Articles
The article presents microstructural studies of monocrystalline samples of crystallographic orientation [001] of the intermetallic alloy VIN4M in the cast state, after complete heat treatment and samples that have passed long-term static tests. A fractographic study of samples that have undergone long-term tests at various temperatures and stresses is also presented. The technology of casting blanks of nozzle blades has been developed and a batch of monocrystalline nozzle blade castings made of intermetallic alloy VIN4M with high yield has been obtained in production conditions.
2. Zaitsev N.A., Logunov A.V., Samoylenko V.M., Shatulsky A.A. Forecasting the resource of the «heat-resistant alloy – heat-resistant coating» complex based on an assessment of structural stability. Vestnik Moskovskogo gosudarstvennogo otkrytogo universiteta. Ser.: Tekhnika i tekhnologiya, 2012, no. 2 (8), pp. 5–17.
3. Zaitsev N.A., Logunov A.V., Shatulsky A.A., Shmotin Yu.N. Determination of diffusion coefficients of alloying elements in heat-resistant nickel alloys. Tekhnologiya metallov, 2011, no. 10, pp. 38–46.
4. Mikhailov A.M., Logunov A.V., Danilov D.V. Ensuring improved quality of heat-resistant nickel alloys by reducing the permissible range of dispersion of alloying elements. Tekhnologiya metallov, 2024, no. 2, pp. 30–37.
5. Svetlov I.L., Petrushin N.V., Epishin A.I., Karashaew M.M., Elyutin E.S. Single crystals of nickel-based superalloys alloyed with rhenium and ruthenium (review). Part 1. Aviation materials and technologies, 2023, no. 1 (70), paper no. 03. Available at: http://www.journal.viam.ru (accessed: April 16, 2024). DOI: 10.18577/2713-0193-2023-0-1-30-50.
6. Svetlov I.L., Petrushin N.V., Epishin A.I., Karashaew M.M., Elyutin E.S. Single crystals of nickel-based superalloys alloyed with rhenium and ruthenium (review). Part 2. Aviation materials and technologies, 2023, no. 2 (71), paper no. 01. Available at: http://www.journal.viam.ru (accessed: April 16, 2024). DOI: 10.18577/2713-0193-2023-0-2-3-22.
7. Chabina E.B., Petrushin N.V., Filonova E.V., Elyutin E.S., Raevskikh A.N. Evolution of the structure and phase composition of the material of the working blade made of ZhS32 alloy as a result of the impact of operational factors. New materials and technologies for deep processing of raw materials - the basis for innovative development of the Russian economy: Proc. III Int. scientific-technical. conf. Moscow: National Research Center «Kurchatov Institute» – VIAM, 2022, pp. 85–97.
8. Povarova K.B., Kazanskaya N.K., Buntushkin V.P. et al. Thermal stability of the structure of the alloy based on Ni3Al and its application in the working blades of small-sized gas turbine engines. Metally, 2003, no. 3, pp. 90–100.
9. Kolobov Yu.R., Kablov E.N., Kozlov E.V. et al. Structure and properties of intermetallic materials with nanophase strengthening. Moscow: MISIS, 2008, 327 p.
10. Nochovnaya N.A., Bazyleva O.A., Kablov D.E., Panin P.V. Intermetallic alloys based on titanium and nickel. Ed. E.N. Kablov. Moscow: VIAM, 2018, 308 p.
11. Shevtsova L.I. Study of VKNA-1V alloy obtained by SLS with preliminary mechanical activation of powders. Metallurg, 2023, no. 8, pp. 63–70.
12. Grinberg B.A., Ivanov M.A. Intermetallics Ni3Al and TiAl: microstructure, deformation behavior. Ekaterinburg, 2002, 359 p.
13. Verhoeven J.D., Lee J.H., Laabs F.C., Jones L.L. The phase eguilibria of Ni3Al evaluated by directional solidification and diffusion couple experiment. Journal Phase Eguilibrium, 1991, vol. 12, no. 1, pp. 15–23.
14. Jozwik P., Polkowski W., Bojar Z. Applications of Ni3Al Based Intermetallic alloys – Current Stage and Potential Perceptivities. Materials, 2015, no. 8, pp. 2537–2568. DOI: 10.3390/ma8052537.
15. Yao Y., Xing C., Peng H. Solidification microstructure and tensile deformation mechanisms of selective electron beam melted Ni3Al-based alloy at room and elevated temperatures. Materials Science & Engineering A, 2021, vol. 802, pp. 16–25. DOI: 10.1016/j.msea/2020/140629.
16. Zhao Y., Chang Y., Li X. et al. P phase precipitation and strengthening behavior of a novel polycrystalline Ni3Al-based intermetallic alloy at 1100 °C. Acta Materialia, 2023, vol. 12, pp. 1–32. DOI: 10.1016/j.actamat.2023.119601.
17. Elliot A.J., Karney G.B., Pollock T.M., Gigliotti M.F.X. Issue in Processing by the Liguid-Sn Assisted Directional Solidification Technigue. Superalloys. Minerals, Metals & Materials Society, 2004, pp. 421–445.
18. Bondarenko Yu.A., Echin A.B., Kolodyazhny M.Yu., Narskiy A.R. Effect of directional solidification conditions and GTE blade size on the features of the dendritic structure of nickel-based heat-resistant alloys. Electrometallurgiya, 2023, no. 4, pp. 2–9. DOI: 10.31044/1684-5781-2023-0-4-2-9.
19. Bondarenko Yu.A., Echin A.B. Directional solidification of a heat-resistant alloy with a variable controlled gradient. Voprosy Materialovedeniya, 2016, no. 3 (87), pp. 50–58.
20. Bondarenko Yu.A., Echin A.B. A look at the history of development and modern research of the process of directional solidification of cast heat-resistant alloys with a controlled gradient at the growth front. Elektrometallurgiya, 2018, no. 7, pp. 33–40. DOI: 10.31044/1684-5781-2018-0-7-33-40.
21. Bondarenko Yu.A., Echin A.B., Surova V.A. et al. Development of technology and equipment for producing hot path blades of gas turbine engines from heat-resistant alloys with directional solidification and single-crystal structure. Elektrometallurgiya, 2023, no. 7, pp. 3–11. DOI: 10.31044/1684-5781-2023-0-7-3-11.
22. Toloraya V.N., Ostroukhova G.A. Obtaining single-crystal [001] seeds from Ni–W system alloys by directional crystallization. Voprosy Materialovedeniya, 2021, no. 2 (196), pp. 55–65.
23. Arginbaeva E.G., Bazyleva O.A., Karachevtsev F.N., Nazarkin R.M. Structure and heat resistance of intermetallic rhenium-containing alloy after heat treatment. Vestnik Moskovskogo gosudarstvennogo tekhnicheskogo universiteta im. N.E. Baumana, Ser.: Mashinostroyenie, 2019, no. 6 (129), pp. 17–31.
24. Artemenko N.I., Tatarnikov S.V., Doronin O.N. Investigation of the influence of the parameters of applying the ceramic layer of the ZrO2–7 % Y2O3 heat-shielding coating by plasma spraying on the productivity of the technological process. Trudy VIAM, 2023, no. 4 (122), paper no. 07. Available at: http://www.viam-works.ru (accessed: April 16, 2024). DOI: 10.18577/2307-6046-2023-0-4-69-80.
25. Budinovskiy S.A., Gorlov D.S., Benklyan A.S. Deposition of protective ion-plasma coatings on largescale parts on MAP type installations. Aviation materials and technologies, 2024, no. 1 (74), paper no. 08. Available at: http://www.journal.viam.ru (accessed: April 16, 2024). DOI: 10.18577/2713-0193-2024-0-1-101-110.
26. Alloy based on the intermetallic compound Ni3Al and a product made from it: pat. 2588949 Rus. Federation; appl. 01.04.15; publ. 10.07.16.
27. Buntushkin V.P., Kablov E.N., Bazyleva O.A., Morozova G.I. Basic principles of alloying the intermetallic compound Ni3Al when creating high-temperature alloys. Materialovedenie, 1998, no. 7, pp. 13–15.
28. Kishkin S.T., Morozova G.I. Features of the method of physicochemical phase analysis of modern heat-resistant nickel alloys. Voprosy aviatsionnoy nauki i tekhniki. Ser.: Aviatsionnye materialy. Moscow, 1987, pp. 86–93.
29. Kablov E.N., Kishkin S.T. Prospects for the use of cast heat-resistant alloys for the production of turbine blades for gas turbine engines. Gazoturbinnye tekhnologii, 2002, no. 1 (16), pp. 34–37.
30. Morozova G.I. Compensation for the imbalance of alloying heat-resistant nickel alloys. Metallovedenie i termicheskaya obrabotka metallov, 2012, no. 12, pp. 52–58.
31. Bazyleva O.A., Rimsha E.G., Chabina E.B., Raevskikh A.N. Some aspects of creation and research of structural casting intermetallide alloys for promising helicopter engines. Trudy VIAM, 2024, no. 3 (133), paper no. 01. Available at: http://www.viam-works.ru (accessed: May 24, 2024). DOI: 10.18577/2307-6046-2024-0-3-3-17.
32. Sidorov V.V., Kablov D.E., Rigin D.E. Metallurgy of cast heat-resistant alloys: technology and equipment. Ed. E.N. Kablov. Moscow: VIAM, 2016, 368 p.
33. Petrov D.N., Garibov G.S., Avdyukhin S.P. et al. Features of the formation of a dense structure of a cast rod blank. Tekhnologiya legkikh splavov, 2006, no. 4, pp. 57–60.
34. Petrushin N.V., Elyutin E.S., Raevskikh A.N., Treninkov I.A. High-gradient directional solidification of intermetallic Ni–Al–Ta alloy based on Ni3Al, strengthened by TaC-phase. Trudy VIAM, 2017, no. 3 (51), paper no. 01. Available at: http://www.viam-works.ru (accessed: April 16, 2024). DOI: 10.18577/2307-6046-2017-0-3-1-1.
35. Raevskikh A.N. Application of digital technologies for identifying inhomogeneous concentration zones in the structure of heat-resistant nickel alloys, including those obtained by selective laser sintering. Voprosy materialovedeniya, 2020, no. 4 (104), pp. 32–47.
36. Bazyleva O.A., Arginbaeva E.G., Chabina E.B. et al. Study of structural and phase transformations in a casting structural alloy based on the intermetallic compound Ni3Al after high-temperature holding and during the production of the alloy as a nozzle blade. Voprosy materialovedeniya, 2023, vol. 114, no. 2, pp. 60–70.
37. Morozova L.V. Fractographic analysis of operational failures of bevel gears from the central drive of aircraft gas turbine engines: abstract thesis, Cand. Sc. (Tech.). Moscow, 2016, 22 p.
38. Narsky A.R. From the history of domestic aviation materials science. Department of testing of aviation materials of TsAGI in archival documents (1925–1933). Istoriya nauki i tekhniki, 2013, no. 9, pp. 44–52.
39. Rassokhina L.I., Parfenovich P.I., Narsky A.R. Problems of creating a new generation of model compositions based on domestic materials for the manufacture of gas turbine engine blades. Novosti materialovedeniya. Nauka i tekhnika, 2015, no. 3 (15), art. 07. Available at: http://materialsnews.ru (accessed: May 24, 2024).
40. Logunov A.V. Heat-resistant nickel alloys for blades and disks of gas turbines. Rybinsk: Gazoturbinnyye tekhnologii, 2017, 852 p.
In the article were studied the microstructure, phase composition, and the change in mechanical properties depending on the test temperature of the high-entropy alloy in the NiCoCrWNbAlTiReC system after vacuum induction melting. According to the results of the studies and tests, it was established that the alloy structure consists of a FCC solid solution with excess phases, with the implementation of the mechanism of strain hardening at the test temperature of 20 °C and structural-phase transformations in the temperature range of 900–1100 °C.
2. Sevalnev G.S. Beryllium-containing steels – perspective material with a high level of physical and mechanical properties. Aviation materials and technologies, 2023, no. 3 (72), paper no. 02. Available at: http://www.journal.viam.ru (accessed: July 25, 2024). DOI: 10.18577/2713-0193-2023-0-3-15-29.
3. Kaplanskii Yu.Yu., Mazalov P.B. World trends in the development of refractory high-entropy alloys for heat-loaded units of aerospace technics (review). Aviation materials and technologies, 2022, no. 2 (67), paper no. 03. Available at: http://www.journal.viam.ru (accessed: July 25, 2024). DOI: 10.18577/2713-0193-2022-0-2-30-42.
4. Kablov E.N., Sidorov V.V., Min P.G., Vadeev V.E., Kramer V.V. Research and development of technological parameters for vacuum melting of corrosion-resistant heat-resistant nickel alloys. Metallurg, 2021, no. 2, pp. 62–67.
5. Yeh J.-W., Chen Y.-L., Lin S.-J., Chen S.-K. High-entropy alloys – a new era of exploitation. Materials Science Forum, 2007, vol. 560, pp. 1–9. DOI: 10.4028/www.scientifi c.net/MSF.560.1.
6. Cantor B., Chang I.T.H., Knight P., Vincent A.J.B. Microstructural development in equiatomic multicomponent alloys. Materials Science and Engineering: A, 2004, vol. 375–377, pp. 213–218. DOI: 10.1016/j.msea.2003.10.257.
7. Cantor B. Multicomponent and high entropy alloys. Entropy, 2014, vol. 16, no. 9, pp. 4749–4768.
8. Yeh J.-W., Chen S.-K., Lin S.-J. et al. Nanostructured highentropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Advanced Engineering Materials, 2004, vol. 6, pp. 299–303. DOI: 10.1002/adem.200300567.
9. Yeh J.W. Recent progress in high-entropy alloys. Annales de Chimie-Science des Materiaux, 2006, vol. 31, pp. 633–648. DOI: 10.3166/acsm.31.633-648.
10. Yeh J.-W., Chen S.-K., Gan J.-Y. et al. Formation of simple crystal structures in Cu‒Co‒Ni‒Cr‒Al‒Fe‒Ti‒V alloys with multiprincipal metallic elements. Metallurgical and Materials Transactions: A, 2004, vol. 35, pp. 2533–2536. DOI: 10.1007/s11661-006-0234-4.
11. Singh S., Wanderka N., Glatzel U., Banhart J. Decomposition in multi-component AlCoCrCuFeNi highentropy alloy. Acta Materialia, 2011, vol. 59, pp. 182–190. DOI: 10.1016/j.actamat.2010.09.023.
12. Trofimenko N.N., Efimochkin I.Yu., Bolshakova A.N. Problems of creation and prospects for the use of heat-resistant high-entropy alloys. Aviacionnye materialy i tehnologii, 2018, no. 2 (51), pp. 3–8. DOI: 10.18577/2071-9140-2018-0-2-3-8.
13. Trofimenko N.N., Efimochkin I.Yu., Osin I.V., Dvoretskov R.M. The research of the possibility of high entropy alloy VNbMoTaW production by mixing elementary powders with further hybrid spark plasma sintering. Aviacionnye materialy i tehnologii, 2019, no. 2 (55), pp. 12–20. DOI: 10.18577/2071-9140-2019-0-2-12-20.
14. George E.P., Raabe D., Ritchie R.O. High-entropy alloys. Nature Reviews Materials, 2019, vol. 4, pp. 515–534. DOI: 10.1038/s41578-019-0121-4.
15. Zhang Y., Zhou Y.J., Lin J.P. et al. Solid-solution phase formation rules for multi-component alloys. Advanced Engineering Materials, 2018, vol. 10 (6), pp. 534–538. DOI: 10.1002/adem.200700240.
16. Smith T. GRX-810: NASA High Temperature Alloy Development for Additive Manufacturing. Lawrence Livermore National Lab Seminar, 2022. Available at: https://ntrs.nasa.gov/citations/20220013032 (accessed: July 25, 2024).
17. Smith T. High Temperature Alloy Development for AM–GRX-810. Bridging the Gap Webinar: Emerging Additive Manufacturing Materials. 2023. Available at: ntrs.nasa.gov/citations/20230010486 (accessed: July 25, 2024).
18. NASA’s New Material Built to Withstand Extreme Conditions. Available at: https://www.nasa.gov/aeronautics/nasas-new-material-built-to-withstand-extreme-conditions/ (accessed: July 25, 2024).
19. The Materials Project. Available at: next-gen.materialsproject.org (accessed: July 25, 2024).
20. Johnson G.R., Cook W.N. A constitutive model and data for metals subjected to large strains. High rates and high temperatures. Proceedings of the 7th Intern. symp. on ballistics (Hague, Netherlands, Apr. 19–21, 1983). Hague: Roy. Inst. of Engrs in the Netherlands, 1983, pp. 541–547.
21. Johnson G.R., Cook W.H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures, and pressures. Engineering fracture mechanism, 1985, vol. 21, no. 1, pp. 31–48.
22. Lukin E.I., Ashmarin A.A., Bannykh I.O. et al. Study of the influence of the reduction value during cold rolling on the phase composition, texture and residual stresses in 20Kh15AN3MD2 steel. Metally, 2023, no. 6, pp. 26–34. DOI: 10.31857/S0869573323060046.
23. Sevalnev G.S., Gromov V.I., Dulnev K.V., Sevalneva T.G. Contact endurance of nitrogenous austenitic-martensitic steels with different hardening mechanism. Aviation materials and technologies, 2024, no. 2 (75), paper no. 01. Available at: http://www.journal.viam.ru (accessed: July 25, 2024). DOI: 10.18577/2713-0193-2024-0-2-3-14.
The causes of failure of gas turbine engine parts have been identified. The structure and features of destruction have been studied using optical metallography, high-resolution fractography and electron probe analysis. It has been shown that the materials of the parts comply with the requirements of regulatory documentation in terms of structure, hardness and chemical composition. The most probable causes of rolling bearing failure are faults in the oil supply system. The destruction of the gear developed according to the fatigue mechanism from scratches located in the gullet.
2. Kablov E.N., Bakradze M.M., Gromov V.I., Voznesenskaya N.M., Yakusheva N.A. New high strength structural and corrosion-resistant steels for aerospace equipment developed by FSUE «VIAM» (review). Aviacionnye materialy i tehnologii, 2020, no. 1 (58), pp. 3–11. DOI: 10.18577/2071-9140-2020-0-1-3-11.
3. Special steels: in 2 vols. 2nd ed., abrid. and rev. Moscow: Metallurgiya, 1966, vol. 1, 741 p.
4. Special steels: in 2 vols. 2nd ed., abrid. and rev. Moscow: Metallurgiya, 1966, vol. 2, 532 p.
5. Gromov V.I., Voznesenskaya N.M., Pokrovskaya N.G., Tonysheva O.A. High-strength constructional and corrosion-resistant steels developed by VIAM for aviation engineering. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 159–174. DOI: 10.18577/2071-9140-2017-0-s-159-174.
6. Petrakov A.F., Shalkevich A.B. High-strength steels in aircraft construction. Aviation materials. Selected works of VIAM 1932–2002. Moscow: MISIS‒VIAM, 2002, pp.180–191.
7. Erasov V.S., Oreshko E.I. Tests for fatigue of metal materials (review). Part 2. Analysis of the Basquin–Manson–Coffin equation. Methods of testing and processing of results. Aviation materials and technology, 2021, no. 1 (62), paper no. 08. Available at: http://www.journal.viam.ru (accessed: September 12, 2024). DOI: 10.18577/2713-0193-2021-0-1-80-94.
8. Gromov V.I., Yakusheva N.A., Vostrikov A.V., Cherkashneva N.N. High strength structural steels for gas-turbine engine shafts (review). Aviation materials and technology, 2021, no. 1 (62), paper no. 01. Available at: http://www.journal.viam.ru (accessed: September 12, 2024). DOI: 10.18577/2713-0193-2021-0-1-3-12.
9. Orlov M.R., Grigorenko V.B., Morozova L.V., Naprienko S.A. Research of operational damages of bearings by methods of optical microscopy, scanning electron microscopy and Х-ray microanalysis. Trudy VIAM, 2016, no. 1 (37), paper no. 9. Available at: http://viam-works.ru (accessed: September 14, 2024). DOI: 10.18577/2307-6046-2016-0-1-62-79.
10. Morozova L.V., Orlov M.R. Research of failure causes of cogwheels in operational process. Aviacionnye materialy i tehnologii, 2015, no. S1, pp. 37–48. DOI: 10.18577/2071-9140-2015-0-S1-37-48.
11. Sevalnev G.S., Gromov V.I., Dulnev K.V., Sevalneva T.G. Contact endurance of nitrogenous austenitic-martensitic steels with different hardening mechanism. Aviation materials and technologies, 2024, no. 2 (75), paper no. 01. Available at: http://www.journal.viam.ru (accessed: September 14, 2024). DOI: 10.18577/2713-0193-2024-0-2-3-14.
12. Sevalnev G.S., Sevalneva T.G., Kolmakov A.G. et al. Influence of the phase composition of austenitic-martensitic TRIP steel VNS9-Sh on the characteristics of dry sliding friction in tribocontact with steel ShKh15. Deformatsiya i razrushenie materialov, 2021, no. 10. pp. 20–27. DOI: 10.31044/1814-4632-2021-10-20-27.
13. Spektor A.G., Zelbet B.M., Kiseleva S.A. Structure and properties of bearing steels. Moscow: Metallurgiya, 1980, 264 p.
14. Gulina I.V., Sedov O.V., Yakovlev N.O., Grinevich A.V. Features of the tested bearing steel. Trudy VIAM, 2019, no. 10 (82), paper no. 07. Available at: http://www.viam-works.ru (accessed: September 12, 2024). DOI: 10.18577/2307-6046-2019-0-10-76-83.
15. Zolotorevsky V.S. Mechanical properties of metals: textbook for universities. 2nd ed. Moscow: Metallurgiya, 1983, 352 p.
The processing of polymer composite materials by methods of non-autoclave molding is increasingly used in the manufacture of products for a wide variety of applications. To carry out the process of manufacturing the material and obtaining its maximum properties, it is necessary to use technological processes that ensure the manufacture of materials with predictable and optimal properties. The review is devoted to the technological features of the manufacture of polymer composite materials by non-autoclave molding of prepregs.
2. Onishchenko G.G., Kablov E.N., Ivanov V.V. Scientific and technological development of Russia in the context of achieving national goals: problems and solutions. Innovatsii, 2020, no. 6 (260), pp. 3–16.
3. Kablov E.N. The role of fundamental research in creating new generation materials. Report XXI Mendeleev Congress on General and Applied Chemistry: in 6 vols. St. Petersburg, 2019, vol. 4, p. 24.
4. Varvani-Farahani A. Composite materials: characterization, fabrication and application-research challenges and directions. Applied Composite Materials, 2010, vol. 17, is. 2, pp. 63–67.
5. Lachaud F., Espinosa C., Michel L. et al. Modelling strategies for predicting the residual strength of impacted composite aircraft fuselages. Applied Composite Materials, 2015, vol. 22, is. 6, pp. 599–621.
6. Alderliesten R.C. Critical review on the assessment of fatigue and fracture in composite materials and structures. Engineering Failure Analysis, 2013, vol. 35, is. 15, pp. 370–379.
7. Grunenfelder L.K., Dills A., Centea T., Nutt S.R. Effect of prepreg format on defect control in out-of-autoclave processing. Composites. Part A: Applied Science and Manufacturing, 2017, vol. 93, pp. 88–99.
8. Aleksendri D., Carlone P., Сiroviс V. Optimization of the temperature-time curve for the curing process of thermoset matrix composites. Applied Composite Materials, 2016, vol. 23, is. 5, pp. 1047–1063.
9. Bodaghi M., Cristоvаo C., Gomes R., Correia N.C. Experimental characterization of voids in high fibre volume fraction composites processed by high injection pressure RTM. Composites. Part A: Applied Science and Manufacturing, 2016, vol. 82, pp. 88–99.
10. Marsh G. De-autoclaving prepreg processing. Plast Reinforced plastics, 2012, vol. 56, is. 5, pp. 20–25.
11. Xu X., Wang X., Liu W. et al. Microwave curing of carbon fiber/bismaleimide composite laminates: material characterization and hot-pressing pretreatment. Materials and Design, 2016, vol. 97, is. 5, pp. 316–323.
12. Grunenfelder L.K., Nutt S.R. Void formation in composite prepregs – effect of dissolved moisture. Composites Science and Technology, 2010, vol. 70, is. 16, pp. 2304–2309.
13. Helmus R., Centea T., Hubert P., Hinterhölzl R. Out-of-autoclave prepreg consolidation: coupled air evacuation and prepreg impregnation modeling. Journal of Composite Materials, 2015, vol. 50, is. 10, pp. 1403–1413.
14. Garschke C., Weimer C., Parlevlie P.P., Fox B.L. Out-of-autoclave cure cycle study of a resin film infusion process using in situ process monitoring. Composites. Part A: Applied Science and Manufacturing, 2012, vol. 43, is. 6, pp. 935–944.
15. Han K., Jiang S., Zhang C., Wang B. Flow modeling and simulation of SCRIMP for composites manufacturing. Composites. Part A: Applied Science and Manufacturing, 2000, vol. 31, is. 1, pp. 79–86.
16. Li W., Krehl J., Gillespie J.W. et al. Process and performance evaluation of the vacuum-assisted process. Journal of Composite Materials, 2004, vol. 38, is. 20, pp. 1803–1814.
17. Centea T., Grunenfelder L.K., Nutt S.R. A review of out-of-autoclave prepregs – Material properties, process phenomena, and manufacturing considerations. Composites. Part A: Applied Science and Manufacturing, 2015, vol. 70, pp. 132–154.
18. Turner T.A., Harper L.T., Warrior N.A., Rudd C.D. Low-cost carbon-fibre-based automotive body panel systems: a performance and manufacturing cost comparison. Proceedings IMechE. Part D: Journal Automobile Engineering, 2006, vol. 222, pp. 53–62.
19. Murray J.J., Pappa E.J., Mamalis D. et al. Сharacterisation of carbon fibre reinforced powder epoxy composites for wind energy blades. ECCM18: 18th European Conference on Composite Materials. Athens, 2018, art. 5.03-02.
20. Boyd J., Maskell R.K. Product design for low cost manufacturing of composites for aerospace applications. Proceedings SAMPE conference. California, 2001, pp. 59–90.
21. Irving P.E., Soutis C. Polymer composites in the aerospace industry. Cambridge: Woodhead Publishing, 2019, 536 p.
22. Dushin M.I., Donetski K.I., Karavaev R.Y., Korotkov I.A. Some features of liquid formation of polymeric composite materials (review). Trudy VIAM, 2017, no. 2 (50), paper no. 08. Available at: http://www.viam-works.ru (accessed: October 26, 2024). DOI: 10.18577/2307-6046-2017-0-2-8-8.
23. Karavaev R.Yu., Gorodilova N.A., Donetskiy K.I. Production of polymer composite materials based on semipregs. Trudy VIAM, 2023, no. 5 (123), paper no. 05. Available at: http://www.viam-works.ru (accessed: October 01, 2024). DOI: 10.18577/2307-6046-2023-0-5-64-74.
24. Hrulkov A.V., Karavaev R.Yu., Gorodilova N.A., Donetskiy K.I. Some causes of voids formation in polymer composite materials (review). Trudy VIAM, 2023, no. 6 (124), paper no. 07. Available at: http://www.viam-works.ru (accessed: October 01, 2024). DOI: 10.18577/2307-6046-2023-0-6-72-86.
25. Takagaki K., Hisada S., Minakuchi S., Takeda N. Process improvement for out-of-autoclave prepreg curing supported by in-situ strain monitoring. Journal of Composite Materials, 2017, vol. 51, pp. 1225–1237.
26. Dong A., Zhao Y., Zhao X., Yu Q. Cure Cycle Optimization of Rapidly Cured Out-Of-Autoclave Composites. Materials, 2018, vol. 11, p. 421.
27. Hubert P., Poursartip A. A review of flow and compaction modelling relevant to thermoset matrix laminate processing. Journal of Reinforced Plastics and Composites, 1998, vol. 17, pp. 286–318.
28. Ma Y., Centea T., Nutt S.R. Defect reduction strategies for the manufacture of contoured laminates using vacuum BAG-only prepregs. Polymer Composites, 2017, vol. 38, pp. 2016–2025.
29. Sherwin G.R. Non-autoclave processing of advanced composite repairs. International Journal of Adhesion and Adhesives, 1999, vol. 19, pp. 155–159.
30. Mujahid Y., Sallih N., Abdullah M.Z. A Comparison of Single-Vacuum-Bag and Double-Vacuum-Bag Methods for Manufacturing High-Quality Laminated Composites. Conference paper «Advances in Manufacturing Engineering». New York: Springer, 2020, pp. 457–467.
31. Pishvar M., Amirkhosravi M., Altan M.C. Magnet assisted composite manufacturing: A novel fabrication technique for high-quality composite laminates. Polymer Composites, 2019, vol. 40, pp. 159–169.
32. Amirkhosravi M., Pishvar M., Altan M.C. Improving laminate quality in wet lay-up/vacuum bag processes by magnet assisted composite manufacturing (MACM). Composites. Part A: Applied Science and Manufacturing, 2017, vol. 98, pp. 227–237.
33. Grunenfelder L.K., Centea T., Hubert P., Nutt S.R. Effect of room-temperature out-time on tow impregnation in an out-of-autoclave prepreg. Composites. Part A: Applied Science and Manufacturing, 2013, vol. 45, pp. 119–126.
34. Resin composition, a fiber reinforced material having a partially impregnated resin and composites made therefrom: pat. US6139942; appl. 06.02.97; рubl. 31.10.00.
35. Martinez P., Jin B.C., Nutt S. Droplet Spreading on Unidirectional Fiber Beds. Journal of Composites Science, 2021, vol. 5, pp. 13–15.
36. Schechter S.G.K., Grunenfelder L.K., Nutt S.R. Air evacuation and resin impregnation in semi-pregs: effects of feature dimensions. Advanced manufacturing: polymer & composites science, 2020, vol. 6, is. 2, pp. 101–114.
37. Tavares S.S., Michaud V., Månson J.A.E. Through thickness air permeability of prepregs during cure. Composites. Part A: Applied Science and Manufacturing, 2009, vol. 40, pp. 1587–1596.
38. Edwards W.T., Martinez P., Nutt S.R. Process robustness and defect formation mechanisms in unidirectional semipreg. Advanced Manufacturing: Polymer & Composites Science, 2020, vol. 6, is. 4, pp. 198–211.
39. Frost M., Solanki D., Mills A. Resin film infusion processing of carbon fibre composite automotive body panels. SAMPE Journal, 2003, vol. 39, is. 4, pp. 44–49.
40. A kind of phenolic aldehyde panel honeycomb sandwich construction part forming method: pat. CN106608056B; appl. 21.11.16; рubl. 03.05.17.
41. Ma Y., Centea T., Nutt S.R. Defect reduction strategies for the manufacture of contoured laminates using vacuum BAG-only prepregs. Polymer Composites, 2017, vol. 38, pp. 2016–2025.
42. Levy A., Hubert P. Vacuum-bagged composite laminate forming processes: Predicting thickness deviation in complex shapes. Composites. Part A: Applied Science and Manufacturing, 2019, vol. 126, p. 105568.
43. Naji M.I., Hoa S.V. Curing of thick angle-bend thermoset composite part: Curing process modification for uniform thickness and uniform fiber volume fraction distribution. Journal of composite materials, 2000, vol. 34, pp. 1710–1755.
44. Hubert P., Poursartip A. A review of flow and compaction modelling relevant to thermoset matrix laminate processing. Journal of Reinforced Plastics and Composites, 1998, vol. 17, pp. 286–318.
45. Gu Y., Li M., Li Y., Zhang Z. Pressure transfer behaviour of rubber mould and the effects on consolidation of L-shape composite laminates. Polymers and Polymer Composites, 2010, vol. 18, pp. 167–174.
46. Hein R., Prussak R., Schmidt J. Phenomenological Analysis of Thermo-Mechanical-Chemical Properties of GFRP during Curing by Means of Sensor Supported Process Simulation. Processes, 2020, vol. 8, p. 192.
47. Zappino E., Zobeiry N., Petrolo M. et al. Analysis of process-induced deformations and residual stresses in curved composite parts considering transverse shear stress and thickness stretching. Composite Structures, 2020, vol. 241, p. 112057.
48. Fiorina M., Seman A., Castanié B. et al. Spring-in prediction for carbon/epoxy aerospace composite structure. Composite Structures, 2017, vol. 168, pp. 739–745.
49. Slavin A.V., Donetskiy K.I., Khrulkov A.V. Prospects for the use of polymer composite materials in aircraft structures in 2025–2035 (review). Trudy VIAM, 2022, no. 11 (117), paper no. 08. Available at: http://www.viam-works.ru (accessed: October 01, 2024). DOI: 10.18577/2307-6046-2022-0-11-81-92.
50. Tkachuk A.I., Donetsky K.I., Terekhov I.V., Karavaev R.Yu. The use of thermosetting matrices for the manufacture of polymer composite materials by the non-autoclave molding methods. Aviation materials and technology, 2021, no. 1 (62), paper no. 03. Available at: https://www.journal.viam.ru (accessed: October 01, 2024). DOI: 10.18577/2713-0193-2021-0-1-22-33.
The properties of various types of glass filler are considered. The main characteristics of a molten epoxy binder VSE-1212 are described. Studies of the wettability of quartz filler fibers are presented. Fiberglass samples were examined by ultrasonic inspection. The results of the physico-mechanical and dielectric characteristics of fiberglass of the VPS-48/7781-14 are presented. The results of the research of the developed fiberglass for radio engineering purposes based on quartz filler and molten epoxy binder VSE-1212 are presented.
2. Getman A.A. Main directions of development of materials science for the creation of new technology. Armaturostroenie, 2021, no. 4 (133), pp. 48–51.
3. Kablov E.N. Composites: today and tomorrow. Metally Evrazii, 2015, no. 1, pp. 36–39.
4. Kablov E.N. Main results and directions of development of materials for advanced aviation technology. 75 years. Aviation materials. Moscow: VIAM, 2007, pp. 20–26.
5. Raskutin A.E. Development strategy of polymer composite materials. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 344–348. DOI: 10.18577/2071-9140-2017-0-s-344-348.
6. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
7. Shershak P.V., Yakovlev N.O., Sutubalov A.I. Standards for testing polymer composite materials. Part 1. Tensile properties. Aviation materials and technologies, 2023, no. 3 (72), paper no. 12. Available at: http://www.journal.viam.ru (accessed: May 29, 2024). DOI: 10.18577/2713-0193-2023-0-3-152-166.
8. Gutnikov S.I., Lazoryak B.I., Seleznev A.N. Glass fibers: textbook. Moscow: Moscow State Univ., 2010, 53 p.
9. Bataev A.A., Bataev V.A. Composite materials. Moscow: Logos, 2006, 400 p.
10. Vavilova M.I., Kavun N.S. The properties of glass filler for constructions of fiberglass. Aviacionnye materialy i tehnologii, 2014, no. 3, pp. 33–37. DOI: 10.18577/2071-9140-2014-0-3-33-37.
11. Borodulin A.S. Properties and features of the structures of glass fibers used for the production of fiberglass. Materialovedenie, 2012, no. 7, pp. 34–37.
12. Tkachuk A.I., Donetsky K.I., Terekhov I.V., Karavaev R.Yu. The use of thermosetting matrices for the manufacture of polymer composite materials by the non-autoclave molding methods. Aviation materials and technologies, 2021, no. 1 (62), paper no. 03. Available at: https://www.journal.viam.ru (accessed: July 01, 2024). DOI: 10.18577/2713-0193-2021-0-1-22-33.
13. Burov A.K., Andreevskaya G.D. High-strength fiberglass: textbook. Moscow: Publ. House of the USSR Academy of Sciences, 1958, 72 p.
14. Mukhametov R.R., Petrova A.P. Thermosetting binders for polymer composite materials: textbook. Ed. E.N. Kablov. Moscow: National Research Center «Kurchatov Institute» – VIAM, 2021, 528 p.
15. Malysheva G.V., Marakhovskiy P.S., Barinov D.Ya., Nikolaev E.V. Optimization of the curing modes of fiber-glass based on epoxy binder. Aviation materials and technologies, 2023, no. 2 (71), paper no. 08. Available at: http://www.journal.viam.ru (accessed: May 17, 2024). DOI: 10.18577/2713-0193-2023-0-2-94-103.
16. Tkachuk A.I., Gurevich Ya.M., Guseva M.A., Mishurov K.S. Technological and operational characteristics and areas of application of the epoxy binder VSE-1212, processed using prepreg technology. Klei. Germetiki. Tekhnologii, 2018, no. 4, pp. 29–34.
17. Zagora A.G., Tkachuk A.I., Terekhov I.V., Mukhametov R.R. Methods of chemical modification of epoxy oligomers (review). Trudy VIAM, 2021, no. 7 (101), paper no. 08. Available at: http://www.viam-works.ru (accessed: May 17, 2024). DOI: 10.18577/2307-6064-2021-0-7-73-85.
18. Doroshenko Yu.E., Lebedeva E.D. Binders for composite materials. Moscow: Mendeleyev Univ. of Chemical Technology of Russia, 2003, 56 с.
The results of research of surface tension of melt adhesive binder VSK-14-6 using a processor tensiometer are presented. As a result of measuring the wetting edge angles in test liquids, the calculated values of surface free energies (SFE) of the studied solids (polymer-sotoplastic and carbon fiber UMT42S-3K-EP) were obtained, including after treatment with atmospheric pressure plasma. The obtained SFE values were used to evaluate the wetting ability of the solids and their adhesion to the binder.
2. Kablov E.N. New Generation Materials – the Basis for Innovation, Technological Leadership, and National Security of Russia. Intellekt i tekhnologii, 2016, no. 2 (14), pp. 16–21.
3. Veshkin E.A., Satdinov R.A., Barannikov A.A. Modern materials for the aircraft cabin. Trudy VIAM, 2021, no. 9 (103), paper no. 04. Available at: http://www.viam-works.ru (accessed: September 25, 2024). DOI: 10.18577/2307-6046-2021-0-9-33-42.
4. Mukhametov R.R., Petrova A.P. Thermosetting binders for polymer composites (review). Aviacionnye materialy i tehnologii, 2019, no. 3 (56), pp. 48–58. DOI: 10.18577/2071-9140-2019-0-3-48-58.
5. Barannikov A.A., Veshkin E.A., Postnov V.I., Strelnikov S.V. On the issue of production of floor panels from polymer composite materials for aircraft (review article). Izvestiya Samarskogo nauchnogo tsentra RAN, 2017, no. 4 (2), pp. 198–213.
6. Erasov V.S., Sibayev I.G. Scheme for the development and evaluation of properties of structural aviation composite materials. Aviation materials and technologies, 2023, no. 1 (70), paper no. 05. Available at: http://www.journal.viam.ru (accessed: September 25, 2024). DOI: 10.18577/2713-0193-2023-0-1-61-81.
7. Timoshkov P.N., Kolobkov A.S., Kurnosov A.O., Goncharov V.A. Prepregs based on melt binders and new-generation polymer composite materials based on them for aviation equipment. Proceedings of the V All-Rus. scientific and technical conf. «Polymer composite materials and production technologies of the new generation». Moscow: National Research Center «Kurchatov Institute» – VIAM, 2021, pp. 7–20.
8. Kablov E.N., Antipov V.V. The role of new-generation materials in ensuring the technological sovereignty of the Russian Federation. Izvestiya Samarskogo nauchnogo tsentra RAN, 2023, vol. 93, no. 10, pp. 907–916.
9. Kablov E.N. The sixth technological mode. Nauka i zhizn, 2010, no. 4, pp. 2–7.
10. Startsev V.O., Antipov V.V., Slavin A.V., Gorbovets M.A. Modern domestic polymer composite materials for aviation industry (review). Aviation materials and technologies, 2023, no. 2 (71), paper no. 10. Available at: http://www.journal.viam.ru (accessed: September 25, 2024). DOI: 10.18577/2713-0193-2023-0-2-122-144.
11. Shershak P.V., Yakovlev N.O., Shokin G.I., Kutsevich K.E., Popkova E.A. Evaluation method and factors influencing the bonding quality between face and honey-comb cores in floor and interior aircraft panels. Aviacionnye materialy i tehnologii, 2020, no. 2 (59), pp. 81–88. DOI: 10.18577/2071-9140-2020-0-2-81-88.
12. Salakhova R.K., Panarin A.V. Study of surface energy characteristics of glass and carbon fiber by the Washburn method. Voprosy materialovedeniya, 2023, no. 3 (115), pр. 159–169.
13. Salakhova R.K., Postnov V.I., Kachura S.M., Veshkin E.A. Features of glass fiber sample preparation for measurements on a K-100 tensiometer. Proc. of the V All-Rus. scientific and technical conf. «Polymer composite materials and production technologies of the new generation». Moscow: NRC «Kurchatov Institute» – VIAM, 2021, рр. 126–144.
14. Zinina I.N., Pimanov M.V. Influence of the surface energy of metal samples on the strength of adhesive joints. Izvestiya MGTU «MAMI», 2011, no. 2 (12), pp. 127–130.
15. Barannikov A.A., Postnov V.I., Veshkin E.A., Satdinov R.A. Application of atmospheric pressure plasma as a method for preparing the surface of polymer composite materials for bonding. Proc. of the V All-Rus. scientific and technical conf. «Polymer composite materials and production technologies of the new generation». Moscow: NRC «Kurchatov Institute» – VIAM, 2021, pp. 177–195.
16. Bogdanova Yu. G. Adhesion and its role in ensuring the strength of polymer composites. Moscow: Moscow State University, 2010, 68 р.
17. Gulyaev A.I., Medvedev P.N., Sbitneva S.V., Petrov A.A. Experimental research of «fiber–matrix» adhesion strength in carbon fiber epoxy/polysulphone composite. Aviacionnye materialy i tehnologii, 2019, no. 4 (57), pp. 80–86. DOI: 10.18577/2071-9140-2019-0-4-80-86.
18. Shershak P.V., Sutubalov A.I., Yakovlev N.O., Sherstyuk F.A. Standards test methods for polymer matrix composite materials. Part 2. Compression properties. Aviation materials and technologies, 2024, no. 2 (75), paper no. 12. Available at: http://www.journal.viam.ru (accessed: September 25, 2024). DOI: 10.18577/2713-0193-2024-0-2-149-166.
The article presents the main principles, methods and techniques for assessing the tightness of fabric-film materials (FMM) and flexible pipelines of air conditioning systems (ACS) of aircraft made of them. The tightness of these products is one of the main requirements and is necessary for the reliable functioning of the ACS. The article presents a method for calculating the tightness indicators during tests using the manometric method, diagrams of a device for monitoring the tightness of the TPM, a stand for testing the tightness of flexible pipelines, and a brief technological process for performing tightness monitoring operations.
2. Tkacheva V.R., Galka G.A. Review of existing aircraft air conditioning systems. Molodoy uchenyy, 2016, no. 23 (127), pp. 91–95.
3. Kablov E.N. What to make the future from. New generation materials, technologies for their creation and processing – the basis of innovations. Krylya Rodiny, 2016, no. 5, pp. 8–18.
4. Startsev V.O., Antipov V.V., Slavin A.V., Gorbovets M.A. Modern domestic polymer composite materials for aviation industry (review). Aviation materials and technologies, 2023, no. 2 (71), paper no. 10. Available at: http://www.journal.viam.ru (accessed: October 14, 2024). DOI: 10.18577/2713-0193-2023-0-2-122-144.
5. Erasov V.S., Sibayev I.G. Scheme for the development and evaluation of properties of structural aviation composite materials. Aviation materials and technologies, 2023, no. 1 (70), paper no. 05. Available at: http://www.journal.viam.ru (accessed: October 14, 2024). DOI: 10.18577/2713-0193-2023-0-1-61-81.
6. Kablov E.N. Materials are the basis of any business. Delovaya slava Rossii, 2013, no. 2, pp. 4–9.
7. Veshkin E.A., Satdinov R.A., Postnov V.I., Strelnikov S.V. Modern polymer materials for manufacture of elements of the air conditioning system in flying apparatus. Trudy VIAM, 2017, no. 12 (60), paper no. 06. URL: http://www.viam-works.ru (accessed: August 23, 2024). DOI: 10.18577/2307-6046-2017-0-12-6-6.
8. Film-based material and product based on it: pat. 2733779 Rus. Federation; appl. 11.11.19; publ. 06.10.20.
9. Sutubalov A.I., Podzhivotov N.Yu., Shershak P.V., Yakovlev N.O. Evaluation of homogeneity of physical and mechanical properties of semi-finished products for aviation purpose. Aviation materials and technologies, 2024, no. 1 (74), paper no. 10. Available at: http://www.journal.viam.ru (accessed: October 14, 2024). DOI: 10.18577/2713-0193-2024-0-1-121-135.
10. Ivanov М.S., Pavlukovich N.G., Donskih I.N., Morozova V.S. Influence of operational factors on the properties of fabricfilm material for lowpressure air ducts of the air conditioning system of aircraft. Trudy VIAM, 2023, no. 4 (122), paper no. 11. Available at: http://www.viam-works.ru (accessed: September 20, 2024). DOI: 10.18577/2307-6046-2023-0-4-118-127.
11. State Standard 24054–80. Mechanical engineering and instrument making products. Leak test methods. General requirements. Moscow: Publ. House of Standards, 1980, 14 p.
12. Industry standard 1 00128‒74. Industry standard. Leakage of products. Norms. Moscow: MAP, 1987, 7 p.
13. Industry standard 1 41318‒2002. Aviation standard. Hydrogas systems. Leakage testing by manometric method. Moscow: MAP, 2002, 7 p.
14. Flexible pipeline made of polymer composite material: pat. 2733797 Rus. Federation; appl. 11.11.19, publ. 06.10.20.
15. Kablov E.N. Main directions of development of materials for aerospace engineering. Perspektivnye materialy, 2000, no. 3, pp. 27–36.
16. Zhezhera N.I. Automation of testing of products for tightness: textbook. Orenburg, 2005, 475 p.
The values of linear radiation attenuation coefficients for metal powders for additive technologies and their foundry analogues depending on the anode voltage on the X-ray tube are calculated. Alloys based on iron, nickel, titanium, aluminum and pure metals were considered, and the coefficients were calculated for three values of anode voltage. It has been theoretically established and experimentally confirmed that the GOST 20426‒82 regulations can be used for parts produced by additive technologies.
2. Kablov E.N., Evgenov A.G., Bakradze M.M., Nerush S.V., Krupnina O.A. New generation materials and digital additive technologies for the production of resource parts of FSUE VIAM. Part 1. Materials and synthesis technologies. Elektrometallurgiya, 2022, no. 1, pp. 2–12.
3. Shishkovsky I.V. Fundamentals of high-resolution additive technologies. St. Petersburg: Piter, 2015, 348 p.
4. Zelenko M.A., Popovich A.A., Mutylina I.M. Additive technologies in mechanical engineering. St. Petersburg: SPbPU, 2013, 222 p.
5. Seifi M., Gorelik M., Waller J. et al. Progress towards metal additive manufacturing standardization to support qualification and certification. JOM, 2017, no. 69 (3), pp. 439–455.
6. Waller J.M., Parker B.H., Hodges K.L. et al. Non-Destructive Testing Methods for Products by Additive Manufacturing. Journal of the Korean Society for Nondestructive testing, 2016, vol. 36, is. 4, pp. 308–314.
7. Kablov E.N. New generation materials and digital technologies for their processing. Vestnik Rossiyskoy akademii nauk, 2020, vol. 90, no. 4, pp. 331–334.
8. Nerush S.V., Kaplanskii Yu.Yu., Dynin N.V., Benarieb I., Savichev I.D. Development of laser powder bed fusion parameters, structure and mechanical properties of a high-strength aluminum alloy Al–Ce–Cu. Trudy VIAM, 2023, no. 1 (119), paper no. 05. Available at: http://www.viam-works.ru (accessed: May 12, 2024). DOI: 10.18577/2307-6046-2023-0-1-50-68.
9. Sukhov D.I., Kaplansky Yu.Yu., Rogalev A.M., Kurkin S.E. The features of processing Cr-rich nickel based alloy by selective laser melting. Trudy VIAM, 2023, no. 1 (119), paper no. 02. Available at: http://www.viam-works.ru (accessed: May 13, 2024). DOI: 10.18557/2307-6046-2023-0-1-15-27.
10. Evgenov A.G., Shurtakov S.V., Chumanov I.R. New wear-resistant cobalt-base alloy: features of the structure of the metal obtained by the direct laser growth method. Part 2. Aviation materials and technologies, 2022, no. 3 (68), paper no. 04. Available at: http://www.journal.viam.ru (accessed: May 13, 2024). DOI: 10.18577/2713-0193-2022-0-3-37-49.
11. Svetlov I.L., Petrushin N.V., Epishin A.I., Karashaew M.M., Elyutin E.S. Single crystals of nickel-based superalloys alloyed with rhenium and ruthenium (review). Part 2. Aviation materials and technologies, 2023, no. 2 (71), paper no. 01. Available at: http://www.journal.viam.ru (accessed: May 13, 2024). DOI: 10.18577/2713-0193-2023-0-2-3-22.
12. Shablov S.V., Kosarina E.I., Mikhailova N.A., Demidov A. A. Physical foundations and practice of radiation non-destructive testing. Moscow: Spektr, 2023, 168 p.
13. State Standard 20426–82. Non-destructive testing. Radiation flaw detection methods. Scope. Moscow: Publ. House of Standards, 1982, 23 p.
14. Demidov A.A., Stepanov A.V., Turbin Ye.M., Krupnina O.A. The х-ray testing modes providing with radiation imaging with predetermined contrast. Aviacionnye materialy i tehnologii, 2016, no. 4 (45), pp. 80–85. DOI: 10.18577/2071-9140-2016-0-4-80-85.
15. Stepanov A.V., Kosarina E.I. Requirements for radiographic non-destructive testing in Russian and foreign standards. Kommentarii k standartam, TU, sertifikatam, 2013, no. 9, pp. 2–7.
16. Gtate Standard ISO 17636:1–2017. Non-destructive testing of welded joints. Radiographic testing. Part 1. Methods of X-ray and gamma-ray testing using film. Moscow: Standartinform, 2022, 36 p.
The results of tests to determine the creep characteristics of aluminum alloy AMg6 under static and cyclic loading at elevated temperatures are presented in the article. Characteristics of static and cyclic creep are necessary to predict residual stresses in a welded structure subjected to vibration during welding. Creep curves under static and cyclic loading are analyzed and compared. The effect of the variable component of the load on creep resistance is estimated using the Larson–Miller equation.
2. Kablov E.N., Lukin V.I., Zhegina I.P., Ioda E.N., Loskutov V.M. Features and Prospects of Welding Aluminum-Lithium Alloys. Aviacionnye materialy i technologii, 2002, no. 4, pp. 3–12.
3. Mai Xuan D., Gnevko A.I., Puchkov Yu.A. Study of cryogenic treatment influence on residual stresses and properties of D16 aluminium alloy. Aviacionnye materialy i tehnologii, 2020, no. 2 (59), pp. 25–31. DOI: 10.18577/2071-9140-2020-0-2-25-31.
4. Jose M.J., Kumar S.S., Sharma A. Vibration assisted welding processes and their influence on quality of welds. Science and Technology of Welding & Joining, 2016, is. 4, pp. 45–49. DOI: 10.1179/1362171815Y.0000000088.
5. Ingram E., Golan O., Haj-Ali R., Noam Eliaz. The effect of localized vibration during welding of the microstructure and mechanical behavior of steel welds. Materials, 2019, no. 12 (2553). DOI: 10.3390/ma12162553.
6. Ponomarev K.E., Strelnikov I.V. Prospects for the Application of Various Methods of Vibration Treatment of Critical Welded Structures of Spacecraft. Kosmicheskie apparaty i tekhnologii, 2023, no. 2, pp. 126–131. DOI: 10.26732/j.st.2023.2.05.
7. Taira S., Otani R. Theory of High-Temperature Strength of Materials. Ed. V.B. Kireev. Moscow: Metallurgiya, 1986, 280 p.
8. Radchenko V.P., Saushkin M.N. Creep and Relaxation of Residual Stresses in Hardened Structures. Moscow: Mashinostroenie, 2005, 226 p.
9. Strizhalo V.A. Cyclic strength and creep of metals under low-cycle loading under low and high temperature conditions. Kyiv: Naukova Dumka, 1978, 238 p.
10. Birger I.A. Residual stresses. Moscow: Mashgiz, 1963, 232 p.
11. Dubovova E.V. Development of methods for calculating the relaxation of residual stresses in hardened structural elements under steady-state and cyclic creep conditions: abstract thesis, Cand. Sc. (Tech.). Samara, 2012, 20 p.
12. Khokhlov A.V. Analysis of general properties of creep curves under cyclic step loading generated by the linear theory of heredity. Vestnik Samarskogo gosudarstvennogo tekhnicheskogo universiteta. Ser.: Fiziko-matematicheskiye nauki, 2017, vol. 21, no. 2, pp. 326–361.
13. Khokhlov A.V. Properties of the creep curve family under step loading of the linear constitutive relation of viscoelasticity. Problemy prochnosti i plastichnosti, 2015, vol. 77, no. 4, pp. 344–359.
14. Artemyev D.M., Bukanov V.A., Sadkin K.E., Ilyin A.V. Finite element modeling of residual stress relaxation during post-weld tempering of a large-sized structure made of high-strength steel. Trudy Krylovskogo gosudarstvennogo nauchnogo tsentra, 2018, no. 1, pp. 130–136.
15. Bulkov A.B., Peshkov V.V., Petrenko V.R., Balbekov D.N. Modeling the process of high-temperature deformation of metal during diffusion welding under creep conditions. Vestnik VGTU, 2011, no. 8, pp. 4–8.
16. Kiselev A.S. Development of methods for analysis and design of welding technology based on computer modeling of the thermally deformed and structural state of welded structures: thesis, Dr. Sc. (Tech.). Moscow, 1999, 317 p.
17. Experimental methods for studying deformations and stresses: reference manual. Ed. B.S. Kasatkin. Kyiv: Naukova Dumka, 1981, 584 p.
18. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
19. Kablov E.N., Antipov V.V., Chesnokov D.V., Kutyrev A.E. Application of Al–Mg–Si–Cu system aluminum alloy combined anodic dissolution for prognosis of tensile strength loss during natural exposure testing. Aviacionnye materialy i tehnologii, 2020, no. 2 (59), pp. 63–73. DOI: 10.18577/2071-9140-2020-0-2-63-73.
20. Calculations and strength tests. Creep test method under regular multi-cycle loading: P 50-54-35-88. Moscow: VNIIMASH, 1988, 24 p.
21. Erasov V.S., Oreshko E.I. Fatigue tests of metal materials (review). Part 1. Main definitions, loading parameters, representation of results of tests. Aviacionnye materialy i tehnologii, 2020, no. 4 (61), pp. 59–70. DOI: 10.18577/2071-9140-2020-0-4-59-70.
22. Dowling N.E. Mechanical Behavior of Materials: Engineering methods for Deformation, Fracture, and Fatigue. 2nd ed. Upper Saddle River, 1999, 830 p.
23. Maruyama K., Abe F., Sato H. et al. On the physical basis of a Larson‒Miller constant of 20. International Journal of Pressure Vessels and Piping. 2018, no. 159, pp. 93–100.
24. Larson F.R., Miller J. A time-temperature relationship for rupture and creep stresses. Transcriptions of ASME, 1952, vol. 7, pp. 765–775.
Heat-resistant alloys and steels
Bazyleva O.A., Visik E.M., Morozova L.V., Lоnskaya N.A. The prospect of using the monocrystalline intermetallic alloy VIN4M for stator parts of helicopter engines
Vlasov I.I. Sevalnev G.S., Lyahov A.A., Nefedkin D.Yu. Study of the structure and mechanical properties of Ni–Co–Cr entropy alloy in the cast state
Мorozova L.V., Grigorenko V.B., Terekhin А.М. Analysis of the causes of destruction of gearbox parts by methods of optical and scanning microscopy
Polymer materials
Tkachyk A.I., Kyznecova P.A., Donetskiy K.I., Karavaev R.Yu. Some technological features of manufacturing polymer composite materials by non-autoclave molding of prepregs
Composite materials
Gamazina A.V., Kurnosov A.O., Vavilova M.I., Kochetov N.R. Investigation of fiberglass properties based on the melt binder VSE-1212 for radio engineering purposes
Sudin Yu.I., Salakhova R.K., Galiullin An.R., Savitsky R.S. Study of surface-energy characteristics of elements of three-layer honeycomb panels
Makrushin K.V., Barannikov A.A., Ishchenko I.A., Sudyin Yu.I. Issues of assessing the tightness of fabric-film materials and flexible pipelines of air conditioning systems made of them
Material tests
Kosarina E.I., Grimova A.P., Osiyanenko N.V., Smirnov A.V. Modes of X-ray exposure for parts, made using additive technologies
Monin S.A., Medvedev P.N., Ponomarev K.E., Strelnikov I.V. Characteristics of AMg6 alloy under static and cyclic loading