Articles
Change in nitrogen concentration, formation of the structure and properties of the metal-powder composition and 3D-printed samples of high-nitrogen corrosion-resistant bearing steel was studied. It is established that providing a super-equilibrium nitrogen concentration in the chemical composition of steel is possible both at the stage of obtaining an ingot and during the production of a metal-powder composition and 3D-printing of samples. The formed segregations of carbonitrides in the obtained samples contribute to a decrease in mechanical and tribotechnical characteristics.
2. Kablov E.N., Bakradze M.M., Gromov V.I., Voznesenskaya N.M., Yakusheva N.A. New high strength structural and corrosion-resistant steels for aerospace equipment developed by FSUE «VIAM» (review). Aviacionnye materialy i tehnologii, 2020, no. 1 (58), pp. 3–11. DOI: 10.18577/2071-9140-2020-0-1-3-11.
3. Korobova E.N., Sevalnev G.S., Gromov V.I., Leonov A.V. Steels for the manufacture of roller bearings for special purposes (review). Trudy VIAM, 2021, no. 11 (105), paper no. 01. Available at: http://www.viam-works.ru (accessed: October 24, 2024). DOI: 10.18577/2307-6046-2021-0-11-3-11.
4. Spektor A.G., Zelbet B.M., Kiseleva S.A. Structure and properties bearing staly. Мoscow: Metallurgist, 1980, 264 p.
5. Sprishevsky A.I. Swing bearings. Мoscow: Mashinostroenie, 1968, 632 p.
6. Pinegin S.V. Swing support in machines. Мoscow: Academy of Sciences of the USSR, 1961, 150 p.
7. Degtyarev S.A., Leontev M.K., Popov V.V. To pliability definition «squirrel wheel» in support of rotors of aviation gasturbine engines. The messenger of the Samara state space university of academician S.P. Koroleva (national research university), 2014, no. 4 (46), pp. 52–60.
8. Belousov A.I., Balyakin V.B., Novikov D.K. Theory and design of hydrodynamic dampers of support of rotors. Samara, 2002, 335 p.
9. Heat-resistant bearing steel: pat. 2447183 Rus. Federation; appl. 05.04.11; publ. 10.04.12.
10. High-strength corrosion-resistant steel: pat. 2724766 Rus. Federation; appl. 23.05.19; publ. 25.06.20.
11. Rabitsch R., Koch F., Würzinger P. M50 (AMS 6191) and M50NiL (AMS 6278) High-Performance VIM-VAR Melted Bearing Steels for the Aviation Industry. Proceedings of the 2005 International Symposium on Liquid Metal Processing and Casting. Sata Fe (New Mexico): ASTM International, 2005, vol. 5, pp. 57–64.
12. Ooi S., Bhadeshia H.K.D.H. Duplex Hardening of steels for Aeroengine Bearings. ISIJ International, 2012, vol. 52, no. 11, pp. 1927–1934.
13. Bakradze M.M., Voznesenskaya N.M., Leonov A.V., Krylov S.A., Tonysheva S.A. Development and research of high-strength corrosion-resistant steel for details of bearings. Metallurgist, 2019, no. 11, pp. 39–44.
14. Cronidur 30 Stainless Steel. Available at: https://www.progressivealloy.com/cronidur-30-stainless-steel (accessed: October 24, 2024).
15. Trojahn W., Streit E., Chin H.A., Ehlert D. Progress in bearing performance of advanced nitrogen alloys stainless steel, Cronidur 30. Materialwissenschaft und Werkstofftechnik, 1999, vol. 30, pp. 605–611.
16. Berns H., Ebert F.-J., Zoch H.-W. The new low nitrogen steel LNS – a material for advanced aircraft engine and aerospace bearing applications. Bearing steels: into the 21-st century. Eds. J.J.C Hoo, W.B. Green. American Society for Testing Material, 1998, 440 р.
17. Svyazhin A.G., Kaputkina L.M. Nitrogenous and high-nitrogen became. Industrial technologies and properties. Izvestiya. Ferrous Metallurgy, 2019, no. 62 (3), pp. 173–187. DOI: 10.17073/0368-0797-2019-3-173-187.
18. Svyazhin A.G., Kaputkina L.M. The steels, alloyed by nitrogen. Izvestiya. Ferrous Metallurgy, 2005, no. 10, pp. 36–46.
19. Rashev Ts.V. High nitrogen steels. Metallurgy under pressure. Sofia: prof. Marin Drinov, 1995, 272 p.
20. Berns H., Escher C., Streich W.D. Martensitic high nitrogen steel for applications at elevated temperature. Materials science forum. Trans. Tech. Publications Ltd, 1999, vol. 318, pp. 443–448.
21. Lukin E.I., Ashmarin A.A., Bannykh I.O. et al. Effect of the Reduction during Cold Rolling on the Phase Composition, Texture, and Residual Stresses in 20Kh15AN3MD2 Steel. Russian Metallurgy (Metally), 2023, vol. 2023, no. 11, pp. 1598–1605.
22. Berns H., Ehrhardt R. Carbon or nitrogen alloyed quenched and tempered stainless steel – comparative study. Steel research, 1996, vol. 67, no. 8, pp. 343–349.
23. Liverani E., Toschi S., Ceschini L., Fortunato A. Effect of selective laser melting (SLM) process parameters on microstructure and mechanical properties of 316L austenitic stainless steel. Journal of Materials Processing Technology, 2017, vol. 249, pp. 255–263.
24. Bogachev I.A., Sulyanova E.A., Sukhov D.I., Mazalov P.B. Microstructure and properties investigations of Fe–Cr–Ni stainless steel obtained by selective laser melting. Trudy VIAM, 2019, no. 3 (75), paper no. 01. Available at: http://www.viam-works.ru (accessed: November 01, 2024). DOI: 10.18577/2307-6046-2019-0-3-3-13.
25. Yap C.Y., Chua C.K., Dong Z.L. et al. Review of selective laser melting: Materials and applications. Applied physics reviews, 2015, vol. 2, no. 4, p. 041101.
26. Pei Y.T., de Hosson J.T.M. Functionally graded materials produced by laser cladding. Acta Materialia, 2000, vol. 48, pp. 2617−2624.
27. Gavriljuk V.G., Berns H. High nitrogen steels: structure, properties, manufacture, applications. Springer Science & Business Media, 1999, 364 p.
28. Siwka J., Hutny A. An universal formula for the calculation of nitrogen solubility in liquid nitrogen-alloyed steels. Metalurgija, 2009, vol. 48, no. 1, pp. 23–27.
29. Sevalnev G.S., Nefedkin D.Yu., Dulnev K.V., Skorikova M.A. Study of the characteristics of maraging steel under tribotechnical loading. Trudy VIAM, 2024, no. 10 (140), paper no. 01. Available at: http://www.viam-works.ru (accessed: November 22, 2024). DOI: 10.18577/2307-6046-2024-0-10-3-12.
The review analyzes the current state of production of HNA (Heat-resistant nickel alloy) granules by the method of plasma melting and centrifugal spraying of a cast rotating blank (PREP method). The main theoretical and practical features of the production of HNA granules by this method are shown. Based on the analysis of a number of works in a similar direction, the corresponding calculations are made, allowing to form a list of requirements for the production of granules using the method of plasma melting and centrifugal spraying of a cast rotating blank.
2. Kablov E.N. Aerospace Materials Science. Vse materialy. Entsiklopedicheskiy spravochnik, 2008, no. 3, pp. 2–14.
3. Kablov E.N. Materials Quality Control – a Guarantee of Aviation Equipment Operation Safety. Aviacionnye materialy i tehnologii, 2001, no. 1, pp. 3–8.
4. Kablov E.N. Science as a Branch of the Economy. Nauka i zhizn, 2009, no. 10, pp. 7–8.
5. Letnikov M.N., Lomberg B.S., Ospennikova O.G., Bakradze M.M. The influence of quench rate on microstructure and mechanical properties of nickel-based wrought superalloy VZh175-ID. Aviacionnye materialy i tehnologii, 2019, no. 2 (55), pp. 21–30. DOI: 10.18577/2071-9140-2019-0-2-21-30.
6. Lomberg B.S., Shestakova A.A., Bakradze M.M., Karachevtsev F.N. The investigation of the stability of γ-phase with size below 100 nm in Ni-base superalloy VZh175-ID. Aviacionnye materialy i tehnologii, 2018, no. 4 (53), pp. 3–10. DOI: 10.18577/2071-9140-2018-0-4-3-10.
7. Echin A.B., Bondarenko Yu.A., Kolodyazhny M.Yu., Surova V.A. Review of perspective high-temperature superalloys based on refractory non-metallic materials for production of gas turbine engines. Aviation materials and technologies, 2023, no. 3 (72), paper no. 03. Available at: http://www.journal.viam.ru (accessed: December 10, 2024). DOI: 10.18577/2713-0193-2023-0-3-30-41.
8. Min P.G., Vadeev V.E. The development and introduction into serial production of the new superalloy VZhL125 for the advanced aviation engines vanes. Aviation materials and technologies, 2023, no. 1 (70), paper no. 01. Available at: http://www.journal.viam.ru (accessed: December 10, 2024). DOI: 10.18577/2713-0193-2023-0-1-3-16.
9. Narsky A.R., Deynega G.I., Kuzmina I.G. Obtaining a fine-grained structure of castings from nickel superalloys using a cobalt aluminate modifier. Aviation materials and technologies, 2023, no. 3 (72), paper no. 01. Available at: http://www.journal.viam.ru (accessed: December 10, 2024). DOI: 10.18577/2713-0193-2023-0-3-3-14.
10. Kolyadov E.V., Visik E.M., Gerasimov V.V., Bityutskaya O.N. Features of the morphology of the structure of nickel superalloy depending on the values of the axial and radial temperature gradients at the crystallization front. Aviation materials and technologies, 2024, no. 2 (75), paper no. 02. Available at: http://www.journal.viam.ru (accessed: December 10, 2024). DOI: 10.18577/2713-0193-2024-0-2-15-24.
11. Vostrikov A.V., Volkov A.M., Bakradze M.M. Development and study of a new granulated disk alloy VZh178P for promising aircraft gas turbine engines. Tsvetnye metally, 2018, no. 8, pp. 80–84.
12. Eskin G.I. On the conditions for the formation of a non-dendritic structure in ingots and granules of light and heat-resistant nickel alloys. Tekhnologiya legkikh splavov, 2013, no. 4, pp. 147–159.
13. Garibov G.S., Grits N.M. V.I. Dobatkin and metallurgy of granules of heat-resistant nickel alloys. Tekhnologiya legkikh splavov, 2015, no. 2, pp. 34–39.
14. Vostrikov A.V., Sukhov D.I. The production of powders by PREP method for addictive manufacturing – current situation and development prospects. Trudy VIAM, 2016, no. 8, paper no. 3. Available at: http://www.viam-works.ru (accessed: December 10, 2024). DOI: 10.18577/2307-6046-2016-0-8-3-3.
15. Method for producing granules of heat-resistant nickel alloys: pat. 2468891 С1 Rus. Federation; appl. 18.11.11; publ. 10.12.12.
16. Volkov A.M., Shestakova A.A., Bakradze M.M. The comparison of powder produced by gas atomization and by plasma rotate electrode process in the point of production disk billets from Ni-base superalloys. Trudy VIAM, 2018, no. 11 (71), paper no. 02. Available at: http://www.viam-works.ru (accessed: December 10, 2024). DOI: 10.18577/2307-6046-2018-0-11-12-19.
17. Vostrikov A.V., Garibov G.S., Ber L.B., Shlyapin S.D. Study of physical and mechanical properties and structure of granules from a new high-strength nickel alloy produced by the PREP method. Tekhnologiya legkikh splavov, 2013, no. 2, pp. 69–75.
18. Musienko V.T. Some results of the development of the technology for the production of granules of heat-resistant nickel alloys for the manufacture of aerospace products. Tekhnologiya legkikh splavov, 2000, no. 6, pp. 72–78.
19. Dobatkin V.I. The role of kinetic and thermodynamic factors in the crystallization of granules. Metallurgiya granul, 1983, is. 1, pp. 23–33.
20. Dobatkin V.I. Regularities of rapid crystallization as a basis for selecting the compositions of granulated alloys. Metallurgiya granul, 1988, is. 4, pp. 11–23.
21. Garibov G.S. Crystallization theory and technology of granulated heat-resistant nickel alloys. Tekhnologiya legkikh splavov, 2016, no. 1, pp. 107–118.
22. Belov A.F., Anoshkin N.F., Fatkullin O.Kh. et al. Features of alloying heat-resistant alloys obtained by granule metallurgy. Heat-resistant and heat-resistant steels and nickel-based alloys. Moscow: Nauka, 1984, pp. 31–40.
23. Bakradze М.М., Volkov А.М., Shestakova А.А., Letnikov M.N., Bubnov M.V. The features of the grains size changing in the p/m Ni-base superalloy for disks application produced via different technologies. Trudy VIAM, 2018, no. 2 (62), paper no. 01. Available at: http://www.viam-works.ru (accessed: December 10, 2024). DOI: 10.18577/2307-6046-2018-0-2-1-1.
24. Garibov G.S. Development of the ideas of academician A.F. Belov on a radical increase in the operational characteristics of promising gas turbine engine disks. Promising technologies of light and special alloys: on the 100th anniversary of the birth of academician A.F. Belov. Moscow: Fizmatlit, 2006, pp. 107–117.
25. Koshelev V.Ya., Garibov G.S., Sukhov D.I. Basic patterns of the process of producing heat-resistant alloy granules by plasma spraying of a rotating workpiece. Tekhnologiya legkikh splavov, 2015, no. 3, pp. 97–103.
26. Koshelev V.Ya., Egorov D.A. Influence of storage atmosphere on the adsorption capacity of heat-resistant nickel alloy granules. Tekhnologiya legkikh splavov, 2010, no. 4, pp. 41–45.
27. Shestakov A.V., Karashaev M.M., Dmitriev N.S. Technological ways to create composite materials based on heat-resistant refractory compounds (review). Trudy VIAM, 2021, no. 8 (102), paper no. 03. Available at: http://www.viam-works.ru (accessed: December 10, 2024). DOI: 10.18577/2307-6046-2021-0-8-12-20.
28. Volkov A.M., Vostrikov A.V. Low-cycle fatigue resistance of PM Ni-base superalloys (review). Aviacionnye materialy i tehnologii, 2016, no. S1, pp. 74–79. DOI: 10.18577/2071-9140-2016-0-S1-74-79.
A comprehensive study of structural steel parts was conducted to establish the nature of their destruction and to determine the type of defects detected. Metallographic and fractographic analysis methods were used to study operating structure, opened cracks and the microstructure of steels. It was found that the destruction of a spring made of 30HGSN2A-VD steel was facilitated by the presence of coarse scratches and a decarburized layer on the inner surface. In parts made of 30HGSA steel, defects were detected at the stage of thermal and mechanical treatment.
2. Special Steels: in 2 vols. 2nd ed., add. and rev. Moscow: Metallurgiya, 1966, vol. 2, 532 p.
3. Brand Book of Steels and Alloys. 4th ed., rev. and add. Ed. Yu.G. Dragunov, A.S. Zubchenko. Moscow: Mashinostroenie, 2014, 491 p.
4. Novikov I.I., Zolotorevsky V.S., Portnoy K.K. et al. Metal Science: textbook in 2 vols. Ed. V.S. Zolotorevsky. Moscow: MISiS Publ. House, 2009, vol. 1, 496 p.
5. Novikov I.I., Zolotorevsky V.S., Portnoy K.K. et al. Metallurgy: textbook in 2 vols. Ed. V.S. Zolotorevsky. Moscow: MISiS Publ. House, 2009, vol. 2, 528 p.
6. Gulyaev A.P. Metallurgy: textbook for univ., 6th ed., rev. and add. Moscow: Metallurgiya, 1986, 544 p.
7. Bernstein M.L. Thermo-mechanical processing of metals and alloys: in 2 vols. Moscow: Metallurgiya, 1968, vol. 1, 596 p.
8. Kablov E.N. The key problem is materials. Trends and guidelines for innovative development in Russia. Moscow: VIAM, 2015, pp. 458–464.
9. Kablov E.N., Bakradze M.M., Gromov V.I., Voznesenskaya N.M., Yakusheva N.A. New high strength structural and corrosion-resistant steels for aerospace equipment developed by FSUE «VIAM» (review). Aviacionnye materialy i tehnologii, 2020, no. 1 (58), pp. 3–11. DOI: 10.18577/2071-9140-2020-0-1-3-11.
10. Gromov V.I., Yakusheva N.A., Vostrikov A.V., Cherkashneva N.N. High strength structural steels for gas-turbine engine shafts (review). Aviation materials and technology, 2021, no. 1 (62), paper no. 01. Available at: http://www.journal.viam.ru (accessed: May 16, 2025). DOI: 10.18577/2713-0193-2021-0-1-3-12.
11. Lednev I.S. Magnetic methods of non-destructive testing of aircraft parts. Aviation materials and technologies, 2024, no. 1 (74), paper no. 09. Available at: http://www.journal.viam.ru (accessed: May 16, 2025). DOI: 10.18577/2713-0193-2024-0-1-111-120.
12. Erasov V.S., Oreshko E.I. Tests for fatigue of metal materials (review). Part 2. Analysis of the Basquin–Manson–Coffin equation. Methods of testing and processing of results. Aviation materials and technology, 2021, no. 1 (62), paper no. 08. Available at: http://www.journal.viam.ru (accessed: May 16, 2025). DOI: 10.18577/2713-0193-2021-0-1-80-94.
13. Zolotorevsky V.S. Mechanical properties of metals: textbook for univ. 2nd ed. Moscow: Metallurgiya, 1983, 352 p.
14. Erasov V.S., Oreshko E.I. Fatigue tests of metal materials (review). Part 1. Main definitions, loading parameters, representation of results of tests. Aviacionnye materialy i tehnologii, 2020, no. 4 (61), pp. 59–70. DOI: 10.18577/2071-9140-2020-0-4-59-70.
15. Erasov V.S., Oreshko E.I., Lutsenko A.N. Multilevel large-scale complex research of deformation of metal materials. Aviation materials and technologies, 2022, no. 1 (66), paper no. 11. Available at: http://www.journal.viam.ru (accessed: May 16, 2025). DOI: 10.18577/2713-0193-2022-0-1-129-142.
16. Grigorenko V.B., Morozova L.V. Application of the scanning electron microscopy for studying of initial destruction stages. Aviacionnye materialy i tehnologii, 2018, no. 1 (50), pp. 77–87. DOI: 10.18577/2071-9140-2018-0-1-77-87.
17. Klevtsov G.V., Botvina L.R., Klevtsova N.A., Limar L.V. Fractal diagnostics of fracture of metallic materials and structures. Moscow: MISiS, 2007, 259 p.
18. Gordeeva T.A., Zhegina I.P. Analysis of fractures in assessing the reliability of materials. Moscow: Mashinostroenie, 1978, 200 p.
19. Mechanical engineering: encyclopedia in 40 vols. Moscow: Mashinostroenie, 2010, vol. II-1: Physical and mechanical properties. Testing of metallic materials. Ed. E.I. Mamaeva, 852 p.
The results of developing a technology for manufacturing of pressed and forged semi-finished products from a hard-to-deform aluminum alloy of the Al–Si–Ni system, grade SAS1 for rocket and space technology products are presented. Taking into account the capabilities of the equipment of the National Research Center «Kurchatov Institute» – VIAM, a technology has been developed for the production of pressed semi-finished products and forgings with a diameter of up to 50 mm. The manufactured pressed semi-finished products have the following level of physical and mechanical properties: d = 2,7 g/cm3, σв = 325–335 MPa, σ0,2 = 210–230 MPa, δ5 = 1,6–2,1 %, α ≤ 14,4·10–6 К–1
2. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
3. Kablov E.N. Main results and directions of development of materials for advanced aviation equipment. 75 years. Aviation materials. Moscow: VIAM, 2007, pp. 20–26.
4. Kablov E.N. Materials for aerospace equipment. Vse materialy. Entsiklopedicheskiy spravochnik, 2007, no. 5, pp. 7–27.
5. Kablov E.N. Materials are the basis of any business. Delovaya slava Rossii, 2013, no. 2, pp. 4–9.
6. Vasenev V.V. Development of a composite material based on the Al–Si–Ni system with a low TCLE value and technology for obtaining semi-finished products for rocket and space technology: thesis. Cand. Sc. (Thech.), 2017, p. 60.
7. Dobatkin V.I., Elagin V.I., Fedorov V.M. Rapidly crystallized aluminum alloys. Moscow: VILS, 1995, 341 p.
8. Elagin V.I., Shmakov Yu.V. Granulated aluminum alloys and prospects for their development. Moscow: Fizmat, 2006, pp.140–154.
9. Burkovskaya N.P., Bobrovsky A.P., Efimochkin I.Yu., Bolshakova A.N. Spheroidization of powder compositions based on refractory metals (review). Part 1. Trudy VIAM, 2023, no. 1 (119), paper no. 11. Available at: http://www.viam-works.ru (accessed: January 13, 2025). DOI: 10.18577/2307-6046-2023-0-1-128-138.
10. Burkovskaya N.P., Bobrovsky A.P., Efimochkin I.Yu., Bolshakova A.N. Spheroidization of powder compositions based on refractory metals (review). Part 2. Trudy VIAM, 2023, no. 2 (120), paper no. 09. Available at: http://www.viam-works.ru (accessed: January 15, 2025). DOI: 10.18577/2307-6046-2023-0-2-101-112.
11. Elagin V.I. Promising granulated aluminum alloys. Metallurgiya granul alyuminievykh splavov, 1983, is. 2, pp. 3–84.
12. Bondarev B.I., Napalkov V.I., Tararyshkin V.I. Modification of deformable aluminum alloys. Moscow: Metallurgiya, 1979, 214 p.
13. Kuznetsov A.O., Shadaev D.A., Konkevich V.Yu. et al. Modification of silumins – different approaches for one alloying system. Tekhnologiya legkikh splavov, 2014, no. 4, pp. 75–81.
14. Vasenev V.V., Osintsev O.E., Mironenko V.N. et al. Development of technology for producing stamped parts from SAC1-50 alloy for aerospace navigation devices and comparative testing of platform models from SAC1-50 and AMg6 alloys. Zagotovitelnye proizvodstva v mashinostroyenii, 2016, no. 12, pp. 33–40.
15. Imametdinov E.S., Valueva M.I. Сomposites for piston engines (rеview). Aviacionnye materialy i tehnologii, 2020, no. 3 (60), pp. 19–28. DOI: 10.18577/2071-9140-2020-0-3-19-28.
16. Shchetinina N.D., Kuznetsova P.E., Dynin N.V., Selivanov A.A. Aluminum alloys with additions of Sc and Zr in additive manufacturing (review). Aviation materials and technologies, 2021, no. 3 (64), paper no. 03. Available at: http://www.journal.viam.ru (accessed: January 15, 2025). DOI: 10.18577/2713-0193-2021-0-3-19-34.
17. Osintsev O.E., Betzofen S.Ya., Vasenev V.V. et al. Study of the influence of kinetic and thermodynamic factors on the structure, properties and features of the technology for producing deformed semi-finished products from rapidly crystallized aluminum alloy of the Al–Si–Ni system. Fizika i khimiya obrabotki materialov, 2016, no. 3, pp. 57–64.
18. Osintsev O.E., Vasenev V.V., Mironenko V.N. et al. Development of degassing modes for powders and powder composites of Al–Si–Ni alloys and obtaining briquettes and deformed semi-finished products from them. Zagotovitelnye proizvodstva v mashinostroyenii, 2016, no. 7, pp. 29–36.
19. Mironenko V.N., Nikonov K.I., Butrim V.N. et al. Fracture of Al–Si powder composites. Deformatsiya i razrushenie materialov, 2009, no. 6, pp. 36–39.
20. Vasenev V.V., Mironenko V.N., Butrim V.N. et al. Development of technology for producing pressed semi-finished products and stampings from aluminum alloy SAC1-50 and study of their structure and physical and mechanical properties. Zagotovitelnye proizvodstva v mashinostroyenii, 2015, no. 9, pp. 41–47.
21. Vasenev V.V., Kvitka E.V., Mironenko V.N. et al. Resistance to microplastic deformation of powder composite materials of the Al–Si system. Deformatsiya i razrushenie materialov, 2008, no. 8, pp. 41–44.
22. Mironenko V.N., Vasenev V.V., Petrovich S.Yu., Myshlyaev I.V. Structure and properties of compact blanks and rods made of SAC1 alloy. Tsvetnye metally, 2018, vol. 4, p. 86.
23. Vasenev V.V., Mironenko V.N., Butrim V.N. et al. Development of the aluminium powder composite based on the Al–Si–Ni system and technology of billet fabrication of this composite. Russian Journal of Non-Ferrous Metals, 2018, vol. 59, is. 6, pp. 677–684.
24. Mironenko V.N., Vasenev V.V., Vedernikova M.I. et al. Structure and mechanism of deformation of hypereutectic silumin stampings. Fizika i khimiya obrabotki materialov, 2017, no. 5, pp. 78–87.
25. Aviation materials: a reference book in 13 vols. Ed. E.N. Kablov. 7th ed., rev. and enlarged. Moscow: VIAM, 2008. vol. 4: Aluminum and beryllium alloys, part 1: Wrought aluminum alloys, book 2, pp. 154–155.
The study presents the results of research on the development of advanced high-tech aluminum alloy VAS1 for production of helicopter parts by selective laser melting (SLM). The effect of SLM process parameters on material quality, including microstructure, porosity and roughness has been investigated. Experimental data on the mechanical properties of the material in the as-built state and after strengthening heat treatment are presented. A prototype bracket-type part has been successfully fabricated meeting all geometric tolerances and being free from critical defects.
2. Kablov E.N., Evgenov A.G., Bakradze M.M. et al. New-generation materials and digital additive technologies for the production of resource parts by FSUE VIAM. Part 2. Compensation and control of deviations, GIP and heat treatment. Elektrometallurgiya, 2022, no. 2, pp. 2–12.
3. Kablov E.N., Evgenov A.G., Petrushin N.V. et al. New generation materials and digital additive technologies for the production of resource parts FSUE «VIAM». Part 3. Adaptation and creation of materials. Elektrometallurgiya, 2022, no. 4, pp. 15–25.
4. Zakharov V.V. Aluminum alloys for additive technologies. Metallovedenie i termicheskaya obrabotka metallov, 2021, no. 5 (791), pp. 3–8.
5. Ryabov D.K., Grushin I.A., Seferyan A.G. Some features of the formation of the structure and properties of new aluminum alloys in additive manufacturing. Stankoinstrument, 2022, no. 1 (26), pp. 44–51.
6. Popkova I.S., Zolotorevsky V.S., Solonin A.N. Production of products from aluminum and its alloys by selective laser melting. Tekhnologiya legkikh splavov, 2015, no. 4, pp. 14–24.
7. Zhu Z., Hu Z., Li H. et al. Recent progress on the additive manufacturing of aluminum alloys and aluminum matrix composites: Microstructure, properties, and applications. International Journal of Machine Tools and Manufacture, 2023, vol. 190, p. 104047.
8. Montanari R., Palombi A., Richetta M., Varone A. Additive manufacturing of aluminum alloys for aeronautic applications: Advantages and problems. Metals, 2023, vol. 13, no. 4, p. 716.
9. Rometsch P., Jia Q., Yang K.V., Wu X. Aluminum alloys for selective laser melting-towards improved performance. Additive Manufacturing for the Aerospace Industry. Elsevier, 2019, pр. 301–325.
10. Blakey-Milner B., Du Plessis A., Gradl P. et al. Metal additive manufacturing in aerospace: a review. Materials & Design, 2021, vol. 209, p. 110008.
11. Bakradze M.M., Rogalev A.M., Sukhov D.I., Aslanyan G.G. Features of surface formation by selective laser melting. Metallovedenie i termicheskaya obrabotka metallov, 2022, no. 2 (800), pp. 40–48.
12. Sukhov D.I., Nerush S.V., Belyakov S.V., Mazalov P.B. Study of surface layer roughness parameters and manufacturing accuracy of additive manufacturing products. Izvestiya vuzov. Mashinostroyenie, 2017, no. 9 (690), pp. 73–84.
13. Ivanova A.O., Zavodov A.V., Dynin N.V., Fomina M.A. Efficiency of complex alloying AlSi10Mg type alloy with transition metals for selective laser melting technologies. Trudy VIAM, 2017, no. 7 (55), paper no. 1. Available at: http://www.viam-works.ru (accessed: May 16, 2024). DOI: 10.18577/2307-6046-2017-0-7-1-1.
14. Dynin N.V., Zavodov A.V., Oglodkov M.S., Khasikov D.V. The influence of process parameters of selective laser melting on the structure of aluminum alloy Al–Si–Mg system. Trudy VIAM, 2017, no. 10 (58), paper no. 01. Available at: http://www.viam-works.ru (accessed: May 16, 2024). DOI: 10.18577/2307-6046-2017-0-10-1-1.
15. Dynin N.V., Antipov V.V., Khasikov D.V., Benarieb I., Zavodov A.V., Evgenov A.G. Structure and mechanical properties of an advanced aluminium alloy AlSi10MgCu (Ce, Zr) produced by selective laser melting. Materials Letters, 2021, vol. 284, art. 128898. DOI: 10.1016/j.matlet.2020.128898.
16. Kozlov I.A., Volkov I.A., Fomina M.A., Zakharov K.E. Features of chemical oxidation of semi-finished products obtained by selective laser melting from a metal powder composition of the alloy VAS1. Trudy VIAM, 2023, no. 11 (129), paper no. 09. Available at: http://www.viam-works.ru (accessed: February 11, 2024). DOI: 10.18577/2307-6046-2023-0-11-90-98.
17. Benarieb I., Dynin N.V., Kuznetsova P.E., Sbitneva S.V. Changes in the structure and mechanical properties during heat treatment of aluminum alloy AlSi10MgCu obtained by selective laser melting. Tekhnologiya legkikh splavov, 2023, no. 4, pp. 5–18.
18. Shchetinina N.D., Kuznetsova P.E., Dynin N.V., Selivanov A.A. Aluminum alloys with additions of Sc and Zr in additive manufacturing (review). Aviation materials and technologies, 2021, no. 3 (64), paper no. 03. Available at: http://www.journal.viam.ru (accessed: May 14, 2024). DOI: 10.18577/2713-0193-2021-0-3-19-34.
19. Sbitneva S.V., Zaytsev D.V., Benarieb I. Features of the structure of age-hardenable aluminum alloy AlSi10MgCu produced by selective laser melting. Trudy VIAM, 2024, no. 9 (139), paper no. 03. Available at: http://www.viam-works.ru (accessed: December 21, 2024). DOI: 10.18577/2307-6046-2024-0-9-15-24.
20. Knyazev A.E., Vostrikov A.V. Sieving of powders additive and powder manufacturings (review). Trudy VIAM, 2020, no. 11 (93), paper no. 02. Available at: http://www.viam-works.ru (accessed: October 20, 2023). DOI: 10.18577/2307-6046-2020-0-11-11-20.
21. Galinovsky A.L., Golubev E.S., Kobernik N.V., Filimonov A.S. Additive technologies in the production of aerospace products: a textbook for universities. Moscow: Yurait, 2020, 115 p.
22. Zlenko M.A. Additive technologies in mechanical engineering: a manual for engineers. Moscow: NAMI, 2015, 220 p.
23. Morozova L.V., Raevskikh A.N. Study of defects in metallic materials obtained by selective laser melting using microscopy methods. Vestnik mashinostroyeniya, 2019, no. 10, pp. 74–79.
24. Movenko D.A., Shurtakov S.V. Microcrack formation and controlling in nickel superalloys processed by selective laser melting (review). Aviation materials and technologies, 2022, no. 2 (67), paper no. 04. Available at: http://www.journal.viam.ru (accessed: April 20, 2023). DOI: 10.18577/2713-0193-2022-0-2-43-51.
25. Lapteva M.A., Belova N.A., Raevskih A.N., Filonova E.V. Dependence of roughness, surface morphology structure and number of defects on the power of the laser, scanning speed and the type of hatching in the high-temperature alloys synthesized by SLS. Trudy VIAM, 2016, no. 9 (45), paper no. 09. Available at: http://www.viam-works.ru (accessed: March 17, 2024). DOI: 10.18577/2307-6046-2016-0-9-9-9.
26. Karavaev A.K., Puchkov Yu.A. Study of the structure and properties of the AlSi10Mg alloy obtained by selective laser melting. Vestnik MGTU im. N.E. Baumana. Ser.: Mashinostroyenie, 2020, no. 5 (134), pp. 71–85.
27. Grigoryants A.G., Kolchanov D.S., Drenin A.A., Denezhkin A.O. Influence of the main parameters of the selective laser melting process on the stability of the formation of single tracks when growing products from copper alloys. Izvestiya vuzov. Mashinostroyenie, 2019, no. 6 (711), pp. 20–29.
28. Vanzetti M., Virgillito E., Aversa A. et al. Short heat treatments for the F357 aluminum alloy processed by laser powder bed fusion. Materials, 2021, vol. 14, no. 20, p. 6157.
29. Yang K.V., Rometsch P., Davies C.H.J. et al. Effect of heat treatment on the microstructure and anisotropy in mechanical properties of A357 alloy produced by selective laser melting. Materials & Design, 2018, vol. 154, pp. 275–290.
30. Lorusso M., Trevisan F., Calignano F. et al. A357 Alloy by LPBF for industry applications. Materials, 2020, vol. 13, no. 7, p. 1488.
31. Pereira J.C., Gil E., Solaberrieta L. et al. Comparison of AlSi7Mg0.6 alloy obtained by selective laser melting and investment casting processes: Microstructure and mechanical properties in as-built/as-cast and heat-treated conditions. Materials Science and Engineering: A, 2020, vol. 778, p. 139124.
32. Ponnusamy P., Rashid R.A.R., Masood S.H. et al. Mechanical properties of SLM-printed aluminium alloys: a review. Materials, 2020, vol. 13, no. 19, pp. 4301–4351.
33. Aviation materials: a reference book in 13 volumes. Ed. E.N. Kablov. 7th ed., rev. and add. Moscow: VIAM, vol. 4: Aluminum and beryllium alloys, part 2: Cast aluminum alloys and beryllium-based alloys, 2008, pp. 58–59.
34. Kablov E.N. The strategic directions of development of materials and technologies of their processing for the period to 2030. Aviacionnye materialy i tehnologii, 2012, no. S, pp. 7–17.
35. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
36. Benarieb I., Savichev I.D., Khasikov D.V., Oglodkov M.S. Experience in manufacturing helicopter parts by selective laser melting from aluminum alloy VAS1. Proc. IX All-Rus. Sc. and Tech. Conf. «Problems and Prospects for the Development of Aviation, Ground Transport and Energy (ANTE-2024)». Kazan, 2024, pp. 61–62.
The paper presents a review of scientific and technical information on LaRC-series polyimide materials. The most significant physical and thermomechanical properties of heat-resistant polyimide polymer matrices are outlined, including thermal stability, mechanical strength, and resistance to aggressive environments. The main advantages of these polyimides are highlighted. The chemical compositions of LaRC-series polyimide materials and their structural formulas are described. Promising application areas for polyimide materials in the aerospace industry are discussed.
1. Scola D. Polyimide Resins. ASM Handbook. ASM International, 2001, vol. 21: Composites, pp. 105–119.
2. Mikhailin Yu.A. Technological and operational characteristics of polyimide binders, prepregs and imidoplastics of the PMR type (review). Plasticheskie massy, 1984, no. 3, pp. 17–23.
3. Akhmadieva K.R., Petrova А.P., Shosheva A.L., Bokov V.V. Heat-resistant polyimide adhesive of constructive purposes. Trudy VIAM, 2023, no. 6 (124), paper no. 02. Available at: http://www.viam-works.ru (accessed: January 15, 2025). DOI: 10.18577/2307-6046-2023-0-6-15-24.
4. Zharinov M.A., Shimkin A.A., Akhmadiyeva K.R., Zelenina I.V. Features and properties of solvent-free PMR-type polyimide resin. Trudy VIAM, 2018, no. 12 (72), paper no. 05. Available at: http://www.viam-works.ru (accessed: January 14, 2025). DOI: 10.18577/2307-6046-2018-0-12-46-53.
5. Valueva M.I., Zelenina I.V., Nacharkina A.V., Sidorina A.I., Slavin A.V. High-temperature carbon fiber reinforced plastics based on polyimide binders. Trudy VIAM, 2024, no. 11 (141), paper no. 06. Available at: http://www.viam-works.ru (accessed: January 13, 2025). DOI: 10.18577/2307-6046-2024-0-11-71-88.
6. Zelenina I.V., Valueva M.I., Nacharkina A.V., Kurshev E.V. Structure and properties of high-temperature carbon fiber reinforced plastic based on polyimide binder. Trudy VIAM, 2023, no. 3 (121), paper no. 02. Available at: http://www.viam-works.ru (accessed: January 17, 2025). DOI: 10.18577/2307-6046-2023-0-3-13-28.
7. Pater R.H., Curto P.A. Advanced materials for space applications. Acta Astronautica, 2007, vol. 61, no. 11–12, pp. 1121–1129.
8. Process for preparing a tough, soluble, aromatic, thermoplastic copolyimide: pat. US5639850A; appl. 18.05.95; publ. 17.06.97.
9. Whitley K.S. Mechanical Properties of LaRC TM SI Polymer for a Range of Molecular Weights. NASA technical memorandum. Hampton, 2000, pp. 5–32.
10. Tough, soluble, aromatic, thermoplastic copolyimides: pat. US5741883A; appl. 16.12.94; publ. 21.04.98.
11. Holloway N.M., Barnes K.N., Draughon G.K., Scott L.A. Fabrication of adhesiveless lightweight flexible circuits using Langley Research Center soluble-imide «LaRC-SI» polyimide film. SPIE. San Diego, 2002, pp. 293–303.
12. Sang Q. Preparation and etching of LaRC-SI polyimide film. Louisville: University of Louisville, 1999, p. 1073.
13. Bryant R.G. Moving Technology from Test Tube to Commercial Product: А Case Study of Three Inventions. Recent Progress in Space Technology, 2014, vol. 4, no. 1, p. 38.
14. Low Toxicity High Temperature PMR Polyimides: pat. US5171822A; appl. 05.02.91; publ. 15.12.92.
15. Hou T.H., Wilkinson S.P., Johnston N.J. et al. Processing and properties of IM7/LARC-RP46 polyimde composites. 39th International SAMPE Symposium and Exhibition. Anaheim, California, 1994, pp. 1–14.
16. Hutapea P., Yuan F. The effect of thermal aging on the Mode-I interlaminar fracture behavior of a high-temperature IM7/LaRC-RP46 composite. Composites science and technology, 1999, vol. 59, no. 8, pp. 1271–1286.
17. Simone C.D., Xiao Y., Sun X., Scola D. Some aspects of the cure of RP-46, a nadic end-capped polyimide, and phenyl nadimide and bis-nadic-3,4'-ODA model compounds. High Performance Polymers, 2005, vol. 17, no. 1, pp. 51–72.
18. Pater R.H. Polyimide Resins Resist Extreme Temperatures. Spinoff NASA Contribution. Virginia, 2009, p. 57.
19. Heat, moisture, and chemical resistant polyimide compositions and methods for making and using them: pat. US6777525B2; appl. 01.04.02; publ. 17.08.04.
20. Hawkins B.P., Hinkley J.A., Pater R.H., Moore J. Stretch-orientation of LaRC™ RP50 polyimide film. High Performance Polymers, 2006, vol. 18, no. 4, pp. 469–478.
21. Imide oligomers endcapped with phenylethynyl phthalic anhydrides and polymers therefrom: pat. US5567800A; appl. 28.10.94; publ. 22.10.96.
22. Phenylethynyl terminated imide oligomers: pat. US5412066A; appl. 03.04.94; publ. 02.05.95.
23. Fang X., Scola D.A. Investigation of microwave energy to cure carbon fiber reinforced phenylethynyl‐terminated polyimide composites, PETI-5/IM7. Journal of Polymer Science. Part A: Polymer Chemistry, 1999, vol. 37, no. 24, pp. 4616–4628.
24. Thompson C., Connell J., Hergenrother P. Adhesive and composite properties of a new phenylethynyl terminated imide. 47th International SAMPE Symposium and Exhibition. Hampton, 2002, pp. 1–13.
25. Ghose S., Watson K.A., Cano R.J. et al. High temperature VARTM of phenylethynyl terminated imides. High Performance Polymers, 2009, vol. 21, no. 5, pp. 653–672.
26. Cho D., Drzal L.T. Characterization, properties, and processing of LaRC PETI‐5 as a high‐temperature sizing material. II. Thermal characterization. Journal of Applied Polymer Science, 2000, vol. 75, no. 10, pp. 190–199.
27. Gavrish A.V., Akhmadieva K.R., Shosheva A.L., Lavrin M.A. Thermosetting oligoimides with phenylethynyl reactive groups. Trudy VIAM, 2023, no. 9 (127), paper no. 04. Available at: http://www.viam-works.ru (accessed: January 22, 2025). DOI: 10.18577/2307-6046-2023-0-9-41-56.
28. Cho D., Choi Y., Drzal L.T. Characterization, properties, and processing of LaRC PETI-5® as a high-temperature sizing material: III. Adhesion enhancement of carbon/BMI composites. The Journal of Adhesion, 2003, vol. 79, no. 1, pp. 1–22.
29. Tenney D.R., Davis J.G., Pipes R.B., Johnston N. NASA Composite Materials Development: Lessons Learned and Future Challenges. Materials Science and Engineering: А, 2009, no. 1, pp. 25–26.
30. Composition of and method for making high performance resins for infusion and transfer molding processes: pat. US6359107B1; appl. 18.05.00; publ. 19.03.02.
31. Cano R.J., Ghose S., Watson K.A. et al. Processing and Properties of Vacuum Assisted Resin Transfer Molded Phenylethynyl Terminated Imide Composites. SAMPE. Baltimore, 2002, art. NF1676L-13433.
32. Ghose S., Cano R.J., Britton S.M. et al. Phenylethynyl Terminated Imide (PETI) Composites Made by High Temperature VARTM. The 14th European conference on composite materials. Budapest, 2010, pp. 1–10.
33. Williams M.K., Melendez O., Palou J. et al. Characterization of polyimide foams after exposure to extreme weathering conditions. Journal of adhesion science and technology, 2004, vol. 18, no. 5, pp. 561–573.
34. Williams M.K., Nelson G.L., Brenner J.R. et al. High performance polyimide foams. ACS Symposium Series. Washington, DC: American Chemical Society, 2001, pp. 49–62.
35. Aromatic polyimide foam: pat. US6133330A; appl. 21.05.99; publ. 17.10.00.
36. Hou T.-H., Weiser E.S., Siochi E.J., St. Clair T.L. Processing characteristics of TEEK polyimide foam. High Performance Polymers, 2004, vol. 16, no. 4, pp. 487–504.
37. Kuwabara A., Ozasa M., Shimokawa T. et al. Basic mechanical properties of balloon-type TEEK-L polyimide-foam and TEEK-L filled aramid-honeycomb core materials for sandwich structures. Advanced composite materials, 2005, vol. 14, no. 4, pp. 343–363.
38. Williams M.K., Weiser E.S., Fesmire J.E. et al. Effects of cell structure and density on the properties of high performance polyimide foams. Polymers for Advanced Technologies, 2005, vol. 16, no. 2–3, pp. 167–174.
39. Weiser E.S., Johnson T.F., St. Clair T.L. et al. Polyimide foams for aerospace vehicles. High Performance Polymers, 2000, vol. 12, no. 1, pp. 1–12.
40. Kablov E.N., Bejder E.Ya., Petrova G.N., Stolyankov Yu.V., Rumyanceva T.V. Foamed polyimides. Trudy VIAM, 2015, no. 4, paper no. 09. Available at: http://www.viam-works.ru (accessed: January 22, 2025). DOI: 10.18577/2307-6046-2015-0-4-9-9.
41. Structures from low dielectric polyimides: pat. US5338826A; appl. 28.09.92; publ. 16.08.94.
42. Process for preparing essentially colorless polyimide film containing phenoxy-linked diamines: pat. US4595548A; appl. 23.08.84; publ. 17.06.86.
43. Thompson C.M., Herring H.M., Gates T.S., Connell J.W. Preparation and characterization of metal oxide/polyimide nanocomposites. Composites science and technology, 2003, vol. 63, no. 11, pp. 1591–1598.
44. Wooldridge E.M., Powers C.E. Evaluation of thin films for the Next-Generation Space Telescope (NGST) sunshield. Space Telescopes and Instruments. Kona, Hawaii, 1998, pp. 134–140.
45. Woo B., Ertmer K.M., Coverstone V.L. et al. Deployment experiment for ultralarge solar sail system (ultrasail). Journal of Spacecraft and Rockets, 2011, vol. 48, no. 5, pp. 874–880.
46. Reed K., Willenberg H.J. Early commercial demonstration of space solar power using ultra-lightweight arrays. Acta Astronautica, 2009, vol. 65, no. 9–10, pp. 1250–1260.
47. Nazarenko V., St. Clair A., Klouda R. et al. Chemically imidized polyimide as an alignment material for liquid crystal displays. SID Symposium Digest of Technical Papers. Wiley, 1998, pp. 135–138.
48. Dingemans T.J., van der Zwaag S., Knijnenberg A. et al. Novel liquid crystal thermoset resins for cryogenic fuel tank applications. The 24th International Congress of the Aeronautical Sciences. Yokohama, 2004, pp. 1–4.
49. Pavlick M., Johnson W., Jensen B., Weiser E. Evaluation of mechanical properties of advanced polymers for composite cryotank applications. Composites. Part A: Applied Science and Manufacturing, 2009, vol. 40, no. 4, pp. 359–367.
The study describes impact assessment of elevated storage temperature on reaction capacity of prepreg carbon fiber reinforced plastic (CFRP) and properties of the polymeric composite material on its basis. Prepreg VKU-39/VTkU-2.200 on the basis of molten epoxy binder VSE-1212 has been chosen as the object of the study. Technological characteristics of prepregs have been studied by methods of differential scanning calorimetry. Properties CFRP based on prepreg VKU-39/VTkU-2.200 in initial condition and after storage in conditions of elevated temperature within 5–20 days are investigated.
2. Kablov E.N. New generation materials are the basis for innovation, technological leadership and national security of Russia. Intellekt i tekhnologii, 2016, no. 2 (14), pp. 16–21.
3. Davydova I.F., Kablov E.N., Kavun N.S. Heat-resistant non-flammable polyimide glass fiber laminates for aviation and rocket technology products. Vse materialy. Entsiklopedicheskiy spravochnik, 2009, no. 7, pp. 2–11.
4. Kablov E.N. Composites: Today and Tomorrow. Metally Evrazii, 2015, no. 1, pp. 36–39.
5. Ryzhkov V.V., Chernega A.A .The Present and Future of Polymer Composite Materials. Proc. III All-Russian Scientific and Practical Conf. «Problems of Creation and Application of Spacecraft and Launch Vehicle Systems in the Interests of Solving the Tasks of the Armed Forces of the Russian Federation». St. Petersburg: A.F. Mozhaisky Military Space Academy, 2022, pp. 354–356.
6. Sokolov V.V., Agashina Zh.V., Voynov S.I. et al. Technological Design of Carbon Fiber Parts with Complex Geometric Shapes for Unmanned Aerial Vehicles. Plasticheskie massy, 2022, no. 11–12, pp. 36–39. DOI: 10.35164/0554-2901-2022-11-12-36-39.
7. Blinkova E.V., Zaitsev I.A., Plyusnin N.I. Multifunctional composites based on carbon nanomaterials in a polymer matrix in unmanned aircraft construction. Voennoe obozrenie, 2022, no. 2 (12), pp. 21–24.
8. Zaitsev I.A., Spirin M.S., Moskvitina E.I. Development of nanocomposites to improve the performance characteristics of unmanned aerial vehicle bodies. Vestnik Voennogo innovatsionnogo tekhnopolisa «Era», 2022, vol. 3, no. 4, pp. 420–423. DOI: 10.56304/S2782375X22040155.
9. Sokolov V.V., Voynov S.I., Agashina Zh.V. et al. Features of the technological design of small-sized carbon fiber parts with complex geometry used in unmanned aerial vehicles. Polet, 2021, no. 12, pp. 54–60.
10. Sotnikov E.V., Kreerenko S.S. Comparative analysis of autoclave molding and vacuum infusion methods for the manufacture of products in the aircraft industry. Proc. All-Rus. (National) Scientific and Practical Conf. «Actual Problems of Science and Technology». Rostov-on-Don: Donsk. state tech. univ., 2023, pp. 62–63.
11. Dyukov V.A. Optimization of the technological process of autoclave molding of composite aircraft structures of complex shape with preliminary correction of their geometry. Trudy MAI, 2021, no. 116, р. 12. DOI: 10.34759/trd-2021-116-12.
12. Cherfas L.V., Gunyaeva A.G., Komarova O.A., Antyufeeva N.V. The analysis of nanomodified prepreg shelf life by its reactivity at storage. Trudy VIAM, 2016, no. 1 (37), paper no. 12. Available at: http://www.viam-works.ru (accessed: May 22, 2025). DOI: 10.18577/2307-6046-2016-0-1-99-106.
13. Bobovich B.B. Polymer structural materials (structure, properties, application). Moscow: FORUM INFRA-M, 2014, 400 p.
14. Timoshkov P.N., Usacheva M.N., Khrulkov A.V. Stickiness and possibility of using prepregs for automated technologies (review). Trudy VIAM, 2018, no. 8 (68), paper no. 04. Available at: http://www.viam-works.ru (accessed: May 22, 2025). DOI: 10.18577/2307-6046-2018-0-8-38-46.
15. Bolshakov V.A., Antyufeeva N.V. Evaluation of the curing process model of the adhesive binder in prepreg. Aviation materials and technologies, 2023, no. 4 (73), paper no. 07. Available at: http://www.journal.viam.ru (accessed: May 22, 2025). DOI: 10.18577/2713-0193-2023-0-4-66-77.
16. Puzyretskiy E.A., Donetski K.I., Shabalin L.P., Karavaev R.Yu., Savinov D.V. Theoretical and experimental study of the vacuum forming of semipregs based on carbon fillers (tapes and fabric) and melting epoxy binding. Aviation materials and technologies, 2024, no. 2 (75), paper no. 08. Available at: http://www.journal.viam.ru (accessed: May 22, 2025). DOI: 10.18577/2713-0193-2024-0-2-109-121.
17. Terekhov I.V., Tkachuk A.I., Donetsky K.I., Karavaev R.Yu. Technological and operational characteristics of the VSE-62 low-viscosity epoxy resin with increased pot life and its application. Aviation materials and technologies, 2021, no. 2 (63), paper no. 05. Available at: http://www.journal.viam.ru (accessed: May 22, 2025). DOI: 10.18577/2713-0193-2021-0-2-43-50.
18. Postnov V.I., Nikitin K.E., Petukhov V.I., Burkhan O.L., Orzaev V.G. Method and device for determining the stickiness of prepregs. Aviatsionnye materialy i tekhnologii, 2009, no. 3 (12), рр. 29–33.
19. Orlov E.V., Gusev Yu.A., Khrulkov A.V., Korotkov I.A. Comparative analysis of stickiness determination methods of prepreg. Trudy VIAM, 2016, no. 7 (43), paper no. 09. Available at: http://www.viam-works.ru (accessed: May 22, 2025). DOI: 10.18577/2307-6046-2016-0-7-9-9.
20. Antyufeeva N.V., Starkov A.I. Effect of the content of halogen-containing oligomer in the adhesive binder on the kinetics of the prepreg curing process. Proc. VI All-Rus. scientific and technical conf. «Polymer composite materials and production technologies of the new generation». Moscow: National Research Center «Kurchatov Institute» – VIAM, 2022, pp. 198–216.
21. Marakhovsky P.S., Antyufeeva N.V., Bolshakov V.A. Practical application of thermal analysis in the development and study of polymer composite materials. Proc. XII All-Rus. conf. on testing and research of materials properties «TestMat» on the topic «Modern aspects in the field of research of structural and phase transformations in the creation of new generation materials». Moscow: VIAM, 2020, pp. 310–325.
22. Kozhevnikova Yu.M., Tolmacheva I.G., Kapustina P.V. et al. Optimization of temperature-time modes of carbon fiber-reinforced plastics manufacturing based on the calculation of kinetic parameters of the binder curing process. Coll. reports XX scientific-technical. conf. «Youth in Science». Sarov: RFNC – VNIIEF, 2023, pp. 332–338. DOI: 10.53403/9785951505460_332.
23. Kosenko E.A. Study of deformation properties of composites with a hybrid matrix by the method of dynamic mechanical analysis. Vestnik BGTU im. V.G. Shukhova, 2021, no. 10, pp. 81–89. DOI: 10.34031/2071-7318-2021-6-10-81-89.
24. Sorokin V.O., Naumov A.V., Shkodich V.F., Akhmadullin R.M. Development of carbon fiber reinforced plastics based on polyphenylene sulfide. Proc. XI Int. Conf. «Polymer Materials of Low Flammability». Volgograd: Volgograd State Tech. Univ., 2023, pp. 150–152.
25. Kychkin A.A., Kychkin A.K., Lebedev M.P. Study of epoxy anhydride binder with carbon nanotube and silicon carbide fillers by X-ray diffraction and dynamic mechanical analysis. Vestnik Tomskogo gosudarstvennogo universiteta. Ser.: Khimiya, 2023, no. 32, pp. 144–163. DOI: 10.17223/24135542/32/11.
26. Timoshkin I.A., Aleshkevich V.V., Afanasyeva E.S. et al. Heat-resistant carbon fiber reinforced plastics with matrices based on a copolymer of bis-phthalonitriles and bis-benzonitrile. Vysokomolekulyarnye soyedineniya. Ser.: S, 2020, vol. 62, no. 2, pp. 174–185. DOI: 10.31857/S2308114720020156.
27. Kablov E.N., Laptev A.B., Prokopenko A.N., Gulyaev A.I. Relaxation of polymeric composite materials under the prolonged action of static load and climate (review). Part 1. Binders. Aviation materials and technologies, 2021, no. 4 (65), paper no. 08. Available at: http://www.journal.viam.ru (accessed: May 22, 2025). DOI: 10.18577/2713-0193-2021-0-4-70-80.
28. Gunyaeva A.G., Sidorina A.I., Kurnosov A.O., Klimenko O.N. Polymeric composite materials of new generation on the basis of binder VSE-1212 and the filling agents alternative to ones of Porcher Ind. and Toho Tenax. Aviacionnye materialy i tehnologii, 2018, no. 3 (52), pp. 18–26. DOI: 10.18577/2071-9140-2018-0-3-18-26.
29. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
The article considers the main directions of application of catalysts for oil refining processes, including those for the import substitution. Some properties of a high-porous material based on oxide fiber are demonstrated, revealing the prospect of using this class of material as catalyst carrier. The water front movement in a fibrous high-porous material has been studied by the magnetic resonance imaging (MRI process). It has been shown that thermal activation of the fiber surface increases the sorption capacity of the material.
importozameshchenie/795285-proizvodstvo-katalizatorov-dlya-neftepererabotki-i-neftekhimii-v-rossii (accessed: January 25, 2025).
2. Abatayeva A.U., Alangiraeva H.D. Import substitution is a priority direction for the development of the catalyst industry. Vestnik magistratury. Khimicheskie nauki, 2022, no. 10–3 (133), pp. 8–11.
3. Review of the oil refining catalyst market in Russia and the CIS countries. INFOMINE Research Group. Available at: https://infomine.ru/files/catalog/644/file_644_eng.pdf (accessed: January 25, 2025).
4. Oil refineries of Russia and the CIS countries: reference book. Moscow: OMT-Consult, 2018, 155 p.
5. Catalog of oil refineries and gas processing plants (OR/GPP). LNG projects facilities of the CIS. Energybase. Available at: https://clck.ru/TKVdn (accessed: January 25, 2025).
6. Noskov A.S. Scientific and technical level of researches and import substitution perspective in the field of industrial catalysts. Herald of the Russian Academy of Sciences, 2022, vol. 92. no. 10. рр. 940–949.
7. Leffler W.L. Oil refining. 2nd ed., rev. trans. from Engl. Moscow: Olimp-Business, 2004, 224 p.
8. Method for processing gasolines from thermal processes and a catalyst for its implementation: pat. 2469070 Rus. Federation; appl. 13.10.11; publ. 10.12.12.
9. Bodryi A.B., Rakhmatullin E.M., Ilibaev R.S., Garieva G.F. On new granular catalysts for catalytic cracking. Kataliz v promyshlennosti, 2014, no. 5, p. 20.
10. Ivanchina E.D., Ivashkina E.N., Nazarova G.Yu. et al. Development of a kinetic model of the catalytic cracking process. Kataliz v promyshlennosti, 2017, no. 6, pp. 477–486.
11. Chorkendorff I., Naimantsvedreit H. Modern Catalysis and Chemical Kinetics. Trans. from Engl. Dolgoprudny: Intellekt, 2010, 500 p.
12. Stiles E.B. Carriers and Supported Catalysts. Theory and Practice. Moscow: Khimiya, 1991, 240 p.
13. Ryabov V.D. Chemistry of Oil and Gas: Textbook for Universities. Moscow: «Tekhnika» GUMA GROUP, 2018, 288 p.
14. Solodova N.L., Terentyeva N.A. Current status and development trends of catalytic cracking of petroleum feedstocks. Vestnik Kazanskogo tekhnologicheskogo universiteta, 2012, vol. 15, no. 1, pp. 141–147.
15. Gilmutdinov A.T., Khisamova L.Z. Review of modern catalysts used in catalytic cracking processes. Ufa: Ufa State Petroleum Tech. Univ., 2019, pp. 11–13.
16. Sedghi R.B.F., Kapustin V.M., Gerzeliev I.M., Tretyakov V.F. Study of the effect of ZSM-5 additives to cracking catalysts to increase the yield of light olefins and propylene. Kataliz v promyshlennosti, 2012, no. 6, pp. 33–38.
17. Doronin V.P., Lipin P.V. Promising developments: cracking catalysts and additives to them. Kataliz v promyshlennosti, 2018, no. 5, pp. 82–87.
18. Oil and gas processing technology. Tehnoinfa. Available at: http://www.tehnoinfa.ru/
pererabotkaneftiigaza/21.html (accessed: January 31, 2025).
19. Akhmetov S.A. Technology of deep oil and gas processing: textbook for universities. Ufa: Gilem, 2002, 672 p.
20. Parkash S. Handbook of oil refining. Trans. from Engl. Eds I.A. Belyaev, V.N. Lyndin. Moscow: Premium Inzhiniring, 2012, 759 p.
21. Lamberov A.A., Egorova S.R. Industrial implementation of developments from the experience of cooperation with PJSC NIZHNEKAMSKNEFTEKHIM. Kataliz v promyshlennosti, 2022, no. 2, pp. 76–86. DOI: 10.18412/1816-0387-2022-2-76-86.
22. Wang Zh., Gao J., Chang K. et al. Manufacturing of open-cell aluminum foams via infiltration casting in super-gravity fields and mechanical properties. RSC Advances, 2018, vol. 8, pp. 15933–15939. DOI: 10.1039/C7RA13689G.
23. Antipov V.V., Varrik N.M., Maksimov V.G., Lugovoy A.A., Babashov V.G., Shavnev A.A. Study of mechanical and thermal characteristics of a porous ceramic material based on mullite. Trudy VIAM, 2023, no. 6 (124), paper no. 04. Available at: http://www.viam-works.ru (accessed: January 23, 2025). DOI: 10.18577/2307-6046-2023-0-6-38-45.
24. Babashov V.G., Butakov V.V., Kolyshev S.G., Maksimov V.G. Research of the unevenness of distribution of the strength properties of high-temperature thermal insulation materials. Trudy VIAM, 2021, no. 6 (100), paper no. 12. Available at: http://www.viam-works.ru (accessed: January 23, 2025). DOI: 10.18577/2307-6046-2021-0-6-123-134.
25. Morozov E.V., Koptyug I.V., Bouznik V.M. NMR Imaging as an instrument for study and diagnostics of composite materials and articles on their base. Aviacionnye materialy i tehnologii, 2014, no. S1, pp. 17–29. DOI: 10.18577/2071-9140-2014-0-s1-17-29.
26. Avilova I.A., Bouznik V.M., Volkov V.I., Zhelezina G.F., Morozov E.V., Raskutin A.E., Falaleev O.V. Study of interaction of polymer composite materials with water using nuclear magnetic resonance methods. Aviacionnye materialy i tehnologii, 2014, no. S1, pp. 30–36. DOI: 10.18577/2071-9140-2014-0-s1-30-36.
27. Koptyug I.V. MRI of mass transport in porous media: Drying and sorption processes. Progress in Nuclear Magnetic Resonance Spectroscopy, 2012, vol. 65, pp. 1–65. DOI: 10.1016/j.pnmrs.2011.12.001.
28. Kablov E.N., Shuldeshov E.M., Petrova A.P., Lapteva M.A., Sorokin A.E. Dependence of complex of sound-proof VZMK type material properties on concen-tration of hydrophobizing composition on the basis of organosilicon sealant. Aviacionnye materialy i tehnologii, 2020, no. 2 (59), pp. 41–49. DOI: 10.18577/2071-9140-20200-0-2-41-49.
29. Kablov E.N., Babashov V.G., Balinova Y.A., Maksimov V.G. Phase transformations in a composite material with an organic matrix filled with zirconium dioxide fibers. High Temperature, 2021, vol. 59, no. 1, pp. 55–61.
30. Babashov V.G., Varrik N.M., Karaseva T.A. Porous ceramic for filtration of metal melts and hot gases (rеview). Trudy VIAM, 2020, no. 8 (90), paper no. 6. Available at: http://www.viam-works.ru (accessed: January 23, 2025). DOI: 10.18577/2307-6046-2020-0-8-54-63.
31. Morozov E.V., Buznik V.M., Bespalov A.S., Grashchenkov D.V. Magnetic resonance imaging of water absorption by highly porous ceramic materials. Doklady akademii nauk, 2019, vol. 484, no. 5, pp. 563–567. DOI: 10.31857/S0869-56524845563-567.
32. Sahimi M. Flow and Transport in Porous Media and Fractured Rock: From Classical Methods to Modern Approaches. Second Edition. Wiley-VCH, 2011, 733 p. DOI: 10.1002/9783527636693.
The article presents the study results of the effect, which laboratory-simulated exposure to elevated temperatures from 280 to 350 °C has on the structure and properties of high-temperature carbon fiber plastics based on polyimide binders and carbon fillers from bundles from various manufacturers. The strength characteristics, i.e. bending and interlayer shear, density, glass transition temperature and mass loss of carbon plastics after exposure to elevated temperatures has been determined. Microstructural studies of the carbon fiber surface have been carried out and the microphase composition of the binder has been determined.
2. Startsev V.O., Antipov V.V., Slavin A.V., Gorbovets M.A. Modern domestic polymer composite materials for aviation industry (review). Aviation materials and technologies, 2023, no. 2 (71), paper no. 10. Available at: http://www.journal.viam.ru (accessed: January 31, 2025). DOI: 10.18577/2713-0193-2023-0-2-122-144.
3. Gunyaeva A.G., Kurnosov A.O., Slavin A.V. Experience in the use of polymer composite materials developed by NRC «Kurchatov Institute» – VIAM in engines for civil aircraft. Aviation materials and technologies, 2024, no. 4 (77), paper no. 06. Available at: http://www.journal.viam.ru (accessed: January 31, 2025). DOI: 10.18577/2713-0193-2024-0-4-82-94.
4. Kablov E.N. New generation materials and digital technologies for their processing. Vestnik Rossiyskoy akademii nauk, 2020, vol. 90, no. 4, pp. 331–334.
5. Novikov A.S., Karimbaev T.D. Working blades of high-bypass fans for advanced turbofan engines. Dvigatel, 2015, no. 5, pp. 6–11.
6. Valueva M.I., Zelenina I.V., Nacharkina A.V., Sidorina A.I., Slavin A.V. High-temperature carbon fiber reinforced plastics based on polyimide binders. Trudy VIAM, 2024, no. 11 (141), paper no. 06. Available at: http://www.viam-works.ru (accessed: January 31, 2025). DOI: 10.18577/2307-6046-2024-0-11-71-88.
7. Teijin developes hightly heat- and impact-resistant prepreg as carbon fiber intermediate material for aerospace applications. Available at: https://www.teijin.com/news/2019/20190304_3521.html (accessed: December 15, 2024).
8. Global Polyimide Resins Market Study 2016–2032. Available at: https://www.marketresearch.com/Prismane-Consulting-Private-Limited-v4215/Global-Polyimide-Resins-Study-32057574/ (accessed: December 15, 2024).
9. Global Polyimide Resin Matrix Composite Laminate SuPly, Demand and Key Producers, 2023–2029. Available at: https://www.marketresearch.com/GlobalInfoResearch-v4117/Global-Polyimide-Resin-Matrix-Composite-35273331/ (accessed: December 15, 2024).
10. Mikhailin Yu.A. Heat, thermal and fire resistance of polymeric materials. St. Petersburg: Scientific foundations and technologies, 2011, 416 p.
11. Kablov E.N., Startsev V.O. Measurement and forecasting of materials samples’ temperature during weathering in different climatic zones. Aviacionnye materialy i tehnologii, 2020, no. 4 (61), pp. 47–58. DOI: 10.18577/2071-9140-2020-0-4-47-58.
12. Liu Y., Xu X.-Z., Mo S. et al. Long-term Thermo-oxidative Degradation Modeling of a Carbon Fiber Reinforced Polyimide Composite: Multistep Degradation Behaviors and Kinetics. Chinese Journal of Polymer Science, 2020, no. 38, pp. 1202–1213. DOI: 10.1007/s10118-020-2425-7.
13. Wang H., Wang Z., Kuang N. et al. Zhang Effect of high-temperature thermo-oxidation on the mechanical and electrical properties of phenylethynyl-terminated polyimide/carbon fiber composite. Polymer Degradation and Stability, 2023, vol. 218, p. 110544. DOI: 10.1016/j.polymdegradstab.2023.110544.
14. Kubota Y., Furuta T., Aoki T. et al. Long-term thermal stability of carbon fibre-reinforced addition-type polyimide composite in terms of compressive strength. Advanced Composite Materials, 2018, vol. 28, pp. 1–19. DOI: 10.1080/09243046.2018.1446124.
15. Govorov A.V., Galiguzov A.A., Tikhonov N.A. et al. Study of oxidation kinetics of carbon fibers of different types. Novye ogneupory, 2015, no. 11, p. 34.
16. Back C.A. Effects of prior aging on the creep response of carbon fiber reinforced PMR-15 neat resin at 288 °C in an air environment: Thesis. Air Force Institute of Technology, 2007, 124 p.
17. Sidorina A.I., Safronov A.M. Study of the resistance of carbon fibers to oxidation. Trudy VIAM, 2022, no. 7 (113), paper no. 06. Available at: http://www.viam-works.ru (accessed: January 31, 2025). DOI: 10.18577/2307-6046-2022-0-7-63-73.
18. Tong Y., Wang X., Su H., Xu L. Oxidation kinetics of polyacrylonitrile-based carbon fibers in air and the effect on their tensile properties. Corrosion Science, 2011, vol. 53, pp. 2484–2488.
19. Method for producing melt-blown polyimide binders of polymerization type: pat. 2666734 Rus. Federation; appl. 05.10.17; publ. 12.09.18.
20. Valueva M.I., Zelenina I.V., Nacharkina A.V., Gulyaev A.I. Research of influence of thermal aging on properties high-temperature polyimide carbon fiber reinforced plastic. Trudy VIAM, 2023, no. 6 (124), paper no. 05. Available at: http://www.viam-works.ru (accessed: December 18, 2024). DOI: 10.18577/2307-6046-2023-0-6-46-62.
21. Li X.С., Jin B.C., Tsotsis T.K., Nutt S. Thermo-oxidative aging and thermal cycling of PETI-340M composites. High Performance Polymers, 2022, vol. 34, pp. 33–43.
22. MVK-10. RTM Polyimide. Product description. Available at: http://www.maverickcorp.com/_CE/pagecontent/Documents/MVK-10.pdf (accessed: December 20, 2024).
23. Petkov V.I., Joffe R., Fernberg P. Thermal oxidative aging of satin weave and thin-ply polyimide composites. Polymer Composites, 2022, no. 43, pp. 2615–2627. DOI: 10.1002/pc.26561.
24. Tandon G.P., Ragland W.R., Shoeppner G.A. Using Optical Microscopy to Monitor Anisotropic Oxidation Growth in High-Temperature Polymer Matrix Composites. Journal of Composite Materials, 2009, vol. 43, no. 5. Р. 583–603.
25. Liu L., Du M., Liu F. Recent advances in interface microscopic characterization of carbon fiber-reinforced polymer composites. Frontiers in Materials, 2023, vol. 10, pp. 1–18.
26. Ripberger E.R., Tandon G.P., Shoeppner G.A. Experimental techniques for characterizing thermo-oxidative behavior in high-temperature polyimide composite. Proceedings of the 2005 SEM Annual Conference and Exposition on Experimental and Applied Mechanics, 2005, pp. 1–9. Available at: https://www.researchgate.net/publication/267819653 (accessed: December 18, 2024).
27. Kurshev E.V., Lonskiy S.L., Egorov Yu.A., Zelenina I.V. Study of changes in the microstructure and chemical composition of polyimide carbon fiber reinforced plastic after exposure to simulated operational factors. Voprosy materialovedeniya, 2024, no. 4, pp. 88–102.
28. Deev I.S., Kurshev E.V., Lonskiy S.L. Effect of long-term climatic aging on the surface microstructure of epoxy carbon fiber reinforced plastics. Voprosy materialovedeniya, 2018, no. 3, pp. 157–169.
The article considers fluorine-containing polymer film-forming agents used in protective coatings and other industrial sectors. The paper provides the results of an analysis of the fluoropolymer market in Russia and abroad, as well as an assessment of the development of these polymers in our country. The features of the chemical structure of fluorine-containing copolymers and their modifications are described. The main advantages of fluorinated film-forming agents and the areas of their application are identified.
2. Buznik V.M., Kablov E.N. State and Prospects of Arctic Materials Science. Herald of the Russian Academy of Sciences, 2017, vol. 87, no. 9, pp. 827–839.
3. Kablov E.N. Modern Materials – the Basis for Innovative Modernization of Russia. Metally Evrazii, 2012, no. 3, pp. 10–15.
4. Kablov E.N., Semenova L.V., Eskov A.A., Lebedeva T.A. Complex Systems of Paint and Varnish Coatings for the Protection of Metal Polymer Composite Materials, as Well as Their Contact Joints from the Impact of Aggressive Factors. Lakokrasochnye materialy i ikh primenenie, 2016, no. 6, pp. 32–35.
5. Abramova M.G., Lutsenko A.N., Varchenko E.A. Concerning the aspects of validation of climate resistance of airborne materials at all life cycle stages (review). Aviacionnye materialy i tehnologii, 2020, no. 1 (58), pp. 86–94. DOI: 10.18577/2071-9140-2020-0-1-86-94.
6. Startsev V.O., Antipov V.V., Slavin A.V., Gorbovets M.A. Modern domestic polymer composite materials for aviation industry (review). Aviation materials and technologies, 2023, no. 2 (71), paper no. 10. Available at: http://www.journal.viam.ru (accessed: January 14, 2025). DOI: 10.18577/2713-0193-2023-0-2-122-144.
7. Kuznetsova V.A., Marchenko S.A., Emelyanov V.V., Zheleznyak V.G. Study of the influence of molecular mass of epoxy oligomers and hardeners on the operational properties of paint coatings. Aviation materials and technology, 2021, no. 1 (62), paper no. 07. Available at: http://www.journal.viam.ru (accessed: December 17, 2024). DOI: 10.18577/2071-9140-2021-0-1-71-79.
8. Kozlova A.A., Kondrateva O.V., Kuznetsova V.A. The main problems of using domestically produced moisture-proof electrical insulating materials for automated selective application on printed assemblies (review). Aviation materials and technologies, 2022, no. 4 (69), paper no. 07. Available at: http://www.journal.viam.ru (accessed: January 20, 2025). DOI: 10.18577/2713-0193-2022-0-4-72-83.
9. Serdtselyubova A.S., Krechetov D.D. Ways to improve the weather resistance of paints and varnishes used for painting the outer surface of aviation equipment. Lakokrasochnye materialy i ikh primenenie, 2021, no. 9, pp. 31–38.
10. Drinberg A.S. Painting of composite materials. Lakokrasochnye materialy i ikh primenenie, 2017, no. 3, pp. 22–31.
11. Nikalin D.M., Merkulova Yu.I., Zheleznyak V.G. Fluorine-containing polymer paints and varnishes in aviation equipment. Review. Rossiyskiy khimicheskiy zhurnal, 2019, vol. LXIII, no. 1, pp. 86–93.
12. Drinberg A.S., Kozlova S.P., Karpov V.A. Protective coatings based on fluorinated polymers. Khimicheskaya promyshlennost, 2019, no. 4, pp. 185–192.
13. Drinberg A.S., Karpov V.A., Okhrimenko A.G. Protective coatings based on fluorinated polymers. Lakokrasochnye materialy i ikh primenenie, 2017, no. 7–8, pp. 39–43.
14. Drinberg A.A., Babkin O.E., Drinberg A.S. et al. Promising areas of research and development in the technology of creating new antifouling materials. Lakokrasochnye materialy i ikh primenenie, 2022, no. 12, pp. 18–23.
15. Drinberg A.S., Babkin O.E., Litosov G.E. et al. Development of technology for the production of antifriction chemically resistant fluororethane coatings for equipment of underwater hydrocarbon production systems. Lakokrasochnye materialy i ikh primenenie, 2023, no. 3 (552), pp. 22–28.
16. Buznik V.M. The state of domestic chemistry of fluoropolymers and possible development prospects. Rossiyskiy khimicheskiy zhurnal, 2008, vol. LII, no. 3, pp. 7–12.
17. Buznik V.M. Modern Materials Science Using Fluoropolymers as an Example. Tomsk: TSU, 2012, is. 1, 42 p. (Academic Readings at Tomsk State University).
18. Ignatyeva L.N., Buznik V.M. Quantum-Chemical Calculations of Spectroscopic and Topological Parameters of Fluorocarbon Oligomers. Zhurnal fizicheskoy khimii, 2005, vol. 79, no. 9, pp. 1631−1638.
19. Loginov B.A., Willemson A.L., Buznik V.M. Russian Fluoropolymers: History, Technologies, Prospects. Moscow, 2013, 320 p.
20. Usmanov Kh.U., Yulchibaev A.A. Vinyl Fluoride and Its Polymers. Moscow: Khimiya, 1978, 227 p.
21. Panshin Yu.A., Malkevich S.G., Dunaevskaya Ts.S. Fluoroplastics. Leningrad: Khimiya, 1978, 232 p.
22. Bader E.Ya., Donskoy A.A., Zhelezina G.F. et al. Experience in the use of fluoropolymer materials in aviation technology. Rossiyskiy khimicheskiy zhurnal, 2008, vol. LII, no. 3. pp. 30–44.
23. Ignatieva L.N., Buznik V.M. Quantum chemical calculation of IR absorption spectra of modified forms of polytetrafluoroethylene. Zhurnal fizicheskoy khimii, 2006, vol. 80, no. 12, pp. 2178−2187.
24. Huang X., Tepylo N., Pommier-Budinger V. et al. A survey of acephobic coatings and their potential use in a hybrid coating/active ice protection system for aerospace applications. Progress in Aerospace Sciences, 2019, vol. 105, pp. 74–97.
25. Fluorine-containing polymers: catalogue. Cherkassy: ONIITEKHIM, 1985, 20 p.
26. Glazer E.A., Mulin Yu.A. Achievements in production, processing and application of powder polymeric materials. Ed. A.D. Yakovlev. Leningrad: LDNTP, 1980, 88 p.
27. Wrigth T. Clear skies ahead or more turbulence. Coating World, 2009, no. 8, pp. 26–28.
28. Rytikov G.O., Doronin F.A., Evdokimov A.G. et al. The effect of the surface morphological inhomogeneitieson the polymer films mycological resistance. Protection of metals and physical chemistry of surfaces, 2021, vol. 57, pp. 329–338. DOI: 10.1134/S2070205121020088.
29. Hydrophobic polymer coating: pat. RU 2676644 C1 Rus. Federation; appl. 11.04.18; publ. 09.01.19.
30. Fluoropolymers. Ed. L. Wall; trans. from Engl. Moscow: Khimiya, 1975, 450 p.
A three-layer structure with a honeycomb core (sandwich structure) is presented as a composite material consisting of two coverings as a reinforcing filler, a honeycomb core (matrix) and an adhesive layer as an interphase layer. A detailed review of the methods for testing of samples from three-layer structures with a honeycomb core is given. The following tests are considered: bending, compression, tension, shear, peeling of the covering on a drum, the ability to absorb the energy of external force action, static and impact loading. The main types of destruction of sandwich structures during these tests are reflected. The characteristics of the material determined during these tests are considered. Recommendations for the design of three-layer structures are given.
2. Panin V.F., Gladkov Yu.A. Structures with core: reference book. Moscow: Mashinostroenie, 1991, 272 p.
3. Giyasov B.I., Seregin N.G., Seregin D.N. Three-layer panels made of polymer composite materials: textbook. Moscow: ASV Publ. House, 2015, 64 p.
4. Bitzer T. Honeycomb Technology: materials, design, manufacturing, applications and testing. Springer Science + Business Media Dordrecht, 1997, 233 p.
5. Kassapoglou C. Design and analysis of composite structures with applications to aerospace structures. Wiley, 2010, 308 p.
6. Gay D. Composite materials. Design and Application. CRC Press, 2015, 598 p.
7. Castanie B., Bouvet C., Ginat M. Review of composite sandwich structure in aeronautic applications. Composite. Part C, 2020, vol. 1, p. 100004. DOI: 10.1016/j.jcoms.2020.100004.
8. Sadig S.E., Bakhy S.H., Jweeg M.J. Crashworthiness behavior of aircraft sandwich structure with honeycomb core under bending load. IOP Conference Series: Materials Science and Engineering, 2020, vol. 923, p. 16.
9. Abdullin I.N. Design of rational three-layer structures with a rod filler: thesis, Cand. Sc. (Tech.). Kazan, 2017, 130 p.
10. Falchenko Yu.V., Petrushinets L.V. Modern methods for producing three-layer panels from aluminum alloys (review). Avtomaticheskaya svarka, 2018, no. 6, pp. 38–44.
11. Dimitrienko Yu.I., Fedonyuk N.N., Gubareva E.A., Sborshchikov S.V., Prozorovsky A.A., Yerasov V.S., Yakovlev N.O. Modeling and development of three-layer composite materials with a honeycomb filler. Vestnik MGTU im. N.E. Baumana. Ser.: Estestvennye nauki, 2014, no. 5, pp. 66–81.
12. Shershak P.V., Yakovlev N.O., Shokin G.I., Kutsevich K.E., Popkova E.A. Evaluation method and factors influencing the bonding quality between face and honey-comb cores in floor and interior aircraft panels. Aviacionnye materialy i tehnologii, 2020, no. 2 (59), pp. 81–88. DOI: 10.18577/2071-9140-2020-0-2-81-88.
13. Pavlova S.A. Analysis of the contact interaction of a polymer honeycomb core with load-bearing layers in three-layer structures. Vestnik Samarskogo universiteta. Aerokosmicheskaya tekhnika, tekhnologii i mashinostroenie, 2021, vol. 20, no. 1, pp. 87–96. DOI: 10.18287/2541-7533-2021-20-1-87-96.
14. Ivanov A.A., Kashin S.M., Semenov V.I. New generation of honeycomb fillers for aerospace engineering. Moscow: Energoatomizdat, 2000, 436 p.
15. ASTM D7249/D7249M–2020. Standard Test Methods for Facesheet Properties of Sandwich Constructions by Long Beam Flexure. American Society for Testing and Materials, 2020, 10 p.
16. State Standard R 56680–2015. Polymer composites. Determination of mechanical characteristics during bending of the material of the outer layer of sandwich structures by the method of testing a long beam for bending. Moscow: Standartinform, 2016, 33 p.
17. ASTM C365/C365M–2022. Standard Test Method for Flatwise Compressive Properties of Sandwich Cores. American Society for Testing and Materials, 2022, 8 p.
18. State Standard R 56816–2023. Polymer composites. Method for determining mechanical characteristics under compression perpendicular to the plane of the sample of the material of the inner layer of sandwich structures. Moscow: Russian Institute of Standardization, 2023, 33 p.
19. ASTM C297/C297M–2016. Standard Test Method for Flatwise Tensile Strength of Sandwich Constructions. American Society for Testing and Materials, 2024, 8 p.
20. State Standard R 56783–2019. Polymer composites. Method for determining the tensile strength perpendicular to the plane of sandwich structures. Moscow: Standartinform, 2019, 18 p.
21. ASTM C364/C364M–2016. Standard Test Method for Edgewise Compressive Strength of Sandwich Constructions. American Society for Testing and Materials, 2024, 8 p.
22. State Standard R 6809–2023. Polymer composites. Method for determining the ultimate compressive strength parallel to the plane of sandwich structures. Moscow: Russian Institute of Standardization, 2023, 16 p.
23. ASTM C393/C393M–2020. Standard Test Method for Core Shear Properties of Sandwich Constructions by Beam Flexure. American Society for Testing and Materials, 2020, 8 p.
24. State Standard R 56791–2023. Polymer composites. Determination of shear strength characteristics of the inner layer material of sandwich structures by beam bending test. Moscow: Standartinform, 2024, 28 p.
25. ASTM D1781–1998. Standard Test Method for Climbing Drum Peel for Adhesives. American Society for Testing and Materials, 2021, 4 p.
26. State Standard R 56792–2015. Polymer composites. Method of testing for delamination with winding on a drum. Moscow: Standartinform, 2019, 14 p.
27. ASTM D7250/D7250M–2020. Standard Practice for Determining Sandwich Beam Flexure and Shear Stiffness. American Society for Testing and Materials, 2020, 7 p.
28. State Standard R 56798–2015. Polymer composites. Method for determining mechanical characteristics during bending of sandwich structures. Moscow: Standartinform, 2016, 27 p.
29. ASTM D7336/D7336M–2022. Standard Test Method for Static Energy Absorption Properties of Honeycomb Sandwich Core Materials. American Society for Testing and Materials, 2022, 9 p.
30. State Standard R 56772–2015. Polymer composites. Method for determining the absorption characteristics of the cellular material of the inner layer of sandwich structures under the influence of static energy. Moscow: Standartinform, 2016, 23 p.
31. ASTM D7766/D7766M–2016. Standard Practice for Damage Resistance of Sandwich Constructions. American Society for Testing and Materials, 2023, 9 p.
32. State Standard R 56684–2015. Polymer composites. Method for determining the resistance to destruction of sandwich structures. Moscow: Standartinform, 2016, 22 p.
33. ASTM C480/C480M–2008. Standard Test Method for Flexure Creep of Sandwich Constructions. American Society for Testing and Materials, 2015, 5 p.
34. State Standard R 56784–2015. Polymer composites. Method for determining creep in bending of sandwich structures. Moscow: Standartinform, 2016, 15 p.
35. Volkov A.N. Modeling and calculation of three-layered designs with discrete filler: Cand. Sc. (Tech.). Moscow, 2023, 132 р.
36. Vishtalov R.I., Muselemov H.M., Ustakhanov O.M. Determination of the reduced characteristics of honeycomb cores of various shapes. Vestnik Dagestanskogo gosudarstvennogo tekhnicheskogo universiteta. Tekhnicheskiye nauki, 2016, no. 42 (3), pp. 155–166. DOI: 10.21822/2073-6185-2016-42-3-155-166.
37. Petrova A.P., Malysheva G.V. Adhesives, adhesive binders and adhesive prepregs: textbook. Ed. E.N. Kablov. Moscow: VIAM, 2017, pp. 327–330.
38. ASTM D6264/6264M–2023. Standard Test Method for Measuring the Damage Resistance of Fiber-Reinforced Polymer Matrix Composite to a Concentrated Quasi-Static Indentation Force. American Society for Testing and Materials, 2023, 11 p.
39. State Standard R 56794–2015. Polymer composites. Method for determining resistance to destruction under concentrated quasi-static indentation load. Moscow: Standartinform, 2016, 23 p.
40. ASTM D7136/7136M–2020. Standard Test Method for Measuring the Damage Resistance of Fiber-Reinforced Polymer Matrix Composite to a Drop-Weight Impact Event. American Society for Testing and Materials, 2023, 16 p.
41. State Standard 33496–2015. Polymer composites. Test method for resistance to damage when struck by a falling weight. Moscow: Standartinform, 2016, 18 p.
42. ASTM C394/C394M–2016. Standard Test Method for Shear Fatique of Sandwich Core Materials. American Society for Testing and Materials, 2024, 6 p.
43. State Standard R 57049–2016. Polymer composites. Method for determining shear fatigue of materials of the inner layer of sandwich structures. Moscow: Standartinform, 2016, 19 p.
44. Composite Materials Handbook. SAE International, 2013, Vol.: 6. Structural Sandwich Composites, 352 p.
45. Burman M. Fatigue Crack Initiation and Propagation in Sandwich Structures. Stockholm: Royal Institute of Technology, 1998, 171 p.
46. Rumyantsev A.F. Design of cfrp shutter of the effective load compartment for «Buran» reusable spaceship. Aviacionnye materialy i tehnologii, 2013, no. S1, pp. 56–61.
47. Timoshkov P.N., Kolobkov A.S., Kurnosov A.O., Goncharov V.A. Prepregs based on melt binders and new-generation polymer composite materials based on them for aviation products. Proc. V All-Rus. Sci. and Tech. Conf. «Polymer composite materials and production technologies of the new generation». Moscow: NRC «Kurchatov Institute» – VIAM, 2021, pp. 7–20.
48. Bolshakov V.A., Antyufeeva N.V. Evaluation of the curing process model of the adhesive binder in prepreg. Aviation materials and technologies, 2023, no. 4 (73), paper no. 07. Available at: http://www.journal.viam.ru (accessed: January 15, 2025). DOI: 10.18577/2713-0193-2023-0-4-66-77.
49. Samoryadov A.V., Kalugina E.V., Bitt V.V., Parshikov Yu.G., Ergashev A.T. Development and research of the properties of composite materials based on thermo-plastic hybrid polymer matrix. Aviation materials and technologies, 2024, no. 3 (76), paper no. 05. Available at: http://www.journal.viam.ru (accessed: January 15, 2025). DOI: 10.18577/2713-0193-2024-0-3-51-68.
50. Sutubalov A.I., Podzhivotov N.Yu., Shershak P.V., Yakovlev N.O. Evaluation of homogeneity of physical and mechanical properties of semi-finished products for aviation purpose. Aviation materials and technologies, 2024, no. 1 (74), paper no. 10. Available at: http://www.journal.viam.ru (accessed: January 15, 2025). DOI: 10.18577/2713-0193-2024-0-1-121-135.
The salt deposition rate on the surface of different fibre-reinforced plastics and standard samples of «wet candles» and «dry plates» during the exposure in a seaside atmosphere in various distances from the sea has been studied. During one year of the exposure, the content of different ions on the surface of the samples was determined by the capillary electrophoresis method. The dependence of the salt content on the surface of various samples on the duration of winds, blowing from the sea, and surface roughness profile of materials, was established.
2. Kablov E.N., Antipov V.V. The role of new generation materials in ensuring the technological sovereignty of the Russian Federation. Herald of the Russian Academy of Sciences, 2023, vol. 93, no. 10, pp. 907–916. DOI: 10.31857/S0869587323100055.
3. Xu X., Peng G., Zhang B. et al. Material performance, manufacturing methods, and engineering applications in aviation of Carbon fiber reinforced polymers: A comprehensive review. Thin-Walled Structures, 2024, vol. 209, art. 112899. DOI: 10.1016/j.tws.2024.112899.
4. Startsev V.O., Antipov V.V., Slavin A.V., Gorbovets M.A. Modern domestic polymer composite materials for aviation industry (review). Aviation materials and technologies, 2023, no. 2 (71), paper no. 10. Available at: http://www.journal.viam.ru (accessed: April 05, 2024). DOI: 10.18577/2713-0193-2023-0-2-122-144.
5. Gulyev I.N., Zelenina I.V., Valevin E.O., Khaskov M.A. Influence of climatic ageing on the properties of high-temperature carbon fiber reinforced plastics. Trudy VIAM, 2021, no. 2 (96), paper no. 05. Available at: http://www.viam-works.ru (accessed: April 05, 2024). DOI: 10.18577/2307-6046-2021-0-2-39-51.
6. Qin G., Fan Q., Mi P. et al. Review of aging mechanisms, mechanical properties, and prediction models of fiber-reinforced composites in natural environments. Polymer Composites, 2024, vol. 45, no. 16, pp. 14448–14474. DOI: 10.1002/pc.28799.
7. Kablov E.N., Kirillov V.N., Startsev O.V., Krotov A.S. Climatic aging of composite aviation materials: III. Significant aging factors. Russian Metallurgy (Metally), 2012, vol. 2012, no. 4, рр. 323–329. DOI: 10.1134/S0036029512040040.
8. Startsev V.O., Valevin E.O., Vardanyan A.M., Nechaev A.A. Evaluation of the stability of aircraft carbon fiber reinforced plastics to atmospheric precipitation. New generation materials and technologies for advanced products of aviation and space technology. Moscow, 2021, аrt. 05.
9. Kablov E.N., Startsev V.O., Laptev A.B. Aging of polymer composite materials. Moscow: NRC «Kurchatov Institute» – VIAM, 2023, 520 p.
10. Kablov E.N., Lebedev M.P., Startsev O.V., Golikov N.I. Climatic tests of materials, structural elements, machinery and equipment under conditions of extremely low temperatures. Proc. VI Eurasian Symposium on the Problems of Strength of Materials and Machines for Cold Climate Regions EURASTRENCOLD–2013. Yakutsk, 2013, pp. 5–7.
11. Startsev O.V., Lebedev M.P., Kychkin A.K. Aging of polymer composite materials in extremely cold climates. Izvestiya Altayskogo gosudarstvennogo universiteta, 2020, no. 1 (111), pp. 41–51. DOI: 10.14258/izvasu(2020)1-06.
12. Vidinha H., Branco R., Amaro A.M., Neto M.A. Monotonic and fatigue behavior of notched glass fibre-reinforced polymer laminates immersed in seawater. Theoretical and Applied Fracture Mechanics, 2023, vol. 126, art. 103977. DOI: 10.1016/j.tafmec.2023.103977.
13. Ghabezi P., Harrison N.M. Multi-scale modelling and life prediction of aged composite materials in salt water. Journal of Reinforced Plastics and Composites, 2024, vol. 43, no. 3–4, pp. 205–219. DOI: 10.1177/07316844231160189.
14. Kablov E.N., Startsev O.V., Medvedev I.M., Panin S.V. Corrosive aggressiveness of the coastal atmosphere. Part 1. Influencing factors (review). Korroziya: materialy, zashchita, 2013, no. 12, pp. 6–18.
15. Kablov E.N., Startsev O.V., Medvedev I.M. Corrosive aggressiveness of the coastal atmosphere. Part 2. New approaches to assessing the corrosivity of coastal atmospheres. Korroziya: materialy, zashchita, 2016, no. 1, pp.1–15.
16. Raman R.K.S., Guo F., Al-Saadi S., Zhao X.L. Understanding fibre-matrix degradation of FRP composites for advanced civil engineering applications: an overview. Corrosion and Materials Degradation, 2018, vol. 1, no. 1, pp. 27–41. DOI: 10.3390/cmd1010003.
17. Startsev V.O. Effect of aggressive liquids on properties of polymer composite materials (review). Trudy VIAM, 2022, no. 8 (114), paper no. 08. Available at: http://www.viam-works.ru (accessed: April 05, 2025). DOI: 10.18577/2307-6046-2022-0-8-98-112.
18. Cao Y., Gao G., Wang W. et al. Deterioration behaviors of phenolic amine/epoxy-based GFRP laminates exposed to aggressive environments. Composites Part A: Applied Science and Manufacturing, 2025, vol. 192, art. 108788. DOI: 10.1016/j.compositesa.2025.108788.
19. Startsev V.O. The degradation of polymer composite materials in seawater (review). Aviation materials and technologies, 2023, no. 1 (70), paper no. 12. URL: http://www.journal.viam.ru (accessed: April 05, 2024). DOI: 10.18577/2713-0193-2023-0-1-148-170.
20. Yang Y., Silva M.A.G., Silva R.J.C. Material degradation of CFRP-to-steel joints subjected to salt fog. Composites Part B: Engineering, 2019, vol. 173, art. 106884. DOI: 10.1016/j.compositesb.2019.05.095.
21. Deng K., Luo B., Suo H. et al. Characterization of material degradation mechanism of carbon fiber reinforced epoxy resin composites under ultraviolet radiation and salt-fog synergistic environment. Polymer Composites, 2024, vol. 45, no. 1, pp. 805–824. DOI: 10.1002/pc.27816.
22. Fiore V., Calabrese L., Miranda R., Badagliacco D. An experimental investigation on performances recovery of glass fiber reinforced composites exposed to a salt-fog/dry cycle. Composites Part B: Engineering, 2023, vol. 257, art. 110693. DOI: 10.1016/j.compositesb.2023.110693.
23. da Silva G.A.S., d’Almeida J.R.M., Cardoso D.C.T. Investigation on moisture absorption behavior on GFRP and neat epoxy systems in hygrothermal salt fog aging. Composites Part B: Engineering, 2024, vol. 272, art. 111214. DOI: 10.1016/j.compositesb.2024.111214.
24. Anderson E., Gunawan B., Nicholas J. A multicontinuum-theory-based approach to the analysis of fiber-reinforced polymer composites with degraded stiffness and strength properties due to moisture absorption. Journal of Marine Science and Engineering, 2023, vol. 11, no. 2, art. 421. DOI: 10.3390/jmse11020421.
25. Wang D., Gong Q., Yuan Q., Luo S. Review of the properties of fiber-reinforced polymer-reinforced seawater–sea sand concrete. Journal of Materials in Civil Engineering, 2021, vol. 33, no. 10, art. 04021285. DOI: 10.1061/(ASCE)MT.1943-5533.0003894.
26. Zhao Y., Liu W., Seah L.K., Chai G.B. Delamination growth behavior of a woven E-glass/bismaleimide composite in seawater environment. Composites Part B: Engineering, 2016, vol. 106, pp. 332–343. DOI: 10.1016/j.compositesb.2016.09.045.
27. Gellert E.P., Turley D.M. Seawater immersion ageing of glass-fibre reinforced polymer laminates for marine applications. Composites Part A: Applied Science and Manufacturing, 1999, vol. 30, no. 11, pp. 1259–1265. DOI: 10.1016/S1359-835X(99)00037-8.
28. Nan J., Zhi C., Meng J., Miao M. Seawater aging effect on fiber-reinforced polymer composites: Mechanical properties, aging mechanism, and life prediction. Textile Research Journal, 2023, vol. 93, no. 13–14, pp. 3393–3413. DOI: 10.1177/00405175231152666.
29. Kini M.V., Pai D. The ageing effect on static and dynamic mechanical properties of fibre reinforced polymer composites under marine environment – a review. Materials Today: Proceedings, 2022, vol. 52, no. 3, pp. 689–696. DOI: 10.1016/j.matpr.2021.10.084.30.26.
30. Ghabezi P., Harrison N.M. Indentation characterization of glass/epoxy and carbon/epoxy composite samples aged in artificial salt water at elevated temperature. Polymer Testing, 2022, vol. 110, art. 107588. DOI: 10.1016/j.polymertesting.2022.107588.
31. Shetty K., Bojja R., Srihari S. Effect of hygrothermal aging on the mechanical properties of IMA/M21E aircraft-grade CFRP composite. Advanced Composites Letters, 2020, vol. 29, art. 2633366X2092652. DOI: 10.1177/2633366X20926520.
32. Yang S., Chu M., Chen F. et al. Effect of different environmental conditions on durabilities of polyester and vinylester-based glass-fiber-reinforced polymer pultruded profiles. Frontiers in Materials, 2022, vol. 9, art. 862872. DOI: 10.3389/fmats.2022.862872.
33. Srihari S., Revathi A., Rao R. Hygrothermal effects on RT-cured glass-epoxy composites in immersion environments. Part B: Degradation studies. Journal of Reinforced Plastics and Composites, 2002, vol. 21, no. 11, pp. 993–1002. DOI: 10.1177/073168402128987653.
34. Wang J., GangaRao H., Liang R. Durability of glass fiber-reinforced polymer composites under the combined effects of moisture and sustained loads. Journal of Reinforced Plastics and Composites, 2015, vol. 34, no. 21, pp. 1739–1754. DOI: 10.1177/0731684415596846.
35. Kafodya I., Xian G., Li H. Durability study of pultruded CFRP plates immersed in water and seawater under sustained bending: Water uptake and effects on the mechanical properties. Composites Part B: Engineering, 2015, vol. 70, pp. 138–148. DOI: 10.1016/j.compositesb.2014.10.034.
36. Hong B., Xian G., Li H. Comparative study of the durability behaviors of epoxy and polyurethane-based CFRP plates subjected to the combined effects of sustained bending and water/seawater immersion. Polymers, 2017, vol. 9, no. 11, art. 603. DOI: 10.3390/polym9110603.
37. Fakhrul T., Islam M.A. Degradation behavior of natural fiber reinforced polymer matrix composites. Procedia Engineering, 2013, vol. 56, pp. 795–800. DOI: 10.1016/j.proeng.2013.03.198.
38. Chen Y., Davalos J.F., Ray I., Kim H.Y. Accelerated aging tests for evaluations of durability performance of FRP reinforcing bars for concrete structures. Composite structures, 2007, vol. 78, no. 1, pp. 101–111. DOI: 10.1016/j.compstruct.2005.08.015.
39. Wu G., Wang X., Wu Z. Durability of basalt fibers and composites in corrosive environments. Journal of Composite Materials, 2015, vol. 49, no. 7, pp. 873–887. DOI: 10.1177/0021998314526628.
40. Startsev V.O., Startsev O.V., Zeleneva T.O., Vardanyan A.M. Influence of precipitation on changes in the mass of samples of polymeric composite materials in open climatic conditions. Aviation materials and technologies, 2024, no. 1 (74), paper no. 11. Available at: http://www.journal.viam.ru (accessed: April 05, 2024). DOI: 10.18577/2713-0193-2024-0-1-136-154.
41. Lu Z., Xie J., Zhang H., Li J. Long-term durability of basalt fiber-reinforced polymer (BFRP) sheets and the epoxy resin matrix under a wet–dry cyclic condition in a chloride-containing environment. Polymers, 2017, vol. 9, no. 12, art. 652. DOI: 10.3390/polym9120652.
42. Bhat R., Mohan N., Sharma S. Influence of seawater absorption on the hardness of glass fiber/polyester composite. Journal of Computer Mechanical Management, 2022, vol. 1, no. 1, pp. 1–11. DOI: 10.57159/gadl.jcmm.1.1.23003.
43. Kablov E.N., Startsev V.O. Climatic aging of polymer composite materials for aviation purposes. II. Development of methods for studying the early stages of aging. Deformatsiya i razrusheniye materialov, 2020, no. 1, pp. 15–21. DOI: 10.31044/1814-4632-2020-1-15-21.
44. Kablov E.N., Startsev V.O. Systematical analysis of the climatics influence on mechanical properties of the polymer composite materials based on domestic and foreign sources (review). Aviacionnye materialy i tehnologii, 2018, no. 2 (51), pp. 47–58. DOI: 10.18577/2071-9140-2018-0-2-47-58.
45. Kablov E.N., Startsev V.O. Climatic aging of polymer composite materials for aviation purposes. I. Assessment of the influence of significant impact factors. Deformatsiya i razrusheniye materialov, 2019, no. 12, pp. 7–16. DOI: 10.31044/1814-4632-2019-12-7-16.
46. Pershina N.A., Ionin V.A., Polischuk A.I. The influence of the proximity of the sea and corrosive agents of the atmosphere on the corrosion rate in different climatic regions. Climate–2018: Issues of forecasting corrosion, aging and biodeterioration of materials. Moscow, 2018, pp. 227–238.
47. Vetrova E.Yu., Shchekin V.K., Kurs M.G. Comparative evaluation of methods for the determination of corrosion aggressivity of the atmosphere. Aviacionnye materialy i tehnologii, 2019, no. 1 (54), pp. 74–81. DOI: 10.18577/2071-9140-2019-0-1-74-81.
48. Zhirnov A.D., Strekalov P.V., Karimova S.A., Zhilikov V.P. Seasonal dynamics of the metal corrosion process in the coastal zone of the Black Sea. Korroziya: materialy, zashchita, 2007, no. 8, pp. 23–29.
49. State Standard 9.039–74. ESZKS. Corrosive aggressiveness of the atmosphere. Moscow: Publ. house of standards, 1974. 39 p.
50. Panin S.V., Startsev O.V., Krotov A.S., Medvedev I.M., Frolov A.S. Corrosion and aging of structural materials surface studied by 3D microscopy. Trudy VIAM, 2014, no. 12, paper no. 12. Available at: http://www.viam-works.ru (accessed: April 05, 2025). DOI: 10.18577/2307-6046-2014-0-12-12-12.
51. Startsev V.O., Kutsevich K.E., Khrulev K.A., Molokov M.V. Predicting the surface temperature of composite material samples based on adhesive prepregs when exposed to climatic conditions. Klei. Germetiki. Tekhnologii, 2017, no. 9, pp. 24–31.
52. Nikolaev E.V., Barbotko S.L., Andreeva N.P., Pavlov M.R., Grashchenkov D.V. Complex research of influence of climatic and operational factors on new generation epoxy binding and polymeric composite materials on its basis. Part 4. Natural climatic tests of polymeric composite materials on the basis of epoxy matrix. Trudy VIAM, 2016, no. 6, paper no. 11. Available at: http://www.viam-works.ru (accessed: April 05, 2025). DOI: 10.18577/2307-6046-2016-0-6-11-11.
53. Kutsevich K.E., Dementeva L.A., Lukina N.F. Properties and application of polymer composite materials based on glue prepregs. Trudy VIAM, 2016, no. 8, paper no. 7. Available at: http://www.viam-works.ru (accessed: April 05, 2025). DOI: 10.18577/2307-6046-2016-0-8-7-7.
54. Tolkachev A.P. Features of the chemical composition of sea water. Shag v nauku, 2019, no. 3, pp. 115–117.
55. Andrulionis N.Yu., Zavyalov I.B., Rozhdestvensky S.A. The main ionic composition of the waters of the Kerch Strait and adjacent waters. Morskoy gidrofizicheskiy zhurnal, 2024, vol. 40, no. 1 (235), pp. 87–107.
56. Panchenko Yu.M., Marshakov A.I., Nenasheva T.A. et al. Corrosion resistance of structural metals with different orientation of samples at different distances from the seashore. Korroziya: zashchita materialov i metody issledovaniy, 2024, no. 2, pp. 29–44. DOI: 10.61852/2949-3412-2024-2-2-29-44.
Heat-resistant alloys and steels
Sevalnev G.S., Druzhnov M.A., Leonov A.V., Novikov A.S., Lavrik E.G. Structure and properties of high-nitrogen corrosion-resistant bearing steel samples obtained by selective laser melting
Vostrikov A.V., Yashin M.S., Kapitanenko D.V. Peculiarities of the technology of production of aircraft engine parts from granules of heat-resistant nickel alloys by the method of plasma melting and centrifugal spraying of a cast rotating blank
Morozova L.V., Grigorenko V.B., Terekhin А.М. Analysis of defects in parts made of structural steel
Light-metal alloys
Nefedova Yu.N., Kozhekin A.E., Skugorev A.V., Selivanov A.A. Experience in manufacturing of pressed and forged semi-finished products from the alloy САС1 under condition of National Research Center «Kurchatov Institute» – VIAM
Benarieb I., Savichev I.D., Khasikov D.V., Denisov A.M. Application of high-tech aluminum alloy VAS1 for additive manufacturing of helicopter parts
Polymer materials
Shosheva A.L., Kopnov A.Yu., Lavrin M.A., Mitroshina A.A. Synthesis and properties of thermosetting polyimide materials
Klimenko O.N., Gulyaev I.N., Ivankov R.R. Study of influence of storage conditions on physical and chemical and physical-mechanical characteristics of prepreg VKU-39/VTkU-2.200
Composite materials
Bespalov A.S., Istomin A.V. Features of high-porous materials for use as carriers of catalytically active substances
Nacharkina A.V., Zelenina I.V., Kurshev E.V., Lonskii S.L. Thermal stability of polyimide carbon plastics based on various carbon fillers
Protective and functional
coatings
Serdtselyubova A.S., Oshmarina T.Ya., Zverevich Yu.K. Fluorine-containing polymers for protective and decorative coatings for industrial use
Material tests
Erasov V.S., Sibayev I.G., Sutubalov A.I. Testing of samples from three-layer structures with honeycomb filler
Kornienko G.V., Startsev O.V., Alexandrova T.V., Dvirnaya E.V. Study of salt desposition rate on the surface of various fibre-reinforced plastic materials during exposure to a seaside atmosphere