Articles
The paper presents the results of mechanical properties studies of samples made from high-strength corrosion-resistant maraging steel of the Fe–Cr–Ni–Co–Mo system, obtained by selective laser melting. A comparative analysis of mechanical properties at ambient temperature (20 °C) and at elevated temperatures (500 and 550 °C) of 3D-printed samples along the Z axis and along the XY plane, as well as mechanically processed samples and samples without mechanical processing of the working surface was carried out.
2. Special steels: in 2 vols. Trans. from German. 2nd ed., add. and rev. Moscow: Metallurgiya, 1966, vol. 1, 741 p.
3. Lukin E.I., Ashmarin A.A., Bannykh I.O. et al. Effect of the Reduction during Cold Rolling on the Phase Composition, Texture, and Residual Stresses in 20Kh15AN3MD2 Steel. Russian Metallurgy (Metally), 2023, vol. 2023, no. 11, pp. 1598–1605.
4. Sevalnev G.S. Beryllium-containing steels – perspective material with a high level of physical and mechanical properties. Aviation materials and technologies, 2023, no. 3 (72), paper no. 02. Available at: http://www.journal.viam.ru (accessed: October 24, 2024). DOI: 10.18577/2713-0193-2023-0-3-15-29.
5. Special steels: in 2 vols. Trans. from German. 2nd ed., add. and rev. Moscow: Metallurgiya, 1966, vol. 2, 532 p.
6. Sevalnev G.S., Nefedkin D.Yu., Dulnev K.V., Oblivancev K.D. Features of changing the grain structure in Fe–Ni–Co–Mo–Ti maraging steel under different heat treatment modes. Aviation materials and technologies, 2024, no. 1 (74), paper no. 01. Available at: http://www.journal.viam.ru (accessed: October 25, 2024). DOI: 10.18577/2713-0193-2024-0-3-3-13.
7. Sevalnev G.S., Gromov V.I., Dulnev K.V., Sevalneva T.G. Contact endurance of nitrogenous austenitic-martensitic steels with different hardening mechanism. Aviation materials and technologies, 2024, no. 2 (75), paper no. 01. Available at: http://www.journal.viam.ru (accessed: October 25, 2024). DOI: 10.18577/2713-0193-2024-0-2-3-14.
8. Shin W.-S., Son B., Song W. et al. Heat treatment effect on the microstructure, mechanical properties, and wear behaviors of stainless steel 316L prepared via selective laser melting. Materials Science and Engineering: A, 2021, vol. 806, p. 140805.
9. Liverani E., Toschi S., Ceschini L., Fortunato A. Effect of selective laser melting (SLM) process parameters on microstructure and mechanical properties of 316L austenitic stainless steel. Journal of Materials Processing Technology, 2017, vol. 249, pp. 255–263.
10. Pei Y.T., de Hosson J.T.M. Functionally graded materials produced by laser cladding. Acta materialia, 2000, vol. 48, pp. 2617−2624.
11. Bogachev I.A., Sulyanova E.A., Sukhov D.I., Mazalov P.B. Microstructure and properties investigations of Fe–Cr–Ni stainless steel obtained by selective laser melting. Trudy VIAM, 2019, no. 3 (75), paper no. 01. Available at: http://www.viam-works.ru (accessed: November 01, 2024). DOI: 10.18577/2307-6046-2019-0-3-3-13.
12. Voznesenskaya N.M., Tonysheva O.A., Eliseev E.A. Modern structural steels of cryogenic purpose and influence of some alloying elements on their properties (review). Trudy VIAM, 2020, no. 1, paper no. 01. Available at: http://www.viam-works.ru (accessed: November 01, 2024). DOI: 10.18577/2307-6046-2020-0-1-3-14.
13. Yap C.Y., Chua C.K., Dong Z.L. et al. Review of selective laser melting: Materials and applications. Applied physics reviews, 2015, vol. 2, no. 4, pp. 041101.
14. Uçak N., Çiçek A., Aslantas K. Machinability of 3D printed metallic materials fabricated by selective laser melting and electron beam melting: A review. Journal of Manufacturing Processes, 2022, vol. 80, pp. 414–457.
15. Tascioglu E., Khan H.M., Kaynak Y. et al. Effect of aging and finish machining on the surface integrity of selective laser melted maraging steel. Rapid Prototyping Journal, 2021, vol. 27, no. 10, pp. 1900–1909.
16. Kaynak Y., Kitay O. Porosity, surface quality, microhardness and microstructure of selective laser melted 316L stainless steel resulting from finish machining. Journal of Manufacturing and Materials Processing, 2018, vol. 2, no. 2, p. 36.
17. Perkas M.D., Strug M.D., Rusanenko V.V. Elinvar martensitic aging steels with a high elastic limit. Metallovedenie i termicheskaya obrabotka metallov, 1991, no. 8, pp. 40–41.
18. Wang R. Precipitation of sigma phase in duplex stainless steel and recent development on its detection by electrochemical potentiokinetic reactivation: A review. Corrosion Communications, 2021, vol. 2, pp. 41–54.
19. Villanueva D.M.E., Junior F.C.P., Plaut R.L., Padilha A.F. Comparative study on sigma phase precipitation of three types of stainless steels: austenitic, superferritic and duplex. Materials Science and Technology, 2006, vol. 22, no. 9, pp. 1098–1104.
20. Knyazeva M., Pohl M. Duplex steels. Part I: genesis, formation, structure. Metallography, Microstructure, and Analysis, 2013, vol. 2, pp. 113–121.
21. Knyazeva M., Pohl M. Duplex steels. Part II: carbides and nitrides. Metallography, Microstructure, and Analysis, 2013, vol. 2, pp. 343–351.
The review considers the practical application of the directional solidification technique with a flat front to obtain castings with height-variable chemical composition (gradient castings with macrosegregation) and to solve problems of physical metallurgy of γʹ-strengthened Ni- and Co-based superalloys. Such problems include: determination of the influence of alloying elements Re, Ru, Ta and Al on the γʹ-solvus, solidus and liquidus temperatures of single-crystal nickel-based alloys, optimization of the chemical and phase composition of single-crystal Ni- and Co-based alloys, determination of the influence of alloying elements Al and W on compressive yield strength and heat resistance of cobalt-based alloys.
2. Harada H., Yamagata T., Nakazawa S. Design of high specific-strength nickel-base single-crystal superalloys. High Temperature Materials for Power Engineering 1990: Proceedings of Conference held in Liege: in 2 parts. Dordrecht, Boston, London: Kluwer Academic Publishing, 1990, part 2, pp. 1319–1328.
3. Samoilov A.I., Morozova G.I., Krivko A.I., Afonicheva O.S. Analytical method for optimization of alloying of heat-resistant nickel alloys. Materialovedenie, 2000, no. 2, pp. 14−17.
4. Morinaga M., Murata Y., Yukawa H. Recent progress in molecular orbital approach to alloy design. Materials Science Forum, 2004, vol. 449−452, pp. 37−42.
5. Vigdorovich V.N., Volpyan A.E., Kurdyumov G.M. Directional crystallization and physicochemical analysis. Moscow: Khimiya, 1976, 200 p.
6. Petrushin N.V., Monastyrskaya E.V. Application of directional crystallization to solving problems of development and optimization of heat-resistant materials. Materialovedenie, 1998, no. 5, pp. 2–10.
7. Petrushin N.V., Svetlov I.L., Epishin A.I., Elyutin E.S. Development of directional solidification method to solve the problems of physical metallurgy of nickel- and cobalt-based superalloys. Part 1. Trudy VIAM, 2025, no. 5 (147), paper no. 01. Available at: http://www.viam-works.ru (accessed: May 16, 2025). DOI: 10.18577/2307-6046-2025-0-5-3-24.
8. Logunov A.V. Heat-resistant nickel alloys for blades and disks of gas turbines. Rybinsk: Gas turbine technologies, 2017, 854 p.
9. Epishin A., Petrushin N., Nolze G. et al. Investigation of the γ′-strengthened quaternary Co-based alloys Co−Al−W−Ta. Metallurgical and Materials Transactions A, 2018, vol. 49, no. 9, pp. 4042–4057. DOI: 10.1007/s11661-018-4756-3.
10. Shalin R.E., Svetlov I.L., Kachanov E.B. et al. Single crystals of nickel heat-resistant alloys. Moscow: Mashinostroenie, 1997, 336 p.
11. Caron P. High γʹ solvus new generation nickel-based superalloys for single crystal turbine blade applications. Superalloys 2000. Minerals, Metals & Materials Society, 2000, pp. 737‒746.
12. Mills K.C., Youssef Y.M., Li Z., Su Y. Calculation of thermophysical properties of Ni-based superalloys. ISIJ International, 2006, vol. 46, no. 5, pp. 623–632. DOI: 10.2355/isijinternational.46.623.
13. Kablov E.N., Petrushin N.V. Computer method for designing cast heat-resistant nickel alloys. Cast heat-resistant alloys. Effect of S.T. Kishkin. Moscow: Nauka, 2006, pp. 56−78.
14. Petrushin N.V., Elyutin E.S., Nazarkin R.M. et al. Segregation of alloying elements in directionally crystallized heat-resistant nickel alloys containing rhenium and ruthenium. Voprosy materialovedeniya, 2015, no. 1 (81), pp. 27–37.
15. Svetlov I.L., Petrushin N.V., Epishin A.I., Karashaew M.M., Elyutin E.S. Single crystals of nickel-based superalloys alloyed with rhenium and ruthenium (review). Part 1. Aviation materials and technologies, 2023, no. 1 (70), paper no. 03. Available at: http://www.journal.viam.ru (accessed: July 15, 2024). DOI: 10.18577/2713-0193-2023-0-1-30-50.
16. Svetlov I.L., Petrushin N.V., Epishin A.I., Karashaew M.M., Elyutin E.S. Single crystals of nickel-based superalloys alloyed with rhenium and ruthenium (review). Part 2. Aviation materials and technologies, 2023, no. 2 (71), paper no. 01. Available at: http://www.journal.viam.ru (accessed: July 15, 2024). DOI: 10.18577/2713-0193-2023-0-2-3-22.
17. Kablov E.N. Casting heat-resistant alloys. Mechanical engineering: encyclopedia in 40 volumes. Moscow: Mashinostroyenie, 2001, vol. II-3: Non-ferrous metals and alloys. Composite materials, pp. 519−552.
18. Petrushin N.V., Chabina E.B., Dyachkov L.A. Phase stability of single crystals of heat-resistant nickel alloys Ni−Al−Cr−W−Ta−Mo. Metally, 1996, no. 3, pp. 104–112.
19. Sato J., Omori T., Oikawa K. et al. Cobalt-base high-temperature alloys. Science, 2006, vol. 312, pp. 90−91. DOI: 10.1126/science.1121738.
20. Pollock T.M., Dibbern J., Tsunekane M. et al. New Co-based high-temperature alloys. Journal of Metals, 2010, vol. 62, no. 1, pp. 58−63. DOI: 10.1007/s11837-010-0013-y.
21. Yan H.-Yu., Vorontsov V.A., Coakley J. et al. Quaternary alloying effects and the properties for a new generation of Co-base superalloys. Superalloys 2012: 12th International Symposium on Superalloys. Minerals, Metals & Materials Society, 2012, pp. 705–714.
22. Bauer A., Neumeier S., Pyczak F. et al. Creep properties of different γʹ-strengthened Co-base Superalloys. Materials Science and Engineering A, 2012, vol. 550, pp. 333–341.
23. Suzuki A., Pollock T.M. High-temperature strength and deformation of γ/γ′ two-phase Co−Al−W-base alloys. Acta Materialia, 2008, vol. 56, no. 6, pp. 1288−1297.
24. Yan H.-Yu., Vorontsov V.A., Dye D. Alloying effects in polycrystalline γ′ strengthened Co−Al−W base alloys. Intermetallics, 2014, vol. 48, pp. 44–53. DOI: 1-16/j.intermet.2013.10.022.
25. Tsunekane M., Suzuki A., Pollock T.M. Singe-crystal solidification of new Co−Al−W-base alloys. Intermetallics, 2011, vol. 19, pp. 636–643. DOI: 10.1016./j.intermet.2010.12.018.
26. Petrushin N., Hvatzkiy K., Gerasimov V. et al. A single-crystal Co-base superalloy strengthened by γ′ precipitates: structure and mechanical properties. Advanced Engineering Materials, 2016, vol. 17, pp. 755−756. DOI: 10.1002/adem.201500088.
27. Reed R.C. The Superalloys. Fundamentals and Applications. Cambridge: University Press, 2006, 372 p. DOI: 10.1017/CBO9780511541285.
28. Kablov E.N., Ospennikova O.G., Petrushin N.V., Visik E.M. Single-crystal nickel-based superalloy of a new generation with low-density. Aviacionnye materialy i tehnologii, 2015, no. 2 (35), pp. 14–25. DOI: 10.18577/2071-9140-2015-0-2-14-25.
29. Meher S., Nag S., Tiley J. et al. Coarsening kinetics of γʹ precipitates in cobalt-base alloys. Acta Materialia, 2013, vol. 61, pp. 4266−4276. DOI: 10.1016/j.actamat.2013.03.052.
30. Lorez-Galilea I., Zenk C., Neumeier S. et al. The thermal stability of intermetallic compounds in an as-cast SX Co-base superalloy. Advanced Engineering Materials, 2014, vol. 17, no. 6, pp. 1–7. DOI: 10.1002/adem.201400249.
31. Epishin A.I., Petrushin N.V., Link T., Nolze G., Loshinin Yu.V., Gershtein G. Study of thermal stability of the structure of cobalt heat-resistant alloy strengthened by intermetallic precipitates of the γ′-phase. Deformatsiya i razrushenie materialov, 2015, no. 3, pp. 17–22.
32. Petrushin N.V., Elyutin E.S., Filonova E.V., Nazarkin R.M. High-gradient directional crystallization of Co–Al–W–Ta heat-resistant alloy strengthened by the γʹ-phase Co3(Al, W). Vestnik RFFI, 2015, no. 1 (85), pp. 11–17.
33. Bondarenko Yu.A., Echin A.B., Surova V.A., Narsky A.R. Development of technologies and equipment for producing blades of the hot path of gas turbine engines from superalloys with directional and single-crystal structure. Trudy VIAM, 2023, no. 7 (125), paper no. 01. Available at: http://www.viam-works.ru (accessed: August 15, 2024). DOI: 10.18577/2307-6046-2023-0-7-3-14.
34. Decker R.F., Sims C.T. Metallurgy of nickel-based alloys. Zharoprochnye splavy. Trans. from Engl. Moscow: Metallurgiya, 1976, pp. 39−82.
35. Vertogradsky V.A., Kovalev A.I., Loshchinin Yu.V. High-temperature thermal analysis of heat-resistant alloys. Structural and heat-resistant materials for new technology. Moscow: Nauka, 1977, pp. 195–201.
36. Glatzel U. Microstructure and internal strains of undeformed and creep deformed samples of a Nickel-base superalloy. Berlin: Verlag Dr. Köster, 1994, 80 p.
37. Nabarro F.R.N. Rafting in superalloys. Metallurgical and Materials Transactions A, 1996, vol. 27, no. 3, pp. 513‒530. DOI: 10.1007/BF02648942.
38. Xue F., Zhou H., Chen X. et al. Creep behavior of a novel Co−Al−W-base single crystal containing Ta and Ti at 982 °C. Eurosuperalloys 2014 – 2nd European Symposium on Superalloys and their Applications: MATEC Web of conferences. Giens, 2014, vol. 14, p. 15002. DOI: 10.1051/matecconf/20141415002.
39. Mughrabi H. The importance of sign and magnitude of γ/γʹ lattice misfit in superalloys – with special reference to the new γʹ-hardened cobalt-base superalloys. Acta Materialia, 2014, vol. 81, pp. 21−29. DOI: 10.1016/j.actamat.2014.08.005.
40. Epishin A.I., Petrushin N.V., Svetlov I.L. et al. Compression and oxidation testing of Co–Al–W–Ta single-crystal specimens directionally solidified with a flat front. Mechanics of Solids, 2024, vol. 59, no. 1, pp. 537–540. DOI: 10.1134/S0025654424602969.
41. Tomaszewska A., Oleksiak B. Microstructural characteristics of new type γ-γ′ Co−9Al−9W cobalt-based superalloys in as-cast state. Metalurgiya, 2018, vol. 57, no. 1−2, pp. 91−94.
42. Pyczak F., Bauer A., Göken M. et al. The effect of tungsten content on the properties of L12-hardened Co–Al–W alloys. Journal of Alloys and Compounds, 2015, vol. 632, pp. 110–115. DOI: 10.1016/j.jallcom.2015.01.031.
43. Mishima Y., Ochiai S., Hamao N. et al. Solid solution hardening of nickel – role of transition metal and B-subgroup solutes. Transactions of the Japan Institute of Metals, 1986, vol. 27, pp. 656−664. DOI: 10.2320/matertrans1960.27.656.
44. Saal J.E., Wolverton C. Energetics of antiphase boundaries in γ′ Co3(Al,W)-based superalloys. Acta Materialia, 2016, vol. 103, pp. 57−62. DOI: 10.1016/j.actamat.2015.10.007.
45. Epishin A., Chyrkin A., Nolze G., Midtlyng J., Mayer H.M., Petrushin N., Reimers W. Interdiffusion in the face-centered cubic phase of the Co−Al−W−Ta system between 1090 and 1240 °C. Journal of Phase Equilibria and Diffusion, 2018, vol. 39, pp. 176–185. DOI: 10.1007/s11669-018-0620-9.
46. Klein L., Bauer A., Neumeier S. et al. High temperature oxidation of γ/γ′-strengthened Co-base superalloys. Corrosion Science, 2011, vol. 53, pp. 2027−2034. DOI: 10.1016/j.corsci.2011.02.033.
47. Yan H.-Y., Vorontsov V.A., Dye D. Effect of alloying on the oxidation behavior of Co−Al−W superalloys. Corrosion Science, 2014, vol. 83, pp. 382−395. DOI: 10.1016/j.corsci.2014.03.002.
The article presents the main stages of development of wire arc cladding (WAAM) technology. The experience of using WAAM for various groups of materials (steel, nickel, titanium, aluminum and other alloys) is presented. The main problematic issues and methods for improving quality of workpieces obtained by WAAM technology are considered. Advantages of the technology are low labor intensity, high material utilization factor and productivity; the ability to synthesize and restore large-sized parts; less science-intensive production of wire compared to metal powders.
2. Kablov E.N., Evgenov A.G., Bakradze M.M., Nerush S.V., Krupnina O.A. New generation materials and digital additive technologies for the production of resource parts of FSUE «VIAM». Part 2. Compensation and control of deviations, GIP and heat treatment. Elektrometallurgiya, 2022, no. 2, pp. 2–12.
3. Kablov E.N., Evgenov A.G., Petrushin N.V., Bazyleva O.A., Mazalov I.S., Dynin N.V. New generation materials and digital additive technologies for the production of resource parts of FSUE «VIAM». Part 3. Adaptation and creation of materials. Elektrometallurgiya, 2022, no. 4, pp. 5–25.
4. Kablov E.N., Evgenov A.G., Petrushin N.V., Bazyleva O.A., Mazalov I.S. New generation materials and digital additive technologies for the production of resource parts of FSUE «VIAM». Part 4. Development of heat-resistant materials. Elektrometallurgiya, 2022, no. 5, pp. 8–19.
5. Khodykin L.G., Nyafkin A.N., Kosolapov D.V., Zhabin A.N. Laser welding of metal composite materials based on aluminium alloy reinforced with refractory particles SiC (review). Trudy VIAM, 2022, no. 12 (118), paper no. 06. Available at: http://www.viam-works.ru (accessed: July 23, 2024). DOI: 10.18577/2307-6046-2022-0-12-63-75.
6. Kablov E.N., Antipov V.V., Sviridov A.V., Gribkov М.S. Features of electron beam welding of heat-resistant alloys EI698-VD and EP718-ID with steel 45. Trudy VIAM, 2020, no. 9 (91), paper no. 01. Available at: http://www.viam-works.ru (accessed: August 02, 2024). DOI: 10.18577/2307-6046-2020-0-9-3-14.
7. Panteleev M.D., Sviridov A.V., Skupov A.A., Odintsov N.S. Perspective welding technologies of aluminum-lithium alloy V-1469 applied to fuselage panels. Trudy VIAM, 2020, no. 12 (94), paper no. 04. Available at: http://www.viam-works.ru (accessed: August 02, 2024). DOI: 10.18577/2307-6046-2020-0-12-35-46.
8. Panteleev M.D., Sviridov A.V., Nerush S.V., Bondarenko S.V., Mostyaev I.V. Weldability features of heat-resistant aluminum alloys. Trudy VIAM, 2023, no. 12 (130), paper no. 03. Available at: http://www.viam-works.ru (accessed: August 02, 2024). DOI: 10.18577/2307-6046-2023-0-12-28-37.
9. Benarieb I., Antipov V.V., Khasikov D.V., Oglodkov M.S., Savichev I.D., Kuznetsova P.E. Study of structure and properties of sparinly alloyed aluminum alloy of Al–Mg–Sc–Zr system, produced by selective laser melting. Aviation materials and technologies, 2023, no. 4 (73), paper no. 03. Available at: http://www.journal.viam.ru (accessed: August 02, 2024). DOI: 10.18577/2713-0193-2023-0-4-23-35.
10. Kolyadov E.V., Visik E.M., Gerasimov V.V., Bityutskaya O.N. Features of the morphology of the structure of nickel superalloy depending on the values of the axial and radial temperature gradients at the crystallization front. Aviation materials and technologies, 2024, no. 2 (75), paper no. 02. Available at: http://www.journal.viam.ru (accessed: August 02, 2024). DOI: 10.18577/2713-0193-2024-0-2-15-24.
11. Oglodkov M.S., Shchetinina N.D., Rudchenko A.S., Panteleev M.D. Directions of the develop-ment of promising aluminum-lithium alloys for aero-space engineering (review). Aviacionnye materialy i tehnologii, 2020, no. 1 (58), pp. 19–29. DOI: 10.18577/2071-9140-2020-0-1-19-29.
12. Skupov A.A., Sviridov A.V., Golev E.V., Stekolnikova E.Yu. Laser welding of heat-resistant alloy nickel base for gas turbine elements engines. Aviation materials and technologies, 2023, no. 4 (73), paper no. 01. Available at: http://www.journal.viam.ru (accessed: August 02, 2024). DOI: 10.18577/2713-0193-2023-0-4-3-13.
13. Ding J., Colegrove P., Mechnen J. et al. Thermo-mechanical analysis of wire and arc additive layer Manufacturing process on large multi-layer parts. Computational Materials Science, 2011, vol. 50, no.12, pp. 3315–3322.
14. Pattanayak S., Sahoo S.K. Gas metal arc welding based additive manufacturing ‒ a review. CIRP Journal of Manufacturing Science and Technology, 2021, no. 33, pp. 398–442. DOI: 10.1016/j.cirpj.2021.04.010.
15. Wu B., Pan Z., Ding D. et al. A review of the wire arc additive manufacturing of metals: Properties, defects and quality improvement. Journal of Manufacturing Processes, 2018, no. 35, pp. 127–139.
16. Spencer J., Dickens P., Wykes C. Rapid prototyping of metal parts by three-dimensional welding. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 1998, vol. 212, no. 3, pp. 175–182.
17. Wang Y., Chen X., Konovalov S.V. Additive manufacturing based on welding arc: a low-cost method. Journal of Surface Investigation: X-Ray, Synchrotron Neutron Technologies, 2017, no. 11, pp. 1317–1328. DOI: 10.1134/S1027451017060210.
18. Ding D., Pan Z., Cuiuri D., Li H. Wire-feed additive manufacturing of metal components: technologies, developments and future interests. The International Journal of Advanced Manufacturing Technologies, 2015, no. 81, pp. 465–481. DOI: 10.1007/s00170-015-7077-3.
19. Artaza T., Suarez A., Veiga F. et al. Wire arc additive manufacturing Ti6Al4V aeronautical parts using plasma arc welding: Analysis of heat-treatment processes in different atmospheres. Journal of Materials Research Technologies, 2020, no. 9, pp. 15454–15466. DOI: 10.1016/j.jmrt.2020.11.012.
20. Singh P., Dutta D. Multi-direction slicing for layered manufacturing. Journal of Computing and Informational Science in Engineering, 2001, no. 1, pp. 129–142. DOI: 10.1115/1.1375816.
21. Jafari D., Vaneker T.H.J., Gibson I. Wire and arc additive manufacturing: opportunities and challenges to control the quality and accuracy of manufactured parts. Material Design, 2021, vol. 202, no. 109471. DOI: 10.1016/j. matdes.2021.109471.
22. Ding D., Pan Z., Cuiuri D., Li H. A practical path planning methodology for wire and arc additive manufacturing of thin-walled structures. Robotics and Computer-Integrated Manufacturing, 2015, no. 34, pp. 8–19. DOI: 10.1016/j.rcim.2015.01.003.
23. Artaza T., Suarez A., Murua M. Wire arc additive manufacturing of Mn4Ni2CrMo steel: comparison of mechanical and metallographic properties of PAW and GMAW. Procedia Manufacturing, 2019, no. 41, pp. 1071–1078. DOI: 10.1016/j.promfg.2019.10.035.
24. Ahiale G.K., Oh Y.-J., Choi W.-D. et al. Microstructure and fatigue resistance of high strength dual phase steel welded with gas metal arc welding and plasma arc welding processes. Metals and Materials International, 2013, no. 19, pp. 933–939. DOI: 10.1007/s12540-013-5005-3.
25. Wu Q., Lu J., Liu C. et al. Obtaining uniform deposition with variable wire feeding direction during wire-feed additive manufacturing. Materials Manufacturing Processes, 2017, no. 32, pp. 1881–1886. DOI: 10.1080/10426914.2017.1364860.
26. Wu B., Ding D., Pan Z. et al. Effects of heat accumulation on the arc characteristics and metal transfer behavior in Wire Arc Additive Manufacturing of Ti6Al4V. Journal of Material Processing Technology, 2017, no. 250, pp. 304–312. DOI: 10.1016/j.jmatprotec.2017.07.037.
The article treats the five most commonly used methods for cutting products and structures made of polymer composite materials and provides the main advantages and disadvantages of each of them. This article also outlines the design features and principles of operation of each type of tool, with which the manufacture of standard test samples is carried out. The strength parameters and structure of carbon fiber plastics, which were made by different cutting methods, are given. Using the method of X-ray computed tomography, the analysis of the defective zone of the polymer composite material was carried out.
2. Rudskoy A.I. Technological heredity in the production and operation of structural materials. Tekhnologiya metallov, 2019, no. 2, pp. 2–10.
3. Davydova I.F., Kablov E.N., Kavun N.S. Heat-resistant non-flammable polyimide glass-fiber laminates for products of aviation and rocket technology. Vse materialy. Entsiklopedicheskiy spravochnik, 2009, no. 7, pp. 2–11.
4. Kablov E.N., Sagomonova V.A., Sorokin A.E., Tselikin V.V., Gulyaev A.I. Study of the structure and properties of a polymer composite material with an integrated vibration-absorbing layer. Vse materialy. Entsiklopedicheskiy spravochnik, 2020, no. 3, pp. 2–9.
5. Kudritsky V.G. Composite materials for friction units for space applications. Polimernye materialy i tekhnologii, 2022, vol. 8, no. 3, pp. 82–88.
6. Mikhailin Yu.A. Fibrous polymer composite materials in engineering. St. Petersburg: Nauchnye osnovy i tekhnologii, 2013, 720 p.
7. Lurye S.A., Mironov Yu.M., Nelyub V.A. et al. Modeling the dependencies of physical and mechanical characteristics on the parameters of the micro- and nanostructure of polymer composite materials. Nauka i obrazovanie, 2012, no. 6, p. 4. DOI: 10.7463/0612.0431339.
8. Petrova A.P., Malysheva G.V. Adhesives, adhesive binders and adhesive prepregs. Moscow: VIAM, 2017, 472 p.
9. Sleptsov V.V. Methods of mechanical processing of machine parts made of polymer composite materials (review). Novye materialy i tekhnologii v mashinostroyenii, 2021, no. 34, pp. 80–83.
10. Malysheva G.V., Guzeva, T.A., Fedorov B.B. Features of waterjet processing of fiberglass. Sovremennye naukoyemkie tekhnologii, 2018, no. 9, pp. 66–70.
11. Yudina E.V. Modern technologies for improving the efficiency and quality of mechanical processing of polymer composite materials used in rocket and space technology. Innovatsii. Nauka. Obrazovaniye, 2020, no. 22, pp. 323–332.
12. Golovanov D.S. Study of the influence of waterjet machining on parts made of polymer-composite materials. Vestnik RGATA im. P.A. Solovyeva, 2023, no. 1 (64), pp. 92–98.
13. Golovanov D.S., Mitin R.A., Tolkachev A.V. Influence of form-generating waterjet machining on combined materials: polymer-composite material – titanium alloy. Vestnik RGATA im. P.A. Solovyeva, 2023, no. 4 (67), pp. 45–48.
14. Bolotnikov I.S., Kosenko E.A. Methods and technological features of cutting polymer composite materials (review). Energy and resource-saving technologies and equipment in the road and construction industries: proc. Int. scientific-practical. conf. (September 23–25, 2021, Belgorod). Belgorod: BSTU named after V.G. Shukhov, 2021, рp. 19–25.
15. Verchenko A.V., Kurskaya I.A., Chigrinets E.G. Optimization of the process of waterjet cutting of workpieces from aviation materials. Vestnik Moskovskogo aviatsionnogo instituta, 2019, vol. 26, no. 1, рp. 212–229.
16. Golubeva K.R., Noskov A.I. Technologies for processing materials based on fiberglass. Naukoyemkie tekhnologii v mashinostroenii, 2021, no. 6 (120), pp. 24–28. DOI: 10.30987/2223-4608-2021-6-24-28.
17. Raskutin A.E., Khrulkov A.V., Girsh R.I. Technological features of machining of composite materials when manufacturing details of designs (review). Trudy VIAM, 2016, no. 9, paper no. 12. Available at: http://www.viam-works.ru (accessed: July 18, 2024). DOI: 10.18577/2307-6046-2016-0-9-12-12.
18. Pripisnov Ya.A., Grishina O.I. Modern methods of mechanical processing of composite materials (review). Trudy VIAM, 2018, no. 10 (70), paper no. 07. Available at: http://www.viam-works.ru (accessed: July 18, 2024). DOI: 10.18577/2307-6046-2018-0-10-53-61.
19. Dyshenko V.S., Donetskiy K.I., Minibaev M.I., Ablyaz T.R., Shlykov E.S., Shiryaev V.V. Methods of mechanical and electrical discharge machining of polymer composite materials (review). Trudy VIAM, 2018, no. 3 (109), paper no. 10. Available at: http://www.viam-works.ru (accessed: July 18, 2024). DOI: 10.18577/2307-6046-2022-0-3-102-120.
20. Khrulkov I.A., Gulyaev I.N., Mishkin S.I. Features of cutting polymer composite materials with diamond wheels (review). Trudy VIAM, 2022, no. 4 (110), paper no. 02. Available at: http://www.viam-works.ru (accessed: July 18, 2024). DOI: 10.18577/2307-6046-2022-0-4-22-31.
21. Grishchenko T.A., Melyukhov N.I., Lyubushkin V.O. Application of waterjet cutting in processing parts made of polymer composite materials. Vestnik Inzhenernoy shkoly Dalnevostochnogo federalnogo universiteta, 2017, no. 2 (31), pp. 49–55. DOI: 10.5281/zenodo.808901.
22. Makarov V.F., Meshkas A.E. Modern methods of mechanical processing of parts made of high-strength composite materials for aviation and rocket and space technology. Modern trends in metalworking technologies and designs of metalworking machines and components: interuniv. sci. coll. Ufa: Ufa State Aviation Tech. Univ., 2015, pp. 14–20.
23. Titov S.A., Ryzhova T.B., Vermel V.D. et al. Assessment of PCM damage during mechanical processing (milling, drilling) using acoustic microscopy. Proceedings of the V industry conf. on measuring equipment and metrology for aircraft research «KIMILA–2023» (October 17–18, 2023, Zhukovsky). Zhukovsky: TsAGI named after prof. N.E. Zhukovsky, 2023, рp. 292–299.
24. Kozhevnikov S.I., Makarov V.F. Theoretical studies of the influence of the milling trajectory of form-forming surfaces on the wear resistance of tooling. Avtomatizirovannoe proyektirovanie v mashinostroyenii, 2018, no. 6, pp. 117–120.
25. Dudarev A.S., Aleksutin A.S. Problems of modeling the milling process of polymer composite materials. Science, theory, practice of the aviation-industrial cluster of modern Russia: Reports V Int. Sci.-prod. conf., dedicated to the Day of Russian Science (February 06–07, 2020, Ulyanovsk). Ulyanovsk: USTU, 2020, pp. 48–56.
26. Polovnev D.I., Baurova N.I. Selection of methods of mechanical processing of polymer composite materials used in the production and repair of machines. Novye materialy i tekhnologii v mashinostroyenii, 2019, no. 29, pp. 77–80.
27. Sleptsov V.V. Assessment of the influence of processing technology on the quality of holes in machine parts made of polymer composite materials. Novye materialy i tekhnologii v mashinostroyenii, 2022, no. 36, pp. 113–116.
28. Geraskina M.E., Kazakova T.Yu., Nepomnyashchiy Yu.G. et al. Methods of cutting a curved surface of a reflector manufactured using RTM technology. Reshetnev readings: materials of the XXVI Int. scientific and practical. conf., dedicated to the memory of the general designer of rocket and space systems, academician M.F. Reshetnev (November 9–11, 2022, Krasnoyarsk). Krasnoyarsk: SSU of Science and Technology named after academician M.F. Reshetnev, 2022, part 1, pp. 20–23.
29. Lobanov D.V., Danilov P.G., Vladimirova N.A., Grigoriev A.N. Development of an experimental stand for studying the process of processing non-metallic composite materials. Aktualnye problemy v mashinostroenii, 2021, vol. 8, no. 3-4, pp. 87–98.
30. Dudarev A.S., Nechaeva E.V. Calculation of thermal stress in the process of cutting polymer composite materials with a carbide tool. Uchenye zapiski Krymskogo inzhenerno-pedagogicheskogo universiteta, 2022, no. 3 (77), pp. 152–156. DOI: 10.34771/UZCEPU.2022.77.3.029.
31. Dudarev A.S., Gumarov E.Kh. Study of thermophysics during diamond drilling of fibreglass and carbon fibre-reinforced polymer composites. Proceedings of Irkutsk State Technical University, 2021, vol. 25, no. 3, pp. 290–299. DOI: 10.21285/1814-3520-2021-3-290-299.
32. Usacheva A.O., Gopantsov D.N., Vakulin M.S., Kazakov I.S. Influence of geometric parameters of end mills on surface quality during high-speed processing of carbon fiber reinforced plastics. Technologies and equipment: ways of innovative development: Reports Int. scientific and technical conf. (June 9, 2023, Voronezh). Voronezh: VSTU, 2023, pp. 517–520.
33. Minibaev M.I., Usacheva M.N., Dyshenko V.S., Goncharov V.A. A device and tool for making sample from polymer composite materials on a CNC machine (review). Trudy VIAM, 2021, no. 4 (98), paper no. 08. Available at: http://www.viam-works.ru (accessed: July 22, 2024). DOI: 10.18577/2307-6046-2021-0-4-100-109.
34. Minibaev M.I., Raskutin A.E., Goncharov V.A. Peculiarities of technology production specimens of PCM on CNC machines (review). Trudy VIAM, 2019, no. 1 (73), paper no. 11. Available at: http://www.viam-works.ru (accessed: July 22, 2024). DOI: 10.18577/2307-6046-2019-0-1-105-114.
35. Noskov A.I., Gilmutdinov A.Kh., Asadullina A.R. Features of laser cutting of carbon polymer composite materials. Uspekhi prikladnoy fiziki, 2019, vol. 7, no. 2, pp. 155–164.
36. Yaresko S.I., Balakirov S.N. Modeling of a composite material for laser dimensional processing. Izvestiya Volgogradskogo gosudarstvennogo tekhnicheskogo universiteta, 2021, no. 3 (250), pp. 46–50. DOI: 10.35211/1990-5297-2021-3-250-46-50.
37. Eltawahni H.A., Olabi A.G., Basmage O.M., Benyounis K.Y. CO2 Laser Cutting of Glass Fiber-Reinforced Plastics. Encyclopedia of Renewable and Sustainable Materials, 2020, vol. 1, pp. 145–159.
38. Ablyaz T.R. Improving the efficiency of electrical discharge machining of special-purpose products with composite electrode tools. Materials, 2021, vol. 14, no. 20. DOI: 10.3390/ma14206105.
39. Ablyaz T.R., Shlykov E.S., Muratov K.R., Sidhu S.S. Analysis of wire-cut electro discharge machining of polymer composite materials. Micromachines, 2021, vol. 12, no. 5. DOI: 10.3390/mi12050571.
40. Hsissou R., Benkhaya S., Elharfi A. et al. New epoxy composite polymers as a potential anticorrosive coatings for carbon steel in 3.5% NaCl solution: Experimental and computational approaches. Chemical Data Collections, 2021, vol. 31, p. 100619. DOI: 10.1016/j.cdc.2020.100619.
41. Hsissou R., Bekhta A., Rafik M. et al. Rheological properties of composite polymers and hybrid nanocomposites. Heliyon, 2020, vol. 6, no. 6, p. e187. DOI: 10.1016/j.heliyon.2020.e04187.
42. Thomason J. A review of the analysis and characterisation of polymeric glass fibre sizings. Polymer Testing, 2020, vol. 85, p. 106421. DOI: 10.1016/j.polymertesting.2020.106421.
43. Kablov E.N., Laptev A.B., Prokopenko A.N., Gulyaev A.I. Relaxation of polymeric composite materials under the prolonged action of static load and climate (review). Part 1. Binders. Aviation materials and technologies, 2021, no. 4 (65), paper no. 08. Available at: http://www.journal.viam.ru (accessed: July 18, 2024). DOI: 10.18577/2713-0193-2021-0-4-70-80.
44. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
The main operational properties of the thermal and sound insulation material of the VTI-29 brand were studied, including: density, sound absorption coefficient, thermal conductivity coefficient, mass loss after 168 hours at a temperature of 70 °C, sorption humidity after 30 days at a temperature of 22±5 °C and relative air humidity φ = 98 %, residual combustion time and burnout length. It was established that the thermal and sound insulation material of the VTI-29 brand is comparable to Microlite AA blankets and ATM-1 materials, while in terms of density, sound absorption coefficient and sorption humidity, it surpasses them.
2. Kablov E.N., Grashchenkov D.V., Isaeva N.V., Solntsev S.S., Sevastyanov V.G. Glass and Ceramics Based High-Temperature Composite Materials for use in Aviation Technology. Glass and Ceramics, 2012, vol. 69, no. 3–4, p. 109–112.
3. Kablov E.N., Shuldeshov E.M., Petrova A.P., Lapteva M.A., Sorokin A.E. Dependence of complex of sound-proof VZMK type material properties on concentration of hydrophobizing composition on the basis of organosilicon sealant. Aviacionnye materialy i tehnologii, 2020, no. 2 (59), pp. 41–49. DOI: 10.18577/2071-9140-2020-0-2-41-49.
4. Barinov D.Ya., Marakhovskij P.S., Zuev A.V. Mathematical modeling of destruction of fiberglass-based thermal-protection material. Aviacionnye materialy i tehnologii, 2020, no. 4 (61), pp. 71–78. DOI: 10.18577/2071-9140-2020-0-4-71-78.
5. Zuev A.V., Zarichnyak Yu.P., Barinov D.Ya., Krasnov L.L. Measurement of thermophysical properties of flexible thermal insulation. Aviation materials and technology, 2021, no. 1 (62), paper no. 11. Available at: http://www.journal.viam.ru (accessed: July 22, 2024). DOI: 10.18577/2713-0193-2021-0-1-119-126.
6. Osnos S.P. Application of materials based on basalt fibers in the aerospace industry. Kompozitnyy mir, 2015, no. 4 (61), pp. 72–79.
7. Babashov V.G., Bespalov A.S., Istomin A.V., Varrik N.M. Heat and sound insulating material made using plant raw materials. Novye ogneupory, 2017, no. 3, pp. 173‒178.
8. Kablov E.N. Materials for «Buran» spaceship – innovative solutions of formation of the sixth technological mode. Aviacionnye materialy i tehnologii, 2013, no. S1, pp. 3–9.
9. Device for producing non-woven thermal insulation material: pat. 2817837 Rus. Federation; appl. 20.07.23; publ. 22.04.24.
10. Boynovich L.B., Domantovsky A.G., Emelyanenko A.M. et al. Anti-icing properties of superhydrophobic coatings on aluminum and stainless steel. Izvestiya Akademii nauk. Ser.: Chemical, 2013, no. 2, pp. 383–390.
11. Kondrashov E.K., Nefedov N.I., Vereninova N.P. et al. Modification of fluorocopolymer coatings by telomers to improve their hydrophobicity. Polymer Science. Series D, 2016, vol. 9, no. 2, pp. 212–218.
12. Antipov V.V., Salimov I.E., Bespalov A.S., Babashov V.G. Study of the influence of the composition of the binder on the density, physica-mechanical and hydrophobic properties of heat-sound insulation material. Trudy VIAM, 2024, no. 9 (139), paper no. 03. Available at: http://www.viam-works.ru (accessed: November 15, 2024.). DOI: 10.18577/2307-6046-2024-0-9-25-32.
13. Shashkeev K.A., Shuldeshov E.M., Popkov O.V., Kraev I.D., Yurkov G.Yu. Porous sound-absorbing materials (review). Trudy VIAM, 2016, no. 6, paper no. 06. Available at: http://www.viam-works.ru (accessed: January 15, 2024.). DOI: 10.18577/2307-6046-2016-0-6-6-6.
14. Orlov A.V., Chursova L.V., Grebeneva T.A., Panina N.N. Flame retardants for creating flame retardant and fireproof polymer composite materials. Klei. Germetiki. Tekhnologii, 2022, no. 1, pp. 23–30. DOI: 10.31044/1813-7008-2022-0-1-23-30.
15. Kan A.Ch., Zhelezina G.F., Kulagina G.S., Ayupov T.R. Fire safety of structural organic plastics reinforced with aramid fabrics. Aviation materials and technologies, 2022, no. 4 (69), paper no. 05. Available at: http://www.journal.viam.ru (accessed: July 23, 2024). DOI: 10.18577/2713-0193-2022-0-4-51-60.
The complex estimation of combustibility of smoke formation and toxicity of carbon fiber-reinforced plastic of mark VKU-59 on the basis of adhesive prepreg of mark KMKU-6.80.UV and glass fiber-reinforced plastic of mark VPS-68 on the basis of adhesive prepreg of mark KMKS-6.80.T60(VMP), as well as three-layer honeycomb structures on their basis to the requirements of aviation norms has been carried out. According to the results of tests of carbon fiber-reinforced plastic of mark VKU-59, fiberglass plastic of mark VPS-68, and honeycomb structures on their basis for combustibility, full compliance with the requirements of aviation standards was established.
2. Kablov E.N., Chursova L.V., Babin A.N., Mukhametov R.R., Panina N.N. Developments of FSUE VIAM in the field of melt binders for polymer composite materials. Polimernye materialy i tekhnologii, 2016, vol. 2, no. 2, pp. 37–42.
3. Kablov E.N. What to make the future of? New generation materials, technologies for their creation and processing – the basis of innovations. Krylya Rodiny, 2016, no. 5, pp. 8–18.
4. Aviation materials: handbook in 13 vols. Ed. by E.N. Kablov. 7th ed., rev. and add. Moscow: VIAM, vol. 10: Adhesives, sealants, rubbers, hydraulic fluids, part 1: Adhesives, adhesive prepregs, 2019, 276 p.
5. Vavilova M.I., Kavun N.S. The properties of glass filler for constructions of fiberglass. Aviacionnye materialy i tehnologii, 2014, no. 3, pp. 33–37. DOI: 10.18577/2071-9140-2014-0-3-33-37.
6. Volnov O.I., Dudukin D.O. Fiberglass. History of development, production technology, shaping of parts and modern application. Trudy NGTU im. R.E. Alekseyeva, 2014, no. 5 (107), pp. 400–404.
7. Kurnosov A.O., Melnikov D.A., Sokolov I.I. Structural glass-reinforced plastics purposed for aviation industry. Trudy VIAM, 2015, no. 8, paper no. 08. Available at: http://www.viam-works.ru (accessed: July 25, 2024). DOI: 10.18577/2307-6046-2015-0-8-8-8.
8. Bolshakov V.A., Antyufeeva N.V. Evaluation of the curing process model of the adhesive binder in prepreg. Aviation materials and technologies, 2023, no. 4 (73), paper no. 07. Available at: http://www.journal.viam.ru (accessed: November 20, 2024). DOI: 10.18577/2713-0193-2023-0-4-66-77.
9. Antyufeeva N.V., Starkov A.I. The influence of the content of halogen-containing oligomer in the composition of VSK-14-6 adhesive binder on the kinetics of the curing process of prepregs on different fillers and a comparative analysis of the curing kinetics of prepregs based on VSK-14-1 adhesive binder. Polymer science. Series D, 2023, vol. 16, no. 4, pp. 882–891.
10. Petrova A.P., Malysheva G.V. Adhesives, adhesive binders and adhesive prepregs: textbook. Ed. E.N. Kablov. Moscow: VIAM, 2017, 472 p.
11. Perov N.S. Design of polymeric materials on the molecular principles. II. The molecular mobility in the cross-linked complex systems. Aviacionnye materialy i tehnologii, 2017, no. 4 (49), pp. 30–36. DOI: 10.18577/2071-9140-2017-0-4-30-36.
12. Isaev A.Yu., Rubtsova E.V., Kotova E.V., Sutyagin M.N. Research of properties of glues and glue binding, made with use of modern domestic component base. Trudy VIAM, 2021, no. 3 (97), paper no. 05. Available at: http://www.viam-works.ru (accessed: October 18, 2024). DOI: 10.18577/2307-6046-2021-0-3-58-67.
13. Lukina N.Ph., Petrova A.P., Muhametov R.R., Kogtеnkov A.S. New developments in the field of adhesive aviation materials. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 452–459. DOI: 10.18577/2071-9140-2017-0-S-452-459.
14. Borshchev A.V., Gusev Yu.A. Polymer composite materials in automotive industry. Aviacionnye materialy i tehnologii, 2014, no. S2, pp. 34–38. DOI: 10.18577/2071-9140-2014-0-s2-34-38.
15. Nacharkina A.V., Zelenina I.V., Valueva M.I., Barbotko S.L. Fire safety of high-temperature carbon fiber reinforced plastics for aviation purposes (review). Trudy VIAM, 2022, no. 7 (113), paper no. 12. Available at: http://www.viam-works.ru (accessed: July 25, 2024). DOI: 10.18577/2307-6046-2022-0-7-134-150.
16. Kutsevich K.E., Dementeva L.A., Lukina N.F., Tyumeneva T.Yu. Adhesive prepregs as promising materials for parts and assemblies from polymeric composite materials. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 379–387. DOI: 10.18577/2071-9140-2017-0-S-379-387.
17. Starkov A.I., Kutsevich K.E., Tyumeneva T.Yu., Petrova A.P. Low-combustibility adhesive prepregs designed for the manufacture of integral and three-layer honeycomb structures aircraft technology. Trudy VIAM, 2022, no. 5 (111), paper no. 04. Available at: http://www.viam-works.ru (accessed: October 18, 2024). DOI: 10.18577/2307-6046-2022-0-5-41-52.
18. Malakhovsky S.S., Panafidnikova A.N., Kostromina N.V., Osipchik V.S. Carbon fiber reinforced plastics in the modern world: their properties and applications. Uspekhi v khimii i khimicheskoy tekhnologii, 2019, vol. XXXIII, no. 6, pp. 62–64.
19. Malysheva G.V., Grashchenkov D.V., Guzeva T.A. Evaluation of technological use efficiency of adhesives and glue prepregs in the manufacture of three-layer panels. Aviacionnye materialy i tehnologii, 2018, no. 4 (53), pp. 26–30. DOI: 10.18577/2071-9140-2018-0-4-26-30.
20. Barbotko S.L., Volny O.S., Kiriyenko O.A., Shurkova E.N. Features of testing aviation materials for fire hazard. Part 2. Combustibility tests. Effect of burner flame exposure duration. Pozharovzryvobezopasnost, 2015, vol. 24, no. 3, pp. 13–23.
21. Harmful substances in industry: in 20 vols. 5th ed., stereotyped. Moscow–Leningrad: Khimiya, 1965, vol. 2. Inorganic and organoelement compounds, 620 p.
The second part of the article series on climatic aging of paint coating systems shows the difference in the change in the color distance of aluminum alloy samples with applied epoxy and fluoropolyurethane enamels with red and gray pigments when exposed to climatic zones of moderate, moderately warm and dry subtropical climates. The article provides the calculation of parameters of the time exponential model describing the change in the color distance. As a result there has been found a significant difference in the change in the color distance in moderate and moderately warm climate from the same indicators of a dry subtropical climate.
2. Erofeev V.T., Smirnov I.V., Voronov P.V., Afonin V.V., Kablov E.N. et al. Study of the resistance of polymer coatings under the influence of climatic factors of the Black Sea coast. Fundamentalnye issledovaniya, 2016, no. 11, рр. 911–924.
3. Zhang Ti., Zhang Te., He Y. et al. Corrosion and aging of organic aviation coatings: A review. Chinese Journal of Aeronautics, 2023, vol. 36, no. 4, pp. 1–35.
4. Lebedev M.P., Startsev O.V., Koval T.V., Veligodskiy I.M. Multiplet relaxation α-transitions in a fluororethane coating after climatic aging. Doklady Rossiyskoy akademii nauk. Khimiya, nauki o materialakh, 2024, vol. 516, no. 1, pp. 45–51.
5. Startsev O.V., Makhonkov A.Yu., Deev I.S., Nikishin E.F. Study of aging of KMU-4L carbon fiber reinforced plastic after 12 years of exposure on the International Space Station using the method of dynamic mechanical analysis. 2. Effect of plate location in multilayer stacks. Voprosy materialovedeniya, 2013, no. 4, pp. 69–76.
6. Startsev O.V., Bolonin A.B., Vapirov Yu.M. et al. Improving the viscoelastic properties of acrylic enamel AC-1115. Lakokrasochnye materialy i ikh primenenie, 1986, no. 4, pp. 16–18.
7. Startsev O.V., Medvedev I.M., Krotov A.S., Panin S.V. Dependence of the surface temperature of samples on the climate characteristics during exposure under natural conditions. Korroziya: materialy, zashchita, 2013, no. 7, pp. 43–47.
8. Startsev O.V., Koval T.V., Krotov A.S., Veligodsky I.M. Modeling of moisture desorption from carbon fiber with protective coatings after long-term climatic aging. Korroziya: materialy, zashchita: Supplement to the journal «Tekhnologiya metallov», 2024, no. 17, pp. 1–10.
9. Kuznetsova V.A., Yemelyanov V.V., Shapovalov G.G., Kovrizhkina N.A. Use of modifiers for increase of operational properties of paint coatings on the basis of the epoxy film-forming (review). Trudy VIAM, 2021, no. 12 (106), paper no. 08. Available at: http://www.viam-works.ru (accessed: December 23, 2024). DOI: 10.18577/2307-6046-2021-0-12-63-72.
10. Kuznetsova V.A., Timoshina E.A., Shapovalov G.G., Zheleznyak V.G. Trends in the development of matte wear-resistant paint coatings. Trudy VIAM, 2023, no. 10 (128), paper no. 12. Available at: http://www.viam-works.ru (accessed: December 23, 2024). DOI: 10.18577/2307-6046-2023-0-10-132-144.
11. Merkulova Yu.I., Kuznetsova V.A., Kodachenko E.N., Zheleznyak V.G. Study of the influence of the primer layer’s chemical nature on the properties of the coating system based on fluoropolyurethane enamel. Aviation materials and technologies, 2022, no. 1 (66), paper no. 09. Available at: http://www.journal.viam.ru (ассеssed: December 23, 2024). DOI: 10.18577/2713-0193-2022-0-1-110-119.
12. Merkulova Yu.I., Kurshev E.V., Vdovin A.I., Andreeva N.P. Microstructural and electrochemical studies of paint coatings under natural climate tests of tropical climate of North America. Aviation materials and technologies, 2022, no. 2 (67), paper no. 11. Available at: http://www.journal.viam.ru (accessed: December 23, 2024). DOI: 10.18577/2713-0193-2022-0-2-120-130.
13. Dao P.H., Nguen A.H., Mac V.P. et al. Aging of waterborne paint based on the acrylic resin emulsion and organic pigment. Vietnam Journal of Science and Technology, 2018, vol. 56, no. 3B, art. 126.
14. Guerguer M., Naamane S., Edfouf Z. et al. Chemical degradation and color changes of paint protective coatings used in solar glass mirrors. Coatings, 2021, vol. 11, no. 4, art. 476.
15. Knudsen O.Ø., Skilbred A.W.B., Løken A. et al. Correlations between standard accelerated tests for protective organic coatings and field performance. Materials Today Communications, 2022, vol. 31, art. 103729.
16. Bierwagen G.P., He L., Li J. et al. Studies of a new accelerated evaluation method for coating corrosion resistance – thermal cycling testing. Progress in Organic Coatings, 2000, vol. 39, no. 1, pp. 67–78.
17. Li S., Be H., Weinell C.E. et al. A quantitative real-time evaluation of rust creep propagation in coating systems exposed to field testing and cyclic ageing test. Progress in Organic Coatings, 2023, vol. 184, art. 107866.
18. Pélissier K., Le Bozec N., Thierry D. et al. Evaluation of the Long-Term Performance of Marine and Offshore Coatings System Exposed on a Traditional Stationary Site and an Operating Ship and Its Correlation to Accelerated Test. Coatings, 2022, vol. 12, no. 11, art. 1758.
19. LeBozec N., Thierry D., Le Calvé P. et al. Performance of marine and offshore paint systems: Correlation of accelerated corrosion tests and field exposure on operating ships. Materials and Corrosion, 2015, vol. 66, no. 3, pp. 215–225.
20. Momber A.W., Buchbach S., Plagemann P. et al. Edge coverage of organic coatings and corrosion protection over edges under simulated ballast water tank conditions. Progress in Organic Coatings, 2017, vol. 108, pp. 90–92.
21. Pavlenko V., Manuylov V., Kuzhel V. et al. Research on testing methods for the corrosion resistance of paint coatings. Journal of Mechanical Engineering and Transport, 2024, vol. 18, no. 2, pp. 127–133.
22. Revin P.O., Makarenko A.V., Harisov R.A. et al. Research of underwater applied coatings for corrosion protection of port facilities. Science and Technologies: Oil and Oil Products Pipeline Transportation, 2022, vol. 12, no. 4, pp. 385–393.
23. Saha J.K., Mitra P.K., Pau S. et al. Performance of different organic coatings on steel substrate by accelerated and in atmospheric exposure tests. Indian Journal of Chemical Technology, 2010, vol. 17, no. 2, pp. 102–110.
24. Chu M.T., Do D.T., Sereda V.N. et al. Correlation between climate testing methods and service life prediction for paint systems. International Journal of Corrosion and Scale Inhibition, 2023, vol. 12, no. 3, pp. 1363–1373.
25. Gao J., Hu W., Wang R. et al. Study on a multifactor coupling accelerated test method for anticorrosive coatings in marine atmospheric environments. Polymer Testing, 2021, vol. 100, art. 107259.
26. Startsev V.O. Methods for studying the aging of polymer binders. Klei. Germetiki. Tekhnologii, 2020, no. 9, pp. 16–26.
27. Startsev V.O., Molokov M.V., Startsev O.V. et al. The effect of the aliphatic diluent ETAL-1 on the climatic resistance of epoxy polymers based on ED-20 resin. Vse materialy. Entsiklopedicheskiy spravochnik, 2016, no. 12, рp. 26–36.
28. Startsev V.O., Kogan A.M., Zeleneva T.O. Climate aging of paint coating systems. Part 1. Effect of long-term exposure on color characteristics. Trudy VIAM, 2025, no. 5 (147), paper no. 08. Available at: http://www.viam-works.ru (accessed: May 19, 2025). DOI: 10.18577/2307-6046-2025-0-5-99-111.
29. Startsev V.O., Nizina T.A. The modeling of epoxy polymers weathering by the color characteristics measurements. Trudy VIAM, 2015, no. 12, paper no. 10. Available at: http://www.viam-works.ru (accessed: December 23, 2024). DOI: 10.18577/2307-6046-2015-0-12-10-10.
The article treats the possibility of estimation of specific defects occurring in carbon-carbon composite materials by eddy current method of nondestructive testing. With the help of the developed mathematical model of electromagnetic field distribution, there has been analyzed the influence of the range of parameters on the estimation of the defects’ depth including the diameter of the absolute transformer overhead eddy current converter and the frequency of the excitation current on the estimation of the depth of such defects, as well as the influence of the defect orientation relative to the surface. The article analyzes sensitivity of defect depth estimation for different values of excitation current frequency and transducer diameter. The possibility of large defects estimation is confirmed by means of tests on specimens-simulators with kerfs of different depth made of carbon-carbon material.
2. Garshin A.P., Nilov A.S., Galinskaya O.O., Krasnov V.I. Prospects for development and ways to improve aircraft braking systems on the base ceramic matrix composite materials (review). Aviation materials and technologies, 2023, no. 2 (71), paper no. 09. Available at: http://www.journal.viam.ru (accessed: October 20, 2024). DOI: 10.18577/2713-0193-2023-0-2-104-121.
3. Kablov E.N., Chursova L.V., Babin A.N., Mukhametov R.R., Panina N.N. Developments of FSUE VIAM in the field of melt binders for polymer composite materials. Polimernye materialy i tekhnologii, 2016, vol. 2, no. 2, pp. 37–42.
4. Startsev V.O., Antipov V.V., Slavin A.V., Gorbovets M.A. Modern domestic polymer composite materials for aviation industry (review). Aviation materials and technologies, 2023, no. 2 (71), paper no. 10. Available at: http://www.journal.viam.ru (accessed: October 20, 2024). DOI: 10.18577/2713-0193-2023-0-2-122-144.
5. Kablov E.N., Laptev A.B., Prokopenko A.N., Gulyaev A.I. Relaxation of polymeric composite materials under the prolonged action of static load and climate (review). Part 1. Binders. Aviation materials and technologies, 2021, no. 4 (65), paper no. 08. Available at: http://www.journal.viam.ru (accessed: October 20, 2024). DOI: 10.18577/2713-0193-2021-0-4-70-80.
6. Chertishchev V.Yu. The estimation of the probability of defects detection by the acoustic methods, depending on their size in constructions from PCM for output control data in the form of binary. Aviaсionnye materialy i tehnologii, 2018, no. 3, pp. 65–79. DOI: 10.18577/2307-6046-2018-0-3-65-79.
7. Kenigfest A.M., Kramarenko E.I., Kulakov V.V. et al. Carbon-carbon friction materials for brake systems of automobiles and other modern equipment. Trenie i smazka v mashinakh i mekhanizmakh, 2008, no. 5, pp. 32–34.
8. Kulakov V.V., Shmelev D.S., Ivanova A.N., Golubkov A.K. Design features of carbon-carbon composites for friction purposes, manufactured by the aerodynamic method, based on discrete fibers. Mekhanika kompozitsionnykh materialov i konstruktsiy, 2021, vol. 27, no. 2, pp. 261–271.
9. Kablov E.N., Kondrashov S.V., Yurkov G.Yu. Prospects for the use of carbon-containing nanoparticles in binders for polymer composite materials. Rossiyskie nanotekhnologii, 2013, vol. 8, no. 3–4, pp. 24–42.
10. Sidorina A.I. Woven metal-carbon reinforcing fillers for PCM. Aviation materials and technologies, 2023, no. 3 (72), paper no. 08. Available at: http://www.journal.viam.ru (accessed: October 20, 2024). DOI: 10.18577/2713-0193-2023-0-3-101-113.
11. Agarwal N., Rangamani A., Bhavsar K., Virnedkar S.S. An overview of carbon-carbon composite materials and their applications. Frontiers in Materials, 2024, vol. 11, pp. 1–21.
12. Scarponi C. Carbon-carbon composites in aerospace engineering. Advanced Composite Materials Aerospace Engineering. Eds. S. Rana, R. Fanguero. Woodhead Publishing, Elsevier, 2016, pp. 385–412. DOI: 10.1016/b978-0-08-100037-3.
13. Charitidis J.P. Theoretical Review for Non-Destructive Techniques of Composite Materials. International Research Journal of Advanced Engineering and Science, 2024, vol. 9, is. 2, pp. 127–136.
14. James R., Haider M., Giurgiutio V., Lilienthal D. A simulative and experimental approach toward eddy current nondestructive evaluation of manufacturing flaws and operational damage in CFRP composite. Nondestructive evaluation, diagnostics and prognostics of engineering systems, 2019, vol. 3, pp. 1–14.
15. Gerasimov V.G., Klyuev V.V., Shaternikov V.E. Methods and devices of electromagnetic control. Ed. V.E. Shaternikov. Moscow: Spectr, 2010, 256 p.
16. Gerasimov V.G., Pokrovsky A.D., Sukhorukov V.V. Non-destructive testing: a practical guide in 5 books. Ed. V.V. Sukhorukov. Moscow: Vysshaya shkola, 1992, book 3: Electromagnetic testing, 312 p.
17. Shkatov P.N., Ermolaev A.A., Khvostov A.A. Improving the efficiency of eddy current testing of carbon-fiber objects by increasing sensitivity to the orientation of carbon fibers. Pribory, 2022, no. 4 (262), pp. 10–15.
18. Bowler J.R., Theodoulidis T.P., Poulakis N. Eddy current probe signals due to a crack at a right-angled corner. IEEE Transactions on magnetics, 2012, vol. 45, pp. 4735–4746.
19. Shitikov V.S., Kodak N.P., Golovkov A.N., Kudinov I.I. Application of the eddy current testing method in the manufacture of samples with artificial defects. Elektrometallurgiya, 2023, no. 2. pp. 23–31. DOI: 10.31044/1684-5781-2023-0-2-23-31.
20. Shitikov V.S., Kodak N.P., Golovkov A.N., Kudinov I.I. Analysis of the features of testing parts made of titanium and heat-resistant alloys for cracks by the eddy current method. Elektrometallurgiya, 2020, no. 8, pp. 20–29. DOI: 10.31044/1684-5781-2020-0-8-20-29.
Titanium has high melting point, low density and high mechanical properties, therefor it finds broad application in space engineering. The fire hazard characteristics of titanium, relevance of performed works and experimental methods of assessment are analyzed. It is established that there are no standardized test methods on fire hazard for samples of titanium alloys, as a result the obtained results are incomparable. The main requirements to which there has to correspond the test stand intended for assessment of fire hazard of samples made of titanium alloys are analyzed.
2. Kablov E.N. Materials for Aerospace Engineering. Vse materialy. Entsiklopedicheskiy spravochnik, 2007, no. 5, pp. 7–27.
3. Kablov E.N. Quality Control of Materials – a Guarantee of Safe Operation of Aviation Equipment. Aviatsionnye materialy i tekhnologii, 2001, no. 1, pp. 3–8.
4. Perelman V.I. Brief Handbook of a Chemist. Moscow: State Sci. Publ. House of Chemical Literature, 1951. 676 p.
5. Aviation Materials and Technologies. Ed. by E.N. Kablov. Moscow: VIAM, 2007, is.: Combustion and Fire Safety of Titanium Alloys, 80 p.
6. Nochovnaya N.A., Alekseev E.B., Izotova A.Yu., Novak A.V. Fire-safe titanium alloys and features of their application. Titan, 2012, no. 4 (38), pp. 42–46.
7. Bai A.S., Lainer D.I., Slesareva E.N., Tsypin M.I. Oxidation of titanium and its alloys. Moscow: Metallurgiya, 1970, 320 p.
8. Pokhil P.F., Belyaev A.F., Frolov Yu.V., Logachev V.S., Korotkov A.I. Combustion of powdered metals in active environments. Moscow: Nauka, 1972, 294 p.
9. Fox D.G. Investigation of Titanium Combustion Characteristics and Suppression Techniques: Report AFAPL-TR-75-73 Air Force Aero-Propulsion Laboratory, 1976, 66 p. Available at: https://www.fire.tc.faa.gov/pdf/fsr-0350.pdf (accessed: December 02, 2024).
10. Sarkos С.P. Titanium Fuselage Environmental Conditions in Post-Crash Fires: Technical Report FAA-RD-71-3 (FAA-NA-71-2). FAA, US, 1971, 74 p. Available at: https://www.fire.tc.faa.gov/pdf/rd71-3.pdf (accessed: December 02, 2024).
11. Sarkos С.P. Small-scale fire tests of high-temperature cabin pressure sealant and insulating materials: Report FAA-RD-71-67. Federal Aviation Administration. National Aviation Facilities Experimental Center, 1971. 35 p. Available at: https://www.fire.tc.faa.gov/pdf/rd71-67.pdf (accessed: December 02, 2024).
12. Certification Specifications and Acceptable Means of Compliance for Large Aeroplanes. CS 25. Amendment 28. 1515 p. Available at: https://www.easa.europa.eu/en/document-library/certification-specifications/group/cs-25-large-aeroplanes#cs-25-large-aeroplanes (accessed: December 02, 2024).
13. Titanium fire: Rosaviatsia named the reasons for the Tu-204 engine failure in flight. Available at: http://www.vesti.ru/doc.html?id=3052737 (accessed: December 02, 2024).
14. Barbotko S.L., Volny O.S., Kiriyenko O.A., Shurkova E.N. Analysis of the main areas of research carried out by foreign organizations involved in fire safety of aviation equipment and aerospace materials (review). Problemy bezopasnosti poletov, 2018, no. 2, pp. 3–35.
15. Uihlein T., Schlegel H. Titanium Fire In Jet Engines. Available at: http://www.fire.tc.faa.gov/pdf/fsr-0457.pdf (accessed: December 02, 2024).
16. Antipov V.V. Prospects for development of aluminium, magnesium and titanium alloys for aerospace engineering. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 186–194. DOI: 10.18577/2071-9140-2017-S-186-194.
17. Arislanov A.A., Goncharova L.J., Nochovnaya N.А., Goncharov V.A. Prospects for the use of titanium alloys in laminated composite materials. Trudy VIAM, 2015, no. 10, paper no. 04. Available at: http://www.viam-works.ru (accessed: December 02, 2024) DOI: 10.18577/2307-6046-2015-0-10-4-4.
18. Doronin O.N., Gorlov D.S., Azarovsky E.N., Kochetkov A.S. Study of the structure and properties of a heat-resistant coating at high-temperature deformation of samples from titanium intermetallic alloy. Aviation materials and technology, 2021, no. 1 (62), paper no. 06. Available at: http://www.journal.viam.ru (accessed: December 16, 2024). DOI: 10.18577/2013-0193-2021-0-1-61-70.
19. Nochovnaya N.A., Panin P.V., Kochetkov A.S., Bokov K.A. VIAM experience in the field of development and research of economically alloyed titanium alloys of new generation. Trudy VIAM, 2016, no. 9, paper no. 05. Available at: http://www.viam-works.ru (accessed: December 02, 2024). DOI: 10.18577/2307-6046-2016-0-9-5-5.
20. Kashapov O.S., Pavlova T.V., Kalashnikov V.S., Zavodov A.V. Prerequisites for the development of new low-alloyed technological medium strength titanium alloy with operating temperature up to 400–450 °С, capable of strengthening. Aviation materials and technologies, 2024, no. 1 (74), paper no. 03. Available at: http://www.journal.viam.ru (accessed: December 16, 2024). DOI: 10.18577/2713-0193-2024-0-1-33-50.
21. Putyrskiy S.V., Plokhikh А.I., Arislanov А.A., Naprienko S.A., Anisimova A.Yu. Study of structure and mechanical properties of the laminar structure material based on titanium alloys VT1-0 and VT47. Aviation materials and technologies, 2023, no. 2 (71), paper no. 03. Available at: http://www.journal.viam.ru (accessed: December 16, 2024). DOI: 10.18577/2713-0193-2023-0-2-36-50.
22. Barbotko S.L., Volny O.S., Kiriyenko O.A., Shurkova E.N. Fire safety assessment of polymeric materials for aviation purposes: analysis of the state, test methods, development prospects, methodological features. Ed. E.N. Kablov. Moscow: VIAM, 2018, 424 p.
23. Barbotko S.L., Kiriyenko O.A., Volny O.S., Lutsenko A.N. Fire hazard analysis of aircraft engine nacelles and other fire hazardous areas; fire testing methods used for materials and structural elements for compliance with aviation standards. Problemy bezopasnosti poletov, 2017, no. 5, pp. 3–24.
24. Barbotko S.L., Volny O.S., Veshkin E.A., Goncharov V.A. Assessment of fire resistance of materials and structural elements for aviation equipment. Aviatsionnaya promyshlennost, 2018, no. 2, pp. 63–67.
25. Stobridge Th.R., Moulder J.C., Clark A.F. Titanium Combustion in turbine Engines: Report FAA-RD-79-51. NBSIR 79-1616, NBS, 1979, 137 p. Available at: https://nvlpubs.nist.gov/nistpubs/Legacy/IR/nbsir79-1616.pdf (accessed: December 02, 2024).
26. Chernenko E.V., Griva V.A., Rozenband V.I. Study of the flammability patterns of titanium powders. Fizika goreniya i vzryva, 1982, vol. 18, no. 5, pp. 20–26.
27. Bakhman N.N., Kuznetsov G.P., Puchkov V.M. Combustion of titanium plates. Fizika goreniya i vzryva, 2000, vol. 36, no. 4, pp. 60–65.
28. Bolobov V.I. Mechanism of Self-Ignition of Titanium Alloys in Oxygen. Combustion, Explosion, and Shock Waves, 2002, vol. 38, no. 6, pp. 639–645.
29. Belousova N.S., Glotov O.G., Guskov A.V. Study of titanium particle combustion. Aktualnye problemy aviatsii i kosmonavtiki, 2017, vol. 1, pp. 276–278.
30. Glotov O.G. Ignition and combustion of titanium particles. Experimental research methods and results. Uspekhi fizicheskikh nauk, 2019, vol. 189, no. 2, pp. 135–171. DOI: 10.3367/UFNr.2018.04.038349.
31. Kablov E.N., Kashapov O.S., Medvedev P.N., Pavlova T.V. Study of a α+β-titanium alloy based on a system of Ti–Al–Sn–Zr–Si–β-stabilizing alloying elements. Aviacionnye materialy i tehnologii, 2020, no. 1 (58), pp. 30–37. DOI: 10.18577/2071-9140-2020-0-1-30-37.
32. Nochovnaya N.A., Nikitin Ya.Yu., Grigorenko V.B., Kozlov I.A. Changes in the surface properties of titanium alloy VT20 in the chemical removal of operational carbon pollution. Trudy VIAM, 2017, no. 10 (58), paper no. 05. Available at: http://www.viam-works.ru (accessed: December 02, 2024). DOI: 10.18577/2307-6046-2017-0-10-5-5.
Heat-resistant alloys and steels
Sevalnev G.S., Klimov V.S., Vlasov I.I., Mazalova T.A. Study of mechanical properties of Fe–Cr–Ni–Co–Mo steel 3D-printed samples after various types of processing
Petrushin N.V., Svetlov I.L., Epishin A.I., Elyutin E.S. Development of directional solidification method to solve the problems of physical metallurgy of nickel- and cobalt-based superalloys. Part 2
Sviridov A.V., Fomicheva O.V., Golev E.V., Kozyreva O.E. Wire arc additive manufacturing method
Composite materials
Ivankov R.R., Klimenko O.N., Gulyaev I.N., Osiyanenko N.V. The influence of different cutting methods on the texture and stress-related properties of carbon fiber samples
Salimov I.E., Bespalov A.S., Babashov V.G., Sharkalov A.A. Thermal and sound insulation material of the VTI-29 brand: study of operational properties
Starkov A.I., Kutsevich K.E., Isaev A.Yu., Barbotko S.L. Study of flammability, smoke formation and toxicity in the process of combustion of polymer composite materials and three-layer honeycomb structures based on them
Protective and functional
coatings
Startsev V.O.Climate aging of paint coating systems. Part 2. Influence of different climatic zones
Material tests
Pichugin S.S., Yakovleva S.I., Kulakov V.V., Izmailov M.A., Korolev A.P. Selection of eddy current testing parameters during the estimation of defects’ depth in carbon-carbon composite materials
Barbotko S.L. About combustion of titanium alloys and methods of assessment of their fire hazard