Articles
This paper presents the results of scientific and technical research on the compositions and manufacturing technologies of powder compositions for cold spraying on castings of aluminum and magnesium alloys. The conducted research includes investigations by foreign and Russian scientists in the field of technologies for improving the characteristics of alloys through the application of functional coatings, as well as local repair of products. Technologies that do not adversely affect the applied surface and eliminate defects without additional heating are of particular interest.
2. Kablov E.N. New generation materials and digital technologies for their processing. Vestnik Rossiyskoy akademii nauk, 2020, vol. 90, no. 4, pp. 331–334.
3. Kablov E.N., Belov E.V., Trapeznikov A.V., Leonov A.A., Zaitsev D.V. Strengthening features and aging kinetics of high-strength cast aluminum alloy AL4MS based on Al–Si–Cu–Mg system. Aviation materials and technologies, 2021, no. 2 (63), paper no. 03. Available at: http://www.journal.viam.ru (accessed: August 20, 2024). DOI: 10.18577/2713-0193-2021-0-2-24-34.
4. Mukhina I.Yu. Fundamentals of the technology of smelting magnesium alloys in protective environments. Liteynoe proizvodstvo, 2021, no. 1, pp. 2–8.
5. Kablov E.N., Akinina M.V., Volkova E.F., Mostyaev I.V., Leonov A.A. The research of aspects of phase composition and fine structure of magnesium alloy ML9 in the as-cast and heat-treated conditions. Aviacionnye materialy i tehnologii, 2020, no. 2 (59), pp. 17–24. DOI: 10.18577/2071-9140-2020-0-2-17-24.
6. Mukhina I.Yu., Koshelev O.V., Koshelev A.O., Ustinov S.V., Bobryshev B.L., Bobryshev D.V. Development of technologies for eliminating metallurgical defects in complex-contour magnesium casting. Proc. of the All-Rus. sci. and pract. conf. «High-tech technologies and materials in foundry production». Moscow: MMZ «Avangard», 2019, pp. 195–220.
7. Fomina M.A., Zakharov K.E., Yamshchikov E.I., Trofimov N.V. Selection and research of optimal paste formulation for local removal of corrosion products from magnesium alloys as well as the technology of it’s application. Aviation materials and technologies, 2023, no. 4 (73), paper no. 05. Available at: http://www.journal.viam.ru (accessed: February 20, 2025). DOI: 10.18577/2713-0193-2023-0-4-45-54.
8. Spray coating method: pat. CN213288673U; appl. 21.08.20; publ. 28.05.21.
9. Device and method for producing spherical type metallic magnesium powder: pat. СN112091330А; appl. 30.09.20; publ. 18.12.20.
10. Method of repairing surface corrosion of magnesium alloy CGDS: pat. СN111485234А; appl. 29.04.20; publ. 04.08.20.
11. Method of preparation for CGN and coating with high-etropy alloy: pat. СN113430513А; appl. 28.06.21; publ. 24.09.21.
12. Method for producing zinc coating on the surface of magnesium alloy: pat. СN107675163А; appl. 14.11.17; publ. 09.02.18.
13. Method for producing magnesium alloy: pat. СN114214614А; appl. 16.12.21; publ. 22.03.22.
14. Preparation of aluminum composition powders: pat. СN109252154А; appl. 14.07.17; publ. 22.01.19.
15. Method for manufacturing modified aluminum powder for CGDS: pat. СN115055677А; appl. 17.08.22; publ. 01.11.22.
16. Method for increasing corrosion resistance: pat. СN115537799А; appl. 07.11.22; publ. 30.12.22.
17. Method for the preparation of a powder mixture for CGDS: pat. СN110616424А; appl. 30.08.19; publ. 27.12.19.
18. Method for the production of Cu–Al2O3 powder compositions: pat. СN115283664A; appl. 13.07.22; publ. 04.11.22.
19. Method for obtaining and applying a corrosion-resistant coating: pat. СN113832456А; appl. 07.09.21; publ. 24.12.21.
20. Powder composition based on alloy 2024: pat. СN114318323А; appl. 10.12.21; publ. 12.04.22.
21. Method of manufacturing and applying coatings from aluminum alloys of series 7075, 6061, etc.: pat. US11215769В2; appl. 17.02.20; publ. 04.01.22.
22. Method for obtaining powder for CGDS with REE: pat. СN116237527А; appl. 13.03.23; publ. 09.06.23.
23. Method of manufacturing and composition of aluminum-based powder: pat. СN115961182А; appl. 21.12.22; publ. 14.04.23.
24. Method of spraying tin and aluminum powder onto a magnesium substrate: pat. JP2013029177A; appl. 29.07.11; publ. 07.02.13.
25. Powder composition using polylactic acid, alloys of grades AZ91D, AZ61A, AZ81A (8% Al – 1% Zn), powder manufacturing method: pat. JP2019123536A; appl. 18.01.18; publ. 17.05.22.
The selection of the optimal kinetic model of curing of a molten epoxy binder in a prepreg based on an equal-strength carbon fabric is considered step by step. The influence of the process stages and the reaction flow pattern on the coefficient of determination of experimental and calculated dependences is shown. Using the methods of multivariate nonlinear regression, two functional dependencies between factors and response were analyzed according to the Prout–Tompkins and Avrami–Erofeev models. The kinetic parameters of the curing reaction have been refined.
2. Kablov E.N. The Role of Fundamental Research in the Creation of Next-Generation Materials. XXI Mendeleev Congress on General and Applied Chemistry: in 6 vols. St. Petersburg, 2019, vol. 3, p. 24.
3. Kablov E.N. Materials – the Foundation of Any Business. Delovaya slava Rossii, 2013, no. 2 (40), рp. 4–9.
4. Amirova L.M., Andrianova K.A., Amirov R.R. Epoxy Resins and Composites Based on Them: textbook. Kazan: KNITU–KAI, 2021, 216 p.
5. Sitnikova V.E., Ponomareva A.A., Uspenskaya M.V. Methods of Thermal Analysis: workshop. St. Petersburg: ITMO University, 2021, 152 p.
6. Bolshakov V.A., Antyufeeva N.V. Evaluation of the curing process model of the adhesive binder in prepreg. Aviation materials and technologies, 2023, no. 4 (73), paper no. 07. Available at: http://www.journal.viam.ru (accessed: January 28, 2025). DOI: 10.18577/2713-0193-2023-0-4-66-77.
7. Terekhov I.V., Tkachuk A.I., Donetsky K.I., Karavaev R.Yu. Technological and operational characteristics of the VSE-62 low-viscosity epoxy resin with increased pot life and its application. Aviation materials and technologies, 2021, no. 2 (63), paper no. 05. Available at: http://www.journal.viam.ru (accessed: February 05, 2025). DOI: 10.18577/2713-0193-2021-0-2-43-50.
8. Malysheva G.V., Marakhovskiy P.S., Barinov D.Ya., Nikolaev E.V. Optimization of the curing modes of fiber-glass based on epoxy binder. Aviation materials and technologies, 2023, no. 2 (71), paper no. 08. Available at: http://www.journal.viam.ru (accessed: January 28, 2025). DOI: 10.18577/2713-0193-2023-0-2-94-103.
9. Tkachuk A.I., Donetsky K.I., Terekhov I.V., Karavaev R.Yu. The use of thermosetting matrices for the manufacture of polymer composite materials by the non-autoclave molding methods. Aviation materials and technology, 2021, no. 1 (62), paper no. 03. Available at: http://www.journal.viam.ru (accessed: February 05, 2025). DOI: 10.18577/2713-0193-2021-0-1-22-33.
10. Kiseleva D.V., Sadykova N.O. Kinetic analysis of thermogravimetric data of fossil bone remains. Proceedings of the A.N. Zavaritsky Institute of Geology and Geochemistry, 2010, no. 157, pp. 336–339.
11. Chutskova E.Yu., Aleksashin V.M., Barinov D.Ya., Dementyeva L.A. The differential scanning calorimetry application for kinetic regularities investigation of the epoxy adhesive VK-36R curing process. Trudy VIAM, 2015, no. 1, paper no. 12. Available at: http://www.viam-works.ru (accessed: February 10, 2025). DOI: 10.18577/2307-6046-2015-0-1-12-12.
12. Khalafyan A.A. STATISTICA 6. Statistical analysis of data. 3rd ed. Moscow: Binom-Press, 2007, 512 p.
13. Anoshkin A.N., Zuyko V.Yu., Shipunov G.S., Tretyakov A.A. Technologies and problems of mechanics of composite materials for creating a straightener blade for an aircraft engine. Vestnik PNIPU. Mekhanika, 2014, no. 4, pp. 5–44. DOI: 10.15593/perm.mech/2014.4.01.
14. Mishkin S.I. Application of carbon fiber plastics in constructions of pilotless devices (review). Trudy VIAM, 2022, no. 5 (111), paper no. 08. Available at: http://www.viam-works.ru (accessed: February 18, 2025). DOI: 10.18577/2307-6046-2022-0-5-87-95.
15. Gunyaev G.M., Zhelezina G.F., Krivonos V.V., Rumyantsev A.F. Polymer composite materials in aircraft structures. Aviatsionnye materialy i tekhnologii, 2002, no. S1, pp. 12–20.
16. Amirova L.R., Khamidullin O.L., Zalyalova G.M., Amirova L.M. Assessment of kinetic parameters of the curing process of epoxyanhydride systems by DSC. Izvestiya Akademii nauk. Seriya khimicheskaya, 2017, no. 3, pp. 483–487.
17. Abiev R.Sh., Bibik E.E., Vlasov E.A. New reference book for chemist and technologist. Electrode processes. Chemical kinetics and diffusion. Colloidal chemistry. St. Petersburg: Professional, 2004, 838 p.
18. Young D. Kinetics of Decomposition of Solids. Moscow: Mir, 1969, 263 p.
19. Khaskov M.A. Expansion of the Temperature–Time–Transformation Diagram Taking into Account the Thermophysical Properties of Components for Optimizing the Curing Modes of Polymer Composite Materials. Zhurnal prikladnoy khimii (Journal of Applied Chemistry), 2016, vol. 89, no. 4, pp. 510–518.
20. Irzhak T.F., Mezhikovsky S.M., Irzhak V.I. On the Physical Meaning of the Avrami Equation in Oligomer Curing Reactions. Vysokomolekulyarnye soedineniya, Series B, 2008, vol. 50, no. 8, pp. 1563–1565.
The article provides the results of a comprehensive assessment of the retention of the strength properties of VPS-58 fiberglass under tension, compression and bending in the temperature range of –60 to +80 °C in the initial state and after exposure to operating factors. These factors included exposure in a tropical climate chamber and hygrothermal aging under different conditions for 1 and 3 months, as well as thermal aging for 500, 1000, 1500 and 2000 hours. The influence of mycological environment and automotive fuels and lubricants on the bending strength limit of fiberglass and mass change was studied.
2. Kablov E.N., Laptev A.B., Prokopenko A.N., Gulyaev A.I. Relaxation of polymeric composite materials under the prolonged action of static load and climate (review). Part 1. Binders. Aviation materials and technologies, 2021, no. 4 (65), paper no. 08. Available at: http://www.journal.viam.ru (accessed: October 05, 2024). DOI: 10.18577/2713-0193-2021-0-4-70-80.
3. Putilina P.M., Kutsevich K.E., Isaev A.Yu. Carbon fiber-reinforced and glass fiber-reinforced polymer composites for the manufacture of components for unmanned aerial vehicles and their developing prospects. Trudy VIAM, 2023, no. 8 (126), paper no. 08. Available at: http://www.viam-works.ru (accessed: December 11, 2024). DOI: 10.18577/2307-6046-2023-0-8-85-99.
4. Kablov E.N. New Generation Materials and Digital Technologies for Their Processing. Vestnik Rossiyskoy akademii nauk, 2020, vol. 90, no. 4, pp. 331–334.
5. Perepelkin K.E. Reinforcing Fibers and Fiber Polymer Composites. Moscow: Scientific Foundations and Technologies, 2009, 386 p.
6. Mikhaylin Yu.A. Structural Polymer Composite Materials. Moscow: Scientific Foundations and Technologies, 2010, 822 p.
7. Evdokimov A.A., Petrova A.P., Raskutin A.E. et al. Polymer Composite Materials for Application in the Construction Industry. Reports VIII All-Rus. Youth Scientific Forum «OpenScience 2021». Gatchina: NRC «Kurchatov Institute» – PNPI, 2021, p. 124.
8. Vlasenko F.S., Raskutin A.E. Applying FRP in building structures. Trudy VIAM, 2013, no. 8, paper no. 03. Available at: http://viam-works.ru (accessed: December 11, 2024).
9. Evdokimov A.A., Imametdinov E.Sh., Malakhovskiy S.S. Strengthening concrete building structure via reinforcement external system from carbon plastic. Trudy VIAM, 2020, no. 10 (92), paper no. 08. Available at: http://www.viam-works.ru (accessed: December 11, 2024). DOI: 10.18577/2307-6046-2020-0-10-73-80.
10. Evdokimov A.A., Venediktova M.A., Vakhrusheva Ya.A., et al. Experience of using polymeric materials in the construction of prefabricated arched bridge structures. Proc. of the Int. Sc. and Pract. Conf. «Materials Science, Form-Generating Technologies and Equipment». Simferopol: KFU, 2024, pp. 127–136.
11. Tkachuk A.I., Zagora A.G., Donetsky K.I., Evdokimov A.A. Polymeric matrixes for composite materials used in the construction of quickly built bridge structures. Trudy VIAM, 2020, no. 12 (94), paper no. 07. Available at: http://www.viam-works.ru (accessed: December 11, 2024). DOI: 10.18577/2307-6046-2020-0-12-67-74.
12. Kogan D.I., Chursova L.V., Petrova A.P. Analysis of production technologies for continuously reinforced polymer composite materials using non-autoclave manufacturing methods (review). Kompozitsionnye materialy, 2011, no. 11, pp. 2–6.
13. Sedov L.N., Mikhailova Z.V. Unsaturated polyesters. Moscow: Khimiya, 1977, 232 p.
14. Bolshakov V.A., Antyufeeva N.V. Evaluation of the curing process model of the adhesive binder in prepreg. Aviation materials and technologies, 2023, no. 4 (73), paper no. 07. Available at: http://www.journal.viam.ru (accessed: October 20, 2024). DOI: 10.18577/2713-0193-2023-0-4-66-77.
15. Bobylev V.A. Special epoxy resins for adhesives and sealants. Klei. Germetiki. Tekhnologii, 2005, no. 5, pp. 8–11.
16. Tkachuk A.I., Donetsky K.I., Terekhov I.V., Karavaev R.Yu. The use of thermosetting matrices for the manufacture of polymer composite materials by the non-autoclave molding methods. Aviation materials and technology, 2021, no. 1 (62), paper no. 03. Available at: https://www.journal.viam.ru (accessed: December 21, 2024). DOI: 10.18577/2713-0193-2021-0-1-22-33.
17. Evdokimov A.A., Raskutin A.E., Mishkin S.I. et al. Arched bridges using carbon fiber arch elements. Konstruktsii iz kompozitsionnykh materialov, 2019, no. 2 (154), pp. 22–29.
18. Mikhaldykin E.S. Use of tube-concrete structures with a shell made of polymer composite materials in the construction of small bridges: thesis, Cand. Sc. (Tech.). Moscow, 2021, 111 p.
19. Kablov E.N. The role of fundamental research in the creation of new generation materials. Reports XXI Mendeleev Congress on General and Applied Chemistry: in 6 vols. St. Petersburg, 2019, vol. 4, p. 24.
20. Startsev V.O. The degradation of polymer composite materials in seawater (review). Aviation materials and technologies, 2023, no. 1 (70), paper no. 12. URL: http://www.journal.viam.ru (accessed: December 21, 2024). DOI: 10.18577/2713-0193-2023-0-1-148-170.
21. Sherriff M., Knibbs R.W., Langley P.G. Mechanism for the action of tackifying resins in pressure-sensitive adhesives. Journal of Applied Polymer Science, 1973, vol. 17, pp. 3423–3438.
22. Hata T., Tsukatani T., Mizumachi H. Holding power (tb) and sliding friction coefficient of pressure sensitive adhesives. Journal of the Adhesion Society Japan, 1994, vol. 30, pp. 307–312.
23. Allen K.W. A review of contemporary views of theories of adhesion. The Journal of Adhesion, 1987, vol. 21, pp. 261–277.
24. Leong Y.C., Lee L.M.S., Gan S.N. The viscoelastic properties of natural rubber pressure-sensitive adhesive using acrylic resin as a tackifier. Journal of Applied Polymer Science, 2003, vol. 88, pp. 2118–2123.
25. Fujita M., Takemura A., Ono H. et al. Effects of miscibility and viscoelasticity on shear creep resistance of natural-rubber-based pressure-sensitive adhesives. Journal of Applied Polymer Science, 2000, vol. 75, pp. 1535–1545.
26. Fujita M., Kajiyama M., Takemura A. et al. Miscibility between natural rubber and tackifiers. I. Phase diagrams of the blends of natural rubber with rosin and terpene resins. Journal of Applied Polymer Science, 1987, vol. 64, pp. 2191–2197.
27. Fujita M., Kajiyama M., Takemura A. et al. Miscibility between natural rubber and tackifiers. II. Phase diagrams of the blends of natural rubber and petroleum resins. Journal of Applied Polymer Science, 1998, vol. 67, pp. 221–229.
28. Fujita M., Kajiyama M., Takemura A. et al. Effects of miscibility on peel strength of natural-rubber-based pressure-sensitive adhesives. Journal of Applied Polymer Science, 1998, vol. 70, pp. 777–784.
29. Whitehouse R.S., Counsell P.J.C. Composition of rubber/resin adhesive films: 1. Surface composition as determined by ATR-IR spectroscopy. Polymer, 1976, vol. 17, pp. 699–704.
30. Sherriff M. Peel adhesion and viscoelasticity of rubber-resin blends. Journal of Applied Polymer Science, 1980, vol. 18, pp. 2597–2608.
31. Afanasyev D.V., Oshchepkov M.Yu. Non-autoclave technologies. Kompozitniy mir, 2010, no. 5, pp. 28–37.
32. Kirillov V.N., Startsev O.V., Efimov V.A. Climatic firmness and damageability of polymeric composite materials, problems and solutions. Aviacionnye materialy i tehnologii, 2012, no. S, pp. 412–423.
33. Kablov E.N., Startsev O.V. The basic and applied research in the field of corrosion and ageing of materials in natural environments (review). Aviacionnye materialy i tehnologii, 2015, no. 4 (37), pp. 38–52. DOI: 10.18577/2071-9140-2015-0-4-38-52.
34. Startsev V.O. Climatic resistance of polymer composite materials and protective coatings in a moderately warm climate: thesis, Dr of Sc. (Tech.). Moscow, 2018, 297 p.
35. Startsev V.O., Valevin E.O., Gulyaev A.I. The influence of polymer composite materials’ surface weathering on its mechanical properties. Trudy VIAM, 2020, no. 8 (90), paper no. 07. Available at: http://www.viam-works.ru (accessed: December 11, 2024). DOI: 10.18577/2307-6046-2020-0-8-64-76.
36. Volnov O.I., Dudukin D.O. Fiberglass. History of development, production technology, shaping of parts and modern application. Trudy NGTU im. R.E. Alekseeva, 2014, no. 5 (107), pp. 400–404.
37. Petrova A.P., Isaev A.Yu., Lukina N.F., Smirnov O.I. Influence of reinforcing fiber filler on the properties of epoxy-polysulfide adhesive VK-36. Klei. Germetiki. Tekhnologii, 2022, no. 8, pp. 2–7.
38. Zastrogina O.B., Serkova E.А., Sarychev I.A., Vavilova M.I. Influence of Russian and Chinese vinyflex on the properties of the VFT binder and fiberglass based on it. Aviacionnye materialy i tehnologii, 2020, no. 3 (60), pp. 3–9. DOI: 10.18577/2071-9140-2020-0-3-3-9.
39. Petrova A.P., Malysheva G.V. Adhesives, adhesive binders and adhesive prepregs: textbook. Ed. E.N. Kablov. Moscow: VIAM, 2017, 472 p.
The physical, mechanical, and performance properties, as well as the microstructure, of layered titanium-polymer materials VTPO-1 (with organoplastic) and VTPU-1 (with carbon fiber reinforced plastic) based on the VT23M titanium alloy developed by the Kurchatov Institute National Research Center – VIAM are presented. The research results demonstrate that they possess significant advantages (lower values) of fatigue crack growth rate compared to titanium alloys Ti-64 and VT23M (up to 40 times). Unlike titanium alloys, the fatigue crack growth rate of VTPU-1 initially decreases with increasing stress intensity factor and then approaches steady-state values.
2. Pechenyuk V.S., Popov Yu.I. Conceptual Design of a Mainline Aircraft Wing or Fuselage Structure Made of Metal-Polymer Composite Materials. Vestnik PNIPU. Aerokosmicheskaya tekhnika, 2021, no. 64, pp. 74–82.
3. Etri H., Korkmaz M., Gupta M. et al. A state of the art review on mechanical characteristics of different fiber metal laminates for aerospace and structural applications. The International Journal of Advanced Manufacturing Technology, 2022, no. 123, p. 2965–2991. DOI: 10.1007/s00170-022-10277-1.
4. Lavrov A.V., Erasov V.S., Podzhivotov N.Yu., Avtaev V.V. Optimization of structure of hybrid composition materials for aircraft. Trudy VIAM, 2016, no. 11 (47), paper no. 07. Available at: http://www.viam-works.ru (accessed: May 26, 2025). DOI: 10.18577/2307-6046-2016-0-11-7-7.
5. Kazemi M.E., Shanmugam L., Yang L., Yang J. A review on the hybrid titanium composite laminates (HTCLs) with focuses on surface treatments, fabrications, and mechanical properties. Composites. Part A, 2020, vol. 128, p. 105679. DOI: 10.1016/j.compositesa.2019.105679.
6. Muniyan V., Kumar V.V., Suyambulingam I. et al. A review of recent advancements in the impact response of fiber metal laminates. Heliyon, 2025, no. 11, p. e41756. DOI: 10.1016/j.heliyon.2025.e41756.
7. Yakovlev A.L., Nochovnaya N.A., Putyrskij S.V., Krohina V.A. Titanium-polymer laminated materials. Aviacionnye materialy i tehnologii, 2016, no. S2, pp. 56–62. DOI: 10.18577/2071-9140-2016-0-S2-56-62.
8. Liu D., Tang Y.J., Cong W.L. A review of mechanical drilling for composite laminates. Composite Structures, 2012, no. 94, pp. 1265–1279.
9. Benedict A.V. An Experimental Investigation of GLARE and Restructured Fiber Metal Laminates. Daytona Beach: Embry-Riddle Aeronautical University, 2012, 103 p.
10. Serebrennikova N.Yu., Antipov V.V., Senatorova O.G., Erasov V.S., Kashirin V.V. Hybrid multilayer materials based on aluminum-lithium alloys applied to panels of plane wing. Aviacionnye materialy i tehnologii, 2016, no. 3 (42), pp. 3–8. DOI: 10.18577/2071-9140-2016-0-3-3-8.
11. Joining of Polymer-Metal Hybrid Structures: Principles and Applications. 1st ed. Ed. S.T. Amancio-Filho, L.-A. Blaga. John Wiley & Sons Inc., 2018, 394 p.
12. Kablov E.N., Laptev A.B., Prokopenko A.N., Gulyaev A.I. Relaxation of polymeric composite materials under the prolonged action of static load and climate (review). Part 1. Binders. Aviation materials and technologies, 2021, no. 4 (65), paper no. 08. Available at: http://www.journal.viam.ru (accessed: October 14, 2025). DOI: 10.18577/2713-0193-2021-0-4-70-80.
13. Zhelezina G.F., Kolobkov A.S., Kulagina G.S., Kan A.Ch. Damping properties of hybrid layered metal-polymer materials based on aluminum, titanium alloys and organoplastics layers. Trudy VIAM, 2021, no. 2 (96), paper no. 02. Available at: http://www.viam-works.ru (accessed: September 15, 2025). DOI: 10.18577/2307-6046-2021-0-2-10-19.
14. Babaytsev A.V., Lopatin S.S., Nasonov F.A. Study of Dynamic Characteristics of Hybrid Titanium-Polymer Composite Materials. International Journal for Computational Civil and Structural Engineering, 2024, vol. 20 (1), рр. 109–115.
15. Chen Y., Wang Y., Wang H. Research Progress on Interlaminar Failure Behavior of Fiber Metal Laminates. Advances in Polymer Technology, 2020, vol. 2020, аrt. 3097839. DOI: 10.1155/2020/3097839.
16. Kablov E.N., Kirillov V.N., Zhirnov A.D., Startsev O.V., Vapirov Yu.M. Centers for climatic testing of aviation PCM. Aviacionnaya promyshlennost, 2009, no. 4, pp. 36–46.
17. Tolstikov A.A., Arislanov A.A., Putyrskiy S.V., Shestov V.V. Study of the mechanical properties of titanium composite laminates materials based on titanium alloys. Trudy VIAM, 2023, no. 2 (120), paper no. 02. Available at: http://www.viam-works.ru (accessed: September 15, 2025). DOI: 10.18577/2307-6046-2023-0-2-20-31.
18. Titanium and titanium alloys. Fundamentals and applications. Ed. by C. Leyens, M. Peters. Wiley-VCH, 2003, 513 p.
19. Kablov E.N., Kulagina G.S., Zhelezina G.F., Lonskii S.L., Kurshev E.V. Microstructure research of the unidirectional organoplastic based on Rusar-NT aramid fibers and epoxy-polysulfone binder. Aviacionnye materialy i tehnologii, 2020, no. 4 (61), pp. 19–26. DOI: 10.18577/2071-9140-2020-0-4-19-26.
20. Burianek D.A., Spearing S.M. Fatigue damage in titanium-graphite hybrid laminates. Composites Science and Technology, 2002, vol. 62, рр. 607–617.
21. Alderliesten R.C. Designing for damage tolerance in aerospace: A hybrid material technology. Journal of Materials and Design, 2015, vol. 66, рр. 421–428. DOI: 10.1016/j.matdes.2014.06.068.
22. Burianek D.A., Spearing S.M. Modeling of facesheet crack growth in titanium-graphite hybrid laminates. Part II: Experimental results. Engineering Fracture Mechanics, 2003, vol. 70, рр. 799–812.
A comparative analysis of physical and technical characteristics of carbon fibers produced from petroleum mesophase pitches and polyacrylonitrile is carried out. The fields of application of pitch carbon fibers are presented. An explanation of some features of the technologies influencing the achievement of unique properties of carbon pitch fibers is presented. An explanation of the reasons for the lower strength of carbon fibers based on mesophase pitches compared to the strength of carbon fibers based on polyacrylonitrile is given. New fields of application of carbon fibers based on carbon pitches are recommended.
2. Sharipov A., Budnik B., Zhirnov V. Modern trends in the development of the market of carbon fibers based on petroleum feedstock. Neftepererabotka i neftekhimiya, 2012, no. 6, pp. 30–34.
3. The Global Outlook for Carbon Fiber Composites: Expansion as a Result of Efficiency and Productivity. San Diego, CA, 2009, Part 3, 116 p.
4. Method for producing mesophase pitch (variants): pat. 2708848 Rus. Federation; appl. 14.06.16; publ. 11.12.19.
5. Gulyaev I.N., Pavlovskiy K.A. High modulus carbon plastics for civil aviation equipment (review). Trudy VIAM, 2023, no. 3 (121), paper no. 09. Available at: http://www.viam-works.ru (accessed: March 21, 2025). DOI: 10.18577/2307-6046-2023-0-3-95-106.
6. Kolobkov A.S. Polymer composite materials for various aircraft structures (review). Trudy VIAM, 2020, no. 6–7 (89), paper no. 05. Available at: http://www.viam-works.ru (accessed: March 21, 2025). DOI: 10.18577/2307-6046-2020-0-67-38-44.
7. High modulus, high strength carbon fibers produced from mesophase pitch: pat. 4005183 US; appl. 05.03.73; publ. 25.01.77.
8. Konkin A.A. Carbon and other heat-resistant fibrous materials. Moscow: Khimiya, 1974, 375 p.
9. Varshavsky V.Ya. Carbon fibers. Moscow: Varshavsky V.Ya., 2007, 497 p.
10. Bermudez V., Lurubira S., Ogale A.A. Pith Precursor-Based Carbon Fibers. Comprehensive Composite Materials II, 2018, vol. 1, pp. 41–65.
11. Emmerich F.G. Young’s modulus, thermal conductivity, electrical resistivity and coefficient of thermal expansion of mesophase pitch-based carbon fibers. Carbon, 2014, no. 79, pp. 274–293. DOI: 10.1016/j.carbon.2014.07.068.
12. Process for producing carbon fibers from mesophase pitch: pat. 3974264 US; appl. 31.10.74; publ. 10.08.76.
13. Process for producing mesophase pitch: pat. 4026788 US; appl. 11.12.73; publ. 31.05.77.
14. Abramov O.N., Sidorov D.V., Apukhtina T.L., Khramkova V.A. Production of pitch carbon fiber based on petroleum feedstock. Izvestiya vuzov. Khimiya i khimicheskaya tekhnologiya, 2015, vol. 58 (5), pp. 86–89.
15. Lu Xi Lan. Production of carbon fiber based on mesophase pitch: thesis abstract, Cand. Sc. (Tech.) thesis. Moscow, 1996, 17 p.
16. High-temperature stabilization of pitch fibers at low oxidizer concentrations: pat. 2198969 Rus. Federation; appl. 01.04.98; publ. 20.02.03.
17. Diefendorf R.J. Pith precursor carbon fibers. Comprehensive Composite Materials. Oxford, 2000, pp. 35–83. DOI: 10.1016/B0-08-042993-9/00041-3.
18. Matsumoto T. Mesophase pith and its carbon fibers. Pure & Applied Chemistry, 1985, vol. 57, no. 11, pp. 1553–1562. DOI: 10.1351/pac198557111553.
19. Bermudes V., Ogale A.A. Adverse effect of mesophase pith draw-down ratio on carbon fibers strength. Carbon, 2020, vol. 168, pp. 328–336. DOI: 10.1016/j.carbon.2020.06.062.
20. Hawthorne H.M., Baker C., Bentall R.H., Linger K.P. High Strength, high modulus graphite fibers from pith. Nature, 1970, no. 227, pp. 946–947. DOI: 10.1038/227946a0.
21. Process for producing mesophase pitch: pat. 4017327 US; appl. 31.10.74; publ. 12.04.77.
22. Forming optically anisotropic pitches: pat. 4208267 US; appl. 05.05.78; publ. 17.06.80.
23. Starting pitches for carbon fibers: pat. 4391788 US; appl. 09.04.82; publ. 05.07.83.
24. Pitch-based carbon or graphite fiber and process for preparation thereof: pat. 4628001 US; appl. 03.04.85; publ. 09.12.86.
25. Process for producing carbon fibers from mesophase pith: pat. 3976729 US; appl. 11.12.73; publ. 24.08.76.
The article considers issues related to the technology of manufacturing thick-walled products from layered polymer composite materials (PCM) by layer-by-layer laying of prepregs followed by vacuum-autoclave molding. The influence of debulking modes on changes in PCM thickness, based on shrinkage and moldability, using the method of statistical experimental planning is studied. Based on the results, dependencies were established between the selected factors of the debulking process and the parameters characterizing changes in the thickness of PCM.
2. Kablov E.N. The Role of Fundamental Research in the Creation of Next-Generation Materials. Reports XXI Mendeleev Congress on General and Applied Chemistry: in 6 vols. St. Petersburg, 2019, vol. 4, p. 24.
3. Kablov E.N. The Present and Future of Additive Technologies. Metally Evrazii, 2017, no. 1, pp. 2–6.
4. Tkachuk A.I., Donetsky K.I., Terekhov I.V., Karavaev R.Yu. The use of thermosetting matrices for the manufacture of polymer composite materials by the non-autoclave molding methods. Aviation materials and technology, 2021, no. 1 (62), paper no. 03. Available at: https://www.journal.viam.ru (accessed: January 15, 2025). DOI: 10.18577/2713-0193-2021-0-1-22-23.
5. Postnov V.I., Veshkin E.A., Makrushin K.V., Sudin Yu.I. Technological features of manufacturing polymer composite materials of main rotor blades for a light helicopter. Aviation materials and technologies, 2023, no. 1 (70), paper no. 06. Available at: http://www.journal.viam.ru (accessed: January 21, 2025). DOI: 10.18577/2713-0193-2023-0-1-82-92.
6. Startsev V.O., Antipov V.V., Slavin A.V., Gorbovets M.A. Modern domestic polymer composite materials for aviation industry (review). Aviation materials and technologies, 2023, no. 2 (71), paper no. 10. Available at: http://www.journal.viam.ru (accessed: January 15, 2025). DOI: 10.18577/2713-0193-2023-0-2-122-144.
7. Tkachuk A.I., Terekhov I.V., Gurevich Ya.M., Kudryavtseva A.N. Application of bismaleimide VST-57 binder for obtaining heat-resistant dimensionally stable molds from polymer composite materials. Aviacionnye materialy i tehnologii, 2020, no. 2 (59), pp. 32–40. DOI: 10.18577/2071-9140-2020-0-2-32-40.
8. Timoshkov P.N., Khrulkov A.V., Usacheva M.N., Purvin K.E. Technological features of the manufacture of thick-walled parts of the PCM (review). Trudy VIAM, 2019, no. 3 (75), paper no. 07. Available at: http://www.viam-works.ru (accessed: January 16, 2025). DOI: 10.18577/2307-6046-2019-0-3-61-67.
9. Kardos J., Dudukovic M.P., Dave R. Void growth and resin transport during processing of thermosetting-matrix composites. Advances in Polymer Science, 1980, vol. 80, pp. 101–123.
10. Dmitrienko Yu.I., Zakharova Yu.V., Sborshchikov S.V. Modeling the curing process of thick-walled structures made of polymer composite materials. Innovatsionnaya nauka, 2016, no. 12–4, pp. 31–36.
11. Hexсel. HexPly Prepreg Technology. Available at: https://www.hexcel.com/user_area/content_media/raw/Prepreg_Technology.pdf (accessed: January 30, 2025).
12. Zweben C.H., Beaumont P.W.R. Comprehensive composite materials II: in 8 vol. Amsterdam: Elsevier, 2018, vol. 2, 4288 p.
13. Seon G., Nikishkov Yu., Makeev A. A numerical method based on pore-pressure cohesive zone modeling for simulation of debulking in resin-saturated composite prepregs. International Journal for Numerical Methods in Engineering, 2022, is. 12, vol. 123, pp. 2791–2813.
14. Adler Yu.P., Markova E.V., Granovsky Yu.V. Experimental planning in the search for optimal conditions. Moscow: Nauka, 1976, 279 p.
15. Khoun L., Centea T., Hubert P. Characterization methodology of thermoset resins for the processing of composite materials – case study: CYCOM 890RTM epoxy resin. Journal of Composite Material, 2010, vol. 44, pp. 1397–1415.
16. Liu D.S.-C., Hubert P. Bulk factor characterization of heated debulked autoclave and out-of-autoclave carbon fibre prepregs. Composites. Part B, 2019, vol. 219, pp. 1–16.
Due to their increasing use in a wide variety of industries, primarily civil ones, polymer composite materials processed using non-autoclave molding are becoming increasingly popular due to their low cost and simple equipment. A current application of polymer composite materials is the manufacture of rehabilitation equipment for the disabled and, in particular, components of everyday and running foot modules, which are currently manufactured using imported materials.
2. Onishchenko G.G., Kablov E.N., Ivanov V.V. Scientific and technological development of Russia in the context of achieving national goals: problems and solutions. Innovatsii, 2020, no. 6 (260), pp. 3–16.
3. Kablov E.N., Antipov V.V. The role of new generation materials in ensuring technological sovereignty of the Russian Federation. Vestnik Rossiyskoy akademii nauk, 2023, vol. 93, no. 10, pp. 907–916.
4. Startsev V.O., Antipov V.V., Slavin A.V., Gorbovets M.A. Modern domestic polymer composite materials for aviation industry (review). Aviation materials and technologies, 2023, no. 2 (71), paper no. 10. Available at: http://www.journal.viam.ru (accessed: January 31, 2025). DOI: 10.18577/2713-0193-2023-0-2-122-144.
5. Raskutin A.E. Russian polymer composite materials of new generation, their exploitation and implementation in advanced developed constructions. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 349–367. DOI: 10.18577/2071-9140-2017-0-S-349-367.
6. Mikhailin Yu.A. Fibrous polymer composite materials in engineering. St. Petersburg: Nauchnye osnovy i tekhnologii, 2013, 720 p.
7. Valueva M.I., Evdokimov A.A., Nacharkina A.V., Gubin A.M. Polymer composite materials and technologies in the automotive industry (rеview). Trudy VIAM, 2022, no. 1 (107), paper no. 06. Available at: http://www.viam-works.ru (accessed: October 05, 2025). DOI: 10.18577/2307-6046-2022-0-1-53-65.
8. Donetskiy K.I., Karavaev R.Yu., Bystrikova D.V., Gracheva A.D., Tkachuk A.I. Semipregs and carbon fiber reinforced plastics based on them. Trudy VIAM, 2025, no. 8 (150), paper no. 08. Available at: http://www.viam-works.ru (accessed: October 02, 2025). DOI: 10.18577/2307-6046-2025-0-8-85-99.
9. Berring N.S., Renieri M.P., Bond G.G., Palmer D.J. Autoclave vs. Non-Autoclave: A comparison of hat-stiffened subcomponents by static and fatigue testing and related non-destructive evaluations. 2012 SAMPE International Symposium and Exhibition-Emerging Opportunities: Materials and Process Solutions. Baltimore MD, 2012, рр. 23–25.
10. Garschke C., Weimer C., Parlevliet P.P., Fox B.L. Out-of-autoclave cure cycle study of a resin film infusion process using in situ process monitoring. Composites. Part A: Applied Science and Manufacturing, 2012, vol. 43, is. 6, pp. 935–944.
11. Levy A., Hubert P. Vacuum-bagged composite laminate forming processes: Predicting thickness deviation in complex shapes. Composites. Part A: Applied Science and Manufacturing, 2019, vol. 126, p. 105568.
12. Ma Y., Centea T., Nutt S.R. Defect reduction strategies for the manufacture of contoured laminates using vacuum BAG-only prepregs. Polymer Composites, 2017, vol. 38, pp. 2016–2025.
13. Tkachuk A.I., Donetsky K.I., Terekhov I.V., Karavaev R.Yu. The use of thermosetting matrices for the manufacture of polymer composite materials by the non-autoclave molding methods. Aviation materials and technology, 2021, no. 1 (62), paper no. 03. Available at: https://www.journal.viam.ru (accessed: October 01, 2025). DOI: 10.18577/2713-0193-2021-0-1-22-33.
14. Sidorina A.I., Safronov A.M., Kutsevich K.E., Klimenko O.N. Carbon fabrics for aircraft products. Trudy VIAM, 2020, no. 12 (94), paper no. 05. Available at: http://www.viam-works.ru (accessed: October 16, 2025). DOI: 10.18577/2307-6046-2020-0-12-47-58.
15. Mukhametov R.R., Petrova A.P. Thermosetting binders for polymer composites (review). Aviacionnye materialy i tehnologii, 2019, no. 3 (56), pp. 48–58. DOI: 10.18577/2071-9140-2019-0-3-48-58.
16. Order of the Federal Service for Environmental, Technological and Nuclear Supervision dated December 15, 2020 No. 536 «On approval of federal norms and rules in the field of industrial safety «Industrial safety rules for the use of equipment operating under excess pressure». Available at: http://www.infobm.ru/upload/Правила%20промышленной%20безопасности%20при%20ис-пользовании%20оборудования.pdf (accessed: October 10, 2025).
17. Puzyretskiy E.A., Donetski K.I., Shabalin L.P., Karavaev R.Yu., Savinov D.V. Theoretical and experimental study of the vacuum forming of semipregs based on carbon fillers (tapes and fabric) and melting epoxy binding. Aviation materials and technologies, 2024, no. 2 (75), paper no. 08. Available at: http://www.journal.viam.ru (accessed: October 01, 2025). DOI: 10.18577/2713-0193-2024-0-2-109-121.
18. Сentea T., Grunenfelder L.K., Nutt S.R. A review of out-of-autoclave prepregs – material properties, process phenomena and manufacturing considerations. Composites. Part A: Applied Science and Manufacturing, 2014, vol. 70, pp. 132–154.
19. Donetskyi K.I., Timoshkov P.N., Safronov A.M., Goncharov V.A., Mishchun M.I. Autoclave-free molding of prepregs. Konstruktsii iz kompozitsionnykh materialov, 2022, no. 1 (165), pp. 29–34.
20. Farhang L., Fernlund G. Experimental study of void evolution in partially impregnated prepregs. Journal of Composite Materials, 2019, vol. 54, pp. 1511–1523.
21. Levy A., Kratz J., Hubert P. Air evacuation during vacuum bag only prepreg processing of honeycomb sandwich structures: In-plane air extraction prior to cure. Composites. Part A: Applied Science and Manufacturing, 2015, vol. 68, pp. 365–376.
22. Schechter S.G.K., Grunenfelder L.K., Nutt S.R. Air evacuation and resin impregnation in semi-pregs: effects of feature dimensions. Advanced Manufacturing: Polymer & Composites Science, 2020, vol. 6, is. 2, pp. 101–114.
A brief scientific and technical literature review is presented in the field of application of metal composite materials (MMCs) in manufacturing of internal combustion engines, in particular, design and manufacturing of pistons. Methods for producing MMCs with various reinforcing components are described. The test results for MMCs and pistons made from them are shown. The results of work on manufacturing of piston blanks from MMCs at the National Research Center “Kurchatov Institute” – VIAM are presented.
2. Kablov E.N., Antipov V.V. The role of new generation materials in ensuring the technological sovereignty of the Russian Federation. Vestnik Rossiyskoy akademii nauk, 2023, vol. 93, no. 10, pp. 907–916. DOI: 10.31857/S0869587323100055.
3. Antipov V.V. Prospects for development of aluminium, magnesium and titanium alloys for aerospace engineering. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 186–194. DOI: 10.18577/2071-9140-2017-0-S-186-194.
4. Kablov E.N., Belov E.V., Trapeznikov A.V., Leonov A.A., Zaitsev D.V. Strengthening features and aging kinetics of high-strength cast aluminum alloy AL4MS based on Al–Si–Cu–Mg system. Aviation materials and technologies, 2021, no. 2 (63), paper no. 03. Available at: http://www.journal.viam.ru (accessed: August 18, 2024). DOI: 10.18577/2713-0193-2021-0-2-24-34.
5. Khodykin L.G., Nyafkin A.N., Kosolapov D.V., Zhabin A.N. Laser welding of metal composite materials based on aluminium alloy reinforced with refractory particles SiC (review). Trudy VIAM, 2022, no. 12 (118), paper no. 06. Available at: http://www.viam-works.ru (accessed: August 18, 2024). DOI: 10.18577/2307-6046-2022-0-12-63-75.
6. Erasov V.S., Sibayev I.G. Scheme for the development and evaluation of properties of structural aviation composite materials. Aviation materials and technologies, 2023, no. 1 (70), paper no. 05. Available at: http://www.journal.viam.ru (accessed: August 18, 2024). DOI: 10.18577/2713-0193-2023-0-1-61-81.
7. Kosolapov D.V., Shavnev A.A., Kurbatkina E.I., Nyafkin A.N., Gololobov A.V. Study on structure and properties of dispersion hardened MMC based on aluminium alloy of Al–Mg–Si system. Trudy VIAM, 2020, no. 1, paper no. 06. Available at: http://www.viam-works.ru (accessed: August 18, 2024). DOI: 10.18577/2307-6046-2020-0-1-58-67.
8. Shavnev A.A., Nerush S.V., Kurbatkina E.I., Kosolapov D.V., Medvedev P.N. Study of the structure of a metallic composite material of the Al–Si–Mg–SiC system obtained using mechanical alloying. Izvestiya vuzov. Poroshkovaya metallurgiya i funktsionalnye pokrytiya, 2022, no. 1, pp. 17–25. DOI: 10.17073/1997-308X-2022-1-17-25.
9. Imametdinov E.S., Valueva M.I. Сomposites for piston engines (rеview). Aviacionnye materialy i tehnologii, 2020, no. 3 (60), pp. 19–28. DOI: 10.18577/2071-9140-2020-0-3-19-28.
10. Abramova M.G. Full-scale accelerated tests of aluminum alloys at continental and marine type stations. Aviacionnye materialy i tehnologii, 2020, no. 3 (60), pp. 57–65. DOI: 10.18577/2071-9140-2020-0-3-57-65.
11. Jinsheng M., Liwei S., Yongxiang H. Application of Composite Materials in Engine. Materials Science: Advanced Composite Materials, 2017, vol. 1, pp. 1–9. DOI: 10.18063/msacm.v1i1.499.
12. Anilkumar H.C., Hebbar H.S., Ravishankar K.S. Mechanical properties Of SiC Reinforced Aluminium Alloy Composites. IJMME, 2011, vol. 6, is. 1, pp. 41–45.
13. Falsafia J., Rosochowskaa M., Jadhava P., Tricker D. Lower cost automotive piston from 2124/SiC/25p metal-matrix composite. SAE International Journal of Engines, 2017, vol. 10, no. 4, pp. 1984–1992. DOI: 10.4271/2017-01-1048.
14. Zhitnyuk S.V., Medvedev P.N. Investigation of microstructure and phase composition of the metallic composite material Al–Si–Mg system modified by silicon carbide particles by mechanical alloying. Part 1. Trudy VIAM, 2023, no. 1 (119), paper no. 08. Available at: http://www.viam-works.ru (accessed: August 18, 2024). DOI: 10.18577/2307-6046-2023-0-1-97-106.
15. Dolata-Grosz A., Dyzia M., Śleziona J., Wieczorek J. Composites applied for pistons. Archives of foundry engineering, 2007, vol. 7, is. 1, pp. 37–40.
16. Dhanesh C., Anand T., Venkatesan J. Analysis of Bronze Hybrid Composite for Spark Ignition Engine Piston. FME Transactions, 2020, vol. 48, no. 4, p. 967.
17. Ishizuka K., Kusakai K., Imai N. Development of metal matrix composite piston. Honda R&D Technical Review F1 Special (The Third Era Activities), 2009, pp. 246–247. Available at: https://www.hondarandd.jp/summary.php?sid=23&lang=en (accessed: August 18, 2024).
18. Jankowski A., Kowalski M. Design of a new alloy for internal combustion engines pistons. Proceedings of the 7th International Conference on Mechanics and Materials in Design. Albufeira, 2017, pp. 11–15.
19. Haitham M.I. Al-Zuhairi, Iqbal Alshalal. Enhancement of Mechanical Properties of Aluminum Piston Alloy Using Al2O3 Material. 6th International engineering conference «Sustainable Technology and Development». Erbil, 2020, pp. 196–200. DOI: 10.1109/IEC49899.2020.9122921.
20. Kumar M., Padmanabhan G., Kottara A.A., Shankar K.V. Analysis of aluminium metal matrix composite piston for automobile applications. AIP Conference Proceedings, 2020, vol. 2273, p. 050049. DOI: 10.1063/5.0024235.
This paper presents the results of experimental studies of thermal control paint coatings based on polymethylhydridesiloxanes. The influence of various modifying additives on the properties of the obtained coatings is demonstrated. It was determined that the introduction of rare-earth element chelates has a positive effect on the properties of the obtained coatings, namely: it minimizes the mass loss at 200 °C, increases the degree of curing of coatings and reduces the content of condensable volatile substances.
2. State Standard R 59323–2021. Space Systems. Thermal Control Coatings for Spacecraft. General Requirements. Moscow: Standartinform, 2021, 28 p.
3. Kablov E.N. Materials for Aerospace Technology. Vse materialy. Entsiklopedicheskiy spravochnik, 2007, no. 5, pp. 7–27.
4. Kondrashov E.K. Paints and Varnishes and Coatings Based on Them in Mechanical Engineering. Moscow: Paint-Media, 2021, pp. 199–215.
5. Kondrashov E.K., Vereninova N.P. Solar Reflector Thermal-Regulating Paints and Varnishes. Vse materialy. Entsiklopedicheskiy spravochnik, 2020, no. 2, p. 24.
6. Okhotin A.S. Space Materials Science and Technology. Moscow: Nauka, 1977, pp. 120–122.
7. Kondrashov E.K. Thermoregulating Inorganic and Polymer Coatings for the Buran ISS. Vse materialy. Entsiklopedicheskiy spravochnik, 2022, no. 8. pp. 33–38.
8. Armor for Buran. VIAM Materials and Technologies for the Energia-Buran ISS. Ed. E.N. Kablov. Moscow: Nauka i Zhizn, 2013, 128 p.
9. Patraev V.E., Maksimov Yu.V. Methods for Ensuring the Reliability of Onboard Equipment of Long-Duration Spacecraft. Priborostroenie, 2008, no. 8, pp. 5–12.
10. Kablov E.N. Main directions of development of materials for aerospace technology of the 21st century. Perspektivnye materialy, 2000, no. 3, pp. 27–36.
11. Chirov A.A., Belyakova N.G. Changes in the transparency of thin cesium films on the glass surface of spacecraft optical instruments. Poverkhnost. Rentgenovskie sinkhrotronnye i neytronnye issledovaniya, 2013, no. 12, pp. 98–103.
12. Popov Yu.A. Kinetics of outgassing of volatile condensable substances from organic materials under long-term thermal vacuum exposure. Proc. 8th All-Union Conf. on Rarefied Gas Dynamics. Moscow, 1985, 196 p.
13. Industry standard 92-9566–82. Non-metallic materials for external surfaces of products. Test method for mass loss and total content of volatile condensable substances therein under vacuum-thermal exposure. Moscow: Standartinform, 1982, 10 p.
14. Kablov E.N., Ospennikova O.G., Vershkov A.V. Rare metals and rare earth elements – materials of modern and future high technologies. Trudy VIAM, 2013, no. 2, paper no. 01. Available at: http://www.viam-works.ru (accessed: February 11, 2025).
15. Doronin O.N., Artemenko N.I., Stekhov P.A., Voronov V.A. Deposition of ceramic layers of heat protection coatings based on the system Gd2O3–ZrO2–HfO2 and Sm2O3–Y2O3–HfO2. Aviation materials and technologies, 2022, no. 3 (68), paper no. 10. Available at: http://www.journal.viam.ru (accessed: February 11, 2025). DOI: 10.18577/2713-0193-2022-0-3-108-119.
16. Benarieb I., Antipov V.V., Khasikov D.V., Oglodkov M.S., Savichev I.D., Kuznetsova P.E. Study of structure and properties of sparinly alloyed aluminum alloy of Al–Mg–Sc–Zr system, produced by selective laser melting. Aviation materials and technologies, 2023, no. 4 (73), paper no. 03. Available at: http://www.journal.viam.ru (accessed: February 11, 2025). DOI: 10.18577/2713-0193-2023-0-4-23-35.
17. Korolev D.V., Piskorskii V.P., Valeev R.A., Bakradze M.M., Dvoretskaya E.V., Koplak O.V., Morgunov R.B. Rare-earth RE–TM–B micromagnets engineering (review). Aviation materials and technology, 2021, no. 1 (62), paper no. 05. Available at: http://www.journal.viam.ru (accessed: February 11, 2025). DOI: 10.18577/2713-0193-2021-0-1-44-60.
18. Budinovskiy S.A., Doronin O.N., Kosmin A.A., Benklyan A.S. Influence of the state of the YSZ target on its sputtering rate during deposition of a TBC ceramic layer by the UOKS-3 unit. Aviation materials and technologies, 2021, no. 2 (63), paper no. 09. Available at: http://www.journal.viam.ru (accessed: February 11, 2025). DOI: 10.18577/2713-0193-2021-0-2-85-92.
19. Chelating ion-exchange resins. Chemical encyclopedia: in 5 vols. Moscow: Great Russian Encyclopedia, 1998, vol. 5, art. 440.
20. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
The influence of various values of the asymmetry coefficient of the loading cycle R (–1 to 0,9) in determining the minimum and maximum values of the bending moment during loading based on N = 106 cycles at which fracture occurs has been studied. It was revealed that the change in R values from –1 to 0,7 do not lead to a change in the fracture structure in the zone of fatigue crack development. At R equal to 0,8 and 0,9, fatigue failure occurs with the formation of chip facets. In the α- and β-phases, the residual macro- and micro-deformations of the crystal lattice increase with increasing values of R and maximum stresses.
2. Kablov E.N. Heat-resistant structural materials. Liteynoe proizvodstvo, 2005, no. 7, pp. 2–7.
3. Nochovnaya N.A., Panin P.V., Kochetkov A.S., Bokov K.A. VIAM experience in the field of development and research of economically alloyed titanium alloys of new generation. Trudy VIAM, 2016, no. 9 (45), paper no. 05. Available at: http://www.viam-works.ru (accessed: November 14, 2024). DOI: 10.18577/2307-6046-2016-0-9-5-5.
4. Kablov E.N. Quality control of materials – a guarantee of safety of operation of aviation equipment. Aviatsionnye materialy i tekhnologii, 2001, no. 1, pp. 3–8.
5. Prohodceva L.V., Erasov V.S., Lavrova O.Ju., Lavrov A.V. Influence of form of cycle on fatigue properties and microstructure of breaks of VT3-1 titanium alloy. Aviacionnye materialy i tehnologii, 2012, no. 2, pp. 54–58.
6. Bannikov M.V., Oborin V.A., Naimark O.B. Study of the stages of fracture of titanium alloys in the mode of high- and hygocycle fatigue based on the morphology of the fracture surface. Vestnik Permskogo natsionalnogo issledovatelskogo politekhnicheskogo universiteta. Mekhanika, 2015, no. 3, pp. 15–24.
7. Ospennikova O.G., Napriyenko S.A., Avtayev V.V. Boundary between single-crystal substrate and received by selective laser melting alloy ZhS32-VI structural and phase changes after high temperatures and tension influence investigation. Trudy VIAM, 2019, no. 1 (73), paper no. 12. Available at: http://www.viam-works.ru (accessed: November 14, 2024). DOI: 10.18577/2307-6046-2019-0-1-115-124.
8. Shakirtov M.M. On the influence of the external load cycle asymmetry coefficient on the characteristics of the material loading cycle at the tip of a crack-like defect. Trudy MAI, 2016, no. 89, p. 5.
9. Klevtsov G.V., Botvina L.R., Klevtsova N.A., Limar L.V. Fractal diagnostics of fracture of metallic materials and structures. Moscow: MISiS, 2007, 264 p.
10. Abalkhan D.Yu., Chigvintsev R.A. Influence of loading cycle asymmetry on the kinetics of fatigue crack growth in titanium alloys. XXVII Regional Conf. of Young Scientists and Researchers of the Volgograd Region: Collection of Conf. Proc. Volgograd, 2022, pp. 78–80.
11. Gorbovets M.A., Belyaev M.S., Khodynev I.A., Lukyanova M.I. Study of low-cycle fatigue of heat-resistant alloys under a «hard» loading cycle. Tsvetnye metally, 2017, no. 2, pp. 91–95. DOI: 10.17580/tsm.2017.02.15.
12. Erasov V.S., Oreshko E.I. Fatigue tests of metal materials (review). Part 1. Main definitions, loading parameters, representation of results of tests. Aviacionnye materialy i tehnologii, 2020, no. 4 (61), pp. 59–70. DOI: 10.18577/2071-9140-2020-0-4-59-70.
13. Kapustin V.I., Zakharchenko K.V., Cherepanova V.K., Shayapov V.R. Investigation of dissipative processes of VT6 alloy under fatigue. Aviation materials and technologies, 2022, no. 4 (69), paper no. 09. Available at: http://www.journal.viam.ru (accessed: November 14, 2024). DOI: 10.18577/2713-0193-2022-0-4-96-111.
14. Duyunova V.A., Pavlova T.V., Kashapov O.S., Chuchman O.V. Fatigue strength of forgings from VT6 alloy for parts of gas turbine engines and aircrafts. Aviation materials and technologies, 2023, no. 2 (71), paper no. 02. Available at: http://www.journal.viam.ru (accessed: November 11, 2024). DOI: 10.18577/2713-0193-2023-0-2-23-35.
15. Yakovlev A.L., Arislanov A.A., Putyrsky S.V., Nochovnaya N.A. Study of mechanical properties and structure of large-sized semi-finished products made of VT6ch titanium alloy. Aviacionnye materialy i tehnologii, 2020, no. 4 (61), pp. 12–18. DOI: 10.18577/2071-9140-2020-0-4-12-18.
16. Gorelik S.S., Skakov Yu.A., Rastorguev L.N. X-ray and electron-optical analysis: textbook for universities; 4th ed., add. and rev. Moscow: MISiS, 2002, 360 p.
17. Umansky Ya.S., Skakov Yu.A., Ivanov A.N., Rastorguev L.N. Crystallography, X-ray diffraction and electron microscopy. Moscow: Metallurigya, 1982, 632 p.
18. Naprienko S.A., Medvedev P.N., Raevskikh A.N., Popov M.A. Diffraction research methods in the analysis of the plastic deformation zone under the fracture surface. Vestnik moskovskogo gosudarstvennogo tekhnicheskogo universiteta im. N.E. Baumana. Ser.: Mechanical Engineering, 2019, no. 4 (127), pp. 97–110.
19. Bache M.R. A review of dwell sensitive fatigue in titanium alloys: the role of microstructure, texture and operating conditions. International Journal of Fatigue, 2003, vol. 25, pp. 1079–1087.
20. Mills M., Ghosh S., Rokhlin S. et al. The Evaluation of Cold Dwell Fatigue in Ti-6242. New Jersey, 2018, 198 p.
21. Naprienko S.A., Kashapov O.S., Zaitsev D.V., Medvedev P.N. Features of fracture of titanium alloy VT8-1 under cold creep conditions. Deformatsiya i razrushenie materialov, 2024, no. 6, pp. 30–38.
22. Zhihong W., Hongchao K., Nana C. et al. Recent developments in cold dwell fatigue of titanium alloys for aero-engine applications: a review. Journal of Materials Research and Technology, 2022, vol. 20, pp. 469–484.
23. Dunne F.P.E., Rugg D. On the mechanisms of fatigue facet nucleation in titanium alloys. Fatigue & Fracture of Engineering Materials & Structures, 2008, no. 31, рр. 949–958. DOI: 10.1111/j.1460-2695.2008.01284.x.
24. Stroh A.N. The Formation of Cracks as a Result of Plastic Flow. Proceedings of the Royal Society a Mathematical, Physical and Engineering Sciences, 1954, no. 223, pp. 404–414. DOI: 10.1098/rspa.1954.0124.
The possibility of separate eddy current control of the properties of intermetallic TiAl alloy parts obtained using additive technologies is analyzed. The calculation of the signal change was carried out using the developed mathematical model for cases of changes in the electrical conductivity of only the surface layer, only the substrate, and the entire control object. It is established that in order to achieve the necessary stability of solving the system of equations for obtaining depth properties, the lower frequency should be less than 300 kHz, and the high frequency should be more than 600 kHz.
2. Movenko D.A., Shurtakov S.V. Microcrack formation and controlling in nickel superalloys processed by selective laser melting (review). Aviation materials and technologies, 2022, no. 2 (67), paper no. 04. Available at: http://www.journal.viam.ru (accessed: May 17, 2025). DOI: 10.18577/2713-0193-2022-0-2-43-51.
3. Impey S., Saxena P., Salonitis K. Selective Laser Sintering Induced Residual Stresses: Precision Measurement and Prediction. Journal of Manufacturing and Materials Processing, 2021, vol. 5, is. 3, pp. 1–16. DOI: 10.3390/jmmp503010.
4. Bian P., Jammal A., Xu K. et al. A Review of the Evolution of Residual Stresses in Additive Manufacturing During Selective Laser Melting Technology. Materials, 2025, vol. 18, is. 8, pp. 1–21. DOI: 10.3390/ma1808170.
5. Bakradze M.M., Peskova A.V., Kaplansky Yu.Yu. Influence of thermal post-treatment on the texture and anisotropy of mechanical properties in the Cu–Cr construction alloy manufactured by laser powder bed fusion. Aviation materials and technologies, 2022, no. 1 (66), paper no. 01. Available at: http://www.journal.viam.ru (accessed: May 17, 2025). DOI: DOI: 10.18577/2713-0193-2022-0-1-3-16.
6. Tillmann W., Schaak C., Nellesen J. et al. Hot isostatic pressing of IN718 components manufactured by selective laser melting. Additive Manufacturing, 2017, vol. 13, pp. 93–102.
7. Yamomoto Y., Fujikawa T. Mechanical Properties of Ti–6Al–4V Materials Prepared by Additive Manufacturing. Technology and HIP Process. Proceedings of 11th International Conference on Hot Isostatic Pressing. Stockholm, 2014, pp. 398–404.
8. Panin P.V., Lukina E.A., Naprienko S.A., Alekseev E.B. Effect of heat treatment on the structure and properties of TiAl alloy of the Ti‒Al‒V‒Nb‒Cr‒Gd system synthesized by selective electron beam melting. Fizicheskaya mezomekhanika, 2023, vol. 26, no. 6, pp. 61–74. DOI: 10.55652/1683-805X_2023_26_6_61.
9. Hrabe N., Gnäupel-Herold T., Quinn T. Fatigue properties of a titanium alloy (Ti–6Al–4V) fabricated via electron beam melting (EBM): Effects of internal defects and residual stress. International Journal of Fatigue, 2017, vol. 94, pp. 202–210.
10. Segovia R., García F., Papaelias M. Review on additive manufacturing and non-destructive testing. Journal of Manufacturing Systems, 2023, vol. 66, pp. 260–286.
11. Bartlet J.L., Li X. An overview of residual stresses in metal powder bed fusion. Additive Manufacturing, 2019, vol. 27, pp. 131–149.
12. Nabin B., Muhammad J., Nithin R., Sekhar R. A review of the residual stress generation in metal additive manufacturing: analysis of cause, measurement, effects, and prevention. Micromachines, 2023, vol. 14, is. 7, pp. 1–30. DOI: 10.3390/MI14071480.
13. Zeng K., Pal D., Stucker B. A review of thermal analysis methods in laser sintering and selective laser melting. Solid Freeform Fabrication Symposium. Austin, 2012, pp. 796–814.
14. Huang X., Li Z., Xie H. Recent progress in residual stress measurement techniques. Acta Mechanica Solida Sinica, 2013, vol. 26, pp. 570–583.
15. Kim S.H., Kim J.B., Lee W.J. Numerical prediction and neutron diffraction measurement of the residual stresses for a modified 9Cr–1Mo steel weld. Journal of Materials Processing Technology, 2009, vol. 209, pp. 3905–3913.
16. Schajer G., Ruud C. Overview of Residual Stresses and their measurement. Practical Residual stress: measurement methods. Ed. G.S. Schajer. John Wiley and Sons Ltd, 2013, pp. 1–27. DOI: 10.1002/8402832.ch1.
17. Madireddy G., Li C., Liu J., Sealy M.P. Modeling thermal and mechanical cancellation of residual stress from hybrid additive manufacturing by laser peening. Nanotechnology and Precision Engineering, 2019, vol. 2, is. 2, pp. 49–60.
18. Ganeriwala R., Strantza M., King W. et al. Evaluation of a thermo-mechanical model for prediction of residual stress during laser powder bed fusion of Ti‒6Al‒4V. Additive Manufacturing, 2019, is. 27, pp. 1–32.
19. Mukherjee T., Zhang W., Debroy T. An improved prediction of residual stresses and distortion in additive manufacturing. Computational Materials Science, 2017, vol. 126, pp. 360‒372.
20. Marakhovskij P.S., Barinov D.Ya., Shorstov S.Yu., Vorobev N.N. On creation of physical and mathematical models of heat and mass transfer during manufacturing by additive technologies (review). Aviation materials and technologies, 2022, no. 2 (67), paper no. 10. Available at: http://www.journal.viam.ru (accessed: May 17, 2025). DOI: 10.18577/2713-0193-2022-0-2-111-119.
21. Stathatos E., Vosniakos G.C. A computationally efficient universal platform for thermal numerical modeling of laser-based additive manufacturing. Journal of Mechanical Engineering Science, 2017, vol. 232, pp. 2317–2333. DOI: 10.1177/0954406217720230.
22. Monakhov A.D., Yakovlev N.O., Shershak P.V. Methods for the formation of objects with artificially created residual stresses. Aviation materials and technologies, 2023, no. 4 (73), paper no. 12. Available at: http://www.journal.viam.ru (accessed: May 17, 2025). DOI: 10.18577/2713-0193-2023-0-4-122-132.
23. Yang Y., Zhou X. A Volumetric Heat Source Model for Thermal Modeling of Additive Manufacturing of Metals. Metals, 2020, vol. 10, pp. 1–17.
24. Monu M., Chekotu J., Brabazon D. Eddy current testing and monitoring in metal additive manufacturing: A review. Journal of Manufacturing Processes, 2024, vol. 134, pp. 558–588.
25. Bowler N. Eddy-current nondestructive evaluation. New York: Springer, 2019, 217 p.
26. Lu M., Xie Y., Zhu W. et al. Determination of the magnetic permeability, electrical conductivity, and thickness of ferrite metallic plates using a multifrequency electromagnetic sensing system. IEEE transactions on industrial informatics, 2019, vol. 15, pp. 4111‒4119.
27. Shitikov V.S., Pichugin S.S. Estimation of electrical properties distribution under elastic deformation of the control object by eddy current method. Trudy VIAM, 2024, no. 11 (141), paper no. 07. Available at: http://www.viam-works.ru (accessed: May 17, 2025). DOI: 10.18577/2307-6046-2024-0-11-89-99.
28. Titanium intermetallic alloy and a product made therefrom: pat. 2606368 Rus. Federation; appl. 15.10.15; publ. 10.01.17.
29. Nochovnaya N.A., Bazyleva O.A., Kablov D.E., Panin P.V. Intermetallic alloys based on titanium and nickel. Ed. E.N. Kablov. 2nd ed., with amend. and add. Moscow: VIAM, 2019, 316 p.
30. Panin P.V., Lukina E.A., Bogachev I.A., Naprienko S.A. Influence of the process parameters of selective electron beam melting on the chemical composition, microstructure and porosity of the TiAl alloy of the Ti–Al–V–Nb–Cr–Gd system. Metallurg, 2023, no. 5, pp. 54–66.
31. Kekalo I.B. Physical properties of metals. Section «Electrical properties»: laboratory practical course. Moscow, 1998, 139 p.
32. Gerasimov V.G., Klyuev V.V., Shaternikov V.E. Methods and devices for electromagnetic testing. Ed. V.E. Shaternikov. Moscow: Spektr, 2010, 256 p.
33. Non-destructive testing: practical manual in 5 books. Ed. V.V. Sukhorukov. Moscow: Vysshaya shkola, 1992, book 3: Electromagnetic control, 312 p.
The article demonstrates the necessity of developing a methodology for complex testing of aircraft anticorrosive protection systems, which considers the impact of the climatic factors, alongside with the microbiological and operational ones. The latter negatively affect the anticorrosive protection system, which can lead to its destruction, and, consequently to, the development of corrosion damage. The framework of this methodology has been determined, as well as test program required for its development has been created.
2. Antipov V.V., Klochkova Yu.Yu., Romanenko V.A. Modern aluminum and aluminum-lithium alloys. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 195–211. DOI: 10.18577/2071-9140-2017-0-S-195-211.
3. Karimova S.A. Corrosion is the main enemy of aviation. Nauka i zhizn, 2007, no. 6, pp. 63–65.
4. Kablov E.N., Laptev A.B., Prokopenko A.N., Gulyaev A.I. Relaxation of polymeric composite materials under the prolonged action of static load and climate (review). Part 1. Binders. Aviation materials and technologies, 2021, no. 4 (65), paper no. 08. Available at: http://www.journal.viam.ru (accessed: April 12, 2024). DOI: 10.18577/2713-0193-2021-0-4-70-80.
5. Kablov E.N., Karimova S.A., Semenova L.V. Corrosion activity of carbon fiber reinforced plastics and protection of metal load-bearing structures in contact with carbon fiber reinforced plastic. Korroziya: materialy, zashchita, 2011, no. 12, pp. 1–7.
6. Feigenbaum Yu.M., Dubinsky S.V. Influence of random operational damage on the strength and service life of aircraft structures. Nauchny vestnik Moskovskogo gosudarstvennogo tekhnicheskogo universiteta grazhdanskoy aviatsii, 2013, no. 187, pp. 83–91.
7. Laptev A.B., Pavlov M.R., Novikov A.A., Slavin A.V. Current trends in the development of testing materials for resistance to climate factors (review). Part 1. Testing of new materials. Trudy VIAM, 2021, no. 1 (95), paper no. 12. Available at: http://www.viam-works.ru (accessed: April 12, 2024). DOI: 10.18577/2307-6046-2021-0-1-114-122.
8. Laptev A.B., Pavlov M.R., Novikov A.A., Slavin A.V. Current trends in the development of testing materials for resistance to climatic factors (review). Part 2. Main trends. Trudy VIAM, 2021, no. 2 (96), paper no. 11. Available at: http://www.viam-works.ru (accessed: April 12, 2024). DOI: 10.18577/2307-6046-2021-0-2-99-108.
9. Jenkins M.G., Lara-Curzio E., Gonczy S.T. Mechanical, Thermal and Environmental Testing and Performance of Ceramic Composites and Components. Philadelphia, 2000, 53 р.
10. Kutyrev А.E., Vdovin A.I., Antipov V.V., Duyunova V.A. Methodological issues of studying the effectiveness of anticorrosion protection used in aviation equipment products. Trudy VIAM, 2024, no. 1 (131), paper no. 08. Available at: http://www.viam-works.ru (accessed: April 12, 2024). DOI: 10.18577/2307-6046-2024-0-1-78-91.
11. Grossman D.M. More realistic tests for atmospheric corrosion. ASTM Standartization news, 1996, no. 4, pp. 32–39.
12. Zhilikov V.P., Karimova S.A., Leshko S.S., Chesnokov D.V. Research of dynamics of corrosion of aluminum alloys when testing in the salt spray chamber (SSC). Aviacionnye materialy i tehnologii, 2012, no. 4, pp. 18‒22.
13. LeBozec N., Blandin N., Thierry D. Accelerated corrosion tests in the automotive industry: A comparison of the performance towards cosmetic corrosion. Materials and Corrosion, 2008, vol. 59, no. 11, pp. 889–894.
14. Kutyrev A.E., Fomina M.A., Chesnokov D.V. Development of a method for cyclic corrosion tests simulating the full-scale exposure of aluminum alloys to a coastal atmosphere. Part 1. Basic principles. Korroziya: materialy, zashchita, 2019, no. 10, pp. 35–42.
15. Belov D.V., Sokolova T.N., Kartashov V.R. et al. Corrosion of aluminum and aluminum alloys under the influence of microorganisms. Izvestiya vysshikh uchebnykh zavedeniy. Khimiya i khimicheskaya tekhnologiya, 2007, vol. 50, no. 6, pp. 60–61.
16. Krivushina A.A., Bobyreva T.V., Smirnov D.N. Fungal resistance of Thiokol sealants to tropical microorganisms and test cultures. Part 1. Polymer Science, Series D, 2022, vol. 15, no. 2, pp. 177–182. DOI: 10.1134/S1995421222020149.
17. Melchers R.E. Modelling of marine immersion corrosion for mild and lowalloy steels – Part 1: Phenomenological model. Corrosion (NACE), 2003, vol. 59 (4), pp. 319–334.
18. Glikman L.A. Corrosion-mechanical strength of metals. Moscow-Leningrad: Mashgiz, 1955, 175 p.
19. Vasiliev B.Yu., Shapkin V.S., Barulenkova N.V. et al. Effect of aftereffects of cyclic loads on the corrosion of aluminum alloys. Zashchita metallov, 2006, vol. 42, no. 3, pp. 227–232.
20. Antonova E.N., Vasiliev B.Yu., Shapkin V.S. Electrochemical diagnostics of Tu-154 aircraft panels after different periods of operation. Nauchnyy vestnik MGTU GA: Aeromekhanika i prochnost, 2002, vol. 53, pp. 110–118.
The article describes processes of surface moistening and moisture sorption with a polymer material using known physical dependencies. Moisture saturation depends on size of pores, surface contact angle (polymer hydrophilicity), temperature and pressure. It is shown that moisture saturation leads to the formation of a moisture content gradient and gradual destruction, cracking, aging and discoloration of the polymer from the surface due to tensile stresses in the presence of a moisture gradient between the surface and inner layers of the polymer material.
2. Kablov E.N. New generation materials and digital technologies for their processing. Vestnik Rossiyskoy akademii nauk, 2020, vol. 90, no. 4, pp. 331–334.
3. Kablov E.N., Kondrashov S.V., Melnikov A.A., Schur P.A. Application of functional and adaptive materials obtained by 3D printing (review). Trudy VIAM, 2022, no. 2 (108), paper no. 03. Available at: http://www.viam-works.ru (accessed: May 20, 2025). DOI: 10.18577/2307-6046-2022-0-2-32-51.
4. Laptev A.B., Pavlov M.R., Novikov A.A., Slavin A.V. Current trends in the development of testing materials for resistance to climatic factors (review). Part 2. Main trends. Trudy VIAM, 2021, no. 2 (96), paper no. 11. Available at: http://www.viam-works.ru (accessed: May 20, 2025). DOI: 10.18577/2307-6046-2021-0-2-99-108.
5. Whiteside M., Herndon J.M. Unequivocal Detection of Solar Ultraviolet Radiation 250‒300 nm (UV-C) at Earth's Surface. European Journal of Applied Sciences, 2023, vol. 11, no. 2, pp. 455–472. DOI: 10.14738/aivp.112.14429.
6. Startsev O.V., Kychkin A.K., Lebedev M.P., Polyakov V.V. Effects of moisture on aging of polymer composite materials in a cold climate. Procedia Structure Integration, 2020, vol. 30, pp. 162–166.
7. Startsev V.O., Startsev O.V., Zeleneva T.O., Vardanyan A.M. The influence of precipitation on the change in the mass of polymer composite material samples under open climatic conditions. Climate–2023: modern approaches to assessing the impact of external factors on materials and complex technical systems: collection of reports. VIII All-Rus. sc. and tech. conf. (September 29, 2023, Moscow). Moscow: NRC «Kurchatov Institute» – VIAM, 2023, pp. 131–153.
8. Startsev V.O., Startsev O.V., Zeleneva T.O., Vardanyan A.M. Influence of precipitation on changes in the mass of samples of polymeric composite materials in open climatic conditions. Aviation materials and technologies, 2024, no. 1 (74), paper no. 11. Available at: http://www.journal.viam.ru (accessed: May 20, 2025). DOI: 10.18577/2713-0193-2024-0-1-136-154.
9. Marakhovsky P.S., Vorobyov N.N., Gulyaev A.I., Tkachuk A.I. Influence of polyarylsulfone additives on the climatic resistance of epoxy-based carbon fiber. Vysokomolekulyarnye soyedineniya. Ser. A, 2022, vol. 64, no. 2, pp. 113–119. DOI: 10.31857/S2308112022020080.
10. Gulyaev A.I., Yakovlev N.O., Oreshko E.I. Fractography features of interlaminar crack growth in carbon fibre reinforced plastic under various mode loading. Trudy VIAM, 2019, no. 12 (84), paper no. 11. Available at: http://www.viam-works.ru (accessed: May 20, 2025). DOI: 10.18577/2307-6046-2019-0-12-99-108.
11. Gulyaev A.I., Medvedev P.N., Sbitneva S.V., Petrov A.A. Application of nanoindentation to determine the adhesion strength of fiber-matrix in carbon fiber reinforced plastics. The role of fundamental research in the implementation of Strategic directions for the development of materials and technologies for their processing for the period up to 2030: Proc. V All-Rus. sc. and tech. conf. (June 28, 2019, Moscow). Moscow: VIAM, 2019, pp. 240–253.
12. Kablov E.N., Startsev V.O., Laptev A.B. Aging of polymer composite materials. Moscow: NRC «Kurchatov Institute» – VIAM, 2023, 520 p.
13. Steadman R.G. Norms of apparent temperature in Australia. Australian Meteorological Magazine, 1994, vol. 43, pp. 1–16.
14. De Gennes P.G., Brochard-Wyart F., Quéré D. Capillarity and Wetting Phenomena – Drops, Bubbles, Pearls, Waves. Ed. A. Reisinger. Springer, 2002, 430 p.
15. Laptev A.B., Akhiyarov R.J., Lapteva A.A. et al. Distribution of chloride ions along the flight path of aircraft (Overview). Journal of Physics. Conference Series. IOP Publishing Ltd, 2022, vol. 2373, pp. 22008. DOI: 10.1088/1742-6596/2373/2/022008.
16. Wenzel R.N. Resistance of solid surfaces to wetting by water. Industrial & Engineering Chemistry, 1936, vol. 28, pp. 988–994. DOI: 10.1021/IE50320A024.
17. Cassie A.B.D., Baxter S. Wettability of porous surfaces. Transactions of The Faraday Society, 1944, vol. 40, pp. 546–551. DOI: 10.1039/TF9444000546.
18. Crank J. The mathematics of diffusion. 2nd ed. Oxford, UK: Clarendon Press, 1975, 414 p.
19. Lykov A.V. Heat and Mass Transfer: handbook. 2nd ed. Moscow: Energiya, 1978, 480 p.
20. Weitsman Y.J. Composites in the sea: sorption, strength and fatigue. Twelfths Int. Con. on Composite Materials – ICCM'12: Extended abstracts. Paris, France: Instaprint S.A., 1999, pp. 210.
21. Pomerantsev A.L. Methods of Nonlinear Regression Analysis for Modeling the Kinetics of Chemical and Physical Processes: thesis, Doct. of Sc. (Phys. & Math.). Moscow, 2003, 304 p.
22. Krotov A.S. Diagnostics of Moisture Sorption and Diffusion Processes in Polymer Composite Materials: thesis, Cand. of Sc. (Phys. & Math.), Barnaul, 2002, 124 p.
23. Malkin A.Ya., Chalykh A.E. Diffusion and viscosity of polymers. Measurement methods. Moscow: Khimia, 1979, 351 р.
24. Lee S., Knaebel K.S. Effects of mechanical and chemical properties on transport in fluoropolymers. I. Transient sorption. Journal of applied polymer science, 1997, vol. 64, pp. 455–476.
25. Perekhozhentsev A.G. Modeling of Temperature-Humidity Processes in Porous Building Materials. Part 3. Calculation of Water Vapor Diffusion Coefficients in Porous Materials Based on the Characteristics of Their Porous Structure. Stroitelnye materialy, 2013, no. 2. pp. 89–92.
26. Vigdergauz V.E., Golberg G.Yu. Nanochemical Aspects of Mineral Particle Flocculation: Mineral Wettability and Its Effect on the Energy of Hydrophobic Interactions within the Extended DLVO Theory. Nanotekhnologii i okhrana zdorovya, 2011, vol. 3, no. 7, pp. 23–29.
27. Startsev V.O., Nikolaev E.V., Vardanyan A.M., Nechaev A.A. The influence of climatic factors on residual stresses in nanomodified cyanate ester-based CFRP. Trudy VIAM, 2021, no. 8 (102), paper no. 12. Available at: http://www.viam-works.ru (accessed: May 20, 2025). DOI: 10.18577/2307-6046-2021-0-8-104-112.
Light-metal alloys
Mukhina I.Yu., Duyunova V.A., Leonov A.A., Tokarev M.S., Trapeznikov A.V., Vlasova K.A. Development trends in compositions and manufacturing technologies for powder compositions for aluminum and magnesium alloys
Polymer materials
Skuridina N.S., Bolshakov V.A., Klimenko O.N., Barinov D.Ya. Investigation of the kinetics of curing of an epoxy binder in a prepreg based on an equal-strength fabric using multivariate regression methods
Composite materials
Evdokimov A.A., Veshkin E.A., Kablov E.N., Laptev A.B., Barannikov A.A. Comprehensive assessment of the impact of operational and climatic testing on the strength properties of polymer composite materials with shaping at temperatures up to 40 °C. Part 1. Fiberglass of the VPS-58 brand
Antipov V.V., Duyunova V.A., Oglodkov M.S., Shiryaev A.A., Krohina V.A., Putyrskiy S.V., Anisimova A.Yu. Study of fatigue resistance of titanium-polymer composite materials in comparison with traditional titanium alloys
Vikulin V.V., Shavnev A.A., Sidorov D.V., Kurbatkina E.I., Pastukh E.S. Technological features of carbon fibers production on the basis of oil mesophase pitches
Kolokoltseva T.V., Popov Yu.O., Gusev Yu.A., Usacheva M.N. Study of prepreg debulking modes in the manufacturing of thick-walled products from layered polymer composite materials by vacuum-autoclave molding method
Donetskiy K.I., Karavaev R.Yu., Gracheva A.D., Stretyachuk I.V., Shebbo M.F.M. Evaluation of the possibility of using vacuum forming technology of prepregs and semipregs for the production of rehabilitation equipment for the disabled
Kosolapov D.V., Khodykin L.G., Nyafkin A.N., Khodykin D.L. The use of metal composite materials in the manufacturing of internal combustion engines in the automotive industry
Protective and functional
coatings
Kondrashov E.K. Influence of rare-earth element chelates on properties of thermoregulating coatings
Material tests
Naprienko S.A., Medvedev P.N., Levchenko A.A. Influence of the coefficient of asymmetry of the loading cycle on the features of destruction of titanium alloy VT6
Shitikov V.S., Pichugin S.S., Akbulatov R.R., Panin P.V. Features of the eddy current method assessment of properties parts made of intermetallic TiAl alloy, obtained using additive technologies
Kutyrev A.E., Krivushina A.A., Vdovin A.I. Development of a test program for aircraft anticorrosive protection systems of with account of operational factors
Laptev A.B., Matishov G.G., Krivushina A.A., Pavlov M.R., Nikolaev E.V. The effect of the transition of air temperature through zero on the surface integrity of a polymer material. Part 1. Moistening
