Articles
The kinetics of diffusion saturation with carbon, the formation of the microstructure and hardness of diffusion layers in economically alloyed high-nitrogen structural steel with different nitrogen concentrations during vacuum carburizing were studied. It was established that an increase in the time of the technological process from 1 to 4 hours leads to an increase in the length of the diffusion layer by 60–90 %, and an increase in the nitrogen concentration in the solid solution from 0,13 to 0,22 wt. % leads to an intensification of the process of formation of excess phases and an increase in the zone with a stable austenitic structure.
2. Kablov E.N. New generation materials and digital technologies for their processing. Vestnik Rossiyskoy akademii nauk, 2020, vol. 90, no. 4, pp. 331–334.
3. Sevalnev G.S., Vostrikov A.V., Nefedkin D.Yu., Moiseenkov V.V., Volkov R.B., Ulyanov E.I. Study of the structure, distribution of carbide phase, hardness and tribotechnical characteristics of high-chromium bearing steels of the martensitic class. Trudy VIAM, 2023, no. 10 (128), paper no. 02. Available at: http://www.viam-works.ru (accessed: August 12, 2024). DOI: 10.18577/2307-6046-2023-0-10-13-23.
4. Mitrakov O.V., Yakovlev N.O., Yakusheva N.A., Grinevich A.V. Destruction features of steel 20ХГСН2МФА-ВД during the fracture toughness test. Aviacionnye materialy i tehnologii, 2019, no. 1 (54), pp. 49–56. DOI: 10.18577/2071-9140-2019-0-1-49-56.
5. Kablov E.N., Bakradze M.M., Gromov V.I., Voznesenskaya N.M., Yakusheva N.A. New high strength structural and corrosion-resistant steels for aerospace equipment developed by FSUE «VIAM» (review). Aviacionnye materialy i tehnologii, 2020, no. 1 (58), pp. 3–11. DOI: 10.18577/2071-9140-2020-0-1-3-11.
6. Yakusheva N.A. High-strength constructional steels for landing gears of perspective products of aircraft equipment. Aviacionnye materialy i tehnologii, 2020, no. 2 (59), pp. 3–9. DOI: 10.18577/2071-9140-2020-0-2-3-9.
7. Arzamasov B.N. Materials Science. Moscow: Publ. House of Bauman Moscow State Tech. Univ., 2008, 648 p.
8. Bakradze M.M., Voznesenskaya N.M., Leonov A.V., Krylov S.A., Tonysheva O.A. Development and Research of High-Strength Corrosion-Resistant Steel for Bearing Parts. Metallurg, 2019, no. 11, pp. 39–44.
9. Rashev Ts.V. High-Nitrogen Steels. Pressure Metallurgy. Sofia: Publ. House «Prof. Marin Drinov», 1995, 272 p.
10. Vostrikov A.V., Sevalnev G.S., Bannykh I.O., Vlasov I.I., Romanenko D.N., Dulnev K.V. Microstructure, hardness and tribotechnical properties evolution of economically alloyed high nitrogen martensitic steel. Trudy VIAM, 2022, no. 9 (115), paper no. 01. Available at: http://www.viam-works.ru (accessed: July 30, 2024). DOI: 10.18577/2307-6046-2022-0-9-3-14.
11. Blinov V.M., Antsyferova M.V., Bannykh I.O. et al. Structure and Properties of High-Strength Low-Alloy Martensitic Steels with an Overequilibrium Nitrogen Content. Russian Metallurgy (Metally), 2023, no. 6, pp. 649–656.
12. Sevalnev G.S., Dulnev K.V., Bannykh I.O., Krasulya A.A., Tsikh S.G., Lukin E.I. Investigation of the structure and properties of diffusion layers after boriding high nitrogen steels. Aviation materials and technologies, 2023, no. 1 (70), paper no. 02. Available at: http://www.journal.viam.ru (accessed: July 24, 2024). DOI: 10.18577/2713-0193-2023-0-1-17-29.
13. Lukin E.I., Blinov V.M., Bannykh I.O. et al. Study of the influence of hardening temperature on the structure and mechanical properties of martensitic-ferritic corrosion-resistant nitrogen-containing steel 08Kh17N2AF. Electrometallurgiya, 2022, no. 12, pp. 2–14. DOI: 10.31044/1584-6781-2022-0-12-2-14.
14. Kuksenova L.I., Gerasimov S.A., Alekseeva M.S., Gromov V.I. Influence of vacuum chemical and thermal processing on wear resistance of VKS-7 and VKS-10 steels. Aviacionnye materialy i tehnologii, 2018, no. 1 (50), pp. 3–8. DOI: 10.18577/2071-9140-2018-0-1-3-8.
15. Gerasimov S.A., Kuksenova L.I., Lapteva V.G. et al. Effect of ion-plasma nitriding and vacuum carburizing on the wear resistance of VKS-7 and VKS-10 steels. Mashinostroenie i kompyuternye tekhnologii, 2013, no. 6, pp. 391–402.
16. Gerasimov S.A., Kuksenova L.I., Lapteva V.G. et al. Study of wear resistance of VKS-7 and VKS-10 steels after vacuum carburizing and vacuum nitrocarburizing. Mashinostroenie i kompyuternye tekhnologii, 2013, no. 5, pp. 345–356.
17. Semenov M.Yu., Smirnov A.E., Fakhurtdinov R.S. et al. Optimization of technological modes of vacuum carburizing of gears made of heat-resistant steel VKS-7 based on the calculation method of design. Metallovedenie i termicheskaya obrabotka metallov, 2015, no. 1, pp. 27–30.
18. Semenov M.Y., Smirnov A.E., Ryzhova M.Y. Problems of Simulation of Carbon Mass Transfer from Low-Pressure Saturating Atmosphere into Steel. Metal Science and Heat Treatment, 2021, vol. 63, no. 1–2, pp. 101–105. DOI: 10.1007/s11041-021-00654-0.
19. Smirnov A.E. Control of the phase composition of complex-alloyed heat-resistant steels during vacuum carburizing and quenching. Metallovedenie i termicheskaya obrabotka metallov, 2020, no. 9 (783), pp. 45–52.
20. Smirnov A.E. Optimization of technological factors of vacuum nitrocarburizing of complex-alloyed martensitic steels. Problemy chernoy metallurgii i materialovedeniya, 2019, no. 2, pp. 13–19.
21. Gerasimov S.A., Kuksenova L.I., Lapteva V.G., Ospennikova O.G., Alekseeva M.S., Gromov V.I. Surface engineering and performance properties of nitrided structural steels. Moscow: VIAM, 2019, 600 p.
22. Gerasimov S.A., Kuksenova L.I., Alekseeva M.S. Features of the formation of the structure and tribological properties of nitrided steels and alloys. Vestnik nauchno-tekhnicheskogo razvitiya, 2017, no. 7 (119), рр. 3–17.
23. Sevalnev G.S., Nefedkin D.Y., Druzhinina M.E., Mosolov A.N., Samoylova I.I., Maksimov A.V. Kinetics of diffusion saturation of beryllium-containing steel VNS32-VI at various types of thermochemical treatment. Trudy VIAM, 2023, no. 1 (119), paper no. 01. Available at: http://www.viam-works.ru (accessed: July 30, 2024). DOI: 10.18577/2307-6046-2023-0-1-3-14.
24. The Materials Project. Available at: http://www.next-gen.materialsproject.org (accessed: July 25, 2024).
25. Goncharevskaya D.A. Mass transfer of nitrogen and carbon in steel with super-equilibrium nitrogen concentration under diffusion saturation. The future of mechanical engineering in Russia: XIII All-Rus. Conf. of Young Scientists and Specialists (with international participation): Coll. reports in 2 vols. Moscow: Publ. house of Bauman Moscow State Tech. Univ., 2020, vol. 1, pp. 117–120.
26. Goncharevskaya D.A. Chemical-thermal treatment of steels with super-equilibrium nitrogen concentration. Politekhnicheskiy molodezhny zhurnal, 2020, no. 8 (49), p. 5. DOI: 10.18698/2541-8009-2020-8-636.
The article presents a retrospective and possible prospects for the application of the heat-resistant aluminum alloy V-1213 of the Al–Cu–Mg alloying system. The general problems of weldability of this alloy are indicated. The causes of hot cracks in welded joints during various types of welding are analyzed, and approaches for their elimination are considered in detail. The weldability of heat-resistant aluminum alloy V-1213 with the use of filler wire Sv-1217 has been studied. The influence of the welding-thermal cycle on the structure and microhardness of the material has been evaluated.
2. Fridlyander I.N. Modern aluminum, magnesium alloys and composite materials based on them. Metallovedenie i termicheskaya obrabotka metallov, 2002, no. 7, pp. 24–29.
3. Kablov E.N., Lukin V.I., Ospennikova O.G. Promising aluminum alloys and technologies for their joining for aerospace products. Reports of the 2nd Int. Conf. and Exhibition «Aluminum–21. Welding and Soldering». St. Petersburg: Alusil-MViT, 2012, art. 08.
4. Shemetev G.F. Aluminum alloys: compositions, properties, application: textbook. St. Petersburg: SPbPU, 2012, part 1, 155 p. Available at: https://elib.spbstu.ru/dl/2747.pdf/view (accessed: July 10, 2024).
5. Antipov V.V., Panteleev M.D., Sviridov A.V., Skupov A.A., Odintsov N.S. Heat-resistant aluminum alloys 1151 and B-1213 welded fuselage panels fabrication and testing. Trudy VIAM, 2023, no. 5 (123), paper no. 03. Available at: http://www.viam-works.ru (accessed: July 10, 2024). DOI: 10.18577/2307-6046-2023-0-5-33-42.
6. Antipov V.V., Klochkova Yu.Yu., Romanenko V.A. Modern aluminum and aluminum-lithium alloys. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 195–211. DOI: 10.18577/2071-9140-2017-0-S-195-211.
7. Chirkov E.F. Weakening rate under heating is the evaluation criterion of heat resistance of Al‒Cu‒Mg and Al‒Cu structural alloys. Aviacionnye materialy i tehnologii, 2013, no. S2, pp. 11–19.
8. Yakushin B.F., Makarov E.L. Theory of weldability of steels and alloys. Moscow: Publ. house of MSTU im. N.E. Bauman, 2018, 487 p.
9. Panteleev M.D., Sviridov A.V., Skupov A.A., Odintsov N.S. Aluminum-Lithium alloy V-1469 welded fuselage constructions survivability. Aviation materials and technologies, 2022, no. 4 (69), paper no. 03. Available at: http://www.journal.viam.ru (accessed: July 10, 2024). DOI: 10.18577/2713-0193-2022-0-4-25-35.
10. Mishra R.S., Ma Z.Y. Friction stir welding and processing. Journal Material Science Engineering, 2005, vol. 50, pp. 1–78.
11. Panteleev M.D., Sviridov A.V., Skupov A.A. Welding features of heatresistant aluminum alloys, alloy V-1213 and 1151. Trudy VIAM, 2022, no. 9 (115), paper no. 03. Available at: http://www.viam-works.ru (accessed: July 10, 2024). DOI: 10.18577/2307-6046-2022-0-9-28-38.
12. Kablov E.N., Kutyrev A.E., Vdovin A.I., Kozlov I.A., Afanasyev-Khodykin A.N. The research of possibility of galvanic corrosion in brazed connections used in aviation engine construction. Aviation materials and technologies, 2021, no. 4 (65), paper no. 01. Available at: http://www.journal.viam.ru (accessed: July 10, 2024). DOI: 10.18577/2713-0193-2021-0-4-3-13.
13. Kablov E.N. Aerospace Materials Science. Vse materialy. Entsiklopedicheskiy spravochnik, 2008, no. 3, pp. 2–14.
14. Antipov V.V. Strategy of development of titanium, magnesium, beryllium and aluminum alloys. Aviacionnye materialy i tehnologii, 2012, no. S, pp. 157–167.
15. Antipov V.V., Senatorova O.G., Tkachenko E.A., Vahromov R.O. Aluminum deformable alloys. Aviacionnye materialy i tehnologii, 2012, no. S, pp. 167–182.
16. Nikulin I., Kipelova A., Gazizov M. et al. Novel Al–Cu–Mg–Ag alloy for high temperature applications. 12-th ICAA. Yokohama, 2010, pp. 2303–2308.
17. Teleshov V.V., Andreev D.A. Influence of chemical composition on the structure, mechanical properties and crack resistance characteristics of pressed alloys of the Al–Cu–Mg–Ag–Xi system in the T1 state. Tekhnologiya legkikh splavov, 2013, no. 4, p. 20–29.
18. Grigorev M.V., Antipov V.V., Vakhromov R.O. et al. Structure and properties of ingots from Al–Cu–Mg system alloy with silver microadditives. Aviacionnye materialy i tehnologii, 2013, no. 3, pp. 3–6.
19. An aluminum-based alloy and a product made from it: pat. 2278179 Rus. Federation; appl. 21.12.04, publ. 20.06.06.
20. De Geuser F., Bley F., Deschamps A. Early stage of Ω phase precipitation in Al–Cu–Mg–Ag observed in situ with and without applied stress by small angle X-ray scattering. 12-th ICAA. Yokohama, 2010, pp. 475–480.
21. Wang S.B., Chen J.H., Yin M.J. et al. Double-atomic-wall-based dynamic precipitates of the early-stage S-phase in Al–Cu–Mg alloys. Acta Materialia, 2012, vol. 60, no. 19, pp. 6573–6580.
The wide application of titanium alloy parts in the aviation industry and the need to ensure high quality of their manufacture have led to necessity of the developing of new standard samples for determining and controlling the hydrogen content in titanium alloys. In this work the processes of hydrogenation of titanium alloy samples of the VT14 type by etching in a hydrochloric acid solution in the presence of fluorine ions and by electrochemical etching were studied. The material of standard sample blankes of the enterprise with different hydrogen content was manufactured. The hydrogen content in titanium alloys was measured using the emission spectral analysis method with spark excitation of the spectrum.
2. Nochovnaya N.A., Bazyleva O.A., Kablov D.E., Panin P.V. Intermetallic alloys based on titanium and nickel. Ed. E.N. Kablov. 2nd ed., rev. and add. Moscow: VIAM, 2019, 316 p.
3. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
4. Krasnov I.S., Lozhkova D.S., Dalin M.A. Evaluation of deficiency of titanium alloy forgings for probabilistic calculation of gas turbine engine disks fracture risk. Aviation materials and technologies, 2021, no. 2 (63), paper no. 12. Available at: http://www.journal.viam.ru (accessed: April 12, 2024). DOI: 10.18577/2713-0193-2021-0-2-115-122.
5. Bondarenko Yu.A. Trends in the development of high-temperature metal materials and technologies in the production of modern aircraft gas turbine engines. Aviacionnye materialy i tehnologii, 2019, no. 2 (55), pp. 3–11. DOI: 10.18577/2071-9140-2019-0-2-3-11.
6. Duyunova V.A., Pavlova T.V., Kashapov O.S., Chuchman O.V. Fatigue strength of forgings from VT6 alloy for parts of gas turbine engines and aircrafts. Aviation materials and technologies, 2023, no. 2 (71), paper no. 02. Available at: http://www.journal.viam.ru (accessed: April 12, 2024). DOI: 10.18577/2713-0193-2023-0-2-23-35.
7. Kolachev B.A. Hydrogen embrittlement in non-ferrous metals. Moscow: Metallurgiya, 1966, 253 p.
8. Duyunova V.A., Oglodkov M.S., Putyrskiy S.V., Kochetkov A.S., Zueva O.V. Modern technologies for melting titanium alloy ingots (review). Aviation materials and technologies, 2022, no. 1 (66), paper no. 03. Available at: http://www.journal.viam.ru (accessed: April 12, 2024). DOI: 10.18577/2713-0193-2022-0-1-30-40.
9. Pivovarova L.N., Zakharova L.V., Fadeev A.V. Chemical treatment of titanium alloy surfaces. Modern titanium alloys and problems of their development. Moscow: VIAM, 2010, pp. 75–80.
10. Industry Standard 1 90013–81. Titanium alloys. Brands. Moscow: Publ. house of standards, 1981, рр. 1–5.
11. Kaganovich N.N., Shikhaleeva T.V. Hydrogenation of titanium alloys during etching. Metallovedenie i termicheskaya obrabotka metallov, 1963, no. 3, pp. 39–44.
12. Kaganovich N.N. Titanium alloys for new technology. Moscow: Nauka, 1968, pp. 230–243.
13. Livanov V.A., Bukhanov A.A., Kolachev B.A. Hydrogen in titanium. Moscow: GNTI, 1962, 246 p.
14. Matyugina I.V., Pliner Yu.L., Usov V.N. Certified samples for spectral determination of hydrogen in titanium alloys. Zhurnal prikladnoy spektroskopii, 1972, vol. XVII, is. 1, pp. 13–16.
15. Matyugina I.V., Pliner Yu.L., Shikhaleeva T.V., Usov V.N. Saturation of certified samples for spectral analysis of VT14 alloy with hydrogen. Trudy VNIISO, 1970, is. VI, pp. 62–66.
16. Reznicenko V.A. Titanium and its alloys. Metallothermy and electrochemistry of titanium. Moscow: Publ. House of the USSR Academy of Sciences, 1961, 266 р.
17. Straumanis M.E., Chem P.C. The Mechanism and Rate of Dissolution of Titanium in Hydrofluoric Acid. Journal of Electrochemical Society, 1951, vol. 98, no. 6, p. 63.
In this article the results study of modification of the 2,2-bis(4-cyanatophenyl)propane by catalytic system in order to reduce the cure temperature are presented. The methods of synthesis and heat treatment are described. The influence of curing temperature and the concentration of tris(acetylacetonato)cobalt (III), as well as 4-nonylphenol, using as solvent, on the polymerization rate of 2,2-bis(4-cyanatophenyl)propane, degree of conversion and glass transition temperature of the cured polymer matrix is shown.
2. Kablov E.N., Chursova L.V., Babin A.N., Mukhametov R.R., Panina N.N. Developments of FSUE VIAM in the field of melt binders for polymer composite materials. Polimernye materialy i tekhnologii, 2016, vol. 2, no. 2, pp. 37–42.
3. Kablov E.N. What to make the future of? New generation materials, technologies for their creation and processing are the basis of innovations. Krylya Rodiny, 2016, no. 5, pp. 8–18.
4. Mukhametov R.R., Petrova A.P. Thermosetting binders for polymer composites (review). Aviacionnye materialy i tehnologii, 2019, no. 3 (56), pp. 48–58. DOI: 10.18577/2071-9140-2019-0-3-48-58.
5. Dolgova E.V., Lavrova K.S. Application of cyanate ester materials (review). Part 1. Aviation and space structures. Trudy VIAM, 2021, no. 4 (98), paper no. 04. Available at: http://www.viam-works.ru (accessed: July 23, 2024). DOI: 10.18577/2307-6046-2021-0-4-48-60.
6. Guseva M.A. Cyanic esters are prospective thermosetting binders (review). Aviacionnye materialy i tehnologii, 2015, no. 2 (35), pp. 45–50. DOI: 10.18577/2071-9140-2015-0-2-45-50.
7. Kablov E.N. Materials and chemical technologies for Aircraft Engineering. Herald of the Russian Academy of Sciences, 2012, vol. 82, no. 3, pp. 158‒167.
8. Muhametov R.R., Ahmadieva K.R., Kim M.A., Babin A.N. Melt binding for perspective methods of production of PCM of new generation. Aviacionnye materialy i tehnologii, 2012, no. S, pp. 260–265.
9. Dolgova E.V. Application of cyanate ester materials. Part 2. Microelectronics, 3D printing, radiation protection. Trudy VIAM, 2023, no. 1 (119), paper no. 12. Available at: http://www.viam-works.ru (accessed: July 23, 2024). DOI: 10.18577/2307-6046-2023-0-1-139-156.
10. Tkachuk A.I., Donetsky K.I., Terekhov I.V., Karavaev R.Yu. The use of thermosetting matrices for the manufacture of polymer composite materials by the non-autoclave molding methods. Aviation materials and technology, 2021, no. 1 (62), paper no. 03. Available at: http://www.journal.viam.ru (accessed: July 23, 2024). DOI: 10.18577/2713-0193-2021-0-1-22-23.
11. Shosheva A.L., Akhmadieva K.R., Valueva M.I., Nacharkina A.V. Bismaleimide resins (review). Part 2. Trudy VIAM, 2023, no. 7 (125), paper no. 04. Available at: http://www.viam-works.ru (accessed: July 23, 2024). DOI: 10.18577/2307-6046-2023-0-7-34-55.
12. Kablov E.N. The role of chemistry in the creation of new generation materials for complex technical systems. Reports of the XX Mendeleev Congress on General and Applied Chemistry. Ekaterinburg, 2016, pp. 25–26.
13. Kablov E.N., Chursova L.V., Lukina N.F., Kutsevich K.E., Rubtsova E.V., Petrova A.P. A Study of Epoxide-Polysulfone Polymer Systems for High-Strength Adhesives of Aviation Purpose. Polymer Science. Ser.: D, 2017, vol. 10, no. 3, pp. 225–229.
14. Kessler M.R. Cyanate Ester Resins. Wiley Encyclopedia of Composites. Second Ed. John Wiley & Sons, 2012, pp. 1–14.
15. Bauer M., Bauer J. Aspects of the kinetics, modeling and simulation of network build-up during cyanate ester cure. Chemistry and Technology of Cyanate Ester Resins. Ed. I. Hamerton. Chapman & Hall, 1994, pp. 58–86.
16. Pankratov V.A., Vinogradova S.V. Polytriazines. Uspekhi khimii, 1972, vol. XLI, no. 1, pp. 117‒149.
17. Aristov V.F., Khalimanovich V.I., Mironovich V.V., Islentyeva T.A., Gurov D.A. Cyanate-ether binders in the aerospace industry. Catalytic properties of organometallic complexes and diazonium salts with complex anions in the curing of cyanate ether binders. Vestnik SibGAU, 2013, no. 2 (48), p. 159.
18. Anshin V.S. Cyanate ether monomers and oligomers. Review of the current state of research and development prospects. Vysokomolekulyarnye soyedineniya. Ser.: B, 2022, vol. 64, no. 3, pp. 163–196.
19. Muhametov R.R., Ahmadieva K.R., Chursova L.V., Kogan D.I. New polymeric binding for perspective methods of manufacturing of constructional fibrous PCM. Aviacionnye materialy i tekhnologii, 2011, no. 2, pp. 38–42.
20. Korshak V.V. Main features of polycyclotrimerization. Vysokomolekulyarnye soyedineniya. Ser.: A., 1974, vol. XVI, no. 5, pр. 926–941.
21. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
The electrophysical properties of microneedles α-Fe (Pr, Dy)(Fe, Co)B at direct current and in the mode of recording the Q-factor of the resonator in an ultrahigh frequency (1010 Hz) magnetic field directed perpendicular to the constant field are investigated. It is established that the specific resistance of microneedles at direct current is in the range (1,5–2,5)·10‒6 Om·m. The magnetoresistance of R(H) microneedles and its magnetic hysteresis at direct current have been detected. The maximum value of the magnetoresistance is R = 1,18 %. The orientation dependence of the maximum dependence dP/dH(H) is revealed.
2. Kablov E.N., Ospennikova O.G., Davydova E.A., Buzenkov A.V., Valeev R.A., Morgunov R.B., Piskorsky V.P. Effect of annealing of Pr–Dy–Fe–Co–B alloy on its phase composition and properties of sintered magnets made from it. Metally, 2018, no. 2, pp. 28–32.
3. Peng H.-X., Qin F., Phan M.-H. Ferromagnetic microwire composites: from sensors to microwave applications. Springer, 2016, 245 p.
4. Mandal K., Puerta S., Vázquez M., Hernando A. Giant magnetoimpedance in amorphous Co83.2Mn7.6Si5.8B3.3 microwires. Physical Review B, 2000, vol. 62, no. 10, p. 6598. DOI: 0163-1829/2000/62(10)/6598(5)/$15.00.
5. Kollmannsberger P., Fabry B. High-force magnetic tweezers with force feedback for biological applications. Review of Scientific Instruments, 2007, vol. 78, p. 114301. DOI: 10.1063/1.2804771.
6. Dvoretskaya E.V., Koplak O.V., Korolev D.V., Valeev R.A., Sidorov V.L., Piskorsky V.P., Morgunov R.B. Influence of mode of local laser annealing on the domain structure in microwires PrDyFeCoB. Trudy VIAM, 2022, no. 5 (111), paper no. 06. Available at: http://www.viam-works.ru (accessed: June 25, 2024). DOI: 10.18577/2307-6046-2022-0-5-64-73.
7. Zhukova V., Ipatov M., Zhukov A. Thin magnetically soft wires for magnetic microsensors. Sensors, 2009, vol. 9, p. 9216. DOI: 10.3390/s91109216.
8. Sampaio L.C., Sinnecker E.H.C.P., Cernicchiaro G.R.C. et al. Magnetic microwires as macrospins in a long-range dipole-dipole interaction. Physical Review B, 2000, vol. 61, p. 8976. DOI: 10.1103/PhysRevB.61.
9. Knobel M., Sampaio L.C., Sinnecker E.H.C.P., Vargas P., Altbir D. Dipolar magnetic interactions among magnetic microwires. Journal of Magnetism and Magnetic Materials, 2002, vol. 249, pp. 60–72. DOI: 10.1016/S0304-8853(02)00504-8.
10. Vazquez M., Chiriac H., Zhukov A. et al. On the state-of-the-art in magnetic microwires and expected trends for scientific and technological studies. Physica Status Solidi (A), 2011, vol. 208, p. 493. DOI: 10.1002/pssa.201026488.
11. Zhukov A., Zhukovа V., Blancoc J.M. et al. Magnetostriction in glass-coated magnetic microwires. Journal of Magnetism and Magnetic Materials, 2003, vol. 151, pp. 258–259. DOI: 10.1016/S0304-8853(02)01029-6.
12. Corte-Leon P., Zhukova V., Ipatov M. et al. Stress dependence of the magnetic properties of glass-coated amorphous microwires. Journal of Alloys and Compounds, 2019, vol. 789, p. 201. DOI: 10.1016/j.jallcom.2019.03.044.
13. Severino A.M., Gómez-Polo C., Marín P., Vázquez M. Influence of the sample length on the switching process of magnetostrictive amorphous wire. Journal of Magnetism and Magnetic Materials, 1992, vol. 103, p. 117. DOI: 10.1016/0304-8853(92)90244-I.
14. Ye J., del Real R.P., Infante G., Vazquez M. Local magnetization profile and geometry magnetization effects in microwires as determined by magneto-optical Kerr effect. Journal of Applied Physics, 2013, vol. 113. DOI: 10.1063/1.4776730.
15. Vazquez M., Gomez-Poio C., Chen D.-X. Switching mechanism and domain structure of bistable amorphous wires. IEEE Transactions on Magnetics, 1992, vol. 28, p. 3147. DOI: 10.1109/20.179740.
16. Zhukov A.P., Vazquez M., Velazquez J. et al. The remagnetization process in thin and ultra-thin Fe-rich amorphous wires. Journal of Magnetism and Magnetic Materials, 1995, vol. 151, p. 132. DOI: 10.1016/0304-8853(95)00393-2.
17. Kurlyandskaya G.V., Bebenin N.G., Vaskovsky V.O. Giant magnetic impedance of wires with a thin magnetic coating. The Physics of Metals and Metallography, 2011, vol. 111(2), pp. 133–154. DOI: 10.1134/s0031918x11010200.
18. Baranov A.A., Zhukova S.A., Obizhaev D.Yu. et al. Magnetoimpedance sensing element based on an amorphous ferromagnetic microwire and a thin-film coil. Nano- i mikrosistemnaya tekhnika, 2017, vol. 19, no. 10, pp. 626–632. DOI: 10.17587/nmst.19.626-632.
19. Zhukova V., Mino J., Del Val J.J. et al. GMR and Kondo Effects in Cu‒Co Microwires. Journal of Superconductivity and Novel Magnetism, 2016, vol. 30(4), pp. 1109–1114. DOI: 10.1007/s10948-016-3767-9.
20. Granovsky A.B., Ilyin M., Zhukov A. et al. Giant magnetoresistance of granular microwires: spin-dependent scattering in intergranular gaps. Fizika tverdogo tela, 2011, vol. 53, no. 2, pp. 299–301.
21. Taylor G.F. A Method of Drawing Metallic Filaments and a Discussion of their Properties and Uses. Physical Review, 1924, vol. 23 (5), pp. 655–660. DOI: 10.1103/physrev.23.655.
22. Umnov P.P., Molokanov V.M., Shalimov Yu.S. et al. Features of obtaining amorphous wire by the Ulitovsky-Taylor method using a continuous casting process variant. Perspektivnye materialy, 2010, no. 2, pp. 87–91.
23. Dvoretskaya E.V., Korolev D.V., Piskorskii V.P., Valeev R.A., Koplak O.V., Morgunov R.B. Magnetron sputtering of the iron shell and microinclusions in microwires PrDyFeCoB. Aviation materials and technologies, 2022, no. 2 (67), paper no. 08. Available at: http://www.journal.viam.ru (accessed: July 25, 2024). DOI: 10.18577/2713-0193-2022-0-2-85-96.
24. Korolev D.V., Piskorskii V.P., Valeev R.A., Bakradze M.M., Dvoretskaya E.V., Koplak O.V., Morgunov R.B. Rare-earth RE–TM–B micromagnets engineering (review). Aviation materials and technology, 2021, no. 1 (62), paper no. 05. Available at: http://www.journal.viam.ru (accessed: July 25, 2024). DOI: 10.18577/2713-0193-2021-0-1-44-60.
25. Veinger A.I., Zabrodskii A.G., Tisnek T.V. Anomalous Positive Microwave Magnetoresistance of Compensated Ge:Ga near the Metal-Insulator Transition. Physica Status Solidi (B), 2002, vol. 230 (1), pp. 107–111. DOI: 10.1002/1521-3951(200203)230:1<107::aid-pssb107>3.0.co;2-7.
26. Altshuler B.L., Aronov A.G. Electron–Electron Interaction in Disordered Conductors. Modern Problems in Condensed Matter Sciences, 1985, pp. 1–153. DOI: 10.1016/b978-0-444-86916-6.50007-7.
27. Gschneidner K.A. Jr., LeRoy Ey. Handbook on the Physics and Chemistry of Rare Earths. Amsterdam: Elsevier Science, 1999, 559 р.
Lide D.R. Handbook of Chemistry and Physics. Boca Raton, Florida: CRC Press, 2003, 2616 р.
Ceramic materials based on cerium dioxide are used as solid electrolytes of solid oxide fuel cells at temperatures below 600 °C. Based on the analysis of the results of existing world studies, it is shown that the ionic conductivity of doped CeO2 depends on the synthesis method, sintering temperature and time, type and concentration of alloying elements, grain size, grain boundaries and etc. Recommendations are proposed for obtaining doped cerium dioxide with an increased ionic conductivity value in the medium-temperature range for the production of solid electrolytes.
2. Gao Z., Mogni L.V., Miller E.C. et al. A perspective on low-temperature solid oxide fuel cells. Energy Environment Science, 2016, vol. 9, p. 1602.
3. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
4. Singh M., Zappa D., Comini E. Review Article: Solid oxide fuel cell: Decade of progress, future perspectives and challenges. International Journal of Hydrogen Energy, 2021, vol. 46, pp. 27643–27674. DOI: 10.1016/j.ijhydene.2021.06.020.
5. Irshad M., Siraj K., Raza R. et al. A Brief Description of High Temperature Solid Oxide Fuel Cell’s Operation, Materials, Design, Fabrication Technologies and Performance. Applied Sciences, 2016, vol. 6, p. 75.
6. Mahmud L.S., Muchtar A., Somalu M.R. Challenges in fabricating planar solid oxide fuel cells: A review. Renewable and Sustainable Energy Reviews, 2017, vol. 72, pp. 105–116.
7. Kablov E.N., Karachevtsev F.N., Shilov A.L. et al. Thermodynamics and vaporization of ceramics based on the Gd2O3–ZrO2 and Gd2O3–HfO2 systems studied by kems. Journal of Alloys and Compounds, 2022, vol. 908, p. 164575. DOI: 10.1016/j.jallcom.2022.164575.
8. Sokolov A.V., Deynega G.I., Kuzmina N.A. Influence of Sc2O3 additive on sintering temperature and properties of ZrO2–Y2O3 system oxide ceramics. Aviacionnye materialy i tehnologii, 2020, no. 1 (58), pp. 64–69. DOI: 10.18577/2071-9140-2020-0-1-64-69.
9. Lebedeva Yu.E., Chainikova A.S., Shchegoleva N.E., Belyachenkov I.O., Turchenko M.V. Synthesis and study of the properties of yttrium oxide sols. Trudy VIAM, 2023, no. 2 (120), paper no. 03. Available at: http://www.viam-works.ru (accessed: July 29, 2024). DOI: 10.18577/2307-6046-2023-0-2-32-41.
10. Lebedeva Yu.E., Shchegoleva N.E., Voronov V.A., Solntcev S.S. Al2O3 and ZrO2 ceramic materials obtained by sol-gel method. Trudy VIAM, 2021, no. 4 (98), paper no. 05. Available at: http://www.viam-works.ru (accessed: July 29, 2024). DOI: 10.18577/2307-6046-2021-0-4-61-73.
11. Belyachenkov I.O., Schegoleva N.E., Chainikova A.S., Vaganova M.L., Shavnev A.A. The influ-ence of sintering and modifying additives on the sintering process and the properties of silicon nitride ceramics. Aviacionnye materialy i tehnologii, 2020, no. 1 (58), pp. 70–78. DOI: 10.18577/20-71-9140-2020-0-1-70-78.
12. Ramos-Alvarez P., Villafuerte-Castrejo´n M.E., Gonza´lez G. et al. Ceria-based electrolytes with high surface area and improved conductivity for intermediate temperature solid oxide fuel cells. Journal of Materials Sciences, 2017, vol. 52, pp. 519–532.
13. Anjaneya K.C., Nayaka G.P., Manjanna J. et al. Preparation and characterization of Ce1‒xGdxO2‒d (x = 0,1–0,3) as solid electrolyte for intermediate temperature SOFC. Journal of Alloys and Compounds, 2013, vol. 578, pp. 53–59. DOI: 10.1016/j.jallcom.2013.05.010.
14. Sudzhanskaya I.V., Nekrasova Yu.S., Kubankin A.S. Effect of the composition of the ceramics (MCeMgSr)O2‒δ (M = Y, Sm) on the microstructure, mechanical and electrical properties for solid electrolyte. Crystals, 2022, vol. 12, p. 1198.
15. Nakayama M., Martin M. First-principles study on defect chemistry and migration of oxide ions in ceria doped with rare-earth cations. Physical Chemical Chemistry Physics, 2009, vol. 11, pp. 3241–3249.
16. Anirban S.K., Paul T., Dutta A. Vacancy mediated ionic conduction in Dy substituted nanoceria: a structure-property correlation study. RSC Advances, 2015, vol. 5, pp. 50186–50195.
17. Anirban S.K., Dutta A. Revisiting ionic conductivity of rare earth doped ceria: Dependency on different factors. International Journal of Hydrogen Energy, 2020, vol. 45, is. 46, pp. 25139–25166. DOI: 10.1016/j.ijhydene.2020.06.119.
18. Anirban S.K., Banerjee A., Dutta A. Synthesis route dependent structure, conductivity and dielectric properties of Ce0,8Gd0,2O1,9 oxygen ion conductor: A comparative approach. International Journal of Hydrogen Energy, 2020, vol. 46, pp. 8210–8225. DOI: 10.1016/j.ijhydene.2020.12.010.
19. Kumar S.A., Kuppusami P., Amirthapandian S., Fu Y.-P. Effect of Sm co-doping on structural, mechanical and electrical properties of Gd doped ceria solid electrolytes for intermediate temperature solid oxide fuel cells. International Journal of Hydrogen Energy, 2020, vol. 45, pp. 29690–29704. DOI: 10.1016/j.ijhydene.2019.10.098.
20. Sudzhanskaya I.V., Vasiliev A.E., Yapryntsev M.N., Nekrasova Yu.S., Oleynik A.N. Influence of the method of obtaining the Ce0.8Y0.2O2‒δ solid solution on its structure and electrophysical properties. Steklo i keramika, 2022, vol. 95, no. 8, pp. 43–51. DOI: 10.14489/glc.2022.08.pp.043-051.
21. Anjaneya K.C., Nayaka G.P., Manjanna J. et al. Studies on structural, morphological and electrical properties of Ce0,8Ln0,2O2‒δ (Ln = Y3+, Gd3+, Sm3+, Nd3+ and La3+) solid solutions prepared by citrate complexation method. Journal of Alloys and Compounds, 2014, vol. 585, pp. 594–601. DOI: 10.1016/jallcom.2013.09.101.
22. Momin N., Manjanna J., D’Souza L. et al. Synthesis, structure and ionic conductivity of nanocrystalline Ce1‒xLaxO2‒δ as an electrolyte for intermediate temperature solid oxide fuel cells. Journal of Alloys and Compounds, 2022, vol. 896, p. 163012. DOI: 10.1016/jallcom.2021.163012.
23. Kim G., Lee N., Kim K.-B. et al. Various synthesis methods of aliovalent-doped ceria and their electrical properties for intermediate temperature solid oxide electrolytes. International Journal of Hydrogen Energy, 2013, vol. 38, is. 3, pp. 1571–1587. DOI: 10.1016/j.ijhydene.2012.11.044.
24. Anjaneya K.C., Manjanna J., Kumar V.M.A. et al. Rare earth ion doped ceria as electrolytes for solid oxide fuel cell. Advanced Materials Letters, 2016, vol. 7, is. 9, pp. 743–747. DOI: 10.5185/amlett.2016.6070.
25. Dicmen S., Shuk P., Greenblatt M. Hydrothermal synthesis and properties of Ce1‒xLaxO2‒δ solid solutions. Solid State Ionics, 1999, vol. 126, pp. 89–95.
26. Brett D.J.L., Atkinson A., Brandon N.P., Skinner S.J. Intermediate temperature solid oxide fuel cells. Chemical Society Reviews, 2008, vol. 37, pp. 1568–1578. DOI: 10.1039/b612060c.
27. Guo T., Zhang L., Song X. et al. Influences of Gd2Ti2O7 sintering aid on the densification, ionic conductivity and thermal expansion of Gd0,1Ce0,9O0,95 electrolyte for solid oxide fuel cells. Journal of Power Sources, 2014, vol. 262, is. 15, pp. 239–244. DOI: 10.1016/j.jpowsour.2014.03.077.
28. Zhou Y., Rahaman M.N. Effect of redox reaction on the sintering behavior of cerium oxide. Acta Materials, 1997, vol. 45, no. 9, pp. 3635–3639.
29. Harrison R.W., Morgan J., Buckley J. et al. Development and comparison of field assisted sintering techniques to density CeO2 ceramics. Journal of European Ceramic Society, 2022, vol. 42, pp. 6599–6607. DOI: 10.1016/j.jeurceramsoc.2022.06.079.
30. Momin N., Manjanna J., Aruna S.T. et al. Effect on 20 mol % gadolinium doping on oxide ion conductivity of ceria as electrolyte for intermediate temperature solid oxide fuel cells. Ceramics International, 2022, vol. 48, is. 23, pp. 35867–35873. DOI: 10.1016/j.ceramint.2022.08.169.
31. Tian R., Zhao F., Chen F. Sintering of Samarium doped ceria powders prepared by a glycine-nitrate process. Solid State Ionics, 2011, vol. 192, is. 1, pp. 580–583. DOI: 10.1016/j.ssi.2010.08.003.
32. Minh N.Q. Ceramic fuel cells. Journal of American Ceramic Society, 1993, vol. 76, pp. 563–588.
33. Higashi K., Sonoda K., Ono H. et al. Synthesis and sintering of rare-earth-doped ceria powder by the oxalate coprecipitation method. Journal of Materials Resеarch, 1999, vol. 14, pp. 957–967.
34. Inaba H., Nakajima T., Tagawa H. Sintering behaviors of ceria and gadolinia-doped ceria. Solid State Ionics, 1998, vol. 106, pp. 263–268.
35. Accardo G., Frattini D., Ham H.C. et al. Improved microstructure and sintering temperature of bismuth nano-doped GDC powders synthesized by direct sol-gel combustion. Ceramics International, 2017, vol. 11, pp. 165. DOI: 10.1016/j.ceramint.2017.11.165.
36. Baral A.K., Dasari H.P., Kim B.-K., Lee J.-H. Effect of sintering aid (CoO) on transport properties of nanocrystyalline Gd doped ceria (GDC) materials prepared by co-precipitation method. Journal of Alloys and Compounds, 2013, vol. 575, pp. 455–460. DOI: 10.1016/j.jallcom.2013.05.191.
37. Wu Y.-C., Chen W.-Y. Fabrication and characterization of Ca2+, Sr2+, Ba2+, Sm3+, and La3+ co-doped ceria-based electrolyte powders for low-temperature anode-supported solid oxide fuel cells. International Journal of Hydrogen Energy, 2018, vol. 43, pp. 18453–18476. DOI: 10.1016/j.ijhydene.2018.08.049.
38. Avilae Paredes H.J., Choi K., Chen C.T., Kim S. Dopant-concentration dependence of grain-boundary conductivity in ceria: a space-charge analysis. Journal of Materials Chemistry, 2009, vol. 19, pp. 4837–4842. DOI: 10.1039/b904583j.
39. Anjaneya K.C., Nayaka G.P., Manjanna J. et al. Preparation and characterization of Ce1exGdxO2ed (x¼0.1-0.3) as solid electrolyte for intermediate temperature SOFC. Journal of Alloys and Compound, 2013, vol. 578, pp. 53–59.
40. Kumar S.A., Kuppusami P., Amirthapandian S., Fu Y.-P. Effect of Sm co-doping on structural, mechanical and electrical properties of Gd doped ceria solid electrolytes for intermediate temperature solid oxide fuel cells. International Journal of Hydrogen Energy, 2020, vol. 45, pp. 29690–29704. DOI: 10.1016/j.ijhydene.2019.10.098.
41. Accardo G., Audasso E., Yoon S.P. Unravelling the synergistic effect on ionic transport and sintering temperature of nanocrystalline CeO2 tri-doped with Li, Bi and Gd as dense electrolyte for solid oxide fuel cells. Journal of Alloys and Compounds, 2022, vol. 898, p. 162880. DOI: 10.1016/j.jallcom.2021.162880.
42. Ventakaramana K., Madhuri C., Suresh Y. et al. Investigation on micro-structural, structural, electrical and thermal properties of La3+, Sm3+, Gd3+ triple-doped ceria as solid-electrolyte for intermediate temperature-solid oxide fuel cells applications. Journal of Applied Physics, 2019, vol. 126, p. 144901. DOI: 10.1063/1.5113890.
43. Alaydrus M., Sakaue M., Aspera S.M. et al. A first-principles study on defect association and oxygen ion migration of Sm3+ and Gd3+ co-doped ceria. Journal of Physics: Condensed Materials, 2013, vol. 25, p. 225401. DOI: 10.1088/0953-8984/25/22/225401.
44. Eguchi K., Setoguchi T., Inoue T., Arai H. Electrical properties of ceria-based oxides and their application to solid oxide fuel cells. Solid State Ionics, 1992, vol. 52, pp. 165–172.
45. Yeh T.H., Chou C.C. Ionic conductivity investigation in samarium and strontium co-doped ceria system. Physics Scripta, 2007, vol. 129, pp. 303–307.
46. Tschope A. Grain size-dependent electrical conductivity of polycrystalline cerium oxide II: space charge model. Solid State Ionics, 2001, vol. 139, pp. 267–280.
47. Bae J., Lim Y., Park J.-S. et al. Thermally-induced dopant segregation effects on the space charge layer and ionic conductivity of nanocrystalline gadolinia-doped ceria. Journal of Electrochemical Society, 2016, vol. 163, pp. 919–996. DOI: 10.1149/2.1201608jes.
48. Tian C., Chan S.W. Ionic conductivities, sintering temperatures and microstructures of bulk ceramic CeO2 doped with Y2O3. Solid State Ionics, 2000, vol. 134, pp. 89–102.
49. Kim D.K., Cho Pe.S., Lee Je.H. et al. Mitigation of highly resistive grain – boundary phase in gadolinia – doped ceria by the addition of SrO. Electrochemical Solid-State Letters, 2007, vol. 10, pp. 91–95.
50.Park S.Y., Cho P.S., Lee S.B. et al. Improvement of grain-boundary conduction in SiO2-doped GDC by BaO addition. Journal of Electrochemical Society, 2009, vol. 156, is. 8, pp. 891–896. DOI: 10.1149/1.3139074.
A method for determining impurity elements Cr, Cu, Fe, Mn, Ni, Sn and Si microadditives in titanium ortho-alloys using inductively coupled plasma atomic emission spectrometry is proposed. Analytical lines of elements free from significant spectral overlaps are selected. The limits of detection and determination of elements are assessed. The metrological characteristics of the technique are assessed using model solutions. The correctness of the developed methodology with the use of model solutions are assessed using certified reference materials.
2. Antashev V.G., Nochovnaya N.A., Padyukova N.M., Pavlova T.V. Analysis of the need of science and technology for high-resource heat-resistant titanium alloys and erosion heat-resistant coatings. Aviacionnye materialy i technologii, 2002, no. 2, pp. 32–45.
3. Antipov V.V. Prospects for development of aluminium, magnesium and titanium alloys for aerospace engineering. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 186–194. DOI: 10.18577/2071-9140-2017-0-S-186-194.
4. Kablov E.N. Materials and chemical technologies for aviation equipment. Vestnik Rossiyskoy akademii nauk, 2012, vol. 82, no. 6, pp. 520–530.
5. Makushina M.A., Kochetkov A.S., Nochovnaya N.A. Cast titanium alloys for aviation equipment (review). Trudy VIAM, 2021, no. 7 (101), paper no. 05. Available at: http://www.viam-works.ru (accessed: June 10, 2024). DOI: 10.18577/2307-6046-2021-0-7-39-47.
6. Kolobov Yu.R., Kablov E.N., Kozlov E.V., Koneva N.A. et al. Structure and properties of intermetallic materials with nanophase strengthening. Moscow: MISIS, 2008, 328 p.
7. Nochovnaya N.A., Bazyleva O.A., Kablov D.E., Panin P.V. Intermetallic alloys based on titanium and nickel. Ed. E.N. Kablov. Moscow: VIAM, 2018, 308 p.
8. Dzunovich D.A., Alekseyev E.B., Panin P.V., Lukina E.A., Novak A.V. Structure and properties of sheet semi-finished products from various wrought intermetallic titanium alloys. Aviacionnye materialy i tehnologii, 2018, no. 2 (51), pp. 17–25. DOI: 10.18577/2071-9140-2018-0-2-17-25.
9. Alekseev I.E., Pilipenko A.A., Varfolomeev M.S. Possibility of replacing nickel heat-resistant alloys with alloys based on the intermetallic compound Ti-Al. Rapidly quenched materials and coatings: proc. XIX Int. sci.-tech. conf. Moscow, 2022, pp. 311–315.
10. Skvortsova S.V., Umarova O.Z., Anishchuk D.S., Smirnov V.G. Formation of the structure, phase composition and mechanical properties of an alloy based on titanium aluminide Ti2AlNb during heat treatment. Titan, 2015, no. 3 (49), pp. 29–33.
11. Polkin I.S., Egorova Yu.B., Davydenko L.V. Alloying, phase composition and mechanical properties of titanium alloys. Tekhnologiya legkikh splavov, 2022, no. 2, pp. 4–13.
12. Novak A.V. Regularities of the influence of microadditives of rare earth elements on the structural-phase state and mechanical characteristics of an intermetallic alloy based on orthorhombic titanium aluminide: thesis, Cand. Sc. (Tech.). Moscow, 2019, 128 p.
13. Kablov E.N., Kashapov O.S., Medvedev P.N., Pavlova T.V. Study of a α + β-titanium alloy based on a system of Ti–Al–Sn–Zr–Si–β-stabilizing alloying elements. Aviacionnye materialy i tehnologii, 2020, no. 1 (58), pp. 30–37. DOI: 10.18577/2071-9140-2020-0-1-30-37.
14. Borisova E.A., Bochvar G.A., Brun M.Ya. et al. Titanium alloys. Metallography of titanium alloys. Moscow: Metallurgiya, 1980, 464 p.
15. Nochovnaya N.A., Panin P.V., Alekseev E.B., Novak A.V. Regularities of formation of structural-phase state of alloys based on titanium ortho- and gamma-aluminides during thermomechanical treatment. Vestnik RFFI, 2015, no. 1, pp. 18–26.
16. Podkopalov I.A. Review of alloys based on titanium intermetallic compounds. Mavlyutov readings: materials of the XV All-Russian youth scientific conf.: in 7 vols. Ufa, 2021, vol. 2, pp. 311–315.
17. Abraimov N.V., Petukhov I.G., Zarypov M.S., Lukina V.V. On the issue of heat resistance of titanium alloys operating at temperatures above 650 °C. Electrometallurgiya, 2021, no. 12, pp. 10–20.
18. Skvortsova S.V., Umarova O.Z., Agarkova E.O., Chernyshova A.A. Effect of heat treatment on the structure and mechanical properties of an intermetallic alloy plate VTI-4. Titan, 2015, no. 4 (50), pp. 17–21.
19. Duyunova V.A., Oglodkov M.S., Putyrskiy S.V., Kochetkov A.S., Zueva O.V. Modern technologies for melting titanium alloy ingots (review). Aviation materials and technologies, 2022, no. 1 (66), paper no. 03. Available at: http://www.journal.viam.ru (accessed: May 27, 2024). DOI: 10.18577/2713-0193-2022-0-1-30-40.
20. Shubin I.Yu., Nikitin Ya.Yu., Puchkov Yu.A., Alekseev E.B., Davydova E.A. Study of resistance to high-temperature gas and salt corrosion of heat-resistant intermetallic titanium alloy VTI-4. Vestnik Moskovskogo gosudarstvennogo tekhnicheskogo universiteta im. N.E. Baumana. Ser.: Mashinostroyenie, 2020, no. 6 (135), pp. 83–105.
21. Baranovskaya V.B., Medvedevskikh M.Yu., Karpov Yu.A. Actual problems of the quality of chemical analysis. Analitika i kontrol, 2021, vol. 25, no. 4, pp. 273–279.
22. Karpov Yu.A., Baranovskaya V.B. Analytical control is an integral part of materials diagnostics. Zavodskaya laboratoriya. Diagnostika materialov, 2017, vol. 83, no. 1-I, pp. 5–12.
23. Nadezhdina M.E. Digitalization – global trends and main challenges. Reports «Modern digital technologies: problems, solutions, prospects». Kazan, 2022, pp. 40–43.
24. Nadezhdina M.E., Shinkevich A.I. End-to-end digital technology of big data as the basis of digital transformation of the enterprise production system. Current trends in the digital transformation of industrial enterprises: Reports All-Rus. scientific and practical conf. Kursk, 2022, pp. 201–204.
25. Vasipov V.V., Evsyukov A.I. Social networks as a tool for popularizing chemical science. XX Mendeleev Congress on General and Applied Chemistry: reports: in 5 vols. Ekaterinburg: Ural Branch of the Russian Academy of Sciences, 2016, vol. 5, p. 79.
26. Otto M. Modern methods of analytical chemistry: in 2 vols. Moscow: Tekhnosfera, 2003, vol. I, 416 p.
27. Karpov Yu.A., Baranovskaya V.B. The role and possibilities of analytical control in metallurgy. Tsvetnye metally, 2016, no. 8 (884), pp. 63–67. DOI: 10.17580/tsm.2016.08.09.
28. Vyacheslavov A.V., Malinkina Yu.Yu., Bichaev V.B. et al. Analysis of corrosion-resistant titanium alloys alloyed with ruthenium by inductively coupled plasma atomic emission spectrometry. Zavodskaya laboratoriya. Diagnostika materialov, 2018, vol. 84, no. 5, pp. 14–19.
29. Karpov Yu.A., Baranovskaya V.B. Problems of standardization of chemical analysis methods in metallurgy. Zavodskaya laboratoriya. Diagnostika materialov, 2019, vol. 85, no. 1–2, pp. 5–14.
30. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
2
Residual stresses assessment of samples with different structural conditions is carried out under various x-ray parameters. Modeling of residual stresses under four-point bending has been executed. It shows that the most significant factor influencing residual stresses measurement error is the interplanar distance measurement error. Negative influence texture factors on the accuracy of residual stresses determination are identified – x-ray line small intensity out of textural maximum and elasticity anisotropy in materials. The surface roughness up to Ra = 1,4 microns for aluminum alloys samples is not an influence factor.
2. Gorelik S.S., Skakov Yu.A., Rastorguev L.N. X-ray and electron-optical analysis: textbook for universities. 4th ed. suppl. and revised. Moscow: MISiS, 2002, 360 p.
3. Umansky Ya.S., Skakov Yu.A., Ivanov A.N., Rastorguev L.N. Crystallography, X-ray and electron microscopy. Moscow: Metallurgiya, 1982, 632 p.
4. EN 15305:2008. Non-destructive Testing – Test Method for Residual Stress analysis by X-ray Diffraction. British standard, 2009, 85 p.
5. Kablov E.N., Antipov V.V. The role of new generation materials in ensuring the technological sovereignty of the Russian Federation. Vestnik Rossiyskoy akademii nauk, 2023, vol. 93, no. 10, pp. 907–916.
6. Kablov E.N., Antipov V.V., Yakovlev N.O., Kulikov V.V., Avtaeva Ya.V., Avtaev V.V., Medvedev P.N. Effect of the temperature and anisotropy of sheets from Al–Cu–Mg–Li system on the mechanical properties in the range of small plastic strains. Industrial Laboratory. Materials Diagnostics, 2022, vol. 88, no. 11, pp. 55–65.
7. Kablov E.N., Nechaikina T.A., Somov A.V., Ivanov A.L., Murzabaeva O.Yu. Influence of heat treatment on the structure and properties of pressed semi-finished products from promising super-strong aluminum alloy B-1977. Metallovedenie i termicheskaya obrabotka metallov, 2023, no. 1 (811), pp. 28–33.
8. Oglodkov M.S., Romanenko V.A., Benarieb I., Rudchenko A.S., Grigoryev M.V. Study of industrial semi-finished products from advanced aluminum-lithium alloys for aircraft products. Aviation materials and technologies, 2023, no. 3 (72), paper no. 05. Available at: http://www.journal.viam.ru (accessed: March 04, 2024). DOI: 10.18577/2713-0193-2023-0-3-62-77.
9. Echin A.B., Bondarenko Yu.A., Kolodyazhny M.Yu., Surova V.A. Review of perspective high-temperature superalloys based on refractory non-metallic materials for production of gas turbine engines. Aviation materials and technologies, 2023, no. 3 (72), paper no. 03. Available at: http://www.journal.viam.ru (accessed: March 04, 2024). DOI: 10.18577/2713-0193-2023-0-3-30-41.
10. Sbitneva S.V., Lukina E.А., Benarieb I. Some structural features of aluminum alloys obtained by selective laser melting (review). Trudy VIAM, 2023, no. 1 (119), paper no. 06. Available at: http://www.viam-works.ru (accessed: March 04, 2024). DOI: 10.18577/2307-6046-2023-0-1-69-83.
11. Lukina E.A., Naprienko S.A., Gorbovets M.A., Zaitsev D.V., Oglodkova Yu.S. Changes in the structural and phase state of cold-formed semi-finished products from Al–Li- alloys after various low-temperature effects. Trudy VIAM, 2023, no. 1 (119), paper no. 04. Available at: http://www.viam-works.ru (accessed: March 04, 2024). DOI: 10.18577/2307-6046-2023-0-1-39-49.
12. Bondarenko Yu.A. Trends in the development of high-temperature metal materials and technologies in the production of modern aircraft gas turbine engines. Aviacionnye materialy i tehnologii, 2019, no. 2 (55), pp. 3–11. DOI: 10.18577/2071-9140-2019-0-2-3-11.
13. Physical Materials Science: a textbook for higher education institutions in 8 vols. Moscow: NRNU MEPhI, 2012, vol. 3: Methods for studying the structural and phase state of materials. N.V. Volkov, V.I. Skrytny, V.P. Filippov, V.N. Yaltsev, 800 p.
14. Physical Materials Science: a textbook for higher education institutions in 8 vols. Moscow: NRNU MEPhI, 2012, vol. 1: Solid state physics. G.N. Elmanov, A.G. Zaluzhny, Yu.A. Perlovich, 764 p.
15. Shalin R.E., Svetlov I.L., Kachanov E.B., Toloraia V.N., Gavrilin O.S. Single crystals of nickel heat-resistant alloys. Moscow: Mashinostroenie, 1997, 336 p.
The kinetics of curing binder in prepreg was studied by differential scanning calorimetry method. The most adequate scheme of the curing reaction was selected and the kinetic parameters of the curing reaction for each elementary stage of the process were determined. On the basis of experimental data, generalized kinetic models of the curing reaction were constructed, and then the curing modes of the binder in the prepreg were selected were selected based on both experimental and calculated data, which were tested on technological equipment. As a result, the degree of material curing was determined.
2. Kablov E.N., Kulagina G.S., Zhelezina G.F., Lonskii S.L., Kurshev E.V. Microstructure research of the unidirectional organoplastic based on Rusar-NT aramid fibers and epoxy-polysulfone binder. Aviacionnye materialy i tehnologii, 2020, no. 4 (61), pp. 19–26. DOI: 10.18577/2071-9140-2020-0-4-19-26.
3. Kablov E.N. New generation materials and digital technologies for their processing. Vestnik Rossiyskoy akademii nauk, 2020, vol. 90, no. 4, pp. 331–334. DOI: 10.31857/S0869587320040052.
4. Kablov E.N., Shuldeshov E.M., Petrova A.P., Lapteva M.A., Sorokin A.E. Dependence of complex of sound-proof VZMK type material properties on concentration of hydrophobizing composition on the basis of organosilicon sealant. Aviacionnye materialy i tehnologii, 2020, no. 2 (59), pp. 41–49. DOI: 10.18577/2071-9140-2020-0-2-41-49.
5. Postnov V.I., Kachura S.M., Veshkin E.A. Modeling of the curing process of a polymer resin and changes in microhardness in its volume. Aviation materials and technologies, 2021, no. 4 (65), paper no. 07. Available at: http://www.journal.viam.ru (accessed: March 19, 2024). DOI: 10.18577/2307-6046-2021-0-4-92-99.
6. Postnov V.I., Veshkin E.A., Makrushin K.V., Sudin Yu.I. Technological features of manufacturing polymer composite materials of main rotor blades for a light helicopter. Aviation materials and technologies, 2023, no. 1 (70), paper no. 06. Available at: http://www.journal.viam.ru (accessed: July 17, 2024). DOI: 10.18577/2713-0193-2023-0-1-82-92.
7. Khaskov M.A., Melnikov D.A., Kotova E.V. Selection of temperature-time modes of curing epoxy binders taking into account the scale factor. Klei. Germetiki. Tekhnologii, 2017, no. 10, pp. 24–32.
8. Malysheva G.V., Marakhovskiy P.S., Barinov D.Ya., Nikolaev E.V. Optimization of the curing modes of fiber-glass based on epoxy binder. Aviation materials and technologies, 2023, no. 2 (71), paper no. 08. Available at: http://www.journal.viam.ru (accessed: April 15, 2024). DOI: 10.18577/2713-0193-2023-0-2-94-103.
9. Shershak P.V., Sutubalov A.I., Yakovlev N.O., Sherstyuk F.A. Standards test methods for polymer matrix composite materials. Part 2. Compression properties. Aviation materials and technologies, 2024, no. 2 (75), paper no. 12. Available at: http://www.journal.viam.ru (accessed: October 28, 2024). DOI: 10.18577/2713-0193-2024-0-2-149-166.
10. Khaskov M.A. Expansion of the temperature-time-transformation diagram taking into account the thermophysical properties of the components for optimizing the curing modes of polymer composite materials. Zhurnal prikladnoy khimii, 2016, no. 4, pp. 510–518.
11. Kutsevich K.E., Aleksashin V.M., Petrova A.P., Antyufeeva N.V. Study of the kinetics of curing reactions of adhesive binders. Klei. Germetiki. Tekhnologii, 2014, no. 11, pp. 27–31.
12. Antyufeeva N.V., Starkov A.I. Influence of the content of halogen-containing oligomer in the composition of the adhesive binder VSK-14-6 on the kinetics of the curing process of prepregs on different fillers and a comparative analysis of the kinetics of curing of prepregs based on the adhesive binder VSK-14-1. Klei. Germetiki. Tekhnologii, 2022, no. 5, pp. 12–19.
13. Zhelezina G.F., Voynov S.I., Karimbaev T.D., Chernyshev A.A. Aramid organoplastics for aircraft engine fan housings. Voprosy materialovedeniya, 2017, no. 32 (90), pp. 153–165.
14. Grenier-Loustalot M.F., Bente M.P., Grenier Ph. Reactivite du dicyandiamide vis a vis des groupements et N-epoxide-1. Mechanism reactionnel. European Polymer Journal, 1991, vol. 27, no. 11, pp. 1201–1216.
15. Sharova I.A., Lukina N.F., Aleksashin V.M., Antuyfeeva N.V. Effect of modification with rubber on properties and process of curing of epoxy-rubber adhesives compositions. Polymer Science. Series D, 2016, vol. 9, no. 4, pp. 437–440.
Heat-resistant alloys and steels
Sevalnev G.S., Ulyanov E.I., Dulnev K.V., Sevalneva T.G. Formation features of diffusion layers in economically alloyed high-nitrogen structural steel during vacuum carburization
Light-metal alloys
Panteleev M.D., Bondarenko S.V., Antipov K.V., Sviridov A.V. Weldability of heat-resistant aluminum alloy V-1213
Shvetsova A.N., Eroshkin S.G. Research of the process of hydrogen saturation of samples of titanium alloy type VT14
Polymer materials
Lavrin M.A., Shosheva A.L., Еldyaeva G.B. Research of the 2,2-bis(4-cyanatophenyl)propane catalytic polymerization
Composite materials
Dvoretskaya E.V., Potapov M.V., Valeev R.A., Piskorsky V.P., Morgunov R.B. Magnetoresistance of microneedles (Pr, Dy)(Fe, Co)B
Sudzhanskaya I.V., Lebedeva Yu.E., Vaganova M.L., Shchegoleva N.E. Parameters affecting on the ionic conductivity of solid electrolytes based on cerium dioxide
Material tests
Dvoretskov R.M., Alekseev E.B., Karachevtsev F.N., Burkovskaya N.P. Analysis of the chemical composition of intermetallic titanium ortho-alloys by inductively coupled plasma atomic emission spectrometry. Part 2
Medvedev P.N., Moiseeva N.S., Kochubey A.Ya., Zhuravleva P.L. Structural factors determining applicability of the non-destructive X-ray diffraction method for assessing residual stress. Part 1
Antyufeeva N.V., Bolshakov V.A. Forecasting modes of molding prepregs for aircraft products