Articles
The tribological characteristics of entropy alloys based on the Ni–Co–Cr alloying system under contact-deformation impact under dry sliding friction conditions were studied. The results of the studies showed that the hardness of the equimass alloy is 10 % greater than equiatomic alloy, and the use of additional alloying increases the hardness of the equiatomic alloy by 20–45 %. The wear resistance of the alloys depends slightly on the hardness and, to a greater extent, on hardening due to the accumulation of subsurface defects.
2. Kaplanskii Yu.Yu., Mazalov P.B. World trends in the development of refractory high-entropy alloys for heat-loaded units of aerospace technics (review). Aviation materials and technologies, 2022, no. 2 (67), paper no. 03. Available at: http://www.journal.viam.ru (accessed: July 25, 2024). DOI: 10.18577/2713-0193-2022-0-2-30-42.
3. Kablov E.N., Sidorov V.V., Min P.G., Vadeev V.E., Kramer V.V. Research and development of technological parameters for vacuum melting of corrosion-resistant heat-resistant nickel alloys. Metallurg, 2021, no. 2, pp. 62–67.
4. Trofimenko N.N., Efimochkin I.Yu., Bolshakova A.N. Problems of creation and prospects for the use of heat-resistant high-entropy alloys. Aviacionnye materialy i tehnologii, 2018, no. 2 (51), pp. 3–8. DOI: 10.18577/2071-9140-2018-0-2-3-8.
5. Singh S., Wanderka N., Glatzel U., Banhart J. Decomposition in multi-component AlCoCrCuFeNi highentropy alloy. Acta Materialia, 2011, vol. 59, pр. 182–190. DOI: 10.1016/j.actamat.2010.09.023.
6. Trofimenko N.N., Efimochkin I.Yu., Osin I.V., Dvoretskov R.M. The research of the possibility of high entropy alloy VNbMoTaW production by mixing elementary powders with further hybrid spark plasma sintering. Aviacionnye materialy i tehnologii, 2019, no. 2 (55), pp. 12–20. DOI: 10.18577/2071-9140-2019-0-2-12-20.
7. Cantor B., Chang I.T.H., Knight P., Vincent A.J.B. Microstructural development in equiatomic multicomponent alloys. Materials Science and Engineering: A, 2004, vol. 375–377, pр. 213–218. DOI: 10.1016/j.msea.2003.10.257.
8. Cantor B. Multicomponent and high entropy alloys. Entropy, 2014, vol. 16, no. 9, pр. 4749–4768.
9. Yeh J.-W., Chen S.-K., Lin S.-J. et al. Nanostructured highentropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Advanced Engineering Materials, 2004, vol. 6, p. 299–303. DOI: 10.1002/adem.200300567.
10. Yeh J.W. Recent progress in high-entropy alloys. Annales de Chimie-Science des Materiaux, 2006, vol. 31, pр. 633–648. DOI: 10.3166/acsm.31.633-648.
11. Smith T. GRX-810: NASA High Temperature Alloy Development for Additive Manufacturing. 2022. Available at: https://ntrs.nasa.gov/citations/20220013032 (accessed: July 25, 2024).
12. Smith T. High Temperature Alloy Development for AM–GRX-810. Available at: ntrs.nasa.gov/citations/20230010486 (accessed: July 25, 2024).
13. NASA’s New Material Built to Withstand Extreme Conditions. Available at: https://www.nasa.gov/aeronautics/nasas-new-material-built-to-withstand-extreme-conditions/ (accessed: July 25, 2024).
14. Soleimani M., Kalhor A., Mirzadeh H. Transformation-induced plasticity (TRIP) in advanced steels: a review. Materials Science and Engineering: A, 2020, vol. 795, p. 140023.
15. De Cooman B.C., Estrin Y., Kim S.K. Twinning-induced plasticity (TWIP) steels. Acta Materialia, 2018, vol. 142, pр. 283–362.
16. Lukin E.I., Ashmarin A.A., Bannykh I.O. et al. Study of the influence of the reduction value during cold rolling on the phase composition, texture and residual stresses in 20Kh15AN3MD2 steel. Metals, 2023, no. 6, pp. 26–34. DOI: 10.31857/S0869573323060046.
17. Sevalnev G.S., Gromov V.I., Dulnev K.V., Sevalneva T.G. Contact endurance of nitrogenous austenitic-martensitic steels with different hardening mechanism. Aviation materials and technologies, 2024, no. 2 (75), paper no. 01. Available at: http://www.journal.viam.ru (accessed: July 25, 2024). DOI: 10.18577/2713-0193-2024-0-2-3-14.
18. Miracle D.B., Senkov O.N. A critical review of high entropy alloys and related concepts. Acta Materialia, 2017, vol. 122, pр. 448–511. DOI: 10.1016/j.actamat.2016.08.081.
19. George E.P., Raabe D., Ritchie R.O. High-entropy alloys. Nature Reviews Materials, 2019, vol. 4, pр. 515–534. DOI: 10.1038/s41578-019-0121-4.
20. Zhang Y., Zhou Y.J., Lin J.P. et al. Solid-solution phase formation rules for multi-component alloys. Advanced Engineering Materials, 2018, vol. 10 (6), pр. 534–538. DOI: 10.1002/adem.200700240.
21. Moghaddam P.V., Hardell J., Vuorinen E., Prakash B. The role of retained austenite in dry rolling/sliding wear of nanostructured carbide-free bainitic steels. Wear, 2019, vol. 428, pр. 193–204.
22. Harzallah R., Mouftiez A., Felder E. et al. Rolling contact fatigue of Hadfield steel X120Mn12. Wear, 2010, vol. 269. No. 9-10, pр. 647–654.
23. Sevalnev G.S., Sevalneva T.G., Kolmakov A.G., Dulnev K.V., Krylov S.A. Study of the tribo-technical characteristics of corrosion-resistant steels with different mechanisms of volumetric hardening. Trudy VIAM, 2021, no. 10 (104), paper no. 01. Available at: http://www.viam-works.ru (accessed: July 25, 2024). DOI: 10.18577/2307-6046-2021-0-10-3-11.
A comprehensive study of parts made of low-carbon steel grades DC04 and DX54D was carried out in order to establish the causes of the formation of surface cracks using optical and electron microscopy, chemical analysis and metallography, the structure was assessed, the chemical composition, the structure of surface cracks and artificially obtained fractures of parts were studied. An X-ray spectral microanalysis of the surface of the opened cracks was carried out. A decrease in ductility due to contamination of the parts material with non-metallic inclusions has been established.
2. Novikov I.I., Zolotorevsky V.S., Portnoy K.K. et al. Metallurgy: textbook in 2 vols. Ed. V.S. Zolotorevsky. Moscow: Publ. House MISIS, 2009, vol. 1, 496 p.
3. Novikov I.I., Zolotorevsky V.S., Portnoy K.K. et al. Metallurgy: textbook. in 2 vols. Ed. V.S. Zolotorevsky. Moscow: Publ. House MISIS, 2009, vol. 2, 528 p.
4. Erasov V.S., Oreshko E.I., Lutsenko A.N. Multilevel large-scale complex research of deformation of metal materials. Aviation materials and technologies, 2022, no. 1 (66), paper no. 11. Available at: http://www.journal.viam.ru (accessed: June 07, 2024). DOI: 10.18577/2713-0193-2022-0-1-129-142.
5. Gulyaev A.P. Metal Science: textbook for universities. 6th ed., rev. and add. Moscow: Metallurgiya, 1986, 544 p.
6. Kablov E.N. Key Problem – Materials. Trends and Guidelines for Innovative Development of Russia. Moscow: VIAM, 2015, pp. 458–464.
7. Kablov E.N., Bakradze M.M., Gromov V.I., Voznesenskaya N.M., Yakusheva N.A. New high strength structural and corrosion-resistant steels for aerospace equipment developed by FSUE «VIAM» (review). Aviacionnye materialy i tehnologii, 2020, no. 1 (58), pp. 3–11. DOI: 10.18577/2071-9140-2020-0-1-3-11.
8. Sevalnev G.S., Antsyferova M.V., Dulnev K.V., Sevalneva T.G., Vlasov I.I. Influence of nitrogen concentration on the structure and properties of sparingly alloyed structural steel. Aviacionnye materialy i tehnologii, 2020, no. 2 (59), pp. 10–16. DOI: 10.18577/2071-9140-2020-0-2-10-16.
9. Bernstein M.L. Thermomechanical processing of metals and alloys: in 2 vols. Moscow: Metallurgiya, 1968, vol. 1, 596 p.
10. Lednev I.S. Magnetic methods of non-destructive testing of aircraft parts. Aviation materials and technologies, 2024, no. 1 (74), paper no. 09. Available at: http://www.journal.viam.ru (accessed: June 07, 2024). DOI: 10.18577/2713-0193-2024-0-1-111-120.
11. Oreshko E.I., Erasov V.S., Yakovlev N.O., Utkin D.A. Methods for determining the mechanical characteristics of materials using indentation (review). Aviation materials and technology, 2021, no. 1 (62), paper no. 10. Available at: http://www.journal.viam.ru (accessed: June 07, 2024). DOI: 10.18577/2713-0193-2021-0-1-104-118.
12. Gordeeva T.A., Zhegina I.P. Analysis of fractures in assessing the reliability of materials. Moscow: Mashinostroenie, 1978, 200 p.
13. Klevtsov G.V., Botvina L.R., Klevtsova N.A., Limar L.V. Fractal diagnostics of destruction of metal materials and structures. Moscow: MISIS, 2007, 259 p.
14. Grigorenko V.B., Morozova L.V. Application of the scanning electron microscopy for studying of initial destruction stages. Aviacionnye materialy i tehnologii, 2018, no. 1 (50), pp. 77–87. DOI: 10.18577/2071-9140-2018-0-1-77-87.
15. State Standard 5639–82. Steels and alloys. Methods of detection and determination of grain size. Moscow: Publ. House of Standards, 2003, 21 p.
An experimental investigation of structure evolution kinetics in heat-resistant intermetallic TiAl-based alloys of various classes has been accomplished under the conditions of high-temperature exposures in the temperature range 900–1300 °C and durations of 15–240 min. The Temperature–Time–Transformation diagrams (TTT-diagrams) have been constructed to summarize data on isothermal phase transformations in the studied alloys with initial structures after selective electron beam melting.
2. Appel F., Paul J.D.H., Oehring M. Gamma Titanium Aluminide Alloys: Science and Technology. Weinheim: Wiley-VCH Verlag & Co, KGaA, 2011, 745 p.
3. Kablov E.N., Nochovnaya N.A., Panin P.V., Alekseev E.B., Novak A.V. Study of the structure and properties of heat-resistant alloys based on titanium aluminides with gadolinium microadditives. Inorganic Materials: Applied Research, 2017, vol. 8, no. 4, pp. 634–641. DOI: 10.1134/S2075113317040116.
4. Mayer S., Erdely P., Fischer F.D. et al. Intermetallic β‐solidifying γ‐TiAl based alloys − from fundamental research to application. Advanced Engineering Materials, 2017, vol. 19, art. 1600735.
5. Clemens H., Mayer S. Design, processing, microstructure, properties, and applications of advanced intermetallic TiAl alloys. Advanced Engineering Materials, 2013, vol. 15, pp. 191–215.
6. Wimler D., Lindemann J., Reith M. et al. Designing advanced intermetallic titanium aluminide alloys for additive manufacturing. Intermetallics, 2021, vol. 131, art. 107109.
7. Chen W., Yang Y., Liu L.L. et al. Microstructure control and tensile properties of EBM γ-TiAl. Aeronautical Manufacturing Technology, 2017, vol. 1-2, pp. 37–41.
8. Körner C. Additive manufacturing of metallic components by selective electron beam melting – a review. International Materials Reviews, 2016, vol. 61, no. 5, pp. 361–377.
9. Murr L.E., Gaytan S.M., Ramirez D.A. et al. Metal fabrication by additive manufacturing using laser and electron beam melting technologies. Journal of Materials Science and Technology, 2012, vol. 28, pp. 1–14.
10. Wartbichler R., Clemens H., Mayer S. Electron beam melting of a β‐solidifying intermetallic titanium aluminide alloy. Advanced Engineering Materials, 2019, vol. 21, аrt. 1900800.
11. Reith M., Franke M., Schloffer M., Körner C. Processing 4th generation titanium aluminides via electron beam based additive manufacturing – characterization of microstructure and mechanical properties. Materialia, 2020, vol. 14, art. 100902.
12. Schwerdtfeger J., Körner C. Selective electron beam melting of Ti-48Al-2Nb-2Cr: microstructure and aluminium loss. Intermetallics, 2014, vol. 49, pp. 29–35.
13. Panin P.V., Zavodov A.V., Lukina E.A. Effect of thermal exposure on microstructure evolution and mechanical properties of cast beta-solidifying TiAl-based alloy doped with Gd. Intermetallics, 2022, vol. 145, art. 107534. DOI: 10.1016/j.intermet.2022.107534.
14. Xia K., Wu X., Song D. Effects of Gd addition, lamellar spacing and loading direction on creep behavior of a fully lamellar Ti–44Al–1Mn–2,5Nb alloy. Acta Materialia, 2004, vol. 52, pp. 841–849. DOI: 10.1016/j.actamat.2003.10.018.
15. Chen Y.Y., Li B.H., Kong F.T. Microstructural refinement and mechanical properties of Y-bearing TiAl alloys. Journal of Alloys and Compounds, 2008, vol. 457, pp. 265–269. DOI: 10.1016/j.jallcom.2007.03.050.
16. Li W., Inkson B., Horita Z., Xia K. Microstructure observations in rare earth element Gd-modified Ti-44 at% Al. Intermetallics, 2000, vol. 8, pp. 519–523. DOI: 10.1016/S0966-9795(99)00156-9.
17. Lütjering G., Williams J.C. Titanium. Berlin-Heidelberg: Springer-Verlag, 2003, 406 p.
18. Panin P.V., Lukina E.A., Shiryaev A.A. Temperature–Time–Transformation diagrams construction for beta-solidifying TiAl-based alloy in as-cast condition. IOP Conf. Series: Materials Science and Engineering (FarEastCon-2020), 2021, vol. 1079, art. 062010. DOI: 10.1088/1757-899X/1079/6/062010.
19. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
20. Bondarenko Yu.A. Trends in the development of high-temperature metal materials and technologies in the production of modern aircraft gas turbine engines. Aviacionnye materialy i tehnologii, 2019, no. 2 (55), pp. 3–11. DOI: 10.18577/2071-9140-2019-0-2-3-11.
21. Alekseev Е.B., Nochovnaya N.A., Novak A.V., Panin P.V. Wrought intermetallic titanium ortho alloy doped with yttrium Part 1. Research on ingot microstructure and rheological curves plotting. Trudy VIAM, 2018, no. 6 (66), paper no. 02. Available at: http://www.viam-works.ru (accessed: August 09, 2024). DOI: 10.18577/2307-6046-2018-0-6-12-21.
22. Vasilev A.I., Putyrskiy S.V., Korotchenko A.Yu., Anisimova A.Yu. MIM technology as a method of manufacturing precision parts from metal-powder compositions, including titanium alloys (review). Trudy VIAM, 2021, no. 3 (97), paper no. 02. Available at: http://www.viam-works.ru (accessed: August 09, 2024). DOI: 10.18577/2307-6046-2021-0-3-16-27.
23. Alloy based on titanium intermetallic compound and a product made from it: pat. 2606368 Rus. Federation; appl. 15.10.15; publ. 10.01.17.
24. Titanium aluminum alloys modified by chromium and niobium and method of preparation: pat. US 4879092; appl. 03.06.88; publ. 07.11.89.
25. Duyunova V.A., Oglodkov M.S., Putyrskiy S.V., Kochetkov A.S., Zueva O.V. Modern technologies for melting titanium alloy ingots (review). Aviation materials and technologies, 2022, no. 1 (66), paper no. 03. Available at: http://www.journal.viam.ru (accessed: August 09, 2024). DOI: 10.18577/2713-0193-2022-0-1-30-40.
26. Panin P.V., Lukina E.A., Bogachev I.A., Medvedev P.N., Naprienko S.A. Additive synthesis of TiAl alloy of the Ti–Al–V–Nb–Cr–Gd system by selective electron beam melting. Metallurg, 2023, no. 3, pp. 55–65. DOI: 10.52351/00260827_2023_03_55.
27. Panin P.V., Lukina E.A., Bogachev I.A., Naprienko S.A. Influence of technological parameters of selective electron beam melting on the chemical composition, microstructure and porosity of TiAl alloy of the Ti–Al–V–Nb–Cr–Gd system. Metallurg, 2023, no. 5, pp.54–66.
28. Spitans S., Franz H., Baake E. Numerical modelling and optimization of the electrode induction melting for inert gas atomization (EIGA). Proceedings of 11th PAMIR International Conference – Fundamental and Applied MHD. Reims, 2019, pp. 327–331.
29. Knyazev A.E., Vostrikov A.V. Sieving of powders additive and powder manufacturings (review). Trudy VIAM, 2020, no. 11 (93), paper no. 02. Available at: http://www.viam-works.ru (accessed: 09.08.2024). DOI: 10.18577/2307-6046-2020-0-11-11-20.
30. Alishin M.I., Knyazev A.E. Production of metal-powder high-purity titanium alloy compositions by induction gas atomization for application in additive manufacturing. Trudy VIAM, 2017, no. 11 (59), paper no. 05. Available at: http://www.viam-works.ru (accessed: August 09, 2024). DOI: 10.18577/2307-6046-2017-0-11-5-5.
31. Peskova A.V., Sukhov D.I., Mazalov P.B. Examination of the formation of the titanium alloy VT6 structure obtained by additive manufacturing. Aviacionnye materialy i tehnologii, 2020, no. 1 (58), pp. 38–44. DOI: 10.18577/2071-9140-2020-0-1-38-44.
32. McCusker L.B., Von Dreele R.B., Cox D.E. et al. Rietveld refinement guidelines. Journal of Applied Crystallography, 1999, vol. 32, pp. 36–50. DOI: 10.1107/S0021889898009856.
33. Ilyin A.A., Kolachev B.A., Polkin I.S. Titanium alloys. Composition, structure, properties: reference. Moscow: VILS-MATI, 2009, 520 p.
34. Murray J.L. The Cr–Ti (chromium-titanium) system. Bulletin of Alloys Phase Diagrams, 1981, vol. 2, no. 2, pp. 174–181.
35. Venkatraman M., Neumann J.P. Cr–Nb (chromium-niobium) system. Bulletin of Alloys Phase Diagrams, 1986, vol. 7, no. 5, pp. 462–466.
This paper presents the results of a study on the development of a cold-curing polymer syntactic filler composition for local strengthening of honeycomb panels, sealing end sections and filling technological voids of aircraft elements. About 100 compositions were studied, differing in components and their ratio in the system. The best composition based on test results was assigned the VPZ-25 brand. In terms of a number of properties, the developed material is at the same level or exceeds the characteristics of its foreign and domestic analogues.
2. Panin S.V. Application of modern polymer composite materials in the airframe design of the MS-21 family of aircraft. Izvestiya Samarskogo nauchnogo tsentra Rossiyskoy akademii nauk, 2012, vol. 14, no. 4 (2), pp. 686–693.
3. Aristov V.F., Vikhrov I.A. Radiotransparent cyanate ether syntactics (spheroplastics) based on hollow glass or polymer microspheres for spacecraft transceivers. Proc. XXI Int. scientific-practical. Conf., dedicated to the memory of the General Designer of Rocket and Space Systems, Academician M.F. Reshetnev. Moscow: Krasnoyarsk, 2017, pp. 66–67.
4. Postnov V.I., Veshkin E.A., Makrushin K.V., Sudin Yu.I. Technological features of manufacturing polymer composite materials of main rotor blades for a light helicopter. Aviation materials and technologies, 2023, no. 1 (70), paper no. 06. Available at: http://www.journal.viam.ru (accessed: May 14, 2024). DOI: 10.18577/2713-0193-2023-0-1-82-92.
5. Trostyanskaya E.B., Golovkin G.S., Dmitrenko V.P. Promising polymer composite materials and progressive technologies for their production of aircraft structural elements. Aviatsionnaya promyshlennost, 1987, no. 2, pp. 37–42.
6. Shvetsov E.P., Sokolov I.I., Grebeneva T.A. Polymer nanomodified composite material for the construction industry. Novosti materialovedeniya. Nauka i tekhnika, 2016, no. 5 (23), paper no. 08. Available at: http://www.materialsnews.ru (accessed: March 01, 2024).
7. Startsev V.O., Antipov V.V., Slavin A.V., Gorbovets M.A. Modern domestic polymer composite materials for aviation industry (review). Aviation materials and technologies, 2023, no. 2 (71), paper no. 10. Available at: http://www.journal.viam.ru (accessed: March 01, 2024). DOI: 10.18577/2713-0193-2023-0-2-122-144.
8. Pavlyuk B.Ph. The main directions in the field of development of polymeric functional materials. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 388–392. DOI: 10.18577/2071-9140-2017-0-S-388-392.
9. Kablov E.N. The Role of Chemistry in Creating New-Generation Materials for Complex Technical Systems. Report of the XX Mendeleev Congress on General and Applied Chemistry. Ekaterinburg: Ural Branch of the Russian Academy of Sciences, 2016, pp. 25–26.
10. Kablov E.N. Composites: Today and Tomorrow. Metally Evrazii, 2015, no. 1, pp. 36–39.
11. Yakovenko T.V., Yarullina G.K., Garustovich I.V. et al. Spheroplasts as Thermal Insulating Protective Materials for Industrial Use. Uspekhi v khimii i khimicheskoy tekhnologii, 2016, vol. 3, no. 8, pp. 71–73.
12. Mishurov K.S., Payarel S.M., Kurnosov A.O., Bokov V.V. Physical and mechanical properties of syntactic foam VPZ-24 with a maximum service temperature up to 320 °С. Trudy VIAM, 2022, no. 4 (110), paper no. 06. Available at: http://www.viam-works.ru (accessed: May 14, 2024). DOI: 10.18577/2307-6046-2022-0-4-52-60.
13. Chursova L.V., Panina N.N., Grebeneva T.A., Kutergina I.Yu. Epoxy resins, hardeners, modifiers and binders based on them. St. Petersburg: Profession, 2020, 576 p.
14. Sokolov I.I. Cold-curing spheroplasts based on adhesive binders for aviation products. Klei. Germetiki. Tekhnologii, 2013, no. 3, pp. 25–28.
15. Kapustyanskaya M.A., Gurevich Ya.M., Mishurov K.S. Polymer filler for accelerated molding technology. Plasticheskiye massy, 2023, no. 11–12, pp. 50–53.
16. Tkachuk A.I., Terekhov I.V., Afanasyeva E.A. Reactive type flame retardants for epoxy resins. Part 1. Trudy VIAM, 2020, no. 3 (87), paper no. 04. Available at: http://www.viam-works.ru (accessed: May 14, 2024). DOI: 10.18577/2307-6046-2020-0-3-41-48.
17. Zastrogina O.B., Shvets N.I., Postnov V.I., Serkova E.A. Phenolformaldehyde binding new generation for interior materials. Aviacionnye materialy i tehnologii, 2012, no. S, pp. 265–272.
18. Sarychev I.A., Serkova E.A., Khmelnitsky V.V., Zastrogin O.B. Thermosetting binders for aircraft floor panel materials (review). Trudy VIAM, 2019, no. 7 (79), paper no. 03. Available at: http://www.viam-works.ru (accessed: May 14, 2024). DOI: 10.18577/2307-6046-2019-0-7-26-33.
19. Epocast 1618-D/B. Available at: https://freemansupply.com/products/liquid-tooling-materials/epoxy-aerospace-syntactics/epocast-1618-epoxy-syntactic (accessed: May 14, 2024).
20. ITM25. Available at: https://itecma.ru/products/interernye-materialy/mats-pasty/15786/ (accessed: May 14, 2024).
This literature review discusses methods for determining the fracture toughness of ceramic composite materials. The main methods for increasing crack growth resistance are given. Methods for determining mechanical properties using Vickers pyramid indentation, the three- and four-point bending method, and computer modeling of the crack growth process, including at elevated temperatures, are considered. The main disadvantages of each way of determining mechanical properties are presented.
2. Voronov V.A., Chainikova A.S., Lebedeva Yu.E., Zhitnyuk S.V. Production, physico-mechanical and tribotechnical properties of hot-pressed carbon-ceramic composite material on the basis of silicon carbide. Aviation materials and technologies, 2022, no. 2 (67), paper no. 07. Available at: http://www.journal.viam.ru (accessed: January 14, 2024). DOI: 10.18577/2713-0193-2022-0-2-74-84.
3. Tyutin S.S., Ilyakhinsky I.A., Kamnev M.A., Afrikantov G.G. Comparative evaluation of prototypes of bearing shells for sealed electric pumps for resistance to high-parameter water. Reports Sci.-Pract. Conf. «Nuclear technologies: from research to implementation–2019». N. Novgorod: NSTU named after R.E. Alekseev, 2019, pp. 49–50.
4. Kablov E.N., Grashchenkov D.V., Isaeva N.V., Solntsev S.S. Promising high-temperature ceramic composite materials. Rossiyskiy khimicheskiy zhurnal, 2010, vol. 54, no. 1, pp. 20–24.
5. Kablov E.N., Grashchenkov D.V., Isaeva N.V. High-temperature fiber-free ceramic composite material. Abstract Int. Sci.-Tech. conf. «Actual issues of aviation materials science». Moscow: VIAM, 2007, p. 83.
6. Gnesin G.G. Silicon carbide materials. Moscow: Metallurgiya, 1977, 215 p.
7. Grinchuk P.S., Kiyashko M.V., Stepkin M.O. et al. Production of dense reaction-bonded ceramics based on silicon carbide. Heat and mass transfer–2017. Minsk, 2017, pp. 56–86.
8. Kiyashko M.V. Regularities of formation of ceramics based on reaction-bonded silicon carbide in the presence of free silicon: abstract thesis, Cand. Sc. (Phys. & Math). Minsk, 2023, 29 p.
9. Zhitnyuk S.V., Sorokin O.Yu., Zhuravleva P.L. Silicon carbide ceramics obtained by sintering granular powder. Trudy VIAM, 2020, no. 2 (86), paper no. 06. Available at: http://www.viam-works.ru (accessed: February 05, 2024). DOI: 10.18577/2307-6046-2020-0-2-50-59.
10. Sevastyanov V.G., Simonenko E.P., Simonenko N.P., Grashchenkov D.V., Solntsev S.S., Ermakova G.V., Prokopchenko G.M., Kablov E.N., Kuznetsov N.T. Production of silicon carbide whiskers using the sol-gel method in the bulk of SiC ceramics. Kompozity i nanostruktury, 2014, vol. 6, no. 4, pp. 198–211.
11. Yan J., Zhang Zh., Kuriyagawa T. Mechanism for material removal in diamond turning of reaction-bonded silicon carbide. International Journal of Machine Tools & Manufacture, 2009, vol. 49, pp. 366–374. DOI: 10.1016/j.ijmachtools.2008.12.007.
12. Cook J., Gordon J., Evans C., Marsh D. A mechanism for the control of crack propagation in all-brittle systems. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. The Royal Society, 1964, рр. 508–520.
13. Clegg W., Kendall K., Alford N.M., Button T., Birchall J. A simple way to make tough ceramics. Nature, 1990, vol. 347, is. 6292, pp. 455–457.
14. Sevostyanova I.N., Han Liang, Buyakova S.P. Formation of the structure and properties of
heteromodular multicomponent ceramic composite materials based on zirconium diboride. Reports Int. Conf. «Physical mesomechanics. Materials with a multilevel hierarchically organized structure and intelligent technologies». Tomsk, 2023, pp. 580–581.
15. Kablov E.N., Shchetanov B.V., Ivakhnenko Yu.A., Balinova Yu.A. Promising reinforcing high-temperature fibers for metal and ceramic composite materials. Aviacionnye materiay i tehnologii, 2005, no. 2, pp. 3–5.
16. Popov O., Chornobuk S., Vishnyakov V. Structure formation of TiB2–TiC–B4C–C hetero-modulus ceramics via reaction hot pressing. International Journal of Refractory Metals and Hard Materials, 2017, vol. 64, pp. 106–112. DOI: 10.1016/j.ijrmhm.2017.01.012.
17. Popov O., Vishnyakov V. Fracture toughness in some hetero-modulus composite carbides: carbon inclusions and voids. Advances in Applied Ceramics, 2017, vol. 116, no. 2, pp. 61–70. DOI: 10.1080/17436753.2016.1208470.
18. Chakrabarti O.P., Ghosh S., Mukerji J. Influence of grain size, free silicon content and temperature on the strength and toughness of reaction-bonded silicon carbide. Ceramics International, 1994, vol. 20, pp. 283–286. DOI: 10.1016/0272-8842(94)90042-6.
19. Wilhelm M., Wruss W. Influence of annealing on the mechanical properties of SiC–Si composites with sub-micron SiC microstructures. Journal of the European Ceramic Society, 2000, vol. 20, pp. 1205–1213. DOI: 10.1016/S0955-2219(99)00275-7.
20. Wang Y., Tan S., Jiang D. The effect of porous carbon preform and the infiltration process on the properties of reaction-formed SiC. Carbon, 2004, vol. 42, pp. 1833–1839. DOI: 10.1016/j.carbon.2004.03.018.
21. Huang Q.W., Zhu L.H. High-temperature strength and toughness behaviors for reaction-bonded SiC ceramics below 1400 °C. Materials letters, 2005, vol. 59, pp. 1732–1735. DOI: 10.1016/j.matlet.2005.01.049.
22. Friedman Ya.B. Mechanical properties of metals: in 2 parts. Moscow: Mashinostroenie, 1972, part 2: Mechanical tests. Structural strength, 368 p.
23. Gnesin B.A. Possibilities of controlling the connectivity of silicon carbide in silicon carbide - molybdenum silicide composite materials. Nauka i obrazovanie, 2014, no. 12, pp. 941–950. DOI: 10.7463/1214.0751844.
24. Perevislov S.N. Evaluation of crack resistance of reaction-sintered composite materials based on boron carbide. Novye ogneupory, 2019, no. 3, pp. 49–54. DOI: 10.17073/1683-4518-2019-3-49-54.
25. Chicot D., Tricoteaux A. Mechanical Properties of Ceramic by Indentation: Principle and Applications. Ceramic Materials. InTech, 2010, pp. 116–154.
26. Oreshko E.I., Erasov V.S., Utkin D.A., Avtayeva Ya.V. The equipment for definition of physicomechanical characteristics of materials by press-in method (review). Aviation materials and technologies, 2021, no. 4 (65), paper no. 12. Available at: http://www.journal.viam.ru (accessed: February 12, 2024). DOI: 10.18577/2713-0193-2021-0-4-107-124.
27. Rao X., Zhang F., Luo X., Ding F. Characterization of hardness, elastic modulus and fracture toughness of RB–SiC ceramics at elevated temperature by Vickers test. Materials Science and Engineering: A, 2019, vol. 744, pp. 426–435. DOI: 10.1016/j.msea.2018.12.044.
28. Lapitskaya V.A., Kuznetsova T.A., Chizhik S.A., Grinchuk P.S. Determination of crack resistance using AFM. Reports XIII Int. Conf. «Methodological aspects of scanning probe microscopy». Minsk, 2018, pp. 260–266.
29. Lynn A. Development and characterization of spiral additions in a ceramic matrix. Materials science and engineering: Masters Theses, 2014, no. 7326, 71 p.
30. ASTM C1161-13. Standard test method for flexural strength of advanced ceramics at ambient temperature. West Conshohocken: ASTM International, 2013, 19 p.
31. ASTM C1421-16. Standard test methods for determination of fracture toughness of advanced ceramics. West Conshohocken: ASTM International, 2016, 31 p.
32. Mirov Yu.A., Burlachenko A.G., Buyakova S.P. Study of crack resistance of heteromodular ZrC/C composites by the SEVNB method. Reports conf. «Physical mesomechanics. Materials with a multilevel hierarchically organized structure and intelligent manufacturing technologies». Tomsk, 2020, pp. 330–331. DOI: 10.17223/9785946219242/212.
33. Mirov Yu.A. Ceramic composite materials with high crack resistance based on zirconium carbide, oxide and boride: thesis, Cand. Sc. (Tech.). Tomsk, 2023, 145 p.
34. Ferraro C. Bio-inspired ceramic based composites. London, 2016, 246 p. DOI: 10.25560/45538.
35. Munz D., Fett T. Ceramics: mechanical properties, failure behavior, material selection. Springer, 1999, 298 р.
36. Hubner H., Jillek W. Sub-critical crack extension and crack resistance in polycrystalline alumina. Journal of Materials Science, 1977, vol. 12, pp. 117–125. DOI: 10.1007/BF00738476.
37. Nose T., Fujii T. Evaluation of fracture toughness for ceramic materials by a singleedge-precracked-beam method. Journal of the American Ceramic Society, 1988, vol. 71, pp. 328–333. DOI: 10.1111/j.1151-2916.1988.tb05049.x.
38. Cui W., Li M., Liu J. et al. A Strong Integrated Strength and Toughness Artificial Nacre Based on Dopamine Cross-Linked Graphene Oxide. ACS Nano, 2014, vol. 8, pp. 9511–9517. DOI: 10.1021/nn503755c.
39. ASTM E1820-15a. Standard Test Method for Measurement of Fracture Toughness. West Conshohocken: ASTM International, 2015, 48 p.
40. Zimmermann J.W., Hilmas G.E., Fahrenholtz W.G. Thermal Shock Resistance and Fracture Behavior of ZrB2–Based Fibrous Monolith Ceramics. Journal of the American Ceramic Society, 2009, vol. 92, is. 1, pp. 161–166.
41. Kamiya A., Nakano K., Kondoh A. Fabrication and properties of hot-pressed SiC whisker-reinforced TiB2 and TiC composities. Journal of Materials Science Letters, 1989, vol. 8, pp. 566–568. DOI: 10.1007/BF00720300.
42. Munro R.G. Material Properties of a Sintered α-SiC. Journal of Physical and Chemical Reference Data, 1997, vol. 26, is. 5, pp. 1195–1203. DOI: 10.1063/1.556000.
43. Luo Z., Zhou X., Yu J. Mechanical properties of SiC/SiC composites by PIP process with a new precursor at elevated temperature. Materials Science and Engineering: A, 2014, vol. 607, pp. 155–161. DOI: 10.1016/j.msea.2014.03.011.
44. Magley D., Winholtz F., Faber K. Residual Stresses in a Two-Phase Microcracking Ceramic. Journal of the American Ceramic Society, 1990, vol. 73, is. 6, pp. 1641–1644. DOI: 10.1111/j.1151-2916.1990.tb09808.x.
45. Teague M. Modeling and Measurement of Thermal Residual Stresses and Isotope Effects on Thermo Physical Properties of ZrB2–SiC Ceramics. Materials Science and Engineering: Master Thesis. Missouri, 2008, no. 4624, 111 p.
46. A Method for Toughening via the Production of Spiral Architectures through Powder Loaded Polymer Extrusion and Toughened Materials Formed Thereby: pat. US8192853; appl. 12.09.08; publ. 19.03.09.
47. King D.S., Fahrenholtz W.G., Hilmas G.E. Silicon carbide-titanium diboride ceramic composites. Journal of the European Ceramic Society, 2013, vol. 33, is. 15–16, pp. 2943–2951. DOI: 10.1016/j.jeurceramsoc.2013.03.031.
48. Yu L., Zhao J., Yue X.Y. et al. Microstructure and Properties of Graphite Embedded SiC Composite by Coating Method. Advanced Materials Research, 2010, vol. 105–106, pp. 855–858. DOI: 10.4028/www.scientific.net/AMR.105-106.855.
49. Sieber N., Seyller Th., Ley L. et al. Synchrotron x-ray photoelectron spectroscopy study of hydrogen-terminated 6H-SiC {0001} surfaces. Physical Review B, 2003, vol. 67, is. 20, р. 205304. DOI: 10.1103/PhysRevB67.205304.
50. Emdadi A., Watts J., Fahrenholtz W.G. et al. Predicting effective fracture toughness of ZrB2-based ultra-high temperature ceramics by phase-field modeling. Materials & Design, 2020, vol. 192, p. 11. DOI: 10.1016/j.matdes.2020.108713.
The article presents an up-to-date review of scientific and technical information in the field of development and research of high-temperature carbon fiber reinforced plastics based on thermosetting polyimide binders and their manufacturing technology. The article considers the world market of polyimide binders and carbon fiber reinforced plastics based on them, the features of the production of carbon fiber reinforced plastics based on polyimide binders, their properties and application, studies publication activity, global development trends and the main areas of research in this area.
2. Startsev V.O., Antipov V.V., Slavin A.V., Gorbovets M.A. Modern domestic polymer composite materials for aviation industry (review). Aviation materials and technologies, 2023, no. 2 (71), paper no. 10. Available at: http://www.journal.viam.ru (accessed: August 31, 2024). DOI: 10.18577/2713-0193-2023-0-2-122-144.
3. Mikhailin Yu.A. Heat-resistant polymers and polymeric materials. St. Petersburg: Profession, 2006, 624 p.
4. Hergenrother P. The use, design, synthesis, and properties of high performance/high temperature polymers: an overview. High Performance Polymers, 2003, vol. 15, pp. 3–45.
5. Mangalgiri P.D. Polymer-matrix composites for high-temperature applications. Defense Science Journal, 2005, vol. 55, pp. 175–193.
6. High Temperature Composite Resin Market Size and Forecast. Available at: https://www.verifiedmarketresearch.com/product/high-temperature-composite-resin-market/#:~:text=High%20Temperature%20Composite%20Resin%20Market,aerospace%2C%20transportation%2C%20and%20defense%20globally (accessed: December 09, 2023).
7. Xinwei F., Jiafu W., Yiru R. Research on high-temperature resistant resin matrix composites of hypersonic aircraft structure. ICMTAE-2021. Journal of Physics: Conference Series. Ser. 2228012014, 2022, pp. 1–6.
8. Global Polyimide Resins Market Study 2016–2032. Available at: https://www.marketresearch.com/Prismane-Consulting-Private-Limited-v4215/Global-Polyimide-Resins-Study-32057574/ (accessed: December 10, 2023).
9. Global Polyimide Plastic Market Insights, Forecast to 2028. Available at: https://www.marketresearch.com/QYResearch-Group-v3531/Global-Polyimide-Plastic-Insights-
Forecast-32021561/ (accessed: December 10, 2023).
10. Global Polyimide Resin Matrix Composite Laminate SuPly, Demand and Key Producers, 2023–2029. Available at: https://www.marketresearch.com/GlobalInfoResearch-v4117/Global-Polyimide-Resin-Matrix-Composite-35273331/ (accessed: December 10, 2023).
11. Global polyimides market. Available at: https://marketlitmus.com/report-store/chemicals-and-materials/resins-and-polymers/global-polyimides-market/ (accessed: November 17, 2019).
12. Valueva M.I., Zelenina I.V., Zharinov M.A., Akhmadieva K.R. World market of high temperature polyimide carbon plastic (review). Trudy VIAM, 2019, no. 12 (84), paper no. 08. Available at: http://www.viam-works.ru (accessed: August 31, 2024). DOI: 10.18577/2307-6046-2019-0-12-67-79.
13. Zharinov M.A., Shimkin A.A., Akhmadiyeva K.R., Zelenina I.V. Features and properties of solvent-free PMR-type polyimide resin. Trudy VIAM, 2018, no. 12 (72), paper no. 05. Available at: http://www.viam-works.ru (accessed: August 31, 2024). DOI: 10.18577/2307-6046-2018-0-12-46-53.
14. Valueva M.I., Zelenina I.V., Zharinov M.A., Khaskov M.A. High-Temperature Carbon Fiber Reinforced Plastics Based on a Thermoreactive Polyimide Binder. Inorganic Materials: Applied Research, 2021, vol. 12, no. 6, pp. 1581–1589.
15. PROOF Research Advanced composites division. Available at: https://www.proofresearch.com/advanced-composites-division/ (accessed: November 17, 2023).
16. AVIC Composit. Available at: https://www.avic.com/en (accessed: November 17, 2023).
17. Hong W., Yuan L., Ma Y. et al. Resin Transfer Moldable Fluorinated Phenylethynyl-Terminated Imide Oligomers with High Tg: Structure–Melt Stability Relationship. Polymers, 2021, vol. 13, no. 903, pp. 1–9.
18. Zhang H.-Y., Yuan L.-L., Hong W.-J., Yang S.-Y. Improved Melt Processabilities of Thermosetting Polyimide Matrix Resins for High Temperature Carbon Fiber Composite Applications. Polymers, 2022, vol. 14, no. 965, pp. 1–16.
19. Imide oligomers, varnishes, otverzhdenny products from them, prepregs and fibrous composites with their use: pat. JP 7418737B2; appl. 24.12.19; publ. 22.01.24.
20. Method for manufacturing a wholly aromatic polyimide resin having improved heat resistance and elongation properties in a high temperature range: pat. ЕР 2520606В1; appl. 30.12.09; publ. 09.09.15.
21. Gao S.Z., Huang Z.Q., Wang X.L. et al. Research on Properties of 450 °С Resistant Polyimide Composites. Journal of Physics: Conference Series (ISALT 2022), 2023, vol. 2460, no. 012091, рр. 1–8.
22. Ghose S., Cano R.J., Watson K.A. et al. High temperature VARTM of phenilethynyl terminated imides. Available at: https://www.iccm-cen-tral.org/Proceedings/ ICCM17proceedings/Themes/Industry/AEROSPACE%20APPLICATIONS/A2.8%20Ghose.pdf (accessed: December 04, 2023).
23. Fernberg P., Gong G., Mannberg P., Tsampas S. Development of novel high Tg polyimide-based composites. Part I: RTM processing properties. Journal of Composite Materials, 2018, vol. 2, no. 2, pp. 253–260.
24. Bain S., Ozawa S., Jim M., Criss Jr. Development of a Cure/Postcure Cycle for PETI-330 Laminates Fabricated by Resin Transfer Molding. High Performance Polymers, 2006. Available at: https://www.academia.edu/5559484/Development _of a_Cure_Postcure_Cycle_for_PETI-330_Laminates_Fabricated_by_Resin_Transfer_Molding (accessed: December 04, 2021).
25. Varna J., Zrida H. Analysis of Microdamage in Thermally Aged CF/Polyimide Laminates. Mechanics of Composite Materials, 2017, vol. 53, no. 1, pp. 45–58.
26. Proof research ACD. Data sheet product: P2SI® 900HT. Available at: https://proofresearch.com/wp-content/uploads/2020/11/PROOF-CD_data_sheet_900HT_update_ 10-16-15v2-correct.pdf (accessed: August 31, 2023).
27. Kablov E.N., Laptev A.B., Prokopenko A.N., Gulyaev A.I. Relaxation of polymeric composite materials under the prolonged action of static load and climate (review). Part 1. Binders. Aviation materials and technologies, 2021, no. 4 (65), paper no. 08. Available at: http://www.journal.viam.ru (accessed: August 31, 2023). DOI: 10.18577/2713-0193-2021-0-4-70-80.
28. Kablov E.N., Startsev V.O. Measurement and forecasting of materials samples’ temperature during weathering in different climatic zones. Aviacionnye materialy i tehnologii, 2020, no. 4 (61), pp. 47–58. DOI: 10.18577/2071-9140-2020-0-4-47-58.
29. Abramova M.G., Lutsenko A.N., Varchenko E.A. Concerning the aspects of validation of climate resistance of airborne materials at all life cycle stages (review). Aviacionnye materialy i tehnologii, 2020, no. 1 (58), pp. 86–94. DOI: 10.18577/2071-9140-2020-0-1-86-94.
30. Proof research ACD. Data sheet product: P2 SI® 635LM. Available at: https://proofresearch.com/wp-content/uploads/2020/11/PROOF-ACD_data_sheet_635LM_RESIN-Correct.pdf (accessed: August 31, 2023).
31. Valueva M.I., Zelenina I.V., Nacharkina A.V., Ahmadieva K.R. Technological features of obtaining high temperature polyimide carbons. Foreign experience (review). Trudy VIAM, 2022, no. 6 (112), paper no. 08. Available at: http://www.viam-works.ru (accessed: August 31, 2023). DOI: 10.18577/2307-6046-2022-0-6-80-95.
32. Valueva M.I., Zelenina I.V., Nacharkina A.V., Boychuk A.S. Determination of the guaranteed shelf life of high-temperature polyimide carbon fiber reinforced plastic prepreg. Trudy VIAM, 2023, no. 10 (128), paper no. 07. Available at: http://www.viam-works.ru (accessed: August 31, 2023). DOI: 10.18577/2307-6046-2023-0-10-64-81.
33. Semipreg, prepreg, resine composite material, and production methods thereof: pat. US 11492446B2; appl. 22.03.2018; publ. 08.11.2022.
34. Uncured laminate, reinforcing fiber composite material, method for producing uncured laminate, and method for producing reinforcing fiber composite material: pat. US 2021/0221113A1; appl. 02.04.2021; publ. 22.07.2021.
35. A novel amide acid oligomer process for molding polyimide composites: pat. WO 2020072639A1; appl. 02.10.19; publ. 09.04.20.
36. Method for impregnating layered blanks based on woven fillers and epoxy, organosilicon and polyimide binders and a device for implementing this method: pat. 2743422C1 Rus. Federation; appl. 27.03.20; publ. 18.02.21.
37. Aleksandrova D., Komarova M., Egorov A. Topology and structure analysis of carbon fiber-reinforced polyimide composites. International Scientific and Practical Conference «Environmental Risks and Safety in Mechanical Engineering» (ERSME-2023), 2023, vol. 376, no. 01023, pp. 1–8.
38. Autoclave cure cycle design process and curing method: pat. WO2010087918A1; appl. 21.12.09; publ. 05.08.10.
39. Improved processing of polymer matrix composites: pat. EP 2337672B1; appl. 22.10.08; publ. 28.02.18.
40. Magato J., Klosterman D. Development of a methodology for characterizing reaction kinatics, rheology, and in situ compaction of polyimide prepregs during cure. Journal of composite materials, 2019, no. 8, pp. 1–9.
41. Products Nexam Chemical AB. Available at: http://www.nexamchemical.com/products/ (accessed: November 17, 2023).
42. Low-viscosity high-temperature-resistant thermosetting polyimide resin and preparation method and application thereof: pat. CN 112961347B; appl. 20.02.21; publ. 12.04.22.
43. Polyimide resin composition and method for producing the same: pat. JP2016216720A; appl. 22.12.16; publ. 18.11.20.
44. Antioxidant polyimide prepreg and preparation method thereof: pat. CN 111154260В; appl. 19.01.20; publ. 23.09.22.
45. Yang S.Y. Advance polyimide materials: synthesis, characterization, and applications. Elsevier, 2018, 498 p.
46. Fiber-reinforced laminated body and method for manufacturing same: pat. ЕР 3718765А1; appl. 28.11.17; publ. 06.06.19.
47. Liu Y., Li J., Chen X. Interlaminar properties of carbon nanotubes modified carbon fiber fabric reinforced polyimide composites. Journal of Composite Materials, 2023, vol. 57, no. 7, pp. 1277–1288.
48. Method for preparing carbon fiber-polyimide composite material: pat. CN 104629365A; appl. 17.02.15; publ. 01.02.17.
49. Composite material with a polyimide resin matrix, reinforced with carbon fiber, with super-strong characteristics of interfacial interaction at a high temperature of 300 °C and a method for producing it: pat. CN 116694075A; appl. 29.06.23; publ. 05.09.23.
50. Method for producing a polyimide composite material reinforced with modified carbon fiber: pat. CN 116278224A; appl. 24.03.23; publ. 23.06.23.
The article deals with the possibility of estimating the distribution of electrical properties along the depth of the object using eddy current method of nondestructive testing. Experimental testing of stress-strain state estimation of titanium alloy plate at bending by means of transducer signal acquisition in a wide range of frequencies is carried out. The experimental data was analyzed using analytical calculation of the transducer signal. As a result of the studies, the relationship between mechanical stresses and electrical conductivity was established, and the possibility of effective control of the stress level by eddy current method was shown.
2. Oreshko E.I., Erasov V.S., Yakovlev N.O., Utkin D.A. Methods for determining the mechanical characteristics of materials using indentation (review). Aviation materials and technology, 2021, no. 1 (62), paper no. 10. Available at: http://www.journal.viam.ru (accessed: May 17, 2024). DOI: 10.18577/2713-0193-2021-0-1-104-118.
3. Kablov E.N., Evgenov A.G., Bakradze M.M., Nerush S.V., Krupnina O.A. New generation materials and digital additive technologies for the production of resource parts of FSUE VIAM. Part 1. Materials and synthesis technologies. Elektrometallurgiya, 2022, no. 1, pp. 2–12.
4. Nochovnaya N.A., Shiryaev A.A., Sharapkin D.S. Complex of mechanical and operational properties of rolled blanks from metastable-β-titanium alloy VT47. Aviation materials and technologies, 2022, no. 3 (68), paper no. 05. Available at: http://www.journal.viam.ru (accessed: May 17, 2024). DOI: 10.18577/2713-0193-2022-0-3-50-59.
5. Kablov E.N., Startsev V.O. Effect of internal stresses on the aging of polymer composite materials (review). Mekhanika kompozitnykh materialov, 2021, vol. 57, no. 5, pp. 805–822.
6. Podzhivotov N.Yu. The minimum samples amounts for an assessment of the initial moments of distribution of tensile ultimate strength for the samples of structural metallic materials. Aviation materials and technologies, 2021, no. 2 (63), paper no. 11. Available at: http://www.journal.viam.ru (accessed: May 17, 2024). DOI: 10.18577/2713-0193-2021-0-2-103-114.
7. Pichugin S.S., Shitikov V.S., Golovkov A.N. Non-destructive methods for residual stress assessment. Trudy VIAM, 2024, no. 1 (131), paper no. 10. Available at: http://www.viam-works.ru (accessed: May 17, 2024). DOI: 10.18577/2307-6046-2024-0-1-101-112.
8. Shitikov V.S., Pichugin S.S., Kudinov I.I. Analysis of the Possibility of Estimating Residual Stresses by the Eddy Current Method of Non-Destructive Testing. Elektrometallurgiya, 2024, no. 2. pp. 22–28. DOI: 10.31044/1684-5781-2024-0-2-22-28.
9. Kekalo I.B. Physical Properties of Metals. Section «Electrical Properties»: Laboratory Workshop. Moscow, 1998, 139 p.
10. Dorofeev A.L., Lyubashev G.A., Ostanin Yu.Ya. Measuring Coating Thickness Using Eddy Currents. Moscow: Mashinostroenie, 1975, 64 p.
11. Bakunov A.S., Gerasimov V.G., Ostanin Yu.Ya. Eddy current testing with clamp-on transducers. Moscow: Mosk. Energ. In-t, 1985, 86 p.
12. Gerasimov V.G., Klyuev V.V., Shaternikov V.E. Methods and devices of electromagnetic testing. Ed. V.E. Shaternikov. Moscow: Spektr, 2010, 256 p.
13. Avtaev V.V., Kotova A.E., Gladkikh A.V., Boychuk A.S. Equipment for bending tests constructive and similar samples welded hybrid panels of the wing. Trudy VIAM, 2018, no. 9 (69), paper no. 09. Available at: http://www.viam-works.ru (accessed: May 17, 2024). DOI: 10.18577/2307-6046-2018-0-9-83-91.
14. State Standard 9.019–74. Unified system of protection against corrosion and aging. Aluminum and magnesium alloys. Methods of accelerated tests for stress corrosion cracking. Moscow: Publ. House of Standards, 1974, 18 p.
15. Pisarenko G.S., Yakovlev A.P., Matveev V.V. Handbook of strength of materials. Kyiv: Naukova Dumka, 1988, 736 p.
The article discusses the practical aspects of using the bootstrap method in micromechanics problems to assess the adhesive strength of the fiber–polymer matrix system. The article provides a detailed algorithm for constructing confidence intervals when calculating the bootstrap method. А comparative analysis of the interval estimation of experimental adhesive strength data using the nonparametric (bootstrap) method and a number of parametric methods was carried out. Based on the generated bootstrap samples, a histogram of the frequency distributions of the average values of the adhesive strength of the fiber–polymer matrix system is constructed.
2. Erasov V.S. Modern methods of assessing the physical and mechanical properties of materials. Reports All-Rus. Conf. on testing and research of the properties of materials «TestMat–2012». Moscow: VIAM, 2012, p. 13.
3. Morgan P. Carbon Fibers and Their Composites. Boca Raton: Taylor & Francis, 2005, 1153 p.
4. MIL-HDBK-17: Composite Materials Handbook: in 5 vols. Virginia: Department of Defense, 2002. Vol. 1: Polymer Matrix Composites Guidelines for Characterization of Structural Materials, 586 р.
5. Oreshko E.I., Erasov V.S., Utkin D.A., Avtayeva Ya.V. The equipment for definition of physicomechanical characteristics of materials by press-in method (review). Aviation materials and technologies, 2021, no. 4 (65), paper no. 12. Available at: http://www.journal.viam.ru (accessed: April 24, 2024). DOI: 10.18577/2713-0193-2021-0-4-107-124.
6. Erasov V.S., Sibayev I.G. Scheme for the development and evaluation of properties of structural aviation composite materials. Aviation materials and technologies, 2023, no. 1 (70), paper no. 05. Available at: http://www.journal.viam.ru (accessed: May 24, 2024). DOI: 10.18577/2713-0193-2023-0-1-61-81.
7. Oreshko E.I., Erasov V.S., Yakovlev N.O., Utkin D.A. Methods for determining the mechanical characteristics of materials using indentation (review). Aviation materials and technology, 2021, no. 1 (62), paper no. 10. Available at: http://www.journal.viam.ru (accessed: May 21, 2024). DOI: 10.18577/2713-0193-2021-0-1-104-118.
8. Erasov V.S., Sibayev I.G., Sutubalov A.I., Popkova E.A., Gorbovets M.A. Methods of mechanical testing to determine the strength of carbon fibers. Aviation materials and technologies, 2024, no. 2 (75), paper no. 11. Available at: http://www.journal.viam.ru (accessed: April 26, 2024). DOI: 10.18577/2713-0193-2024-0-2-137-148.
9. Gulyayev A.I. Fiber-matrix adhesion strength measurement using nanoindentation (review). Trudy VIAM, 2019, no. 3 (75), paper no. 08. Available at: http://www.viam-works.ru (accessed: May 30, 2024). DOI: 10.18577/2307-6046-2019-0-3-68-78.
10. Bogdanova Yu.G. Adhesion and its role in ensuring the strength of polymer composites: textbook. Moscow: Moscow State University, 2010, 68 p.
11. Gulyaev A.I., Yerasov V.S., Oreshko E.I., Utkin D.A. Analysis of carbon fiber destruction during expulsion of a multifilament cylinder. Klei. Germetiki. Tekhnologii, 2021, no. 1, pp. 28–35.
12. Chudnov I.V., Buyanov I.A. Assessment of structural defects of carbon fibers and polymer composite materials based on them. Nauka i obrazovaniye (MGTU im. N.E. Baumana), 2011, no. 11, paper no. 12. Available at: http://www.istina.msu.ru (accessed: May 24, 2024). DOI: 77-30569/281952.
13. Gadolina I.V., Lisachenko N.G. Development of a method for constructing confidence intervals for percentiles of a random sample of composite strength using bootstrap modeling. Zavodskaya laboratoriya. Diagnostika materialov, 2017, vol. 83, no. 11, pp. 73–77.
14. Agamirov L.V. Methods of statistical analysis of mechanical tests. Moscow: Intermet Engineering, 2004, 128 p.
15. Sutubalov A.I., Podzhivotov N.Yu., Shershak P.V., Yakovlev N.O. Evaluation of homogeneity of physical and mechanical properties of semi-finished products for aviation purpose. Aviation materials and technologies, 2024, no. 1 (74), paper no. 10. Available at: http://www.journal.viam.ru (accessed: April 30, 2024). DOI: 10.18577/2713-0193-2024-0-1-121-135.
16. Nesterov A.V., Nesterov S.V., Kozak D.A. On checking the deviation of probability distribution from normal distribution in the Matlab computer mathematics system. Nauchnye trudy KubGTU, 2015, no. 6, pp. 1–31.
17. Krupin V.G., Pavlov A.L., Popov L.G. Higher mathematics. Probability theory, mathematical statistics, random processes. Collection of problems with solutions: textbook. Moscow: Publ. House MEI, 2013, 408 p.
18. Hoang Ph. Handbook of Engineering Statistics. Heidelberg: Springer, 2023, 1135 p.
19. Efron B., Tibshirani R. An Introduction to the Bootstrap. London: Chapman Hall, 1993, 436 p.
20. Glukhov V.V., Anufriev D.V. Bootstrap procedures for determining accuracy characteristics. Nauchnyy vestnik MGTU GA, 2005, no. 89 (7), pp. 30–35.
21. Davison A.C., Hinkley D.V. Bootstrap methods and their application. Cambridge: Cambridge University Press, 2006, 592 p.
22. Shershak P.V., Yakovlev N.O., Sutubalov A.I. Standards for testing polymer composite materials. Part 1. Tensile properties. Aviation materials and technologies, 2023, no. 3 (72), paper no. 12. Available at: http://www.journal.viam.ru (accessed: May 24, 2024). DOI: 10.18577/2713-0193-2023-0-3-152-166.
23. Sidorina A.I. Modification of the surface of carbon reinforcing fillers for polymer composite materials by electrochemical treatment (review). Trudy VIAM, 2022, no. 4 (110), paper no. 07. Available at: http://www.viam-works.ru (accessed: May 30, 2024). DOI: 10.18577/2307-6046-2022-0-4-61-74.
24. Erasov V.S., Oreshko E.I. Deformation and destruction as processes of change of volume, the areas of a surface and the linear sizes in loaded bodies. Trudy VIAM, 2016, no. 8, paper no. 11. Available at: http://www.viam-works.ru (accessed: May 28, 2024). DOI: 10.18577/2307-6046-2016-0-8-11-11.
25. Popov Yu.O., Koloкoltseva T.V., Gromova A.A., Gusev Yu.A. Influence of operational factors on the main physical and mechanical properties of a fiberglass product VPS-31. Trudy VIAM, 2021, no. 11 (105), paper no. 08. Available at: http://www.viam-works.ru (accessed: May, 24, 2024). DOI: 10.18577/2307-6046-2021-0-11-82-90.
26. Lutsenko A.N., Odintsev I.N., Grinevich A.V. et al. Study of material deformation by optical-correlation methods. Aviacionnye materialy i tehnologii, 2014, no. S4, pp. 70–86. DOI: 10.18577/2071-9140-2014-0-s4-70-86.
27. Ilyichev A.V. Comparison of GOST and ASTM standards for mechanical testing of polymer composite materials for tension. Vse materialy. Entsiklopedicheskiy spravochnik s Prilozheniyem «Kommentarii k standartam, TU, sertifikatam», 2015, no. 8, pp. 2–9.
The results of the study of color characteristics, surface profile and glass transition temperature of fluorepoxy (VE-46) and acrylstirol (AS-1115) coatings on the front and back surfaces of KMKU-2m.120 carbon fiber plastic exposed for 8 and 13 years in open conditions of a moderately warm climate were presented. Methods of colorimetry, profilometry and dynamic mechanical analysis were used to obtain information about the properties of coatings. Red enamel VE-46 and yellow enamel AS-1115 tuned out to be the most vulnerable to photochemical activity processes.
2. Startsev V.O., Antipov V.V., Slavin A.V., Gorbovets M.A. Modern domestic polymer composite materials for aviation industry (review). Aviation materials and technologies, 2023, no. 2 (71), paper no. 10. Available at: http://www.journal.viam.ru (accessed: June 17, 2024). DOI: 10.18577/2713-0193-2023-0-2-122-144.
3. Ivanov М.S., Morozova V.S., Pavlukovich N.G. The influence of operational factors on the properties of carbon fiber based on polyetheretherketone. Aviation materials and technologies, 2024, no. 2 (75), paper no. 08. Available at: http://www.journal.viam.ru (accessed: June 24, 2024). DOI: 10.18577/2713-0193-2024-0-2-99-108.
4. Startsev V.O., Slavin A.V. Carbon and glass reinforced polymer based on solventfree binders resistance to the impact of a moderate cold and moderate warm climate. Trudy VIAM, 2021, no. 5 (99), paper no. 12. Available at: http://www.viam-works.ru (accessed: July 07, 2024). DOI: 10.18577/2307-6046-2021-0-5-114-126.
5. Kablov E.N., Startsev V.O. Measurement and forecasting of materials samples’ temperature during weathering in different climatic zones. Aviacionnye materialy i tehnologii, 2020, no. 4 (61), pp. 47–58. DOI: 10.18577/2071-9140-2020-0-4-47-58.
6. Salnikov V.G. Study of moisture absorption of aircraft carbon fiber reinforced plastics in warm humid climate conditions. Sistemy kontrolya okruzhayushchey sredy, 2021, no. 2 (44), pp. 46–53. DOI: 10.33075/2220-5861-2021-2-46-53.
7. Kablov E.N., Kulagina G.S., Zhelezina G.F., Lonskii S.L., Kurshev E.V. Microstructure research of the unidirectional organoplastic based on Rusar-NT aramid fibers and epoxy-polysulfone binder. Aviacionnye materialy i tehnologii, 2020, no. 4 (61), pp. 19–26. DOI: 10.18577/2071-9140-2020-0-4-19-26.
8. Menard K. Dynamic Mechanical Analysis: A Practical Introduction. 2nd ed. Boca Raton: CRC Press, 2008, 240 p.
9. Xian G., Karbhari V.M. DMTA based investigation of hygrothermal ageing of an epoxy system used in rehabilitation. Journal of Applied Polymer Science, 2007, vol. 104, pp. 1084–1094. DOI: 10.1002/app.25576.
10. Bashir M.A. Use of dynamic mechanical analysis (DMA) for characterizing interfacial interactions in filled polymers. Solids, 2021, vol. 2, pp. 108–120. DOI: 10.3390/solids2010006.
11. Kablov E.N., Kirillov V.N., Startsev O.V., Krotov A.S. Сlimatic aging of composite aviation materials: III. Significant aging factors. Russian Metallurgy (Metally), 2012, vol. 2012, no. 4, pp. 323–329. DOI: 10.1134/S0036029512040040.
12. Patti A., Acierno S., Cicala G., Acierno D. Aging effects on the viscoelastic behaviour of products by fused deposition modelling (FDM) made from recycled and wood filled polymer resins. European Journal of Wood and Wood Products, 2024, vol. 82, pp. 69–79. DOI: 10.1007/s00107-023-01994-9.
13. Wang Y., Zhu W., Wan B. et al. Hygrothermal ageing behavior and mechanism of carbon nanofibers modified flax fiber-reinforced epoxy laminates. Composites, Part A, 2021, vol. 140, art. 106142. DOI: 10.1016/j.compositesa.2020.106142.
14. Startsev V.O., Frolov A.S. Influence of climatic influence on color characteristics of paint and varnish coatings. Lakokrasochnye materialy i ikh primenenie, 2015, no. 3, pp. 16–18.
15. Skrovanec D.J., Schoff C.K. Thermal mechanical analysis of organic coatings. Progress in Organic Coatings, 1988, vol. 16, pp. 135–163. DOI: 10.1016/0033-0655(88)80011-6.
16. Johnson B.W., McIntyre R. Analysis of test methods for UV durability predictions of polymer coatings. Progress in Organic Coatings, 1996, vol. 27, pp. 95–106. DOI: 10.1016/0300-9440(94)00525-7.
17. Perrin F.X., Merlatti C., Aragon E., Margaillan A. Degradation study of polymer coating: Improvement in coating weatherability testing and coating failure prediction. Progress in Organic Coatings, 2009, vol. 64, pp. 466–473.
18. Osterhold M., Glöckner P. Influence of weathering on physical properties of clear coats. Progress in Organic Coatings, 2001, vol. 41, pp. 177–182. DOI: 10.1016/S0300-9440(01)00152-7.
19. Barbosa A.P.C., Fulco A.P.P., Guerra E.S.S. et al. Accelerated aging effects on carbon fiber/epoxy composites. Composites, Part B, 2017, vol. 110, pp. 298–306. DOI: 10.1016/j.compositesb.2016.11.004.
20. Kutsevich K.E., Dementeva L.A., Lukina N.F. Properties and application of polymer composite materials based on glue prepregs. Trudy VIAM, 2016, no. 8, paper no. 7. Available at: http://www.viam-works.ru (accessed: July 07, 2024). DOI: 10.18577/2307-6046-2016-0-8-7-7.
21. Semenova L.V., Nefedov N.I., Belova M.V., Laptev A.B. Systems of paint coatings for helicopter equipment. Aviacionnye materialy i tehnologii, 2017, no. 4 (49), pp. 56–61. DOI: 10.18577/2071-9140-2017-0-4-56-61.
22. Startsev O.V., Bolonin A.B., Vapirov Yu.M. et al. Improving the viscoelastic properties of acrylic enamel AC-1115. Lakokrasochnye materialy i ikh primenenie, 1986, no. 4, pp. 16–18.
23. Startsev V.O., Lebedev M.P., Frolov A.S. Measuring surface relief indicators in the study of aging and corrosion of materials. 1. Russian and foreign standards. Vse materialy. Entsiklopedicheskiy spravochnik, 2018, no. 6, pp. 32–38.
24. Startsev O.V., Vapirov Yu.M., Lebedev M.P., Kychkin A.K. Comparison of glass-transition temperatures for epoxy polymers obtained by methods of thermal analysis. Mechanics of Composite Materials, 2020, vol. 56, pp. 227–240. DOI: 10.1007/s11029-020-09875-5.
25. Odegard G.M., Bandyopadhyay A. Physical aging of epoxy polymers and their composites. Journal of Polymer Science. Part B: Polymer Physics, 2011, vol. 49, pp. 1695–1716. DOI: 10.1002/polb.22384.
Heat-resistant alloys and steels
Sevalnev G.S., Vlasov I.I., Klimov V.S., Nefedkin D.Yu. Evaluation of resistance to contact-deformation impact during intensive wear of the surface of cast entropy alloys based on the Ni–Co–Cr system
Morozova L.V. Determination of the causes of the formation of surface cracks in stamped parts made of low-carbon steels
Light-metal alloys
Akbulatov R.R., Efremova A.P., Bogachev I.A., Panin P.V.Study of isothermal phase transformations kinetics in heat-resistant alloys based on gamma titanium aluminide TiAl
Composite materials
Kapustianskaia M.A., Lyubimova A.S., Kovalenko A.V., Sidelnikov N.K., Tkachuk A.I., Slavin A.V. Development of a cold-curing polymer syntatic filler with enhanced physico-mechanical properties
Erin K.D., Sorokin O.Yu., Monin S.A., Gorbovets M.A. Methods for measuring and improving the crack resistance of silicon carbide composite materials
Valueva M.I., Zelenina I.V., Nacharkina A.V., Sidorina A.I., Slavin A.V. High-temperature carbon fiber reinforced plastics based on polyimide binders
Material tests
Shitikov V.S., Pichugin S.S. Estimation of electrical properties distribution under elastic deformation of the control object by eddy current method
Sutubalov A.I., Podzhivotov N.Yu., Shershak P.V., Yakovlev N.O. Assessment of the adhesive strength of the fiber–polymer matrix system using the nonparametric bootstrap method
Startsev O.V., Koval T.V., Krotov A.S., Dvirnaya E.V., Veligodsky I.M. Investigation of the properties of carbon fiber reinforced plastic with coatings after 8 and 13 years of aging in moderately warm climate. Part 2. Condition of protective paint and vanish coatings