Articles
The paper studies the influence of sulfur impurity on the high-temperature resistance at T = 1000 °C for 500 hours of cast heat-resistant hafnium-containing nickel alloy VZhM200. It has been found that with the increase of the sulfur content, the high temperature resistance of the alloy decreases, and with the increase of its content from 0,0038 to 0,0130 wt. %, a slowdown in the high-temperature oxidation process is observed. This is due to the fact that sulfur is concentrated in the composition of hafnium-containing carbides, thereby reducing its diffusion from the volume to the surface of the material, which prevents the destruction of the forming oxide layer.
2. Budinovskiy S.A., Gorlov D.S., Benklyan A.S. Deposition of protective ion-plasma coatings on largescale parts on MAP type installations. Aviation materials and technologies, 2024, no. 1 (74), paper no. 08. Available at: http://www.journal.viam.ru (accessed: July 07, 2025). DOI: 10.18577/2713-0193-2024-0-1-101-110.
3. Tyunkov А.V., Аndronov А.А., Zolotukhin D.B. et al. Methods of forming heat-protective coatings of turbine blades (review). Aviation materials and technologies, 2024, no. 4 (77), paper no. 10. Available at: http://www.journal.viam.ru (accessed: July 07, 2025). DOI: 10.18577/2713-0193-2024-0-4-140-168.
4. Inozemtsev A.A., Koryakovtsev A.S., Lesnikov V.P., Kuznetsov V.P. The role of materials and protective coatings of turbine blades in ensuring the reliability and efficiency of gas turbine engines. Scientific ideas of S.T. Kishkin and modern materials science: Reports Int. Sci.-Tech. Conf. Moscow: VIAM, 2006, pp. 84–87.
5. Kablov E.N., Muboyadzhyan S.A. Heat resisting and heat-protective coverings for turbine blades of high pressure of perspective GTE. Aviacionnye materialy i tehnologii, 2012, no. S, pp. 60–70.
6. Geddes B., Leon H., Huang X. Superalloys: Alloying and performance. Materials Park, Ohio: ASM International, 2010, 176 p.
7. Reed R.C. The Superalloys Fundamentals and Applications. Cambridge: Cambridge University Press, 2006, 390 p.
8. Shein E.A. Tendencies in the field of alloying and microalloying of heat resisting single-crystal alloys on the basis of nickel (review). Trudy VIAM, 2016, no. 3, paper no. 02. Available at: http://www.viam-works.ru (accessed: July 07, 2025). DOI: 10.18577/2307-6046-2016-0-3-2-2.
9. Pettit F.S., Meier G.H. Oxidation and hot corrosion of superalloys. Superalloys. Warrendale, USA: The Minerals, Metals & Materials Society, 1984, pp. 651–687. DOI: 10.7449/1984/Superalloys_1984_651_687.
10. Ross I.V., Sims C.T. Nickel-based alloys. Superalloys II. Heat-resistant materials for aerospace and industrial power plants: in 2 books. Ed. S.T. Sims, N.S. Stoloff, W.K. Hagel; trans. from Engl. Moscow: Metallurgiya, 1995, book 1, p. 128–172.
11. Choi K., Choe B., Han S. et al. Effects of Cr and Al Contents on the Oxide Structures of Ni-based Superalloys at High Temperatures. Metals, 2025, vol. 15 (388), pp. 1–15. DOI: 10.3390/met15040388.
12. Chang J., Feng W., Zhao W. et al. Investigation on Optimal Ta/Cr Ratio of a Single Crystal Ni-base Superalloy in View of the Isothermal Oxidation Behavior. Crystals, 2021, vol. 11 (1421), pp. 1–15. DOI: 10.3390/cryst11111421.
13. Mc Vay R.V., William P., Meier G.H., Pettit F.S. Oxidation of Low Sulfur Single Crystal Nickel-base Superalloys. Superalloys. Warrendale, USA: The Minerals, Metals & Materials Society, 1992, pp. 807–816.
14. Sarioglu C., Stinner C., Blanchere J.R. et al. The control of sulfur content in nickel-base, single crystal superalloys and its effect on cyclic oxidation resistance. Superalloys. Warrendale, USA: The Minerals, Metals & Materials Society, 1996, pp. 71–80.
15. Simpson T.M., Price A.R. Oxidation improvements of low sulfur processed superalloys. Superalloys. Warrendale, USA: The Minerals, Metals & Materials Society, 2000, pp. 387–392.
16. Ultra low sulfur superalloy casting and method of making: pat. 5922148А US; appl. 25.02.97; publ. 13.07.99.
17. Improved low sulfur nickel-base single crystal superalloy with ppm additions of lanthanum and yttrium: pat. 2415888 EU; appl. 14.10.10; publ. 27.06.12.
18. Zhan X., Wang D., Zhang Z.-P., Zhang J. Effect of trace sulfur on the hot corrosion resistance of Ni-base single crystal superalloy. Corrosion Science, 2023, vol. 224, p. 111528. DOI: 10.1016/j.corsci.2023.111528.
19. Harris K., Wahl J.B. Developments in superalloy castability and new applications for advanced superalloys. Material Science and Technology, 2009, vol. 25, no. 2. DOI: 10.1179/174328408x355442.
20. Cao S., Yang Y., Chen B. et al. Influence of yttrium on purification and carbide precipitation of superalloy K4169. Journal of Materials Science & Technology, 2021, vol. 86, pp. 260–270. DOI: 10.1016/j.jmst.2021.01.049.
21. Harris K., Wahl J.B. Improved single crystal superalloys, CMSX-4 (SLS) [La+Y] and CMSX-486. Superalloys. Warrendale, USA: The Minerals, Metals & Materials Society, 2004, pp. 45–52.
22. Yun D.W., Seo S.M., Jeong H.W., Yoo Y.S. The cyclic oxidation behaviour of Ni-based superalloy GTD-111 with sulphur impurities at 1100 °C. Corrosion Science, 2015, vol. 90, pp. 392–401. DOI: 10.1016/j.corsci.2014.10.030.
23. Peruse E., Diomande D., Dufour G. et al. Type I and Type II Hot Corrosion of Ni-based alloys without an incubation period. High Temperature Corrosion of Materials, 2025, vol. 102, pp. 1–15. DOI: 10.1007/s11085-025-10341-7.
24. Min P.G., Sidorov V.V., Budinovsky S.A., Vadeev V.E. Effect of sulfur on heat resistance of single crystals of heat-resistant nickel alloy of the Ni–Al–Co–Re–Ta–Mo–W–Ru–Cr system. Materialovedenie, 2016, no. 7, pp. 9–12.
25. Kablov D.E., Sidorov V.V., Budinovskij S.A., Min P.G. The influence of sulfur impurity on heat resistance of single crystals of ZhS36-VI alloy with protective coating. Aviacionnye materialy i tehnologii, 2016, no. 1 (40), pp. 20–23. DOI: 10.18577/2071-9140-2016-0-1-20-23.
26. Min P.G., Vadeev V.E., Kolesnikov S.I., Chemov D.A. The effect of impurities on mechanical and operational properties of the cast nickel-base superalloy VZhM200. Trudy VIAM, 2024, no. 10 (140), paper no. 02. Available at: http://www.viam-works.ru (accessed: July 07, 2025). DOI: 10.18577/2307-6046-2024-0-10-13-23.
27. Min P.G., Kablov D.E., Sidorov V.V., Vadeev V.E. Influence of sulfur, phosphorus and silicon impurities on the structure and properties of single crystals of nickel heat-resistant alloys Materialovedenie, 2018, no. 8, pp. 13–18. DOI: 10.31044/1684-579Х-2018-0-8-13-18.
28. Kablov D.E., Sidorov V.V., Puchkov Yu.A. Diffusion behavior features of impurities and microalloying additives in nickel and single crystal superalloys. Aviacionnye materialy i tehnologii, 2016, no. 1 (40), pp. 24–31. DOI: 10.18577/2071-9140-2016-0-1-24-31.
29. Min P.G., Vadeev V.E., Kramer V.V. The development of the new VZhM200 superalloy and the technology of its production for casting of the advanced engines’ blades by the directional crystallization. Aviation materials and technologies, 2021, no. 3 (64), paper no. 02. Available at: http://www.journal.viam.ru (accessed: July 07, 2025). DOI: 10.18577/2713-0193-2021-0-3-11-18.
30. Mataveli Suave L., Cormier J., Villechaise P. et al. Anisotropy in creep properties of DS200 + Hf alloy. Materials at High Temperatures, 2016, no. 33, pp. 361–371. DOI: 10.1080/09603409.2016.1159836.
31. Mataveli Suave L., Cormier J., Villechaise P. et al. High temperature creep damage mechanisms in a directionally solidified alloy: impact of crystallography and environment. Superalloys. Warrendale, USA: The Minerals, Metals & Materials Society, 2016, pp. 747–756. DOI: 10.7449/Superalloys/2016/Superalloys_2016_747_756.
32. Baldan A. Electron microprobe investigation of lower melting regions in the as-cast structure of DS200 + Hf single crystal. Journal of Materials Science, 1990, vol. 25, pp. 4341–4348.
33. Tikhonov A.I., Kraev V.M., Siluyanova M.V. Prospects for the Development of Russian Aircraft Engine Manufacturing Based on a Unified Gas Generator. STIN, 2023, no. 6, pp. 71–74.
34. Konstantinov I.V. Ensuring Technological Sovereignty of the Aviation Industry Using the Example of the SUKHOI SUPERJET NEW Aircraft. Scientific Achievements and Innovative Approaches: Theory, Methodology, Practice: Scientific Reports on Materials. VIII Int. Scientific and Practical Conf. Anapa, 2022, pр. 99–103.
35. More than 40 PD-8 Engines to Be Produced in 2024. Available at: https://tass-ru/ekonomika/18995881 (accessed: July 07, 2025).
36. Tolboev M.O. Civil aviation of Russia: before and after the Superjet. Standarty i kachestvo, 2019, no. 7, pp. 80–82.
37. Bazikova I.V. Main problems of the implementation of the Sukhoi Superjet 100 project. Vestnik universiteta, 2018, no. 6, pp. 48–54.
38. Tikhonov A.I., Sazonov A.A. Innovative Russian aircraft Sukhoi Superjet 100 as a vector of development of the aircraft industry of the future. Ekonomika i predprinimatelstvo, 2018, no. 7 (96), pp. 289–292.
39. Mayorov A.V., Borisoglebskaya L.N., Bulatnikov D.V., Dudina K.E. Features of import substitution in the aircraft industry. Innovatsii, 2023, no. 1 (291), pp. 45–50. DOI: 10.26310/2071-3010.2023.291.1.004.
40. Min P.G., Vadeev V.E., Min M.G. Development and implementation in production of the new single-crystal high-temperature nickel alloy for casting of gas turbine blades for the prospective engine PD-8. Aviation materials and technologies, 2025, no. 1 (78), paper no. 01. Available at: http://www.journal.viam.ru (accessed: July 07, 2025). DOI: 10.18577/2713-0193-2025-0-1-3-17.
41. Min P.G., Vadeev V.E. The development and introduction into serial production of the new superalloy VZhL125 for the advanced aviation engines vanes. Aviation materials and technologies, 2023, no. 1 (70), paper no. 01. Available at: http://www.journal.viam.ru (accessed: July 07, 2025). DOI: 10.18577/2713-0193-2023-0-1-3-16.
42. Heat-resistant nickel-based casting alloy and a product made from it: pat. 2740929 Rus. Federation; appl. 20.04.20; publ. 21.01.21.
43. Kablov E.N., Echin A.B., Bondarenko Yu.A. History of development of directional crystallization technology and equipment for casting blades of gas turbine engines. Trudy VIAM, 2020, no. 3 (87), paper no. 01. Available at: http://www.viam-works.ru (accessed: July 07, 2025). DOI: 10.18577/2307-6046-2020-0-3-3-12.
44. Kablov E.N., Bondarenko Yu.A., Echin A.B. Development of technology of cast superalloys directional solidification with variable controlled temperature gradient. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 24–38. DOI: 10.18577/2071-9140-2017-0-S-24-38.
45. Gerasimov V.V., Visik E.M., Kolyadov E.V. On directional crystallization of large-sized castings on the UVNK-15 unit. Liteynoe proizvodstvo, 2013, no. 3, pp. 22–24.
46. Gerasimov V.V., Kolyadov E.V. Technical characteristics and technological capabilities of the UVNK-9A and VIP-NK units for producing single-crystal castings from heat-resistant alloys. Liteshchik Rossii, 2012, no. 11, pp. 33–37.
47. Kablov E.N., Gerasimov V.V., Visik E.M. Control of the structure of heat-resistant nickel alloys in the manufacture of gas turbine engine blades by directional crystallization. Aviatsionnaya promyshlennost, 1999, no. 2, pp. 12–18.
48. Mehanik E.A., Min P.G., Gundobin N.V., Rastegaeva G.Yu. Determination of sulfur mass fraction in heat-resistant nickel alloy and steels within the concentration range from 0,0001 to 0,0009% wt. Trudy VIAM, 2014, no. 9, paper no. 12. Available at: http://www.viam-works.ru (accessed: July 07, 2025). DOI: 10.18577/2307-6046-2014-0-9-12-12.
49. Sidorov V.V., Kablov D.E., Chabina E.B., Ospennikova O.G., Simonov V.N., Puchkov Yu.A. The influence of impurities and microalloying on the structure and performance properties of single crystals of heat-resistant nickel alloys: textbook. Ed. E.N. Kablov. Moscow: VIAM, 2020, pp. 232–233.
The paper presents comparison of main mechanical properties of rods, forgings and castings made of heat-resistant titanium pseudo-alpha alloy VT46 (VT46L), as well as similar alloys of the same class and application in the range of operating temperatures. Values of long-term strength at 500 and 550 °С have been presented specifically. The article shows microstructure study results of the said semi-finished products material. It provides a generalized description of the technology for manufacturing semi-finished products, indicating features that distinguish VT46 alloy from serial titanium alloys. Possible application areas of VT46 alloy in relation to engine parts and aircraft equipment are discussed.
2. Sun Z., Wu H., Ma X. et al. Dependence of Microstructure on Solution and Aging Treatment for Near-b Forged TA15 Ti-Alloy. Journal of Materials Engineering and Performance, 2016, vol. 25 (10), pp. 4549–4560. DOI: 10.1007/s11665-016-2282-2.
3. Wu H., Sun Z., Cao J., Yin Z. Microstructure and Mechanical Behavior of Heat-Treated and Thermomechanically Processed TA15 Ti Alloy Composites. Journal of Materials Engineering and Performance, 2019, vol. 28 (2), pp. 788–799. DOI: 10.1007/s11665-019-3881-5.
4. Sun Z., Wang X., Zhang J., Yang H. Prediction and control of equiaxed α in near-β forging of TA15 Ti-alloy based on BP neural network: For purpose of tri-modal microstructure. Materials Science & Engineering, 2014, vol. 591, pp. 18–25. DOI: 10.1016/j.msea.2013.10.080.
5. Zhu S., Yang H., Guo L.G., Fan X.G. Effect of cooling rate on microstructure evolution during α/β heat treatment of TA15 titanium alloy. Materials characterization, 2012, vol. 70, pp. 101–110. DOI: 10.1016/j.matchar.2012.05.009.
6. Solonin O.P., Glazunov S.G. Modern heat-resistant titanium alloys and prospects for their application in engines. Moscow: Metallurgiya, 1974, 448 p.
7. Yashin M.S., Kapitanenko D.V. Investigation of the structure and properties of the VT3-1 alloy in relation to the technology for obtaining stampings of disks and turbine blades. Trudy VIAM, 2023, no. 8 (126), paper no. 05. Available at: http://www.viam-works.ru (accessed: July 22, 2025). DOI: 10.18577/2307-6046-2023-0-8-52-63.
8. Yakovlev M.M., Yarullin R.R., Shlyannikov V.N. Parameters of fracture resistance of a simulation model of a compressor disk. Vestnik Permskogo natsionalnogo issledovatelskogo politekhnicheskogo universiteta. Ser.: Mekhanika, 2020, no. 3, pp. 98–107. DOI: 10.15593/perm.mech/2020.3.10.
9. Petrov A.P., Bespalov A.V., Sokolov A.V., Shlensky A.G. Hot hydrostatic extrusion of titanium blanks in the production of compressor blades for gas turbine engines. Tekhnologiya legkikh splavov, 2022, no. 1, pp. 58–66. DOI: 10.24412/0321-4664-2022-1-58-66.
10. Bratan S.M., Roshchupkin S.I., Chasovitina A.S., Gupta K. Influence of relative vibrations of the abrasive tool and the workpiece during finish grinding on the probability of material removal. Obrabotka metallov (tekhnologiya, oborudovaniye, instrumenty), 2022, vol. 24, no. 1, pp. 33–47. DOI: 10.17212/1994-6309-2022-24.1-33-47.
11. Egorova Yu.B., Davydenko L.V., Belova S.B. Statistical comparison of long-term and short-term strength of titanium alloys at operating temperatures. Tekhnologiya legkikh splavov, 2024, no. 1, pp. 13–22. DOI: 10.24412/0321-4664-2024-1-13-22.
12. Lomakin E.V., Bragov A.M., Konstantinov A.Yu. et al. Modeling the behavior of titanium alloy VT20 under impact interaction. Vestnik Nizhegorodskogo universiteta im. N.I. Lobachevskogo, 2011, no. 1, pp. 129–132.
13. Gadalov V.N., Kutepov S.N., Filonovich A.V. et al. Monitoring of numerical modeling of the process of surface-hardening treatment of titanium alloys VT20 and OT4. Izvestiya TulGU. Ser.: Tekhnicheskiye nauki, 2023, no. 9, pp. 354–358. DOI: 10.24412/2071-6168-2023-9-349-350.
14. Soler Ya.I., Shi M. Improving the efficiency of using silicon carbide abrasive wheels in surface grinding of titanium alloy VT20. Mashinostroyenie i mashinovedenie, 2016, no. 8 (115), pp. 43–55.
15. Zenkov E.V. Experimental studies of the strength of models of connecting rods of automobile engines made of titanium alloy VT20. Mezhdunarodnyy nauchno-issledovatelskiy zhurnal, 2021, no. 11 (113), part 1, pp. 23–28. DOI: 10.23670/IRJ.2021.113.11.006.
16. Antipin N.A., Getsov L.B., Gnedenkov E.V. et al. Strength and crack resistance of centrifugal compressor wheels. Gazovaya promyshlennost, 2017, no. 11 (760), pp. 120–128.
17. Tisarev A.Yu., Vasilevich N.M. Study of the influence of non-axisymmetric elements of the engine air system on flow parameters, temperature fields, and deformations of gas turbine engine parts. Vestnik SGAU, 2012, no. 3 (34), pp. 279–284.
18. Makushina M.A., Kochetkov A.S., Nochovnaya N.A. Cast titanium alloys for aviation equipment (review). Trudy VIAM, 2021, no. 7 (101), paper no. 05. Available at: http://www.viam-works.ru (accessed: July 22, 2025). DOI: 10.18577/2307-6046-2021-0-7-39-47.
19. Kishalov A.E., Lipatov V.D. Automated design of the main units of a turbofan turbofan engine using the AL-31F engine family as an example. Vestnik UGATU, 2020, vol. 24, no. 4 (90), pp. 48–56.
20. Aviation materials: reference book in 13 vols. Ed. E.N. Kablov. 7th ed., add. and rev. Moscow: VIAM, 2010, vol. 6: Titanium alloys, 95 p.
21. Gunyaeva A.G., Kurnosov A.O., Slavin A.V. Experience in the use of polymer composite materials developed by NRC «Kurchatov Institute» – VIAM in engines for civil aircraft. Aviation materials and technologies, 2024, no. 4 (77), paper no. 06. Available at: http://www.journal.viam.ru (accessed: 28.07.2025). DOI: 10.18557/2713-0193-2024-0-4-82-94.
22. Andryushkin A.Yu., Komarov K.A., Gumanenko Ya.D. Influence of operating temperature on the choice of material for the optimal design of the aircraft power strut. Aerokosmicheskaya tekhnika i tekhnologii, 2024, vol. 2, no. 4, pp. 68–79. DOI: 10.52467/2949-401X-2024-2-4-68-79.
23. Kalashnikov V.S., Reshetilo L.P., Chuchman O.V., Naprienko S.A. Strength and reliability of rods and rotor blade stamps made of heat-resistant industrial titanium alloys and modern pseudo-α-titanium alloy. Trudy VIAM, 2022, no. 2 (108), paper no. 02. Available at: http://www.viam-works.ru (accessed: July 19, 2025). DOI: 10.18577/2307-6046-2022-0-2-13-31.
24. Kablov E.N. Materials and technologies of VIAM for «Aviadvigatel». Permskie aviatsionnye dvigateli, 2014, no. 31, pp. 43–47.
25. Kablov E.N. The strategic directions of development of materials and technologies of their processing for the period to 2030. Aviacionnye materialy i tehnologii, 2012, no. S, pp. 7–17.
26. Kashapov O.S., Reshetilo L.P., Kalashnikov V.S., Pavlova T.V. On the influence of cooling rates on the microstructure and properties of heat-resistant titanium pseudo-alpha alloy during solid solution heat treatment with air cooling. Metally, 2021, no. 6, pp. 46–61.
27. Kashapov O.S., Pavlova T.V., Kalashnikov V.S., Kondrateva A.R. Research of influence of alloying elements content on properties of high strength near alpha heat resistance titanium alloy VT46. Trudy VIAM, 2016, no. 9, paper no. 06. Available at: http://www.viam-works.ru (accessed: July 28, 2025). DOI: 10.18577/2307-6046-2016-0-9-6-6.
28. Karachevtsev F.N., Alekseev A.V., Letov A.F., Dvoretskov R.M. Plasma methods of nickel alloys elemental chemical composition analysis. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 483–497. DOI: 10.18577/2071-9140-2017-0-S-483-497.
29. Panin P.V., Nochovnaya N.A., Kablov D.E., Alekseev E.B., Shiryaev A.A., Novak A.V. Practical guide to metallography of titanium-based alloys and its intermetallic compounds: a tutorial. Ed. E.N. Kablov. Moscow: VIAM, 2020, 200 p.
30. Makushina M.A., Kochetkov A.S., Vinogradov I.D. The influence of various modes of hot isostatic pressed and heat treatment on structure and properties of castings from the VT40L alloy. Trudy VIAM, 2023, no. 10 (128), paper no. 03. Available at: http://www.viam-works.ru (accessed: July 22, 2025). DOI: 10.18577/2307-6046-2023-0-10-24-34.
31. Rajan S., Wanjara P., Gholipour J., Kabir A. Joining of Dissimilar Alloys Ti-6Al-4V and Ti-6Al-2Sn-4Zr-2Mo-0.1Si Using Linear Friction Welding. Materials, 2020, no. 13, pp. 3664–3689. DOI: 10.3390/ma13173664/.
32. Kim Y., Jeong H., Park J. et al. Optimizing process parameters for hot forging of Ti-6242 alloy: A machine learning and FEM simulation approach. Journal of Materials Research and Technology, 2023, no. 27, pp. 8228–8243. DOI: 10.1016/j.jmrt.2023.11.193.
33. Li Q., Chen E., Bice D., Dunand D. Mechanical Properties of Cast Ti-6Al-2Sn-4Zr-2Mo Lattice Block Structures. Advanced engineering materials, 2008, no. 10, pp. 939–942.
34. Bashir S., Thomas M.C. Creep and high temperature low cycle fatigue of cast Ti-6Al-2Mo-4Zr-2Sn. Titanium’ 92. Science and Technology. The Minerals, Metals and Materials Society, 1993, pp. 319–326.
The article presents the study of the structure, physical and mechanical properties of high-temperature carbon fiber based on bismaleinimide binder, obtained by various methods of molding: autoclave, press and vacuum. The study results of samples obtained by non-destructive testing methods, such as ultrasonic echo-pulse method and X-ray computed tomography method, which allowed to estimate quantitative values of porosity. Also, the comparison of strength characteristics and the level of their preservation at elevated test temperatures have been conducted.
2. VIAM is 90 years old: proud of the past, creating the future. Ed. E.N. Kablov. Moscow: NRC «Kurchatov Institute» – VIAM, 2022. 155 p.
3. Sidorov D.V., Grunin A.A., Schavnev A.A. Formation of carbon coatings in the process of methane pyrolysis by the chemical vapor deposition. Trudy VIAM, 2023, no. 10 (128), paper no. 10. Available at: http://www.viam-works.ru (accessed: July 23, 2025). DOI: 10.18577/2713-0193-2023-0-2-122-144.
4. Kablov E.N. New generation materials and technologies for their digital processing. Herald of the Russian Academy of Sciences, 2020, vol. 90, no. 2, pp. 225–228.
5. Valueva M.I., Zelenina I.V., Nacharkina A.V., Sidorina A.I., Slavin A.V. High-temperature carbon fiber reinforced plastics based on polyimide binders. Trudy VIAM, 2024, no. 11 (141), paper no. 06. Available at: http://www.viam-works.ru (accessed: July 25, 2025). DOI: 10.18577/2307-6046-2024-0-11-71-88.
6. Gunyaeva A.G., Kurnosov A.O., Gulyaev I.N. High-temperature polymer composite materials developed FSUE «VIAM» for aerospace engineering: past, present and future (review). Trudy VIAM, 2021, no. 1 (95), paper no. 05. Available at: http://www.viam-works.ru (accessed: July 25, 2025). DOI: 10.18577/2307-6046-2021-0-1-43-53.
7. Xu X., Peng G., Zhang B. et al. Material performance, manufacturing methods, and engineering applications in aviation of carbon fiber reinforced polymers: A comprehensive review. Thin-Walled Structures, 2025, vol. 209, art. 112899. DOI: 10.1016/j.tws.2024.112899.
8. Hubert P., Fernlund G., Poursartip A. Autoclave processing for composites. Manufacturing techniques for polymer matrix composites (PMCs). Cambridge: Woodhead Publishing Limited, 2012, pp. 414–434.
9. Bychkova E.V., Borisova N.V., Panova L.G. Technology of polymer processing by pressing and injection molding methods: textbook. Saratov; Moscow: Profobrazovanie; IPR Media, 2021, 97 p.
10. Tkachuk A.I., Donetsky K.I., Terekhov I.V., Karavaev R.Yu. The use of thermosetting matrices for the manufacture of polymer composite materials by the non-autoclave molding methods. Aviation materials and technology, 2021, no. 1 (62), paper no. 03. Available at: https://www.journal.viam.ru (accessed: July 01, 2025). DOI: 10.18577/2713-0193-2021-0-1-22-33.
11. Postnov V.I., Veshkin E.A., Abramov P.A. Ways to improve the quality of parts made of polymer composite materials during vacuum forming. Izvestiya Samarskogo nauchnogo tsentra Rossiyskoy akademii nauk, 2012, vol. 14, no. 4 (3), pp. 834–839.
12. Evsyukov S., Klomp-de Boer R., Stenzenberger H.D. et al. A new m-xylylene bismaleimide-based high performance resin for vacuum-assisted infusion and resin transfer molding. Journal of Composite Materials, 2019, vol. 53, pp. 3063–3072.
13. Babkin A.V., Erdni-Goryaev E.M., Solopchenko A.V., Kepman A.V. Infusion bismaleimide binders for polymer composite materials. Khimiya i khimicheskaya tekhnologiya, 2015, no. 58, pp. 54–57.
14. Tkachuk A.I., Terekhov I.V., Gurevich Ya.M., Kudryavtseva A.N. Application of bismaleimide VST-57 binder for obtaining heat-resistant dimensionally stable molds from polymer composite materials. Aviacionnye materialy i tehnologii, 2020, no. 2 (59), pp. 32–40. DOI: 10.18577/2071-9140-2020-0-2-32-40.
15. BMI resin formulation for carbon fiber reinforced composite material, method for making it and BMI prepreg: pat. WO 2022120049; appl. 02.12.21; publ. 09.06.22.
16. Fischer G. High temperature and toughened bismaleimide composite materials for aeronautics. Materials. Université de Lyon, 2015. HAL archives-ouvertes. Available at: https://hal.archives-ouvertes.fr/tel-01299359 (accessed: July 18, 2025).
17. Iredale R.J., Ward C., Hamerton I. Modern advances in bismaleimide resin technology: A 21st century perspective on the chemistry of addition polyimides. Progress in Polymer Science, 2017, vol. 69, pp. 1–21.
18. Wu T., Jiang P., Zhang X. et al. Additively manufacturing high-performance bismaleimide architectures with ultraviolet-assisted direct ink writing. Materials and Design, 2019, vol. 180,р. 107947.
19. Veshkin E.A., Satdinov R.A., Savitsky R.S. Approach to the selection of technological mode for the manufacture of PCM. Trudy VIAM, 2021, no. 11 (105), paper no. 10. Available at: http://www.viam-works.ru (accessed: July 20, 2025). DOI: 10.18577/2307-6046-2021-0-11-103-111.
20. Troitsky V.A., Karmanov M.N., Troitskaya N.V. Non-destructive testing of composite materials quality. Tekhnicheskaya diagnostika i nerazrushayushchiy kontrol, 2014, no. 3, pp. 20–33.
21. Kartashova E.D., Muizemnek A.Yu. Technological defects in polymer layered composite materials. Izvestiya vysshikh uchebnykh zavedeniy. Povolzhskiy region. Ser.: Tekhnicheskie nauki, 2017, no. 2 (42), pp. 79–89.
22. Mikhaylin Yu.A. Heat, thermal and fire resistance of polymeric materials. St. Petersburg: Scientific foundations and technologies, 2011, 416 p.
23. Boychuk A.S., Dikov I.A., Chertischev V.Yu., Generalov A.S. Determination of porosity in monolithic parts and aircraft wing assemblies made of polymer composite materials using the ultrasonic echo-pulse method. Defektoskopiya, 2019, no. 1, pp. 3–9.
24. Dikov I.A., Boychuk A.S., Chertishchev V.Yu., Generalov A.S. Features of determining porosity in polymer composite parts using the ultrasonic echo-pulse testing method. Main trends, directions and prospects for the development of non-destructive testing methods in the aerospace industry: Proc. of the X All-Rus. Conf. «TestMat». Moscow: VIAM, 2018, pp. 65–79.
25. Kosarina E.I., Demidov A.A., Mikhaylova N.A., Smirnov A.V. Theoretical aspects when creating electronic reference X-ray images containing quantitative information. Aviacionnye materialy i tehnologii, 2019, no. 4 (57), pp. 87–94. DOI: 10.18577/2071-9140-2019-0-4-87-94.
26. Demidov A.A., Krupnina O.A., Mikhaylova N.A., Kosarina E.I. Investigation of polymer composite material samples by x-ray computed tomography and processing of tomograms with the image of the volume fraction of porosity. Trudy VIAM, 2021, no. 5 (99), paper no. 11. Available at: http://www.viam-works.ru (accessed: July 20, 2025). DOI: 10.18577/2307-6046-2021-0-5-105-113.
27. Vetoshkin S.V., Dolgodvorov A.V., Syromyatnikova A.I. Study of the volume microstructure of structural carbon-carbon composite material and creation of a computer 3D model of the studied sample. Bestnik PNIPU. Ser.: Aerokosmicheskaya tekhnika, 2014, no. 2 (37), pp. 202–221.
28. Mason K.F. Autoclave quality out-side the autoclave. High-performance composites, 2006, vol. 14. Р. 44–49.
29. Veshkin E.A., Postnov V.I., Abramov P.A. Ways to improve the quality of parts made of polymer composite materials during vacuum forming. Izvestiya Samarskogo nauchnogo tsentra Rossiyskoy akademii nauk, 2012, vol. 14, no. 4 (3), pp. 831–838.
30. Amouroux S.C., Heider D., Gillespie Jr. J.W. Membrane-based VARTM: membrane and resin interactions. JEC Magazine, 2006, no. 24, pp. 61–78.
31. Li W., Krehl J., Gillespie J.W., Heider D. Process and Performance Evaluation of the Vacuum-Assisted Process. Journal of Composite Materials, 2004, vol. 38, no. 20, pp. 1803.
32. Nacharkina A.V., Valueva M.I., Zelenina I.V., Shosheva A.L. High-temperature carbon fiber reinforced plastics based on bismaleinimide binders. Aviation materials and technologies, 2024, no. 4 (77), paper no. 04. Available at: http://www.journal.viam.ru (accessed: July 20, 2025). DOI: 10.18577/2713-0193-2024-0-4-43-61.
33. Вessonov M.I., Koton M.M., Kudryavtsev V.V., Laius L.A. Polyimides – a class of heat-resistant polymers. Leningrad: Nauka, 1983б 328 p.
This article presents the overview of modern polymer composite materials and polymer fillers used in helicopter blades in Russia and worldwide, as well as the history and prospects for their development. The main requirements for helicopter blade materials, examples of blade elements using PCM and polymer filler, basic reinforcement schemes and manufacturing technologies are presented. The analysis of modern carbon fillers is carried out, and the main differences between medium-modulus and high-strength carbon fibers are considered.
2. Postnov V.I., Veshkin E.A., Makrushin K.V., Sudin Yu.I. Technological features of manufacturing polymer composite materials of main rotor blades for a light helicopter. Aviation materials and technologies, 2023, no. 1 (70), paper no. 06. Available at: http://www.journal.viam.ru (accessed: July 23, 2025). DOI: 10.18577/2713-0193-2023-0-1-82-92.
3. Veshkin E.A., Slavin A.V., Postnova M.V., Apalkova A.V. The role of temperature-time curing conditions in the formation of unidirectional and equally strong carbon fiber plastics properties. Aviation materials and technologies, 2025, no. 2 (79), paper no. 05. Available at: http://www.journal.viam.ru (accessed: July 24, 2025). DOI: 10.18577/2713-0193-2025-0-2-59-71.
4. Nacharkina A.V., Valueva M.I., Zelenina I.V., Shosheva A.L. High-temperature carbon fiber reinforced plastics based on bismaleinimide binders. Aviation materials and technologies, 2024, no. 4 (77), paper no. 04. Available at: http://www.journal.viam.ru (accessed: July 22, 2025). DOI: 10.18577/2713-0193-2024-0-4-43-61.
5. Sparless helicopter blade made of polymer composite materials and its manufacturing method: pat. WO2015/102521 A1 Rus. Federation; appl. 30.12.14; publ. 09.07.15.
6. Kovalenko A.V., Sidelnikov N.K., Sokolov I.I., Tundaykin K.O. Spheroplastic with adjustable viscosity for filling sections of honeycomb structures. Trudy VIAM, 2019, no. 11 (83), paper no. 04. Available at: http://www.viam-works.ru (accessed: July 30, 2025). DOI: 10.18577/2307-6046-2019-0-11-37-43.
7. Moir I., Seabridge A.G. Aircraft systems. Harlow: Longman Scientific & Technical, 1992, 415 p.
8. Case J., Chilver A.H., Ross C.T.F. Strength of materials and structures. London: Arnold, 1999, 346 p.
9. Helicopters. Hexcel. Available at: https://www.hexcel.com/Markets/Space-and-Defense/Helicopters (accessed: July 22, 2025).
10. SGL Carbon delivers composite materials for Airbus Helicopter rotor blades. CompositeWorld. Available at: https://www.compositesworld.com/news/sgl-carbon-delivers-composite-materials-for-airbus-helicopter-rotor-blades (accessed: July 22, 2025).
11. Erickson S-64 Air Crane full composite main rotor blades. Jec. Available at: https://www.jeccomposites.com/news/spotted-by-jec/erickson-s-64-air-crane-full-composite-main-rotor-blades (accessed: July 22, 2025).
12. What are Helicopter Blades Made of? Pilot Teacher. Available at: https://www.pilotteacher.com/what-is-a-helicopter-blade-made-of-it-used-to-be-wood/ (accessed: July 22, 2025).
13. Edwards K.L., Davenport C. Materials for rotationally dynamic components: rationale for higher performance rotor-blade design. Materials and Design, 2006, vol. 27, pp. 31–35.
14. Hancox N.L., Mayer R.M. Design data for reinforced plastics: a guide for engineers and designer. London: Chapman & Hall, 1994, 264 p.
15. Strong A.B. Manufacturing. International encyclopedia of composites. Eds. S.M. Lee. New York: Van Nostrand-Reinhold, 1990, pp. 102–126.
16. Timoshkov P.N., Goncharov V.A., Usacheva M.N., Khrulkov A.V. The development of automated laying: from the beginning to our days (review). Part 1. Automated Tape Laying (ATL). Aviation materials and technologies, 2021, no. 2 (63), paper no. 06. Available at: http://www.journal.viam.ru (accessed: July 28, 2025). DOI: 10.18577/2713-0193-2021-0-2-51-61.
17. Timoshkov P.N. Equipment and materials for the technology of automated calculations prepregs. Aviacionnye materialy i tehnologii, 2016, no. 2, pp. 35–39. DOI: 10.18577/2071-9140-2016-0-2-35-39.
18. Doroshenko N.I., Chursova L.V. Evolution of materials for blades of helicopters. Aviacionnye materialy i tehnologii, 2012, no. 2, pp. 16–18.
19. Slyusar B.N., Flek M.B., Goldberg E.S. et al. Helicopter engineering technology. Technology of production of helicopter blades and aircraft structures from polymer composite materials. Rostov-on-Don: Publ. house of the SSC of RAS, 2013, 230 p.
20. Sidorina A.I., Safronov A.M., Kutsevich K.E., Klimenko O.N. Carbon fabrics for aircraft products. Trudy VIAM, 2020, no. 12 (94), paper no. 05. Available at: http://www.viam-works.ru (accessed: July 23, 2025). DOI: 10.18577/2307-6046-2020-0-12-47-58.
21. Barannikov A.A., Postnova M.V., Krasheninnikova E.V., Vasyukov A.N. Application of new technologies in the production of helicopter main rotor blades. Trudy VIAM, 2021, no. 11 (105). paper no. 09. Available at: http://www.viam-works.ru (accessed: July 23, 2025). DOI: 10.18577/2307-6046-2021-0-11-91-102.
22. Popov Yu.O., Kolokoltseva T.V., Khrulkov A.V. The new generation of materials and technologies for helicopter blade spars. Aviacionnye materialy i tehnologii, 2014, no. S2, pp. 5–9. DOI: 10.18577/2071-9140-2014-0-s2-5-9.
23. Sokolov I.I. Spheroplastics based on thermosetting binders for aviation products: thesis, Cand. of Sc. (Tech.). Moscow, 2013, 127 p.
24. Kirillov V.N., Vapirov Yu.M., Drozd E.A. Research of atmospheric firmness of polymeric composite materials in the conditions of the atmosphere of warm wet and moderately warm climate. Aviacionnye materialy i tehnologii, 2012, no. 4, pp. 31–38.
25. Sokolov I.I., Minakov V.T. Spheroplasts for aviation purposes based on epoxy adhesives and dispersed fillers. Klei. Germetiki. Tekhnologii, 2012, no. 5, pp. 22–26.
26. Doroshenko N.I. Application of PCM in the design of helicopter propeller blades. Polymer composite materials for the aerospace industry: proc. All-Rus. sci. and tech. conf. Moscow: VIAM, 2019, pp. 23–41.
27. Pascal F., Navarro P., Marguet S., Ferrero J.-F. Study of medium velocity impacts on the lower surface of helicopter blades. Procedia Engineering, 2014, vol. 88, pp. 93–100.
28. Helicopter rotor blade and method of manufacturing a blade from a composite material: pat. RU 2541574 C1 Rus. Federation; appl. 25.12.13; publ. 20.02.15.
29. Middleton D.H. Composite materials in aircraft structures. Harlow: Longman Scientific & Technical, 1990, 530 p.
30. Aristova Е.Yu., Denisova V.А., Drozhzhin V.S. et al. Composite materials using hollow microspheres. Aviacionnye materialy i tehnologii, 2018, no. 1 (50), pp. 52–57. DOI: 10.18577/2071-9140-2018-0-1-52-57.
31. Kolokoltseva T.V., Popov Yu.O., Lantsov I.A., Gusev Yu.A. Prepregs and fiberglass based on VSR-3М resin and fiberglass fabrics for use in helicopter blades. Trudy VIAM, 2023, no. 11 (129), paper no. 06. Available at: http://www.viam-works.ru (accessed: July 23, 2025). DOI: 10.18577/2307-6046-2023-0-11-56-65.
32. Popov Yu.O., Kolokoltseva T.V., Bespalova L.S., Khrulkov A.V., Kogan D.I. Fiberglass VPS-31 and hybrid composite material VKG-5 from unidirectional prepregs based on melt binder and rope carbon, glass fillers. Aviatsionnye materialy i tekhnologii, 2006, no 1, pp. 10–20.
33. Composite rotor blade and method of manufacture: pat. US 6659722 B2 USA; appl. 07.11.02; publ. 09.12.03.
34. Montagnier O. Optimisation of hybrid high-modulus/high-strength carbon fiber reinforced plastic composite drive shafts. Materials & Design, 2013, vol. 46, pp. 88–100.
35. Morgan P. Carbon Fibers and Their Composites. Boca Raton: CRC Press, 2005, 1200 p.
36. High Modulus Carbon Fiber: Modulus And Composite Explained. Baetro Machining Blog. Available at: https://baetro-machining.com/blog/high-modulus-carbon-fiber (accessed: July 24, 2025).
37. Gupta M.K., Srivastava R.K. Mechanical Properties of Hybrid Fibres Reinforced Polymer Composite: A Review. Polymer-Plastics Technology and Engineering, 2015, vol. 55 (6), pp. 1–66.
38. Ikbal M.H., Ahmed A., Qingtao W. et al. Hybrid composites made of unidirectional T600S carbon and E-glass fabrics under quasi-static loading. Journal of Industrial Textiles, 2017, vol. 46 (7), pp. 1–25.
The paper presents the results ofelectrochemical studies of samples of corrosion-resistant steels (08kH18N10, 12kH18N10T) and aluminum alloys (1163, В95, 1933) both with and without coatings. We have determined the values of the steady-state potentials, impedance modulus, the potential and current density of contact corrosion, and the tans passivation potential. Based on the results of 2160-hour corrosion tests in the salt spray chamber on samples packages made of corrosion-resistant steels with electroplating and aluminum alloys with nonchromated anodic coating, we have selected an electrodeposited coating that is as good as cadmium coating in its protective ability.
2. Peskova A.V., Sukhov D.I., Mazalov P.B. Examination of the formation of the titanium alloy VT6 structure obtained by additive manufacturing. Aviacionnye materialy i tehnologii, 2020, no. 1 (58), pp. 38–44. DOI: 10.18577/2071-9140-2020-0-1-38-44.
3. Illarionov E.I., Kolobnev N.I., Gorbunov P.Z., Kablov E.N. Aluminum alloys in aerospace engineering. Gen. ed. E.N. Kablov. Moscow: Nauka, 2001, 192 p.
4. Antipov V.V., Klochkova Yu.Yu., Romanenko V.A. Modern aluminum and aluminum-lithium alloys. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 195–211. DOI: 10.18577/2071-9140-2017-0-S-195-211.
5. Peng Y., Zhao J., Liu Y. et al. Galvanic corrosion between Al‒Zn‒Mg‒Cu alloy and stainless steel in the salt-spray atmosphere. Materials Chemistry and Physics, 2023, vol. 294, art. 127009. DOI: 10.1016/j.matchemphys.2022.127009.
6. Vahromov R.O., Tkachenko E.A., Popova O.I., Milevskaya T.V. Summarizing of the experience of usage and optimization of manufacturing technology semi-fished product of high strength aluminum alloy 1933 for the primary structures of modern aircraft. Aviacionnye materialy i tehnologii, 2014, no. 2, pp. 34–39. DOI: 10.18577/2071-9140-2014-0-2-34-39.
7. Kablov E.N., Bakradze M.M., Gromov V.I., Voznesenskaya N.M., Yakusheva N.A. New high strength structural and corrosion-resistant steels for aerospace equipment developed by FSUE «VIAM» (review). Aviacionnye materialy i tehnologii, 2020, no. 1 (58), pp. 3–11. DOI: 10.18577/2071-9140-2020-0-1-3-11.
8. Ruiz A.G., Jimenez-Gonzalez E., Canoc E. et al. The corrosion products in a carbon steel/aluminum alloy galvanic couple under thin electrolyte films: An efficient model. Electrochemistry Communications, 2019, vol. 104, art. 106485. DOI: 10/1016/j.elecom.106485.
9. Matzdorf C.A., Nickerson W.C., Rincon Tronconis B.C. et al. Galvanic Test Panels for Accelerated Corrosion Testing of Coated Al Alloys: Part 1 – Concept. Corrosion, 2013, vol. 69, is. 12, pp. 1240‒1246.
10. State Standard 9.005–72. Unified system of protection against corrosion and aging. Metals, alloys, metallic and non-metallic inorganic coatings. Permissible and impermissible contacts with metals and non-metals. Moscow: Standartinform, 2008, 28 p.
11. Rosenfeld I.L. Corrosion and protection of metals. Moscow: Metallurgiya, 1970, 448 p.
12. ASTM STP 576. Galvanic and Pitting Corrosion ‒ Field and Laboratory Studies. American Society For Testing And Materials, 1974, pp. 5‒19.
13. Kucera V., Mattson Е. Atmospheric Corrosion of bimetallic Structures. Atmospheric Corrosion. Wiley & Sons, 1982, pp. 561–574.
14. Matys V.G., Poplavsky V.V. Resistance of aluminum and its alloy to contact corrosion in galvanic couples with steels with metallic coatings. Trudy BGTU: Khimiya i tekhnologiya neorganicheskikh veshchestv, 2015, no. 3, pp. 85‒92.
15. Vinogradov S.S., Nikiforov A.A., Zakirova L.I., Vdovin A.I. Comparative assessment of the protective ability of a galvanothermic coating of the zinc-tin system and a cadmium coating in a chloride environment. Korroziya: materialy, zashchita, 2020, no. 5, pp. 21‒29. DOI: 10.31044/1813-7016-2020-0-5-21-29.
16. Zakirova L.I., Laptev A.B. Properties of protective electroplating coatings for replacement of cadmium on steel fixing parts (review). Part 1. Morphology and corrosion resistance. Aviaсionnye materialy i tehnologii, 2020, no. 3 (60), pp. 37–46. DOI: 10.18577/2071-9140-2020-0-3-37-46.
17. Laptev A.B., Zakirova L.I., Degovets M.L. Properties of protective galvanic coatings for replacement of cadmium on steel fixing parts (review). Part 2. Hydrogen embrittlement and frictional characteristics. Aviacionnye materialy i tehnologii, 2020, no. 4 (61), pp. 35–40. DOI: 10.18577/2071-9140-2020-0-4-35-40.
18. Navinsek B., Panjan P., Milosev I. PVD coatings as an environmentally clean alternative to electroplating and electroless processes. Surface and Coatings Technology, 1999, vol. 116–119, pp. 476–487.
19. Enders B., Knau B.S., Wolf G.K. Corrosion properties of aluminum based alloys deposited by ion beam assisted deposition. Surface and Coatings Technology, 1994, vol. 65, pp. 203–207.
20. Jianming X., Weijianga Z., Wolf G.K. The corrosion properties of Al/Al2O3 multilayered coatings on CK45 steel deposited by IBAD. Surface and Coatings Technology, 2004, vol. 187, pp. 194–198.
21. Zakirova L.I., Sibileva S.V., Demin S.A., Duyunova V.A. Investigation of electroplating of corrosion-resistant steels to prevent contact corrosion. Trudy VIAM, 2024, no. 9 (139), paper no. 05. Available at: http://www.viam-works.ru (accessed: July 03, 2025). DOI: 10.18577/2307-6046-2024-0-9-42-53.
22. State Standard 9.305–84. Unified system of corrosion and aging protection. Metallic and non-metallic inorganic coatings. Operations of technological processes for obtaining coatings. Moscow: Publ. House of Standards, 2003, 105 p.
23. State Standard 9.402–2004. Unified system of corrosion and aging protection. Paint and varnish coatings. Preparation of metal surfaces for painting. Moscow: Standartinform, 2006, 43 p.
24. State Standard 9.302–88. Unified system of corrosion and aging protection. Metallic and non-metallic inorganic coatings. Control methods. Moscow: Publ. House of Standards, 2001, 40 p.
25. State Standard 9.909–2023. Unified system of corrosion and aging protection. Metallic and non-metallic inorganic coatings, metals and alloys. Test methods at climatic test stations. Moscow: RST, 2023, 12 p.
26. State Standard 9.308–85. Unified system of corrosion and aging protection. Metallic and non-metallic inorganic coatings. Accelerated corrosion testing methods. Moscow: Publ. House of Standards, 1990, 21 p.
27. State Standard R 9.907–2007. Unified system of corrosion and aging protection. Metals, alloys, metallic coatings. Methods of removing corrosion products after corrosion testing. Moscow: Standartinform, 2007, 19 p.
28. Zhuk N.P. Course in the theory of corrosion and protection of metals. Moscow: Metallurgiya, 1976, 472 p.
29. Tomashov N.D. Theory of corrosion and protection of metals. Moscow: Publ. House of the USSR Academy of Sciences, 1959, 592 p.
30. Laptev A.B., Zakirova L.I., Zagorskikh O.A., Pavlov M.R., Gorbovets M.A. Methods of in-vestigation of the processes of corrosion-mechanical destruction and hydrogenation of metals (review). Part 2. Formation of passive films and hydrogen sulfide cracking of steels. Trudy VIAM, 2022, no. 5 (111), paper no. 12. Available at: http://www.viam-works.ru (accessed: July 03, 2025). DOI: 10.18577/2307-6046-2022-0-5-138-146.
31. Kablov E.N., Kutyrev A.E., Vdovin A.I., Kozlov I.A., Afanasyev-Khodykin A.N. The research of possibility of galvanic corrosion in brazed connections used in aviation engine construction. Aviation materials and technologies, 2021, no. 4 (65), paper no. 01. Available at: http://www.journal.viam.ru (accessed: July 03, 2025). DOI: 10.18577/2713-0193-2021-0-4-3-13.
The paper presents the results of heat resistance testing of ZhS32 alloy samples with serial ion-plasma heat-resistant and corrosion-resistant coatings. The tests demonstrated heat resistance at 1150 °C for 400 h and resistance to sulfide-oxide corrosion at 750 and 850 °C for 30 cycles. According to the test results, the coatings SDP-42 + VSDP-16 and VSDP-3 + VSDP-16 exhibit the highest set of protective properties. These coatings prevent diffusion of sulfur and chlorine from the surface into the inner layers of the heat-resistant alloy. The above mentioned coatings out-perform the standard corrosion-resistant coating SDP-1T + VSDP-13 under test conditions.
2. Kablov E.N., Muboyadzhyan S.A. Erosion-resistant coatings for compressor blades of gas turbine engines. Elektrometallurgiya, 2016, no. 10, pр. 23–38.
3. Muboyadzhyan S.A., Kablov E.N., Ion etching and surface modification of critical machine parts in vacuum-arc plasma. Vestnik Moskovskogo gosudarstvennogo tekhnicheskogo universiteta im. N.E. Baumana. Ser.: Mashinostroenie, 2011, no. SP2, рр. 149–163.
4. Doronin O.N., Artemenko N.I., Stekhov P.A., Voronov V.A. Deposition of ceramic layers of heat protection coatings based on the system Gd2O3–ZrO2–HfO2 and Sm2O3–Y2O3–HfO2. Aviation materials and technologies, 2022, no. 3 (68), paper no. 10. Available at: http://www.journal.viam.ru (accessed: March 05, 2025). DOI: 10.18577/2713-0193-2022-0-3-108-119.
5. Kablov E.N. Science as a branch of the economy. Science and Life, 2009, no. 10, рр. 6–10.
6. Kablov E.N., Muboyadzhyan S.A. Heat-protective coatings with a ceramic layer of low thermal conductivity based on zirconium oxide for high-pressure turbine blades of promising gas turbine engines. Modern achievements in the field of creating promising non-metallic composite materials and coatings for aviation and space technology: Reports of Sci. and Tech. Conf. Moscow: VIAM, 2015, p. 3.
7. Doronin O.N., Gorlov D.S., Azarovsky E.N., Kochetkov A.S. Study of the structure and properties of a heat-resistant coating at high-temperature deformation of samples from titanium intermetallic alloy. Aviation materials and technology, 2021, no. 1 (62), paper no. 06. Available at: http://www.journal.viam.ru (accessed: March 05, 2025). DOI: 10.18577/2713-0193-2021-0-1-61-70.
8. Batraev I.S., Rybin D.K., Ivanyuk K.V., Ulianitsky V.Yu., Shtertser A.A. Wear resistant detonation coatings based on tungsten carbide for aviation products. Aviation materials and technologies, 2022, no. 1 (66), paper no. 08. Available at: http://www.journal.viam.ru (ассеssed: March 05, 2025). DOI: 10.18577/2713-0193-2022-0-1-92-109.
9. Goncharov B.E., Sipatov A.M., Cherkashneva N.N., Pleskan A.Yu., Samokhvalov N.Yu., Vaganova M.L., Sorokin O.Yu., Solntsev St.S., Evdokimov S.A. Studies of thermal shock resistance of an anti-oxidation coating for a multi-layered ceramic composite. Aviation materials and technologies, 2021, no. 4 (65), paper no. 06. Available at: http://www.journal.viam.ru (accessed: March 05, 2025). DOI: 10.18577/2713-0193-2021-0-4-51-58.
10. Aleksandrov D.A., Muboyadzhyan S.A., Zhuravleva P.L., Gorlov D.S. Investigation of the effect of surface preparation and ion-assisted deposition on the structure and properties of erosion-resistant ion-plasma coating. Trudy VIAM, 2018, no. 10 (70), paper no. 08. Available at: http://www.viam-works.ru (accessed: March 05, 2025). DOI: 10.18577/2307-6046-2018-0-10-62-73.
11. Muboyadzhyan S.A., Lutsenko A.N., Aleksandrov D.A., Gorlov D.S. Research of possibility of increase of office characteristics of compressor blades of GTE by method of ionic modifying of surface. Trudy VIAM, 2013, no. 1, paper no. 02. Available at: http://viam-works.ru (accessed: March 05, 2025).
12. Muboyadzhyan S.A. Industrial ion-plasma equipment for applying protective coatings. Entsiklopediya inzhenera-khimika, 2012, no. 5, pp. 34–41.
13. Galoyan A.G., Muboyadzhyan S.A., Egorova L.P., Bulavinceva E.E. Corrosion-resistant coating for protection of GTE details made of high-strength maraging constructional steel with operating temperature up to 450°C. Trudy VIAM, 2014, no. 6, paper no. 03. Available at: http://www.viam-works.ru (accessed: March 05, 2025). DOI: 10.18577/2307-6046-2014-0-6-3-3.
14. Shchepilov A.V., Muboyadzhyan S.A., Gorlov D.S., Konnova V.I. Investigation of the ion-plasma coatings influence on damping capacity of «alloy-coating» composition during testing on vibrodynamic bench. Trudy VIAM, 2015, no. 4, paper no. 8. Available at: http://www.viam-works.ru (accessed: March 05, 2025). DOI: 10.18577/2307-6046-2015-0-4-8-8.
15. Aleksandrov D.A., Muboyadzhyan S.A., Gorlov D.S. reinforcing properties of ion-plasma coatings using plasma assisted deposition. Trudy VIAM, 2015, no. 7, paper no. 07. Available at: http://www.viam-works.ru (accessed: March 05, 2025). DOI: 10.18577/2307-6046-2015-0-7-7-7.
16. Muboyadzhyan S.A., Aleksandrov D.A., Gorlov D.S. Nanolayer strengthening coverings for protection of steel and titanic compressor blades of GTE. Aviacionnye materialy i tehnologii, 2011, no. 3, pp. 3–8.
17. Muboyadzhjan S.A., Galoyan A.G. Complex thermodiffusion heat resisting coatings for carbon-free hot strength alloys on nickel basis. Aviacionnye materialy i tehnologii, 2012, no. 3, pp. 25–30.
18. Muboyadzhyan S.A., Aleksandrov D.A., Gorlov D.S., Egorova L.P., Bulavinceva E.E. Protective and strengthening ion-plasma coverings for blades and other responsible details of the GTE compressor. Aviacionnye materialy i tehnologii, 2012, no. S, pp. 71–81.
19. Azarovskij E.N., Mubojadzhjan S.A. Modifying of surface of details from constructional steels in vacuum and arc plasma of titanium. P. I. Aviacionnye materialy i tehnologii, 2013, no. 3, pp. 20–25.
20. Azarovskij E.N., Mubojadzhjan S.A. Modifying of surface of details from constructional steels in vacuum and arc plasma of titanium. P. II. Aviacionnye materialy i tehnologii, 2014, no. 1, pp. 3–11. DOI: 10.18577/2071-9140-2014-0-1-3-11.
21. Galoyan A.G., Muboyadzhyan S.A., Kashin D.S. Thermal diffusion processes for saturation of internal surface of GTE turbine blades made of advanced high temperature superalloys with refractory elements and carbon. Aviacionnye materialy i tehnologii, 2014, no. S5, pp. 45–55. DOI: 10.18577/2071-9140-2014-0-s5-45-55.
22. Alexandrov D.A., Muboyadzhyan S.A., Gayamov A.M., Gorlov D.S. Studies of heat resistance and kinetics of elemental composition of VT41 titanium alloy with heat-resistant coatings. Aviacionnye materialy i tehnologii, 2014, no. S5, pp. 61–66. DOI: 10.18577/2071-9140-2014-0-s5-61-66.
23. Muboyadzhyan S.A., Gorlov D.S., Shchepilov A.A., Konnova V.I. Study of damping capacity of ion-plasma coatings. Aviacionnye materialy i tehnologii, 2014, no. S5, pp. 67–72. DOI: 10.18577/2071-9140-2014-0-s5-67-72.
24. Galoyan A.G., Muboyadzhyan S.A., Kashin D.S. Termodiffusion barrier formation under vacuum cementation process on rhenium and rhenium-ruthenium comprising nickel based superalloys. Aviacionnye materialy i tehnologii, 2015, no. 3 (36), pp. 27–37. DOI: 10.18577/2071-9140-2015-0-3-27-37.
25. Budinovsky S.A., Petrushin N.V., Benklyan A.S., Elyutin E.S. Protection of heat-resistant nickel-rhenium-ruthenium alloy VZhM10 from oxidation in the temperature range of 1150‒1300 °C. Electrometallurgiya, 2024, no. 3, pp. 24–31. DOI: 10.31044/1684-5781-2024-0-3-24-31.
26. Budinovsky S.A., Azarovsky E.N., Benklyan A.S. Protection of VZhM4 alloy from corrosion in the temperature range of 850‒1050 °C. Electrometallurgiya, 2023, no. 6, pp. 15–24. DOI: 10.31044/1684-5781-2023-0-6-15-24.
27. Kosmin A.A., Budinovskiy S.A., Muboyadzhyan S.A. Heat and corrosion resistant coating for working turbine blades from promising high-temperature alloy VZhL21. Aviacionnye materialy i tehnologii, 2017, no. 1 (46), pp. 17–24. DOI: 0.18577/2071-9140-2017-0-1-17-24.
28. Smirnov A.A., Budinovsky S.A. Heat-resistant and heat-protective coatings for gas turbine engine blades made of nickel-based heat-resistant rhenium and rhenium-ruthenium containing alloys. New developments in the field of protective, heat-protective and hardening coatings for gas turbine engine parts: Reports of Sci.-Tech. Conf. Moscow: VIAM, 2016, p. 13.
29. Movenko D.A., Zavodov A.V., Laptev A.B., Loshchinina A.O. Changes in the structure of VZhM-4 alloy during high-temperature salt corrosion at 750 °C. Metallovedenie i termicheskaya obrabotka metallov, 2024, no. 5 (827), pp. 22–29.
30. Muboyadzhyan S.A. Protective coatings for hot gas turbine tract parts. Vse materialy. Entsiklopedicheskiy spravochnik, 2011, no. 3, pp. 26–30.
31. Method for protecting gas turbine blades: pat. 2404286 Rus. Federation; appl. 22.10.09; publ. 20.11.10.
32. Muboyadzhyan S.A. Industrial ion-plasma equipment for applying protective coatings. Entsiklopediya inzhenera-khimika, 2012, no. 5, pp. 34–41.
33. Azarovskij E.N., Muboyadzhyan S.A. Surface modification of parts from structural steel in vacuum-arc titanium plasma. P. III. Aviacionnye materialy i tehnologii, 2015, no. 4 (37), pp. 29–37. DOI: 10.18577/2071-9140-2015-0-4-29-37.
34. Gorlov D.S., Muboyadzhyan S.A., Shhepilov A.A., Aleksandrov D.A. The research of erosion resistance and heat resistance of the ion-plasma damping coatings. Aviacionnye materialy i tehnologii, 2016, no. 2, pp. 11–17. DOI: 0.18577/2071-9140-2016-0-2-11-17.
Currently, special requirements are imposed to the quality and appearance of the coverings used to protect elements of cabin and dashboards in aircraft. These requirements are associated with the need of providing high level of visual and overall performance of the pilot both under natural and artificial lighting, as well as with fire safety. This work is devoted to studying the properties of the decorative, fireproof, wear-resistant matte paint coatings obtained using a two-phase polymer system: polyester – fluoropolyurethane oligomer.
2. Antipov V.V. Prospects for development of aluminium, magnesium and titanium alloys for aerospace engineering. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 186–194. DOI: 10.18577/2071-9140-2017-0-S-186-194.
3. Kablov E.N. Aviation Materials Science in the 21st Century. Prospects and Objectives. Aviation Materials. Selected Works of VIAM 1932–2002. Moscow: MISIS–VIAM, 2002, pp. 23–47.
4. Kablov E.N. New-Generation Materials – the Basis for Innovation, Technological Leadership, and National Security of Russia. Intellekt i tekhnologii, 2016, no. 2 (14), pp. 16–21.
5. Kablov E.N. New-Generation Materials. Zashchita i bezopasnost, 2014, no. 4, pp. 28–29.
6. Kablov E.N. Main Results and Directions of Development of Materials for Advanced Aviation Technology. 75 Years. Aviation Materials. Moscow: VIAM, 2007, pp. 20–26.
7. Zheleznyak V.G. Modern paint and varnish materials for use in aviation equipment products. Trudy VIAM, 2019, no. 5 (77), paper no. 07. Available at: http://www.viam-works.ru. (accessed: July 14, 2025). DOI: 10.18577/2307-6046-2019-0-5-62-67.
8. Kuznetsova V.A., Timoshina E.A., Shapovalov G.G., Zheleznyak V.G. Trends in the development of matte wear-resistant paint coatings. Trudy VIAM, 2023, no. 10 (128), paper no. 12. Available at: http://www.viam-works.ru (accessed: July 14, 2025). DOI: 10.18577/2307-6046-2023-0-10-132-144.
9. Kovrizhkina N.A., Kuznetsova V.A., Silaeva A.A., Marchenko S.A. Ways to improve the properties of paint coatings by adding different fillers (review). Aviacionnye materialy i tehnologii, 2019, no. 4 (57), pp. 41–48. DOI: 10.18577/2071-9140-2019-0-4-41-48.
10. Merkulova Yu.I., Kuznetsova V.A., Kodachenko E.N., Zheleznyak V.G. Study of the influence of the primer layer’s chemical nature on the properties of the coating system based on fluoropolyurethane enamel. Aviation materials and technologies, 2022, no. 1 (66), paper no. 09. Available at: http://www.journal.viam.ru (ассеssed: July 07, 2025). DOI:10.18577/2713-0193-2022-0-1-110-119.
11. Kozlova A.A., Kondrashov E.K. Influence of molecular weight and elemental composition of isocyanates on the properties of fluoropolyurethane enamels. Aviation materials and technologies, 2023, no. 4 (73), paper no. 09. Available at: http://www.journal.viam.ru (accessed: July 28, 2025). DOI: 10.18577/2713-0293-2023-0-4-92-100.
12. Pavlyuk B.Ph. The main directions in the field of development of polymeric functional materials. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 388–392. DOI: 10.18577/2071-9140-2017-0-S-388-392.
13. Makushchenko I.S., Kozlov I.А., Smirnov D.N., Kurshev E.V., Lonskii S.L. Study of the microstructure and distribution of corrosion inhibitors in polysulfide sealant. Aviation materials and technologies, 2025, no. 2 (79), paper no. 10. Available at: http://www.journal.viam.ru (accessed: July 24, 2025). DOI: 10.18577/2713-0193-2025-0-2-128-136.
14. Zhelezina G.F., Kulagina G.S., Soloveva N.A., Barbotko S.L. Influence of composition and structure on the fire resistance of aramid organoplastics. Aviation materials and technologies, 2024, no. 3 (76), paper no. 07. Available at: http://www.journal.viam.ru (accessed: 24.07.2025). DOI: 10.18577/2713-0193-2024-0-3-81-89.
15. Yulovskaya V.D. Oligomers. Rubber – oligomeric compositions, structure and properties: textbook. Moscow, 2008, 46 p.
16. Petrov G.N., Sinaisky A.G., Dahlgren I.V. Liquid hydrocarbon rubbers and their application areas. Klei. Germetiki. Tekhnologii, 2009, no. 10, pp. 24–27.
17. Semenova L.V., Nefedov N.I., Belova M.V., Laptev A.B. Systems of paint coatings for helicopter equipment. Aviacionnye materialy i tehnologii, 2017, no. 4 (49), pp. 56–61. DOI: 10.18577/2071-9140-2017-0-4-56-61.
18. Sukhareva L.A. Polyester Coatings. Structure and Properties. Moscow: Khimiya, 1987, 191 p.
19. Berlin A.A., Basin V.E. Basics of Polymer Adhesion. Moscow: Khimiya, 1969, 319 p.
20. Yakovlev A.D., Yakovlev S.A. Functional-Purpose Paint and Varnish Coatings. St. Petersburg: Khimizdat, 2016, 272 p.
21. Noskov A.M., Novikov N.I. Curing of Glycidyl Ethers with Amines in the Presence of Hydroxyl Groups. Zhurnal prikladnoy khimii, 2008, vol. LW, no. 12, pp. 2733–2737.
22. Chalykh A.E. Diffusion in Polymer Systems. Moscow: Khimiya, 1987, pp. 252–266.
23. Zinoviev V.E. On the issue of the relationship between adhesion and the quality of the surface layer of the substrate of the adhesive joint. Vestnik RGUPS, 2010, no. 4, pp. 5–9.
24. Kuznetsova V.A., Shapovalov G.G., Marchenko S.A., Kovrizhkina N.A., Silaeva A.A. Paint coatings on the basis of epoxy and acrylic diphasic polymeric system for coloring of elements of cabin of pilots and dashboards. Trudy VIAM, 2020, no. 12 (94), paper no. 09. Available at: http://www.viam-works.ru (accessed: July 07, 2025). DOI: 10.18577/2307-6046-2020-0-12-87-95.
25. Kondrashov E.K., Kozlova A.A. Paint coatings with special optical properties. Trudy VIAM, 2023, no. 9 (127), paper no. 09. Available at: http://www.viam-works.ru (accessed: July 04, 2025). DOI: 10.18577/2307-6046-2023-0-9-101-109.
26. Semenova L.V., Rodina N.D., Nefedov N.I. An effect of roughness of paint and varnish coating systems on service properties of aircraft. Aviacionnye materialy i tehnologii, 2013, no. 2, pp. 37–40.
27. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
This paper examines the properties of a water-based enamel designed for coating interior structural elements of aircraft. We have performed a comparative analysis of the properties of the developed enamel with existing domestic and imported analogues. It is shown that the developed enamel meets modern fire safety requirements. The use of an aqueous styrene-(met) acrylates copolymer dispersion ensures environmental friendliness and safety by eliminating toxic solvents and enabling a high level of physical and mechanical properties.
2. Water-based composition for paint and varnish coating: pat. 2338766 Rus. Federation; appl. 27.08.07; publ. 20.11.08.
3. Kondrashov E.K., Semenova L.V., Kuznetsova V.A., Malova N.E., Lebedeva T.A. Development of aviation paints and varnishes. Vse materialy. Entsiklopedicheskiy spravochnik, 2012, no. 5, pp. 49–54.
4. Kondrashov E.K., Kuznetsova V.A., Lebedeva T.A., Semenova L.V. Main directions for improving the operational, technological and environmental characteristics of paint and varnish coatings for aviation equipment. Rossiyskiy khimicheskiy zhurnal, 2010, vol. 54, no. 1, pp. 96–102.
5. Barbotko S.L., Volny O.S., Kiriyenko O.A., Shurkova E.N. Fire safety assessment of polymeric materials for aviation purposes: analysis of the state, testing methods, development prospects, methodological features. Ed. E.N. Kablov. Moscow: VIAM, 2018, 408 p.
6. Kablov E.N. New generation materials and digital technologies for their processing. Vestnik Rossiyskoy akademii nauk, 2020, vol. 90, no. 4, pp. 331–334.
7. Starkov A.I., Kutsevich K.E., Isaev A.Yu., Barbotko S.L. Study of flammability, smoke formation and toxicity in the process of combustion of polymer composite materials and three-layer honeycomb structures based on them. Trudy VIAM, 2025, no. 6 (148), paper no. 06. Available at: http://www.viam-works.ru (accessed: July 24, 2025). DOI: 10.18577/2307-6046-2025-0-6-73-85.
8. Kurnosov A.O., Melnikov D.A., Sokolov I.I. Structural glass-reinforced plastics purposed for aviation industry. Trudy VIAM, 2015, no. 8, paper no. 08. Available at: http://viam-works.ru (accessed: July 24, 2025). DOI: 10.18577/2307-6046-2015-0-8-8-8.
9. Davydova I.F., Kavun N.S. Fibreglasses ‒ multipurpose composite materials. Aviacionnye materialy i tehnologii, 2012, no. S, pp. 253–260.
10. Startsev V.O., Antipov V.V., Slavin A.V., Gorbovets M.A. Modern domestic polymer composite materials for aviation industry (review). Aviation materials and technologies, 2023, no. 2 (71), paper no. 10. Available at: http://www.journal.viam.ru (accessed: July 24, 2025). DOI: 10.18577/2713-0193-2023-0-2-122-144.
11. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
12. Garashchenko A.N., Kulkov A.A., Strakhov V.L. The effect of the service life on the flame-retardant efficiency of the bulging coatings and the fire resistance of structures. Aviation materials and technologies, 2022, no. 2 (67), paper no. 09. Available at: http://www.journal.viam.ru (accessed: 28.03.2025). DOI: 10.18577/2713-0193-2022-0-2-97-110.
13. Kuznetsova V.А., Zheleznyak V.G., Kurshev E.V., Yemelyanov V.V. Research of fuel- and water resistance of coatings based on the filled epoxy-thiokol polymeric compositions. Aviation materials and technologies, 2021, no. 2 (63), paper no. 10. Available at: http://www.journal.viam.ru (accessed: July 24, 2025). DOI: 10.18577/2713-0193-2021-0-2-93-102.
14. Shershak P.V., Yakovlev N.O., Shokin G.I., Kutsevich K.E., Popkova E.A. Evaluation method and factors influencing the bonding quality between face and honey-comb cores in floor and interior aircraft panels. Aviacionnye materialy i tehnologii, 2020, no. 2 (59), pp. 81–88. DOI: 10.18577/2071-9140-2020-0-2-81-88.
15. Kablov E.N. The role of chemistry in the creation of new generation materials for complex technical systems. Report of the XX Mendeleev Congress on General and Applied Chemistry. Ekaterinburg: UB of RAS, 2016, pp. 25–26.
16. Barbotko S.L., Petrova A.P., Volny O.S., Bochenkov M.M. Methods used to assess the fire safety of polymer binders (review). Vse materialy. Entsiklopedicheskiy spravochnik, 2019, no. 12 pp. 21–29.
17. Barbotko S.L. Development of the fire safety test methods for aviation materials. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 516–526. DOI: 10.18577/2071-9140-2017-0-S-516-526.
The article presents the results of an information search and examines the main trends in the creation of electrically conductive paints and varnishes and coatings based on them for removing static electricity from the external surfaces of aircraft components. The basic requirements for the selection of components for the production of electrically conductive paints and coatings have been defined. The most promising directions in the field of development and research of electrically conductive paint coatings have been identified.
2. Kablov E.N., Kutyrev A.E., Vdovin A.I., Kozlov I.A., Afanasyev-Khodykin A.N. The research of possibility of galvanic corrosion in brazed connections used in aviation engine construction. Aviation materials and technologies, 2021, no. 4 (65), paper no. 01. Available at: http://www.journal.viam.ru (accessed: June 26, 2025). DOI: 10.18577/2713-0193-2021-0-4-3-13.
3. Sokolov O.A., Basyrov T.A. Protection of aircraft from electrostatic charge and electrical discharges. Molodoy ucheny, 2023, no. 14 (461), pp. 26–29.
4. Mishkin S.I., Klimenko O.N., Gunyaeva A.G. Materials for the lightnings protection of aviation engineering. Trudy VIAM, 2023, no. 7 (125), paper no. 07. Available at: http://www.viam-works.ru (accessed: June 26, 2025). DOI: 10.18577/2307-6046-2023-0-7-84-92.
5. Gunyaeva A.G., Kurnosov A.O., Slavin A.V. Experience in the use of polymer composite materials developed by NRC «Kurchatov Institute» – VIAM in engines for civil aircraft. Aviation materials and technologies, 2024, no. 4 (77), paper no. 06. Available at: http://www.journal.viam.ru (accessed: June 26, 2025). DOI: 10.18577/2713-0193-2024-0-4-82-94.
6. Imametdinov E.S., Valueva M.I. Сomposites for piston engines (rеview). Aviacionnye materialy i tehnologii, 2020, no. 3 (60), pp. 19–28. DOI: 10.18577/2071-9140-2020-0-3-19-28.
7. Kablov E.N. New generation materials and digital technologies for their processing. Vestnik Rossiyskoy akademii nauk, 2020, vol. 90, no. 4, pp. 331–334.
8. Kablov E.N. Marketing of materials science, aircraft manufacturing and industry: present and future. Direktor po marketingu i sbytu, 2017, no. 5–6, pp. 40–44.
9. Zheng A., Xu X., Xiao H. et al. Antistatic modification of polypropylene by incorporating Tween / modified Tween. Applied Surface Science, 2012, no. 258 (22), pp. 8861–8866.
10. Rahman M.B.A., Jumbri K., Basri M. et al. Synthesis and physico-chemical properties of new tetraethylammonium-based amino acid chiral ionic liquids. Molecules, 2010, no. 15, p. 2388–2397.
11. Shirakawa H., Louis E.J., Macdiarmid A.G. et al. Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene (CH)x. Journal of the Chemical Society, Chemical Communications, 1977, no. 16, pp. 578–580.
12. Chiang C.K., Park Y.W., Heeger A.J. et al. Conducting polymers: Halogen doped polyacetylene. Journal of Chemical Physics, 1978, no. 69 (11), pp. 5098–5104.
13. Liang X., Deng Y., Li S. et al. Waterborne polyurethane-acrylate-polyaniline: Interfacial hydrogen bonding for enhancing the antistatic, damping, and mechanical properties. Polymers for Advanced Technologies, 2022, no. 33 (9), pp. 2667–2681.
14. Zhu A., Wang H., Sun S., Zhang C. The synthesis and antistatic, anticorrosive properties of polyaniline composite coating. Progress in Organic Coating, 2018, no. 122, pp. 270–279.
15. Gao X., Chu F. Fabrication of high conductivity polyurethane/polyaniline composite coating based on in-situ polymerization. Advances in Graphic Communication, Printing and Packaging, 2019, vol. 543, pp. 958–963.
16. Paint and varnish material with conductive polyethylene for anti-corrosion protection of metal structures: pat. 2320690 Rus. Federation; appl. 24.03.06; publ. 27.03.08.
17. Electrically conductive paint and varnish material for anti-corrosion protection of metal structures: pat. 2318851 Rus. Federation; appl. 24.03.06; publ. 10.03.08.
18. Conductive anticorrosive coating and preparation method thereof: pat. 103409033 CN; appl. 09.06.13; publ. 13.05.15.
19. Nano dispersed water-based conductive primer for vehicle bumper and preparation method thereof: pat. 102002314 CN; appl. 29.09.10; publ. 12.06.13.
20. Fedorova L.O., Kamanina N.V. Modification of transparent conductive ITO coating with shungite nanoparticles. Izvestiya SPbGETU «LETI», 2024, vol. 17, no. 1, pp. 5–12.
21. Goloubev E.A., Antonets I.V., Shcheglov V.I. Model representations of the microstructure, electrically conductive and microwave properties of shungites. Syktyvkar: Syktyvkar State University named after Pitirim Sorokin, 2017, 148 p.
22. Goloubev E.A., Antonets I.V. Influence of shungite plate thickness on its electrophysical properties: technological and geophysical aspects. Vestnik geonauk, 2024, no. 10 (358), pp. 40–45.
23. Enamel (options): pat. 2368632 Rus. Federation; appl. 03.08.07; publ. 27.09.09.
24. Сonductive primer coating composition: pat. 2015196727 JP; appl. 31.03.14; publ. 09.11.15.
25. Conducting primer for electrostatic coating of plastic base material and preparation method thereof: pat. 102838909 CN. 201210389687; appl. 16.10.12; publ. 11.03.15.
26. Electrically conductive paint and varnish material: pat. 2083619 Rus. Federation; appl. 23.08.95; publ. 10.07.97.
27. Electrically conductive paint and varnish material: pat. 2083622 Rus. Federation; appl. 24.08.95; publ. 10.08.97
28. Novel coating having electromagnetic radiation resistance and anti-static function: pat. 105399400 CN; appl. 08.12.15; publ. 19.12.17.
29. Yakovlev E.A., Yakovlev N.A., Ilyinykh I.A., Burmistrov I.N., Gorshkov N.V. Study of the influence of functionalized multi-walled carbon nanotubes on the electrical conductivity and mechanical characteristics of epoxy composites. Vestnik Tomskogo gosudarstvennogo universiteta. Ser.: Khimiya, 2016, no. 3 (5), pp. 15–23.
30. Conductive coating material: pat. 20090152508 US; appl. 24.10.06; publ. 18.06.09.
31. Electrically conductive coating composition: pat. 2392623 EP; appl. 01.08.07; publ. 18.09.13.
32. Kuo Y.C., Lee C.H., Rajesh R. Iron oxide-entrapped solid lipid nanoparticles and poly (lactide-co-glycolide) nanoparticles with surfactant stabilization for antistatic application. Journal of Materials Research and Technology, 2019, vol. 8 (1), pp. 887–895.
33. El-Dessouky H.M., Lawrence C.A. Nanoparticles dispersion in processing functionalized PP/TiO2 nanocomposites: distribution and properties. Journal of Nanoparticle Research, 2011, vol. 13 (3), pp. 1115–1124.
34. Nano dispersed water-based conductive primer for vehicle bumper and preparation method thereof: pat. 102002314 CN; appl. 29.09.10; publ. 12.06.13.
35. Electrically conductive paint and varnish material for anti-corrosion protection of metal structures: pat. 2318851 Rus. Federation; appl. 24.03.06; publ. 10.03.08.
36. Pugacheva T.A., Kurbatov V.G. Use of core pigments with a shell of conductive polymers in coatings for metal protection. Petrochemistry–2018: Proc. I Int. scientific and technical. forum on chemical technologies and oil refining: in 2 parts. Minsk: BSTU, 2018, part 1, pp. 213–216.
37. Kablov E.N. Materials for aerospace engineering. Vse materialy. Entsiklopedicheskiy spravochnik, 2007, no. 5, pp. 7–27.
38. Kondrashov E.K. Paints and varnishes and coatings based on them in mechanical engineering. Moscow: Paint-Media, 2021, p. 122.
39. Kondrashov E.K., Kuznetsova V.A., Semenova L.V., Lebedeva T.A. Main directions for improving the operational, technological and environmental characteristics of paint and varnish coatings for aviation equipment. Rossiyskiy khimicheskiy zhurnal, 2010, vol. LIV, no. 1, pp. 96–102.
The article analyzes publications on various methods of modification of water-based acrylic copolymers and provides the advantages and disadvantages of water-based acrylic coatings. The physical and chemical modification methods that make it possible to change the properties of water-based acrylic copolymers are considered. The paper shows the practical use of these modification methods for increasing water and corrosion resistance, as well as thermal and physical-mechanical properties of water-based acrylic coatings.
2. Du B., Chen F., Luo R., Zhou S., Wu Z. Synthesis and Characterization of Nano-TiO2/SiO2-Acrylic Composite Resin. Advances in Materials Science and Engineering, 2019, vol. 2019, pp. 1–7. DOI: 10.1155/2019/6318623.
3. Yilmaz O. High performance nanocomposite coatings based on soft core-reactive shell polyacrylic latex/modified halloysite nanotubes. Progress in Organic Coatings, 2019, vol. 127, pp. 266–275. DOI: 10.1016/j.porgcoat.2018.11.026.
4. Zhong S., Li J., Cai Y., Yi L. Novel surfactant-free waterborne acrylic-silicone modified alkyd hybrid resin coatings containing nano-silica for the corrosion protection of carbon steel. Polymer-Plastics Technology and Materials, 2019, vol. 58, no. 8, pp. 866–878. DOI: 10.1080/03602559.2018.1542711.
5. Tkachuk A.I., Terekhov I.V., Gurevich Ya.M., Grigoreva K.N. Research of the influence of the modifying additives nature on the rheological and thermomechanical properties of a photopolymer composition based on epoxy vinyl ester resin. Aviacionnye materialy i tehnologii, 2019, no. 3 (56), pp. 31–40. DOI: 10.18577/2071-9140-2019-0-3-31-40.
6. Wei J., Oyang C., Shan X., Gao Q. Advances in water-resistant modification of aqueous acrylic resins: modification methods, mechanism of action. MATEC Web of Conferences, 2022, vol. 363, pp. 1–9. DOI: 10.1051/matecconf/202236301024.
7. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
8. Yin Y., Jiang B., Zhu X. et al. Investigation of Thermostability of Modified Graphene Oxide/Methylsilicone Resin Nanocomposites. Engineered Science, 2019, vol. 5, pp. 73–78. DOI: 10.30919/es8d762.
9. Tang L.S., Zhang M., Zhang S.F., Yang J.Z. High performance waterborne aminoacrylic coatings from the blends of hydrosols and latexes. Progress in Organic Coatings, 2004, vol. 49, no. 1, pp. 54–61. DOI: 10.1016/j.porgcoat.2003.08.007.
10. Yang K., Chen X., Zhang Z. et al. Introducing rigid pyrimidine ring to improve the mechanical properties and thermal-oxidative stabilities of phthalonitrile resin. Polymers for Advanced Technologies, 2019, vol. 31, no. 2, pp. 328–337. DOI: 10.1002/pat.4773.
11. Bai L., Zheng S., Bao R. et al. Effect of PLA Crystallization on the Thermal Conductivity and Breakdown Strength of PLA/BN Composites. ES Materials & Manufacturing, 2019, vol. 3, pp. 66–72. DOI: 10.30919/esmm5f195.
12. Xiong K., Wang L., Zhang A. The Mechanical Properties, Compatibility, and Thermal Stabilities of POE-Graft-Methyl Methacrylate and Acrylonitrile(POE-g-MAN)/ Styrene-Acrylonitrile Copolymer (SAN Resin) Blends. Journal of Macromolecular Science, Part B, 2011, vol. 50, no. 7, pp. 1350–1363. DOI: 10.1080/00222348.2010.516178.
13. Romo-Uribe A., Santiago-Santiago K., Zavala-Padilla G. et al. Waterborne layered silicate/acrylate nanocomposites by in-situ emulsion polymerization: Thermal and mechanical reinforcement. Progress in Organic Coatings, 2016, vol. 101, pp. 59–70. DOI: 10.1016/j.porgcoat.2016.07.014.
14. Insulating paint for interior and exterior of buildings and method of making same: pat. 4623390A US; appl. 04.11.85; publ. 18.11.86.
15. Comite A., Cozza E.S., Di Tanna G. et al. Influence of counter ions in electrochemical properties and kinetic parameters of poly tyramine electroactive film. Progress in Organic Coatings, 2015, vol. 78, pp. 124–132.
16. Jiao C., Sun L., Shao Q. et al. Advances in Waterborne Acrylic Resins: Synthesis Principle, Modification Strategies, and Their Applications. ACS Omega, 2021, vol. 6, pp. 2443–2449. DOI: 10.1021/acsomega.0c05593.
17. Marchenko S.A., Zheleznyak V.G., Kuznetsova V.A. Application and modification of particles to create superhydrophobic coatings (review). Trudy VIAM, 2023, no. 5 (123), paper no. 09. Available at: http://www.viam-works.ru (accessed: May 05, 2025). DOI: 10.18577/2307-6046-2023-0-5-94-110.
18. Timperley C.M., Arbon R.E., Bird M. et al. Bis(fluoroalkyl)acrylic and methacrylic phosphate monomers, their polymers and some of their properties. Journal of Fluorine Chemistry, 2003, vol. 121, no. 1, pp. 23–31. DOI: 10.1016/S0022-1139(02)00314-7.
19. Yang W., Zhu L., Chen Y. et al. Surface topography and hydrophobicity of waterborne fluorinated acrylic/silica hybrid coatings. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, vol. 484, pp. 62–69. DOI: 10.1016/j.colsurfa.2015.07.053.
20. Xu H., Qiu F., Wang Y. et al. Preparation, Mechanical Properties of Waterborne Polyurethane and Crosslinked Polyurethane-Acrylate Composite. Journal of Applied Polymer Science, 2012, vol. 124, no. 2, pp. 958–968. DOI: 10.1002/app.35127.
21. Zheng B., Ge S., Wang S. et al. Effect of γ-aminopropyltriethoxysilane on the properties of cellulose acetate butyrate modified acrylic waterborne coatings. Reactive and Functional Polymers, 2020, vol. 154, pp. 1–8. DOI: 10.1016/j.reactfunctpolym.2020.104657.
22. Jiang Y., Li L., Liu J. et al. Hydrophobic films of acrylic emulsion by incorporation of fluorine-based copolymer prepared through the RAFT emulsion copolymerization. Journal of Fluorine Chemistry, 2016, vol. 183, pp. 82–91. DOI: 10.1016/j.jfluchem.2016.01.010.
23. Li L., Li X., Shen Y. et al. Hydrophobicity and corrosion resistance of waterborne fluorinated acrylate/silica nanocomposite coatings. e-Polymers, 2021, vol. 21, no. 1, pp. 779–792. DOI: 10.1515/epoly-2021-0079.
24. Liu M., Mao X., Zhu H. et al. Water and corrosion resistance of epoxy–acrylic–amine waterborne coatings: Effects of resin molecular weight, polar group and hydrophobic segment. Corrosion Science, 2013, vol. 75, pp. 106–113. DOI: 10.1016/j.corsci.2013.05.020.
25. Bi J., Liu Y., Gao F. et al. Improving water resistance and mechanical properties of waterborne acrylic resin modified by 3,3′,5,5′-tetramethyl-4,4′-biphenyl diglycidyl ether. Surfaces and Interfaces, 2022, vol. 35, pp. 1–34. DOI: 10.1016/j.surfin.2022.102426.
26. Liang C., Du Y., Wang Y. et al. Intumescent fire-retardant coatings for ancient wooden architectures with ideal electromagnetic interference shielding. Advanced Composites and Hybrid Materials, 2021, vol. 4, pp. 979–988. DOI: 10.1007/s42114-021-00274-5.
27. Ji S., Gui H., Guan G. et al. Molecular design and copolymerization to enhance the anti-corrosion performance of waterborne acrylic coatings. Progress in Organic Coatings, 2021, vol. 153, pp. 1–12. DOI: 10.1016/j.porgcoat.2021.106140.
28. Tereshko A.E., Golikov I.V., Indeikin E.A., Krasnobaeva V.S. Modification of acrylic water-dispersed paints and varnishes with petroleum hydrocarbons. Izvestiya vysshikh uchebnykh zavedeniy. Khimiya i khimicheskaya tekhnologiya, 2007, no. 50 (4), pp. 77–80.
29. Guo X., Ge S., Wang J. et al. Waterborne acrylic resin modified with glycidyl methacrylate (GMA): Formula optimization and property analysis. Polymer, 2018, vol. 143, pp. 155–163. DOI: 10.1016/j.polymer.2018.04.020.
30. Nosrati R., Olad A., Maryami F. Visible-light induced anti-bacterial and self-cleaning waterborne polyacrylic coating modified with TiO2/polypyrrole nanocomposite; preparation and characterization. Journal of Molecular Structure, 2018, vol. 1163, pp. 174–184. DOI: 10.1016/j.molstruc.2018.02.097.
31. Poddar M.K., Sharma S., Moholkar V.S. Investigations in two-step ultrasonic synthesis of PMMA/ZnO nanocomposites by in situ emulsion polymerization. Polymer, 2016, vol. 99, pp. 453–469. DOI: 10.1016/j.polymer.2016.07.052.
32. Sharma S., Poddar M.K., Moholkar V.S. Enhancement of thermal and mechanical properties of poly(MMA-co-BA)/Cloisite 30B nanocomposites by ultrasound-assisted in-situ emulsion polymerization. Ultrasonics Sonochemistry, 2017, vol. 36, pp. 212–225. DOI: 10.1016/j.ultsonch.2016.11.029.
33. Zahedi F., Amraee I.A. Carboxylated multiwalled carbon nanotubes effect on dynamic mechanical behavior of soft films composed of multilayer polymer structure. Polymer, 2018, vol. 151, pp. 187–196. DOI: 10.1016/j.polymer.2018.07.044.
34. Tkachuk A.I., Kurshev E.V., Lonskii S.L., Lyubimova A.S. Modification of epoxy binderes with multi-walled carbon nanotubes. Trudy VIAM, 2023, no. 2 (120), paper no. 05. Available at: http://www.viam-works.ru (accessed: March 05, 2025). DOI: 10.18577/2307-6046-2023-0-2-63-76.
35. Solovyanchik L.V., Kondrashov S.V. The prospects of using carbon nanotubes to impart functional properties to the surface of polymer materials (review). Trudy VIAM, 2021, no. 9 (103), paper no. 02. Available at: http://www.viam-works.ru (accessed: May 06, 2025). DOI: 10.18577/2307-6046-2021-0-9-11-21.
36. Kryzhanovsky V.K. Technical properties of polymeric materials. St. Petersburg: Professiya, 2003, 203 p.
37. Rostiashvili V.G., Irzhak V.I., Rosenberg B.A. Glass transition of polymers. Leningrad: Khimiya, 1987, 192 p.
38. Drake I., Cardoen G., Hughes A. et al. Polyurea-acrylic hybrid emulsions: Characterization and film properties. Polymers, 2019, vol. 181, pp. 1–10. DOI: 10.1016/j.polymer.2019.121761.
39. Shim J.Y., Park D.M., Kim H.O. The Synthesis of Waterborne Acrylic – Modified Alkyd and its Application. Proceedings of the 24th International Waterborne, High-Solids, and Powder Coatings Symposium, 1997, pp. 159–167.
40. Kablov E.N., Startsev O.V., Medvedev I.M. Review of international experience on corrosion and corrosion protection. Aviacionnye materialy i tehnologii, 2015, no. 2 (35), pp. 76–87. DOI: 10.18577/2071-9140-2015-0-2-76-87.
41. Madhusudha A.M., Mohana K.N.S., Hegde M.B. et al. Functionalized graphene oxide-epoxy phenolic novolac nanocomposite: an efficient anticorrosion coating on mild steel in saline medium. Advances Composites and Hybrid Materials, 2020, vol. 3, pp. 141–155. DOI: 10.1007/s42114-020-00142-8.
42. Zhong S., Li J., Yi L. et al. Cross-linked waterborne alkyd hybrid resin coatings modified by fluorinated acrylate-siloxane with high waterproof and anticorrosive performance. Polymers for Advanced Technologies, 2018, vol. 30, no. 2, pp. 292–303. DOI: 10.1002/pat.4464.
43. Pham H.H., Winnik M.A. Polymer Interdiffusion vs Cross-Linking in Carboxylic Acid−Carbodiimide Latex Films. Effect of Annealing Temperature, Reactive Group Concentration, and Carbodiimide Substituent. Macromolecules, 2006, vol. 39, no. 4, pp. 1425–1435. DOI: 10.1021/ma051685w.
44. Liu M., Mao X., Zhu H. et al. Water and corrosion resistance of epoxy–acrylic–amine waterborne coatings: Effects of resin molecular weight, polar group and hydrophobic segment. Corrosion Science, 2013, vol. 75, pp. 106–113. DOI: 10.1016/j.corsci.2013.05.020.
45. Kuznetsova V.A., Marchenko S.A., Emelyanov V.V., Zheleznyak V.G. Study of the influence of molecular mass of epoxy oligomers and hardeners on the operational properties of paint coatings. Aviation materials and technology, 2021, no. 1 (62), paper no. 07. Available at: http://www.journal.viam.ru (accessed: May 06, 2025). DOI: 10.18577/2713-0193-2021-0-1-71-79.
46. Zhong Z., Yu Q., Yao H. et al. Study of the styrene–acrylic emulsion modified by hydroxyl-phosphate ester and its stoving varnish. Progress in Organic Coatings, 2013, vol. 76, no. 5, pp. 858–863. DOI: 10.1016/j.porgcoat.2013.02.008.
47. Kablov E.N., Antipov V.V. The role of new generation materials in ensuring the technological sovereignty of the Russian Federation. Vestnik Rossiyskoy akademii nauk, 2023, vol. 93, no. 10, pp. 907–916.
This study examines the properties of paint coatings based on a universal cold-curing putty with fluoroplastic, fluoro-rubber and polyurethane enamels in their initial state and after exposure to various operational factors. The results show that the use of putty in systems with different enamels does not affect the appearance, fungal growth and adhesion of paint coatings. The impact resistance of coating systems containing this putty shows no deterioration after testing (compared to systems with the putty in its initial state).
2. Kablov E.N. Structural and Functional Materials – the Basis of Economic and Scientific-Technical Development of Russia. Voprosy materialovedeniya, 2006, no. 1, pp. 64–67.
3. Kablov E.N. Aviation Materials Science in the 21st Century. Prospects and Tasks. Aviation Materials. Selected Works of VIAM 1932–2002. Moscow: MISiS–VIAM, 2002, pp. 23–47.
4. Barannikov A.A., Veshkin E.A., Sudyin Yu.I., Mishunin N.N. Materials, technologies and equipment developed by the National Research Center «Kurchatov Institute» – VIAM for repairing products made of polymer composite materials for various purposes. Aerokosmicheskaya tekhnika i tekhnologii, 2025, vol. 3, no. 1, pp. 82–96.
5. Kablov E.N. New generation materials – the basis of innovations, technological leadership and national security of Russia. Intellekt i tekhnologii, 2016, no. 2 (14), pp. 16–21.
6. Pegov I.L. Comparative analysis of modern paints and varnishes. Vestnik NGIEI, 2014, no. 10, pp. 98–103.
7. Kablov E.N. The strategic directions of development of materials and technologies of their processing for the period to 2030. Aviacionnye materialy i tehnologii, 2012, no. S, pp. 7–17.
8. Semenova L.V., Karimova S.A., Polyakova A.V. Modern integrated protection systems for structures made of metal, polymer composite materials and their compounds. Novosti materialovedeniya. Nauka i tekhnika, 2014, no. 3, paper no. 02. Available at: http://materialsnews.ru (accessed: July 16, 2025).
9. Andryushkin A.Yu., Vedernikov A.Yu., Khmelevskoy N.Yu. Technological features of applying paint and varnish coatings to the external surfaces of aircraft and helicopters. Aerokosmicheskaya tekhnika i tekhnologii, 2023, vol. 1, no. 4, pp. 103–115.
10. Kucherenko E.V., Shcherbakov A.S., Arzamascev S.V. Composite materials based on polyester resin. Sovremennye innovatsii, 2016, no. 3 (5), pp. 5–7.
11. Shmoilov E.E., Fedotov M.Yu., Sharutin I.A. et al. Polymer composites for external reinforcement of building structures. International Journal for Computational Civil and Structural Engineering, 2024, vol. 20 (1), pp. 21–34.
12. Brock T. Unsaturated polyesters. European Guide to Paints and Coatings. Moscow: Paint-Media, 2007, pp. 73–78.
13. Marchenko S.A., Skivko P.V. Effect of temperature on drying time and viability of epoxyvinyl ether resin putty. Trudy VIAM, 2024, no. 10 (140), paper no. 08. Available at: http://www.viam-works.ru (accessed: July 16, 2025). DOI: 10.18577/2307-6046-2024-0-10-84-93.
14. Pavlyuk B.Ph. The main directions in the field of development of polymeric functional materials. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 388–392. DOI: 10.18577/2071-9140-2017-0-S-388-392.
15. Zheleznyak V.G., Serdcelyubova A.S., Merkulova Yu.I., Skivko P.V. Paint coating system based on polyurethane enamel for protecting heated frontal surfaces of aviation products. Aviation materials and technologies, 2022, no. 1 (66), paper no. 10. Available at: http://www.journal.viam.ru (ассеssed: July 16, 2025). DOI: 10.18577/2713-0193-2022-0-1-120-128.
16. Zubarev P.A., Lakhno A.V. Wear-resistant polyurethane coatings. Molodoy ucheny, 2014, no. 20, pp. 143–146.
17. Kozlova A.A., Kondrashov E.K. Influence of molecular weight and elemental composition of isocyanates on the properties of fluoropolyurethane enamels. Aviation materials and technologies, 2023, no. 4 (73), paper no. 09. Available at: http://www.journal.viam.ru (accessed: July 16, 2025). DOI: 10.18577/2713-0193-2023-0-4-92-100.
18. Kuznetsova V.A., Yemelyanov V.V., Marchenko S.A., Kovrizhkina N.A. The influence of artificial aging on the properties of coating systems based onchromate-free primer VG-44 using epoxy, polyurethane, acrylic urethane and fluoropolyurethane enamels. Trudy VIAM, 2023, no. 10 (128), paper no. 11. Available at: http://www.viam-works.ru (accessed: July 16, 2025). DOI: 10.18577/2307-6046-2023-0-10-119-131.
19. Kochetkova G.V., Loginov B.A. New brands of domestic fluororubbers. Rossiyskiy khimicheskiy zhurnal, 2008, vol. LII, no. 3, pp. 23–25.
20. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
In the fifth part of the series of articles on the climatic aging of paint coating systems, the features of the change in the color indices of the CIE L*a*b* model under the influence of sand and dust in laboratory conditions are studied. It is shown that for different paint coating systems with the addition of red and gray pigments, the dependences of the change in lightness and chromatic indices differ significantly. For all the studied systems, the contribution of the L, a, b indices to the change in color distance is quantitatively characterized.
2. Nefedov N.I., Semenova L.V., Kuznecova V.A., Vereninova N.P. Paint coatings for protection of metallic and polymer composite materials against aging, corrosion and biodeterioration. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 393–404. DOI: 10.18577/2071-9140-2017-0-S-393-404.
3. Zheleznyak V.G. Modern paint and varnish materials for use in aviation equipment products. Trudy VIAM, 2019, no. 5 (77), paper no. 07. Available at: http://www.viam-works.ru. (accessed: 08.07.2025). DOI: 10.18577/2307-6046-2019-0-5-62-67.
4. Startsev O.V., Koval T.V., Krotov A.S., Dvirnaya E.V., Veligodsky I.M. Investigation of the properties of carbon fiber reinforced plastic with coatings after 8 and 13 years of aging in moderately warm climate. Part 2. Condition of protective paint and vanish coatings. Trudy VIAM, 2024, no. 11 (141), paper no. 09. Available at: http://www.viam-works.ru (accessed: July 08, 2025). DOI: 10.18577/2307-6046-2024-0-11-113-124.
5. Startsev V.O., Frolov A.S. Influence of climatic influence on color characteristics of paint and varnish coatings. Lakokrasochnye materialy i ikh primenenie, 2015, no. 3, pp. 16–18.
6. Wu L., Guo X., Zhang J. Abrasive Resistant Coatings – A Review. Lubricants, 2014, vol. 2, no. 2, pp. 66–89.
7. Zheng L., Fan J., Gong Q. et al. Sand Erosion Resistance and Failure Mechanism of Polyurethane Film on Helicopter Rotor Blades. Polymers, 2023, vol. 15, no. 22, p. 4386.
8. Khorshidi F.H., Najafi S.K., Najafi F. et al. Color and Gloss Changes of a Lignin-Based Polyurethane Coating under Accelerated Weathering. Journal of Renewable Materials, 2023, vol. 12, no. 2, pp. 1–10.
9. Kotnarowska D., Przerwa M., Szumiata T. Resistance to Erosive Wear of Epoxy-Polyurethane Coating Modified With Nanofillers. Journal of Materials Science Research, 2014, vol. 3, no. 2, pp. 52–58.
10. Zhang Ti., Zhang Te., He Y. et al. Corrosion and aging of organic aviation coatings: A review. Chinese Journal of Aeronautics, 2023, vol. 36, no. 4, pp. 1–35.
11. Merkulova Yu.I., Kuznetsova V.A., Kodachenko E.N., Zheleznyak V.G. Study of the influence of the primer layer’s chemical nature on the properties of the coating system based on fluoropolyurethane enamel. Aviation materials and technologies, 2022, no. 1 (66), paper no. 09. Available at: http://www.journal.viam.ru (ассеssed: July 08, 2025). DOI: 10.18577/2713-0193-2022-0-1-110-119.
12. Zhang S.W., Deguo W., Weihua Y. Investigation of abrasive erosion of polymers. Journal of Materials Science, 1995, vol. 30, no. 18, pp. 4561–4566.
13. Hernández-Peña A., Gallardo-Hernández E.A., Farfan-Cabrera L.I. et al. Solid particle erosion evaluation of automotive paint coatings under the influence of artificial weathering. Wear, 2023, vol. 532–533, art. 205105.
14. Wärnheim A., Saarimaa V., Heydari G. et al. Multiscale analysis of pigment effects on weathering of polyester coatings: from nanoscale chemistry to macroscale performance. Materials Degradation, 2025, vol. 9, no. 1, art. 66.
15. Kablov E.N., Startsev V.O., Laptev A.B. Aging of polymer composite materials. Moscow: NRC «Kurchatov Institute» – VIAM, 2023, 520 p.
16. Cai G., Zhang D., Jiang D., Dong Z. Degradation of fluorinated polyurethane coating under UVA and salt spray. Part II: Molecular structures and depth profile. Progress in Organic Coatings, 2018, vol. 124, pp. 25–32.
17. Molina M.T., Cano E., Ramírez-Barat B. Testing protective coatings for metal conservation: the influence of the application method. Heritage Science, 2023, vol. 11, no. 1, art. 94.
18. Chen J., Li B., Zeng X. et al. Study on the Influence of Accelerated Aging on the Properties of an RTV Anti-Pollution Flashover Coating. Polymers, 2023, vol. 15, no. 3, art. 751.
19. Pánek M., Reinprecht L. Critical view on the possibility of color changes prediction in the surfaces of painted wood exposed outdoors using accelerated weathering in Xenotest. Journal of Coatings Technology and Research, 2019, vol. 16, no. 2, pp. 339–352.
20. Merkulova Yu.I., Kurshev E.V., Vdovin A.I., Andreeva N.P. Microstructural and electrochemical studies of paint coatings under natural climate tests of tropical climate of North America. Aviation materials and technologies, 2022, no. 2 (67), paper no. 11. Available at: http://www.journal.viam.ru (accessed: July 08, 2025). DOI: 10.18577/2713-0193-2022-0-2-120-130.
21. Dao P.H., Nguyen A.H., Mac V.P. et al. Aging of waterborne paint based on the acrylic resin emulsion and organic pigment. Vietnam Journal of Science and Technology, 2018, vol. 56, no. 3B, art. 126.
22. Guerguer M., Naamane S., Edfouf Z. et al. Chemical degradation and color changes of paint protective coatings used in solar glass mirrors. Coatings, 2021, vol. 11, no. 4, art. 476.
23. Startsev V.O. Climatic aging of paint coating systems. Part 4. Additivity of the impact of climate factors. Trudy VIAM, 2025, no. 8 (150), paper no. 13. Available at: http://www.viam-works.ru (accessed: August 20, 2025). DOI: 10.18577/2307-6046-2025-8-152-162.
24. Startsev V.O. Climate aging of paint coating systems. Part 3. Comparison of results of natural and accelerated climatic tests taking into account the effect of seasonality. Trudy VIAM, 2025, no. 7 (149), paper no. 05. Available at: http://www.viam-works.ru (accessed: August 20, 2025). DOI: 10.18577/2307-6046-2025-7-105-118.
25. Fairchild M.D. Color Appearance Models. Wiley, 2013, 480 p.
26. Schanda J. Colorimetry: Understanding the CIE System. Wiley, 2007, 398 p.
27. Ibraheem N.A., Hasan M.M., Khan R.Z., Mishra P.K. Understanding Color Models : A Review. ARPN Journal of Science and Technology, 2012, vol. 2, no. 3, pp. 265–275.
28. Isupov V.V., Startsev O.V. Numerical methods in dynamic mechanical spectroscopy of polymers. Abstract of reports. Int. Conf. «Mathematical models and numerical methods of continuous media mechanics» dedicated to the 75th anniversary of the outstanding mathematician and mechanic, organizer of science, academician Nikolai Nikolaevich Yanenko. Ed. Yu.I. Shokin. Novosibirsk: Publ. house of the SB of RAS, 1996, pp. 293–294.
29. Startsev O.V., Perepechko I.I. Molecular mobility and relaxation processes in the epoxy matrix of the composite. 1. Effect of the type of reinforcing filler. Mekhanika kompozitnykh materialov, 1984, no. 3, pp. 387–391.
30. Kablov E.N., Lebedev M.P., Startsev O.V., Golikov N.I. Climatic tests of materials, structural elements, machinery and equipment in conditions of extremely low temperatures. Proc. of the VI Eurasian Symposium on the Problems of Strength of Materials and Machines for Cold Climate Regions EURASTRENCOLD–2013. Yakutsk, 2013, pp. 5–7.
31. Startsev O.V., Lebedev M.P., Kychkin A.K. Aging of polymer composite materials in conditions of extremely cold climate. Izvestiya Altayskogo gosudarstvennogo universiteta, 2020, no. 1 (111), pp. 41–51.
Heat-resistant alloys and steels
Min P.G., Vadeev V.E., Sankin R.V., Chemov D.A. The influence of variable sulfur content on the high-temperature resistance of cast heat-resistant nickel alloy VZhM200
Light-metal alloys
Kashapov O.S., Makushina M.A., Kalashnikov V.S., Lavrova O.Yu. Comparative analysis of mechanical properties of heat-resistant titanium alloy VТ46 in cast and forged conditions
Composite materials
Nacharkina A.V., Zelenina I.V., Smirnov A.V., Boychuk A.S. Influence of the molding method on the structure and properties of carbon fiber reinforced plastics based on bismaleinimide binder
Gusev Yu.A., Usacheva M.N., Parakhin I.V., Kovalenko A.V., Vasyukov A.N. Application of composite materials and polymer filler in a helicopter blade design
Protective and functional
coatings
Zakirova L.I., Sibileva S.V., Vdovin A.I., Koltsova M.А. Selection of electrodeposited coating on corrosion-resistant steels for corrosion protection in contact with aluminium alloys
Budinovskiy S.A., Benklyan A.S., Movenko D.A., Tatarnikov S.V. Ion-plasma heat-resistant coatings with high resistance to sulfide-oxide corrosion
Kuznetsova V.A., Timoshina E.A., Shapovalov G.G., Kurshev E.V. Influence of amodified film-forming agent on the properties of anti-wear matte coating used to protect cabin and dashboard components in aircraft
Kozlova A.A., Shunina M.A., Kozlov I.A. Water-based enamel for coating aircraft interior elements
Krechetov D.D., Kozlova A.A., Zheleznyak V.G. Electrically conductive paints and coatings for aviation purposes
Izmalkov D.A., Akhmadieva K.R., Bokov V.V., Kozhukharov M.S. Modification of water-based acrylic copolymers to improve the performance properties of paint coatings
Marchenko S.A., Skivko P.V., Kuznetsova V.A. Properties of coating systems with a universal cold-curing putty with fluoroplastic, fluoro-rubber and polyurethane enamels after exposure to various performance factors
Startsev V.O. Climatic aging of paint coating systems. Part 5. Influence of duration of erosion effect