Articles
The article presentsan overview of materials related to the technological process of production of modern model compositions for casting ofcritical parts of gas turbine engines from nickel superalloys made by the National Research Center «Kurchatov Institute» – VIAM. The general characteristics of model compositions are considered, including the composition and basic requirements for them, as well as issues of the activity of the manufacturing area established in the mid-2010s and producing a wide range of high-quality model compositions based on domestic raw materials.
2. Demonis I.M. At Full Speed. Nauka i zhizn, 2007, no. 6, pp. 40–44.
3. Investment Casting. Ed. Ya.I. Shklennik, V.A. Ozerov. 3rd ed. Moscow: Mashinostroyenie, 1984, 408 p.
4. Gini E.Ch., Zarubin A.M., Rybkin V.A. Special Casting Technologies. Moscow: Publ. House of Bauman Moscow State Tech. Univ., 2010, 368 p.
5. Ospennikova O.G. Heat-resistant alloys of a new generation and model compositions for investment casting. Liteynoe proizvodstvo, 2016, no. 3, pp. 17–20.
6. Ospennikova O.G., Aslanyan I.R. Directions for the development of technology for the manufacture of model compositions for blades and other gas turbine engine parts. Liteynoe proizvodstvo, 2018, no. 3, pp. 20–24.
7. Bondarenko Yu.A. Trends in the development of high-temperature metal materials and technologies in the production of modern aircraft gas turbine engines. Aviacionnye materialy i tehnologii, 2019, no. 2 (55), pp. 3–11. DOI: 10.18577/2071-9140-2019-0-2-3-11.
8. Kablov E.N. Production of turbine blades for gas turbine engines by directional crystallization. Gazoturbinnye tekhnologii, 2000, no. 3, pp. 10–13.
9. Kablov E.N. Cast blades for gas turbine engines. Alloys, technologies, coatings. 2nd ed. Moscow: Nauka, 2006, 632 p.
10. Kolyadov E.V., Visik E.M., Gerasimov V.V., Bityutskaya O.N. Features of the morphology of the structure of nickel superalloy depending on the values of the axial and radial temperature gradients at the crystallization front. Aviation materials and technologies, 2024, no. 2 (75), paper no. 02. Available at: http://www.journal.viam.ru (accessed: November 11, 2024). DOI: 10.18577/2713-0193-2024-0-2-15-24.
11. Echin A.B., Bondarenko Yu.A., Kolodyazhny M.Yu., Surova V.A. Review of perspective high-temperature superalloys based on refractory non-metallic materials for production of gas turbine engines. Aviation materials and technologies, 2023, no. 3 (72), paper no. 03. Available at: http://www.journal.viam.ru (accessed: November 02, 2024). DOI: 10.18577/2713-0193-2023-0-3-30-41.
12. Kablov E.N., Toloraia V.N., Demonis I.M., Orekhov N.G. Directional crystallization of heat-resistant nickel alloys. Tekhnologiya legkikh splavov, 2007, no. 2, pp. 60–70.
13. Bratukhin A.G., Shalin R.E., Kablov E.N., Toloraia V.N., Orekhov N.G. Cast single-crystal turbine blades. Liteynoe proizvodstvo, 1993, no. 6, pp. 3–6.
14. Aslanyan I.R., Ospennikova O.G. Modern trends in the development of technology for the manufacture of model compositions for casting heat-resistant alloys. All-Rus. scientific-technical conf. «Fundamental and applied research in the field of creating heat-resistant nickel and intermetallic casting alloys and highly efficient technologies for manufacturing gas turbine engine parts» (November 9, 2017, Moscow). Moscow: VIAM, 2017, pp. 49–58.
15. Ospennikova O.G. Thermophysical and rheological characteristics of synthetic resins for model compositions. Liteynoe proizvodstvo, 2016, no. 10, pp. 26–28.
16. Repyakh S.I. Technological foundations of investment casting. Dnepropetrovsk: Lira, 2006, 1056 p.
17. Gapankova E.I., Latyshevich I.A. Model compositions for investment casting. Reports Fifth Interdisciplinary Scientific Forum with International Participation «New Materials and Advanced Technologies» (October 30 – November 1, 2019, Moscow): in 2 vols. Moscow: NPP ISIS, 2019, vol. II, pp. 100–102.
18. Composition for the manufacture of investment models: pat. 2600468 Rus. Federation; appl. 20.03.15; publ. 10.08.16.
19. Echin A.B., Deynega G.I., Narsky A.R. New developments of NRC «Kurchatov Institute» – VIAM in the field of materials for casting processes of superalloys. Trudy VIAM, 2023, no. 8 (126), paper no. 02. Available at: http://www.viam-works.ru (accessed: October 31, 2024). DOI: 10.18577/2307-6046-2023-0-8-13-24.
20. Forostovich T.L., Narsky A.R., Bityutskaya O.N., Mokeev N.A. Granulation of model compositions produced by National Research Center «Kurchatov Institute» – VIAM for castings on smelted models. Trudy VIAM, 2024, no. 7 (137), paper no. 01. Available at: http://www.viam-works.ru (accessed: October 31, 2024). DOI: 10.18577/2307-6046-2024-0-7-3-11.
21. Ospennikova O.G. Influence research of fillers on properties and stability of modelling compositions, a choice of optimum structures. Aviacionnye materialy i tehnologii, 2014, no. 3, pp. 14–17. DOI: 10.18577/2071-9140-2014-0-3-14-17.
22. Ospennikova O.G. Research and working out of parametres of technological process of manufacturing of models from modelling compositions on the basis of synthetic waxes. Aviacionnye materialy i tehnologii, 2014, no. 3, pp. 18–21. DOI: 10.18577/2071-9140-2014-0-3-18-21.
23. Aslanyan I.R., Guseva M.A., Ospennikova O.G. Comparative study of physical, mechanical and rheological characteristics of model compositions. Vse materialy. Entsiklopedicheskiy spravochnik, 2019, no. 6, pp. 34–39.
24. Guseva M.A., Aslanyan I.R. The effect of fillers on the rheology of model composition. Trudy VIAM, 2019, no. 5, paper no. 11. Available at: http://www.viam-works.ru (accessed: October 31, 2024). DOI: 10.18577/2307-6046-2019-0-5-94-102.
25. Aslanyan I.R., Rassokhina L.I., Ospennikova O.G. Definition of quantitative factors, significantly influencing on technological characteristics of model compositions. Trudy VIAM, 2018, no. 12 (72), paper no. 01. Available at: http://www.viam-works.ru (accessed: October 31, 2024). DOI: 10.18577/2307-6046-2018-0-12-3-13.
26. Aslanyan I.R., Eremkina M.S. Methodology for studying model compositions for casting gas turbine engine blades. Vse materialy. Entsiklopedicheskiy spravochnik, 2022, no. 8, pp. 28–32.
27. Aslanyan I.R., Rassokhina L.I., Ospennikova O.G. Application of a full factorial experiment in developing model compositions. Vse materialy. Entsiklopedicheskiy spravochnik, 2019, no. 10, pp. 20–26.
28. Kablov E.N., Demonis I.M., Deev V.V., Bondarenko O.A., Narsky A.R. Technology for removing model masses from ceramic molds for investment casting. Liteynoe proizvodstvo, 2005, no. 3, pp. 12–14.
The article presents the results of studies of the structure and physical and mechanical properties of porous half-blanks manufactured by sintering in vacuum furnaces from powder of VT1-00 and VT6 titanium alloys. It is shown that the designed mode provides the level of mechanical properties and the degree of porosity of semi-finished products sufficient for use in the aerospace industry, energy and food industries. Samples of products were manufactured from porous semi-finished products of titanium alloys VT1-00 and VT6 using high-temperature soldering technology to form permanent joints.
2. Khokhlov M.A., Ishchenko D.A. Structural ultra-light porous metals (review). Avtomaticheskaya svarka, 2015, no. 3–4, pp. 60–65.
3. Cabezas-Villa J.L., Olmos L., Bouvard D. et al. Processing and properties of highly porous Ti6Al4V mimicking human bones. Journal of Materials Research, 2018, vol. 33, pp. 650–661. DOI: 10.1557/jmr.2018.35.
4. Tang E., Zhang X., Han Y. Experimental research on damage characteristics of CFRP/aluminum foam sandwich structure subjected to high velocity impact. Journal of Materials Research and Technology, 2019, vol. 8 (5), pp. 4620–4630.
5. Valanezhad A., Savabi O., Nejatidanesh F. et al. The Effect of Vacuum Leak Rate on Sintering of Porous Titanium Scaffold. e-Journal of Surface Science and Nanotechnology, 2019, vol. 17, pp. 184−188. DOI: 10.1380/ejssnt.2019.184.
6. Oh I.-H., Nomura N., Hanada S. Microstructures and Mechanical Properties of Porous Titanium Compacts Prepared by Powder Sintering. Materials Transactions, 2002, vol. 43, no. 3, pp. 443–446.
7. Kato K., Yamamoto A., Ochiai S. et al. Cell Proliferation, Corrosion Resistance and Mechanical Properties of Novel Titanium Foam with Sheet Shape. Materials Transactions, 2012, vol. 53, no. 4, pp. 724–732.
8. Parveez B., Jamal N.A., Anuar H. et al. Microstructure and Mechanical Properties of Metal Foams Fabricated via Melt Foaming and Powder Metallurgy Technique: A Review. Materials, 2022, vol. 15, art. 5302. DOI: 10.3390/ma15155302.
9. Jain H., Mondal D.P., Gupta G. et al. Microstructure and high temperature compressive deformation in lightweight open cell titanium foam. Manufacturing Letters, 2021, vol. 27, pp. 67–71.
10. Jha N., Mondal D.P., Majumdar J.D. et al. Highly porous open cell Ti-foam using NaCl as temporary space holder through powder metallurgy route. Materials and Design, 2013, vol. 47, pp. 810–819.
11. Ye B., Dunand D.C. Titanium foams produced by solid-state replication of NaCl powders. Materials Science and Engineering A, 2010, vol. 528, pp. 691–697.
12. Bolzoni L., Ruiz-Navas E.M., Zhang D., Gordo E. Modification of Sintered Titanium Alloys by Hot Isostatic Pressing. Key Engineering Materials, 2012, vol. 520, pp. 63–69.
13. Nakamura T., Gnyloskurenko S.V., Sakamoto K. et al. Development of New Foaming Agent for Metal Foam. Materials Transactions, 2002, vol. 43, no. 5, pp. 1191–1196.
14. Yue X.-Z., Matsuo K., Kitazono K. Compressive Behavior of Open-Cell Titanium Foams with Different Unit Cell Geometries. Materials Transactions, 2017, vol. 58, no. 11, pp. 1587–1592.
15. Yue X.-Z., Fukazawa H., Maruyama K. et al. Effect of Post Heat Treatment on the Mechanical Properties of Porous Ti‒6Al‒4V Alloys Manufactured through Powder Bed Fusion Process. Materials Transactions, 2019, vol. 60, no. 1, pp. 74–79.
16. Nakajima H. Fabrication, properties, and applications of porous metals with directional pores. Proceedings of Japan Academy, Series B, 2010, vol. 86, no. 9, pp. 884–899.
17. Li J.P., Li S.H., Van Blitterswijk C.A., de Groot K. A novel porous Ti6Al4V: Characterization and cell attachment. Journal of Biomedical Materials Research, Part A, 2005, vol. 73A, is. 2, pp. 223–233. DOI: 10.1002/jbm.a.30278.
18. Kablov E.N. Marketing of materials science, aircraft construction and industry: present and future. Direktor po marketingu i sbytu, 2017, no. 5–6, pp. 40–44.
19. Ilyin A.A., Kolachev B.A., Polkin I.S. Titanium alloys. Composition, structure, properties: reference book. Moscow: VILS-MATI, 2009, 520 p.
20. Titanium and titanium alloys. Fundamentals and applications. Ed. C. Leyens, M. Peters. Wiley–VCH, 2003, 513 p.
21. Ageev S.V., Gurshov V.L. Hot isostatic pressing in powder matallurgy. Metalloobrabotka, 2015, no. 4 (88), pp. 56–60.
22. Panin P.V., Nochovnaya N.A., Kablov D.E., Alekseev E.B., Shiryaev A.A., Novak A.V. Practical guide to metallography of titanium-based alloys and its intermetallics: tutorial. Ed. E.N. Kablov. Moscow: VIAM, 2020, 200 p.
23. Peskova A.V., Sukhov D.I., Mazalov P.B. Examination of the formation of the titanium alloy VT6 structure obtained by additive manufacturing. Aviacionnye materialy i tehnologii, 2020, no. 1 (58), pp. 38–44. DOI: 10.18577/2071-9140-2020-0-1-38-44.
24. Yakovlev A.L., Arislanov A.A., Putyrsky S.V., Nochovnaya N.A. Study of mechanical properties and structure of large-sized semi-finished products made of VT6ch titanium alloy. Aviacionnye materialy i tehnologii, 2020, no. 4 (61), pp. 12–18. DOI: 10.18577/2071-9140-2020-0-4-12-18.
25. Krokhina V.A., Arislanov А.A., Putyrskiy S.V., Anisimova A.Yu. Investigation of the regularities of the formation of the structure of rods made of titanium alloy VT6 depending on various technological schemes of manufacture. Aviation materials and technologies, 2023, no. 4 (73), paper no. 04. Available at: http://www.journal.viam.ru (accessed: October 07, 2024). DOI: 10.18577/2713-0193-2023-0-4-36-44.
26. Putyrskiy S.V., Plokhikh А.I., Arislanov А.A., Naprienko S.A., Anisimova A.Yu. Study of structure and mechanical properties of the laminar structure material based on titanium alloys VT1-0 and VT47. Aviation materials and technologies, 2023, no. 2 (71), paper no. 03. Available at: http://www.journal.viam.ru (accessed: October 07, 2024). DOI: 10.18577/2713-0193-2023-0-2-36-50.
27. Kablov E.N., Evgenov A.G., Rylnikov V.S., Afanasyev-Khodykin A.N. Study of finely dispersed solder powders for diffusion vacuum brazing obtained by melt atomization. Vestnik MGTU im. N.E. Baumana. Ser.: Mashinostroenie, 2011, no. SP2, pp. 79–87.
28. Kablov E.N., Lukin V.I., Ospennikova O.G. Welding and brazing in the aerospace industry. Reports All-Russian scientific-practical conf. «Welding and Safety». Yakutsk: IPTPS SB RAS, 2012, рp.21–30.
This article provides an overview of foreign publications about the equipment and technologies for casting of titanium alloys. All stages of casting are considered: computer modeling of casting processes and special modeling programs; equipment and manufacturing technologies for smelted and burnt models, including those using additive technologies; materials for the manufacture of ceramic molds; traditional and fundamentally new technologies for the direct manufacture of castings. For each section, the level of development and research of the National Research Center «Kurchatov Institute» – VIAM is noted.
2. Kablov E.N. VIAM: new generation materials for PD-14. Krylya Rodiny, 2019, no. 7–8, pp. 54–58.
3. Kablov E.N. New generation materials and digital technologies for their processing. Zhurnal neorganicheskoy khimii, 2020, vol. 65, no. 6, pp. 846–855.
4. Kablov E.N., Antipov V.V. The role of new generation materials in ensuring the technological sovereignty of the Russian Federation. Vestnik Rossiyskoy akademii nauk, 2023, vol. 93, no. 10, pp. 907–916.
5. Novak A.V., Nochovnaya N.A., Alekseev E.B., Zavodov A.V. Influence of technological processing parameters on the morphology of the structure and mechanical properties of intermetallic titanium ortho-alloy. Reports All-Rus. scientific-technical conf. «Fundamental and applied research in the field of deformable and cast intermetallic alloys based on titanium and nickel». Moscow: VIAM, 2018, pp. 112–125.
6. Bratukhin A.G., Kolachev B.A., Sadkov V.V. et al. Technology of production of titanium aircraft structures. Moscow: Mashinostroenie, 1995, 448 p.
7. Agarwal A., Basile E., Bowler J. et al. Alternative technologies and design for metallic parts in aviation: the use of Titanium investment casting for aircraft structural components. Conference Paper of 5th Aircraft Structural Design Conference. Manchester, 2016, pp. 457–465.
8. Ndukwe A.I. Review of recent findings on investment casting of titanium alloys. Academic journal of manufacturing engineering, 2022, vol. 20, is. 2, pp. 99–108.
9. Yang J., Wang H., Wu Y. et al. Numerical calculation and experimental evaluation of counter-gravity investment casting of Ti–48Al–2Cr–2Nb alloy. The International Journal of Advanced Manufacturing Technology, 2018, vol. 96, p. 3295–3309. DOI: 10.1007/s00170-018-1784-5.
10. Karwinski A., Lesniewski W., Wieliczko P., Małysza M. Casting of titanium alloys in centrifugal induction furnaces. Archives of metallurgy and materials, 2014, vol. 59, is. 1, pp. 403–406. DOI: 10.2478/amm-2014-0068.
11. Taoa P., Shaoa H., Jib Z. et al. Numerical simulation for the investment casting process of a large-size titanium alloy thin-wall casing. Progress in Natural Science: Materials International, 2018, vol. 28, is. 4, pp. 520–528. DOI: 10.1016/j.pnsc.2018.06.005.
12. Wu H., Li D., Tang Y. et al. Rapid casting of hollow turbine blades using integral ceramic moulds. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture. 2009, vol. 223, pp. 695–702. DOI: 10.1243/09544054JEM1366.
13. Wang J., Sama S.R., Lynch P.C., Manogharan G. Design and topology optimization of 3D-Printed wax patterns for rapid investment casting. Procedia – Manufacturing, 2019, vol. 34, pp. 683–694. DOI: 10.1016/j.promfg.2019.06.224.
14. Mukhtarkhanov M., Perveen A., Talamona D. Application of stereolithography based 3D printing technology in investment casting. Micromachines, 2020, no. 11, pp. 946–973. DOI: 10.3390/mi11100946.
15. Ma C., Zhang Y., Zhang H., Wu L. Manufacturing of herringbone gear model by 3D printing assisted investment casting. IOP Conference Series: Earth and Environmental Science, 2019, vol. 332, no. 4, аrt. 042045. DOI: 10.1088/1755-1315/332/4/042045.
16. Turchenko M.V., Lebedeva Yu.E., Kolmogorov A.Yu., Gurov D.A., Chainikova A.S. Possibility of using layer-by-layer deposition technology (FDM) to produce ceramic products. Trudy VIAM, 2024, no. 8 (138), paper no. 06. Available at: http://www.viam-works.ru (accessed: September 25, 2024). DOI: 10.18577/2307-6046-2024-0-8-64-76.
17. Turchenko M.V., Lebedeva Yu.E., Belyachenkov I.O., Prokofiev V.A. Obtaining of ceramic materials by stereolithography method. Trudy VIAM, 2023, no. 9 (127), paper no. 07. Available at: http://www.viam-works.ru (accessed: September 27, 2024). DOI: 10.18577/2307-6046-2023-0-9-79-89.
18. Klotz U.E., Legner C., Bulling F. et al. Investment casting of titanium alloys with calcium zirconate moulds and crucibles. The International Journal of Advanced Manufacturing Technology, 2019, no. 103, pp. 343–353. DOI: 10.1007/s00170-019-03538-z.
19. Rassokhina L.I., Bityutskaya O.N., Gamazina M.V., Kochetkov A.S. Features of the manufacturing technology of highly refractory ceramic molds for castings from γ-TiAl alloys. Trudy VIAM, 2020, no. 2 (86), paper no. 04. Available at: http://www.viam-works.ru (accessed: October 01, 2024). DOI: 10.18577/2307-6046-2020-0-2-31-40.
20. Uwanyuze R.S., Kanyo J.E., Myrick S.F., Schafföner S. A review on alpha case formation and modeling of mass transfer during investment casting of titanium alloys. Journal of Alloys and Compounds, 2021, vol. 865, pp. 1–19. DOI: 10.1016/j.jallcom.2020.158558.
21. Kaliuzhnyi P., Mykhnian O.V., Voron M., Tymoshenko A. Problems of materials choice for ceramic molds to obtain titanium alloys shape castings. Casting processes, 2021, vol. 4, no. 146, pp. 55–65. DOI: 10.15407/plit2021.04.055.
22. Makushina M.A., Kochetkov A.S., Vinogradov I.D. The influence of various modes of hot isostatic pressed and heat treatment on structure and properties of castings from the VT40L alloy. Trudy VIAM, 2023, no. 10 (128), paper no. 03. Available at: http://www.viam-works.ru (accessed: September 10, 2024). DOI: 10.18577/2307-6046-2023-0-10-24-34.
23. Nochovnaya N.A., Bazyleva O.A., Kablov D.E., Panin P.V. Intermetallic alloys based on titanium and nickel. Ed. E.N. Kablov. 2nd ed., rev. and add. Moscow: VIAM, 2019, 316 p.
24. Yang L., Chai L.H., Liang Y.F. et al. Numerical simulation and experimental verification of gravity and centrifugal investment casting low pressure turbine blades for high Nb–TiAl alloy. Intermetallics, 2015, no. 66, pp. 149–155. DOI: 10.1016/j.intermet.2015.07.006.
25. Antipov V.V., Nochovnaya N.A., Kochetkov A.S., Panin P.V., Dzunovich D.A. Influence of technological parameters of casting on the quality of shaped castings from a new heat-resistant alloy based on TiAl. Vestnik MAI, 2018, vol. 25, no. 3, pp. 220–228.
26. Spitans S., Bauer C., Franz H. et al. Investment castings with unique levitation melting technology FastCast. Conference Paper 68th Investment Casting Institute technical conference & expo 2021. Michigan: Investment Casting Institute, 2021, pp. 181–186.
The article provides an overview of the most significant publications devoted to the problem of developing new technological processes in the production of high-quality semi-finished products from magnesium alloys. It has been determined that along with the search for sparingly alloyed compositions there is an active exploration of promising technological processes for the production of semi-finished products from magnesium alloys. These actions are accompanied by the search for original engineering solutions in the design and use of appropriate non-standard equipment.
2. Pan F., Yang M., Chen X. A review on casting magnesium alloys: modification of commercial alloys and development of new alloys. Journal of Materials Science and Technology, 2016, vol. 32 (12), pp. 1211–1221.
3. Alaneme K.K., Okotete E.A. Enhancing plastic deformability of Mg and its alloys a review of traditional and nascent developments. Journal of Magnesium and Alloys, 2017, vol. 5 (4). P. 460–475.
4. Annamalai S., Periyakgoundar S., Gunasekaran S. Magnesium alloys: a review of applications. Materials and Technologies, 2019, vol. 53, is. 6, pp. 881–890.
5. Nicholas A., Rylnik S. Application of magnesium components in the aerospace industry. Aerokosmicheskiy kuryer, 2011, no. 1, pp. 42–44.
6. Kablov E.N. New generation materials – the basis of innovations, technological leadership and national security of Russia. Intellekt i tekhnologii, 2016, no. 2 (14), pp. 16–21.
7. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
8. Magnesium Alloys in Aerospace: Benefits and Applications. MachineMFG: articles. Available at: https://www.machinemfg.com/ru/magnesium-alloys-in-aerospace (accessed: November 01, 2024).
9. Volkova E.F., Rokhlin L.L., Ovsyannikov B.V. Modern deformable magnesium alloys: status and prospects of application in high-tech industries: textbook. Ed. E.N. Kablov. Moscow: VIAM, 2021, 392 p.
10. Sun L., Bai J., Xue F. et al. The Microstructure and Biocorrosion Behaviors of Mg‒Y‒Zn Alloy under Different Conditions. Proceedings of the 10th International Conference on Magnesium Alloys and Their Applications. Jeju, 2015, pp. 382–388.
11. Harandi S.E., Singh R.K. Cracking of Magnesium Alloys in Bioimplant Applications. Proceedings of the 10th International Conference on Magnesium Alloys and Their Applications. Jeju, 2015, pp. 397–404.
12. Zhao J., Chen L., Yu K. et al. Effects of Surface Treatment on the Biodegradation Behavior of Mg‒6%Zn alloy. Proceedings of the 10th International Conference on Magnesium Alloys and Their Applications. Jeju, 2015, pp. 405–408.
13. Sasaki T., Elsayed F., Nakata T. et al. Strong and ductile heat-treatable Mg–Sn–Zn–Al wrought alloys. Acta Materialia, 2015, vol. 99, pp. 176–186.
14. Zhou W., Lin J., Dean T.A. Microstructure and mechanical properties of curved AZ31 magnesium alloy profiles produced by differential velocity sideways extrusion. Journal of Magnesium and Alloys, 2022, vol. 11 (2), pp. 493–508.
15. Magnesium alloys: a reference book in 2 vols. Ed. M.B. Altman, M.E. Drits, M.A. Timonova, M.V. Chukhrov. Moscow: Metallurgy, 1978. Vol. 1: Metallurgy of magnesium and its alloys. Application areas, 232 p.
16. Chen L., Zhang J., Tang J. et al. Microstructure and texture evolution during porthole die extrusion of Mg–Al–Zn alloy. Journal of Materials Processing Technology, 2018, vol. 259, pp. 346–352.
17. Wu W., Zhang P., Zeng X. et al. Bendability of the wrought magnesium alloy AM30 tubes using a rotary draw bender. Materials Science and Engineering A, 2008, vol. 486, pp. 596–601.
18. Hasegawa O., Manabe K., Murai T. Stretch press bending of AZ31 magnesium alloy extruded square tube. Procedia Engineering, 2014, vol. 81, pp. 2184–2189.
19. Yang Y., Xiong X., Chen. J. et al. Research advances in magnesium and magnesium alloys worldwide in 2020. Journal of Magnesium and Alloys, 2021, vol. 9 (3), pp. 705–747.
20. Song J., Chen J., Xiong X. et al. Research advances of magnesium and magnesium alloys worldwide in 2021. Journal of Magnesium and Alloys, 2022, vol. 10 (4), pp. 863–898.
21. Yan T., Di P., Heng M. et al. Development of ultra-high strength Mg‒6Al‒4Sn‒1Zn alloy sheets by combining extrusion and high-speed rolling. Journal of Materials Research and Technology, 2024, vol. 29, pp. 1487–1497.
22. Akinina M.V., Mostyaev I.V., Volkova E.F., Alikhanyan A.A. Comparative studies of the structure, features of the phase composition and mechanical properties of deformed semi-finished products from VMD16 magnesium alloy. Aviation materials and technologies, 2022, no. 4 (69), paper no. 04. Available at: http://www.journal.viam.ru (accessed: November 01, 2024). DOI: 10.18577/2307-6046-2024-0-1-13-26.
23. Volkova E.F., Mostyaev I.V., Akinina M.V., Alikhanyan A.A. Studies of the regularities of the heat treatment influence on the structure, phase composition and mechanical properties of medium-sized forgings made of heat-resistant alloy of the Mg‒Zn‒Zr‒REE system. Trudy VIAM, 2024, no. 1 (131), paper no. 03. Available at: http://www.viam-works.ru (accessed: November 01, 2024). DOI: 10.18577/2713-0193-2022-0-3-60-74.
24. Akinina M.V., Mostyaev I.V., Volkova E.F., Alikhanyan A.A. Investigation of the influence of alloying elements on the temperature threshold of ignition and fire resistance of a VMD16 wrought magnesium alloy. Aviation materials and technologies, 2022, no. 3 (68), paper no. 06. Available at: http://www.journal.viam.ru (accessed: November 01, 2024). DOI: 10.18577/2713-0193-2022-0-3-60-74.
25. Song J., She J., Chen D., Pan F. Latest research advances on magnesium and magnesium alloys worldwide. Journal of Magnesium Alloys, 2020, vol. 8, pp. 1–41.
26. Nie J.F., Shin K.S., Zeng Z.R. Microstructure, deformation, and property of wrought magnesium alloys. Metallurgical Materials Transactions A, 2020, vol. 51 (12), pp. 6045–6109.
27. Kablov E.N., Akinina M.V., Volkova E.F., Mostyaev I.V., Leonov A.A. The research of aspects of phase composition and fine structure of magnesium alloy ML9 in the as-cast and heat-treated conditions. Aviacionnye materialy i tehnologii, 2020, no. 2 (59), pp. 17–24. DOI: 10.18577/2071-9140-2020-0-2-17-24.
28. You B.-S., Park W.-W., Chung I.-S. Effect of calcium additions on the oxidation behavior in magnesium alloys. Scripta Materialia, 2000, vol. 42 (11), pp. 1089–1094.
29. Qudong W., Wenzhou C., Xiaoqin Z. et al. Effects of Ca addition the microstructure and mechanical properties of AZ91 magnesium alloy. Journal of Materials Science, 2001, vol. 36. P. 3035–3040.
30. Non-flammable magnesium alloy with excellent mechanical properties, and preparation method thereof: pat. CA2781995A1; appl. 04.10.11; publ. 12.04.12.
31. Gneiger S., Papenberg N., Frank S., Gradinger R. Investigations on microstructure and mechanical properties of non-flammable Mg‒Al‒Zn‒Ca‒Y alloys. Proceedings of the TNS Annual Meeting & Exhibition. Magnesium Technology 2018 – The Minerals, Metals & Materials Series. Springer, 2018, pp. 105–113.
32. Cheng S., Yang G., Fan J. et al. Effect of Ca and Y additions on oxidation behavior of AZ91 alloy at elevated temperatures. Transactions Nonferrous Metals Society of China, 2009, vol. 19 (2), pp. 299–304.
33. Kim Y.M., You B.S., Shim M.-S., Kim N.J. Mechanical properties and high-temperature oxidation behavior of Mg‒Al‒Zn‒Ca‒Y magnesium alloys. Proceedings of the TNS Annual Meeting & Exhibition. Magnesium Technology 2012 – The Minerals, Metals & Materials Series. Springer, 2012, pp. 217–219.
34. Seetharaman S., Hao Z., Loy L. et al. Development and characterization of new Magnesium-Yttrium-Calcium alloys. Proceedings of the 10th International Conference on Magnesium Alloys and Their Applications. Jeju, 2015, pp. 31–37.
35. Leonov A.A., Trofimov N.V., Panaetov V.G., Kudasov S.V., Shirokozhukov А.V. Magnesium alloys in the design of navigation system products. Aviation materials and technologies, 2024, no. 1 (74), paper no. 00. Available at: http://www.journal.viam.ru (accessed: November 01, 2024). DOI: 10.18577/2713-0193-2024-0-3-25-34.
36. Papenberg N., Gneiger S. Closed Die Forging of Mg‒Al‒Zn‒Ca‒Y Alloys. Light Metals Technologies. Science Forum Submitted, 2017, vol. 918, pp. 28–33.
37. Dziubinska A., Gontarz A., Dziubinski M., Barszcz M. The forming of magnesium alloy forgings for aircraft and automotive applications. Advances in Science and Technology – Research Journal, 2016, vol. 10, pp. 158–168.
38. Pan H., Qin G., Huang Y. et al. Development of low-alloyed and rare-earth-free magnesium alloys having ultra-high strength. Journal of Materials Science and Technology, 2024, vol. 29, pp. 1487–1497.
39. Wang X.-Y., Wang Y.-F., Wang C. et al. A simultaneous improvement of both strength and ductility by Sn addition in as-extruded Mg‒6Al‒4Zn alloy. Journal of Materials Science and Technology, 2020, vol. 49, pp. 117–125.
40. Zhu S.Q., Ringer S.P. On the role of twinning and stacking faults on the crystal plasticity and grain refinement in magnesium alloys. Acta Materialia, 2018, vol. 144, pp. 365–375.
The article presents the results of research on the technology of eliminating castingdefects by cold gas-dynamic spraying of serial magnesium alloys ML5hp and ML10 using serial powders. The influence of powder compositions on mechanical properties and adhesion has been studied. The results of studies of samples and castings of magnesium alloy VML26 obtained under various smelting modes are considered. The mode of smelting of magnesium alloy VML26 in the induction melting unit is selected. The microstructure, chemical composition, and mechanical properties of magnesium alloy samples were studied.
2. Kablov E.N. New generation materials and digital technologies for their processing. Vestnik Rossiyskoy akademii nauk, 2020, vol. 90, no. 4, p. 331–334.
3. Kablov E.N., Akinina M.V., Volkova E.F., Mostyaev I.V., Leonov A.A. The research of aspects of phase composition and fine structure of magnesium alloy ML9 in the as-cast and heat-treated conditions. Aviacionnye materialy i tehnologii, 2020, no. 2 (59), pp. 17–24. DOI: 10.18577/2071-9140-2020-0-2-17-24.
4. Kablov E.N., Belov E.V., Trapeznikov A.V., Leonov A.A., Zaitsev D.V. Strengthening features and aging kinetics of high-strength cast aluminum alloy AL4MS based on Al–Si–Cu–Mg system. Aviation materials and technologies, 2021, no. 2 (63), paper no. 03. Available at: http://www.journal.viam.ru (accessed: August 20, 2024). DOI: 10.18577/2713-0193-2021-0-2-24-34.
5. Amelin A.S. Criterial assessment of shrinkage porosity in magnesium alloy castings. Reports XLIII Int. Youth Scientific Conf. «Gagarin Readings-2017». Moscow: MAI, 2017, p. 435.
6. Trapeznikov A.V., Vlasova K.A., Reshetnikov Yu.V. Tableted modifiers for cast aluminum alloys. Aviation materials and technologies, 2024, no. 1 (74), paper no. 02. Available at: http://www.journal.viam.ru (accessed: August 22, 2024). DOI: 10.18577/2713-0193-2024-0-3-14-24.
7. Zhang Y., Rong W., Wu Y. et al. A detailed HAADF-STEM study of precipitate evolution in Mg–Gd alloy. Journal of Alloys and Compounds, 2019, vol. 777, pp. 531–543. DOI: 10.1016/j.jallcom.2018.10.193.
8. Fireproof high-strength casting magnesium alloy: pat. 2753660 Rus. Federation; appl. 02.11.20; publ. 20.08.02.
9. Yarovaya E.I., Leushin I.O., Spasskaya M.M., Larin M.A. Efficiency of foundry process control. Chernye metally, 2018, no. 3, pp. 29–33.
10. Korobkov K.S., Polyansky I.P. Influence of heat treatment modes on the structure and mechanical properties of magnesium alloy ML5pch castings. Sovremennye materialy, tekhnika i tekhnologii, 2022, no. 4 (43), pp. 397–398.
11. Trofimov N.V., Leonov A.A. Study of the influence of alloying elements (Nb and Ti) on the impurity content and mechanical properties of high-strength magnesium alloy of the Mg–Zn–Zr system. Metally. 2020, no. 3, pp. 14–18.
12. Fomina M.A., Zakharov K.E., Yamshchikov E.I., Trofimov N.V. Selection and research of optimal paste formulation for local removal of corrosion products from magnesium alloys as well as the technology of it’s application. Aviation materials and technologies, 2023, no. 4 (73), paper no. 05. Available at: http://www.journal.viam.ru (accessed: August 20, 2024). DOI: 10.18577/2713-0193-2023-0-4-45-54.
13. Du Z., Peng Y., Teng H. et al. Formation and growth of precipitates in a Mg–7Gd–5Y–1Nd–2Zn–0,5Zr alloy aged at 200 °C. Journal of Magnesium and Alloys, 2022, vol. 11, no. 3, pp. 2326–2339. DOI: 10.1016/j.jma.2022.10.012.
14. Mukhina I.Yu. Fundamentals of the technology of smelting magnesium alloys in protective environments. Liteynoe proizvodstvo, 2021, no. 1, pp. 2–8.
15. Shalomeev V.A. Modification of magnesium alloy Ml-5 during filtration through carbon-containing materials. Konstruktsionnye materialy, 2008, no. 2, pp. 198–201.
16. Moiseev K.V., Smykov A.F., Berezhnoy D.V. Automated design of a feed system for large-sized case castings made of light alloys. Tekhnologiya legkikh splavov, 2011, no. 1, pp. 69–72.
17. Bobryshev B.L., Moiseev V.S., Aleksandrova Yu.P. Improving the complex processing of magnesium alloys during melting. Tekhnologiya legkikh splavov, 2021, no. 3, pp. 35–44.
The experience of metal-polymeric composite materials (MPCM) application shows that these materials have a higher durability than traditional aluminum alloys. The article considers results of comparative tests for determination of the elastically damping properties of different types of MPCM and alloy D16. The studies show that the modulus of elasticity and Poinson’s coefficient of the tested MPCM panels are practically independent of the load level in the studied range of relative deformations and close to the values of alloy D16. The damping capacity is slightly dependent on the MPCM structure and logarithmic oscillation discretion is 5 %, while it does not exceed 0,6 % in the alloy D16.
2. Kablov E.N. Aerospace materials science. Vse materialy. Entsiklopedicheskiy spravochnik, 2008, no. 3, pp. 2–14.
3. Duyunova V.A., Kutyrev A.E., Serebrennikova N.Yu., Vdovin A.I., Somov A.V. Examination of the impact of aggressive environmental factors on the development of corrosion damage on samples of laminated glass-reinforced plastic of SIAL class. Aviation materials and technologies, 2021, no. 4 (65), paper no. 09. Available at: http://www.journal.viam.ru (accessed: September 16, 2024). DOI: 10.18577/2713-0193-2021-0-4-81-90.
4. Duyunova V.A., Serebrennikova N.Yu., Nefedova Yu.N., Sidelnikov V.V., Somov A.V. Methods of forming metal-polymer composite materials (review). Aviation materials and technologies, 2022, no. 1 (66), paper no. 06. Available at: http://www.journal.viam.ru (ассеssed: September 16, 2024). DOI: 10.18577/2713-0193-2022-0-1-65-77.
5. Kablov E.N., Kulagina G.S., Zhelezina G.F., Lonskii S.L., Kurshev E.V. Microstructure research of the unidirectional organoplastic based on Rusar-NT aramid fibers and epoxy-polysulfone binder. Aviacionnye materialy i tehnologii, 2020, no. 4 (61), pp. 19–26. DOI: 10.18577/2071-9140-2020-0-4-19-26.
6. Antipov V.V., Serebrennikova N.Yu., Konovalov A.N., Nefedova Yu.N. Perspectives of application of fiber metal laminate materials based on aluminum alloys in aircraft design. Aviacionnye materialy i tehnologii, 2020, no. 1 (58), pp. 45–53. DOI: 10.18577/2071-9140-2020-0-1-45-53.
7. Grinevich A.V., Rumyancev Yu.S., Morozova L.V., Terehin A.L. Study of fatigue life of 1163-T and V95o.ch.-T2 aluminum alloys after surface hardening. Aviacionnye materialy i tehnologii, 2014, no. S4, pp. 93–102. DOI: 10.18577/2071-9140-2014-0-s4-93-102.
8. Zhelezina G.F. Crack-resistant metal-organoplastics for aircraft structures: thesis abstract, Cand. Sc. (Tech.). Moscow: VIAM, 1996, 32 p.
9. Lavro N.A., Barabash V.N., Efimov V.A. Forecasting the service life and resource of large-sized aircraft radar radomes made of polymer composite materials. VII Int. Scientific Conf. on Hydroaviation «Gidroaviasalon-2008»: in 2 parts. Gelendzhik, 2008, part 1, pp. 353–360.
10. Lukina N.F., Dementeva L.A., Anikhovskaya L.I. Adhesive prepregs for laminated aluminum glass plastics (SIAL). Trudy VIAM, 2014, no. 1, paper no. 05. Available at: http://www.viam-works.ru (accessed: September 16, 2024). DOI: 10.18577/2307-6046-2014-0-1-5-5.
11. Postnov A.V., Postnov V.I., Vyakin V.N. Elastic-damping properties of metal-polymer composites under high-frequency loading. Vestnik SGAU im. S.P. Koroleva, 2011, no. 3, pp. 80–87.
12. Zagrebalov A.A., Kishkina S.I. Residual stresses and fatigue of composite materials. Issues of aviation science and technology. Ser.: Aviation materials. Moscow: VIAM, 1990, pp. 87–93.
13. Grabilnikov A.S., Mashinskaya G.P., Zhelezina G.F., Zinevich O.M., Deev I.S. Interlayer crack resistance of the hybrid composite material Alor. Mekhanika kompozitsionnykh materialov, 1990, vol. 30, no. 2, pp. 196–206.
14. Nesterenko G.I. Residual strength of reinforced structures with extensive and multi-focal fatigue damage. Strength, vibrations and resource of aircraft structures and constructions. Moscow: TsAGI, 2002, pp. 112–117.
15. Senatorova O.G., Anikhovskaya L.I., Sidelnikov V.V. et al. Fatigue resistance and fracture features of sheet aluminum-glass plastics. Reports Int. Conf. «Layered Composite Materials – 98». Volgograd: VSTU, 1998, рp. 86–88.
The most known method of protection against corrosion of aluminum and its alloys is sulfuric acid anodic oxidation. The oxidized surface has a significant ability to resist aggressive external factors, high adhesion properties. However, the coating requires an additional treatment consisting of soaking in hot solutions, called filling. The article presents the results of research aimed at the development of the composition and a new method of filling anodic-oxide coating, the possibility of using this composition as a corrosion inhibitor is evaluated.
2. Kablov E.N., Petrova A.P., Narsky A.R. Alexey Tikhonovich Tumanov – the founder of new scientific directions in materials science. Vse materialy. Entsiklopedicheskiy spravochnik, 2009, no. 1, pp. 2–5.
3. Kablov E.N. Chemistry in aviation materials science. Rossiyskiy khimicheskiy zhurnal, 2010, vol. LIV, no. 1, pp. 3–4.
4. Duyunova V.A., Leonov A.A., Molodtsov S.V. VIAM's contribution to the development of light alloys and the corrosion control of rocket and space technology products. Trudy VIAM, 2020, no. 2 (86), paper no. 03. Available at: http://www.viam-works.ru (accessed: March 22, 2024). DOI: 10.18577/2307-6046-2020-0-2-22-30.
5. Duyunova V.A., Kozlov I.A., Oglodkov M.S., Kozlova A.A. Modern trends in the anodic oxidation of aluminum-lithium and aluminum alloys (review). Trudy VIAM, 2019, no. 8 (80), paper no. 09. Available at: http://www.viam-works.ru (accessed: March 22, 2024). DOI: 10.18577/2307-6046-2019-0-8-79-89.
6. Kablov E.N. Quality control of materials – a guarantee of safety of operation of aviation equipment. Aviacionnye materialy i tehnologii, 2001, no. 1, pp. 3–8.
7. Fomina M.A., Volkov I.A., Vdovin A.I., Yamshchikov E.I. Study of protective capacity anodic oxide coating with environmental friendly improved filling technology. Aviation materials and technologies, 2023, no. 4 (73), paper no. 10. Available at: http://www.journal.viam.ru (accessed: January 15, 2024). DOI: 10.18577/2713-0193-2023-0-4-101-110.
8. Vinogradov S.S., Nikiforov A.A., Zakirova L.I. Cadmium replacement. Stage 2 – final. Galvanic thermal coating of zinc–tin system – real alternative to cadmium plating. Aviacionnye materialy i tehnologii, 2019, no. 3 (56), pp. 59–66. DOI: 10.18577/2071-9140-2019-0-3-59-66.
9. Polyakova M.A., Mustafina V.G. Theory of corrosion and methods of corrosion protection: textbook. Magnitogorsk, 2008, 139 p.
10. Agafonkina M.O., Andreeva N.P., Kuznetsov Yu.I., Timashev S.F. Substituted benzotriazoles ‒ copper corrosion inhibitors in a buffered borate corrosion solution. Zhurnal fizicheskoy khimii, 2017, vol. 91, no. 8, pp. 1294–1301.
11. Solop G.R. Development and application of corrosion inhibitors based on petrochemical products: thesis abstract, Cand. Sc. (Tech.). Ufa, 2016, 24 p.
12. Gazizova E.I., Bondar M.A. Efficiency of organic compounds as corrosion inhibitors. Actual problems of corrosion protection of oil and gas equipment and pipelines (Corrosion–2023): collection of materials of the I Int. scientific and technical. conf., dedicated to the 75th anniversary of the Federal State Budgetary Educational Institution of Higher Education «USPTU». Ufa, 2023, pp. 25–26.
13. Posunko I.A. Technology of creating atmospheric corrosion inhibitors. Scientific research: theory, methodology and practice: collection of materials of the II Int. scientific and practical. conf. Cheboksary, 2017, pp. 149–156.
14. Kadnikova O.Yu., Toretaev M.O., Akmalova O.A., Nurmukhambetova B.T., Kozhabergenova K.D. Development of environmentally friendly corrosion inhibitors for the protection of textile equipment. Vestnik Almatinskogo tekhnologicheskogo universiteta, 2020, no. 4, pp. 38–46.
15. Mukhametzyanov M.I., Shakirova A.I. Study of corrosion of aluminum alloys and possible methods of their protection. Modern technologies in the oil and gas industry – 2016: collection of works. International scientific and technical conf., dedicated to the 60th anniversary of the branch. Ufa, 2016, pp. 475–482.
16. Abramova M.G. Full-scale accelerated tests of aluminum alloys at continental and marine type stations. Aviacionnye materialy i tehnologii, 2020, no. 3 (60), pp. 57–65. DOI: 10.18577/2071-9140-2020-0-3-57-65.
17. Vetrova E.Yu., Shchekin V.K., Kurs M.G. Comparative evaluation of methods for the determination of corrosion aggressivity of the atmosphere. Aviacionnye materialy i tehnologii, 2019, no. 1 (54), pp. 74–81. DOI: 10.18577/2071-9140-2019-0-1-74-81.
18. Kablov E.N., Antipov V.V., Chesnokov D.V., Kutyrev A.E. Application of Al–Mg–Si–Cu system aluminum alloy combined anodic dissolution for prognosis of tensile strength loss during natural exposure testing. Aviacionnye materialy i tehnologii, 2020, no. 2 (59), pp. 63–73. DOI: 10.18577/2071-9140-2020-0-2-63-73.
19. Antipov V.V., Medvedev I.M., Kutyrev A.E., Volkov I.A. Rapid assessment of hot water sealed anodic oxide coatings protective properties during NaCl immersion testing. Trudy VIAM, 2019, no. 8 (80), paper no. 08. Available at: http://www.viam-works.ru (accessed: October 15, 2020). DOI: 10.18577/2307-6046-2018-0-9-71-82.
20. Duyunova V.A., Kutyrev A.E., Serebrennikova N.Yu., Vdovin A.I., Somov A.V. Examination of the impact of aggressive environmental factors on the development of corrosion damage on samples of laminated glass-reinforced plastic of SIAL class. Aviation materials and technologies, 2021, no. 4 (65), paper no. 09. Available at: http://www.journal.viam.ru (accessed: January 15, 2024). DOI: 10.18577/2713-0193-2021-0-4-81-90.
The third part of the article studies physicochemical transformations in the polymer matrix of carbon fiber reinforced plastic KMKU-2m.120 by means of dynamic mechanical analysis. During 8- and 13-year climatic exposure, carbon fiber reinforced plastic plates were protected with paint and varnish coatings VE-46 and AC-1115 of nine colors. After removal from the exposure, the coatings were removed from the surface of the plates, and the temperature dependences of the dynamic storage modulus and the dynamic loss modulus were measured in two states: after drying and after moistening the samples at 60 °C.
2. Kablov E.N., Kulagina G.S., Zhelezina G.F., Lonskii S.L., Kurshev E.V. Microstructure research of the unidirectional organoplastic based on Rusar-NT aramid fibers and epoxy-polysulfone binder. Aviacionnye materialy i tehnologii, 2020, no. 4 (61), pp. 19–26. DOI: 10.18577/2071-9140-2020-0-4-19-26.
3. Andreeva N.P., Pavlov M.R., Nikolaev E.V., Kurnosov A.O. Research of climatic factors influence of cold, temperate (moderate) and tropical climates on properties of construction fibreglass. Trudy VIAM, 2019, no. 3 (75), paper no. 12. Available at: http://www.viam-works.ru (accessed: August 07, 2024). DOI: 10.18577/2307-6046-2019-0-3-105-114.
4. Khajeh A., Mustapha F., Sultan M.T.H. et al. The effect of thermooxidative aging on the durability of glass fiber-reinforced epoxy. Advances in Materials Science and Engineering, 2015, vol. 2015, art. 372354. DOI: 10.1155/2015/372354.
5. Startsev V.O., Lebedev M.P., Frolov A.S. Measurement of surface relief indicators in the study of aging and corrosion of materials. 1. Russian and foreign standards. Vse materialy. Entsiklopedicheskiy spravochnik, 2018, no. 6, pp. 32–38.
6. Korkees F. Moisture absorption behavior and diffusion characteristics of continuous carbon fiber reinforced epoxy composites: a review. Polymer-Plastics Technology and Materials, 2023, vol. 62, pp. 1789–1822. DOI: 10.1080/25740881.2023.2234461.
7. Menard K. Dynamic mechanical analysis: a practical introduction. 2nd ed. Boca Raton: CRC Press, 2008, 240 p.
8. Meyer F., Oldörp K., de Jong F. Dynamic mechanical thermal analysis (DMTA) on polymer nanocomposites. Thermo Fisher Scientific, 2021, vol. 241, art. 0621.
9. Startsev O.V., Vapirov Yu.M., Lebedev M.P., Kychkin A.K. Comparison of glass-transition temperatures for epoxy polymers obtained by methods of thermal analysis. Mechanics of Composite Materials, 2020, vol. 56, pp. 227–240. DOI: 10.1007/s11029-020-09875-5.
10. Alessi S., Pitarresi G., Spadaro G. Effect of hydrothermal ageing on the thermal and delamination fracture behaviour of CFRP composites. Composites. Part B, 2014, vol. 67, pp. 145–153. DOI: 10.1016/j.compositesb.2014.06.006.
11. Cruz R., Correia L., Dushimimana A. et al. Durability of epoxy adhesives and carbon fibre reinforced polymer laminates used in strengthening systems: accelerated ageing versus natural ageing. Materials, 2021, vol. 14, art. 1533. DOI: 10.3390/ma14061533.
12. Francis B. Water absorption studies in epoxy nanocomposites. Epoxy Composites. Weinheim: WILEY-VCH GmbH, 2021, pp. 241–258. DOI: 10.1002/9783527824083.ch9.
13. Gibhardt D., Buggisch C., Meyer D., Fiedler B. Hygrothermal aging history of amine-epoxy resins: effects on thermo-mechanical properties. Front Matter, 2022, vol. 9, art. 826076. DOI: 10.3389/fmats.2022.826076.
14. Chateauminois A., Chabert B., Soulier J.P., Vincent L. Dynamic mechanical analysis of epoxy composites plasticized by water: artifact and reality. Polymer Composites, 1995, vol. 16, no. 4, pp. 288–296.
15. Uthaman A., Xian G., Thomas S. et al. Durability of an epoxy resin and its carbon fiber- reinforced polymer composite upon immersion in water, acidic, and alkaline solutions. Polymers, 2020, vol. 12, art. 614.
16. Belec L., Nguyen T.H., Nguyen D.L., Chailan J.F. Comparative effects of humid tropical weathering and artificial ageing on a model composite properties from nano- to macro-scale. Composites. Part A, 2015, vol. 68, no. 1, pp. 235–241.
17. Bussu G., Lazzeri A. On the use of dynamic mechanical thermal analysis (DMTA) for measuring glass transition temperature of polymer matrix fibre reinforced composites. Journal Material Science, 2006, vol. 41, pp. 6072–6076.
18. Kablov E.N., Kirillov V.N., Startsev O.V., Krotov A.S. Сlimatic aging of composite aviation materials: III. Significant aging factors. Russian Metallurgy (Metally), 2012, vol. 2012, is. 4, pp. 323–329. DOI: 10.1134/S0036029512040040.
19. Startsev V.O., Molokov M.V., Postnov V.I., Starostina I.V. Assessment of the influence of climatic impact on the properties of fiberglass grade VPS-53K. Izvestiya Samarskogo nauchnogo tsentra Rossiyskoy akademii nauk, 2017, vol. 19, no. 4–2, pp. 220–228.
20. Startsev V.O., Antipov V.V., Slavin A.V., Gorbovets M.A. Modern domestic polymer composite materials for aviation industry (review). Aviation materials and technologies, 2023, no. 2 (71), paper no. 10. Available at: http://www.journal.viam.ru (accessed: March 14, 2024). DOI: 10.18577/2713-0193-2023-0-2-122-144.
21. Kutsevich K.E., Dementeva L.A., Lukina N.F. Properties and application of polymer composite materials based on glue prepregs. Trudy VIAM, 2016, no. 8, paper no. 7. Available at: http://www.viam-works.ru (accessed: May 14, 2024). DOI: 10.18577/2307-6046-2016-0-8-7-7.
22. Petrova A.P., Lukina N.F., Melnikov D.A., Besednov K.L., Pavlyuk B.F. Research of properties of cured adhesive binders. Trudy VIAM, 2017, no. 10 (58), paper no. 06. Available at: http//www.viam-works.ru (accessed: June 04, 2024). DOI: 10.18577/2307-6046-2017-0-10-6-6.
23. Semenova L.V., Nefedov N.I., Belova M.V., Laptev A.B. Systems of paint coatings for helicopter equipment. Aviacionnye materialy i tehnologii, 2017, no. 4 (49), pp. 56–61. DOI: 10.18577/2071-9140-2017-0-4-56-61.
24. Startsev O.V., Bolonin A.B., Vapirov Yu.M., Krivov V.A., Vladimirsky V.N., Ofitserova M.G. Improving the viscoelastic properties of acrylic enamel AC-1115. Lakokrasochnye materialy i ikh primenenie, 1986, no. 4, p. 16–18.
25. Startsev V.O., Vardanyan A.M. Influence of external influences on the coefficient linear thermal expansion of carbon fiber plastics. Part 3. Climatic aging of nanomodified cyanester carbon plastic. Trudy VIAM, 2023, no. 4 (122), paper no. 10. Available at: http://www.viam-works.ru (accessed: June 11, 2024). DOI: 10.18577/2307-6046-2023-0-4-99-117.
26. Kablov E.N., Startsev V.O. Measurement and forecasting of materials samples’ temperature during weathering in different climatic zones. Aviacionnye materialy i tehnologii, 2020, no. 4 (61), pp. 47–58. DOI: 10.18577/2071-9140-2020-0-4-47-58.
27. Startsev O.V., Kornienko G.V., Gladkikh A.V., Gorbovets M.A. Non-destructive measurements of the shear modulus in the sheet plane during aging of polymer composite materials. Klei. Germetiki. Tekhnologii, 2024, no. 3, pp. 21–30. DOI: 10.31044/1813-7008-2024-0-3-21-30.
28. Ivanov М.S., Morozova V.S., Pavlukovich N.G. The influence of operational factors on the properties of carbon fiber based on polyetheretherketone. Aviation materials and technologies, 2024, no. 2 (75), paper no. 08. Available at: http://www.journal.viam.ru (accessed: June 24, 2024). DOI: 10.18577/2713-0193-2024-0-2-99-108.
The article presents methods for isolating bacterial strains of potential destructors of polymer materials, using the example of recycled water samples from enterprises producing petroleum products. The cultures were exposed with polymer materials and polymer substrates. Data on the species composition of bacterial cultures were obtained as a result of DNA sequencing of a fragment encoding the V4 site of the 16S rRNA of bacteria. The obtained pure cultures of bacteria of the genus Pseudomonas were used to obtain comparative growth kinetics in a mineral medium with the addition of jet and diesel fuel.
2. Sinha V., Patel M.R., Patel J.V. Pet Waste Management by Chemical Recycling: A Review. Journal of Polymers and the Environment, 2010, no. 18, pp. 8–25. DOI: 10.1007/s10924-008-0106-7.
3. Kablov E.N., Startsev V.O. Climatic aging of aviation polymer composite materials. II. Development of methods for studying the early stages of aging. Russian metallurgy (Metally), 2020, vol. 2020, no. 10, pp. 1088–1094. DOI: 10.1134/S0036029520100110.
4. Kablov E.N., Startsev V.O. Systematical analysis of the climatics influence on mechanical properties of the polymer composite materials based on domestic and foreign sources (review). Aviacionnye materialy i tehnologii, 2018, no. 2 (51), pp. 47–58. DOI: 10.18577/2071-9140-2018-0-2-47-58.
5. Kablov E.N., Laptev A.B., Prokopenko A.N., Gulyaev A.I. Relaxation of polymeric composite materials under the prolonged action of static load and climate (review). Part 1. Binders. Aviation materials and technologies, 2021, no. 4 (65), paper no. 08. Available at: http://www.journal.viam.ru (accessed: March 29, 2024). DOI: 10.18577/2713-0193-2021-0-4-70-80.
6. Kablov E.N. New generation materials and digital technologies for their processing. Vestnik Rossiyskoy akademii nauk, 2020, vol. 90, no. 4, pр. 331–334.
7. Startsev O.V., Krotov A., Mashinskaya G. Climatic Ageing of Organic Fiber Reinforced Plastics: Water Effect. Journal Polymeric Material, 1997, vol. 37, pp. 161–171.
8. Frisch H.L. Diffusion in polymers. Journal of Applied Polymer Science, 1970, no. 14, p. 1657.
9. Lucas N., Bienaime C., Belloy C. et al. Polymer biodegradation: mechanisms and estimation techniques. Chemosphere, 2008, no. 4, p. 429. DOI: 10.1016/j.chemosphere.2008.06.064.6.
10. Eskander S., Saleh H. Biodegradation: Process Mechanism. Environmental Science and Engineering, 2017, vol. 8, no. 1, pp. 1–31.
11. Ermishev V.Yu., Laptev A.B., Startsev V.O. Peculiarities of assessing the resistance of polymeric materials to biodegradation in laboratory conditions. Part 1. Degradation of polymeric materials in natural environments, selection of bacterial strains, nutrient media and cultivation conditions. Trudy VIAM, 2023, no. 7 (125), paper no. 12. Available at: http://www.viam-works.ru (accessed: March 29, 2024). DOI: 10.18577/2307-6046-2023-0-7-138-148.
12. Laptev A.B., Pavlov M.R., Novikov A.A., Slavin A.V. Current trends in the development of testing materials for resistance to climate factors (review). Part 1. Testing of new materials. Trudy VIAM, 2021, no. 1 (95), paper no. 12. Available at: http://www.viam-works.ru (accessed: March 29, 2024). DOI: 10.18577/2307-6046-2021-0-1-114-122.
13. Yoshida S., Hiraga K., Takehana T. et al. A bacterium that degrades and assimilates poly(ethyleneterephthalate). Science, 2016, vol. 353, pp. 759–769.
14. Ermishev V.Yu. Metabolic possibilities of bacteria with respect to synthetic hydro-carbons used in the production of non-metallic materials (review). Trudy VIAM, 2023, no. 2 (120), paper no. 11. Available at: http://www.viam-works.ru (accessed: March 29, 2024). DOI: 10.18577/2307-6046-2023-0-2-132-146.
15. Baker G.C., Smith J.J., Cowan D.A. Review and re-analysis of domain-specific 16S primers. Journal of Microbiological Methods, 2003, vol. 55, pp. 541–555. DOI: 10.1016/j.mimet.2003.08.009.
16. Polz M.F., Cavanaugh C.M. Bias in template-to-product ratios in multitemplate PCR. Applied and Environmental Microbiology, 1998, vol. 11, pp. 3724–3730. DOI: 10.1128/AEM.64.10.3724-3730.1998.
17. Okonechnikov K., Golosova O., Fursov M. A unified bioinformatics toolkit. Bioinformatics, 2012, vol. 28, pp. 1166–1167. DOI: 10.1093/bioinformatics/bts091.
18. Vashishtha K., Gaud C., Andrews S., Krueger C. A quality control tool to analyse sequencing library compositions. F1000Research, 2022, vol. 11, pp. 1122. DOI: 10.12688/f1000research.125325.2
19. Nair A.V., Pradeep M.A., Vijayan K.K. Molecular approach for the rapid detection of Bacillus and Pseudomonas genera dominant antagonistic groups from diverse ecological niches using colony multiplex PCR. Journal of Industrial Microbiology and Biotechnology, 2014, vol. 41, pp. 1367–5435. DOI: 10.1007/s10295-014-1441-4.
20. Rainey P. A pair of PCR primers for Incp-9 plasmids. Microbiology, 1999, vol. 145, p. 11. DOI: 10.1099/00221287-145-11-3003.
21. Baldwin B., Nakatsu C., Nies L. Detection and Enumeration of Aromatic Oxygenase Genes by Multiplex and Real-Time PCR. Applied and Environmental Microbiology, 2003, vol. 69, pp. 3350–3358. DOI: 10.1128/AEM.69.6.3350-3358.2003.
Heat-resistant alloys and steels
Forostovich T.L., Narsky A.R., Bityutskaya O.N., Mokeev N.A. Production of model compositions for investment casting in the National Research Center «Kurchatov Institute» – VIAM
Light-metal alloys
Shiryaev A.A., Arislanov A.A., Putyrskiy S.V., Vostrikov N.F. Experience of using additive manufacturing waste in the production of porous semi-finished products from titanium alloys VT1-00 and VT6
Makushina M.А., Panin P.V., Kochetkov A.S. Equipment and technologies for shaped casting of titanium alloys
Volkova E.F., Alikhanyan A.A., Akinina M.V., Mostyaev I.V. New technological processes in the production of high-quality semi-finished products from magnesium alloys
Trofimov N.V., Leonov A.A., Duyunova V.A., Tokarev M.S. Modern approaches to improving the quality of casting and local repairs of products made of magnesium alloys
Composite materials
Postnov V.I., Postnova M.V., Antipov V.V., Veshkin E.A. Study of dynamic characteristics of samples from metal-polymeric materials and aluminium alloy D16ch-AT
Protective and functional
coatings
Zakharov K.E., Fomina M.A., Vdovin A.I., Chumakova E.S. Еfficiency evaluation of the composition for low-temperature filling of sulfuric acid anodic-oxide coating and methods of its alternative application
Material tests
Startsev O.V., Koval T.V., Dvirnaya E.V., Kornienko G.V., Veligodsky I.M. Research of the properties of carbon fiber reinforced plastic with coatings after 8 and 13 years of aging in a moderately warm climate. Part 3. Condition of the polymer matrix of а composite
Ermishev V.Yu. Isolation of bacterial strains of polymer materials destructors from samples of recycled cooling water from oil refineries and petrochemical plants