Articles
Adaptation of foundry heat-resistant nickel-based superalloys for additive technologies is inexpedient, since such materials cannot meet the ever-increasing requirements for synthesized materials, in particular, for creep resistance or long-term strength at elevated temperatures. In the present work we consider a new experimental composition of heat-resistant nickel-based superalloys developed in relation to additive technologies for the selective laser melting method, which is not inferior to the alloys of this system in terms of properties obtained by conventional methods.
2. Kablov E.N., Evgenov A.G., Petrushin N.V., Bazyleva O.A., Mazalov I.S., Dynin N.V. New generation materials and digital additive technologies for the production of resource parts of FSUE VIAM. Part 3. Adaptation and creation of materials. Elektrometallurgiya, 2022, no. 4, pp. 15–25.
3. Kaplanskii Yu.Yu., Mazalov P.B. World trends in the development of refractory high-entropy alloys for heat-loaded units of aerospace technics (review). Aviation materials and technologies, 2022, no. 2 (67), paper no. 03. Available at: http://www.journal.viam.ru (accessed: December 13, 2024). DOI: 10.18577/2713-0193-2022-0-2-30-42.
4. Additive manufacturing: pat. US 9352421 B2; appl. 06.02.2014; publ. 31.05.2016.
5. Method for post-built heat treatment of additively manufactured components made of gamma-prime strengthened superalloys: pat. US 9670572 B2; appl. 06.05.2015; publ. 06.06.2017.
6. Movenko D.A., Shurtakov S.V. Microcrack formation and controlling in nickel superalloys processed by selective laser melting (review). Aviation materials and technologies, 2022, no. 2 (67), paper no. 04. Available at: http://www.journal.viam.ru (accessed: December 13, 2024). DOI: 10.18577/2713-0193-2022-0-2-43-51.
7. Hagedorn Y.-C., Reisse J., Meiers W. et al. Processing of Nickel Based Superalloy MAR M-247 by means of High Temperature – Selective Laser Melting (HT-SLM). Proceedings of the 16th International conference of advanced research ad rapid prototype. Вoca-Raton, 2014, pp. 291–295. DOI: 10.1201/b15961-54.
8. Marchese G., Basile G., Aversa A. et al. Study of the Microstructure and Cracking Mechanism of Hastelloy X Produced by Laser Powder Bed Fusion. Materials, 2018, vol. 11, pp. 106–118. DOI: 10.3390/ma11010106.
9. Petrushin N.V., Evgenov A.G., Zavodov A.V., Treninkov I.A. Structure and strength of heat-resistant nickel alloy ZhS32-VI obtained by selective laser melting on a single-crystal substrate. Materialovedenie, 2017, no. 11, pp. 19–26.
10. Ospennikova O.G., Naprienko S.A., Medvedev P.N., Zaitsev D.V., Rogalev A.M. Features of the formation of the structural-phase state of the EP648 alloy during selective lase manufacture. Trudy VIAM, 2021, no. 8 (102), paper no. 01. Available at: http://www.viam-works.ru (accessed: December 13, 2024). DOI: 10.18557/2307-6046-2021-0-8-3-11.
11. Aslanyan G.G., Sukhov D.I., Min P.G., Peskova A.V. Application of nonlinear optimization algorithms in the development of selective laser melting modes. Tekhnologiya metallov, 2021, no. 11, pp. 36–50.
12. Min P.G., Vadeev V.E., Sukhov D.I., Raevskikh A.N. Structure and mechanical properties of corrosion-resistant heat-resistant nickel alloy obtained by selective laser melting. Materialovedenie, 2021, no. 12, pp. 3–10. DOI: 10.31044/1684-579Х-2021-0-12-3-10.
13. Evgenov A.G., Gorbovec M.A., Prager S.M. Structure and mechanical properties of heat resistant alloys VZh159 and EP648, prepared by selective laser fusing. Aviacionnye materialy i tehnologii, 2016, no. S1, pp. 8–15. DOI: 10.18577/2071-9140-2016-0-S1-8-15.
14. Mazalov I.S., Evgenov A.G., Prager S.M. Perspectives of heat resistant structurally stable alloy VZh159 application for additive production of high-temperature parts of GTE. Aviacionnye materialy i tehnologii, 2016, no. S1, pp. 3–7. DOI: 10.18577/2071-9140-2016-0-S1-3-7.
15. Evgenov A.G., Shurtakov S.V., Chumanov I.R. New wear-resistant cobalt-base alloy: features of the structure of the metal obtained by the direct laser growth method. Part 2. Aviation materials and technologies, 2022, no. 3 (68), paper no. 04. Available at: http://www.journal.viam.ru (accessed: December 13, 2024). DOI: 10.18577/2713-0193-2022-0-3-37-49.
16. Cloots M., Kunze K., Uggowitzer P.J., Wegener K. Microstructural characteristics of the nickel-based alloy IN738LC and the cobalt-based alloy mar-M509 produced by selective laser melting. Materials Science & Engineering A, 2016, vol. 658, pp. 68–76. DOI: 10.1016/j.msea.2016.01.058.
17. Martin E., Natarajan A., Kottilingam S., Batmaz R. Binder jetting of «Hard-to-Weld» high gamma prime nickel-based superalloy RENE 108. Additive Manufacturing, 2021, vol. 39, p. 101894. DOI: 10.1016/j.addma.2021.101894.
18. Zadi-Maad A., Basuki A. The development of additive manufacturing technique for nickel-base alloys: A review. AIP Conference Proceedings, 2018, vol. 1945, p. 020064. DOI: 10.1063/1.5030286.
19. Tian Z., Zhang C., Wang D. et al. A review on laser powder bed fusion of Inconel 625 nickel-based alloy. Applied Science, 2020, vol. 10, p. 81. DOI: 10.3390/app10010081.
20. Wang X., Read N., Carter L.N. et al. Defect formation and its mitigation in selective laser melting of high γ′ Ni-base superalloys. Proceedings International 13th Symposium of Superalloys. New Jersey, 2016, pp. 351–358. DOI: 10.1002/9781119075646.ch38.
21. Engeli R., Etter T., Hovel S., Wegener K. Processability of different IN738LC powder batches by selective laser melting. Journal Materials Processing Technology, 2016, vol. 229, pp. 484–491. DOI: 10.1016/j.jmatprotec.2015.09.046.
22. Lopez-Galilea I., Ruttert B., Theisen W. Integrated HIP-heat treatment of Ni-base superalloys fabricated by SLM. Euro PM 2018 proceeding. Shrewsbury, 2018, pp. 1–4.
23. Yang J., Li F., Wang Z., Zeng X. Cracking behavior and control of Rene 104 superalloy produced by direct laser fabrication. Journal Materials Processing Technology, 2015, vol. 225, pp. 229–239. DOI: 10.1016/j.jmatprotec.2015.06.002.
24. Murr L.E., Martinez E., Pan X.M. et al. Microstructures of Rene 142 nickel-based superalloy fabricated by electron beam melting. Acta Materialia, 2013, vol. 61, pp. 4289–4296. DOI: 10.1016/j.actamat.2013.04.002.
25. Sato Y., Sugisawa K., Aoki D., Yamamura T. Viscosities of Fe–Ni, Fe–Co and Ni–Co binary melts. Measurement Science and Technology, 2005, vol. 16, p. 363. DOI: 10.1088/0957-0233/16/2/006.
The results of investigation of the influence of solder composition on the formation of the soldered joint of iridium contacts of spark plugs with CH60VT alloy as the material of the contact holder are presented. The comparison of the soldered joint formed by serial solder VPr50 and experimental solders after soldering and holding for three hours at 1000 °C has been carried out. The main phase components capable of leading to decrease of long-term strength of soldered seam during operation have been revealed. The regularities of redistribution of elements in the soldered joint and diffusion zones have been determined due to decrease of erosion activity of solder in relation to iridium and alloy KhN60VT.
2. Gavrilov G.N., Kablov E.N., Erofeev V.T. et al. Materials Science. Theory and technology of heat treatment: textbook. Saransk: MSU named after N.P. Ogarev, 2019, 273 p.
3. Electrode material for use with a spark plug: pat. US8436520B2; appl. 28.07.2011; publ. 07.05.2015.
4. High efficiency, extended life spark plug having improved firing tips: pat. US00527198A; appl. 03.04.1995; publ. 18.06.1996.
5. Li Z.-F., Ge Y., Li H.-Y. et al. Study on brazing performance of platinum-iridium alloy solders. Powder Metallurgy Technology, 2017, vol. 35 (3), pp. 202–207. DOI: 10.19591/j.cnki.cn11-1974/tf.2017.03.007.
6. Graff M., Kempf B., Breme J. Iridium Alloy for Spark Plug Electrodes. Materials for Transportation Technology, 2005, vol. 1, pp. 1–8. DOI: 10.1002/3527606025.ch1.
7. Zhao S., Xia J., Xia Y. et al. Microstructure and Isothermal Oxidation of Ir–Rh Spark Plug Electrodes. Materials, 2019, vol. 12 (19), pp. 3226. DOI: 10.3390/ma12193226.
8. Hristov R., Bogdanov K., Dimitrov R. Research the influence of spark plugs types on the performance of the engine operating on gaseous fuels. Mobility and Vehicle Mechanics, 2018, vol. 44 (1), pp. 51–61. DOI: 10.24874/mvm.2018.44.01.05.
9. Różowicz S., Tofil S., Zrak A. An Analysis of the Microstructure, Macrostructure and Microhardness of Ni–Сr–Ir Joints Produced by Laser Welding with and without Preheat. Archives of Metallurgy and Materials, 2016, vol. 61 (2), pp. 1157–1162. DOI: 10.1515/amm-2016-0193.
10. Eliseev E.A., Sevalnev G.S., Doroshenko A.V., Druzhinina M.E. Influence of time-temperature parameters of long-duration exposure on transformations in structural steels (review). Aviation materials and technologies, 2021, no. 2 (63), paper no. 02. Available at: http://www.journal.viam.ru (accessed: December 24, 2024). DOI: 10.18577/2713-0193-2021-0-2-15-23.
11. Afansiyev-Khodykin A.N., Galushka I.A., Sviridov A.V., Naprienko S.A. Investigation of the influence of technological parameters of heat treatment on microstructure of brazing joints of VT20 alloy with VPr16 solder. Trudy VIAM, 2024, no. 5 (135), paper no. 01. Available at: http://www.viam-works.ru (accessed: December 24, 2024). DOI: 10.18577/2307-6046-2024-0-5-3-12.
12. Ospennikova O.G., Afanasyev-Khodykin A.N., Galushka I.A. Investigation of a brazed joint microstructure formation, made of dissimilar nickel super alloys and the complex brazing alloy. Trudy VIAM, 2021, no. 1 (95), paper no. 01. Available at: http://www.viam-works.ru (accessed: December 24, 2024). DOI: 10.18577/2307-6046-2021-0-1-3-12.
13. Lashko N.F., Lashko S.V. Theory and Technology of Soldering. Saratov: Saratov Univ. Publ., 1974, 248 p.
14. Lashko N.F., Lashko S.V. Soldering Metals. Moscow: Mashinostroenie, 1967, 368 p.
15. Petrunin I.E., Bereznikov Yu.I., Bunkina R.R. et al. Soldering Handbook. 3rd rev. and add. Moscow: Mashinostroenie-1, 2003, 480 p.
16. Petrunin I.E., Markova I.Yu., Ekatova A.S. Metal Science of Soldering. Moscow: Metallurgiya, 1976, 264 p.
17. Ospennikova O.G., Lukin V.I., Afanasyev-Khodykin A.N., Galushka I.A., Shevchenko O.V. Advanced developments in the field of the high-temperature soldering of heat resisting alloys. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 144–158. DOI: 10.18577/2071-9140-2017-0-S-144-158.
18. Khudnev A.A., Plokhikh A.I., Dvoretskov R.M., Schetanov B.V. Investigation of diffusion of alloying elements during thermal cycling of multilayer composite material made of chrome and carbon steels. Trudy VIAM, 2021, no. 4 (98), paper no. 06. Available at: http://www.viam-works.ru (accessed: December 24, 2024). DOI: 10.18577/2307-6046-2021-0-4-74-91.
19. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
The article presents the results of a study of the tribological properties of a wear-resistant ion-plasma coating to increase the service life of parts with a low tempering temperature. It has been found that this wear-resistant coating, with a thickness of 7 to 10 microns, consists of a damping lower and wear-resistant upper layers, has a coefficient of friction of 0.12, the total wear rate of the friction pair is 0,012·10–3mm/m, the average total linear wear of the friction pair is 0,012 mm in an aviation fuel environment paired with antimony lead bronze.
2. Kablov E.N., Kutyrev A.E., Vdovin A.I., Kozlov I.A., Afanasyev-Khodykin A.N. The research of possibility of galvanic corrosion in brazed connections used in aviation engine construction. Aviation materials and technologies, 2021, no. 4 (65), paper no. 01. Available at: http://www.journal.viam.ru (accessed: December 19, 2024). DOI: 10.18577/2713-0193-2021-0-4-3-13.
3. Onishchenko G.G., Kablov E.N., Ivanov V.V. Scientific and technological development of Russia in the context of achieving national goals: problems and solutions. Innovatsii, 2020, no. 6 (260), pp. 3–16.
4. Evgenov A.G., Shurtakov S.V., Chumanov I.R., Leshchev N.E. New wear-resistant cobalt-based alloy: effect of silicon and carbon on structure and tribotechnical characteristics. Part 1. Aviation materials and technologies, 2021, no. 4 (65), paper no. 07. Available at: http://www.journal.viam.ru (accessed: December 23, 2024). DOI: 10.18577/2713-0193-2021-0-4-59-69.
5. Batraev I.S., Rybin D.K., Ivanyuk K.V., Ulianitsky V.Yu., Shtertser A.A. Wear resistant detonation coatings based on tungsten carbide for aviation products. Aviation materials and technologies, 2022, no. 1 (66), paper no. 08. Available at: http://www.journal.viam.ru (ассеssed: December 19, 2024). DOI: 10.18577/2713-0193-2022-0-1-92-109.
6. Khmeleva K.M., Knyazev A.V., Zavarzin S.V. Development of multifunctional lubricant for threaded connections. Aviation materials and technologies, 2024, no. 3 (76), paper no. 10. Available at: http://www.journal.viam.ru (accessed: December 23, 2024). DOI: 10.18577/2713-0193-2024-0-3-119-133.
7. Artemenko N.I., Muboyadzhyan S.A. Engineering method of estimating the magnitude and nature of the internal stresses in the condensed monolayer reinforcing coatings. Trudy VIAM, 2016, no. 1 (37), paper no. 4. Available at: http://www.viam-works.ru (accessed: December 19, 2024). DOI: 10.18577/2307-6046-2016-0-1-25-35.
8. Muboyadzhyan S.A. Features of deposition from a two-phase flow of multicomponent vacuum-arc discharge plasma containing microdroplets of evaporated material. Metally, 2008, no. 2, pp. 20–34.
9. Belous V.Ya., Varlamova V.E., Muboyadzhyan S.A., Aleksandrov D.A. Ion-plasma coatings for corrosion protection of compressor blades and other gas turbine engine parts operated in all-climate conditions. Korroziya: materialy, zashchita, 2012, no. 1, pp. 20–24.
10. Muboyadzhyan S.A., Aleksandrov D.A., Gorlov D.S. Ion-plasma nanolayer erosion-resistant coatings based on metal carbides and nitrides. Metally, 2010, no. 5, pp. 39–51.
11. Khrushchov M.M., Marchenko E.A., Dubravina A.A., Semenov A.P. Structural features of diamond-like coatings with different alloying mechanisms and their tribological characteristics. Fizika, khimiya i mekhanika tribosistem, 2011, no. 10, pp. 147–152.
12. Kononov D.M., Zhdanov A.A., Morozov V.V. Production and study of diamond-like PVD coatings. Nauchno-tekhnicheskiy vestnik Povolzhya, 2012, no. 6, pp. 275‒278.
13. Muratore C., Jones D.R., Voevodin A.A. Smart tribological coating with wear sensing capability. Wear, 2008, vol. 265, pp. 913–920.
14. Voevodin A.A., Zabinski J.S. Nanocomposite and nanostructured tribological materials for space applications. MLBT, Air Force Research laboratory (US). Composites Science and Technology, 2005, vol. 55, pp. 741–748.
15. Mehran Q.M., Fazal M.A., Razak B.A., Rubaiee S. A Critical Review on Physical Vapor Deposition Coatings Applied on Deferent Engine Components. Critical Reviews in Solid State and Material Sciences, 2018, vol. 43, no. 2, pp. 158–175.
The article presents and describes the results of determining mechanical and corrosion properties, as well as microstructure particularities of metal matrix composite materials (MMC) based on various alloying systems of magnesium alloys: Mg–Al–Zn–Mn, Mg–Zn–Ca, Mg–Zn–Zr–REE (Y, Nd), Mg–Al–Ca. Nanoscale reinforcing particles SiC, Y2O3, Al2O3 were used as a filler. The studies of MMC were carried out in cast and homogenized states. It has been established that Mg–Zn–Ca alloy system/3 wt % SiC should be considered as the optimal composition for the metal matrix composite material.
2. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
3. Sazonov M.A., Chernyshova T.A., Rokhlin L.L. Composite materials on a magnesium base reinforced with particles: manufacturing and properties (review). Konstruktsii iz kompozitsionnykh materialov, 2010, no. 2, pp. 3–22.
4. Dey A., Pandey K.M. Magnesium metal matrix composites a review. Reviews on Advanced Materials Science, 2015, vol. 42, is. 1, pp. 58–67.
5. Annamalai S., Periyakgoundar S., Gunasekaran S. Magnesium alloys: a review of applications. Materials and Technologies, 2019, vol. 53, is. 6, pp. 881–890.
6. Ali Y., Qiu D., Jiang B. et al. Current research progress in grain refinement of cast magnesium alloys: a review article. Journal of Alloys and Compounds, 2015, vol. 619, рр. 639–651.
7. Song J.F., She J., Chen D.L., Pan F.S. Latest research advances on magnesium and magnesium alloys worldwide. Journal of Magnesium and Alloys, 2020, vol. 8, pp. 1–41.
8. Magnesium alloys: a handbook in 2 vols. Eds M.B. Altman, A.F. Belov, V.I. Dobatkin et al. Moscow: Metallurgiya, 1978, vol. 1: Metallurgy of magnesium and its alloys. Application areas, 231 p.
9. Volkova E.F., Akinina M.V., Mostyaev I.V., Leonov A.A., Alikhanyan A.A. Characteristic features of heat treatment of composite materials based on magnesium and magnesium alloys. Review. Tekhnologiya legkikh splavov, 2024, no. 3, pp. 15–24.
10. Mostyaev I.V., Akinina M.V. Features and development trends in the field of heat treatment of magnesium alloys (review). Trudy VIAM, 2018, no. 7 (67), paper no. 5. Available at: http://www.viam-works.ru (accessed: April 01, 2025). DOI: 10.18577/2307-6046-2018-0-7-41-48.
11. Huang S.-J., Ali A.N. Effects of heat treatment on the microstructure and microplastic deformation behavior of SiC particles reinforced AZ61 magnesium metal matrix composite. Materials Science and Engineering: A, 2018, vol. 711, pp. 670–682.
12. Leonov A.A., Trofimov N.V., Panaetov V.G., Kudasov S.V., Shirokozhukov А.V. Magnesium alloys in the design of navigation system products. Aviation materials and technologies, 2024, no. 3 (76), paper no. 03. Available at: http://www.journal.viam.ru (accessed: April 01, 2025). DOI: 10.18577/2713-0193-2024-0-3-25-34.
13. Volkova E.F., Mostyaev I.V., Akinina M.V., Alikhanyan A.A. Studies of the regularities of the heat treatment influence on the structure, phase composition and mechanical properties of medium-sized forgings made of heat-resistant alloy of the Mg‒Zn‒Zr‒REE system. Trudy VIAM, 2024, no. 1 (131), paper no. 03. Available at: http://www.viam-works.ru (accessed: April 04, 2025). DOI: 10.18577/2307-6046-2024-0-1-13-26.
14. Rzychoń T., Dybowski B., Gryc A., Dudek M. Mechanical Properties and Microstructure of WE43 Magnesium Matrix Composite Reinforced SiC Particles. Archives of Foundry Engineering, 2015, vol. 15, special issue 1/2015, pp. 99–102.
15. Erman A., Groza J., Li X. et al. Nanoparticle effects in cast Mg–1 wt% SiC nano-composites. Material Science and Engineering: A, 2012, vol. 558, pp. 39–43.
16. Nie K.B., Wang X.J., Deng K.K. et al. Magnesium matrix composite reinforced by nanoparticles – A review. Journal of Magnesium and Alloys, 2012, vol. 9, is. 1, pp. 57–77.
17. Yuan Q.H., Fu D.M., Zeng X.S., Yong L.I. Fabrication of carbon nanotube reinforced AZ91D composite with superior mechanical properties. Transactions of Nonferrous Metals Society of China, 2017, vol. 27, pp. 1716–1724.
18. Akinina M.V., Mostyaev I.V., Volkova E.F., Alikhanyan A.A. Investigation of the influence of alloying elements on the temperature threshold of ignition and fire resistance of a VMD16 wrought magnesium alloy. Aviation materials and technologies, 2022, no. 3 (68), paper no. 06. Available at: http://www.journal.viam.ru (accessed: April 05, 2025). DOI: 10.18577/2713-0193-2022-0-3-60-74.
19. Guo Y.C., Nie K.B., Kang X.K. et al. Achieving high-strength magnesium matrix nanocomposite through synergistical effect of external hybrid (SiC+TiC) nanoparticles and dynamic precipitated phase. Journal of Alloys and Compounds, 2019, vol. 771, pp. 847–856.
20. Kablov E.N., Shchetanov B.V., Grashhenkov D.V., Shavnev A.A., Nyafkin A.N. Metalmatrix composite materials on the basis of Al–SiC. Aviacionnye materialy i tehnologii, 2012, no. S, pp. 373–380.
21. You B.-S., Park W.-W., Chung I.-S. Effect of calcium additions on the oxidation behavior in magnesium alloys. Scripta Materialia, 2000, vol. 42, is. 11, pp. 1089–1094.
22. Tekumalla S., Seetharaman S., Bau N. et al. Investigation on Microstructural and Mechanical Properties of Mg–0,4Ce/Y2O3 Nanocomposite. Proceedings of the 10th International Conference on Magnesium Alloys and Their Applications, Mg2015. Cheju, 2015, pp. 879–885.
23. Volkova E.F., Duyunova V.A., Akinina M.V., Alikhanyan A.A. Characteristic features of heat treatment of composite materials based on magnesium and magnesium alloys. Tekhnologiya legkikh splavov, 2024, no. 3, рр. 15–24.
24. Gupta V., Mishra R.K., Singh B. Effect of micro filler reinforcement on mechanical and wear characteristics of metal matrix composites: A review. 1st International Conference on Advances in Mechanical Engineering and Nanotechnology (ICAMEN). New York, Melvill: AIP Publishing, 2019, р. 030011. Available at: http://www.researchgate.net/publication/335591925 (ассеssed: April 05, 2025). DOI: 10/1063/1.5123933.
25. Amalan P.A., Sivaram N.M. A state-of-the-art review on magnesium-based composite materials. Advances in Materials and Processing Technologies, 2023, vol. 9, is. 3, pp. 760–778.
26. Zhang L., Wang Q., Liao W. et al. Effects of cyclic extrusion and compression on the microstructure and mechanical properties of AZ91D magnesium composites reinforced by SiC nanoparticles. Materials Characterization, 2017, vol. 126, pp. 17–27.
27. Wang X.J., Hu X.S., Liu W.Q. et al. Aging behavior of squeeze cast SiCw/AZ91 Mg matrix composites. Materials Science and Engineering: A, 2017, vol. 682, pp. 491–500.
28. Sun X.F., Wang C.J., Deng K.K. et al. Aging behavior of AZ91 matrix influenced by 5 μm SiCp: Investigation on the microstructure and mechanical properties. Journal of Alloys and Compounds, 2017, vol. 727, pp. 1263–1272.
29. Zheng M.Y., Wu K., Kamado S. et al. Aging behavior of squeeze cast SiCw/AZ91 magnesium matrix composite. Materials Science and Engineering: A, 2003, vol. 348, pp. 67–75.
30. Amalan P.A., Sivaram N.M., Subramanya R. Influence of Silicon Carbide and Graphite Reinfocements and T6 Aging Heat Treatment on the Fatigue Characteristics of AZ91D Magnesium Alloy. Journal of Materials Engineering and Performance, 2024, vol. 33 (2), pp. 2751–2764. DOI: 10.1007/s11665-023-08154-3.
31. Khandelwal A., Mani K., Srivastava N. et al. Mechanical behavior of AZ31/Al2O3 magnesium alloy nanocomposites prepared using ultrasound assisted stir casting. Composites Part B: Engineering, 2017, vol. 123, pp. 64–73.
32. Habibnejad-Korayem M., Mahmudi R., Poole W.J. Enhanced properties of Mg-based nanocomposites reinforced with Al2O3 nanoparticles. Materials Science and Engineering: A, 2009, vol. 519, is. 1-2, pp. 198–203.
33. Mallmann C., Hannard F., Ferrié E. et al. Unveling the impact of the effective particles distribution on strengthening mechanisms: A multiscale characterization of Mg+Y2O3 nanocomposites. Materials Science and Engineering: A, 2019, vol. 764, is. 1-2, p. 138170.
34. Zhang S., Li M., Wang H. et al. Microstructure and tensile properties of ECAPed Mg–9Al–1Si–1SiC composites: The influence of initial microstructures. Materials, 2018, vol. 11, is. 136. DOI: 10.3390/ma11010136.
35. Duyunova V.A., Serebrennikova N.Yu., Nefedova Yu.N., Sidelnikov V.V., Somov A.V. Methods of forming metal-polymer composite materials (review). Aviation materials and technologies, 2022, no. 1 (66), paper no. 06. Available at: http://www.journal.viam.ru (ассеssed: April 05, 2025). DOI: 10.18577/2713-0193-2022-0-1-65-77.
36. Selvam J.D.-R., Dinaharan I., Rai R.S. Matrix and rainforcement materials for metal matrix and reinforcement material for composites. Encyclopedia of Materials: Composites, 2021, vol. 2, pp. 615–639. DOI: 10/1016/B978-0-12-803581-8.11890-9.
37. Kumar M., Gupta R.K. Study and properties of metal matrix composites. Journal of Materials Processing Technology, 1997, vol. 63, is. 1-3, pp. 913–917.
38. Timonova M.A. Corrosion and protection of magnesium alloys. Moscow: Mashinostroenie, 1964, 285 p.
39. Timonova M.A. Protection from corrosion of magnesium alloys. Moscow: Metallurgiya, 1977, 158 p.
40. Emli E.F. Fundamentals of technology of production and processing of magnesium alloys. Ed. M.E. Drits. Moscow: Metallurgiya, 1972, 488 p.
Based on the results of microstructural studies, the structural features of hollow-fiber fiberglass samples before their water absorption testing are considered. An analysis of changes in the density of hollow-fiber fiberglass samples measured by hydrostatic weighing is performed depending on the number of days during long-term water absorption. A study of the water absorption process of hollow-fiber fiberglass samples is performed based on the analysis of nature-like technologies − similar systems and models of water absorption that exist in nature.
1. Frantsev M.E., Kireynov A.V. Results of comparative tests of composite materials for shipbuilding purposes based on glass and basalt fibers on a polyester binder for water absorption. Transportnye sistemy, 2019, no. 1 (11), pp. 41–48. DOI: 10.46960/62045_2019_1_41.
2. Dushin M.I., Hrulkov A.V., Muhametov R.R., Chursova L.V. Features of manufacturing of products from PCM impregnation method under pressure. Aviacionnye materialy i tehnologii, 2012, no. 1, pp. 18–26.
3. Masket M. Flow of homogeneous liquids in a porous medium. Moscow; Leningrad: Gostoptekhizdat, 1949, 58 p.
4. Leibenzon L.S. Movement of natural liquids and gases in a porous medium. Moscow; Leningrad: Gostoptekhizdat, 1947, 40 p.
5. Proctor P. Stitched composite wings eyed for future transports. Aviation Week & Space Technology, 1998, no. 8, pp. 49−50.
6. Vinogradov V.M., Goncharenko V.A., Komarov G.V. Modeling in the technology of polymer parts and products. Plasticheskie massy, 2005, no. 1, pp. 36–39.
7. Ponomareva I.N., Mordvinov V.A. Underground hydromechanics: textbook. Perm: Perm State Technical Univ., 2009, 137 p.
8. Basniev K.S., Dmitriev N.M., Rozenberg G.D. Oil and gas hydromechanics: textbook for universities. Moscow; Izhevsk: Institute of Computer Research, 2003, 479 p.
9. Basniev K.S., Dmitriev N.M., Kanevskaya R.D., Maksimov V.M. Underground hydromechanics. 2nd ed., cor. Moscow; Izhevsk: Institute of Computer Research, 2006, 488 p.
10. Kanevskaya R.D. Mathematical Modeling of Hydrodynamic Processes of Hydrocarbon Deposit Development: textbook for univ. Moscow; Izhevsk: Institute of Computer Research, 2003, 128 p.
11. Shchelkachev V.N., Lapuk B.B. Underground Hydraulics: textbook for univ. Moscow; Izhevsk: Regular and Chaotic Dynamics, 2001, 736 p.
12. Evdokimova V.A., Kochina I.N. Collection of Problems in Underground Hydraulics: textbook for univ. 2nd ed., reprinted from the original ed. 1979. Moscow: Alliance, 2007, 169 p.
13. Komarova E.A. Features of the anatomical structure of the stem and spike rachis of triticale varieties in connection with spike productivity and lodging resistance: thesis abstract, Cand. Sc. (Bio.). Moscow: Rus. State Agrarian University – Moscow Agricultural Academy named after K.A. Timiryazev, 2007, 22 p.
14. Mineev A.P. On tall trees. Moscow: Quantum, 1992, pp. 10–15.
15. Muhametov R.R., Ahmadieva K.R., Chursova L.V., Kogan D.I. New polymeric binding for perspective methods of manufacturing of constructional fibrous PCM. Aviacionnye materialy i tekhnologii, 2011, no. 2, pp. 38–42.
16. Deleglise M. Modeling of high speed RTM injection with highly reactive resin with on-line mixing. Applied Science and Manufacturing, 2011, vol. 42 (10), pp. 1390–1397.
17. Graf M., Fries E., Renkl J. et al. High-Pressure Resin Transfer Molding – Process Advancements. 10-th Annual automotive composites conferences and exhibition ACCE. Los Angeles, 2010, pp. 15–16.
18. Mouton S., Teissandier D., Sebastian P., Nadeau J.P. Manufacturing requirements in design: The RTM process in aeronautics. Composites. Part A: Applied Science and Manufacturing, 2010, vol. 41, no. 1, pp. 125–130.
19. Kablov E.N. The role of chemistry in the creation of new generation materials for complex technical systems. Reports XX Mendeleev Congress on General and Applied Chemistry. Ekaterinburg: Ural Branch of the RAS, 2016, pp. 25–26.
20. Guseva M.A., Sinyakov S.D., Dolgova E.V., Ponomarenko S.A. Study of the effect of the properties of phenol-formaldehyde resin and the curing mode on the characteristics of the FN binder. Aviation materials and technologies, 2022, no. 2 (67), paper no. 06. Available at: http://www.journal.viam.ru (accessed: April 23, 2025). DOI: 10.18577/2713-0193-2022-0-2-63-73.
21. Malysheva G.V., Marakhovskiy P.S., Barinov D.Ya., Nikolaev E.V. Optimization of the curing modes of fiber-glass based on epoxy binder. Aviation materials and technologies, 2023, no. 2 (71), paper no. 08. Available at: http://www.journal.viam.ru (accessed: April 23, 2025). DOI: 10.18577/2713-0193-2023-0-2-94-103.
22. Belinis P.G., Lukyanenko Yu.V., Rogozhnikov V.N., Tsykun R.G., Donetskiy K.I. Design research on a constructural multilayer woven preform of an integral panel fragment for aircraft. Aviation materials and technologies, 2023, no. 3 (72), paper no. 09. Available at: http://www.journal.viam.ru (accessed: April 23, 2025). DOI: 10.18577/2713-0193-2023-0-3-114-124.
23. Puzyretskiy E.A., Donetski K.I., Shabalin L.P., Karavaev R.Yu., Savinov D.V. Theoretical and experimental study of the vacuum forming of semipregs based on carbon fillers (tapes and fabric) and melting epoxy binding. Aviation materials and technologies, 2024, no. 2 (75), paper no. 08. Available at: http://www.journal.viam.ru (accessed: April 23, 2025). DOI: 10.18577/2713-0193-2024-0-2-109-121.
24. Grigoriev V.A., Kalabukhov D.S., Zakharchenko V.S. et al. Fundamentals of the theory, calculation and design of air-breathing engines: textbook for universities. Samara: Publ. house of Samara Univ., 2021, 67 p.
25. Echo of black holes. Modcos. Available at: https://www.modcos.com/articles.php?id=138 (accessed: April 17, 2025).
26. Hydrogasdynamics. Calculation of the Laval nozzle. Reshebnik. Available at: https://reshebnik.su/node/11234 (accessed: April 17, 2025).
27. Microstrobe II – Dantec Dynamics. Precision Measurement Systems & Sensors. Dantecdynamics. Available at: https://www.dantecdynamics.com/components/microstrobe-ii/?sourceid=13683 (accessed: April 17, 2025).
28. Measurement Principles of PIV. Dantecdynamics. Available at: https://www.dantecdynamics.com/solutions/fluid-mechanics/particle-image-velocimetry-piv/measurement-principles-of-piv/ (accessed: April 17, 2025).
29. The principle of the PIV method. Laser-portal. Available at: https://www.laser-portal.ru/content_185 (accessed: April 17, 2025).
The article analyzes the scientific and technical literature data concerning the main methods of removing moisture-proof electrical insulation coatings from printed circuit boards and assemblies during their repair and modification. Characteristics, advantages and disadvantages of the removal of electrical insulation coatings by dissolution, peeling, mechanical, thermal and micro-jet methods are presented. The above methods mentioned for polyurethane, epoxy, acrylic, organosilicon and parylene electrical insulation coatings are considered and the most optimal methods depending on the nature of the material are determined.
2. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
3. State Standard R 55491–2013. Printed circuit boards. Rules for restoration and repair. Moscow: Standartinform, 2014, 43 p.
4. Brusnitsyna L.A., Stepanovskikh E.I. Printed circuit board manufacturing technology. Ekaterinburg: Ural University, 2015, 200 p.
5. Hansen C. Hansen solubility parameters: a user’s handbook. 2nd ed. Boca Raton: CRC Press, 2007, 520 р.
6. Fomina M.A., Zakharov K.E., Volkov I.A., Ivanov A.L. Research of the corrosion aggressiveness of strippers of native and foreign production used for removal of paint coatings. Trudy VIAM, 2021, no. 12 (106), paper no. 09. Available at: http://www.viam-works.ru (accessed: March 03, 2025). DOI: 10.18577/2307-6046-2021-0-12-73-85.
7. Kireev V.V. High-molecular compounds: in 2 parts. Moscow: Yurait, 2020, part 1, 365 p.
8. Sorokin M.F., Kochnova Z.A., Shode L.G. Chemistry and technology of film-forming substances: textbook for universities. Moscow: Khimiya, 1989, 480 p.
9. US EPA. Scope of the Risk Evaluation for Methylene Chloride. United States Environmental Protection Agency, 2017, 72 p.
10. Roelofs C.R., Ellenbecker M.J. Source reduction for prevention of methylene chloride hazards: Cases from four industrial sectors. Environmental Health, 2003, vol. 2, pp. 1–15. DOI: 10.1186/1476-069X-2-9.
11. Semenova L.V., Novikova T.A., Nefedov N.I. Study of removing ability of removers for paint systems removal. Aviacionnye materialy i tehnologii, 2017, no. 1 (46), pp. 32–37. DOI: 10.18577/2071-9140-2017-0-1-32-37.
12. Horrocks H. Conformal coating removal techniques. Circuit World, 1997, vol. 24, no. 1, pp. 13–19. DOI: 10.1108/030561201998000002.
13. Yakovlev A.D., Yakovlev S.A. Functional paint and varnish coatings. St. Petersburg: Khimizdat, 2016, 272 p.
14. Polukhin O. Integrated solutions for removing moisture-protective coatings. Tekhnologii v elektronnoy promyshlennosti, 2015, no. 1, pp. 62–63.
15. Potseluev D. Abrasive to the rescue. Part 2. The first Russian installation for micro-abrasive removal of moisture-protective coatings «Borey». Vektor vysokikh tekhnologiy, 2017, no. 1, pp. 48–52.
16. Installation «Borey» for micro-abrasive removal of moisture-protective coatings and surface treatment. Available at: https://borey-ostec.ru/ (accessed: February 27, 2025).
17. Swam Blaster Micro-Abrasive Coating Removal Unit Models. Available at: https://www.crystalmarkinc.com/all-products/swam-blaster-micro-abrasive-blasters/ (accessed: February 27, 2025).
18. Cummings R., Parekh N., Clatterbuck C., Frades F. Evaluation of ESD Effects During Removal of Conformal Coatings Using Micro Abrasive Blasting, 1997. Available at: https://nepp.nasa.gov/docuploads/3CBC367A-90B1-4A89-B96813B68AA399B2/microabr.pdf (accessed: February 28, 2025)
19. AccuFlo Micro-Abrasive Removal Units. Available at: https://comcoinc.com/equipment/accuflo/# (accessed: February 27, 2025).
20. Brock T., Groteklaus M., Mischke P. European Paints and Coatings Guide. Moscow: Paint-Media, 2013, 276 p.
21. CHASE Corp. HumiSeal 1A33. Urethane Conformal Coating Technical Data Sheet. Available at: https://chasecorp.com/humiseal1/wp-content/uploads/sites/12/2018/10/1A33-TDS.pdf (accessed: March 03, 2025).
22. Humiseal Stripper 1063. Safety Data Sheet. CHASE Corp., 2015. Available at: https://assets.testequity.com/te1/Documents/pdf/HumiSeal/Humiseal_S1063-QUART_Stripper_Coat_Datasheet.pdf (accessed: March 03, 2025).
23. Potseluev D. Abrasive rushes to the rescue. Technological solution for removing moisture-protective coatings UR-231, E-30, ED-20 and parylene. Vektor vysokikh tekhnologiy, 2014, no. 7, pp. 60–64.
24. Lu T., Reimonn G., Morose G. et al. Removing Acrylic Conformal Coating with Safer Solvents for Re-Manufacturing Electronics. Polymers, 2021, no. 13, pp. 1–14.
25. Kochnova Z.A., Zhavoronok E.S., Chalykh A.E. Epoxy resins and hardeners: industrial products. Moscow: Paint-Media, 2006, 200 p.
26. Kuznetsova V.A., Marchenko S.A., Emelyanov V.V., Zheleznyak V.G. Study of the influence of molecular mass of epoxy oligomers and hardeners on the operational properties of paint coatings. Aviation materials and technology, 2021, no. 1 (62), paper no. 07. Available at: http://www.journal.viam.ru (accessed: March 06, 2025). DOI: 10.18577/2713-0193-2021-0-1-71-79.
27. Nefyodov N.I., Semyonova L.V. Development tendencies in the field on conformal coating for the moisture protection and electrical insulation of printed-circuit boards and electronic elements. Aviacionnye materialy i tehnologii, 2013, no. 1, pp. 50–52.
28. Borisova L.N., Shestakov A.K., Tarasov A.I. Foiled materials for the manufacture of printed circuit boards. Elektronnye komponenty, 2001, no. 5, pp. 51–54.
29. Díaz de los Ríos M., Hernández Ramos E. Determination of the Hansen solubility parameters and the Hansen sphere radius with the aid of the solver add-in of Microsoft Excel. SN Applied Science, 2020, vol. 2, pp. 1–7. DOI: 10.1007/s42452-020-2512-y.
30. Livshits M.L., Pshiyalkovskiy B.I. Paints and varnishes: a reference manual. Moscow: Khimiya, 1982, 360 p.
31. Kablov E.N. No future without new materials. Metallurg, 2013, no. 12, pp. 4–8.
32. Kablov E.N., Antipov V.V. The role of new generation materials in ensuring the technological sovereignty of the Russian Federation. Vestnik Rossiyskoy akademii nauk, 2023, vol. 93, no. 10, pp. 907–916.
33. Ospennikova O.G., Kozlova A.A., Kozlov I.A. Laser technology to remove paint coatings in the process of repair and maintenance of aircraft (review). Trudy VIAM, 2021, no. 4 (98), paper no. 09. Available at: http://www.viam-works.ru (accessed: March 03, 2025). DOI: 10.18577/2307-6046-2021-0-4-110-123.
34. Kozlova A.A., Kondrateva O.V., Kuznetsova V.A. The main problems of using domestically produced moisture-proof electrical insulating materials for automated selective application on printed assemblies (review). Aviation materials and technologies, 2022, no. 4 (69), paper no. 07. Available at: http://www.journal.viam.ru (accessed: March 06, 2025). DOI: 10.18577/2713-0193-2022-0-4-72-83.
The fundamentals of homoepitaxial growth of silicon carbide by chemical vapor deposition are presented. Main defects, arising during growth and doping of silicon carbide, are considered. In the study has been described the causes of defects and their influence on the properties of semiconductor devices. It is revealed that most defects in silicon carbide epitaxial layers arise from the use of low-quality substrates. The influence of the C/Si ratio and deposition temperature on defect formation is shown. Conditions for reducing defects are considered.
2. Kablov E.N., Khmeleva K.M., Zavarzin S.V., Kozlov I.A., Lonskii S.L. The effect of heat treatment on the characteristics of aluminium-zinc coatings obtained by the cold spray method. Aviation materials and technologies, 2022, no. 1 (66), paper no. 07. Available at: http://www.journal.viam.ru (ассеssed: December 17, 2024.). DOI: 10.18577/2713-0193-2022-0-1-78-91.
3. Sidorov D.V., Grunin A.A., Kirilin A.D., Shavnev A.A. The first step of pyrolytic decomposition of methylchlorosilane. Khimicheskaya tekhnologiya, 2025, vol. 26, no. 1, pp. 26–33.
4. Sidorov D.V., Grunin A.A., Schavnev A.A. Implementation of technology for chemical vapor deposition of silicon carbide in electronics. Part 1. Trudy VIAM, 2024, no. 3 (133), paper no. 09. Available at: http://www.viam-works.ru (accessed: December 19, 2024). DOI: 10.18577/2307-6046-2024-0-3-101-116.
5. Sidorov D.V., Grunin A.A., Schavnev A.A. Formation of carbon coatings in the process of methane pyrolysis by the chemical vapor deposition. Trudy VIAM, 2023, no. 10 (128), paper no. 10. Available at: http://www.viam-works.ru (accessed: December 19, 2024). DOI: 10.18577/2307-6046-2023-0-10-105-118.
6. Bourassa A., Anderson C.P., Miao K.C. et al. Entanglement and control of single nuclear spins in isotopically engineered silicon carbide. Nature Materials, 2020, vol. 19, pp. 1319–1325.
7. Ueda T., Nishino H., Matsunami H. Crystal growth of SiC by step-controlled epitaxy. Journal of Crystal Growth, 1990, vol. 104, pp. 695–700.
8. Kong H.S., Glass J.T., Davis R.F. Chemical vapor deposition and characterization of 6H‒SiC thin films on off-axis 6H–SiC substrates. Journal of Applied Physics, 1988, vol. 64, pp. 2672–2679.
9. Itoh A., Akita H., Kimoto T. et al. High-quality 4H–SiC homoepitaxial layers grown by step-controlled epitaxy. Applied Physics Letters, 1994, vol. 65, pp. 1400–1402.
10. Itoh A., Kimoto T., Matsunami H. High Performance of High-Voltage 4H–SiC Schottky Barrier Diodes. IEEE Electron Device Letters, 1995, vol. 16, pp. 280–282.
11. Henry A., Bergman P., Hallin C. et al. Thick Silicon Carbide Homoepitaxial Layers Grown by CVD Techniques. Chemical Vapor Deposition, 2006, vol. 12, pp. 475–482.
12. Choyke W.J., Matsunami H., Pensl G. Silicon Carbide: Recent Major Advances. Springer, 2004, pp. 457–480.
13. La Via F., Galvagno G., Foti G. et al. 4H SiC Epitaxial Growth with Chlorine Addition. Addition. Chemical Vapor Deposition, 2006, vol. 12, pp. 509–515.
14. Tsuchida H., Ito M., Kamata I., Nagano M. Formation of extended defects in 4H‒SiC epitaxial growth and development of a fast growth technique. Physica Status Solidi, 2009, vol. 246, pp. 1553–1568.
15. Pedersen H., Leone S., Kordina O. et al. Chloride-Based CVD Growth of Silicon Carbide for Electronic Applications. Chemical Reviews, 2011, vol. 112, pp. 2434–2453.
16. Matsunami H., Kimoto T. Step-controlled epitaxial growth of SiC: high quality homoepitaxy. Materials Science and Engineering, 1997, vol. 20, pp. 125–166.
17. Ha M., Jeong S. A review of the simulation studies on the bulk growth of silicon carbide single crystals. Journal of the Korean Ceramic Society, 2022, vol. 59, pp. 153–179.
18. Wu K., Mei Q., Liu H. Vapor Deposition Growth of SiC Crystal on 4H‒SiC Substrate by Molecular Dynamics Simulation. Crystals, 2023, vol. 13, pp. 715–730.
19. Heine V., Cheng C., Needs R.J. The Preference of Silicon Carbide for Growth in the Metastable Cubic Form. Journal of the American Ceramic Society, 1991, vol. 74, pp. 2630–2633.
20. Wagner G., Schulz D., Siche D. Vapour phase growth of epitaxial silicon carbide layers. Progress in Crystal Growth and Characterization of Materials, 2003, vol. 47, pp. 139–165.
21. Tanaka S., Kern R.S., Davis R.F. Effects of gas flow ratio on silicon carbide thin film growth mode and polytype formation during gas-source molecular beam epitaxy. Applied Physics Letters, 1995, vol. 65, pp. 2851–2853.
22. Kotamraju S., Krishnan B., Melnychuk G. et al. Low-temperature homoepitaxial growth of 4H‒SiC with CH3Cl and SiCl4 precursors. Journal of Crystal Growth, 2010, vol. 312, pp. 645–650.
23. Kimoto T., Nishino H., Yoo W.S. et al. Growth mechanism of 6H‒SiC instep-controlled epitaxy. Journal of applied physics, 1993, vol. 73, pp. 726–732.
24. Danno K., Kimoto T., Hashimoto K. et al. Low-concentration deep traps in 4H‒SiC grown with high growth rate by chemical vapor deposition. Japanese Journal of Applied Physics, 2004, vol. 43, pp. 969–L971.
25. Tsuchida H., Kamata I., Nagano M. Investigation of defect formation in 4H‒SiC epitaxial growth by X-ray topography and defect selective etching. Journal of Crystal Growth, 2007, vol. 306, pp. 254–261.
26. Hauer B., Marvinney C.E., Lewin M. et al. Exploiting Phonon-Resonant Near-Field Interaction for the Nanoscale Investigation of Extended Defects. Advanced Functional Materials, 2020, vol. 30, p. 1907357.
27. Okada T., Kimoto T., Yamai K. et al. Crystallographic defects under device-killing surface faults in a homoepitaxially grown film of SiC. Materials Science and Engineering, 2003, vol. 361, pp. 67–74.
28. Kimoto T., Chen Z.Y., Tamura S. et al. Surface Morphological Structures of 4H‒, 6H‒ and 15R‒SiC (0001) Epitaxial Layers Grown by Chemical Vapor Deposition. Japanese Journal of Applied Physics, 2001, vol. 40, pp. 3315–3319.
29. Aigo T., Ito W., Tsuge H. et al. Formation of Epitaxial Defects by Threading Screw Dislocations with a Morphological Feature at the Surface of 4º Off-Axis 4H–SiC Substrates. Materials Science Forum, 2013, vol. 740–742, pp. 629–632.
30. Ghezellou M., Hassan J. Influence of Different Hydrocarbons on Chemical Vapor Deposition Growth and Surface Morphological Defects in 4H‒SiC Epitaxial Layers. Physica Status Solidi (b), 2024, vol. 261, pp. 720–733.
31. Powell J.A., Larkin D.J. Process-Induced Morphological Defects in Epitaxial CVD Silicon Carbide. Physica Status Solidi (b), 1997, vol. 202, pp. 529–548.
32. Kimoto T., Miyamoto N., Matsunami H. Performance limiting surface defects in SiC epitaxial p-n junction diodes. IEEE Transactions on Electron Devices, 1999, vol. 46, pp. 471–477.
33. Long H., Ren N., Guo Q. et al. Understanding the breakdown asymmetry of 4H‒SiC power diodes with extended defects at locations along step-flow direction. Journal of Applied Physics, 2020, vol. 128, pp. 164–175.
34. Ohtani N. Toward the reduction of performance-limiting defects in SiC epitaxial substrates. ECS Transactions, 2011, vol. 41, pp. 253–257.
35. Kamata I., Tsuchida H., Jikimoto T. et al. Influence of 4H‒SiC Growth Conditions on Micropipe Dissociation. Japanese Journal of Applied Physics, 2002, vol. 41, pp. 1137–L1139.
36. Yang J., Song H., Jian J. et al. Characterization of morphological defects related to micropipes in 4H–SiC thick homoepitaxial layers. Journal of Crystal Growth, 2021, vol. 568, p. 126182.
37. Nakamura S., Kimoto T., Matsunami H. Effect of C/Si Ratio on Spiral Growth on 6H‒SiC (0001). Japanese Journal of Applied Physics, 2003, vol. 42, pp. 846–L848.
38. Kimoto T., Feng G., Hiyoshi T. et al. Defect Control in Growth and Processing of 4H‒SiC for Power Device Applications. Materials Science Forum, 2010, vol. 648, pp. 645–650.
39. Muzykov P.G., Kennedy R.M., Capell C. et al. Physical phenomena affecting performance and reliability of 4H‒SiC bipolar junction transistors. Microelectronics Reliability, 2009, vol. 49, pp. 32–37.
40. Ha S., Skowronski M., Rowland L.B. et al. Dislocation conversion in 4H silicon carbide epitaxy. Journal of Crystal Growth, 2002, vol. 244, pp. 257–266.
41. Tsuchida H., Ito M., Kamata I. et al. Fast Epitaxial Growth of 4H–SiC and Analysis of Defect Transfer. Materials Science Forum, 2009, vol. 61, pp. 67–72.
42. Skowronski M., Ha S. Degradation of hexagonal silicon-carbide-based bipolar devices. Journal of Applied Physics, 2009, vol. 99, pp. 101‒109.
43. Hong M.H., Samant A.V., Pirouz P. Stacking fault energy of 6H–SiC and 4H–SiC single crystals. Philosophical Magazine, 2000, vol. 80, pp. 919–935.
44. Zhang X., Skowronski M., Liu K.X. et al. Glide and multiplication of basal plane dislocations during 4H‒SiC homoepitaxy. Journal of Applied Physics, 2007, vol. 102, p. 093520.
45. Zhang X., Miyazawa T., Tsuchida H. Critical Conditions of Misfit Dislocation Formation in 4H‒SiC Epilayers. Materials Science Forum, 2012, vol. 717, pp. 313–318.
The article examines the correlation dependences between the change in the color distance of aluminum alloy samples with epoxy and fluoropolyurethane enamels with red and gray pigments when exposed to natural conditions of three climatic zones and laboratory conditions. It is shown that the use of a model of color distance change, taking into account the dose of solar radiation, and the obtained correlation dependences allows to accurately calculate the duration of laboratory simulation tests.
2. Zhang Ti., Zhang Te., He Y. et al. Corrosion and aging of organic aviation coatings: A review. Chinese Journal of Aeronautics, 2023, vol. 36, no. 4, pp. 1–35.
3. Huang H., Guo H., Feng Y. Study on UV-aging performance of fluorinated polymer coating and application on painted muds. Materials Research Express, 2021, vol. 8, no. 1, art. 015301.
4. Cai G., Wang H., Jiang D., Dong Z. Degradation of fluorinated polyurethane coating under UVA and salt spray. Part I: Corrosion resistance and morphology. Progress in Organic Coatings, 2018, vol. 123, pp. 337–349.
5. Cai G., Zhang D., Jiang D., Dong Z. Degradation of fluorinated polyurethane coating under UVA and salt spray. Part II: Molecular structures and depth profile. Progress in Organic Coatings, 2018, vol. 124, pp. 25–32.
6. Lebedev M.P., Startsev O.V., Koval T.V., Veligodskii I.M. Multiplet relaxation α-transitions in a fluororethane coating after climatic aging. Doklady Rossiyskoy akademii nauk. Khimiya, nauki o materialakh, 2024, vol. 516, no. 1, pp. 45–51.
7. Isupov V.V., Startsev O.V. Numerical methods in dynamic mechanical spectroscopy of polymers. Mathematical models and numerical methods of continuum mechanics: reports Int. conf. dedicated to the 75th anniversary of the outstanding mathematician and mechanic, organizer of science academician N.N. Yanenko. Ed. Yu.I. Shokin. Novosibirsk: Publ. SB RAS, 1996, pp. 293–294.
8. Startsev O.V., Perepechko I.I. Molecular mobility and relaxation processes in the epoxy matrix of a composite. 1. Influence of the type of reinforcing filler. Mekhanika kompozitnykh materialov, 1984, no. 3, pp. 387–391.
9. Startsev V.O., Nizina T.A., Startsev O.V. A colour criterion of the climatic ageing of an epoxy polymer. International Polymer Science and Technology, 2016, vol. 43, no. 8, pp. 45–48.
10. Kablov E.N., Startsev O.V., Krotov A.S., Kirillov V.N. Climatic aging of composite aviation materials: 3. Significant aging factors. Russian Metallurgy (Metally), 2012, no. 4, pp. 323–329.
11. Dexter H.B. Long-term environmental effects and flight service evaluation of composite materials: technical report TM-89067. NASA, 1987, 188 р.
12. Kablov E.N., Lebedev M.P., Startsev O.V., Golikov N.I. Climatic tests of materials, structural elements, machinery and equipment in conditions of extremely low temperatures. Proceedings of the VI Eurasian Symposium on the Problems of Strength of Materials and Machines for Cold Climate Regions EURASTRENCOLD–2013, Yakutsk, 2013, pp. 5–7.
13. Startsev O.V., Lebedev M.P., Kychkin A.K. Aging of polymer composite materials in conditions of extremely cold climate. Izvestiya Altayskogo gosudarstvennogo universiteta, 2020, no. 1 (111), pp. 41–51.
14. Malshe V.C., Waghoo G. Weathering study of epoxy paints. Progress in Organic Coatings, 2004, vol. 51, no. 4, pp. 267–272.
15. Cocuzzi D.A., Pilcher G.R. Ten-year exterior durability test results compared to various accelerated weathering devices: Joint study between ASTM International and National Coil Coatings Association. Progress in Organic Coatings, 2013, vol. 76, pp. 979–984.
16. Pavlov A.V., Andreeva N.P., Pavlov M.R., Merkulova Yu.I. Climatic tests of paint coating based on fluoroplastic and features of its destruction. Trudy VIAM, 2019, no. 5, paper no. 12. Available at: http://www.viam-works.ru (accessed: March 10, 2025). DOI: 10.18577/2307-6046-2019-0-5-103-110.
17. Kablov E.N., Startsev O.V., Medvedev I.M., Panin S.V. Corrosive aggressiveness of the coastal atmosphere. Part 1. Influencing factors (review). Korroziya: materialy, zashchita, 2013, no. 12, pp. 6–18.
18. Kablov E.N., Startsev O.V., Medvedev I.M. Corrosive aggressiveness of the coastal atmosphere. Part 2. New approaches to assessing the corrosivity of coastal atmospheres. Korroziya: materialy, zashchita, 2016, no. 1, pp. 1–15.
19. Startsev O.V., Yarmolinets L.V., Rudnev V.P., Tsintsadze G.B. Forecasting the light transmission of organic glass during climatic aging. Aviatsionnaya promyshlennost, 1990, no. 2, pp. 64–65.
20. Startsev O.V., Tsintsadze G.B., Vapirov Yu.M., Kiryushkin S.G. Climatic aging of transparent thermoplastic films. 1. Polyethylene. Polimernye opticheskie materialy. Ed. B.R. Smirnov. Chernogolovka: Publ. house of the Institute of Chemical Physics of the USSR Academy of Sciences, 1989, pp. 152–177.
21. Startsev O.V. Climatic aging of transparent thermoplastic films. 2. Polycarbonate. Polimernye opticheskie materialy. Ed. B.R. Smirnov. Chernogolovka: Institute of Chemical Physics of the USSR Academy of Sciences, 1989, pp. 178–197.
22. Momber A.W., Buchbach S., Plagemann P., Marquardt T. Edge coverage of organic coatings and corrosion protection over edges under simulated ballast water tank conditions. Progress in Organic Coatings, 2017, vol. 108, pp. 90–92.
23. Pélissier K., Le Bozec N., Thierry D., Larché N. Evaluation of the Long-Term Performance of Marine and Offshore Coatings System Exposed on a Traditional Stationary Site and an Operating Ship and Its Correlation to Accelerated Test. Coatings, 2022, vol. 12, no. 11, р. 1758.
24. Bierwagen G.P., He L., Li J. et al. Studies of a new accelerated evaluation method for coating corrosion resistance – thermal cycling testing. Progress in Organic Coatings, 2000, vol. 39, no. 1, pp. 67–78.
25. Knudsen O.Ø., Skilbred A.W.B., Løken A. et al. Correlations between standard accelerated tests for protective organic coatings and field performance. Materials Today Communications, 2022, vol. 31, art. 103729.
26. Revin P.O., Makarenko A.V., Harisov R.A., Farhetdinov I.R. Research of underwater applied coatings for corrosion protection of port facilities. Science and Technologies: Oil and Oil Products Pipeline Transportation, 2022, vol. 12, no. 4, pp. 385–393.
27. LeBozec N., Thierry D., Le Calvé P. et al. Performance of marine and offshore paint systems: Correlation of accelerated corrosion tests and field exposure on operating ships. Materials and Corrosion, 2015, vol. 66, no. 3, pp. 215–225.
28. Li S., Bi H., Weinell C.E., Dam-Johansen K. A quantitative real-time evaluation of rust creep propagation in coating systems exposed to field testing and cyclic ageing test. Progress in Organic Coatings, 2023, vol. 184, art. 107866.
29. Saha J.K., Mitra P.K., Paul S., Singh D.D.N. Performance of different organic coatings on steel substrate by accelerated and in atmospheric exposure tests. Indian Journal of Chemical Technology, 2010, vol. 17, no. 2, pp. 102–110.
30. Chu M.T., Do D.T., Sereda V.N., Karpov V.A. Correlation between climate testing methods and service life prediction for paint systems. International Journal of Corrosion and Scale Inhibition, 2023, vol. 12, no. 3, pp. 1363–1373.
31. Gao J., Hu W., Wang R., Li X. Study on a multifactor coupling accelerated test method for anticorrosive coatings in marine atmospheric environments. Polymer Testing, 2021, vol. 100, art. 107259.
32. Kuznetsova V.A., Shapovalov G.G., Marchenko S.A., Kovrizhkina N.A., Silaeva A.A. Paint coatings on the basis of epoxy and acrylic diphasic polymeric system for coloring of elements of cabin of pilots and dashboards. Trudy VIAM, 2020, no. 12 (94), paper no. 09. Available at: http://www.viam-works.ru (accessed: March 10, 2025). DOI: 10.18577/2307-6046-2020-0-12-87-95.
33. Kuznetsova V.A., Marchenko S.A., Emelyanov V.V., Zheleznyak V.G. Study of the influence of molecular mass of epoxy oligomers and hardeners on the operational properties of paint coatings. Aviation materials and technology, 2021, no. 1 (62), paper no. 07. Available at: http://www.journal.viam.ru (accessed: March 10, 2025). DOI: 10.18577/2713-0193-2021-0-1-71-79.
34. Kozlova A.A., Kuznetsova V.A., Kozlov I.A., Naprienko S.A., Silaeva A.A. The effect of prolonged heating on the properties of protective coatings for aluminum alloy system Al–Si–Mg. Aviacionnye materialy i tehnologii, 2019, no. 2 (55), pp. 74–80. DOI: 10.18577/2071-9140-2019-0-2-74-80.
35. Startsev V.O., Valevin E.O., Gulyaev A.I. The influence of polymer composite materials’ surface weathering on its mechanical properties. Trudy VIAM, 2020, no. 8 (90), paper no. 07. Available at: http://www.viam-works.ru (accessed: March 10, 2025). DOI: 10.18577/2307-6046-2020-0-8-64-76.
36. Startsev V.O. Climate aging of paint coating systems. Part 2. Influence of different climatic zones. Trudy VIAM, 2025, no. 6 (148), paper no. 07. Available at: http://www.viam-works.ru (accessed: June 06, 2025). DOI: 10.18577/2307-6046-2025-0-6-86-97.
37. Startsev V.O., Kogan A.M., Zeleneva T.O. Climate aging of paint coating systems. Part 1. Effect of long-term exposure on color characteristics. Trudy VIAM, 2025, no. 5 (147), paper no. 08. Available at: http://www.viam-works.ru (accessed: May 19, 2025). DOI: 10.18577/2307-6046-2025-0-5-99-111.
38. Startsev V.O., Nizina T.A. The modeling of epoxy polymers weathering by the color characteristics measurements. Trudy VIAM, 2015, no. 12, paper no. 10. Available at: http://www.viam-works.ru (accessed: March 10, 2025). DOI: 10.18577/2307-6046-2015-0-12-10-10.
The article describes the testing of radiographic technical films according to the regulations of GOST R ISO 11699-1–2023 and according to the method developed at NRC «Kurchatov Institute» – VIAM. The obtained informative characteristics of radiographic films are compared. The article shows that obtaining a characteristic curve according to the requirements of GOST R ISO 11699-1–2023 does not take into account the influence of X-ray radiation energy. The properties of the analog of the characteristic curve according to the developed method take into account its dependence on the radiation energy, i.e. it determines not only its sensitometric properties, but also its flaw detection properties.
2. Kablov E.N., Ospennikova O.G., Kudinov I.I., Golovkov A.N., Generalov A.S., Knyazev A.V. Assessment of the probability of detecting operational defects in aircraft parts made of heat-resistant alloys using flaw detection fluids of domestic and foreign production. Defektoskopiya, 2021, no. 1, pp. 64–71.
3. Kablov E.N., Belov E.V., Trapeznikov A.V., Leonov A.A., Zaitsev D.V. Strengthening features and aging kinetics of high-strength cast aluminum alloy AL4MS based on Al–Si–Cu–Mg system. Aviation materials and technologies, 2021, no. 2 (63), paper no. 03. Available at: http://www.journal.viam.ru (accessed: March 21, 2024). DOI: 10.18577/2713-0193-2021-0-2-24-34.
4. State Standard R ISO 11699-1‒2023. Non-destructive testing. Radiographic films for industrial radiography. Part 1. Classification of film systems for industrial radiography. Moscow: RST, 2023, 12 p.
5. Kosarina E.I., Stepanov A.V., Demidov A.A., Krupnina O.A. Testing methods for radiographic films. Vestnik MGTU im. Baumana. Ser.: Mashinostroenie, 2015, no. 3, pp. 80–89.
6. Rashchupkin V.P., Korytov M.S. Metal defects: textbook. Omsk: SibADI Publ. House, 2006, 38 p.
7. Klyuev V.V., Sosnin F.R. Theory and Practice of Radiation Monitoring: A Textbook for University Students. Moscow: Mashinostroenie, 1998, 170 p.
8. Kuleshov V.K., Sertakov Yu.I., Efimov P.V., Shumikhin V.F. Radiographic Testing Practice: A Manual. Tomsk: Tomsk Polytech. Univ. Publ. House, 2009, 288 p.
9. Gnedin M.M., Shablov S.V. Requirements of Regulatory Documentation for Selecting Radiographic Film. V mire nerazrushayushchego kontrolya, 2019, no. 1, pp. 14–19.
10. Velichko V.Ya. Quality Parameters of Radiographic Images of Welded Joints According to the New Standards GOST ISO 17636-1.2–2017. V mire nerazrushayushchego kontrolya, 2018, no. 3, pp. 46–55.
11. Demidov A.A., Kosarina E.I., Kourova N.V., Mikhailova N.A. Sensitometer for building characteristic curves of x-ray films and determining the sensitivity to radiation and gradient in accordance with ISO 11699-1:2008 requirements. Trudy VIAM, 2020, no. 6-7 (89), paper no. 09. Available at: http://www.viam-works.ru (accessed: December 12, 2024). DOI: 10.18577/2307-6046-2020-0-67-81-90.
12. Makarov A.V. Chemical and photographic processing of radiographic films. V mire nerazrushayushchego kontrolya, 2021, no. 1, pp. 60–68.
13. Kovalenko T.S. «Burned» type defect on cast billets of heat-resistant nickel alloys (type ZhS32). Aviation materials and technologies, 2023, no. 4 (73), paper no. 02. Available at: http://www.journal.viam.ru (accessed: December 19, 2024). DOI: 10.18577/2713-0193-2023-0-4-14-22.
14. Leonov A.A., Trofimov N.V., Panaetov V.G., Kudasov S.V., Shirokozhukov А.V. Magnesium alloys in the design of navigation system products. Aviation materials and technologies, 2024, no. 3 (76), paper no. 03. Available at: http://www.journal.viam.ru (accessed: December 15, 2024). DOI: 10.18577/2713-0193-2024-0-3-25-34.
15. Svetlov I.L., Petrushin N.V., Epishin A.I., Karashaew M.M., Elyutin E.S. Single crystals of nickel-based superalloys alloyed with rhenium and ruthenium (review). Part 1. Aviation materials and technologies, 2023, no. 1 (70), paper no. 03. Available at: http://www.journal.viam.ru (accessed: December 20, 2024). DOI: 10.18577/2713-0193-2023-0-1-30-50.
16. Makarov A.V. New documents on non-destructive testing in the field of nuclear energy. Radiographic testing. V mire nerazrushayushchego kontrolya, 2020, no. 2, pp. 46–51.
The articlecompares the X-ray diffraction and metallographic methods for determining β- phase proportion in titanium alloys. The values of the β-phase proportion determined by the metallographic method are inflated against those determined by the X-ray method. These results show the necessity to improve these methods. The study of residual stresses has shown that when applying macrodeformation, the rate of the β-phase lattice deformation growth is higher than the same of the α-phase. The paper proposes to determine the Poisson’s ratio by the X-ray method using the accessoriez for modeling of bending or uniaxial tension tests.
2. Gorelik S.S., Skakov Yu.A., Rastorguev L.N. X-ray and electron-optical analysis: textbook for universities. 4th ed., supple. and rev. Moscow: MISiS, 2002, 360 p.
3. Umansky Ya.S., Skakov Yu.A., Ivanov A.N., Rastorguev L.N. Crystallography, X-ray and electron microscopy. Moscow: Metallurgiya, 1982, 632 p.
4. EN 15305:2008. Non-destructive Testing. Test Method for Residual Stress analysis by X-ray Diffraction. BSI Standards Publication, 2009, 88 p.
5. Medvedev P.N., Kashapov O.S., Reshetilo L.P. Study of surface layers of titanium alloy VT41 after mechanical treatment. Voprosy materialovedeniya, 2022, no. 3 (111), pp. 49–58.
6. Medvedev P.N., Gulyaev A.I. Analysis of the spatial distribution of cracks in a heat-resistant nickel alloy manufactured using SLM technology. Aviacionnye materialy i tehnologii, 2020, no. 1 (58), pp. 12–18. DOI: 10.18577/2071-9140-2020-0-1-12-18.
7. Kablov E.N., Antipov V.V. The role of new generation materials in ensuring the technological sovereignty of the Russian Federation. Vestnik Rossiyskoy akademii nauk, 2023, vol. 93, no. 10, pp. 907–916.
8. Kablov E.N., Nochovnaya N.A., Shiryaev A.A., Davydova E.A. Investigation of structural and phase transformations in metastable β-titanium alloys and effect of cooling rate from homogenization temperature on structure and properties of VT47 alloy. Part 2. Trudy VIAM, 2020, no. 8 (90), paper no. 02. Available at: http://www.viam-works.ru (accessed: July 28, 2024). DOI: 10.18577/2307-6046-2020-0-8-11-19.
9. Kalashnikov V.S., Reshetilo L.P., Chuchman O.V., Naprienko S.A. Strength and reliability of rods and rotor blade stamps made of heat-resistant industrial titanium alloys and modern pseudo-α-titanium alloy. Trudy VIAM, 2022, no. 2 (108), paper no. 02. Available at: http://www.viam-works.ru (accessed: July 28, 2024). DOI: 10.18577/2307-6046-2022-0-2-13-31.
10. Oglodkov M.S., Kashapov O.S., Kalashnikov V.S., Kondratieva A.R. Comparative analysis of the characteristics of domestic alloys VT8, VT8M, VT8M-1, VT9 and Ti6242S alloy (USA) as applied to high-pressure compressor blades of aircraft gas turbine engines. Aviation materials and technologies, 2024, no. 3 (76), paper no. 04. Available at: http://www.journal.viam.ru (accessed: August 27, 2024). DOI: 10.18577/2713-0193-2024-0-3-35-50.
11. Kashapov O.S., Pavlova T.V., Kalashnikov V.S., Zavodov A.V. Prerequisites for the development of new low-alloyed technological medium strength titanium alloy with operating temperature up to 400–450 °С, capable of strengthening. Aviation materials and technologies, 2024, no. 1 (74), paper no. 03. Available at: http://www.journal.viam.ru (accessed: August 28, 2024). DOI: 10.18577/2713-0193-2024-0-1-33-50.
12. Kablov E.N., Putyrskiy S.V., Yakovlev A.L., Krokhina V.A., Naprienko S.A. Study of fatigue fracture resistance of stampings made of high-strength titanium alloy VT22M, manufactured with final deformation in the (α+β)- and β-regions. Titan, 2021, no. 1 (70), pp. 26–33.
13. Peskova A.V., Sukhov D.I., Mazalov P.B. Examination of the formation of the titanium alloy VT6 structure obtained by additive manufacturing. Aviacionnye materialy i tehnologii, 2020, no. 1 (58), pp. 38–44. DOI: 10.18577/2071-9140-2020-0-1-38-44.
14. Kolpachev B.A., Elagin V.I., Livanov V.A. Metallurgy and heat treatment of non-ferrous metals and alloys: textbook for universities. 3rd ed., suppl. and rev. Moscow: MISiS, 2001, 416 p.
15. Volkov N.V., Skrytny V.I., Filippov V.P., Yaltsev V.N. Physical materials science: textbook for universities in 8 vols. Moscow: NRNU MEPhI, 2012, vol. 3: Methods for studying the structural and phase state of materials, 800 p.
The article provides an overview of the development of magnetic non-destructive testing technologies. After a brief summary of theoretical studies of the effect of magnetic stress coupling, three popular magnetic non-destructive testing technologies based on: detection of the defect scattering field, the Barkhausen effect and magnetic memory of metal are considered. The article considers the physical mechanism and some important experimental results related to the three technologies of non-destructive testing. The problems associated with each method in this area are also summarized.
2. Tikazumi S. Physics of Ferromagnetism. Magnetic Characteristics and Practical Applications. Moscow: Mir, 1987, 419 p.
3. Novikov V.F. Magnetoelastic Properties of Plastically Deformed and Complex-Stressed Magnets. Moscow: Nedra, 1997, 196 p.
4. Bokov V.A. Physics of Magnets: textbook for Universities. St. Petersburg: Nevsky Dialect, 2002, 155 p.
5. Spitsyn V.I., Troitsky O.A. Electroplastic Deformation of Metals. Moscow: Nauka, 1985, 160 p.
6. Dubov A.A., Dubov A.A., Kolokolnikov S.M. Method of magnetic memory of metal and control devices: tutorial. Moscow: Spektr, 2012, 395 p.
7. Bida G.V. Magnetic properties of heat-treated steels. Ekaterinburg: Ural Branch of the RAS, 2005, 218 p.
8. Lindgren M., Lepistö T. Modeling of magnetomechanical effect behaviors in a giant magnetostrictive device under compressive stress X. Sensors and Actuators A Physical, 2008, vol. 143 (2), pp. 204–214. DOI: 10.1016/j.sna.2007.10.063.
9. Lindgren M., Lepistö T. Effect of prestraining on Barkhausen noise vs. stress relation. NDT & E International, 2001, vol. 34 (5), pp. 337–344. DOI: 10.1016/S0963-8695(00)00073-6.
10. Brown W.F. Irreversible Magnetic Effects of Stress. Physical Review, 1949, vol. 75, pp. 147–154.
11. Cullity B.D. Introduction to Magnetic Materials. N.-Y.: Addison-Wesley Publishing Company, 1972, 564 p.
12. Sablik M.J., Burkhardt G.L., Kwun H., Jiles D.C. A model for the effect of stress on the low-frequency harmonic content of the magnetic induction in ferromagnetic materials. Journal of Applied Physics, 1988, vol. 63 (8), pp. 3930–3932. DOI: 10.1063/1.340609.
13. Jiles D.C., Atherton D.L. Theory of ferromagnetic hysteresis. Journal of Magnetism and Magnetic Materials, 1986, vol. 61 (1-2), pp. 48–60. DOI: 10.1016/0304-8853(86)90066-1.
14. Wang Z.D., Yao K., Ding K.Q. Theoretical studies of metal magnetic memory technique on magnetic flux leakage signals. NDT & E International, 2010, vol. 43 (4), pp. 354–359. DOI: 10.1016/j.ndteint.2009.12.006.
15. Carman G.P., Mitrovic M. Nonlinear Constitutive Relations for Magnetostrictive Materials with Applications to 1-D Problems. Journal of Intelligent Material Systems and Structures, 1995, vol. 6 (5), pp. 673–683. DOI: 10.1177/1045389x9500600508.
16. Wan Y., Fang D., Hwang K.C. Non-linear constitutive relations for magnetostrictive materials. International Journal of Non-Linear Mechanics, 2003, vol. 38 (7), pp. 1053–1065. DOI: 10.1016/s0020-7462(02)00052-5.
17. Wang Z.D., Deng B., Yao K. Physical model of plastic deformation on magnetization in ferromagnetic materials. Journal of Applied Physics, 2011, vol. 109, art. 083928. DOI: 10.1063/1.3574923.
18. Zatsepin H.N., Shcherbinin V.E. On the calculation of the magnetostatic field of surface defects. Part 1. Topography of the fields of defect models. Defektoskopiya, 1966, no. 5, pр. 50–59.
19. Sapozhnikov A.B. Some simple nonlinear calculations in the theory of magnetic flaw detection. Trudy SFTI pri TGU, 1950, is. 30, pр. 81–105.
20. Shcherbinin V.E., Pashagin A.I. The influence of the length of a defect on the magnitude of its magnetic field. Defektoskopiya, 1972, no. 4, pp. 74–82.
21. Dobmann G. Magnetic leakage techniques in NDT. A state-of-the-art survey of the capabilities for defect detection and sizing. Electromagnetic Methods of NDT, 1985, vol. 3, pp. 71–95.
22. Li Y., Tian G.Y., Ward S. Numerical simulations on electromagnetic NDT at high speed. Insight-Non-Destructive Testing and Condition Monitoring, 2006, vol. 48 (2), pp. 103–108. DOI: 10.1784/insi.2006.48.2.103.
23. Al-Naemi F.I., Hall J.P., Moses A.J. FEM modeling techniques of magnetic flux leakage-type NDT for ferromagnetic plate inspections. Journal of Magnetism and Magnetic Materials, 2006, vol. 304 (2), pp. 790–793. DOI: 10.1016/j.jmmm.2006.02.225.
24. Babbar V., Shiari B., Clapham L. Mechanical Damage Detection With Magnetic Flux Leakage Tools: Modeling the Effect of Localized Residual Stresses. IEEE Transactions on Magnetics, 2004, vol. 40 (1), pp. 43–49. DOI: 10.1109/TMAG.2003.821121.
25. Ovanesova A.V., Suárez L.E. Applications of wavelet transforms to damage detection in frame structures. Engineering Structures, 2004, vol. 26 (1), pp. 39–49. DOI: 10.1016/j.engstruct.2003.
26. Barkhausen Н. Zwei mit Hilfe der neuen Verstarker entdeckte Erscheinunften. Physische Zeitschrift, 1919, jg. 20, no. 17, pp. 401–403.
27. Clapham L., White S., Lee J., Atherton D.L. Stress measurement using magnetic Barkhausen noise and metal magnetic memory testing. Journal of Applied Physics, 2000, vol. 88 (4), pp. 2163–2168.
28. Stefanita С.-G., Atherton D.L., Clapham L. Plastic versus elastic deformation effects on magnetic Barkhausen noise in steel. Acta Materialia, 2000, vol. 48 (13), pp. 3545–3551. DOI: 10.1016/S1359-6454(00)00134-8.
29. Rautioaho R., Karjalainen P., Moilanen M. Improvement of the Barkhausen noise method for stress evaluation. Journal of Magnetism and Magnetic Materials, 1988, vol. 73 (1), pp. 96–102. DOI: 10.1016/0304-8853(88)90174-6.
30. Krause T.W., Pulfer N., Weymann P., Atherton D.L. Magnetic Barkhausen noise: stress-dependent mechanisms in steel. IEEE Transactions on Magnetics, 1996, vol. 32, is. 5, pp. 4764–4766. DOI: 10.1109/20.539144.
31. Kleber X., Vincent A. On the Role of Residual Internal Stresses and Dislocations on Barkhausen Noise in Plastically Deformed Steel. NDT & E International, 2004, vol. 37, pp. 439–445. DOI: org/10.1016/j.ndteint.2003.11.008.
32. Vaidyanathan S., Moorthy V., Kalyanasundaram P. et al. Effect of different stages of tensile deformation on micromagnetic parameters in high-strength, low-alloy steel. Metallurgical and Materials Transactions A, 1999, vol. 30 (8), pp. 2067–2072. DOI: 10.1007/s11661-999-0017-9.
33. Dhar A., Clapham L., Atherton D.L. Influence of uniaxial plastic deformation on magnetic Barkhausen noise in steel. NDT & E International, 2001, vol. 34, pp. 507–514.
34. Saquet O., Chicois J., Vincent A. Barkhausen Noise from Plain Carbon Steel. Analysis of the Influence of Microstructure. Materials Science and Engineering, 1999, vol. 269 (A), pp. 73–82. DOI: 10.1016/S0921-5093(99)00155-0.
35. Bhattacharya D.K., Vaidyanathan S. Effect of the Demagnetisation Factor on the Barkhausen Noise Signal. Journal of Magnetism and Magnetic Materials, 1997, vol. 166, pp. 111–116. DOI: 10.1016/S0304-8853(96)00444-1.
36. Dubov A.A. Detection of Metallurgical and Production Defects in Engineering Components Using Metal Magnetic Memory. Metallurgist, 2015, vol. 59 (1-2), pp. 164–167. DOI: 10.1007/s11015-015-0078-5.
37. Dong L., Xu B., Dong S. et al. Stress dependence of the spontaneous stray field signals of ferromagnetic steel. NDT & E International, 2009, vol. 42 (4), pp. 323–327. DOI: 10.1016/j.ndteint.2008.12.005.
38. Yao K., Wang Z.D., Deng B., Shen K. Experimental Research on Metal Magnetic Memory Method. Experimental Mechanics, 2011, vol. 52 (3), pp. 305–314. DOI: 10.1007/s11340-011-9490-3.
39. Changliang S., Shiyun D., Binshi X., Peng H. Stress concentration degree affects spontaneous magnetic signals of ferromagnetic steel under dynamic tension load. NDT & E International, 2010, vol. 43 (1), pp. 8–12. DOI: 10.1016/j.ndteint.2009.08.002.
40. Leng J., Xu M., Xu M., Zhang J. Magnetic field variation induced by cyclic bending stress. NDT & E International, 2009, vol. 42 (5), pp. 410–414. DOI: 10.1016/j.ndteint.2009.01.008.
41. Wilson J.W., Tian G.Y., Barrans S. Numerical simulation on magnetic flux leakage evaluation at high speed. Sensors and Actuators: Physical A, 2007, vol. 135 (2), pp. 381–387. DOI: 10.1016/j.ndteint.2005.10.006.
42. Roskosz M., Gawrilenko P. Analysis of changes in residual magnetic field in loaded notched samples. NDT & E International, 2008, vol. 41 (7), pp. 570–576. DOI: 10.1016/j.ndteint.2008.04.002.
43. Lednev I.S. Magnetic methods of non-destructive testing of aircraft parts. Aviation materials and technologies, 2024, no. 1 (74), paper no. 09. Available at: http://www.journal.viam.ru (accessed: December 11, 2024). DOI: 10.18577/2713-0193-2024-0-1-111-120.
44. Skorobogatko D.S., Golovkov A.N., Kudinov I.I., Knyazev A.V. Comparison of the surface free energy of alloys most commonly used in the aviation industry, using the interaction method Owens–Wendt–Rabel–Kaelble (OWRK). Aviation materials and technologies, 2024, no. 4 (77), paper no. 11. Available at: http://www.journal.viam.ru (accessed: December 11, 2024). DOI: 10.18577/2713-0193-2024-0-4-169-179.
45. Boychuk A.S., Dikov I.A., Generalov A.S., Slavin A.V. Automated non-destructive inspection of three-layer honeycomb structures’ samples by ultrasonic through-transmission technique. Aviacionnye materialy i tehnologii, 2020, no. 2 (59), pp. 74–80. DOI: 10.18577/2071-9140-2020-0-2-74-80.
46. Krasnov I.S., Lozhkova D.S., Dalin M.A. Evaluation of deficiency of titanium alloy forgings for probabilistic calculation of gas turbine engine disks fracture risk. Aviation materials and technologies, 2021, no. 2 (63), paper no. 12. Available at: https://www.journal.viam.ru (accessed: December 11, 2024). DOI: 10.18577/2713-0193-2021-0-2-115-122.
47. Kablov E.N., Antipov V.V. The role of new generation materials in ensuring the technological sovereignty of the Russian Federation. Vestnik Rossiyskoy akademii nauk, 2023, vol. 93, no. 10, pp. 907–916.
48. Kablov E.N., Evgenov A.G., Petrushin N.V., Bazyleva O.A., Mazalov I.S. New generation materials and digital additive technologies for the production of resource parts of FSUE VIAM. Part 4. Development of heat-resistant materials. Elektrometallurgiya, 2022, no. 5, pp. 8–19.
49. Kablov E.N., Babashov V.G., Balinova Yu.A., Maksimov V.G. Phase transformations in a composite material with an organic matrix filled with zirconium dioxide fibers. Teplofizika vysokikh temperatur, 2021, vol. 59, no. 1, pp. 62–68.
50. Kablov E.N., Chainikova A.S., Schegoleva N.E., Grashchenkov D.V., Kovaleva V.S., Belyanchikov I.O. Synthesis, structure, and properties of aluminosilicate glass ceramics modified with zirconium oxide. Neorganicheskie materialy, 2020, vol. 56, no. 10, pp. 1123–1129.
Heat-resistant alloys and steels
Nerush S.V., Chubov D.G., Kaplanskiy Yu.Yu., Suhov D.I. Investigation of experimental nickel-based heat-resistant alloy obtained by selective laser melting method
Sviridov A.V., Afanаsiev-Khodykin A.N., Galushka I.A. Features of formation of microstructure of soldered joints of nickel super alloys with iridium
Gorlov D.S., Alexandrov D.A., Cheredinov P.D. The possibilities of using ion-plasma technology in the creation of a wear-resistant coating to protect parts with low tempering temperature
Light-metal alloys
Volkova E.F., Akinina M.V., Mostyaev I.V., Alihanyan A.A., Leonov A.A. Magnesium alloys as the basis of metal matrix composite materials: a study of structure and properties
Composite materials
Kopylov A.V., Prokopenkov V.G., Slavin A.V., Kurnosov A.O. Study of water absorption process of hollow-fiber fiberglass based on analysis of nature-like technologies
Protective and functional
coatings
Kozhukharov M.S., Akhmadieva K.R., Bokov V.V., Izmalkov D.A. Methods of removal of moisture-proof electrical insulating coatings
Grunin A.A., Sidorov D.V., Schavnev A.A. Implementation of technology for chemical vapor deposition of silicon carbide in electronics. Part 2
Startsev V.O. Climate aging of paint coating systems. Part 3. Comparison of results of natural and accelerated climatic tests taking into account the effect of seasonality
Material tests
Osiyanenko N.V., Kosarina E.I., Demidov A.A., Grimova A.P. Determination of characteristics of radiographic films
Medvedev P.N., Moiseeva N.S., Kochubey A.Ya., Zhuravleva P.L. Structural factors determining applicability of the non-destructive X-ray diffraction method for asses-sing residual stress. Part 2
Lednev I.S. Magnetic methods of non-destructive testing of aircraft products