Articles
The review considers behavior of components during segregation along the casting height when directional solidification is performed with a flat front and shows practical application of this technique to solve problems of physical metallurgy of nickel-based alloys. Such problems include precise determination of temperature and composition of peritectic and eutectic reactions in nickel-based alloys of the binary system Ni–Al; determination of the solubility of W and Re in the γʹ- and β-phases of nickel-based alloys of the ternary systems Ni–Al–W and Ni–Al–Re; the solubility of Re and Ru in the γʹ- and β-phases in the quaternary system Ni–Al–Re–Ru, determination of the lattice spacing and interdiffusion coefficients in the γ-solid solution of nickel in the binary system Ni–Re.
2. Reed R.C. The Superalloys. Fundamentals and Applications. Cambridge: University Press, 2006, 372 p. DOI: 10.1017/CBO9780511541285.
3. Shalin R.E., Svetlov I.L., Kachanov E.B. et al. Single crystals of nickel heat-resistant alloys. Moscow: Mashinostroenie, 1997, 336 p.
4. Kablov E.N., Echin A.B., Bondarenko Yu.A. History of development of directional crystallization technology and equipment for casting blades of gas turbine engines. Trudy VIAM, 2020, no. 3 (87), paper no. 01. Available at: http://www.viam-works.ru (accessed: 15.07.2024). DOI: 10.18577/2307-6046-2020-0-3-3-12.
5. Flemings M. Solidification processes. Trans. from Engl. Moscow: Mir, 1977, 423 p.
6. Gigliotte M.F.X., Henry M.F. Segregation in a plane front solidified /ʹ-TaC alloy. Proceedings of Conference on in Situ Composites II. Lexington, 1976, pp. 253–265.
7. Svetlov I.L., Petrushin N.V., Fedorov V.A., Abalakin N.P. Segregation of alloying elements in the process of directional solidification of eutectic alloys. Fizika metallov i metallovedenie, 1984, vol. 52, is. 2, pp. 342–348.
8. Vigdorovich V.N., Volpyan A.E., Kurdyumov G.M. Directional crystallization and physicochemical analysis. Moscow: Khimiya, 1976, 200 p.
9. Petrushin N.V., Monastyrskaya E.V. Application of directional solidification to solving problems of development and optimization of heat-resistant materials. Materialovedenie, 1998, no. 5, pp. 2–10.
10. Somov A.I., Tikhonovsky M.A. Eutectic compositions. Moscow: Metallurgiya, 1975, 304 p.
11. Bridgman P.W. Certain physical properties of single crystals of tungsten, antimony, bismuth, tellurium, cadmium, zinc, and tin. Proceedings of the American Academy of Arts and Sciences, 1925, vol. 60, pp. 305–383. DOI: 10.2307/25130058.
12. Petrushin N.V., Elyutin E.S., Dzhioeva E.S., Nazarkin R.M. Structural and phase characteristics of heat-resistant eutectic composites γ/γʹ-NbC containing rhenium and ruthenium. Perspektivnye materialy, 2015, no. 03, pp. 22–33.
13. Alexander W.O., Vaughan N.B. Investigation of phase equilibria in Al–Ni system. Journal Institute Metals, 1937, vol. 61, pp. 247–263.
14. Hansen M., Anderko K. Structure of binary alloys: in 2 vols. Trans. from Engl. Moscow: Metallurgizdat, 1962, vol. 1, 608 p.
15. Schramm J. Das binare Teilssystem Nickel–NiAl. Zeitschrift Metallkunde, 1941, b. 33, nu. 10, s. 347–355.
16. Bremer F.J., Beyss M., Karthaus E. et al. Experimental analysis of the Ni−Al phase diagram. Journal Crystal Growth, 1988, vol. 87, no. 2−3, pp. 185–192. DOI: 10.1016/0022-0248(88)90163-7.
17. Hilpert K., Kobertz D., Venugopal V. et al. Phase diagramm studies on the Al−Ni system. Zeitschrift Naturforschung, 1987, vol. 42a, pp. 1327−1332. DOI: 10.1515/zna-1987-1117.
18. Verhoeven J.D., Lee J.H., Laabs F.C., Jones L.L. The phase equilibria of Ni3Al evaluated by directional solidification and diffusion couple experiment. Journal Phase Equilibria, 1991, vol. 12, no. 1, pp. 15–23. DOI: 10.1007/BF02663666.
19. Udovsky A.L., Oldakovskii I.V., Moldavskii V.G. On the revision of the phase diagram of the nickel-aluminum system. Doklady AN SSSR, 1991, vol. 317, no. 1, pp. 161−165.
20. Akshentsev Yu.N., Stepanova N.N., Sazonova V.A., Rodionov D.P. Growth structure of Ni3Al single crystals alloyed with a third element. Fizika metallov i metallovedenie, 1997, vol. 84, is. 3, pp. 130−137.
21. Petrushin N.V., Bronfin M.B., Chabina E.B., Dyachkova L.A. Phase transformations and structure of directionally crystallized intermetallic alloys Ni−Al−Re. Metally, 1994, no. 3, pp. 85–93.
22. Petrushin N.V., Elyutin E.S., Chabina E.B. Phase and structural transformations in directionally solidified with plant front intermetallic eutectic Ni-based alloys. Trudy VIAM, 2020, no. 3 (87), paper no. 02. Available at: http://www.viam-works.ru (accessed: August 15, 2024). DOI: 10.18577/2307-6046-2020-0-3-13-29.
23. Webber J.G., Van Aken D.C. Studies of a quasi-binary β-NiAl and α-Re eutectic. Scripta Metallurgica, 1989, vol. 23, no. 2, pp. 193–196. DOI: 10.1016/0036-9748(89)90409-2.
24. Elyutin Е.S., Petrushin N.V., Karachevtsev F.N., Chabina E.B. Solubility of rhenium and ruthenium in the γ′-phase and physicochemical properties of nickel alloys of the Ni–Al‒Re‒Ru system. Trudy VIAM, 2023, no. 6 (124), paper no. 01. Available at: http://www.viam-works.ru (accessed: August 15, 2024). DOI: 10.18577/2307-6046-2023-0-6-3-14.
25. Petrushin N.V., Elyutin E.S., Visik E.M., Golynets S.A. Development of a single-crystal heat-resistant nickel alloy of the 5th generation. Metally, 2017, no. 6, pp. 38–51.
26. Sluytman J.V., Fontaine A.L., Cairney J.M., Pollock T.M. Elemental portioning of platinum metal containing Ni-base superalloys using electron microprobe analysis and atom probe tomography. Acta Materialia, 2010, vol. 58, pp. 1952–1962. DOI: 10.1016/J.ACTAMAT.2009.11.038.
27. Reed R.C., Yeh A.C., Tin S. et al. Identification of the partitioning characteristics of ruthenium in single crystal superalloys using atom probe tomography. Scripta Materialia, 2004, vol. 51, pp. 327‒333. DOI: 10.1016/j.scriptamat.2004.04.019.
28. Miracle D.B., Lark K.A., Srinavasan V., Lipsitt H.A. Nickel-Aluminium-Molybdenum phase equilibria. Metallurgical Transactions A, 1984, vol. 15A, no. 3, pp. 481−486. DOI: 10.1007/BF02644971.
29. Udovsky A.L., Oldakovskiy I.V., Moldavskiy V.G. Theoretical and experimental studies of phase equilibria of the Ni−NiAl−W system in the range of 900−1500 °C. Metally, 1991, no. 4, pp. 112−123.
30. Willemin P., Duque O., Durand-Charre M., Davidson J.H. Experimental determination of nickel-rich corner of Ni–Al–Ta phase diagram. Materials Science and Technology, 1986, vol. 2, no. 4, pp. 344−348. DOI: 10.1179/mst.1986.2.4.344.
31. Svetlov I.L., Petrushin N.V., Epishin A.I., Karashaew M.M., Elyutin E.S. Single crystals of nickel-based superalloys alloyed with rhenium and ruthenium (review). Part 2. Aviation materials and technologies, 2023, no. 2 (71), paper no. 01. Available at: http://www.journal.viam.ru (accessed: July 15, 2024). DOI: 10.18577/2713-0193-2023-0-2-3-22.
32. Huang M., Zhu J. An overview of rhenium effect in single-crystal superalloys. Rare Metals, 2016, vol. 35, no. 2, pp. 127–139. DOI: 10.1007/s12598-015-0597-z.
33. Neubauer C.M., Mari D., Dunand D.C. Diffusion in nickel-rhenium system. Scripta Metallugica at Materialia, 1994, vol. 31, no. 1, pp. 99−104. DOI: 10.1016/0956-716X(94)90102-3.
34. Karunaratne M.S.A., Carter P., Reed R.C. Interdiffusion in the face-centred cubic phase of the Ni−Re, Ni−Ta and Ni–W systems between 900 and 1300 °C. Materials Science and Engineering A, 2000, vol. A281, pp. 229–233. DOI: 10.1016/S0921-5093(99)00705-4.
35. Campbell C.E., Boettinger W., Kattner U.R. Development of a diffusion mobility database for Ni-base superalloys. Acta Materialia, 2002, vol. 50, pp. 775–792. DOI: 10.1016/S1359-6454(01)00383-4.
36. Murata Y., Sakurai S., Mabruri E., Koyama T. Cross interdiffusion coefficients in Nickel- and Iron-based ternary alloys. Defect and Diffusion Forum, 2008, vol. 273−276, pp. 419−424. DOI: 10.4028/www.scientific.net/DDF.273-276.419.
37. Sakurai S., Mabruri E., Murata Y., Koyama T. Diffusion of refractory elements in Ni−X−Y (X, Y: Co, Re, Ru, W) ternary alloys. Defect and Diffusion Forum, 2008, vol. 273−276, pp. 572−576. DOI: 10.4028/www.scientific.net/DDF.273-276.572.
38. Zeng Q., Ma S.W., Zheng Y.R., Liu S.Z. A study of Re and Al diffusion in Ni. Journal of Alloys and Compounds, 2009, vol. 480, pp. 987–990. DOI: 10.1016/j.jallcom.2009.02115.
39. Bokshteyn B.S. Diffusion in metals. Moscow: Metallurgiya, 1978, 248 p.
40. Epishin A.I., Rodin A.O., Bokshteyn B.S., Svetlov I.L. Mutual diffusion in binary alloys of the Ni−Re system. Fizika metallov i metallovedenie, 2015, vol. 116, no. 2, pp. 184–190. DOI: 10.7868/S0015323015020138.
41. Karunaratne M.S.A., Cox D.C., Carter P., Reed R.C. Modelling of the microsegregation in CMSX-4 superalloy and its homogenisation during heat treatment. Superalloys 2000. TMS, 2000, pp. 263–272.
42. Janotti A., Krčmar M., Fu C.L., Reed R.C. Solute diffusion in metals: larger atoms can move faster. Physical Review Letters, 2004, vol. 92, no. 8, p. 085901. DOI: 10.1103/PhysRewLett.92.085901.
43. Epishin A., Brückner U., Portella P.D., Link T. Influence of small rhenium additions on the lattice spacing of nickel solid solution. Scripta Materialia, 2003, vol. 48, no. 4, pp. 455–459. DOI: 10.1016/S1359-6462(02)00436-0.
44. Caron P. High γʹ solvus new generation nickel-based superalloys for single crystal turbine blade applications. Superalloys 2000, TMS, 2000, pp. 737‒746.
45. Petrushin N.V., Svetlov I.L., Samoylov A.I., Morozova G.N. Physicochemical properties and creep strength of a single crystal of nickel-base superalloy containing rhenium and ruthenium. International Journal of Materials Research (formerly Zeitschrift Metallkunde), 2010, vol. 101, no. 5, pp. 594–600. DOI: 10.3139/146.110313.
46. Properties of elements: a reference book in 2 parts. 2nd ed. Moscow: Metallurgiya, 1976, part 1: Physical properties, 600 p.
47. Villars P., Calvert L.D. Pearson’s Handbook of crystallographic data for intermetallic phases. Ohio: ASM International, 1991, vol. 4, 5366 p.
48. Epremian E., Harker D. The crystal structure of Ni4W. Journal of Metals, 1949, vol. 1, no. 4, pp. 267−273.
49. Ochiai S., Mishima Y., Suzuki T. Lattice parameter data of Ni (γ), Ni3Al (γ') and Ni3Ga (γ') solid solutions. Bulletin of Research Laboratory of Precision Machinery and Electronics, 1984, vol. 53, pp. 15‒28.
50. Kornilov N.I., Snetkov A.Ya. Lattice periods of limited solid solutions of some elements in nickel. Research on heat-resistant alloys: in 10 vols. Moscow: USSR Academy of Sciences, 1961, vol. 7, pp. 106‒111.
The article presents the mechanical properties of blades forgings from VT6 alloy, manufactured using three methods – a bulk stamping followed by single-stage annealing; a combination of a high-temperature annealing stage with heating for calibration and subsequent aging, as well as the high-temperature thermomechanical treatment method, which consists of heating for stamping, stamping calibration followed by quenching in water and aging. Particular attention in the article is paid to the characteristics of plasticity and impact toughness, as well as fatigue strength, taking into account the current issues of ensuring the reliability of the material of the first stages of compressor blades of aircraft engines.
2. Kalashnikov V.S., Reshetilo L.P., Chuchman O.V., Naprienko S.A. Strength and reliability of rods and rotor blade stamps made of heat-resistant industrial titanium alloys and modern pseudo-α-titanium alloy. Trudy VIAM, 2022, no. 2 (108), paper no. 02. Available at: http://www.viam-works.ru (accessed: November 29, 2024). DOI: 10.18577/2307-6046-2022-0-2-13-31.
3. Sviridov A.V., Gribkov М.S. Features of repair of welded structures of large thicknesses from titanium alloy VT6ch. Trudy VIAM, 2021, no. 11 (105), paper no. 04. Available at: http://www.viam-works.ru (accessed: November 29, 2024). DOI: 10.18577/2307-6046-2021-0-11-34-43.
4. Kablov E.N. Materials and technologies of VIAM for «Aviadvigatel». Permskie aviatsionnye dvigateli, 2014, no. 31, pp. 43–47.
5. Kablov E.N. The strategic directions of development of materials and technologies of their processing for the period to 2030. Aviacionnye materialy i tehnologii, 2012, no. S, pp. 7–17.
6. Kablov E.N. New generation materials. Zashchita i bezopasnost, 2014, no. 4, pp. 28–29.
7. Solonina O.P., Glazunov S.G. Modern heat-resistant titanium alloys and prospects for their application in engines. Moscow: Metallurgiya, 1974, 448 p.
8. Ezhov A.O. Periodization of the formation and development of the titanium industry in Russia: historiography of the problem. Vestnik TGU, 2015, no. 11 (151). Available at: https://cyberleninka.ru/article/n/periodizatsiya-stanovleniya-i-razvitiya-titanovoy-promyshlennosti-rossii-istoriografiya-problemy (accessed: December 06, 2024).
9. Fedorov A.A., Bespalov A.V., Komarov R.S., Khairutdinova R.R. Superplastic deformation of titanium alloy VT6s as part of composite material VT6s-1201 under high hydrostatic pressures. Tekhnologiya legkikh splavov, 2023, no. 1, pp. 70–79.
10. Gadalov V.N., Petrenko V.R., Kutepov S.N., Filonovich A.V., Gubanov O.M., Kalinin A.A. Bimetallic hollow titanium-aluminum panels manufactured by diffusion welding in vacuum. Izvestiya TulGU. Tekhnicheskiye nauki, 2023, no. 9, pp. 640–645.
11. Dobrynin D.A. Electrolytic-plasma polishing of titanium alloys VT6 and VT8M-1. Trudy VIAM, 2017, no. 7 (55), paper no. 02. Available at: http://www.viam-works.ru (accessed: December 07, 2024). DOI: 10.18577/2307-6046-2017-0-7-2-2.
12. Lekarev A.V., Yurchuk L.I., Merkulova G.A. Study of the influence of alpha-forming on the structure and properties of VT6 alloy. Sibirskiy aerokosmicheskiy zhurnal, 2023, no. 3. Available at: https://cyberleninka.ru/article/n/issledovanie-vliyaniya-alfirovaniya-na-strukturu-i-svoystva-splava-vt6 (accessed: December 07, 2024).
13. Zolotov A.M., Chizhik T.A., Smirnov M.O. Construction of third-order recrystallization diagrams of VT6 titanium alloy. Globalnaya energiya, 2017, no. 4, pp. 118–126.
14. Egorova Yu.B., Davydenko L.V., Chibisova E.V., Chelpanov A.V., Karataeva E.S. Prediction of mechanical properties of rods made of titanium alloy VT6 with different types of structure. Tekhnologiya legkikh splavov, 2022, no. 3, pp. 30–40.
15. Panin P.V., Dzunovich D.A. Effect of cooling rate on phase composition and structure of VT6 titanium alloy after hydrogenating annealing. Trudy VIAM, 2017, no. 10 (58), paper no. 04. Available at: http://www.viam-works.ru (accessed: December 07, 2024). DOI: 10.18577/2307-6046-2017-0-10-4-4.
16. Ji H., Zhanshuo P., Xiaomin H. et al. Dynamic recrystallization of Ti‒6Al‒4V titanium alloy based on cellular automata. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 2023, vol. 237, pp. 1–18. DOI: 10.1177/09544089221125575.
17. Zhang J., Li H., Zhan M. Review on globularization of titanium alloy with lamellar colony. Manufacturing Review, 2020, vol. 7 (18). Available at: https://mfr.edp-open.org (accessed: March 17, 2024). DOI: 10.1051/mfreview/2020015.
18. Du S., Song Y., He Y. et al. Evolution of Microstructure and Mechanical Properties of Ti‒6Al‒4V Alloy under Heat Treatment and Multi-Axial Forging. Materials, 2024, vol. 17, p. 1060. DOI: 10.3390/ma17051060.
19. Seo S., Jung M., Park J. Microstructure Control for Enhancing the Combination of Strength and Elongation in Ti‒6Al‒4V through Heat Treatment. Metals, 2024, vol. 14, p. 985. DOI: 10.3390/met14090985.
20. Jadhav S., Powar A., Patil S. et al. Effect of volume fraction of alpha and transformed beta on the high cycle fatigue properties of bimodal Ti6Al4V alloy. 7th International Conference on Key Engineering Materials (ICKEM 2017). IOP Conf. Series: Materials Science and Engineering, 2017, vol. 201, pp. 1–6. DOI: 10.1088/1757-899X/201/1/012035.
21. Oglodkov M.S., Kashapov O.S., Kalashnikov V.S., Kondratieva A.R. Comparative analysis of the characteristics of domestic alloys VT8, VT8M, VT8M-1, VT9 and Ti6242S alloy (USA) as applied to high-pressure compressor blades of aircraft gas turbine engines. Aviation materials and technologies, 2024, no. 1 (74), paper no. 03. Available at: http://www.journal.viam.ru (accessed: December 07, 2024). DOI: 10.18577/2713-0193-2024-0-3-35-50.
The article presents the results of research and development on basic technological synthesis parameters of Mo–Si–B system metal composite material (MCM) by EBM and SLS methods. Additionally, the paper provides the investigation of the mechanisms of interface formation and diffusion processes at the interface «matrix–strengthening agent» in the process of synthesis of blanks by EBM and SLS. The powders have been analyzed by scanning electron microscope imaging, the images from which show that the powder granules have a splinter shape.
2. Startsev N.I., Falaleev S.V. Design of aircraft engine units: turbine and combustion chamber: course of lectures. Samara: SSAU Publ. house, 2007, 102 p.
3. Tansug G. Synergistic inhibition effect between 4-amino-5-methyl-4H-1,2,4-triazole-3-thiol, citrate ions and polycarboxylate for corrosion protection of C1010 steel in cooling water system. Journal of Adhesion Science and Technology, 2017, vol. 31, is. 18, pp. 2053–2070.
4. Serpova V.M., Nyafkin A.N., Kurbatkina E.I. Hybrid metal matrix composites based on copper (review). Trudy VIAM, 2022, no. 1 (107), paper no. 08. Available at: http://www.viam-works.ru (accessed: October 28, 2024). DOI: 10.18577/2307-6046-2022-0-1-76-87.
5. Serpova V.M., Sidorov D.V., Nyafkin A.N., Kurbatkina E.I. Hybrid metal matrix compo-sites based on aluminum alloys (review). Trudy VIAM, 2021, no. 3 (97), paper no. 06. Available at: http://www.viam-works.ru (accessed: October 28, 2024). DOI: 10.18577/2307-6046-2021-0-3-68-77.
6. Kablov E.N., Shchetanov B.V., Bolshakova A.N., Efimochkin I.Yu., Shcherbakov E.M. Niobium reinforced by α-Al2O3 fibers. Part 1. Two-Component Compositions. Aviation materials and technologies, 2021, no. 3 (64), paper no. 06. Available at: http://www.journal.viam.ru (accessed: October 25, 2024). DOI: 10.18577/2713-0193-2021-0-3-58-77.
7. Laptev A.B., Akhiyarov R.J., Lapteva A.A., Puzanov A.I., Zagorskikh O.A. Distribution of chloride ions along the flight path of aircraft (Overview). Journal of Physics: Conference Series: III International Conference on Metrological Support of Innovative Technologies (ICMSIT-III-2022). Krasnoyarsk: IOP Publishing Ltd, 2022, vol. 2373, p. 22008. DOI: 10.1088/1742-6596/2373/2/022008.
8. Movenko D.A., Laptev A.B., Zagorskikh O.A. Composition and Morphology of Hot-Salt Corrosion in Heat-Resistant Nickel Alloys. Inorganic Materials: Applied Research, 2022, vol. 13, no. 6, pp. 1652–1657. DOI: 10.1134/s207511332206017x.
9. Yukhvid V.I., Andreev D., Sanin V.N., Sachkova N. SHS Metallurgy of Composite Materials Based on the Nb–Si System. Russian Journal of Non-Ferrous Metals, 2018, vol. 59, no. 1, pp. 42–49. DOI: 10.3103/S1067821218010169.
10. Getsov L.B., Shelyapina N.M., Laptev A.B., Puzanov A.I. Sulfide Oxide Corrosion of Modern Heat-Resistant Alloys. Russian Aeronautics, 2019, vol. 62, no. 4, pp. 689–695. DOI: 10.3103/S1068799819040214.
11. Getsov L.B., Balandina M.Y., Laptev A.B., Movenko D.A., Puzanov A.I., Pivovarova M.V. Study of metal powder alloy KhN56KVMTYuB for gas turbine engine disks under aggressive action of a mixture of sodium chlorides and sulfates. Metallovedenie i termicheskaya obrabotka metallov, 2021, no. 7 (793), pp. 19–25. DOI: 10.30906/mitom.2021.7.19-25.
12. Getsov L.B., Balandina M.Y., Grishchenko A.I., Laptev A.B., Puzanov A.I. Rehbinder effect in testing heat-resistant alloys in contact with molten salts. Zavodskaya laboratoriya. Diagnostika materialov, 2021, vol. 87, no. 10, pp. 54–62. DOI: 10.26896/1028-6861-2021-87-10-54-62.
13. Getsov L.B., Balandina M.Y., Laptev A.B., Movenko D.A. A Study of Metal-Powder Alloy KhN56KVMTYuB for GTE Disks Under Aggressive Impact of Sodium Chlorides and Sulfates. Metal Science and Heat Treatment, 2021, vol. 63, no. 7–8, pp. 363–368. DOI: 10.1007/s11041-021-00696-4.
14. Iveković A., Omidvari N., Vrancken B. et al. Selective laser melting of tungsten and tungsten alloys. International Journal of Refractory Metals & Hard Materials, 2018, no. 72, pp. 27–32. DOI: 10.1016/j.ijrmhm.2017.12.005.
15. Kablov E.N., Kondrashov S.V., Melnikov A.A., Schur P.A. Application of functional and adaptive materials obtained by 3D printing (review). Trudy VIAM, 2022, no. 2 (108), paper no. 03. Available at: http://www.viam-works.ru (accessed: October 28, 2024). DOI: 10.18577/2307-6046-2022-0-2-32-51.
16. Evgenov A.G., Shurtakov S.V., Prager S.M., Malinin R.Yu. On the development of a universal calculation method for assessing the degradation of recycled metal powder materials, depending on the cyclicity of use in the selective laser melting process. Aviacionnye materialy i tehnologii, 2020, no. 4 (61), pp. 3–11. DOI: 10.18577/2071-9140-2020-0-4-3-11.
17. Benarieb I., Antipov V.V., Khasikov D.V., Oglodkov M.S., Savichev I.D., Kuznetsova P.E. Study of structure and properties of sparinly alloyed aluminum alloy of Al–Mg–Sc–Zr system, produced by selective laser melting. Aviation materials and technologies, 2023, no. 4 (73), paper no. 03. Available at: http://www.journal.viam.ru (accessed: October 25, 2024). DOI: 10.18577/2713-0193-2023-0-4-23-35.
18. Mazalov I.S., Mazalov P.B., Suhov D.I., Sulyanova E.A. Influence of hot isostatic pressing parameters on structure and properties of cobalt-based alloys obtained by selective laser melting. Aviation materials and technologies, 2021, no. 2 (63), paper no. 01. Available at: http://www.journal.viam.ru (accessed: October 25, 2024). DOI: 10.18577/2713-0193-2021-0-2-3-14.
19. Bobrovskiy A.P., Efimochkin I.Yu., Bolshakova A.N., Khudnev A.A. Production of spherical granules of a high-temperature metal composite material based on molybdenum. Trudy VIAM, 2022, no. 1 (107), paper no. 05. Available at: http://www.viam-works.ru (accessed: October 25, 2024). DOI: 10.18577/2307-6046-2022-0-1-44-52.
20. Berezina E.P., Nikiforov S.A., Gilmutdinov A.Kh. Numerical modeling of gas-powder flows of an installation for plasma spheroidization of metal powders. Matematicheskie metody v tekhnologiyakh i tekhnike, 2024, no. 3, pp. 55–60.
The article presents the results of the work carried out at the NRC «Kurchatov Institute» – VIAM Research Center on the application of the hanging melt droplet extraction method to obtain fibers from cobalt alloys of the Co–Cr–W system. The conducted studies have shown that during the quenching of the melt in alloys of the Co–Cr–W system, the amorphous state is fixed, while most of the structure of the obtained fibers is replaced by an amorphous phase. The justified modes of heat treatment providing crystallization of the amorphous phase are given. It is shown that after heat treatment, an increase in the amount of solid solutions based on Co occurs in the obtained samples.
2. Johns Hopkins University. Metallic Glass: Material Of The Future? Science Daily. Available at: https://www.sciencedaily.com/releases/1998/03/980331074950.htm (accessed: October 18, 2024).
3. Kablov E.N., Petrakov A.F., Piskorsky V.P., Valeev R.A., Nazarova N.V. Influence of dysprosium and cobalt on the temperature dependence of magnetization and phase composition of the material of the Nd–Dy–Fe–Co–B system. Metallovedenie i termicheskaya obrabotka metallov, 2007, no. 4, pp. 3–10.
4. Zhang T., Inoue A. Bulk Glassy Alloys in (Fe, Co, Ni)–Si–B System. Materials Transactions (Japan), 2001, vol. 42, no. 6, pp. 1015–1018.
5. Miller M.K. Microstructure. Bulk Metallic Glasses. Eds. M. Miller, P. Liaw. Boston: Springer, 2008. DOI: 10.1007/978-0-387-48921-6-5.
6. Аntsiferov V.N., Nechaev A.S. Obtaining rapidly cooled fibers by extraction from the melt. Metallurg, 2013, no. 4, pp. 85–87.
7. Kablov E.N., Bakradze M.M., Gromov V.I., Voznesenskaya N.M., Yakusheva N.A. New high strength structural and corrosion-resistant steels for aerospace equipment developed by FSUE «VIAM» (review). Aviacionnye materialy i tehnologii, 2020, no. 1 (58), pp. 3–11. DOI: 10.18577/2071-9140-2020-0-1-3-11.
8. Buzenkov A.V., Burkanov M.V., Valeev R.A., Piskorsky V.P. Properties of sintered magnets Pr–Dy–Fe–Co–B depending on the composition and technological parameters of manufacture. Trudy VIAM, 2024, no. 5 (135), paper no. 09. Available at: http://www.viam-works.ru (accessed: November 17, 2024). DOI: 10.18577/2307-6046-2024- 0-5-91-100.
9. Evgenov A.G., Shurtakov S.V., Chumanov I.R., Leshchev N.E. New wear-resistant cobalt-based alloy: effect of silicon and carbon on structure and tribotechnical characteristics. Part 1. Aviation materials and technologies, 2021, no. 4 (65), paper no. 07. Available at: http://www.journal.viam.ru (accessed: November 17, 2024). DOI: 10.18577/2713-0193-2021-0-4-59-69.
10. Serov M.M., Borisov B.V. Production of metal fibers and porous materials from them by the method of extraction of a hanging drop of the melt. Tekhnologiya legkikh splavov, 2007, no. 3, pp. 62–65.
11. Betzofen S.Ya., Ashmarin A.A., Terentyev V.F. et al. Phase composition and residual stresses in the surface layers of VNS9-Sh tripsteel. Deformatsiya i razrushenie materialov, 2020, no. 6, pp. 12–20.
12. Metallic glasses. Trans. from Engl. Eds. J.J. Gilmar and H.J. Leamy. Moscow: Metallurgiya, 1984, 264 p.
13. Davis J.R. ASM Specialty Handbook: Tool Materials. ASM International, 1995, 501 p.
14. Kurlov A.S., Gusev A.I. Tungsten carbides and the phase diagram of the W–C system. Neorganicheskiye materialy, 2006, vol. 42, no. 2, pp. 156–163.
15. Fedorchenko I.M. Properties of metal powders, refractory compounds and sintered materials: handbook. Kyiv: Naukova Dumka, 1978, 184 p.
16. Sinnecker E.H.C.P., Páramo D., Larin V. et al. Glass coated microwires with enhanced coercivity. The Journal of Magnetism and Magnetic Materials, 1999, vol. 203, pp. 54–56.
17. Popova N., Nikonenko E., Erbolatova G. et al. Impact of thermochemical treatment on structure and phase state of austenitic alloy. AIP Conference Proceedings, 2019, vol. 2167, p. 020287.
18. Ayache J., Beaunier L., Boumendil J. et al. Sample Preparation Handbook for Transmission Electron Microscopy. Springer Science+Business Media LLC, 2010, 233 p.
19. Sevalnev G.S., Vostrikov A.V., Nefedkin D.Yu., Moiseenkov V.V., Volkov R.B., Ulyanov E.I. Study of the structure, distribution of carbide phase, hardness and tribotechnical characteristics of high-chromium bearing steels of the martensitic class. Trudy VIAM, 2023, no. 10 (128), paper no. 02. Available at: http://www.viam-works.ru (accessed: November 05, 2024). DOI: 10.18577/2307-6046-2023-0-10-13-23.
20. Zolotukhin I.V. Physical properties of amorphous metallic materials. Moscow: Metallurgiya, 1986, 176 p.
21. Zaitsev A.I., Mogutnov B.M., Shakhpazov E.Kh. Amorphization of metallic melts. Moscow: Interkontakt Nauka, 2011, 292 p.
The article provides examples of the practical application of modern surface treatment methods for bonding, such as the use of a sacrificial layer during formation of polymer composite materials, sandblasting, plasma treatment, and other methods that contribute to enhancing strength of adhesive joints made of metallic materials and polymer composite materials in aircraft structures. The results of domestic and foreign researches aimed at developing advanced technologies for polymer composite materials surface preparation for bonding are presented.
2. Kablov E.N. New generation materials and digital technologies for their processing. Vestnik Rossiyskoy akademii nauk, 2020, vol. 90, no. 4, pp. 331–334.
3. Tkachuk A.I., Donetsky K.I., Terekhov I.V., Karavaev R.Yu. The use of thermosetting matrices for the manufacture of polymer composite materials by the non-autoclave molding methods. Aviation materials and technology, 2021, no. 1 (62), paper no. 03. Available at: https://www.journal.viam.ru (accessed: September 19, 2024). DOI: 10.18577/2713-0193-2021-0-1-22-33.
4. Isaev A.Yu., Rubtsova E.V., Kotova E.V., Sutyagin M.N. Research of properties of glues and glue binding, made with use of modern domestic component base. Trudy VIAM, 2021, no. 3 (97), paper no. 05. Available at: http://www.viam-works.ru (accessed: September 22, 2024). DOI: 10.18577/2307-6046-2021-0-3-58-67.
5. Isaev A.Yu., Pavlyuk B.Ph., Petrova A.P., Lukina N.Ph., Balabanova O.S. Effect of modification of cold cured epoxy adhesives with elastomers on the resource strength of adhesive joint. Trudy VIAM, 2020, no. 9 (91), paper no. 03. Available at: http://www.viam-works.ru (accessed: September 21, 2024). DOI: 10.18577/2307-6046-2020-0-9-27-34.
6. Petrova A.P., Malysheva G.V. Adhesives, adhesive binders and adhesive prepregs: textbook. Ed. E.N. Kablov. Moscow: VIAM, 2017, 472 p.
7. Petrova A.P., Lukina N.F., Isaev A.Yu., Smirnov O.I. The effect of the adhesive primer EP-0234 on the properties of adhesive compounds obtained using adhesive VK-36. Trudy VIAM, 2022, no. 6 (112), paper no. 04. Available at: http://www.viam-works.ru (accessed: August 28, 2024). DOI: 10.18577/2307-6046-2022-0-6-39-48.
8. Shershak P.V., Yakovlev N.O., Shokin G.I., Kutsevich K.E., Popkova E.A. Evaluation method and factors influencing the bonding quality between face and honey-comb cores in floor and interior aircraft panels. Aviacionnye materialy i tehnologii, 2020, no. 2 (59), pp. 81–88. DOI: 10.18577/2071-9140-2020-0-2-81-88.
9. Lobanov M.L., Kardonina N.I., Rossina N.G., Yurovskikh A.S. Protective coatings. Ekaterinburg: Ural Univ. Publ. House, 2014. 200 p.
10. Anodizing of products from alloy D16t. Available at: https://shop.alfametal.ru/about/articles/
anodirovanie-izdeliy-iz-splava-d16t/ (accessed: July 06, 2024).
11. How to properly prepare the surface. Available at: https://cltn.ru/tpost/mjcuarbfl1-kak-pravilno-podgotovit-poverhnost (accessed: July 08, 2024).
12. Yang G., Yang T., Yuan W., Du Y. The influence of surface treatment on the tensile properties of carbon fiber-reinforced epoxy composites-bonded joints. Composites Part B: Engineering, 2019, vol. 160, pp. 446–456.
13. Barannikov A.A., Postnov V.I., Veshkin E.A., Strelnikov S.V., Satdinov R.A. Use of atmospheric pressure plasma as a method for preparing the surface of polymer composite materials for bonding. Klei. Germetiki. Tekhnologii, 2021, no. 5, pp. 177–196.
14. Buchmann C., Langer S., Filsinger J., Drechsler K. Analysis of the removal of peel ply from CFRP surfaces. Composites Part B: Engineering, 2016, vol. 89, pp. 352–361.
15. Ramaswamy K., O’Higgins R.M., Kadiyala A.K. et al. Evaluation of grit-blasting as a pre-treatment for carbon-fibre thermoplastic composite to aluminium bonded joints tested at static and dynamic loading rates. Composites Part B: Engineering, 2020, vol. 185, p. 107765.
16. Gude M.R., Prolongo S.G., Ureña A. Adhesive bonding of carbon fibre/epoxy laminates: Correlation between surface and mechanical properties. Surface and Coatings Technology, 2012, vol. 207, pp. 602–607.
17. Martínez-Landeros V.H., Vargas-Islas S.Y., Cruz-González C.E. et al. Studies on the influence of surface treatment type, in the effectiveness of structural adhesive bonding for carbon fiber reinforced composites. Journal of Manufacturing Processes, 2019, vol. 39, pp. 160–166.
18. Chen C., Zhang W., Li Y. et al. The Influence of Moisture Absorption Drying of Composite Materials on the Bonding Performance of the Joints. Macromolecular Materials and Engineering, 2023, vol. 308, p. 2200463.
19. Chitsaz D.R., Shokrieh M.M., Taheri-Behrooz F. An investigation on effects of acid etching duration on adhesive bonding of polyethylene to E-glass/epoxy composites. International Journal of Adhesion and Adhesives, 2018, vol. 85, pp. 177–183.
20. Jölly I., Schlögl S., Wolfahrt M. et al. Chemical functionalization of composite surfaces for improved structural bonded repairs. Composites Part B: Engineering, 2015, vol. 69, pp. 296–303.
21. Alyamovsky A.I., Zemtsova E.V., Kopyl N.I., Obyedkov M.L. Influence of various methods of surface preparation of carbon fiber reinforced plastics on the strength characteristics of adhesive joints. Kosmicheskaya tekhnika i tekhnologii, 2023, vol. 2, pp. 54–64.
22. Tracy J., Yin Y., Yang J. et al. Environmentally assisted crack growth in adhesively bonded composite joints. Composites Part A: Applied Science and Manufacturing, 2017, vol. 102, pp. 368–377.
23. Scarselli G., Quan D., Murphy N. et al. Adhesion Improvement of Thermoplastics-Based Composites by Atmospheric Plasma and UV Treatments. Applied Composite Materials, 2021, vol. 28, pp. 71–89.
24. Quan D., Deegan B., Byrne L. et al. Rapid surface activation of carbon fibre reinforced PEEK and PPS composites by high-power UV-irradiation for the adhesive joining of dissimilar materials. Composites Part A: Applied Science and Manufacturing, 2020, vol. 137, p. 105976.
25. Lin J., Song C., Min J. et al. Influence of atmospheric pressure plasma treatment on the physicochemical properties of carbon fiber composite surface and its interfacial adhesion with adhesive. Composites Part B: Engineering, 2020, vol. 194, аrt. 108237.
26. Barannikov A.A., Sudyin Yu.I., Veshkin E.A., Satdinov R.A. Determination of the permissible storage time of polymeric composite materials after surface treatment with atmospheric pressure plasma before bonding. Trudy VIAM, 2022, no. 5 (111), paper no. 03. Available at: http://www.viam-works.ru (accessed: July 15, 2024). DOI: 10.18577/2307-6046-2022-0-5-26-40.
27. Comyn J., Mascia L., Xiao G., Parker B.M. Corona-discharge treatment of polyetheretherketone (PEEK) for adhesive bonding. International Journal of Adhesion and Adhesives, 1996, vol. 16 (4), pp. 301–304.
28. Ppreparation of plastic surfaces before gluing. Available at: https://plastinfo.ru/information/
articles/88/ (accessed: July 11, 2024).
29. Blackman B.R.K., Kinloch A.J., Watts J.F. The plasma treatment of thermoplastic fibre composites for adhesive bonding. Composites, 1994, vol. 25 (5), pp. 332–341.
30. Wingfield J.R.J. Treatment of composite surfaces for adhesive bonding. International Journal of Adhesion and Adhesives, 1993, vol. 13 (3), pp. 151–156.
31. Goddard J.M., Hotchkiss J.H. Polymer surface modification for the attachment of bioactive compounds. Progress in Polymer Science, 2007, vol. 32 (7), pp. 698–725.
32. Fischer F., Kreling S., Dilger K. Surface structuring of CFRP by using modern excimer laser sources. Physics Procedia, 2012, vol. 39, pp. 154–160.
33. Almuhammadi K., Yudhanto A., Lubineau G. On the anisotropic behavior of electrodes for electrical-based monitoring of CFRP laminated composites. Polymer Composites, 2019, vol. 40 (5), pp. 2061–2066.
34. Palmieri F.L., Belcher M.A., Wohl C.J. et al. Laser ablation surface preparation for adhesive bonding of carbon fiber reinforced epoxy composites. International Journal of Adhesion and Adhesives, 2016, vol. 68, pp. 95–101.
35. Zhan X., Chen S., Li Y. et al. Effect of surface cold ablation on shear strength of CFRP adhesively bonded joint after UV laser treatment. International Journal of Adhesion and Adhesives, 2019, vol. 94, pp. 13–23.
36. Min J., Wan H., Carlson B.E. et al. Application of laser ablation in adhesive bonding of metallic materials: A review. Optics and Laser Technology, 2020, vol. 128, art. 106188.
37. Adhesive bonding – Science, technology and applications. Ed. R.D. Adams. Woodhead Publishing Limited, 2005, 538 p.
38. Takeda T., Yasuoka T., Hoshi H. et al. Effectiveness of flame-based surface treatment for adhesive bonding of carbon fiber reinforced epoxy matrix composites. Composites Part A: Applied Science and Manufacturing, 2019, vol. 119, pp. 30–37.
39. Kinloch A.J. Adhesion and adhesives: Science and technology. Springer-Sci+Business Media, B.V., 1987, 441 p.
40. Jialanella G.L. Advances in bonding plastics. Advances in structural adhesive bonding. Woodhead Publishing Limited, 2010, pp. 237–264.
41. Baldan A. Adhesion phenomena in bonded joints. International Journal of Adhesion and Adhesives, 2012, vol. 38, pp. 95–116.
42. Tao R., Alfano M., Lubineau G. Laser-based surface patterning of composite plates for improved secondary adhesive bonding. Composites Part A: Applied Science and Manufacturing, 2018, vol. 109, pp. 84–94.
43. Prolongo S.G., Gude M.R., Del Rosario G., Ureña A. Surface pretreatments for composite joints: Study of surface profile by SEM image analysis. Journal of Adhesion Science and Technology, 2010, vol. 24 (11–12), pp. 1855–1867.
44. Kanerva M., Saarela O. The peel ply surface treatment for adhesive bonding of composites: A review. International Journal of Adhesion and Adhesives, 2013, vol. 43, pp. 60–69.
45. Lee C.Y., Bae J.H., Kim T.Y. et al. Using silane-functionalized graphene oxides for enhancing the interfacial bonding strength of carbon/epoxy composites. Composites Part A: Applied Science and Manufacturing, 2015, vol. 75, pp. 11–17.
The article observes a theoretical method of quantum chemistry that has been used to study the chemical reaction of 1,2-dimethyldisilene formation from methylsilylene. During the study the geometric parameters and thermodynamic characteristics of the structural isomers of 1,2-dimethyldisilene were determined. The study has defined that the reaction of 1,2-dimethyldisilene formation from methylsilylene is exothermic and occurs spontaneously at temperatures below 1570 K, at the same time the rate of the chemical reaction under study increases significantly with the decreasing of the temperature.
2. Kablov E.N., Shuldeshov E.M., Petrova A.P., Lapteva M.A., Sorokin A.E. Dependence of complex of sound-proof VZMK type material properties on concentration of hydrophobizing composition on the basis of organosilicon sealant. Aviacionnye materialy i tehnologii, 2020, no. 2 (59), pp. 41–49. DOI: 10.18577/2071-9140-2020-0-2-41-49.
3. Avakyan V.G., Guselnikov S.L., Guselnikov L.E. Classical planar doubly bonded Si-substituted silenes ‒ a boundary system between olefins and heavier group 14 analogs geometric and electronic structures, rotational barriers about the Si=C double bond, and comparison with the analogs and isoelectronic phosphenes, further evidence against C-ylides of silicon. Journal of organometallic chemistry, 2003, vol. 686, pp. 257–271.
4. Gusel’nikov L., Nametkin N. Formation and properties of unstable intermediates
containing multiple p-p bonded group 4B metals. Chemical reviews, 1979, vol. 79, pp. 529–577.
5. Brok A., Abdesaken F., Gutekunst B. et al. A solid silaethene: isolation and characterization. Journal of the chemical society, chemical communications, 1981, vol. 110, pp. 3877–3923.
6. West R. The disilenes: chemistry of silicon-silicon double bonds. Pure apply chemistry, 1984, vol. 56, pp. 163–173.
7. West R. Chemistry of the silicon-silicon double bond. Angewandte chemie, 1987, vol. 26, pp. 1201–1211.
8. Leigh W., Boukherroub R., Kerst K. Substituent effects on the reactivity of the silicon−carbon double bond. Resonance, inductive, and steric effects of substituents at silicon on the reactivity of simple 1-methylsilenes. Journal of the American Chemical Society, 1998, vol. 120, pp. 9504–9512.
9. Baines K. Brook silenes: inspiration for a generation. Chemical communication, 2013, vol. 49, pp. 6366–6369.
10. Morkin T., Leigh W. Substituent effects on the reactivity of the silicon-carbon double bond. Accounts of Chemical Research, 2001, vol. 34, pp. 129–136.
11. Owens T., Grinyer J., Leigh W. Direct detection of 1,1-diphenyl-2-neopentylsilene and the effects of solvent polarity on its reactivity with nucleophiles. Organometallics, 2005, vol. 24, pp. 2307–2318.
12. Shizuka H., Murata K., Aray Y. et al. Photolysis of cyclotetrasilanes. Journal of the chemical society, Faraday transactions, 1989, vol. 85, pp. 2369–2379.
13. Chernyshev E.A., Komalenkova N.G. Generation and reactions of silenes in the gas phase. Uspekhi khimii, 1990, vol. 59, pp. 918–930.
14. Fischer R., Power P. π-Bonding and the lone pair effect in multiple bonds involving heavier main group elements: developments in the new millennium. Chemical reviews, 2010, vol. 110, pp. 3877–3923.
15. Cheng M., Chu S. Bonding pattern continuum from covalent to dative carbon-silicon bonds for substituted silenes: a theoretical study. Organometallics, 2005, vol. 24, pp. 3746–3752.
16. Ottoson H. Zwitterionic Silenes: Interesting goals for synthesis? Chemistry – A European journal, 2003, vol. 9, pp. 4144–4155.
17. El-Nahas A., Johansson M., Ottosson H. Reverse Si‒C bond polarization as a means for stabilization of silabenzenes: a computational investigation. Organometallics, 2003, vol. 22, pp. 5556–5566.
18. Bendikov M., Quadt S., Rabin O. et al. Addition of nucleophiles to silenes. A theoretical study of the effect of substituents on their kinetic stability. Organometallics, 2002, vol. 21, pp. 3930–3939.
19. Pavelka L., Hanson M., Staroverov V. et al. Mechanism of the addition of alkynes to silenes and germenes: a density functional study. Canadian journal of chemistry, 2014, vol. 93, pp. 132–142.
20. Gaspar P., West R. Silylenes. PATAI's chemistry of functional groups. John Wiley&Sons, 1998, pp. 2463–2568.
21. Kutzelnigg W. Chemical bonding in higher main group elements. Angewandte chemie, 1984, vol. 23, pp. 272–295.
22. Holthausen M., Koch W., Apeloig Y. Theory predicts triplet ground-state organic silylenes. Journal of the American chemical society, 1999, vol. 121, pp. 2623–2624.
23. Yoshida M., Tomaoki N. DFT study on triplet ground state silylenes revisited: the quest for the triplet silylene must go on. Organometallics, 2002, vol. 21, pp. 2587–2589.
24. Ayoubi-Chianeh M., Kassaee M. Stable four‐membered cyclosilylenes at theoretical levels. Journal of the Chinese chemical society, 2021, vol. 68, pp. 541–550.
25. Apeloig Y., Pauncz R., Karni M. et al. Why is methylene a ground state triplet while silylene is a ground state singlet? Organometallics, 2003, vol. 22, pp. 3250–3256.
26. Ayoubi-Chianeh M. Theoretical study of new stable triplet silylenes. Silicon, 2022, vol. 14, pp. 8965–8969.
27. Kizhuvedath A., Mallikasseri J., Mattew J. Electronic effects of substituents on the reactivity of silenes: a computational analysis. Structural chemistry, 2024, vol. 35, pp. 119–133.
28. Reiter D., Holzner R., Porzelt A. et al. Disilene–silylene interconversion: a synthetically accessible acyclic bis(silyl)silylene. Chemical reviews, 2019, vol. 141, pp. 13536–13546.
29. Sidorov D.V., Kirilin A.D., Shavnev A.A. Rates of formation of silaethylene and the methyl and silyl radicals by the pyrolysis of methylsilane. Theoretical foundations of chemical engineering, 2024, vol. 56, pp. 554–559.
30. Maier G., Reisenauer H., Glatthaar J. Reactions of silicon atoms with methane and silane in solid argon: a matrix-spectroscopic study. Chemistry – А European journal, 2002, vol. 8, pp. 4383–4391.
31. Gordon M. The methylsilylene‒silaethylene‒silylcarbene isomerization. Chemical physics letters, 1978, vol. 54, pp. 9–13.
32. Sidorov D.V., Kirilin A.D., Grunin А.А., Schavnev А.А. Structure isomerization of system «methylsilylene–silaethylene–silylcarbene». Trudy VIAM, 2023, no. 9 (127), paper no. 03. Available at: http://www.viam-works.ru (accessed: November 18, 2024). DOI: 10.18577/2307-6046-2023-0-9-32-40.
33. Sidorov D.V., Kirilin A.D., Schavnev А.А., Melentev А.А., Flotskiy А.А., Grunin А.А. Transition state chemical reaction producing silaethylene from methylsilane. Trudy VIAM, 2022, no. 9 (115), paper no. 09. Available at: http://www.viam-works.ru (accessed: November 18, 2024). DOI: 10.18577/2307-6046-2022-0-9-111-120.
34. Foresman J.B., Frish A.E. Exploring chemistry with electronic structure methods. 3rd ed. Wallingford, CT: Gausssian Inc., 2015, 335 p.
35. Chorkendorf I., Naimantsvedreit H. Modern catalysis and chemical kinetics. Dolgoprudny: Intellekt, 2010, 504 p.
In the article the microstructure, phase composition and resistance of Ni-Resist cast iron to abrasive wear without treatment and after low-temperature electrolysis-free boriding were studied. The results of the study showed that boriding using the experimental composition made it possible to form a diffusion layer with a hardness of up to 1800 HV 0,1, to increase abrasive resistance at an attack angle of 30°, while increasing the attack angle to 60 and 90° has led to a decrease in abrasive resistance.
2. Ageev Sh.R., Savelyev K.V. How the open stage works: operation of mechanized wells in complicated conditions. Inzhenernaya praktika, 2014, no. 2, pp. 20–23.
3. Yakimov S.B., Shportko A.A. On the influence of the concentration of abrasive particles on the service life of electric centrifugal pumps with working stages made of Ni-resist type 1 material at the fields of OJSC NK Rosneft. Territoriya Neftegaz, 2016, no. 3, pp. 84–99.
4. Sevalnev G.S., Gromov V.I., Dulnev K.V., Sevalneva T.G. Contact endurance of nitrogenous austenitic-martensitic steels with different hardening mechanism. Aviation materials and technologies, 2024, no. 2 (75), paper no. 01. Available at: http://www.journal.viam.ru (accessed: July 25, 2024). DOI: 10.18577/2713-0193-2024-0-2-3-14.
5. Sevalnev G.S. Beryllium-containing steels – perspective material with a high level of physical and mechanical properties. Aviation materials and technologies, 2023, no. 3 (72), paper no. 02. Available at: http://www.journal.viam.ru (accessed: November 24, 2024). DOI: 10.18577/2713-0193-2023-0-3-15-29.
6. Bannykh I.O., Ashmarin A.A., Betzofen S.Ya. et al. Optimization of chemical composition and parameters of thermomechanical processing of TRIP steels based on new methods of X-ray tensiometry, texture and phase analysis. Metally, 2022, no. 6, pp. 66–72.
7. Blinov V.M., Lukin E.I., Blinov E.V. et al. Tensile Fracture of Austenitic Corrosion-Resistant Steels with an Overequilibrium Nitrogen Content and Various Vanadium Contents. Russian Metallurgy (Metally), 2021, vol. 2021, is. 10, pp. 1265–1269. DOI: 10.1134/S0036029521100062.
8. Kablov E.N., Bakradze M.M., Gromov V.I., Voznesenskaya N.M., Yakusheva N.A. New high strength structural and corrosion-resistant steels for aerospace equipment developed by FSUE «VIAM» (review). Aviacionnye materialy i tehnologii, 2020, no. 1 (58), pp. 3–11. DOI: 10.18577/2071-9140-2020-0-1-3-11.
9. Voznesenskaya N.M., Tonysheva O.A., Eliseev E.A. Modern structural steels of cryogenic purpose and influence of some alloying elements on their properties (review). Trudy VIAM, 2020, no. 1, paper no. 01. Available at: http://www.viam-works.ru (accessed: November 24, 2024). DOI: 10.18577/2307-6046-2020-0-1-3-14.
10. Tsikh S.G., Krasulya A.A., Pomelnikova A.S., Filimonov A.V. Low-temperature liquid boriding of Ni-resist cast iron. Uprochnyayushchie tekhnologii i pokrytiya, 2020, no. 10, pp. 468–472.
11. Krukovich M.G., Prusakov B.A., Sizov I.G. Plasticity as the Key to the Durability of Boronized Lays. Springer series of Material Sciences. Plasticity of Boronized Layers, 2016, vol. 237, pp. 65–80.
12. Burnyshev I.N., Valiakhmetova O.M., Mutagarova S.A. On the issue of boriding of steels. Vestnik Izhevskogo gosudarstvennogo tekhnicheskogo universiteta, 2007, no. 4, pp. 124–127.
13. Chernov Ya.B., Filatov E.S., Karimov K.R., Chebykin V.V. Galvanic-thermodiffusion boriding of steels. Trudy Kolskogo nauchnogo tsentra RAN, 2015, no. 5 (31), pp. 300–303.
14. Covert R., Morrison J., Roehrig K. Properties and Applications of Ni-Resist and Ductile Ni-Resist Alloys. Toronto: Nickel Development Institute, 1998, 38 p.
15. Vinogradov V.N., Sorokin G.M., Kolokolnikov M.G. Abrasive wear. Moscow: Mashinostroenie, 1990, 224 p.
16. Vinogradov V.N., Sorokin G.M., Shreiber G.K. Shock-abrasive wear of drill bits. Moscow: Nedra, 1975, 167 p.
17. Mednikov A.F., Tkhabisimov A.B. Results of studies of abrasive resistance of 15Kh11MF steel at elevated temperatures. Hydraulic and heat engineering systems and units: reports XXVII Int. scientific-technical conf. Moscow: Mir nauki, 2023, pp. 161–166.
18. Ryzhenkov A.V., Mednikov A.F., Grigoriev S.V. et al. Results of field studies of corrosion and abrasive resistance of ion-plasma coating formed on samples of tubular heating surfaces of a biofuel boiler. Teploenergetika, 2023, no. 10, pp. 34–44.
19. Tkhabisimov A., Mednikov A., Zilova O. Studies of the Solid Particle Erosion Resistance of 30 L Steel with Different Types of Surface Modification. Metals, 2023, vol. 13, no. 12, p. 1978. DOI: 10.3390/met13121978.
20. Method for determining the modulus of elasticity of a surface-modified layer of a metal sample: pat. BY21660C1; appl. 31.08.15; publ. 30.04.17.
The article provides information on the change in color distance and a reliable forecast model for this process during natural exposure of paint coating systems for 7 years in a moderately warm climate. It is revealed that the seasonality effect, previously detected based on data for 1 year of exposure, decreases after 3,5 years and is not observed after 5 years of exposure. It is proven that it is possible to reliably forecast changes in color characteristics for up to 7 years after analyzing experimental data for 5 years of natural exposure.
2. Kondrashov E.K., Naidenov N.D. Erosion-resistant paint and varnish coatings for aviation purposes. Part 2. Elastomeric erosion resistant radio-transparent coatings (review). Trudy VIAM, 2020, no. 3 (87), paper no. 10. Available at: http://www.viam-works.ru (accessed: November 02, 2024). DOI: 10.18577/2307-6046-2020-0-3-94-101.
3. Kuznetsova V.A., Yemelyanov V.V., Marchenko S.A., Kovrizhkina N.A. The influence of artificial aging on the properties of coating systems based onchromate-free primer VG-44 using epoxy, polyurethane, acrylic urethane and fluoropolyurethane enamels. Trudy VIAM, 2023, no. 10 (128), paper no. 11. Available at: http://www.viam-works.ru (accessed: November 02, 2024). DOI: 10.18577/2307-6046-2023-0-10-119-131.
4. Kuznetsova V.А., Zheleznyak V.G., Kurshev E.V., Yemelyanov V.V. Research of fuel- and water resistance of coatings based on the filled epoxy-thiokol polymeric compositions. Aviation materials and technologies, 2021, no. 2 (63), paper no. 10. Available at: http://www.journal.viam.ru (accessed: November 02, 2024). DOI: 10.18577/2713-0193-2021-0-2-93-102.
5. Serdtselyubova A.S., Merkulova Yu.I., Zagora A.G., Kurshev E.V. Research of film-forming parameters and protective properties of basecoat/clearcoat system. Aviation materials and technologies, 2023, no. 1 (70), paper no. 07. Available at: http://www.journal.viam.ru (accessed: December 31, 2023). DOI: 10.18577/2713-0193-2023-0-1-93-104.
6. Kablov E.N., Startsev V.O., Laptev A.B. Aging of polymer composite materials. Moscow: NRC «Kurchatov Institute» – VIAM, 2023, 520 p.
7. Startsev V.O., Valevin E.O., Gulyaev A.I. The influence of polymer composite materials’ surface weathering on its mechanical properties. Trudy VIAM, 2020, no. 8 (90), paper no. 07. Available at: http://www.viam-works.ru (accessed: November 02, 2024). DOI: 10.18577/2307-6046-2020-0-8-64-76.
8. Startsev V.O., Nizina T.A. The modeling of epoxy polymers weathering by the color characteristics measurements. Trudy VIAM, 2015, no. 12, paper no. 10. Available at: http://www.viam-works.ru (accessed: November 02, 2024). DOI: 10.18577/2307-6046-2015-0-12-10-10.
9. Startsev V.O., Molokov M.V., Startsev O.V., Nizina T.A., Nizin D.R. Effect of aliphatic diluent ETAL-1 on climatic resistance of epoxy polymers based on ED-20 resin. Vse materialy. Entsiklopedicheskiy spravochnik, 2016, no. 12, pp. 26–36.
10. Nizina T.A., Startsev V.O., Selyaev V.P., Startsev O.V., Nizin D.R. Analysis of the effect of actinometric parameters on the intensity of change in the color characteristics of epoxy composites in marine climate conditions. Vestnik Belgorodskogo gosudarstvennogo tekhnologicheskogo universiteta im. V.G. Shukhova, 2015, no. 5, pp. 95–101.
11. Startsev V.O., Khrulyov K.A., Evdokimov A.A. Influence of seasonality of climatic influence on the change in color characteristics of epoxy enamel EP-140. Korroziya: materialy, zashchita, 2017, no. 6, pp. 31–36.
12. Kablov E.N., Startsev O.V., Krotov A.S., Kirillov V.N. Climatic aging of composite aviation materials: 3. Significant aging factors. Russian Metallurgy (Metally), 2012, no. 4, pp. 323–329.
13. Lebedev M.P., Startsev O.V. Regularities of aging of polymer and polymer composite materials in the conditions of the Far North. Russian Chemical Bulletin, 2023, vol. 72, no. 2, pp. 553–565.
14. Semenova L.V., Nefedov N.I., Belova M.V., Laptev A.B. Systems of paint coatings for helicopter equipment. Aviacionnye materialy i tehnologii, 2017, no. 4 (49), pp. 56–61. DOI: 10.18577/2071-9140-2017-0-4-56-61.
15. Lebedev M.P., Startsev O.V., Koval T.V., Veligodsky I.M. Multiplet relaxation α-transitions in a fluororethane coating after climatic aging. Doklady Rossiyskoy akademii nauk. Khimiya, nauki o materialakh, 2024, vol. 516, no. 1, pp. 45–51.
16. Pavlov A.V., Andreeva N.P., Pavlov M.R., Merkulova Yu.I. Climatic tests of paint coating based on fluoroplastic and features of its destruction. Trudy VIAM, 2019, no. 5, paper no. 12. Available at: http://www.viam-works.ru (accessed: November 02, 2024). DOI: 10.18577/2307-6046-2019-0-5-103-110.
17. Cai G., Zhang D., Jiang D., Dong Z. Degradation of fluorinated polyurethane coating under UVA and salt spray. Part II: Molecular structures and depth profile. Progress in Organic Coatings, 2018, vol. 124, pp. 25–32.
18. Huang H., Guo H., Feng Y. Study on UV-aging performance of fluorinated polymer coating and application on painted muds. Materials Research Express, 2021, vol. 8, no. 1, аrt. 015301.
19. Molina M.T., Cano E., Ramírez-Barat B. Testing protective coatings for metal conservation: the influence of the application method. Heritage Science, 2023, vol. 11, no. 1, аrt. 94.
20. Zhang Ti., Zhang Te., He Y. et al. Corrosion and aging of organic aviation coatings: A review. Chinese Journal of Aeronautics, 2023, vol. 36, no. 4, pp. 1–35.
21. Startsev O.V., Perepechko I.I. Molecular mobility and relaxation in an epoxy matrix. 1. Influence of the reinforcing filler. Mechanics of Composite Materials, 1984, vol. 20, no. 3, pp. 271–274.
22. Startsev O.V., Bolonin A.B., Vapirov Yu.M., Krivov V.A., Vladimirsky V.N., Ofitserova M.G. Improving the viscoelastic properties of acrylic enamel AC-1115. Lakokrasochnye materialy i ikh primenenie, 1986, no. 4, pp. 16–18.
23. Skrovanik D.J., Schöff C.K. Thermal mechanical analysis of organic coatings. Progress in Organic Coatings, 1988, vol. 16, no. 2, pp. 135–163.
24. Cristoforetti A., Rossi S., Deflorian F., Fedel M. On the Limits of the EIS Low-Frequency Impedance Modulus as a Tool to Describe the Protection Properties of Organic Coatings Exposed to Accelerated Aging Tests. Coatings, 2023, vol. 13, no. 3, аrt. 598.
25. Startsev O.V., Isupov V.V., Nikishin E.F. The Gradient of Mechanical Characteristics Across the Thickness of Composite Laminates After Exposure to a Low Earth Orbit Environment. Polymer Composites, 1998, vol. 19, no. 1, pp. 65–70.
26. Garibiyan B.A. Determination of the elastic modulus of the coating using a spherical indenter. Turkish Journal of Computer and Mathematics Education, 2021, vol. 12, pp. 1594–1600.
27. Chen J., Li B., Zeng X. et al. Study on the Influence of Accelerated Aging on the Properties of an RTV Anti-Pollution Flashover Coating. Polymers, 2023, vol. 15, no. 3, аrt. 751.
28. Rudnev V.P. Influence of the environment of humid subtropics on the color characteristics of protective polymer coatings. Sistemy kontrolya okruzhayushchey sredy, 2020, no. 3, pp. 56–64.
29. Pánek M., Reinprecht L. Critical view on the possibility of color changes prediction in the surfaces of painted wood exposed outdoors using accelerated weathering in Xenotest. Journal of Coatings Technology and Research, 2019, vol. 16, no. 2, pp. 339–352.
30. Zhumadilova Z., Selyaev V., Nurlybayev R. et al. Prediction of Durability of Thermal Insulating Epoxy Coatings with Regard to Climatic Ageing. Polymers, 2022, vol. 14, no. 9, аrt. 1650.
31. Cocuzzi D.A., Pilcher G.R. Ten-year exterior durability test results compared to various accelerated weathering devices: Joint study between ASTM International and National Coil Coatings Association. Progress in Organic Coatings, 2013, vol. 76, pp. 979–984.
32. Malshe V.C., Waghoo G. Weathering study of epoxy paints. Progress in Organic Coatings, 2004, vol. 51, no. 4, pp. 267–272.
33. Al-Harbi F.A., Ayad N.M., Saber M.A. et al. Mechanical behavior and color change of facial prosthetic elastomers after outdoor weathering in a hot and humid climate. The Journal of Prosthetic Dentistry, 2015, vol. 113, no. 2, pp. 146–151.
34. Nizina T.A., Selyaev V.P., Nizin D.R. Climatic resistance of epoxy polymers in a temperate continental climate. Saransk: Publ. house of the Mordov. Univ., 2020, 188 p.
35. Kablov E.N., Startsev O.V., Medvedev I.M., Panin S.V. Corrosive aggressiveness of the coastal atmosphere. Part 1. Influencing factors (review). Korroziya: materialy, zashchita, 2013, no. 12, pp. 6–18.
36. Kablov E.N., Startsev O.V., Medvedev I.M. Corrosive aggressiveness of the coastal atmosphere. Part 2. New approaches to assessing the corrosivity of coastal atmospheres. Korroziya: materialy, zashchita, 2016, no. 1, pp. 1–15.
37. Pickett J.E., Gardner M.M., Gibson D.A., Rice S.T. Global weathering of aromatic engineering thermoplastics. Polymer Degradation and Stability, 2005, vol. 90, pp. 405–417.
38. Pickett J.E., Gardner M.M. Reproducibility of Florida weathering data. Polymer Degradation and Stability, 2005, vol. 90, no. 3, pp. 418–430.
39. Fairchild M.D. Color Appearance Models. Color Appearance Models. Wiley, 2013, 480 p.
40. Ibraheem N., Hasan M., Khan R., Mishra P. Understanding Color Models : A Review. ARPN Journal of Science and Technology, 2012, vol. 2, no. 3, pp. 265–275.
41. Schanda J. Colorimetry: Understanding the CIE System. Wiley, 2007, 398 p.
The article considers the calculated dependencies of changes in the humidity and temperature in the volume and on the surface of a material sample under the influence of the wind. The study considers a case of the absence of free moisture on the surface. It is shown that the wind effect on the humidity of the surface is about affecting the surface temperature due to the viscous friction forces near the surface of the material sample. At the same time, free moisture in capillaries evaporates at a constant rate. Sorbed moisture, depending on the gradient of moisture concentration, temperature, and partial pressure of moisture in the bulk of the material, is removed at a decreasing rate.
2. Kablov E.N. New generation materials and digital technologies for their processing. Vestnik Rossiyskoy akademii nauk, 2020, vol. 90, no. 4, pp. 331–334.
3. Kablov E.N., Kondrashov S.V., Melnikov A.A., Schur P.A. Application of functional and adaptive materials obtained by 3D printing (review). Trudy VIAM, 2022, no. 2 (108), paper no. 03. Available at: http://www.viam-works.ru (accessed: May 10, 2024). DOI: 10.18577/2307-6046-2022-0-2-32-51.
4. Veshkin E.A., Startsev V.O., Postnov V.I., Barannikov A.A. The climate impacts as the assessment of maintainability of products from carbon fiber. Trudy VIAM, 2019, no. 8 (80), paper no. 11. Available at: http://www.viam-works.ru (accessed: June 20, 2024). DOI: 10.18577/2307-6046-2019-0-8-98-108.
5. Laptev A.B., Pavlov M.R., Zeleneva T.O. Light sources for simulating the aging of polymer materials under the influence of solar radiation. Trudy VIAM, 2024, no. 5 (135), paper no. 07. Available at: http://www.viam-works.ru (accessed: June 02, 2024). DOI: 10.18577/2307-6046-2024-0-5-71-82.
6. Startsev V.O., Nechaev A.A. The influence of natural and accelerated weathering on the nanomodified CFRP’S strength. Aviation materials and technologies, 2023, no. 3 (72), paper no. 11. Available at: http://www.journal.viam.ru (accessed: May 10, 2024). DOI: 10.18577/2713-0193-2023-0-3-134-151.
7. Whiteside M., Herndon J.M. Unequivocal Detection of Solar Ultraviolet Radiation 250–300 nm (UV-C) at Earth's Surface. European Journal of Applied Sciences, 2023, vol. 11, no. 2, pp. 455–472. DOI: 10.14738/aivp.112.14429.
8. Kasatkin A.G. Basic processes and apparatus of chemical technology. Ed. 7th. Moscow: State Sci.-tech. Chem. Publ. House, 1985, 830 p.
9. Mikheev M.A., Mikheeva I.M. Basics of Heat Transfer. Ed. 2nd, stereotype. Moscow: Energiya, 1977, 344 p.
10. Mikheev M.A., Mikheeva I.M. A short course in heat transfer. Moscow: Publ. House of the USSR Academy of Sciences, 1960, pp. 33–55.
11. Shirokov M.F. Physical foundations of gas dynamics and its application to heat transfer and friction processes. Moscow: Fizmatgiz, 1958, 340 p.
12. Eckert E., Weise W. Messungen der Temoeraturverteilung auf der Oberfleche schnell angestromter unbeheizter Körper. Forschung Im Ingenieurwesen, 1942, bd. 13, h. 6, ss. 246–254.
13. Nakorchevsky A.I. Influence of climatic factors on heat transfer in the upper zone of ground heat accumulators. Inzhenerno-fizicheskiy zhurnal, 2012, vol. 85, no. 2, pp. 392–407.
14. Khramtsov P.P., Penyazkov O.G., Grishchenko V.M. et al. Influence of barrier discharge on the aerodynamic drag of Zhukovsky airfoil under different blowing conditions. Inzhenerno-fizicheskiy zhurnal, 2011, vol. 84, no. 6, pp. 1252–1256.
15. Golub O.V., Kotov G.V., Fisenko S.P. Modeling of vapor cloud formation in a wind flow with intense evaporation. Inzhenerno-fizicheskiy zhurnal, 2010, vol. 83, no. 4, pp. 757–762.
16. Kornienko S.V. Increasing the energy efficiency of buildings by improving the methods for calculating the temperature and humidity conditions of enclosing structures: thesis, Dr. Sc. (Tech). Volgograd: VolgGASU, 2018, 380 p.
17. Lykov A.V. Heat and Mass Transfer: Handbook. Moscow: Energiya, 1978, 480 p.
18. Perekhozhentsev A.G. Issues of Theory and Calculation of the Humidity State of Heterogeneous Sections of Building Enclosing Structures. Volgograd: VolgGASU, 1997, 273 p.
19. Kornienko S.V. Moisture potential for determining the moisture state of materials of external enclosures in non-isothermal conditions. Stroitelnye materialy, 2006, no. 4, рр. 88–89.
20. Bogoslovsky V.N., Gagarin V.G. Moisture potential. Theoretical foundations. Vestnik otdeleniya stroitelnykh nauk Rossiyskoy akademii arkhitektury i stroitelstva, 1996, is. 1, pp. 12–14.
21. Künzel H.M. Simultaneous Heat and Moisture Transport in Building Components: One- and two-dimensional calculation using simple parameters. Stuttgart: IRB Verlag, 1995, 540 р.
22. Lakomkin V.Yu., Smorodin S.N., Gromova E.N. Heat and mass transfer equipment of enterprises (drying units): manual. St. Petersburg: VShTE SPbGUPTD, 2016, 142 p.
Heat-resistant alloys and steels
Petrushin N.V., Svetlov I.L., Epishin A.I., Elyutin E.S.
Development of directional solidification method to solve the problems of physical metallurgy of nickel- and cobalt-based superalloys. Part 1
Light-metal alloys
Pavlova T.V., Kashapov O.S., Chuchman O.V., Goncharova L.Yu.
Comparative analysis of mechanical properties of the material of VT6 alloy forgings, manufactured by various methods and production conditions
Composite materials
Gvozdev S.S., Kurbatkina E.I., Shcherbakov E.M., Bogachyov I.A.
Features of granules spheroidization of different fractions of molybdenum-based high-temperature composite material
Valeev R.A., Serov M.M., Leshchev N.E., Yaroshenko A.S.
Fixation of the amorphous state in alloys Co–Cr–W system under the influence of high cooling rates
Dubrovin I.M., Lopatina M.F., Isaev A.Yu., Starkov A.I.
Modern and prospective methods for preparing metal and polymer composite surfaces for bonding with aviation-grade
adhesives
Protective and functional
coatings
Sidorov D.V., Grunin А.А., Schavnev А.А.
Rate of chemical reaction of formation of 1,2-dimethyldisilene from methylsilylene
Sevalnev G.S., Krasulya А.А.
Study of abrasive wear of high-carbon iron-based alloy with increased nickel content after electroless boriding at low temperature
Startsev V.O., Kogan A.M., Zeleneva T.O.
Climate aging of paint coating systems. Part 1. Effect of long-term exposure on color characteristics
Material tests
Laptev A.B., Matishov G.G., Sadkov V.R., Nikolaev E.V., Kogan A.M.
The wind effect on the humidity of polymer composite materials in natural conditions