform distribution of γ′-particles (150–250 nm) prevail, which provides structural stability, the proportion of γ′-phase in it is 48±2 %. Alloy 2, despite maintaining a high proportion of γ′-phase (55±3 %) after heat treatment, is prone to the formation of topologically closed packed phases due to segregation of Re and residual stresses. The different amount of γ′-phase in the alloys is explained by the difference in their chemical composition. Calculations of the lattice parameters revealed the dependence of the misfit of γ/γ′-phases on the composition: in sample 2 with lower misfit (0,29 %) the particles have morphology close to cubic, while in sample 1 (misfit 0,37 %) the particles are close to spherical. The morphology and misfit are related to the influence of Re. The anisotropy of the γ′-particle shape in the longitudinal section of sample 2 is related to the directional heat flux during SLM.
2. Pollock T.M., Tin S. Nickel-Based Superalloys for Advanced Turbine Engines: Chemistry, Microstructure and Properties. Journal of Propulsion and Power, 2006, vol. 22 (2), pp. 361–374. DOI: 10.2514/1.18239.
3. Logunov A.V. Heat-resistant nickel alloys for blades and disks of gas turbines. Moscow: Moskovskie uchebniki, 2018, 592 p.
4. Kablov E.N., Evgenov A.G., Petrushin N.V., Bazyleva O.A., Mazalov I.S., Dynin N.V. New generation materials and digital additive technologies for the production of resource parts of FSUE VIAM. Part 3. Adaptation and creation of materials. Elektrometallurgiya, 2022, no. 4, pp. 15–25.
5. Evgenov A.G., Shurtakov S.V., Prager S.M., Malinin R.Yu. On the development of a universal calculation method for assessing the degradation of recycled metal powder materials, depending on the cyclicity of use in the selective laser melting process. Aviacionnye materialy i tehnologii, 2020, no. 4 (61), pp. 3–11. DOI: 10.18557/2071-9140-2020-0-4-3-11.
6. Ospennikova O.G., Naprienko S.A., Medvedev P.N., Zaitsev D.V., Rogalev A.M. Features of the formation of the structural-phase state of the EP648 alloy during selective lase manufacture. Trudy VIAM, 2021, no. 8 (102), paper no. 01. Available at: http://www.viam-works.ru (accessed: December 13, 2024). DOI: 10.18557/2307-6046-2021-0-8-3-11.
7. Sukhov D.I., Nerush S.V., Efimochkin I.Yu., Karachevchev F.N., Bogachev I.A. Production of MMC based on VZh159 alloy by selective laser melting. Aviation materials and technologies, 2021, no. 2 (63), paper no. 07. Available at: http://www.journal.viam.ru (accessed: December 13, 2024). DOI: 10.18577/2713-0193-2021-0-2-62-72.
8. Movenko D.A., Shurtakov S.V. Microcrack formation and controlling in nickel superalloys processed by selective laser melting (review). Aviation materials and technologies, 2022, no. 2 (67), paper no. 04. Available at: http://www.journal.viam.ru (accessed: December 13, 2024). DOI: 10.18577/2713-0193-2022-0-2-43-51.
9. Min P.G., Vadeev V.E., Sukhov D.I., Raevskikh A.N. Structure and mechanical properties of corrosion-resistant heat-resistant nickel alloy obtained by selective laser melting. Materialovedenie, 2021, no. 12, pp. 3–10. DOI: 10.31044/1684-579Х-2021-0-12-3-10.
10. Vogel F., Cheng J., Liang S.B. et al. Formation and evolution of hierarchical microstructures in a Ni-based superalloy investigated by in situ high-temperature synchrotron X-ray diffraction. Journal of Alloys and Compounds, 2022, vol. 919, art. 165845. DOI: 10.1016/j.jallcom.2022.165845.
11. Wang X., Carter L.N., Pang B. et al. Microstructure and yield strength of SLM-fabricated CM247LC Ni-Superalloy. Acta Materialia, 2017, vol. 128, pp. 87–95. DOI: 10.1016/j.actamat.2017.02.007.
12. Won K.-U., Kim J.-Y., Yun J.-Y. et al. Fabrication of the CM247LC Ni-based superalloy using metal-material extrusion additive manufacturing and its microstructure and mechanical properties. Powder Metallurgy, 2025, vol. 68 (3), pp. 238–251. DOI: 10.1177/00325899251339695.
13. Radavich J., Furrer D., Carneiro T., Lemsky J. The Microstructure and Mechanical Properties of EP741NP Powder Metallurgy Disc Material. Proceedings of the International Symposium on Superalloys. Pittsurg: TSM (The Minerals, Metals and Materials Society), 2008, pp. 63–72. DOI: 10.7449/2008/Superalloys_2008_63_72.
14. Ioannidou C., König H.-H., Semjatov N. et al. In-situ synchrotron X-ray analysis of metal Additive Manufacturing: Current state, opportunities and challenges. Materials & Design, 2022, vol. 219, art. 110790. DOI: 10.1016/j.matdes.2022.110790.
15. Carter L.N., Martin C., Withers P.J., Attallah M.M. The influence of the laser scan strategy on grain structure and cracking behaviour in SLM powder-bed fabricated nickel superalloy. Journal of Alloys and Compounds, 2014, vol. 615, pp. 338–347. DOI: 10.1016/j.jallcom.2014.06.172.
16. Zhao Y., Li K., Gargani M., Xiong W. A comparative analysis of Inconel 718 made by additive manufacturing and suction casting: Microstructure evolution in homogenization. Additive Manufacturing, 2020, vol. 36, art. 101404. DOI: 10.1016/j.addma.2020.101404.
17. Zhao Y., Zhao X., Qi X. et al. The origin of the straight propagation of the σ phase in a Ni-based single crystal superalloy at elevated temperature. Acta Materialia, 2024, vol. 275, art. 120056. DOI: 10.1016/j.actamat.2024.120056.
18. Chou K.-C., Sridhar S., Pal U.B. Activities and ternary phase diagrams. Calphad, 1997, vol. 21, no. 4, pp. 483–495. DOI: 10.1016/S0364-5916(98)00006-6.
19. Kalentics N., Ortega M. de Seijas V., Griffiths S. et al. 3D laser shock peening – A new method for improving fatigue properties of selective laser melted parts. Additive Manufacturing, 2020, vol. 33, art. 101112. DOI: 10.1016/j.addma.2020.101112.
20. Wang B., Castellana J., Melkote S.N. A hybrid post-processing method for improving the surface quality of additively manufactured metal parts. CIRP Annals, 2021, vol. 70, no. 1, pp. 175–178. DOI: 10.1016/j.cirp.2021.03.010.
21. Fertig R.S., Baker S.P. Dislocation dynamics simulations of dislocation interactions and stresses in thin films. Acta Materialia, 2010, vol. 58, no. 15, pp. 5206–5218. DOI: 10.1016/j.actamat.2010.06.001.
22. Ramsperger M., Singer R.F., Körner C. Microstructure of the Nickel-Base Superalloy CMSX-4 Fabricated by Selective Electron Beam Melting. Metallurgical and Materials Transactions: A. Physical metallurgy and materials science, 2016, vol. 47, pp. 1469–1480. DOI: 10.1007/s11661-015-3300-y.
23. Kenel C., De Luca A., Joglekar S.S. et al. Evolution of Y2O3 dispersoids during laser powder bed fusion of oxide dispersion strengthened Ni–Cr–Al–Ti γ/γʹ superalloy. Additive Manufacturing, 2021, vol. 47, p. 102224. DOI: 10.1016/j.addma.2021.102224.
24. Xinxu L., Chonglin J., Yong Z. et al. Segregation and homogenization for a new nickel-based superalloy. Vacuum, 2020, vol. 177, art. 109379. DOI: 10.1016/j.vacuum.2020.109379.
25. Smith T.M., Esser B.D., Antolin N. et al. Segregation and η phase formation along stacking faults during creep at intermediate temperatures in a Ni-based superalloy. Acta Materialia, 2015, vol. 100, pp. 19–31. DOI: 10.1016/j.actamat.2015.08.053.
26. Zhao Y., Chang Y., Li X. et al. P phase precipitation and strengthening behavior of a novel polycrystalline Ni3Al-based intermetallic alloy at 1100 °C. Acta Materialia, 2024, vol. 265, art. 119601. DOI: 10.1016/j.actamat.2023.119601.
27. Rettig R., Heckl A., Singer R.F. Modeling of Precipitation Kinetics of TCP-Phases in Single Crystal Nickel-Base Superalloys. Advanced Material Research, 2011, vol. 278, pp. 180–185. DOI: 10.4028/www.scientific.net/amr.278.180.
28. DebRoy T., Wei H.L., Zuback J.S. et al. Additive manufacturing of metallic components – Process, structure and properties. Progress in Materials Science, 2018, vol. 92, pp. 112–224. DOI: 10.1016/j.pmatsci.2017.10.001.
The paper presents technological methods for manufacturing disks with functionally gradient characteristics from heat-resistant nickel alloys for parts of aircraft gas turbine engines. As a result of the analysis of the works, it has been determined that such materials can be obtained by pressure welding during hot processing, the technology of granule metallurgy and regulated recrystallization of grains as a result of heat treatment. One of the alternative methods for obtaining such materials is the manufacture of metal composite materials.
2. Kablov E.N., Lomberg B.S., Ospennikova O.G. Creation of Modern Heat-Resistant Materials and Technologies for Their Production for Aviation Engine Building. Krylya Rodiny, 2012, no. 3–4, pp. 34–38.
3. Echin A.B., Bondarenko Yu.A., Kolodyazhny M.Yu., Surova V.A. Review of perspective high-temperature superalloys based on refractory non-metallic materials for production of gas turbine engines. Aviation materials and technologies, 2023, no. 3 (72), paper no. 03. Available at: http://www.journal.viam.ru (accessed: December 10, 2024). DOI: 10.18577/2713-0193-2023-0-3-30-41.
4. Min P.G., Vadeev V.E. The development and introduction into serial production of the new superalloy VZhL125 for the advanced aviation engines vanes. Aviation materials and technologies, 2023, no. 1 (70), paper no. 01. Available at: http://www.journal.viam.ru (accessed: December 10, 2024). DOI: 10.18577/2713-0193-2023-0-1-3-16.
5. Narsky A.R., Deynega G.I., Kuzmina I.G. Obtaining a fine-grained structure of castings from nickel superalloys using a cobalt aluminate modifier. Aviation materials and technologies, 2023, no. 3 (72), paper no. 01. Available at: http://www.journal.viam.ru (accessed: December 10, 2024). DOI: 10.18577/2713-0193-2023-0-3-3-14.
6. Kolyadov E.V., Visik E.M., Gerasimov V.V., Bityutskaya O.N. Features of the morphology of the structure of nickel superalloy depending on the values of the axial and radial temperature gradients at the crystallization front. Aviation materials and technologies, 2024, no. 2 (75), paper no. 02. Available at: http://www.journal.viam.ru (accessed: December 10, 2024). DOI: 10.18577/2713-0193-2024-0-2-15-24.
7. Garibov G.S., Grits N.M. Ways to create new high-heat-resistant granulated alloys for promising aircraft engines. Zhurnal tekhnologiya legkikh splavov, 2012, no. 3, pp. 35–44.
8. Egorov D.A. Research and development of production technology for turbine disk blanks with functionally graded characteristics from granules of heat-resistant nickel alloys: thesis, Cand. Sc. (Tech.). Moscow, 2016, 221 p.
9. Bocharova A.A., Grits N.M., Kazberovich A.M. Bimetallic disk blanks with functionally graded properties from promising granulated heat-resistant nickel alloys. Zhurnal tekhnologiya legkikh splavov, 2013, no. 4, pp. 135‒143.
10. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
11. Valitov V.A., Akhunova A.Kh., Galieva E.V. et al. The stress-strain state and the microstructure in disk-shaft solid-phase bonds of dissimilar nickel-based alloys. Journal Letters on materials, 2017, vol. 7 (2), pp. 180–185. DOI: 10.22226/2410-3535-2017-2-180-185.
12. Akhunova A.Kh., Galieva E.V., Povarova K.B., Bazyleva O.A., Valitov V.A., Dmitriev S.V., Drozdov A.A., Arginbaeva E.G. Modeling of pressure welding of dissimilar cast and deformable nickel-based alloys under conditions of bulk plastic flow. Fundamentalnye problemy sovremennogo materialovedeniya, 2016, vol. 13, no. 1, pp. 131–135.
13. Valitov V.A., Povarova K.B., Bazyleva O.A., Drozdov A.A., Ovsepyan S.V., Galieva E.V. Research of solid compound formation during thermal deformation effect on intermetallic Ni3Al-alloy with a heat-resistant alloy EP975 and influence on the physical, mechanical and performance properties. Materials Science Forum, 2016, vol. 838–839, pp. 523–527. DOI: 10.4028/www.scientific.net/MSF.838-839.523.
14. Povarova K.B., Valitov V.A., Drozdov A.A., Bazyleva O.A., Galieva E.V., Arginbaeva E.G. Formation of gradient structures in the joint zone of deformable nickel and single-crystal intermetallic alloy during thermodiffusion pressure welding and heat treatment. Metally, 2018, no. 1, pp. 48–57.
15. Galieva E.V., Povarova K.B., Drozdov A.A., Valitov V.A. Structure and properties of solid-phase joints of deformable nickel alloy EP975 and single-crystal intermetallic alloy VKNA-25 obtained by pressure welding with a deformation degree of 24% under conditions of superplasticity of the EP975 alloy. Metally, 2018, no. 6, pp. 64–72.
16. Method for manufacturing a bimetallic product: pat. 2608118 Rus. Federation; appl. 15.07.15; publ. 13.01.17.
17. Valitov V.A., Mulyukov R.R., Lomberg B.S., Ospennikova O.G., Ovsepyan S.V., Utyashev F.Z., Bubnov M.V. Effect of superplastic deformation and heat treatment on the structure and properties of gas turbine engine disks made of heterophase nickel alloys. Reports All-Rus. Conf. «Modern heat-resistant deformable nickel and intermetallic alloys, methods of their processing». Moscow: VIAM, 2015, p. 3.
18. Povarova K.B., Valitov V.A., Ovsepyan S.V., Drozdov A.A., Bazyleva O.A., Valitova E.V. Study of properties and selection of alloys for disks with blades («Bliskov») and the method of their connection. Metally, 2014, no. 5, pp. 61–70.
19. Multi-alloy turbine rotor disk: pat. 4900635 US; appl. 09.02.89; publ. 13.02.90.
20. Method for making a compositionally graded gas turbine disk: pat. 7537725 В2 US; appl. 19.09.05; publ. 26.05.09.
21. Method for producing a gas turbine engine disk: pat. 2536124 C1 Rus. Federation; appl. 21.08.13; publ. 20.12.14.
22. Method for producing a bimetallic disk of a gas turbine engine: pat. 537335 C1 Rus. Federation; appl. 24.06.13; publ. 01.01.15.
23. Method for producing a variable structure over the cross-section of a powder blank: pat. 2455115 C1 Rus. Federation; appl. 17.02.11; publ. 10.07.12.
24. Garibov G.S., Grits N.M., Fedorenko E.A. еt al. Study of the possibility of manufacturing gas turbine engine disk blanks with variable structure and functional-gradient properties from granules of different fractions. Tekhnologiya legkikh splavov, 2011, no. 4, pp. 41–49.
25. Powder/wrought alloy composite turbine disc: pat. 7137787 US; appl. 17.06.04; publ. 21.11.06.
26. Method of forming a rotor: pat. 4680160 US; appl. 11.12.85; publ. 14.07.87.
27. Method of producing turbine disks: pat. 4608094 US; appl. 18.12.84; publ. 26.08.86.
28. Pravikova L.A., Rudnitsky E.N., Eremenko V.I., Mozolevskaya O.A. Features of the phase composition and microstructure of the transition zone between the constituent alloys in combined blanks made of heat-resistant nickel alloys. Reports 3rd All-Union Conf. on Granule Metallurgy. Moscow: VILS Publ. House, 1991, pp. 120–121.
29. Shivarnov N.S. On the role of the transition zone in bimetallic parts made of granulated and monolithic materials obtained by HIP technology. Tekhnologiya legkikh splavov, 2017, no. 2, pp. 34–42.
30. Method of forming fatigue crack resistant nickel base superalloys: pat. 4816084 US; appl. 15.09.86; publ. 28.03.89.
31. Method of making superalloy turbine disks having graded coarse and fine grains: pat. 5312497 US; appl. 31.12.91; publ. 17.05.95.
32. Method of making high strength superalloy components with graded properties: pat. 4820358 US; appl. 01.04.87; publ. 11.04.89.
33. Method of making superalloy turbine disks having graded coarse and fine grains: pat. 5312497 US; appl. 31.12.91; publ. 17.05.94.
34. Heat treatment devices and method of operation thereof to produce dual microstructure superalloy disks: pat. 6660110 US; appl. 08.04.02; publ. 09.12.03.
35. Gayda J., Furrer D. Dual-Microstructure Heat Treatment. Advanced Materials and Processes, 2003, vol. 161, no. 7, pp. 36–39.
36. Gayda J., Gabb T., Kantzos P., Furrer D. Low cost heat treatment process for production of dual microstructure superalloy disks. Cleveland, OH: NASA Glenn Research Center, 2003, pp. 1–9.
37. Gabb T.P., Kantzos P.T., Telesamn J. et al. Fatigue resistance of the grain size transition zone in a dual microstructure superalloy. International journal of fatigue, 2011, vol. 33, no. 3, pp. 414–426.
38. Lemsky J. Assessment of NASA Dual Microstructure Heat Treatment Method for Multiple Forging Batch Heat Treatment. Cleveland, OH: NASA Glenn Research Center, 2004, pp. 1–9.
39. Gayda J. Dual microstructure heat treatment of a Nickel-base disk alloy assessed. Available at: http://ntrs.nasa.gov/search.jsp?R=200501997532018-09-12T20:15:10+00:00z (accessed: December 10, 2024).
40. Smarsly W. Aero Engine Materials – MTU Aero Engines. Available at: https://www.yumpu.com/en/document/view/11154884/aero-engine-materials-mtu-aero-engines (accessed: December 10, 2024).
The article presents the details of the investigation and of the production of the welding consumable for repairing foundry heat-resistant nickel alloys ВЖЛ718 and ВЖЛ220 cast workpieces. The research of mechanical properties from casting material before and after the repairing is conducted. The results of the research of filler material mechanical properties are discussed. The optimized chemical composition of the filler material is determined and is named Св-ВЖ183.
2. Kablov E.N., Evgenov A.G., Bakradze M.M., Nerush S.V., Krupnina O.A. New generation materials and digital additive technologies for the production of resource parts of FSUE VIAM. Part 2. Compensation and control of deviations, GIP and heat treatment. Elektrometallurgiya, 2022, no. 2, pp. 2–12.
3. Kablov E.N., Evgenov A.G., Petrushin N.V., Bazyleva O.A., Mazalov I.S., Dynin N.V. New generation materials and digital additive technologies for the production of resource parts of FSUE VIAM. Part 3. Adaptation and creation of materials. Elektrometallurgiya, 2022, no. 4, pp. 15–25.
4. Kablov E.N., Evgenov A.G., Petrushin N.V., Bazyleva O.A., Mazalov I.S. New generation materials and digital additive technologies for the production of resource parts of FSUE VIAM. Part 4. Development of heat-resistant materials. Elektrometallurgiya, 2022, no. 5, pp. 8–19.
5. Knyazev A.E., Min P.G. Comparison of characteristics of metal powder compositions of VZhL718 alloy, manufactured by PREP and VEGA methods, after selective laser melting. Metallurg, 2024, no. 4, pp. 48–58.
6. Min P.G., Vadeev V.E., Kolesnikov S.I., Chemov D.A. The effect of impurities on mechanical and operational properties of the cast nickel-base superalloy VZhM200. Trudy VIAM, 2024, no. 10 (140), paper no. 02. Available at: http://www.viam-works.ru (accessed: May 15, 2025). DOI: 10.18577/2307-6046-2024-0-10-13-23.
7. Min P.G., Vadeev V.E., Rogalev A.M., Knyazev A.E. Study of chemical composition, structure and mechanical properties of EP648 alloy at various stages of additive manufacturing. Materialovedenie, 2018, no. 12, pp. 17–22.
8. Mostafa A., Rubio I.P., Brailovski V. et al. Structure, Texture and Phases in 3D Printed IN718 Alloy Subjected to Homogenization and HIP Treatments. Metals, 2017, no. 7, pp. 196–219. DOI: 10.3390/met7060196.
9. El-Bagoury N., Hessien M.M., Alsawat M. et al. Optimization of Microstructure and Mechanical Properties of Hipped Inconel 718 by Various Heat Treatment Processes. Metallography, Microstructure, and Analysis, 2019, vol. 8, pp. 642–655. DOI: 10.1007/s13632-019-00568-7.
10. Loshchinin Yu.V., Pakhomkin S.I., Razmakhov M.G. Phase transformation temperatures and calorimetric analysis of powder compositions of nickel-based superalloys. Aviacionnye materialy i tehnologii, 2020, no. 1 (58), pp. 79–85. DOI: 10.18577/2071-9140-2020-0-1-79-85.
11. Gorbovets M.A., Khodinev I.A., Monin S.A. Influence of average cycle stress on characteristics of low-cycle fatigue of high-temperature nickel alloy VZh175. Aviation materials and technologies, 2023, no. 1 (70), paper no. 10. Available at: http://www.journal.viam.ru (accessed: May 15, 2025). DOI: 10.18577/2713-0193-2023-0-1-126-136.
12. Narsky A.R., Deynega G.I., Kuzmina I.G. Obtaining a fine-grained structure of castings from nickel superalloys using a cobalt aluminate modifier. Aviation materials and technologies, 2023, no. 3 (72), paper no. 01. Available at: http://www.journal.viam.ru (accessed: May 15, 2025). DOI: 10.18577/2713-0193-2023-0-3-3-14.
13. Echin A.B., Bondarenko Yu.A., Kolodyazhny M.Yu., Surova V.A. Review of perspective high-temperature superalloys based on refractory non-metallic materials for production of gas turbine engines. Aviation materials and technologies, 2023, no. 3 (72), paper no. 03. Available at: http://www.journal.viam.ru (accessed: May 15, 2025). DOI: 10.18577/2713-0193-2023-0-3-30-41.
14. Nickel based filler material: pat. 2373038 Rus. Federation; appl. 02.06.08; publ. 20.11.09.
15. Nickel based filler material: pat. 2304499 Rus. Federation; appl. 10.11.05; publ. 20.08.07.
16. Heat-resistant nickel-based alloy and product made from this alloy: pat. 2285059 Rus. Federation; appl. 24.03.05; publ. 10.10.06.
17. Heat-resistant weldable nickel-based alloy and a product made from this alloy: pat. 2301277 Rus. Federation; appl. 20.12.05; publ. 20.06.07.
18. Weldable oxidation resistant nickel-iron-chromium-aluminium alloy: pat. 8506883 US; appl. 12.12.07; publ. 18.06.09.
19. Nickel-chromium-iron-aluminium alloy: pat. 4671931 US; appl. 11.05.84; publ. 09.06.87.
20. Superalloy repair welding using multiple alloy powders: pat. 8618434 US; appl. 22.03.10; publ. 22.09.11.
21. Repaired turbine exhaust strut heat shield vanes and repair methods: pat. 8083465 US; appl. 05.09.08; publ. 11.03.10.
The article examines the optimization of heat treatment for producing thin-walled pipes via cold rolling from high-strength corrosion-resistant steel 15Kh15N4AGM-Sh. The high strength of this steel after quenching (σв > 1700 MPa) makes deformation difficult. It was established that annealing the steel leads to significant embrittlement. Tempering at 600–700 °C forms a highly tempered martensite structure, reducing strength (σ0,2 ≈ 990 MPa at 600 °C) while maintaining ductility (δ5 ≈ 19 %). Based on the research results, it was determined that the best reduction in strength characteristics without a significant decrease in ductility occurs in temperature range 630–660 °С.
2. Frolov A.V., Kravchenko A.S. Development of a technology for welding thin-walled pipes with a pulsed arc. Reports II Int. Sci. and Pract. Conf. of young scientists «Science, innovation and technology: from ideas to implementation»: in 2 parts. Komsomolsk-on-Amur: Komsomolsk-on-Amur State Univ., 2022, part 2, pp. 181–185.
3. Smertin S.A., Zemtsov M.I. Analysis of the possibility of manufacturing semi-finished products – thin-walled pipes bent to the required angle. Coll. of materials of the All-Rus. Annual Sci.-Pract. Conf. «Society, science, innovation (NPK-2014)». Kirov: Vyatka State Univ., 2014, pp. 1387–1391.
4. Zhitelev D.A., Pozdnyakov T.D., Sulegin D.A., Naumov V.N. Study of experimental and numerical behavior of thin-walled pipes under quasi-static loading mode. Proceedings of NSTU named after R.E. Alekseev, 2022, no. 4 (139), pp. 85–96.
5. Priymak E.Yu., Stepanchukova A.V. Formation of the structure of steels for the production of drill pipes by friction welding. XIII Int. Sci.-Tech. Ural school-seminar of young scientists-metallologists. II Int. Sci. school for youth «Materials science and metallophysics of light alloys». Ekaterinburg, 2012, pp. 3–4.
6. Pugacheva T.M., Mikheev D.A. Materials science study of drill pipe lock joints after surfacing using various fluxes. Bulletin of the Belgorod State Technological University named after V.G. Shukhov, 2018, no. 6, pp. 97–102.
7. Kablov E.N., Bakradze M.M., Gromov V.I., Voznesenskaya N.M., Yakusheva N.A. New high strength structural and corrosion-resistant steels for aerospace equipment developed by FSUE «VIAM» (review). Aviacionnye materialy i tehnologii, 2020, no. 1 (58), pp. 3–11. DOI: 10.18577/2071-9140-2020-0-1-3-11.
8. Bannykh I.O., Ashmarin A.A., Betzofen S.Ya. et al. Optimization of chemical composition and parameters of thermomechanical processing of TRIP steels based on new methods of X-ray tensometry, texture and phase analysis. Metally, 2022, no. 6, pp. 66–72.
9. Udod K.A., Trofimenko N.N., Romanenko D.N., Sevalnev G.S. Prospects for the development of constructional aluminium-doped steels. Aviacionnye materialy i tehnologii, 2019, no. 3 (56), pp. 9–13. DOI: 10.18577/2071-9140-2019-0-3-9-13.
10. Serebryakov A.V. Research, development of technology and mastering the production of precision pipes made of corrosion-resistant steel: thesis, Cand. Sc. (Tech.). Ekaterinburg: Ural State Tech. Univ. - UPI, 2007, 160 p.
11. Atanasov V.R., Panchenko S.A. Development of scientific foundations and technological methods for increasing the corrosion resistance of pipes made of duplex steels. Stroitelstvo. Materialovedenie. Mashinostroenie. Ser.: Starodubovskie chteniya, 2015, no. 80, pp. 18–26.
12. Bolshakov V.I., Dergach T.A., Sukhomlin G.D., Panchenko S.A. Application of grain boundary design to increase the corrosion resistance of pipes made of ferritic-austenitic steels. Korroziya: materialy, zashchita, 2014, no. 7, pp. 20–26.
13. Filisteev V.G., Steklova E.O., Berezovsky A.V. Weldability of Duplex Steels for Transporting Aggressive Environments Containing Hydrogen Sulfide and Carbon Dioxide. Expositsiya Neft Gaz, 2023, no. 2, pp. 70–75.
14. Kondratenko L.A., Terekhov V.M., Mironova L.I. Analysis of Some Problems of Mechanical Fastening of Bimetallic Heat Exchange Tubes in Power Plants. Problemy mashinostroyeniya i avtomatizatsii, 2017, no. 3, pp. 83–88.
15. Nikitin K.N., Osadchiy V.Ya., Safyanov A.V. еt al. Development and mastering of import-substituting technology for the production of seamless bimetallic pipes for nuclear power engineering. Stal, 2017, no. 7, pp. 44–50.
16. Komarov A.I., Nikitin K.N., Safyanov A.V. et al. Improving the technology for the production of seamless bimetallic pipes for pipelines of nuclear power plants. Chernye metally, 2017, no. 9, pp. 68–73.
17. Krasnykh V.I., Zhdanova A.S., Garanzha T.V. Precision alloys with specified elastic properties: the need for a new life. Stal, 2015, no. 7, pp. 60–66.
18. Korol R.M., Mironenko A.Yu., Mironenko M.A. Features of the manufacturing technology of high-quality precision tubes from a foreign analogue of the molybdenum alloy MChVP. Metallurgicheskaya i gornorudnaya promyshlennost, 2017, no. 3, pp. 43–47.
19. Kravchenko O.V. Features of the main technological and design parameters of the stationary stand of the HPTR mill for rolling precision heat exchange tubes. HERALD of the Donbass State Engineering Academy, 2019, no. 2 (46), pp. 64–67.
20. Ushakov A.S., Kondratov L.A. On the production of steel pipes. Stal, 2018, no. 7, pp. 33–43.
21. Sevalnev G.S., Klimov V.S., Vlasov I.I., Mazalova T.A. Study of mechanical properties of Fe–Cr–Ni–Co–Mo steel 3D-printed samples after various types of processing. Trudy VIAM, 2025, no. 6 (148), paper no. 01. Available at: http://www.viam-works.ru (accessed: June 22, 2025). DOI: 10.18577/2307-6046-2025-0-6-3-12.
22. Eliseev E.A., Karpukhin S.D., Druzhinina M.E. The effect of nickel on the structure of the nitrided layer of low-carbon martensitic steels. Aviation materials and technologies, 2025, no. 1 (78), paper no. 02. Available at: http://www.journal.viam.ru (accessed: July 01, 2025). DOI: 10.18577/2713-0193-2025-0-1-18-27.
23. Zakalashnyy A.V., Denisova V.S., Vlasova O.V., Solntsev S.S. Technological aspects of obtaining frit of heat-resistant enamel for the protection of corrosion-resistant steels. Trudy VIAM, 2021, no. 8 (102), paper no. 05. Available at: http://www.viam-works.ru (accessed: July 01, 2025). DOI: 10.18577/2307-6046-2021-0-8-43-49.
24. Alekseeva M.S., Slobodskoy P.A., Lukina Е.А., Yakusheva N.A. Patterns of structure formation for open-hearth steel of the Fe–Cr–Ni–Mo–Ti system during heat treatment. Trudy VIAM, 2024, no. 2 (132), paper no. 01. Available at: http://www.viam-works.ru (accessed: July 01, 2025). DOI: 10.18577/2307-6046-2024-0-2-3-12.
This study focuses on the quench sensitivity of sheets made of V-1341 aluminum alloy of the Al–Mg–Si system. Using transmission electron microscopy, energy-dispersive X-ray spectroscopy), differential scanning calorimetry, and thermodynamic modeling, some features of precipitate formation during slow quenching (below the critical cooling rate) were examined. It has been determined that quench-induced precipitates form on the surface of α-phase dispersoids (Al15(Mn, Fe)3Si2) as coarse rod-like precipitates of β-type phases, with some inclusions potentially containing copper.
2. Ostermann F. Technology of aluminum application. Moscow: APRAL, 2019, 872 p.
3. Lumley R. Fundamentals of aluminium metallurgy: recent advances. Cambridge: Woodhead Publishing, 2018, 578 р.
4. Benarieb I., Ber L.B., Antipov K.V., Sbitneva S.V. Trends in development of wrought alloys of Al–Mg–Si–(Cu) system. Part 1 (review). Aviacionnye materialy i tehnologii, 2019, no. 3 (56), pp. 14–22. DOI: 10.18577/2071-9140-2019-0-3-14-22.
5. Ovchinnikov V.V. Prospects for the Development of High-Tech Deformable Aluminum Alloys for Welded Structures. Part 2. Mashinostroenie i inzhenernoe obrazovaniy, 2017, no. 3, рр. 22–39.
6. Kolobnev N.I., Ber L.B., Khokhlatova L.B., Ryabov D.K. Structure, Properties, and Application of Al–Mg–Si–(Cu) System Alloys. Metallovedenie i termicheskaya obrabotka metallov, 2011, no. 9, pp. 40–45.
7. Nefedova Yu.N., Shlyapnikova T.A., Ivanov A.L., Sedelnikov V.V. Methods for reducing residual stresses during hardening of high-strength aluminum alloys. Trudy VIAM, 2023, no. 7 (125), paper no. 03. Available at: http://www.viam-works.ru (accessed: May 06, 2025). DOI: 10.18577/2307-6046-2023-0-7-23-33.
8. Benarieb I., Puchkov Yu.A., Sbitneva S.V., Shorstov S.Yu., Shumeyko R.M. Quench sensitivity of wrought heat-treatable aluminum alloys of the Al–Mg–Si system (review). Trudy VIAM, 2025, no. 2 (144), paper no. 03. Available at: http://www.viam-works.ru (accessed: May 06, 2025). DOI: 10.18577/2307-6046-2025-0-2-25-46.
9. Marioara C.D., Nordmark H., Andersen S.J., Holmestad R. Post-βʹʹ phases and their influence on microstructure and hardness in 6xxx Al–Mg–Si alloys. Journal of Materials Science, 2006, vol. 41, pp. 471–478.
10. Marioara C.D., Andersen S., Hell C. et al. Atomic structure of clusters and GP-zones in an Al–Mg–Si alloy. Acta Materialia, 2024, vol. 269, p. 119811.
11. Andersen S.J., Zandbergen H.W., Jansen J. et al. The crystal structure of the β″ phase in Al–Mg–Si alloys. Acta Materialia, 1998, vol. 46, pp. 3283–3298.
12. Christiansen E., Marioara C., Holmedal B. et al. Nano-scale characterisation of sheared β′′ precipitates in a deformed A–Mg–Si alloy. Scientific Reports, 2019, vol. 9, no. 1, art. 17446.
13. Sunde J.K., Marioara C.D., van Helvoort A.T.J., Holmestad R. The evolution of precipitate crystal structures in an Al–Mg–Si(–Cu) alloy studied by a combined HAADF-STEM and SPED approach. Materials Characterization, 2018, vol. 142, pp. 458–469.
14. Saito T., Mortsell E.A., Wenner S. et al. Atomic structures of precipitates in Al–Mg–Si alloys with small additions of other elements. Advanced Engineering Materials, 2018, vol. 20, no. 7, p. 1800125.
15. Li K., Song M., Du Y., Fang X. Effect of minor Cu addition on the precipitation sequence of an as-cast Al–Mg–Si 6005 alloy. Archives of Metallurgy and Materials, 2012, vol. 57, no. 2, pp. 458–466.
16. Ohmori Y., Long C., Matsuura Y. et al. Morphology and crystallography of β-Mg2Si precipitation in Al–Mg–Si alloys. Materials Transactions, 2001, vol. 42, no. 12, pp. 2576–2583.
17. Ohmori Y., Doan L.C., Nakai K. Ageing processes in Al–Mg–Si alloys during continuous heating. Materials Transactions, 2002, vol. 43, no. 2, pp. 246–255.
18. Garric V., Colas K., Donnadieu P. et al. Correlation between quenching rate, mechanical properties and microstructure in thick sections of AlMgSi (Cu) alloys. Materials Science and Engineering: A, 2019, vol. 753, pp. 253–261.
19. Ma Y., Liu C., Miao K. et al. Effects of cooling rate and cryogenic temperature on the mechanical properties and deformation characteristics of an Al–Mg–Si–Fe–Cr alloy. Journal of Alloys and Compounds, 2023, vol. 947, p. 169559.
20. Liu S., Wang X., Pan Q. et al. Investigation of microstructure evolution and quench sensitivity of Al–Mg–Si–Mn–Cr alloy during isothermal treatment. Journal of Alloys and Compounds, 2020, vol. 826, p. 154144.
21. Strobel K., Easton M., Sweet L. et al. Relating quench sensitivity to microstructure in 6000 series aluminium alloys. Materials Transactions, 2011, vol. 52, no. 5, pp. 914–919.
22. Strobel K. Quench Sensitivity in 6xxx Series Aluminium Alloys: A Thesis Submitted for the Degree of Doctor of Philosophy. Clayton: Monash University, 2013, 223 р.
23. Gao C., Liu X., Zhao D. et al. Recent Progress in Testing and Characterization of Hardenability of Aluminum Alloys: A Review. Materials, 2023, vol. 16, p. 4736.
24. Yang M., Ruan Z., Lin H. et al. Quantified effect of quench rate on the microstructures and mechanical properties of an Al–Mg–Si alloy. Journal of Materials Research and Technology, 2023, vol. 24, pp. 6753–6761.
25. Xia C., Deng S., Ni C. et al. Study on laminar structure and process on high strength brazed aluminum alloy for heat exchangers. Vacuum, 2023, vol. 215, pp. 112303.
26. Fan Z., Lei X., Wang L. et al. Influence of quenching rate and aging on bendability of AA6016 sheet. Materials Science and Engineering: A, 2018, vol. 730, pp. 317–327.
27. Yang Z., Mallow S., Banhart J., Kessler O. Probing precipitation in aluminium alloys during linear cooling via in-situ differential scanning calorimetry and electrical resistivity measurement. Thermochimica Acta, 2024, vol. 739, p. 179815.
28. Milkereit B., Starink M.J. Quench sensitivity of Al–Mg–Si alloys: a model for linear cooling and strengthening. Materials & Design, 2015, vol. 76, pp. 117–129.
29. Benarieb I., Puchkov Yu.A., Sbitneva S.V., Zaitsev D.V. Study of the decomposition of a supersaturated solid solution during quench cooling of sheets of aluminum alloy of the Al–Mg–Si system. Fizika metallov i metallovedenie, 2023, vol. 124, no. 9, pp. 838–845. DOI: 10.31857/S0015323023600843.
30. Puchkov Yu.A., Polyansky V.M., Sedova L.A. Study of the influence of isothermal quenching modes on the structure and properties of aluminum alloy B-1341T. Metallovedenie i termicheskaya obrabotka metallov, 2019, no. 2, pp. 13–19.
31. Sbitneva S.V., Zaytsev D.V., Benarieb I. Features of the structure of age-hardenable aluminum alloy AlSi10MgCu produced by selective laser melting. Trudy VIAM, 2024, no. 9 (139), paper no. 03. Available at: http://www.viam-works.ru (accessed: May 12, 2025). DOI: 10.18577/2307-6046-2024-0-9-15-24.
32. Sbitneva S.V., Lukina E.А., Zaytsev D.V. Investigation of the features of the decomposition of a solid solution during aging of alloys of the Al–Mg–Si–Cu system. Trudy VIAM, 2021, no. 12 (106), paper no. 02. Available at: http://www.viam-works.ru (accessed: March 18, 2025). DOI: 10.18577/2307-6046-2021-0-12-14-20.
33. Kablov E.N. The strategic directions of development of materials and technologies of their processing for the period to 2030. Aviacionnye materialy i tehnologii, 2012, no. S, pp. 7–17.
34. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
The article presents the results of the structure study, as well as physical and mechanical properties of forgings made of titanium (α + β) alloy VT23M after heat treatment. The choice of the heat treatment type (double annealing) is has been reasoned. The influence of process parameters on the microstructure features and the level of strength and ductile characteristics, impact toughness, are studied. Based on the analysis, the temperatures of the first and the second stages of double annealing of forgings made of VT23M alloy are selected, providing the balanced set of mechanical properties and the favorable microstructure.
2. Kablov E.N., Belov E.V., Trapeznikov A.V., Leonov A.A., Zaitsev D.V. Strengthening features and aging kinetics of high-strength cast aluminum alloy AL4MS based on Al–Si–Cu–Mg system. Aviation materials and technologies, 2021, no. 2 (63), paper no. 03. Available at: http://www.journal.viam.ru (accessed: June 04, 2025). DOI: 10.18577/2713-0193-2021-0-2-24-34.
3. Krokhina V.A., Arislanov А.A., Putyrskiy S.V., Anisimova A.Yu. Investigation of the regularities of the formation of the structure of rods made of titanium alloy VT6 depending on various technological schemes of manufacture. Aviation materials and technologies, 2023, no. 4 (73), paper no. 04. Available at: http://www.journal.viam.ru (accessed: June 09, 2025). DOI: 10.18577/2713-0193-2023-0-4-36-44.
4. Kapustin V.I., Zakharchenko K.V., Cherepanova V.K., Shayapov V.R. Investigation of dissipative processes of VT6 alloy under fatigue. Aviation materials and technologies, 2022, no. 4 (69), paper no. 09. Available at: http://www.journal.viam.ru (accessed: June 09, 2025). DOI: 10.18577/2713-0193-2022-0-4-96-111.
5. Duyunova V.A., Pavlova T.V., Kashapov O.S., Chuchman O.V. Fatigue strength of forgings from VT6 alloy for parts of gas turbine engines and aircrafts. Aviation materials and technologies, 2023, no. 2 (71), paper no. 02. Available at: http://www.journal.viam.ru (accessed: June 09, 2025). DOI: 10.18577/2713-0193-2023-0-2-23-35.
6. Titanium and titanium alloys. Fundamentals and applications. Eds. C. Leyens, M. Peters. Wiley–VCH, 2003, 513 p.
7. Putyrsky S.V., Arislanov A.A., Yakovlev A.L., Nochovna N.A. Studing of mechanical properties of deformed semi-finished products of VT23M and VT43 alloys, assessment of their climatic stability in the Arctic climate. Trudy VIAM, 2018, no. 4 (64), paper no. 12. Available at: http://www.viam-works.ru (accessed: May 26, 2025). DOI: 10.18577/2307-6046-2018-0-4-101-110.
8. Lyasotskaya V.S. Heat treatment of welded joints of titanium alloys. Moscow: Ekomet, 2003, 352 p.
9. Glazunov S.G., Moiseev V.N. Titanium alloys. Structural titanium alloys. Moscow: Metallurgiya, 1974, 368 p.
10. Ilyin A.A., Kolachev B.A., Polkin I.S. Titanium alloys. Composition, structure, properties. Moscow: VILS-MATI, 2009, 520 p.
11. Shvetsov O.V., Kondratiev S.Yu. Effect of hardening and aging modes on the operational properties of VT23 alloy. Nauchno-tekhnicheskiye vedomosti SPbPU. Yestestvennyye i inzhenernye nauki, 2018, vol. 24, no. 2, pp. 119–133. DOI: 10.18721/JEST.240210.
12. Gladkovsky S.V., Veselova V.E., Dubinsky S.V. et al. Effect of heat treatment modes on crack resistance characteristics and fracture mechanisms of metastable titanium alloy VT23. Vestnik PNIPU. Mashinostroyenie. Materialovedenie, 2023, vol. 25, no. 1, pp. 16–26. DOI: 10.15593/2224-9877/2023.1.02.
13. Dzunovich D.A., Panin P.V., Lukina E.A., Shiryaev A.A. Heat treatment effect on structure and properties of welded large-dimensioned semi-finished products from VT23 titanium alloy. Trudy VIAM, 2018, no. 1 (61), paper no. 07. Available at: http://www.viam-works.ru (accessed: May 29, 2025). DOI: 10.18577/2307-6046-2018-0-1-7-7.
14. Gunawarman G., Niinomi M., Eylon D. et al. Effect of β Phase Stability at Room Temperature on Mechanical Properties in β-Rich α+β Type Ti–4,5Al–3V–2Mo–2Fe Alloy. ISIJ International, 2002, vol. 42, no. 2, pp. 191–199.
15. Gunawarman G., Niinomi M., Fukunaga K. et al. Effect of Cooling Rate on Microstructure and Fracture Characteristics of β-Rich α+β Type Ti–4,5Al–3V–2Mo–2Fe Alloy. Materials Transactions, 2001, vol. 42, no. 7, pp. 1339–1348.
16. Kablov E.N., Kirillov V.N., Zhirnov A.D., Startsev O.V., Vapirov Yu.M. Centers for climatic testing of aviation PCM. Aviatsionnaya promyshlennost, 2009, no. 4, pp. 36–46.
17. Veselova V.E., Gladkovsky S.V., Kovalev N.I. Influence of heat treatment modes on the structure and mechanical properties of metastable titanium alloy VT23. Vestnik Permskogo natsional'nogo issledovatelskogo politekhnicheskogo universiteta. Ser.: Mashinostroyeniye, materialovedeniye, 2021, vol. 23, no. 4, pp. 31–39. DOI: 10.15593/2224-9877/2021.4.04.
18. Ilyin A.A., Skvortsova S.V., Popova Yu.A., Kudelina I.M. Influence of heat treatment on the formation of the structure and properties of large-sized semi-finished products made of VT23 alloy. Titan, 2010, no. 4, pp. 48–53.
19. Fukai H., Minakawa K.-N., Ouchi C. Strength–Ductility Relationship in Solution Treated and Aged α+β Type Ti–4.5%Al–3%V–2%Fe–2%Mo Titanium Alloy. ISIJ International, 2004, vol. 44, no. 11, pp. 1911–1917.
20. Xu J., Zeng W., Zhao Y. et al. Effect of globularization behavior of the lamellar alpha on tensile properties of Ti-17 alloy. Journal of Alloys and Compounds, 2016, vol. 673, pp. 86–92.
Ensuring high quality of titanium alloy production dictates the development of new standard samples for hydrogen content, selection of the grade of material for their manufacture and the method of hydrogenation. In this work, the processes of hydrogen saturation of VT5, VT14 and VT22 titanium alloy samples by the electrochemical method (cathodic hydrogenation) have been studied. The paper provides the results of analysis of the degree of hydrogen saturation of the VT5, VT14 and VT22 samples, as well as the effect of the leveling annealing on the content of the β-phase fraction in the VT14 alloy samples. Hydrogen content has been measured using the emission spectral analysis.
2. Kablov E.N. Aviation materials science in the 21st century. Prospects and tasks. Aviation materials. Selected works of VIAM 1932–2002. Ed. E.N. Kablov. Moscow: MISiS–VIAM, 2002, pp. 23–47.
3. Krasnov I.S., Lozhkova D.S., Dalin M.A. Evaluation of deficiency of titanium alloy forgings for probabilistic calculation of gas turbine engine disks fracture risk. Aviation materials and technologies, 2021, no. 2 (63), paper no. 12. Available at: https://www.journal.viam.ru (accessed: December 12, 2024). DOI: 10.18577/2713-0193-2021-0-2-115-122.
4. Duyunova V.A., Pavlova T.V., Kashapov O.S., Chuchman O.V. Fatigue strength of forgings from VT6 alloy for parts of gas turbine engines and aircrafts. Aviation materials and technologies, 2023, no. 2 (71), paper no. 02. Available at: http://www.journal.viam.ru (accessed: December 12, 2024). DOI: 10.18577/2713-0193-2023-0-2-23-35.
5. Oglodkov M.S., Kashapov O.S., Kalashnikov V.S., Kondratieva A.R. Comparative analysis of the characteristics of domestic alloys VT8, VT8M, VT8M-1, VT9 and Ti6242S alloy (USA) as applied to high-pressure compressor blades of aircraft gas turbine engines. Aviation materials and technologies, 2024, no. 3 (76), paper no. 04. Available at: http://www.journal.viam.ru (accessed: December 12, 2024). DOI: 10.18577/2713-0193-2024-0-3-35-50.
6. Duyunova V.A., Oglodkov M.S., Putyrskiy S.V., Kochetkov A.S., Zueva O.V. Modern technologies for melting titanium alloy ingots (review). Aviation materials and technologies, 2022, no. 1 (66), paper no. 03. Available at: http://www.journal.viam.ru (accessed: December 12, 2024). DOI: 10.18577/2713-0193-2022-0-1-30-40.
7. Panin P.V., Nochovnaya N.A., Kablov D.E., Alekseev E.B., Shiryaev A.A., Novak A.V. Practical guide to metallography of titanium-based alloys and its intermetallic compounds: textbook. Ed. E.N. Kablov. Moscow: VIAM, 2020, 200 p.
8. Matyugina I.V., Shubina S.B. Certified reference materials for determining gases in metals. Methodological issues of producing certified reference materials. Sverdlovsk: VNIISO Publ. House, 1973, pp.114–122.
9. Wu T.-I., Wu J.-K. Effects of cathodic charging and subsequent solution treating parameters on the hydrogen redistribution and surface hardening of Ti–6Al–4V alloy. Journal of Alloys and Compounds, 2008, vol. 466, pp. 153–159.
10. Huang Ch.-L., Gao Y.-J., Chuang T.-L. et al. Study of the behavior of titanium alloys as the cathode for photovoltaic hydrogen production. International Journal of Photoenergy, 2013, vol. 3, art. 857491.
11. Pivovarova L.N., Zakharova L.V., Fadeev A.V. Chemical treatment of titanium alloy surfaces. Modern titanium alloys and problems of their development. Moscow: VIAM, 2010, pp. 75–80.
12. Barasheva T.V., Bezgina V.I., Guskova E.I., Ermolova M.I., Lashko N.F. Study of hydrogenation of titanium alloys during etching. Tekhnologiya legkikh splavov, 1974, no. 6, рp. 43–48.
13. Usova V.V., Plotnikova T.P., Kushakevich S.A. Etching of titanium and its alloys. Moscow: Metallurgy, 1984, 128 p.
14. Matyugina I.V., Pliner Yu.L., Shikhaleeva T.V., Usov V.N. Saturation of standard samples for spectral analysis of VT14 alloy with hydrogen. Trudy VNIISO, 1970, is. VI, pp. 62–66.
15. Industry Standard 1 90013–81. Titanium alloys. Brands. Moscow: Publ. house of standards, 1981, pp. 1–5.
16. Matyugina I.V., Pliner Yu.L., Usov V.N. Standard samples for spectral determination of hydrogen in titanium alloys. Zhurnal prikladnoy spektroskopii, 1972, vol. XVII, is. 1, pp. 13–16.
17. Kaganovich N.N., Shikhaleeva T.V. Hydrogenation of titanium alloys during etching. Metallovedenie i termicheskaya obrabotka, 1963, no. 3, pp. 39–44.
The paper considers the features of the manufacturing process of semipregs based on carbon strip and carbon equal-strength fabric, as well as manufacturing of carbon fibers based on them by vacuum forming. The study also takes into account the development of the composition and technology for manufacturing an epoxy melt binder. The article presents the results of the general qualification of carbon fibers and the study of a set of physical, mechanical and operational properties. Structurally similar samples of hull panel skins using semipregs have been made by means of process development work, which showed the absence of defects.
2. Onishchenko G.G., Kablov E.N., Ivanov V.V. Scientific and technological development of Russia in the context of achieving national goals: problems and solutions. Innovatsii, 2020, no. 6 (260), pp. 3–16.
3. Kablov E.N. The role of fundamental research in creating new generation materials. Reports XXI Mendeleev Congress on General and Applied Chemistry: in 6 vols. St. Petersburg, 2019, vol. 4, p. 24.
4. Mikhailin Yu.A. Fibrous polymer composite materials in engineering. St. Petersburg: Scientific foundations and technologies, 2013, 720 p.
5. Irving P.E., Soutis C. Polymer composites in the aerospace industry. Sawston, Cambridge: Woodhead Publishing, 2019, 536 p.
6. Dang C., Bernetich K., Carter E., Butler G. Mechanical comparison of out-of autoclave prepreg part to conventional autoclave prepreg part. American Helicopter Society: 67th Annual Forum, 2011. Available at: https://www.researchgate.net/publication/267687773_Mechanical_Comparison_of_Out-of-Autoclave_Prepreg_Part_to_Conventional_Autoclave_Prepreg_Part (accessed: July 14, 2024).
7. Berring N.S., Renieri M.P., Bond G.G., Palmer D.J. Autoclave vs. Non-Autoclave: A comparison of hat-stiffened subcomponents by static and fatigue testing and related non-destructive evaluations. 2012 SAMPE International Symposium and Exhibition-Emerging Opportunities: Materials and Process Solutions. Baltimore MD, 2012, pp. 23–25.
8. Farhang L., Fernlund G. Experimental study of void evolution in partially impregnated prepregs. Journal of Composite Materials, 2019, vol. 54, pp. 1511–1523.
9. Levy A., Kratz J., Hubert P. Air evacuation during vacuum bag only prepreg processing of honeycomb sandwich structures: In-plane air extraction prior to cure. Composites Part A: Applied Science and Manufacturing, 2015, vol. 68, pp. 365–376.
10. Umemoto Y., Gouke M., Mashima Y. Out of autoclave material «semi-preg». Technical development of resin transfer molding. Proceedings of the 18th International Conference on Composite materials, 2011, pp. 45–47. Available at: https://www.iccm-central.org/Proceedings/ICCM18proceedings/data/2.%20Oral%20Presentation/Aug25(Thursday)/Th05%20Carbon%20and%20Ceramic%20
Matrix%20Composites/Th05-2-IF1563.pdf (accessed: July 14, 2024).
11. Resin composition, a fiber reinforced material having a partially impregnated resin and composites made therefrom: pat. US6139942, appl. 06.02.97; publ. 31.10.00.
12. Dushin M.I., Donetskiу K.I., Timoshkov P.N., Karavaev R.Yu. Research of process of out-of-autoclave formation semi-pregs on the basis of carbon fillers (rеview). Trudy VIAM, 2018, no. 9 (69), paper no. 03. Available at: http://www.viam-works.ru (accessed: November 01, 2024). DOI: 10.18577/2307-6046-2018-0-9-21-31.
13. Varvani-Farahani A. Composite materials: characterization, fabrication and application-research challenges and directions. Applied Composite Materials, 2010, vol. 17, is. 2, pp. 63–67.
14. Ridgard C. Out of autoclave composite technology for aerospace, defense and space structures. 54th SAMPE: Conference paper. Baltimore MD, 2009, pp. 25–40.
15. Karavaev R.Yu., Gorodilova N.A., Donetskiy K.I. Production of polymer composite materials based on semipregs. Trudy VIAM, 2023, no. 5 (123), paper no. 05. Available at: http://www.viam-works.ru (accessed: October 01, 2024). DOI: 10.18577/2307-6046-2023-0-5-64-74.
16. Grunenfelder L.K., Centea T., Hubert P., Nutt S.R. Effect of room-temperature out-time on tow impregnation in an out-of-autoclave prepreg. Composites, Part A: Applied Science and Manufacturing, 2013, vol. 45, рр. 119–126.
17. Schechter S.G.K., Grunenfelder L.K., Nutt S.R. Air evacuation and resin impregnation in semi-pregs: effects of feature dimensions. Advanced Manufacturing: Polymer & Composites Science, 2020, vol. 6, is. 2, pp. 101–114.
18. Tavares S.S., Michaud V., Månson J.A.E. Through thickness air permeability of prepregs during cure. Composites, Part A: Applied Science and Manufacturing, 2009, vol. 40, pp. 1587–1596.
19. Ma Y., Centea T., Nutt S.R. Defect reduction strategies for the manufacture of contoured laminates using vacuum BAG-only prepregs. Polymer Composites, 2017, vol. 38, pp. 2016–2025.
20. Levy A., Hubert P. Vacuum-bagged composite laminate forming processes: Predicting thickness deviation in complex shapes. Composites, Part A: Applied Science and Manufacturing, 2019, vol. 126, p. 105568.
21. Naji M.I., Hoa S.V. Curing of thick angle-bend thermoset composite part: Curing process modification for uniform thickness and uniform fiber volume fraction distribution. Journal of Composite Materials, 2000, vol. 34, pp. 1710–1755.
22. Hrulkov A.V., Karavaev R.Yu., Gorodilova N.A., Donetskiy K.I. Some causes of voids formation in polymer composite materials (review). Trudy VIAM, 2023, no. 6 (124), paper no. 07. Available at: http://www.viam-works.ru (accessed: October 01, 2024). DOI: 10.18577/2307-6046-2023-0-6-72-86.
23. Veshkin E.A. Features of out-of-autoclave forming of poor-porous PCM. Trudy VIAM, 2016, no. 2 (38), paper no. 07. Available at: http://www.viam-works.ru (accessed: October 26, 2024). DOI: 10.18577/2307-6046-2016-0-2-7-7.
24. Edwards W.T., Martinez P., Nutt S.R. Process robustness and defect formation mechanisms in unidirectional semipreg. Advanced Manufacturing: Polymer & Composites Science, 2020, vol. 6, is. 4, pp. 198–211.
25. Sherwin G.R. Non-autoclave processing of advanced composite repairs. International Journal of Adhesion and Adhesives, 1999, vol. 19, pp. 155–159.
26. Takagaki K., Hisada S., Minakuchi S., Takeda N. Process improvement for out-of-autoclave prepreg curing supported by in-situ strain monitoring. Journal of Composite Materials, 2017, vol. 51, pp. 1225–1237.
27. Arafath A.R.A., Fernlund G., Poursartip A. Gas transport in prepregs: model and permeability experiments. Proceedings of International Conference on Composite Materials, 2009. Available at: https://www.researchgate.net/publication/268290326_Gas_transport_in_prepregs_Model_and_permeability_experiments (accessed: October 14, 2024).
28. Kratz J., Hubert P. Anisotropic air permeability in out-of-autoclave prepregs: Effect on honeycomb panel evacuation prior to cure. Composites, Part A: Applied Science and Manufacturing, 2013, vol. 49, pp. 179–191.
29. Sidorina A.I., Safronov A.M., Kutsevich K.E., Klimenko O.N. Carbon fabrics for aircraft products. Trudy VIAM, 2020, no. 12 (94), paper no. 05. Available at: http://www.viam-works.ru (accessed: October 26, 2024). DOI: 10.18577/2307-6046-2020-0-12-47-58.
30. Amirkhosravi M., Pishvar M., Altan M.C. Improving laminate quality in wet lay-up/vacuum bag processes by magnet assisted composite manufacturing (MACM). Composites, Part A: Applied Science and Manufacturing, 2017, vol. 98, pp. 227–237.
31. Mukhametov R.R., Petrova A.P. Thermosetting binders for polymer composites (review). Aviacionnye materialy i tehnologii, 2019, no. 3 (56), pp. 48–58. DOI: 10.18577/2071-9140-2019-0-3-48-58.
32. Tkachuk A.I., Donetsky K.I., Terekhov I.V., Karavaev R.Yu. The use of thermosetting matrices for the manufacture of polymer composite materials by the non-autoclave molding methods. Aviation materials and technology, 2021, no. 1 (62), paper no. 03. Available at: https://www.journal.viam.ru (accessed: November 01, 2024). DOI: 10.18577/2713-0193-2021-0-1-22-33.
33. Aleksendri D., Carlone P., Сiroviс V. Optimization of the temperature-time curve for the curing process of thermoset matrix composites. Applied Composite Materials, 2016, vol. 23, is. 5, pp. 1047–1063.
34. Helmus R., Centea T., Hubert P., Hinterhölzl R. Out-of-autoclave prepreg consolidation: coupled air evacuation and prepreg impregnation modeling. Journal of Composite Materials, 2015, vol. 50, is. 10, pp. 1403–1413.
35. Puzyretskiy E.A., Donetski K.I., Shabalin L.P., Karavaev R.Yu., Savinov D.V. Theoretical and experimental study of the vacuum forming of semipregs based on carbon fillers (tapes and fabric) and melting epoxy binding. Aviation materials and technologies, 2024, no. 2 (75), paper no. 08. Available at: http://www.journal.viam.ru (accessed: November 01, 2024). DOI: 10.18577/2713-0193-2024-0-2-109-121.
36. Mujahid Y., Sallih N., Abdullah M.Z. A Comparison of Single-Vacuum-Bag and Double-Vacuum-Bag Methods for Manufacturing High-Quality Laminated Composites. Advances in Manufacturing Engineering. Lecture Notes in Mechanical Engineering. Eds S.S. Emamian, M. Awang, F. Yusof. Singapore: Springer, 2020, pp. 74–79. DOI: 10.1007/978-981-15-5753-8_42.
37. Antyufeeva N.V., Aleksashin V.M., Stolyankov Yu.V. Polymer composite curing degree evaluation by thermal analysis test methods. Aviacionnye materialy i tehnologii, 2015, no. 3 (36), pp. 79–83. DOI: 10.18577/2071-9140-2015-0-3-79-83.
The article considers modern approaches to lightning protection of structures from PCM that extending to the outer circuit of aircrafts. A The lightning protection coating named VMPZ-1 is new development of the NRC «Kurchatov Institute» – VIAM , which is a leveling composite film with an integrated metal layer that can be used as metal perforated foils or metal knitted wire nets of various surface densities. The basic properties of the developed lightning coating VMZP-1 and the results of testing elementary samples for lightning resistance are given here.
2. Kablov E.N. Quality control of materials – a guarantee of the safe operation of aviation equipment. Aviacionnye materialy i tehnologii, 2001, no. 1, pp. 3–8.
3. Kablov E.N., Antipov V.V. The role of new generation materials in ensuring the technological sovereignty of the Russian Federation. Vestnik Rossiyskoy akademii nauk, 2023, vol. 93, no. 10, pp. 907–916.
4. Kablov E.N., Laptev A.B., Prokopenko A.N., Gulyaev A.I. Relaxation of polymeric composite materials under the prolonged action of static load and climate (review). Part 1. Binders. Aviation materials and technologies, 2021, no. 4 (65), paper no. 08. Available at: http://www.journal.viam.ru (accessed: June 04, 2025). DOI: 10.18577/2713-0193-2021-0-4-70-80.
5. Sazhenkov N.A., Sazhenkov A.N. Lightning protection coatings of engine nacelles made of polymer composite materials. Part 1. Analysis of existing types of lightning protection. Vestnik PNIPU. Aerokosmicheskaya tekhnika, 2021, no. 67, pp. 43–55.
6. Chursova L.V., Panina N.N., Grebeneva T.A., Vishnyakov L.R. Materials for lightning protection systems of polymer composite materials. Manufacturing features (review, part I). Vse materialy. Entsiklopedicheskiy spravochnik, 2023, no. 9, pp. 25–33.
7. Mishkin S.I., Klimenko O.N., Gunyaeva A.G. Materials for the lightnings protection of aviation engineering. Trudy VIAM, 2023, no. 7 (125), paper no. 07. Available at: http://www.viam-works.ru (accessed: May 24, 2025). DOI: 10.18577/2307-6046-2023-0-7-84-92.
8. Chernyshev B.D., Kovalev A.D., Siluk N.P., Rojkov S.S., Shustov V.S., Ryzhkova G.S., Melnikov S.A. Microstructure and functional properties of bulk samples made from W–Ni–Cu pseudoalloy by cold isostatic pressure. Aviation materials and technologies, 2025, no. 2 (79), paper no. 06. Available at: http://www.journal.viam.ru (accessed: June 01, 2025). DOI: 10.18577/2713-0193-2025-0-2-59-71.
9. Gunyaeva A.G., Kurnosov A.O., Slavin A.V. Experience in the use of polymer composite materials developed by NRC «Kurchatov Institute» – VIAM in engines for civil aircraft. Aviation materials and technologies, 2024, no. 4 (77), paper no. 06. Available at: http://www.journal.viam.ru (accessed: May 25, 2025). DOI: 10.18577/2713-0193-2024-0-4-82-94.
10. Chursova L.V., Panina N.N., Grebeneva T.A., Vishnyakov L.R. Features of the use of conductive knitted wire meshes and perforated foils in the creation of lightning protection systems for polymer carbon composite structures (review, part II). Vse materialy. Entsiklopedicheskiy spravochnik, 2023, no. 10, pp. 18–26.
11. Tkachenko A.N., Vishnyakov L.R., Gogaev K.A. et al. Copper microwires for knitted lightning protection meshes. Tekhnologicheskiye sistemy, 2009, no. 4, pp. 40–44.
12. Conductive layer of lightning protection coating for polymer composites: pat. 2764853 Rus. Federation; appl. 26.05.21; publ. 21.01.22.
13. Boytsov B.V., Vishnyakov L.R., Kazakov M.E., Krivonos V.V. Innovative design and technological solutions for lightning protection of aircraft structures made of polymer composite materials. Kachestvo i zhizn, 2020, no. 2 (26), pp. 74–81.
14. Polymer film coating with an integrated metal layer based on a heat-resistant binder: pat. 2839081 Rus. Federation; appl. 17.07.24; publ. 28.04.25.
15. Tkachuk A.I., Donetsky K.I., Terekhov I.V., Karavaev R.Yu. The use of thermosetting matrices for the manufacture of polymer composite materials by the non-autoclave molding methods. Aviation materials and technology, 2021, no. 1 (62), paper no. 03. Available at: https://www.journal.viam.ru (accessed: May 25, 2025). DOI: 10.18577/2713-0193-2021-0-1-22-33.
16. Bukharov S.V., Gunyaeva A.G., Raskutin A.E. Research of the zone of damage of lightning protection coating made of carbon fiber reinforced plastics by high-voltage discharges simulating lightning currents. Nauchnye trudy (Vestnik «MATI»), 2014, no. 22 (94), pp. 4–14.
17. Murashov V.V., Kosarina E.I., Generalov A.S. Quality control of aviation parts made from polymer composite materials and multilayers adhered constructions. Aviacionnye materialy i tehnologii, 2013, no. 3, pp. 65–70.
The technology for manufacturing a blank of a thrust element of a helicopter control system using volumetric-reinforcing braided preforms and a melt epoxy binder of Russian production has been developed. The optimal mode for the process of impregnation under pressure and the manufacture of a low-porosity material without delamination and defects in the zone of a metal embedded element – carbon fiber has been determined. The technology is promising for aviation, shipbuilding, mechanical engineering in the manufacture of complex structures such as transmission shafts, control system rods or specialized drives.
2. Onishchenko G.G., Kablov E.N., Ivanov V.V. Scientific and technological development of Russia in the context of achieving national goals: problems and solutions. Innovatsii, 2020, no. 6 (260), pp. 3–16.
3. Kablov E.N., Antipov V.V. The role of new generation materials in ensuring the technological sovereignty of the Russian Federation. Vestnik Rossiyskoy akademii nauk, 2023, vol. 93, no. 10, pp. 907–916.
4. Mikhailin Yu.A. Fibrous polymer composite materials in engineering. St. Petersburg: Scientific foundations and technologies, 2013, 720 p.
5. Raskutin A.E. Russian polymer composite materials of new generation, their exploitation and implementation in advanced developed constructions. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 349–367. DOI: 10.18577/2071-9140-2017-0-S-349-367.
6. Irving P.E., Soutis C. Polymer composites in the aerospace industry. Sawston, Cambridge: Woodhead Publishing, 2019, 536 р.
7. Basharov E.A., Vagin A.Yu. Analysis of the use of composite materials in the design of helicopter airframes. Trudy MAI, 2017, no. 92, pp. 1–33.
8. Liang R., Xu F., Zou Z. et al. Mechanical properties analysis and experimental study of double-lap mechanically connected carbon fiber drive shafts. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2024, vol. 46, p. 467. DOI: 10.1007/s40430-024-05049-9.
9. Raushan R., Dhande K.K., Jamadar N.I. Modal analysis of carbon fiber reinforced polyamide 66 drive shaft using analytical and finite element approach. The International Journal on Interactive Design and Manufacturing, 2025, vol. 19, pp. 2801–2816. DOI: 10.1007/s12008-024-01854-7.
10. Carbon fiber drive shaft: pat. US4089190A; appl. 14.04.76; publ. 16.05.78.
11. Helicopter transmission. Avia.pro: information agency. Available at: http://avia.pro/blog/transmissiya-vertoleta (accessed: June 10, 2025).
12. Timoshkov P.N., Hrulkov A.V., Grigoreva L.N. Сarbon fiber transmission shaft. Materials and technology (review). Trudy VIAM, 2020, no. 8 (90), paper no. 05. Available at: http://www.viam-works.ru (accessed: June 11, 2025). DOI: 10.18577/2307-6046-2020-0-8-46-53.
13. Composite tube for torque and/or load transmissions and related methods: pat. US 2014221110, appl. 05.02.14, publ. 07.08.14.
14. Carey J.P. Handbook of Advances in Braided Composite Materials: Theory, Production, Testing and Application. Woodhead Publishing; Elsevier, 2017, pp. 3–6.
15. Belinis P.G., Donetskiy K.I., Lukyanenko Yu.V., Rogozhnikov V.N., Mayer Yu., Bystrikova D.V. Volume reinforcing solid-woven preforms for manufacturing of polymer composite materials (review). Aviacionnye materialy i tehnologii, 2019, no. 4 (57), pp. 18–26. DOI: 10.18577/2071-9140-2019-0-4-18-26.
16. Dushin M.I., Hrulkov A.V., Muhametov R.R., Chursova L.V. Features of manufacturing of products from PCM impregnation method under pressure. Aviacionnye materialy i tehnologii, 2012, no. 1, pp. 18–26.
17. Doneckiy K.I., Karavaev R.Yu., Raskutin A.E., Panina N.N. Properties of carbon fiber and fiberglass on the basis of braiding preforms. Aviacionnye materialy i tehnologii, 2016, no. 4 (45), pp. 54–59. DOI: 10.18577/2071-9140-2016-0-4-54-59.
18. Donetskiy K.I., Usacheva M.N., Khrulkov A.V. Infusion methods for the manufacture of polymer composite materials (review). Part 1. Trudy VIAM, 2022, no. 6 (112), paper no. 06. Available at: http://www.viam-works.ru (accessed: June 11, 2025). DOI: 10.18577/2307-6046-2022-0-6-58-67.
19. Mishkin S.I., Zhakova L.S., Klimenko O.N., Vasilchuk E.A. Research of influence of the contents resin in CFRP on their mechanical properties. Trudy VIAM, 2023, no. 2 (120), paper no. 07. Available at: http://www.viam-works.ru (accessed: June 12, 2025). DOI: 10.18577/2307-6046-2023-0-2-77-86.
20. Panina N.N., Kim M.A., Gurevich Ya.M., Grigoriev M.M., Chursova L.V., Babin A.N. Binders for non-autoclave molding of products from polymer composite materials. Klei. Germetiki. Tehnologii, 2013, no. 10, pp. 18–27.
21. Mukhametov R.R., Petrova A.P. Thermosetting binders for polymer composites (review). Aviacionnye materialy i tehnologii, 2019, no. 3 (56), pp. 48–58. DOI: 10.18577/2071-9140-2019-0-3-48-58.
22. Resin composition, a fiber reinforced material having a partially impregnated resin and composites made therefrom: pat. US6139942; appl. 06.02.97; publ. 31.10.00.
23. Varvani-Farahani A. Composite materials: characterization, fabrication and application-research challenges and directions. Applied Composite Materials, 2010, vol. 17, is. 2, pp. 63–67.
24. Donetskiy K.I., Karavaev R.Yu., Bystrikova D.V., Mishchun M.I. Properties of carbon fiber based on a biaxial volumetric-reinforcing woven preform for the manufacture of tubular structure elements. Konstruktsii iz kompozitsionnykh materialov, 2022, no. 2 (166), рр. 8–14.
25. Goncharov V.A., Usacheva M.N., Khrulkov A.V. Features of the structure and reinforcement transmission shafts made of polymer composite materials (review). Trudy VIAM, 2021, no. 1 (95), paper no. 9. Available at: http://www.viam-works.ru (accessed: June 15, 2025). DOI: 10.18577/2307-6046-2021-0-1-85-96.
The article presents the results of the work over the past 10 years on the development of materials for use in the design of the engine nacelle of the power plant of a helicopter made of PCM. As part of import substitution, the issue of replacing the carbon reinforcing filler with a nominal surface density of 200 g/m2 of the Porcher brand (made in France) with a local analogue is considered. Domestic carbon fillers based on carbon fibers produced in China and the Russian Federation are studied. Studies of carbon fiber on the selected fabric are conducted based on the results of comparative tests. The material is shown to meet the specified requirements of the developer. The results confirm possible prospect of using the new carbon fiber in promising helicopters such as the Mi-171A3, Mi-38 or Ansat.
2. Kablov E.N. Formation of domestic space materials science. Vestnik RFFI, 2017, no. 3, pp. 97–105.
3. Kablov E.N. VIAM: new generation materials for PD-14. Krylya Rodiny, 2019, no. 7–8, pp. 54–58.
4. Grashhenkov D.V., Chursova L.V. Strategy of development of composite and functional materials. Aviacionnye materialy i tehnologii, 2012, no. S, pp. 231–242.
5. Startsev V.O., Antipov V.V., Slavin A.V., Gorbovets M.A. Modern domestic polymer composite materials for aviation industry (review). Aviation materials and technologies, 2023, no. 2 (71), paper no. 10. Available at: http://www.journal.viam.ru (accessed: June 14, 2025). DOI: 10.18577/2713-0193-2023-0-2-122-144.
6. Raskutin A.E. Russian polymer composite materials of new generation, their exploitation and implementation in advanced developed constructions. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 349–367. DOI: 10.18577/2071-9140-2017-0-S-349-367.
7. Basharov E.A., Vagin A.Yu. Analysis of the use of composite materials in the design of helicopter airframes. Trudy MAI, 2017, no. 92, pp. 1–33.
8. Technologies in helicopter engineering. Available at: https://aviatp.ru/files/aviaevents13-16/Helirussia-2013/1_Makareykin.pdf (accessed: June 14, 2025).
9. Veshkin E.A., Postnov V.I., Postnova M.V., Barannikov A.A. Experience in the application of vacuum infusion technologies in the production of PCM structures. Izvestiya Samarskogo nauchnogo tsentra Rossiyskoy akademii nauk, 2018, vol. 20, no. 4 (3), pp. 344–350.
10. Merkulova Yu.I., Muhametov R.R., Dolgova E.V., Ahmadieva K.R. Polycyanurates binding for composites production by impregnation under pressure. Trudy VIAM, 2016, no. 11 (47), paper no. 05. Available at: http://www.viam-works.ru (accessed: June 14, 2025). DOI: 10.18577/2307-6046-2016-0-11-5-5.
11. Muhametov R.R., Ahmadieva K.R., Kim M.A., Babin A.N. Melt binding for perspective methods of production of PCM of new generation. Aviacionnye materialy i tehnologii, 2012, no. S, pp. 260–265.
12. Babin A.N. Binding for polymeric composite materials of new generation. Trudy VIAM, 2013, no. 4, paper no. 11. Available at: http://www.viam-works.ru (accessed: June 14, 2025).
13. Tkachuk A.I., Donetsky K.I., Terekhov I.V., Karavaev R.Yu. The use of thermosetting matrices for the manufacture of polymer composite materials by the non-autoclave molding methods. Aviation materials and technology, 2021, no. 1 (62), paper no. 03. Available at: https://www.journal.viam.ru (accessed: June 14, 2025). DOI: 10.18577/2713-0193-2021-0-1-22-33.
14. Antipov V.V., Samohvalov S.V., Nefedova Yu.N., Sidelnikov V.V., Somov A.V. Features of manufacturing complex contour parts from metal-polymer composite material. Trudy VIAM, 2023, no. 12 (130), paper no. 06. Available at: http://www.viam-works.ru (accessed: June 14, 2025). DOI: 10.18577/2307- 6046-2023-0-12-63-73.
15. Antipov V.V., Somov A.V., Sidelnikov V.V., Nefedova Yu.N., Ogurtsov P.S., Soloviev V.A. Technological features of shaping fire-resistant light laminated material for helicopter engine hood manufacturing. Aviation materials and technologies, 2023, no. 3 (72), paper no. 07. Available at: http://www.journal.viam.ru (accessed: June 14, 2025). DOI: 10.18577/2713-0193-2023-0-3-90-100.
16. Duyunova V.A., Kutyrev A.E., Serebrennikova N.Yu., Vdovin A.I., Somov A.V. Examination of the impact of aggressive environmental factors on the development of corrosion damage on samples of laminated glass-reinforced plastic of SIAL class. Aviation materials and technologies, 2021, no. 4 (65), paper no. 09. Available at: http://www.journal.viam.ru (accessed: June 14, 2025). DOI: 10.18577/2713-0193-2021-0-4-81-90.
17. Development of design, technological processes, technological documentation and production of prototypes of the engine nacelle, cockpit canopy and structural elements of the Ka-226T helicopter airframe for the Indian Air Force. Available at: http://kai-composite.ru/index.php/raboty/11-works/26-ka226t (accessed: June 14, 2025).
18. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
19. Practical Contact Angle Measurement (5). Custom-made models: from contact angle to surface free energy. Available at: https://warwick.ac.uk/fac/cross_fac/sciencecity/programmes/internal/themes/am2/booking/dropshapeanalyser/practical_contact_angle_measurement_5.pdf (accessed: June 14, 2025).
This paper provides a review of preceramic polymers used for the production of polymer-derived ceramics. The article considers the main classes of organosilicon precursors, their chemical nature, and synthesis methods. The paper gives a detailed description of structural features of various types of preceramic polymers and their influence on the composition, morphology, and properties of the final ceramic materials. Additionally, the transformation stages of precursors into PDCs and the factors affecting this process are considered.
2. Yajima S., Hayashi J., Omori M. Continuous silicon carbide fiber of high tensile strength. Chemistry Letters, 1975, vol. 4, no. 9, pp. 931–934. DOI: 10.1246/cl.1975.931.
3. Kuznetsov B.Yu., Sorokin O.Yu., Vaganova M.L., Osin I.V. Synthesis of model high-temperature ceramic matrices by the method of spark plasma sintering and the study of their properties for the production of composite materials. Aviacionnye materialy i tehnologii, 2018, no. 4 (53), pp. 37–44. DOI: 10.18577/2071-9140-2018-0-4-37-44.
4. Каблов Е.Н., Щетанов Б.В., Ивахненко Ю.А., Балинова Ю.А. Перспективные армирующие высокотемпературные волокна для металлических и керамических композиционных материалов. Aviacionnye materialy i tekhnologii, 2005, no. 2, pp. 3–5.
5. Kablov E.N., Grashchenkov D.V., Isaeva N.V., Solntsev S.S. Promising high-temperature ceramic composite materials. Rossiyskiy khimicheskiy zhurnal, 2010, vol. 54, no. 1, pp. 20–24.
6. Colombo P., Mera G., Riedel R., Soraru G.D. Polymer‐Derived Ceramics: 40 Years of Research and Innovation in Advanced Ceramics. Journal of the American Ceramic Society, 2010, vol. 93, no. 7, pp. 1805–1837. DOI: 10.1111/j.1551-2916.2010.03876.x.
7. Kleebe H.-J., Blum Y.D. SiOC ceramic with high excess free carbon. Journal of the European Ceramic Society, 2008, vol. 28, no. 5, pp. 1037–1042. DOI: 10.1016/j.jeurceramsoc.2007.09.024.
8. Miller R.D., Michl J. Polysilane high polymers. Chemical Reviews, 1989, vol. 89, no. 6, pp. 1359–1410. DOI: 10.1021/cr00096a006.
9. Kipping F.S., Sands J.E. XCIII. – Organic derivatives of silicon. Part XXV. Saturated and unsaturated silicohydrocarbons, Si4Ph8. Journal of the Chemical Society, Transactions, 1921, vol. 119, pp. 830–847.
10. Kipping F.S. CCCVIII. – Organic derivatives of silicon. Part XXX. Complex silicohydrocarbons [SiPh2]n. Journal of the Chemical Society, Transactions, 1924, vol. 125, pp. 2291–2297.
11. Aitken C., Harrod J.F., Samuel E. Polymerization of primary silanes to linear polysilanes catalyzed by titanocene derivatives. Journal of Organometallic Chemistry, 1985, vol. 279, no. 1–2, pp. C11–C13. DOI: 10.1016/0022-328X(85)87029-7.
12. Erin K.D., Sorokin O.Yu., Monin S.A., Gor-bovets M.A. Methods for measuring and improving the crack resistance of silicon carbide composite materials. Trudy VIAM, 2024, no. 11 (141), paper no. 05. Available at: http://www.viam-works.ru (accessed: May 11, 2025). DOI: 10.18577/2307-6046-2024-0-11-44-70.
13. Shiina K., Kumada M. Notes – Thermal Rearrangement of Hexamethyldisilane to Trimethyl(dimethylsilylmethyl)silane. The Journal of Organic Chemistry, 1958, vol. 23, no. 1, pp. 129–139. DOI: 10.1021/jo01095a635.
14. Schilling C.L., Wesson J.P., Williams T.C. Polycarbosilane precursors for silicon carbide. Journal of Polymer Science: Polymer Symposia, 1983, vol. 70, no. 1, pp. 121–128. DOI: 10.1002/polc.5070700110.
15. Corriu R.J.P., Guerin C., Henner B. et al. Organosilicon polymers: synthesis of poly[(silanylene)diethynylene]s with conducting properties. Chemistry of Materials, 1990, vol. 2, no. 4, pp. 351–352. DOI: 10.1021/cm00010a008.
16. Zhang X., Zhou Q., Weber W.P. et al. Anionic ring-opening polymerization of sila- and germacyclopent-3-enes. Macromolecules, 1988, vol. 21, no. 6, pp. 1563–1566. DOI: 10.1021/ma00184a004.
17. Zeldin M., Wynne K.J., Allcock H.R. Inorganic and Organometallic Polymers: Macromolecules Containing Silicon, Phosphorus, and Other Inorganic Elements. American Chemical Society, 1988, vol. 360, p. 536. DOI: 10.1021/bk-1988-0360.
18. Seyferth D., Prud'homme C., Wiseman G.H. Cyclic polysiloxanes from the hydrolysis of dichlorosilane. Inorganic Chemistry, 1983, vol. 22, no. 15, pp. 2163–2167. DOI: 10.1021/ic00157a014.
19. Polysilane-siloxane oligomers and copolymers and methods of making the same: pat. US4626583A; appl. 11.07.85; publ. 21.01.87.
20. Chojnowski J., Kurjata J., Rubinsztajn S. Poly(oxymultisilane)s by ring‐opening polymerization. Fully methylated silicon analogues of oxirane and THF polymers. Macromolecular Rapid Communications, 1988, vol. 9, no. 7, pp. 469–475. DOI: 10.1002/marc.1988.030090704.
21. Zhang H., Pantano C.G. Synthesis and Characterization of Silicon Oxycarbide Glasses. Journal of the American Ceramic Society, 1990, vol. 73, no. 4, pp. 958–963. DOI: 10.1111/j.1151-2916.1990.tb05143.x.
22. Sorarù G.D., D'Andrea G., Campostrini R. et al. Structural Characterization and High‐Temperature Behavior of Silicon Oxycarbide Glasses Prepared from Sol‐Gel Precursors Containing Si–H Bonds. Journal of the American Ceramic Society, 1995, vol. 78, no. 2, pp. 379–387. DOI: 10.1111/j.1151-2916.1995.tb08811.x.
23. Gervais C., Babonneau F., Dallabonna N. et al. Sol‐Gel‐Derived Silicon‐Boron Oxycarbide Glasses Containing Mixed Silicon Oxycarbide (SiCxO4−x) and Boron Oxycarbide (BCyO3−y) Units. Journal of the American Ceramic Society, 2001, vol. 84, no. 10, pp. 2160–2164. DOI: 10.1111/j.1151-2916.2001.tb00981.x.
24. Mir F.A., Khan N.Z., Parvez S. Recent advances and development in joining ceramics to metals. Materials Today: Proceedings, 2021, vol. 46, pp. 6570–6575. DOI: 10.1016/j.matpr.2021.04.047.
25. Shestakov A.M. Ceramics based on organo-silicon polymers-precursors: properties and applications (review). Trudy VIAM, 2023, no. 2 (120), paper no. 10. Available at: http://www.viam-works.ru (accessed: May 11, 2025). DOI: 10.18577/2307-6046-2023-0-2-113-131.
26. Nicholas J.R. Processing of continuous fiber reinforced ceramic composites for ultra high temperature applications using organosilicon polymer precursors. Missouri University of Science and Technology, 2013, 59 p.
27. Seyferth D., Wiseman G.H., Prud'homme C. A Liquid Silazane Precursor to Silicon Nitride. Journal of the American Ceramic Society, 1983, vol. 66, no. 1, pp. C13–C14. DOI: 10.1111/j.1151-2916.1983.tb09979.x.
28. Hörz M., Zern A., Berger F. et al. Novel polysilazanes as precursors for silicon nitride/silicon carbide composites without «free» carbon. Journal of the European Ceramic Society, 2005, vol. 25, no. 2–3, pp. 99–110. DOI: 10.1016/j.jeurceramsoc.2004.07.020.
29. Seyferth D., Wiseman G.H. High‐Yield Synthesis of Si3N4/SiC Ceramic Materials by Pyrolysis of a Novel Polyorganosilazane. Journal of the American Ceramic Society, 1984, vol. 67, no. 7, pp. C132–C133. DOI: 10.1111/j.1151-2916.1984.tb19620.x.
30. Blum Y., Laine R.M. Catalytic methods for the synthesis of oligosilazanes. Organometallics, 1986, vol. 5, no. 10, pp. 2081–2086. DOI: 10.1021/om00141a026.
31. Seyferth D., Strohmann C., Dando N.R., Perrotta A.J. Poly(ureidosilazanes): Preceramic Polymeric Precursors for Silicon Carbonitride and Silicon Nitride. Synthesis, Characterization, and Pyrolytic Conversion to Si3N4/SiC Ceramics. Chemistry of Materials, 1995, vol. 7, no. 11, pp. 2058–2066. DOI: 10.1021/om00141a026.
32. Schwark J.M., Sullivan M.J. Isocyanate-Modified Polysilazanes: Conversion to Ceramic Materials. MRS Proceedings, 1992, vol. 271, p. 807. DOI: 10.1557/PROC-271-807.
33. Pump J., Rochow E.G. Silylcarbodiimide. IV. Sila‐polycarbodiimide. Zeitschrift anorg allge chemie, 1964, vol. 330, no. 1–2, pp. 101–106. DOI: 10.1002/zaac.19643300114.
34. Dressler W., Riedel R. Progress in silicon-based non-oxide structural ceramics. International Journal of Refractory Metals and Hard Materials, 1997, vol. 15, no. 1–3, pp. 13–47. DOI: 10.1016/S0263-4368(96)00046-7.
35. Nahar-Borchert S., Kroke E., Riedel R. et al. Synthesis and characterization of alkylene-bridged silsesquicarbodiimide hybrid xerogels. Journal of Organometallic Chemistry, 2003, vol. 686, no. 1–2, pp. 127–133. DOI: 10.1016/S0022-328X(03)00440-6.
36. Mera G., Riedel R., Poli F., Müller K. Carbon-rich SiCN ceramics derived from phenyl-containing poly(silylcarbodiimides). Journal of the European Ceramic Society, 2009, vol. 29, no. 13, pp. 2873–2883. DOI: 10.1016/j.jeurceramsoc.2009.03.026.
37. Greil P. Polymer derived engineering ceramics. Advanced engineering materials, 2000, vol. 2, no. 6, pp. 339–348. DOI: 10.1002/1527-2648(200006)2.
38. Konegger T., Agarwal A.K., Pandey A. et al. Ceramics for Sustainable Energy Technologies with a Focus on Polymer-Derived Ceramics. Novel Combustion Concepts for Sustainable Energy Development. Springer, 2014, pp. 501–533. DOI: 10.1007/978-81-322-2211-8_22.
39. Haug R., Weinmann M., Bill J., Aldinger F. Plastic forming of preceramic polymers. Journal of the European Ceramic Society, 1999, vol. 19, no. 1, pp. 1–6. DOI: 10.1016/S0955-2219(98)00167-8.
40. Turchenko M.V., Lebedeva Yu.E., Kolmogorov A.Yu., Gurov D.A., Chainikova A.S. Possibility of using layer-by-layer deposition technology (FDM) to produce ceramic products. Trudy VIAM, 2024, no. 8 (138), paper no. 06. Available at: http://www.viam-works.ru (accessed: May 11, 2025). DOI: 10.18577/2307- 6046-2024-0-8-64-76.
41. Idesaki A., Narisawa M., Okamura K. et al. Application of electron beam curing for silicon carbide fiber synthesis from blend polymer of polycarbosilane and polyvinylsilane. Radiation Physics and Chemistry, 2001, vol. 60, no. 4–5, pp. 483–487. DOI: 10.1016/S0969-806X(00)00394-7.
42. Liew L.-A., Liu Y., Luo R. et al. Fabrication of SiCN MEMS by photopolymerization of pre-ceramic polymer. Sensors and Actuators A: Physical, 2002, vol. 95, no. 2–3, pp. 120–134. DOI: 10.1016/S0924-4247(01)00723-3.
43. Infusible preceramic polymers via plasma treatment: pat. US4743662A; appl. 03.11.86; publ. 10.05.88.
44. Balan C., Riedel R. Rheological investigations of a polymeric precursor for ceramic materials: experiments and theoretical modeling. Journal of Optoelectronics and Advanced Materials, 2006, vol. 8, no. 2, pp. 561.
45. Konetschny C., Galusek D., Reschke S. et al. Dense silicon carbonitride ceramics by pyrolysis of cross-linked and warm pressed polysilazane powders. Journal of the European Ceramic Society, 1999, vol. 19, no. 16, pp. 2789–2796. DOI: 10.1016/S0955-2219(99)00070-9.
46. Zhitnyuk S.V., Medvedev P.N., Sorokin O.Yu., Kachaev A.A. Formation of crystallographic texture in polycryctalline ceramics as a way to enhance properties (review). Trudy VIAM, 2022, no. 5 (111), paper no. 07. Available at: http://www.viam-works.ru (accessed: May 11, 2025). DOI: 10.18577/2307- 6046-2022-0-5-74-86.
47. Yu S.H., Riman R.E., Danforth S.C., Leung R.Y. Pyrolysis of Titanium‐Metal‐Filled Poly(siloxane) Preceramic Polymers: Effect of Atmosphere on Pyrolysis Product Chemistry. Journal of the American Ceramic Society, 1995, vol. 78, no. 7, pp. 1818–1824. DOI: 10.1111/j.1151-2916.1995.tb08894.x.
48. Esfehanian M., Oberacker R., Fett T., Hoffmann M.J. Development of Dense Filler‐Free Polymer‐Derived SiOC Ceramics by Field‐Assisted Sintering. Journal of the American Ceramic Society, 2008, vol. 91, no. 11, pp. 3803–3805. DOI: 10.1111/j.1551-2916.2008.02730.x.
49. Butuzov A.V., Semina A.V. Preceramic polymers for the production of ceramic products by vat photopolymerization. Part 1. Methods of production and properties. Trudy VIAM, 2025, no. 3 (145), paper no. 07. Available at: http://www.viam-works.ru (accessed: May 11, 2025). DOI: 10.18577/2307-6046-2025-0-3-70-88.
In the fourth part of the series of articles on climatic aging of paint coating systems, the additivity of the impact of climatic factors is investigated. The color indices are studied in laboratory tests for different sequences of exposure to sand and dust, ultraviolet radiation, and thermal cycles. It is shown that the change in color distance differs for different sequences of exposure. The sequences of exposures are ranked by the magnitude of change in color distance.
2. Oehler H., Wanner M., Aktas L. et al. Site-specific weathering of coatings: II. Comparison of natural weathering and accelerated protocols for Central Europe and Florida. Journal of Coatings Technology and Research, 2025, vol. 22, no. 2, pp. 739–761.
3. Ładosz Ł., Sudoł E., Kozikowska E., Choińska E. Artificial Weathering Test Methods of Waterborne Acrylic Coatings for Steel Structure Corrosion Protection. Materials, 2024, vol. 17, no. 8, art. 1857.
4. Kablov E.N., Startsev V.O., Laptev A.B. Aging of polymer composite materials. Moscow: NRC «Kurchatov Institute» – VIAM, 2023, 520 p.
5. Cocuzzi D.A., Pilcher G.R. Ten-year exterior durability test results compared to various accelerated weathering devices: Joint study between ASTM International and National Coil Coatings Association. Progress in Organic Coatings, 2013, vol. 76, pp. 979–984.
6. Johnson B.W., McIntyre R. Analysis of test methods for UV durability predictions of polymer coatings. Progress in Organic Coatings, 1996, vol. 27, no. 1–4, pp. 95–106.
7. Merkulova Yu.I., Kurshev E.V., Vdovin A.I., Andreeva N.P. Microstructural and electrochemical studies of paint coatings under natural climate tests of tropical climate of North America. Aviation materials and technologies, 2022, no. 2 (67), paper no. 11. Available at: http://www.journal.viam.ru (accessed: June 15, 2025). DOI: 10.18577/2713-0193-2022-0-2-120-130.
8. Malshe V.C., Waghoo G. Weathering study of epoxy paints. Progress in Organic Coatings, 2004, vol. 51, no. 4, pp. 267–272.
9. Pavlov A.V., Andreeva N.P., Pavlov M.R., Merkulova Yu.I. Climatic tests of paint coating based on fluoroplastic and features of its destruction. Trudy VIAM, 2019, no. 5, paper no. 12. Available at: http://www.viam-works.ru (accessed: June 15, 2025). DOI: 10.18577/2307-6046-2019-0-5-103-110.
10. Lomakin A.D. Natural climatic tests of protective coatings on wood. Zhilishchnoe stroitelstvo, 2013, no. 9, pp. 41–46.
11. Lebedev M.P., Startsev O.V., Koval T.V., Veligodsky I.M. Multiplet relaxation α-transitions in a fluororethane coating after climatic aging. Doklady Rossiyskoy akademii nauk. Khimiya, nauki o materialakh, 2024, vol. 516, no. 1, pp. 45–51.
12. Erofeev V.T., Smirnov I.V., Voronov P.V. et al. Study of the durability of polymer coatings under the influence of climatic factors of the Black Sea coast. Fundamentalnye issledovaniya, 2016, no. 11, p. 911–924.
13. Kablov E.N., Lebedev M.P., Startsev O.V., Golikov N.I. Climatic tests of materials, structural elements, machinery and equipment in conditions of extremely low temperatures. Proceedings of the VI Eurasian Symposium on the Problems of Strength of Materials and Machines for Cold Climate Regions EURASTRENCOLD–2013. Yakutsk, 2013, рр. 5–7.
14. Startsev O.V., Lebedev M.P., Kychkin A.K. Aging of polymer composite materials in conditions of extremely cold climate. Izvestiya Altayskogo gosudarstvennogo universiteta, 2020, no. 1 (111), pp. 41–51.
15. Startsev O.V., Nikishin E.F. Aging of polymer composite materials in outer space. Mekhanika kompozitnykh materialov, 1993, no. 4, pp. 457–467.
16. Startsev O.V., Isupov V.V., Nikishin E.F. The Gradient of Mechanical Characteristics Across the Thickness of Composite Laminates After Exposure to a Low Earth Orbit Environment. Polymer Composites, 1998, vol. 19, no. 1, pp. 65–70.
17. Rossi S., Fedel M., Deflorian F., Zanol S. Influence of different colour pigments on the properties of powder deposited organic coatings. Materials & Design, 2013, vol. 50, pp. 332–341.
18. Perrin F.X., Merlatti C., Aragon E., Margaillan A. Degradation study of polymer coating: Improvement in coating weatherability testing and coating failure prediction. Progress in Organic Coatings, 2009, vol. 64, no. 4, pp. 466–473.
19. ISO 9227:2017. Corrosion tests in artificial atmospheres – Salt spray tests. Geneva, 2017, 26 p.
20. ISO 20340:2009-04. Paints and varnishes – Performance requirements for protective paint systems for offshore and related structures. Geneva, 2009, 23 p.
21. ASTM G53-96. Practice for operating light- and water-exposure apparatus (fluorescent UV-condensation type) for exposure of nonmetallic materials. ASTM International, West Conshohocken, PA, 2000, 9 p.
22. ASTM D5894-21. Standard practice for cyclic salt fog/UV exposure of painted metal, (alternating exposures in a fog/dry cabinet and a UV/condensation cabinet). Annual Book of ASTM Standards, 2001, vol. 06.01. DOI: 10.1520/D5894-21.
23. Khotbehsara M.M., Manalo A., Aravinthan T. et al. Effects of ultraviolet solar radiation on the properties of particulate-filled epoxy based polymer coating. Polymer Degradation and Stability, 2020, vol. 181, art. 109352.
24. Lan P., Polychronopoulou K., Zhang Y., Polycarpou A.A. Three-body abrasive wear by (silica) sand of advanced polymeric coatings for tilting pad bearings. Wear, 2017, vol. 382–383, pp. 40–50.
25. Procházka L., Brázdová A. Impact of Freeze-thaw Cycles on Coatings Applied to the Surface of Alkali-activated Materials. 9th World Multidisciplinary Congress on Civil Engineering, Architecture, and Urban Planning (WMCCAU 2024). Ostrava, 2024, pp. 1–7.
26. Startsev V.O. Climate aging of paint coating systems. Part 2. Influence of different climatic zones. Trudy VIAM, 2025, no. 6 (148), paper no. 07. Available at: http://www.viam-works.ru (accessed: June 15, 2025). DOI: 10.18577/2307-6046-2025-0-6-86-97.
27. Startsev V.O. Climate aging of paint coating systems. Part 3. Comparison of results of natural and accelerated climatic tests taking into account the effect of seasonality. Trudy VIAM, 2025, no. 7 (149), paper no. 08. Available at: http://www.viam-works.ru (accessed: July 15, 2025). DOI: 10.18577/2307-6046-2025-0-7-105-118.
In this work, we have determined the impurities of 43 elements in silicon by high-resolution glow discharge mass spectrometry. The sample preparation for analysis is described. The analysts have selected the corresponding equipment settings to achieve maximum analytical signals from all the elements being sought. Spectral interferences have been eliminated by using high resolution. Relative sensitivity coefficients have been calculated for all the elements being determined using X-ray fluorescence spectroscopy.
2. Evdokimov S.A., Shchegoleva N.E., Kachaev A.A. Methods for joining ceramic composite materials based on SiC with ceramic and metallic materials (review). Aviation materials and technologies, 2022, no. 3 (68), paper no. 07. Available at: http://www.journal.viam.ru (accessed: December 14, 2024). DOI: 10.18577/2713-0193-2022-0-3-75-83.
3. Kvyatkovskaya A.S., Saburova Yu.B., Belonogov V.A. et al. The investigation of electrodeposited Ni‒SiC coatings and the methods of its application on aluminum alloys. Aviation materials and technologies, 2024, no. 4 (77), paper no. 09. Available at: http://www.journal.viam.ru (accessed: December 14, 2024). DOI: 10.18577/2713-0193-2024-0-4-128-139.
4. Erasov V.S., Oreshko E.I. Fatigue tests of metal materials (review). Part 1. Main definitions, loading parameters, representation of results of tests. Aviacionnye materialy i tehnologii, 2020, no. 4 (61), pp. 59–70. DOI: 10.18577/2071-9140-2020-0-4-59-70.
5. Kablov E.N., Kutyrev A.E., Vdovin A.I., Kozlov I.A., Afanasyev-Khodykin A.N. The research of possibility of galvanic corrosion in brazed connections used in aviation engine construction. Aviation materials and technologies, 2021, no. 4 (65), paper no. 01. Available at: http://www.journal.viam.ru (accessed: December 14, 2024). DOI: 10.18577/2713-0193-2021-0-4-3-13.
6. Kablov E.N., Chabina E.B., Morozov G.A., Muravskaya N.P. Conformity assessment of new materials using high-level CRMs and MI. Kompetentnost, 2017, no. 2. pp. 40–46.
7. State Standard 26239.3–84. Semiconductor silicon, source products for its production and quartz. Methods for determination of phosphorus. Moscow: Publ. house of standards, 1984, pp. 1–3.
8. State Standard 19014.2–73. Crystalline silicon. Methods for determination of iron. Moscow: Publ. house of standards, 1973, pp. 1–3.
9. State Standard 19014.3–73. Crystalline silicon. Methods for determination of calcium. Moscow: Publ. house of standards, 1973, pp. 1–3.
10. Tsygankova A.R., Shaverina A.V., Shelpakova I.R., Saprykin A.I. Comparison of analytical capabilities of combined methods of analysis of high-purity substances with excitation of radiation in a direct current arc and inductively coupled plasma. Analitika i kontrol, 2012, vol. 16, no. 4, pp. 420–424.
11. Hu J., Wang H. Determination of Trace Elements in Super Alloy by ICP-MS. Mikrochimica Acta, 2001, vol. 137, pp. 149–155.
12. Pupyshev A.A., Epova E.N. Spectral interference of polyatomic ions in the method of mass spectrometry with inductively coupled plasma. Analitika i kontrol, 2001, vol. 5, no. 4, pp. 335–369.
13. Dong X., Xiong Y., Wang N. et al. Determination of trace elements in high-purity quartz samples by ICP-OES and ICP-MS: A normal-pressure digestion pretreatment method for eliminating unfavorable substrate Si. Analytical Chimica Acta, 2020, vol. 1110, pp. 11–18. DOI: 10.1016/j.aca.2020.03.006.
14. State Standard 26239.5–84. Semiconductor silicon and quartz. Method for determining impurities. Moscow: Publ. house of standards, 1984, pp. 1–3.
15. Jakubowski N., Prohaska T., Rottmann L., Vanhaecke F. Inductively coupled plasma- and glow discharge plasma-sector field mass spectrometry. Part I. Tutorial: Fundamentals and instrumentation. Journal of Analytical Atomic Spectrometry, 2011, vol. 26, pp. 693–726.
16. Ganeev A.A., Gubal A.R., Uskov K.N., Potapov S.V. Analytical mass spectrometry with glow discharge. Izvestiya Akademii nauk. Seriya khimicheskaya, 2012, no. 4, pp. 1–15.
Heat-resistant alloys and steels
Kablov E.N., Nerush S.V., Chubov D.G., Suhov D.I., Filonova E.V., Pahomkin S.I. Structural instability of heat-resistant nickel-based superalloys with high content of the gamma prime phase obtained by selective laser melting method
Vostrikov A.V., Yashin M.S., Kapitanenko D.V. Trends in the production of disc blanks from heat-resistant nickel alloys with functionally graded characteristics
Panteleev M.D., Sviridov A.V., Popov K.N., Zotov S.D. New filler material for welding of foundry heat-resistant nickel alloys ВЖЛ718 and ВЖЛ220
Sevalnev G.S., Dulnev K.V., Ryzhkov P.V., Leonov A.V., Voznesenskaya N.M. Optimization of heat treatment for high-strength corrosion-resistant nitrogen-containing steel to produce seamless thin-walled tubes
Light-metal alloys
Benarieb I., Sbitneva S.V., Zaytsev D.V., Shorstov S.Yu. Features of quench-induced precipitation in sheets of V-1341 aluminum alloy of Al–Mg–Si system
Shiryaev A.A., Krohina V.A., Putyrskiy S.V., Anisimova A.Yu. The influence of heat treatment parameters on mechanical properties and structure of semi-finished products made of high-strength titanium alloyVT23M
Shvetsova A.N., Eroshkin S.G. Study of the hydrogenation process of VT5, VT14, VT22 titanium alloys for the production of standard samples of hydrogen content
Polymer materials
Donetskiy K.I., Karavaev R.Yu., Bystrikova D.V., Gracheva A.D., Tkachuk A.I. Semipregs and carbon fiber reinforced plastics based on them
Composite materials
Gunyaeva A.G., Klimenko O.N. Lighting protection coating based on polymer composite film with integrated metal mesh
Donetskiy K.I., Karavaev R.Yu., Bystrikova D.V.,Melnikov D.A., Gracheva A.D., Gorodilova N.A. Manufacturing of a draft element of a helicopter control system thrust using volume-reinforced woven carbon fiber preforms
Barannikov A.A., Veshkin E.A., Savitsky R.S., Slavin A.V. On the question of manufacturing fire-resistant and fire-proof hoods of helicopter power plant engine nacholds from polymer composite materials. Part 1
Parashchenko N.M., Tupikov A.S., Lyzhenkov Z.A., Golovko D.S. Review of Polymer-Derived Ceramics (PDC). Part 1. Preceramic polymers and production of PDC materials
Protective and functional
coatings
Startsev V.O. Climatic aging of paint coating systems. Part 4. Additivity of the impact of climate factors
Material tests
Alekseev A.V., Yakimovich P.V. Analysis of silicon by glow discharge high-resolution mass spectrometry