Articles
The analysis of literary and patent sources, advertising booklets of domestic and foreign companies on the properties and methods of production of commercial silicone resins has been carried out. The main types of classification of commercial silicone resins are outlined and structural factors are described: the type of organic radicals (R), R/S ratio, SiOх content, Ph/Me ratio and molecular weight. A brief overview is given in the field of market analysis of commercial silicone resins and the scope of products based on them. Practically significant methods of MQ-resins production are described, the latest insights into their structure and properties are shown.
2. Kablov E.N. The role of fundamental research in the creation of new generation materials. Reports of the XXI Mendeleev Congress on General and Applied Chemistry: in 6 vols. St. Petersburg, 2019, vol. 4, p. 24.
3. Kablov E.N. Materials of the new generation – the basis of innovation, technological leadership and national security of Russia. Intellekt i tekhnologii, 2016, no. 2 (14), pp. 42–47.
4. Kablov E.N., Laptev A.B., Prokopenko A.N., Gulyaev A.I. Relaxation of polymeric composite materials under the prolonged action of static load and climate (review). Part 1. Binders. Aviation materials and technologies, 2021, no. 4 (65), paper no. 08. Available at: http://www.journal.viam.ru (accessed: August 10, 2022). DOI: 10.18577/2071-9140-2021-0-4-70-80.
5. Barinov D.Ya., Shorstov S.Yu., Razmahov M.G., Gulyaev A.I. Examination of thermophysical characteristics of a heat-protective material based on fiberglass during destruction. Aviation materials and technologies, 2021, no. 4 (65), paper no. 10. Available at: http://www.journal.viam.ru (accessed: August 10, 2022). DOI: 10.18577/2713-0193-2021-0-4-91-97.
6. Mukhametov R.R., Petrova A.P. Thermosetting binders for polymer composites (review). Aviacionnye materialy i tehnologii, 2019, no. 3 (56), pp. 48–58. DOI: 10.18577/2071-9140-2019-0-3-48-58.
7. Davydova I.F., Kavun N.S. Plenochnye kremnijorganicheskie svyazuyushhie dlya stekloplastikov. Aviacionnye materialy i tehnologii, 2014, no. S2, pp. 15–18. DOI: 10.18577/2071-9140-2014-0-s2-15-18.
8. High fracture toughness hydrosilyation cured silicone resin: pat. US 6689859B2; filed 05.03.02; publ. 10.02.04.
9. Zhou W., Yang H., Guo X., Lu J. Thermal degradation behaviours of some branched and linear polysiloxanes. Polymer Degradation and Stability, 2006, vol. 91 (7), pp. 1471–1475. DOI: 10.1016/j.polymdegradstab.2005.10.005.
10. Handbook of Silicone Materials. Ed. M. Tanimura. Tokyo: Dow Corning Toray Silicone, 1993. Ch. 7 (in Japanese), 299 p.
11. Rochow E.G., Gilliam W.F. Polymeric methyl silicon oxides. Journal of the American Chemical Society, 1941, vol. 63 (3), pp. 798–800.
12. Methyl silicones and related products: pat. US 2258218; filed 01.08.39; publ. 07.10.41.
13. Method for producing polyorganosiloxane resins for glass-textolite and glass-mica cylinders for electrical purposes: certificate of authorship No. 122876 USSR; filed 17.01.59; publ. 14.07.59.
14. Method for obtaining organosilicon varnishes: certificate of authorship No. 127346 USSR; filed 28.03.56; publ. 10.10.60.
15. Method for the manufacture of liquid polymethyl-phenylsiloxane resins: certificate of authorship No. 113047 USSR; filed 13.08.54; publ. 01.01.58.
16. Method for obtaining polyorganoalkoxysilanes: certificate of authorship No. 274359 USSR; filed 23.06.67; publ. 24.06.70.
17. Kitaeva N.S., Shiryakina Yu.M., Mukhametov R.R., Shitov R.O. Nikolay Semenovich Leznov: biography and contribution to the development of science. Trudy VIAM, 2021, no. 7 (101), paper no. 12. Available at: http://www.viam-works.ru (accessed: August 10, 2022). DOI: 10.18577/2307-6046-2021-0-7-112-124.
18. History of aviation materials science. VIAM – 80 years: years and people. Moscow: VIAM, 2012, 520 p.
19. Robeyns C., Picard L., Ganachaud F. Synthesis, characterization and modification of silicone resins: An «Augmented Review». Progress in Organic Coatings, 2018, vol. 125, pp. 287–315.
20. Silicone Resins Market by Type (Methyl, Methyl Phenyl), Application, End-Use Industry (Automotive & Transportation, Building & Construction, Electrical & Electronics, Healthcare, Industrial) and Region – Global Forecast to 2026. Available at: https://www.marketsandmarkets.com/Market-Reports/silicone-resin-market-95422194.html (accessed: August 16, 2022).
21. Baney R.H., Itoh Maki, Sakakibara Akihito, Suzuki Toshio. Silsesquioxanes. Chemical Reviews, 1995, vol. 95 (5), pp. 1409–1430.
22. Hurd C.B. Studies on siloxanes. 1. The specific volume and viscosity in relation to temperature and constitution. Journal of the American Chemical Society, 1946, vol. 68 (3), pp. 364–370.
23. Brown L.H. Silicones in Protective Coatings. Treatise on Coatings. New York: Marcel Dekker, 1972, vol. 1, p. 513.
24. Lee Smith. A., Winefordner J.D., Kolthoff I.M. The Analytical Chemistry of Silicones. Wiley Interscience. New York, 1991, pp. 150–155.
25. Heilen W., Herrwerth S. Silicone Resins and their Combinations. Hanover: Vincentz Network, 2015, р. 112.
26. Tatarinova E., Vasilenko N., Muzafarov A. Synthesis and Properties of MQ Copolymers: Current State of Knowledge. Molecules, 2017, vol. 22 (10), р. 1768.
27. Vinogradov S.V., Polivanov E.A., Chuprova E.A. MQ resins. History and modernity. Glues. Sealants. Technology, 2015, no. 4, pp. 38–42.
28. Organo-siloxanes and methods of making them: pat. US 2441320; filed 20.03.44; publ. 11.05.48.
29. Copolymeric siloxanes and methods of preparing them: pat. US 2676182; filed 13.09.50; publ. 20.04.54.
30. Organosiloxanes containing structural fragments of silicon dioxide in the main chain. Moscow: NIITEkhim, 1984, 38 p.
31. Composite materials based on oligotriorganosiloxysiloxanes. Moscow: NIITEkhim, 1988, 34 p.
32. Vinogradov S.V., Polivanov A.N., Chuprova E.A. Current state of MQ-resin technology. Vse materialy. Entsiklopedicheskiy spravochnik, 2010, no. 10, pp. 35–39.
33. Arkles B. Commercial Applications of Sol-Gel-Derived Hybrid Materials. MRS Bulletin, 2001, vol. 26 (05), pp. 402–408.
34. Flagg D.H., McCarthy T.J. Rediscovering Silicones: MQ Copolymers. Macromolecules, 2016, vol. 49, pp. 8581–8592.
35. Donskoy A.A. Trends in the use of elastomeric sealants in the aviation industry and prospects for improving their properties. Klei. Germetiki. Tekhnologii, 2010, no. 1, pp. 24–27.
36. Lewis L.N., Wengrovius J.H., Burnell T.B., Rich J.D. Powdered MQ Resin-Platinum Complexes and Their Use as Silicone-Soluble Hydrosilylation Cure Catalysts. Chemistry of Materials, 1997, vol. 9 (3), pp. 761–765.
37. Di M., He S., Li R., Yan D. Radiation effect of 150 keV protons on methyl silicone rabber reinforced with MQ silicone resin. Nuclear Instruments and Methods in Physics Research. Section B: Beam Interactions with Materials and Atoms, 2006, vol. 248 (1), pp. 31–36.
38. Chen D., Chen F., Hu X. et al. Thermal stability, mechanical and optical properties of novel addition cured PDMS composites with nano-silica sol and MQ silicone resin. Composites Science and Technology, 2015, vol. 117, pp. 307–314.
39. Amouroux N., Petit J., Leger L. Role of Interfacial Resistance to Shear Stress on Adhesive Peel Strength. Langmuir, 2001, vol. 17, pp. 6510–6517.
40. Xiang H., Ge J., Cheng S. et al. Synthesis and characterization of titania/MQ silicone resin hybrid nanocomposite via sol-gel process. Journal of Sol-Gel Science and Technology, 2011, vol. 59, pp. 635–639.
41. Shi X., Chen Z., Yang Y. Toughening of poly(L-lactide) with methyl MQ silicone resin. European Polymer Journal, 2014, vol. 50, pp. 243–248.
42. Jia P., Liu H., Liu Q., Cai X. Thermal degradation mechanism and flame retardancy of MQ silicon/epoxy resin composition. Polymer Degradation and Stability, 2016, vol. 134, pp. 144–150.
43. Organo-Siloxanes and Methods of Making Them: pat. US 2441320; filed 20.09.1944; publ. 11.05.48.
44. Siloxane Compositions which Form Ceramics at High Temperatures: pat. US 4269757; filed 18.01.80; publ. 26.05.81.
45. Organopolysiloxane compositions having pressure-sensitive adhesive properties: pat. US 2857356; filed 08.07.54; publ. 21.10.58.
46. Tough unsupported films formed from organopolysiloxanes: pat. US 3629358; filed 02.07.69; publ. 21.12.71.
47. Method for the preparation of an organopolysiloxane containing tetrafunctional siloxane units: pat. US 5070175; filed 28.05.91; publ. 03.12.91.
48. Organo-silicon copolymers and process of making same: pat. US 2562953; filed 06.03.47; publ. 07.08.51.
49. Ganicz T., Pakula T., Stanczyk W.A. Novel liquid crystalline resins based on MQ siloxanes. Journal of Organometallic Chemistry, 2006, vol. 691 (23), pp. 5052–5055.
50. Suzuki T., Sakae Y., Kushibiki N., Mita I. Preparation and properties of inorgano-organiccomposite materials containing R3SiO1/2, SiO2 and TiO2 units. Chemistry of Materials, 1994, vol. 6 (5), pp. 692–696.
51. Kuo C.-F.J., Chen J.-B., Shih C.-Y., Huang C.-Y. Silicone resin synthesized by tetraethoxysilane and chlorotrimethylsilane through hydrolisis-condensation reaction. Journal of Applied Polymer Science, 2014, vol. 131 (11), art. 40317.
52. Egorova E.V., Vasilenko N.G., Demchenko N.V., Tatarinova E.A., Muzafarov A.M. Polycondensation of Alkoxysilanes in an Active Medium as a Versatile Method for the Preparation of Polyorganosiloxanes. Doklady Chemistry, 2009, vol. 424, pp. 15–18.
53. Sharp K.G. A two-component, non-aqueous route to silica gel. Journal of Sol-Gel Science and Technology, 1994, vol. 2, pp. 35–41.
54. Zeitler V.A., Brown C.A. Tetrakistriphenylsiloxytitanium and Some Related Compounds. Journal of American chemical society, 1957, vol. 79 (17), pp. 4616–4618.
55. Chugunov V.S. The syntheses of some triphenylmethyl- and trivinylcyclohexane. Russian Chemical Bulletin. Ser. Chem., 1957, vol. 11, pp. 1368.
56. Sommer L.H., Creen L.Q., Whitmore F.C. Preparation of Organopolysiloxanes from Sodium Trimethylsilanolate. Journal of American chemical society, 1949, vol. 71, pp. 3253–3254.
57. Andrianov K.A., Dabagova A.K., Syrzova Z.S. Heterofunctional cocondensation of methyl(phenyl)acetoxysilanes with organosilicon compounds containing silicon-attached ethoxy groups. Russian Chemical Bulletin. Ser. Chem., 1962, vol. 9, pp. 1487–1491.
58. Improvements in or Relating to co-Polymeric Siloxanes and the Application Thereof: pat. GB 706719; filed 27.07.51; publ. 07.04.54.
59. Copolymeric siloxanes and methods of preparing them: pat. US 2676182; filed 13.09.50; publ. 20.04.54.
60. Organopolysiloxane adhesive and pressure-sensitive adhesive tape containing same: pat. US 2814601; filed 29.04.54; publ. 26.11.57.
61. Lentz C.W. Silicate minerals as sources of trimethylsilil silicates and silicate structure analysis of sodium silicate solution. Inorganic Chemistry, 1964, vol. 3 (4), pp. 574–579.
62. Cervantes J., Rodnguez-Rodnguez E., Guzman-Andrade J.J. et al. Trimethylsilylation of natural silicates: Useful route toward polysiloxanes. Silicon Chemistry, 2003, vol. 2, pp. 185–194.
63. Organo-siloxanes: pat. US 2486162; filed 26.02.42; publ. 25.10.49.
64. Organo-siloxanes and method of making them: pat. US 2458944; filed 20.03.42; publ. 11.01.49.
65. Process for preparing a silicone resin: pat. US 2009/0093605; filed 19.12.06; publ. 09.04.09.
Presents various of titanium composite laminates. The results of a complex of physic-mechanical studies of titanium composite laminates based on various titanium alloys in combination with carbon and organoplastics are presented. The analysis of the obtained results was carried out and the most optimal composition of the material was determined. The relevance of the use of titanium composite laminates for the manufacture of structural elements of aircraft products instead of analogues, including imported ones, is shown.
2. Kablov E.N. What to make the future from? The materials of the new generation, the technology of their creation and processing are the basis of innovation. Krylya Rodiny, 2016, no. 5, pp. 8–18.
3. Kablov E.N. New generation materials and digital technologies for their processing. Vestnik Rossiyskoy akademii nauk, 2020, vol. 90, no. 4, pp. 331–334.
4. Zhelezina G.F., Voinov S.I., Kulagina G.S., Solovyova N.A. Experience in the use of melting polymer binders for the prepares of organoplastics. Zhurnal prikladnoy khimii, 2020, vol. 93, no. 3, pp. 378–385.
5. Panin P.V., Night N.A., Kablov D.E., Alekseev E.B., Shiryaev A.A., Novak A.V. Practical guide for metallography of alloys based on titanium and its intermetallids: textbook. Ed. E.N. Kablov. M.: VIAM, 2020. 200 p.
6. Zhelezina G.F., Kulagina G.S., Shuldeshova P.M., Chernykh Т.E. Organoplastics based on heat-resistant polymer fibers and matrices. Trudy VIAM, 2021, no. 5 (99), paper no. 08. Available at: http://www.viam-works.ru (accessed: August 17, 2022). DOI: 10.18577/2307-6046-2021-0-5-78-86.
7. Arislanov A.A., Goncharova L.J., Nochovnaya N.А., Goncharov V.A. Prospects for the use of titanium alloys in laminated composite materials. Trudy VIAM, 2015, no. 10, paper no. 04. Available at: http://www.viam-works.ru (accessed: August 17, 2022). DOI: 10.18577/2307-6046-2015-0-10-4-4.
8. Glazunov S.G., Yasinsky K.K. Titanium alloys for aviation equipment and other industries. Tekhnologiya legkikh splavov, 1993, no. 7–8, pp. 47–54.
9. Glazunov S.G., Moiseev V.N. Structural titanium alloys. Moscow: Metallurgiya, 1974, 368 p.
10. Ilyin A.A., Kolachev B.A., Polkin I.S. Titanium alloys. Composition, structure, properties: reference. Moscow: VILS; MATI, 2009, 520 p.
11. Moiseev V.N. Beta-titan alloys and prospects for their development. Metallovedenie i termicheskaya obrabotka metallov, 1998, no. 12, pp. 11–14.
12. Kablov E.N., Kashapov O.S., Medvedev P.N., Pavlova T.V. Study of a α + β-titanium alloy based on a system of Ti–Al–Sn–Zr–Si–β-stabilizing alloying elements. Aviacionnye materialy i tehnologii, 2020, no. 1 (58), pp. 30–37. DOI: 10.18577/2071-9140-2020-0-1-30-37.
13. Zhelezina G.F., Tikhonov I.V., Blacks, I.E., Bova V.G., Voinov S.I. Third-generation Aramidal fibers of Rusar-n for reinforcement of organotextolites of aviation purposes. Plasticheskiye massy, 2019, no. 3–4, pp. 43–47.
14. Kolobkov A.S. Polymer composite materials for various aircraft structures (review). Trudy VIAM, 2020, no. 6–7 (89), paper no. 05. Available at: http://www.viam-works.ru (accessed: August 17, 2020). DOI: 10.18577/2307-6046-2020-0-67-38-44.
15. Voinov S.I., Zhelezina G.F., Ilyichev A.V., Solovyova N.A. The study of the mechanical characteristics of layered metallomatic compositional material based on aluminum sheets and layers of carbon fiber. Voprosy materialovedeniya, 2018, no. 4 (96), pp. 20–28.
16. Leyens C., Peters M. Titanium and Titanium Alloys. Fundamentals and Applications. Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA, 2003, 513 p.
17. Boyer R.R., Briggs R.D. The Use of β Titanium Alloys in the Aerospace Industry. Journal of Materials Engineering and Performance, 2005, vol. 14 (6), pp. 681–685.
18. Yakovlev A.L., Nochovnaya N.A., Putyrskij S.V., Krohina V.A. Titanium-polymer laminated materials. Aviacionnye materialy i tehnologii, 2016, no. S2, pp. 56–62. DOI: 10.18577/2071-9140-2016-0-S2-56-62.
19. Duyunova V.A., Serebrennikova N.Yu., Nefedova Yu.N., Sidelnikov V.V., Somov A.V. Methods of forming metal-polymer composite materials (review). Aviation materials and technologies, 2022, no. 1 (66), paper no. 06. Available at: http://www.journal.viam.ru (ассеssed: August 17, 2022). DOI: 10.18577/2713-0193-2022-0-1-65-77.
20. Kazemi M.E., Shanmugam L., Yang L., Yang J. A review on hybrid titanium composite laminates (HTCLs) with focuses on surface treatments, fabrications, and mechanical properties. Composites. Part A, 2020, no. 128, art. 15.
21. Xin L., Xin Z., Jinglei Y. et al. Mechanical behavior of Ti/CFRP/Ti laminates with different surface treatments of titanium sheets. Composite structures, 2016, no. 12, art. 33.
Sols of yttrium oxide with a Y2O3 content of 1, 5, and 10 wt. % have been synthesized. The structure and properties of sols have been studied: particle size and morphology, ζ-potential. According to the results of the study by photon correlation spectroscopy, the distribution of particle sizes in sols was determined: the average particle size was 49.3 nm for a sol with a Y2O3 content of 1 wt. %, 67 nm for a sol with a Y2O3 content of 5 wt. % and 232 nm for a sol with a Y2O3 content 10 wt. %. According to the results of XRD studies, the average size of crystallites of yttrium oxide nanopowder was 38.5 nm, which correlates with the results of the TEM study – 30–50 nm. The ζ-potential of the sols decreases with an increase in the concentration of yttrium oxide from –0.14 mV to –3.21 mV, however, it is quite small and indicates a low aggregative stability of the sols.
2. Rassokhina L.I., Bityutskaya O.N., Gamazina M.V., Kochetkov A.S. Features of the manufacturing technology of highly refractory ceramic molds for castings from γ-TiAl alloys. Trudy VIAM, 2020, no. 2 (86), paper no. 04. Available at: http://www.viam-works.ru (accessed: August 8, 2022). DOI: 10.18577/2307-6046-2020-0-2-31-40.
3. Strelnikova S.S. Features of sintering of mullite ceramics from ash-gel powders with the addition of ite oxide. Perspektivnye materialy, 2011. no. 11, pp. 336–341.
4. Kan Y., Zhang G., Wang P. et al. Yb2O3 and Y2O3 co-doped zirconia ceramics. Journal European Ceramic Society, 2006, vol. 26, is. 16, pp. 3607–3612.
5. Cosentino I.C., Muccillo R. Powder synthesis and sintering of high density thoria-yttria ceramics. Journal of Nuclear Materials. 2002, vol. 304, is. 2–3, pp. 129–133.
6. Lemyshev D.O., Lukin E.S., Makarov N.A., Popova N.A. The prospects for creating new optically transparent materials based on ite oxide and Italiaalumine grenade. Steklo i keramika, 2008, no. 4, pp. 25–27.
7. Bakovets V.V., Trushnikova L.N., Korolkov I.V. and other synthesis of nanostructured phosphor Y2O3–Eu–Bi gel method. Zhurnal obshchey khimii, 2013, vol. 83, is. 1, pp. 3–11.
8. Puzyrev I.S., Ivanov MG, Krutikova I.V. The physico-chemical properties of Nanoporos AL2O3 and Y2O3, obtained by laser synthesis, and their water dispersions. Izvestiya Akademii nauk. Seriya khimicheskaya, 2014, no. 7, pp. 1504–1510.
9. Lakhdara Y., Tucka C., Binnerc J. et al. Additive manufacturing of advanced ceramic materials. Progress in Materials Science, 2021, vol. 116, art. 10736.
10. Alhaji A., Shoja Razavi R., Ghasemi A., Loghman-Estarki M.R. Modification of Pechini sol-gel process for the synthesis of MgO–Y2O3 composite nanopowder using sucrose-mediated technique. Ceramics International, 2017, vol. 43, pp. 2541–2548.
11. Cheng X., Yuan C., Blackburn S., Withey P.A. The study of the influence of binder systems in an Y2O3–ZrO2 facecoat material on the investment casting slurries and shells properties. Journal of the European Ceramic Society, 2014, vol. 34, no. 12, pp. 3061–3068.
12. Cui R., Zhang H., Tang X. et al. Gong Interactions between γ-TiAl melt and Y2O3 ceramic material during directional solidification process. Transactions of Nonferrous Metals Society of China, 2011, vol. 21, pp. 2415–2420.
13. Neto R., Duarte T., Alves J.L., Torres F. Experimental characterization of ceramic shells for investment casting of reactive alloys. Ciência & Tecnologia dos Materiais, 2017, vol. 29, pp. 34–39.
14. Belova I.A. Synthesis and colloid-chemical properties of hydroxoids of ite oxoxide: thesis abstract Cand. Sc (Chem.). Moscow, 2010, 17 p.
15. Evdokimov S.A., Shchegoleva N.E., Sorokin O.Yu. Ceramic materials aviation engineering (review). Trudy VIAM, 2018, no. 12 (72), paper no. 06. Available at: http://www.viam-works.ru (accessed: August 21, 2022). DOI: 10.18577/2307-6046-2018-0-12-54-61.
16. Wang L., Fan S., Sun H. et al. Pressure-less joining of SiCf/SiC composites by Y2O3–Al2O3–SiO2 glass: Microstructure and properties. Ceramic International, 2020, vol. 46, no. 17, pp. 27046–27056.
17. Zhou L., Huang J., Cao L. et al. A novel design of oxidation protective β-Y2Si2O7 nanowire toughened Y2SiO5/Y2O3–Al2O3–SiO2 glass ceramic coating for SiC coated carbon/carbon composites. Corrosion Science, 2018, vol. 135, pp. 233–242.
18. Courcot E., Rebillat F., Teyssandier F., Louchet-Pouillerie C. Thermochemical stability of the Y2O3–SiO2 system. Journal of the European Ceramic Society, 2010, vol. 30, pp. 905–910.
19. Sokolov A.V., Deynega G.I., Kuzmina N.A. Influence of Sc2O3 additive on sintering tempera-ture and properties of ZrO2–Y2O3 system oxide ceramics. Aviacionnye materialy i tehnologii, 2020, no. 1 (58), pp. 64–69. DOI: 10.18577/2071-9140-2020-0-1-64-69.
20. Kablov E.N., Doronin O.N., Artemenko N.I., Stukhov P.A., Marakhovsky P.S., Stolyarova V.L. The study of the physicochemical properties of ceramics based on the SM2O3–Y2O3–HFO2 system for the development of heat-protective coatings. Zhurnal neorganicheskoy khimii, 2020, vol. 65, no. 6, pp. 846–855.
21. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
Provides a theoretical calculation of the magnetization of sintered materials Pr–Dy–Fe–Co–B and provides quantitative estimates of the dependence of magnetization on the concentration of dysprosium and cobalt. The optimal concentrations of these elements have been established, leading to the minimization of the temperature coefficient of induction. Experimental data on the dependence of magnetization on temperature are obtained. Experimental and theoretical dependences agree well with each other. This indicates the presence of predictive capabilities of the developed calculation model and allows us to hope for such a selection of concentrations of chemical elements that would make the magnetic properties of ring magnets in gyroscopes insensitive to temperature in the required operating range.
2. Fateev V.V., Nedezertsev V.P., Lyut M.N. Vibration sensor of angular velocity. Vestnik MGTU im. N.E. Baumana. Ser. Priborostroyenie, 1999, no. 1 (33), pp. 59–68.
3. Kolosov Yu.A., Lyakhovetsky Yu.G., Rakhtenko E.R. Gyroscopic systems. Design of gyroscopic systems. Moscow: Higher School, 1977, 233 p.
4. Dubinin A.V. Improving the resource of a gas-dynamic support of a small -sized dynamically customizable gyroscope for spacecraft: thesis, Cand. Sc. (Tech.). Moscow: Publishing House of Bauman MSTU, 2015, 118 p.
5. Dynamically adjustable gyroscope: pat. 2248524 Rus. Federation; filed 29.04.04; publ. 20.03.05.
6. Arzamasov B.N., Makarova V.I., Mukhin G.G. Materials Science. Moscow: Publishing House of Bauman MSTU, 2008, 648 p.
7. Matveev V.A., Podchezertsev V.P., Fateev V.V. Gyroscopic stabilizers on dynamically customized vibrational gyroscopes. Moscow: Mashinostroenie, 1988, 263 p.
8. Timoshenko S.P. Fluctuations in engineering. Moscow: Mashinostroenie, 1985, 472 p.
9. Pelpor D.S., Matveev V.A., Arsenyev V.D. Dynamically customized gyroscopes. Theory and design. Moscow: Mashinostroenie, 1988, 263 p.
10. Chirkin D.S., Roslovets P.V., Tatarinov F.V., Novikov L.Z. Reducing the drift of a dynamically customized gyroscope from launch to launch. Inzhenernyy zhurnal: nauka i innovatsii, 2017, no. 1. DOI: 10.18698/2308-6033-2017-1-1579.
11. Morgunov R.B., Piskorskiy V.P., Valeev R.A., Korolev D.V. The thermal stability of rare-earth magnets supported by means of the magnetocaloric effect. Aviacionnye materialy i tehnologii, 2019, no. 1 (54), pp. 88–94. DOI: 10.18577/2071-9140-2019-0-1-88-94.
12. Piskorsky V.P., Valeev R.A., Korolev D.V., Morgunov R.B., Rezchikova I.I. Terbium and gadolinium dopin g influence on thermal stability and magnetic properties of sintered magnets Pr–Tb–Gd–Fe–Co–B. Trudy VIAM, 2019, no. 7 (79), paper no. 07. Available at: http://www.viam-works.ru (accessed: August 12, 2022). DOI: 10.18577/2307-6046-2019-0-7-59-66.
13. Buzenkov A.V., Valeev R.A., Piskorsky V.P., Morgunov R.B. The effect of the content of yttrium on the properties of the sintered Magnets Nd–Dy–Y–Fe–Co–B. Trudy VIAM, 2022, no. 4 (110), paper no. 11. Available at: http://www.viam-works.ru (accessed: August 15, 2022). DOI: 10.18577/2307-6046-2022-0-4-108-117.
14. Korolev D.V., Piskorskii V.P., Valeev R.A., Bakradze M.M., Dvoretskaya E.V., Koplak O.V., Morgunov R.B. Rare-earth RE–TM–B micromag-nets engineering (review). Aviation materials and technology, 2021, no. 1 (62), paper no. 05. Available at: http://www.journal.viam.ru (accessed: August 15, 2022). DOI: 10.18577/2713-0193-2021-0-1-44-60.
15. Kablov E.N., Piskorsky V.P., Burkhanov G.S., Valeev R.A., Moiseeva N.S. et al. Thermostable ring magnets with a radial texture based on ND (PR)–DY–FE–CO–B. Fizika i khimiya obrabotki materialov, 2011, no. 3, pp. 43–47.
16. Li H.-S., Zhang Z.-W., Dang M.-Z. Molecular field theory analysis of R2Fe14B intermetallic compounds. Journal of Magnetism and Magnetic Materials, 1988, vol. 71, pp. 355–358.
17. Pedziwiatr A.T., Wallace W.E. Structure and magnetism of the R2Fe14–xCoxB ferromagnetic systems (R = Dy and Er). Journal of Magnetism and Magnetic Materials, 1987, vol. 66, pp. 61–68.
18. Tenaud Ph., Lemaire H., Vial F. Recent improvements in NdFeB sintered magnets. Journal of Magnetism and Magnetic Materials, 1991, vol. 101, pp. 328–332.
19. Radwanski R.J., Franse J.J. M. Rare-earth in the magnetocrystalline anisotropy energy in R2Fe14B. Journal of Physical Review B, 1987, vol. 36, no. 16, pp. 8616–8621.
20. Petziwiatr A.T., Chen H.Y., Wallace W.E. Magnetism of Tb2Fe14–xCoxB system. Journal of Magnetism and Magnetic Materials, 1987, vol. 67, pp. 311–315.
21. Marinescu M., McGinnis K., Liu J.F., Walmer M.H. High (BH)max permanent magnets with near-zero reversible temperature coefficient of BR. Proceedings of 20th International Workshop on Rare Earth Permanent Magnets and Their Applications. Crete, 2008, pp. 1–6.
Currently for the manufacture of prepregs a huge number of reinforcing fillers are produced. All fillers are subject to certain technical requirements, including appearance however there is no requirement for the angle of deflection of the weft thread relative to the warp of the fabric. In the framework of this work, the reasons for the deviation of the weft thread relative to the warp of the fabric, which lead to the formation of defective zones on the prepreg, are considered. The angle of deflection of the weft thread was measured. The effect of weft thread deflection on the final elastic-strength properties of a polymer composite material has been studied.
2. Mikhailin Yu.A. Fibrous polymeric composite materials in engineering. St. Petersburg: Nauchnye osnovy i tekhnologii, 2013, 720 p.
3. Vlasenko F.S., Raskutin A.E., Doneckij K.I. Application of braided preforms for polymer composite materials in civil industries (review). Trudy VIAM, 2015, no. 1, paper no. 05. Available at: http://www.viam-works.ru (accessed: April 27, 2022). DOI: 10.18577/2307-6046-2015-0-1-5-5.
4. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
5. Kablov E.N. Materials of a new generation and digital technologies for their processing. Vestnik Rossiyskoy akademii nauk, 2020, vol. 90, no. 4, pp. 331–334.
6. Kablov E.N. Formation of domestic space materials science. Vestnik RFFI, 2017, no. 3, pp. 97–105.
7. Basharov E.A., Vagin A.Yu. Analysis of the use of composite materials in the design of helicopter airframes. Trudy MAI, 2017, no. 92, pp. 1–13.
8. Zorin V.A. Experience in the use of composite materials in products of aviation and rocket-space technology. Konstruktsii iz kompozitsionnykh materialov, 2011, no. 4, pp. 44–59.
9. Raskutin A.E. Russian polymer composite materials of new generation, their exploitation and implementation in advanced developed constructions. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 349–367. DOI: 10.18577/2071-9140-2017-0-S-349-367.
10. Timoshkov P.N., Goncharov V.A., Usacheva M.N., Khrulkov A.V. The development of automated laying: from the beginning to our days (review). Part 1. Automated Tape Laying (ATL). Aviation materials and technologies, 2021, no. 2 (63), paper no. 06. Available at: http://www.journal.viam.ru (accessed: June 19, 2022). DOI: 10.18577/2713-0193-2021-0-2-51-61.
11. Malysheva G.V., Grashchenkov D.V., Guzeva T.A. Evaluation of technological use efficiency of adhesives and glue prepregs in the manufacture of three-layer panels. Aviacionnye materialy i tehnologii, 2018, no. 4 (53), pp. 26–30. DOI: 10.18577/2071-9140-2018-0-4-26-30.
12. Sarychev I.A., Serkova E.A., Khmelnitsky V.V., Zastroginа O.B. Thermosetting binders for aircraft floor panel materials (review). Trudy VIAM, 2019, no. 7 (79), paper no. 03. Available at: http://www.viam-works.ru (accessed: June 22, 2022). DOI: 10.18577/2307-6049-2019-0-7-26-33.
13. Veshkin E.A., Postnov V.I., Strelnikov S.V., Abramov P.A., Satdinov R.A. Experience in the application of technological control of PCM semi-finished products. Izvestiya Samarskogo nauchnogo tsentra RAN, 2014, vol. 16, no. 6 (2), pp. 393–398.
14. Composite materials handbook. US Department of Defense handbook, 2002. Vol. 3: Polymer matrix composites materials usage, design, and analysis. 734 p.
15. Mukhametov R.R., Petrova A.P. Thermosetting binders for polymer composites (review). Aviacionnye materialy i tehnologii, 2019, no. 3 (56), pp. 48–58. DOI: 10.18577/2071-9140-2019-0-3-48-58.
16. Postnova M.V., Postnov V.I. Development experience out-of-autoclave methods of formation PCM. Trudy VIAM, 2014, no. 4, paper no. 06. Available at: http://www.viam-works.ru (accessed: April 08, 2022). DOI 10.18577/2307-6046-2014-0-4-6-6.
17. Satdinov R.A., Istyagin S.E., Veshkin E.A. Analysis of the temperature-time parameters mode curing PCM with specified characteristics. Trudy VIAM, 2017, no. 3, paper no. 9. Available at: http://www.viam-works.ru (accessed: March 13, 2022). DOI: 10.18577/2307-6046-2017-0-3-9-9.
18. Dushin M.I., Hrulkov A.V., Muhametov R.R. A choice of technological parameters of autoclave formation of details from polymeric composite materials. Aviacionnye materialy i tehnologii, 2011, no. 3, pp. 20–26.
19. Kobelev S.A., Danilov G.I. Cutting blanks from polymer composite materials using various lubricating-cooling technological means. Izvestiya Samarskogo nauchnogo tsentra Rossiyskoy akademii nauk, 2009, vol. 11, no. 3 (2), pp. 464–468.
20. Tager A.A. Physico-chemistry of polymers. Moscow: Scientific world, 2007, 128 p.
21. Savitsky R.S. Influence of mechanical processing of samples during cutting on the testing of composites. Izvestiya Samarskogo nauchnogo tsentra Rossiyskoy akademii nauk, 2017, vol. 19, no. 4 (2), pp. 214–219.
22. Boychuk A.S., Generalov A.S., Stepanov A.V. NDT monitoring of CFRP structural health by ultrasonic phased array technique. Aviacionnye materialy i tehnologii, 2015, no. 3 (36), pp. 84–89. DOI: 10.18577/2071-9140-2015-0-3-84-89.
23. Murashov V.V., Trifonova S.I. Quality control of polymer composite materials using ultrasonic time-of-flight velocimetric technique. Aviacionnye materialy i tehnologii, 2015, no. 4 (37), pp. 86–90. DOI: 10.18577/2071-9140-2015-0-4-86-90.
24. Boychuk A.S., Generalov A.S., Dikov I.A. FRP parts and structures testing by phased array technique. Aviacionnye materialy i tehnologii, 2017, no. 1 (46), pp. 45–50. DOI: 10.18577/2071-9140-2017-0-1-45-50.
25. Non-destructive testing: reference book. Ed. V.V. Klyuev. Moscow: Mashinostroenie, 2006, vol. 3: Ultrasonic testing. Ed. I.N. Ermolov, Yu.V. Lange, 864 p.
26. Antyufeeva N.V., Stolyankov Yu.V., Iskhodzhanova I.V. Research and assessment of the properties of polymer composite materials according to methods harmonized with international standards. Konstruktsii iz kompozitsionnykh materialov, 2013, no. 3, pp. 41–45.
Influence of way of introduction of multiwall carbon nanotubes (MUNT) in model epoxy system nature of their distribution in the volume of polymeric composition is investigated. Rheological characteristics, glass transition temperatures and physicomechanical properties, and also microstructures of otverzhdenny samples of initial composition and samples are investigated, in which MUNT were entered with use of ultrasonic dispergator and the three-roll mixer into structure injection binding VSE-30 and binding VSE-22 overworked on prepregovy technology.
2. Kablov E.N., Kondrashov S.V., Yurkov G.Yu. Prospects for the use of carbon-containing nanoparticles in binders for polymer composite materials. Rossiyskiye nanotekhnologii, 2013, vol. 8, no. 3–4, pp. 24–42.
3. Kablov E.N., Chursova L.V., Babin A.N., Mukhametov R.R., Panina N.N. Developments of FSUE "VIAM" in the field of melt binders for polymer composite materials. Polymer Materials and Technologies, 2016, vol. 2, no. 2, pp. 37–42.
4. Kablov E.N. Composites: today and tomorrow. Metally Evrazii, 2015, no. 1, pp. 36–39.
5. Kablov E.N., Gunyaev G.M. Nanomaterials – a breakthrough in materials science of the microcosm. 75 years. Aviation materials. Moscow: VIAM, 2007, pp. 225–232.
6. Pavlyuk B.Ph. The main directions in the field of development of polymeric functional materials. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 388–392. DOI: 10.18577/2071-9140-2017-0-S-388-392.
7. Shitov R.O., Kitaeva N.S., Shiryakina Yu.M., Kurshev E.V. Research of influence of modifiers of varied nature on the thermo-oxidative stability of a model silicone binder. Trudy VIAM, 2020, no. 6–7 (89), paper no. 03. Available at: http://www.viam-works.ru (accessed: July 19, 2022). DOI: 10.18577/2307-6046-2020-0-67-19-28.
8. Campbell F.C. Structural Composite Materials. Ohio: ASM International, 2010, 500 p.
9. Singh N.P., Gupta V.K., Singh A.P. Graphene and carbon nanotube reinforced epoxy nanocomposites: A review. Polymer, 2019, vol. 180, art. 121724.
10. Smoleń P., Czujko T., Komorek Z. et al. Mechanical and electrical properties of epoxy composites modified by functionalized multiwalled carbon nanotubes. Materials, 2021, vol. 14, no. 12, pp. 3325–3340.
11. Marakhovsky P.S., Kondrashov S.V., Dyachkova T.P., Gurevich Ya.M., Mayorova I.A., Shvedkova A.K., Valevin E.O., Yurkov G.Yu. Structure formation and features of moisture absorption of epoxy nanocomposites with carbon nanotubes. Perspektivnye materialy, 2015, no. 6, pp. 48–56.
12. Rajan J.S. Effective use of nano-carbons in controlling the electrical conductivity of epoxy composites. Composites Science and Technology, 2021, vol. 202, art. 108554.
13. Asthana A., Srivastava V. Analysis of mechanical strength and Young’s modulus of ultrasonically functionalised CNT-epoxy composites. Advances in Materials and Processing Technologies, 2021, vol. 7, pp. 1–8.
14. Zhang D., Huang Y., Chia L. Effects of carbon nanotube (CNT) geometries on the dispersion characterizations and adhesion properties of CNT reinforced epoxy composites. Composite Structures, 2022, vol. 296, art. 115942.
15. Jen Y.M., Huang J.C. Synergistic effect on the thermomechanical and electrical properties of epoxy composites with the enhancement of carbon nanotubes and graphene nano platelets. Materials, 2019, vol. 12, no. 2, pp. 255–266.
16. Han S., Meng Q., Araby S. et al. Mechanical and electrical properties of graphene and carbon nanotube reinforced epoxy adhesives: Experimental and numerical analysis. Composites. Part A: Applied Science and Manufacturing, 2019, vol. 120, pp. 116–126.
17. Wang F.X., Liang W.Y., Wang Z.Q. et al. Preparation and property investigation of multi-walled carbon nanotube (MWCNT)/epoxy composite films as high-performance electric heating (resistive heating) element. Express Polymer Letters, 2018, vol. 12, no. 4, pp. 285–295.
18. Methods and compositions for increasing productivity in composite manufacturing comprising profile drawing and applications thereof: pat. FI 125348 B; filed 11.05.09; publ. 10.01.11.
19. Catalytic composition for synthesizing carbon nanotubes: pat. US 9731277 B2; filed 08.03.12; publ. 15.08.17.
20. Polymer-based composites comprising carbon nanotubes as a filler, method for producing said composites, and associated uses: pat. US 7968660 B2; filed 10.06.09; publ. 28.06.11.
21. Method for the preparation of a reinforced thermoset polymer composite: pat. US 8613980 B2; filed 17.07.09; publ. 24.12.13.
22. Method of synthesizing a support catalyst for the production of carbon nanotubes: pat. US 7754181 B2: filed 09.12.05; publ. 13.07.10.
23. Hybrid materials and related methods and devices: pat. US 9243146 B2: filed 11.10.05; publ. 26.01.16.
24. Method for covalent functionalization of carbon nanotubes with simultaneous ultrasonic dispersion for introduction into epoxy compositions: pat. 2660852 Rus. Federation; filed 14.06.17; publ. 10.07.18.
25. Method for modifying carbon nanomaterials: pat. 2548083 Rus. Federation; filed 18.06.13; publ. 10.04.15.
26. Roy S., Petrova R.S., Mitra S. Effect of carbon nanotube (CNT) functionalization in epoxy-CNT composites. Nanotechnology reviews, 2018, vol. 7, no. 6, pp. 475–485.
27. Yourdkhani M., Liu W., Baril-Gosselin S. et al. Carbon nanotube-reinforced carbon fibre-epoxy composites manufactured by resin film infusion. Composites Science and Technology, 2018, vol. 166, pp. 169–175.
28. Kudryavtseva A.N., Tkachuk A.I., Grigorieva K.N., Gurevich Ya.M. The use of epoxy resin system VSE-30, processed by the infusion technology, for the manufacture of low and medium loaded structural polymer composite materials. Trudy VIAM, 2019, no. 1 (73), paper no. 04. Available at: http://www.viam-works.ru (accessed: July 18, 2022). DOI: 10.18577/2307-6046-2019-0-1-31-39.
29. Antyufeeva N.V., Aleksashin V.M., Stolyankov Yu.V. Polymer composite curing degree evaluation by thermal analysis test methods. Aviacionnye materialy i tehnologii, 2015, № 3 (36), pp. 79–83. DOI: 10.18577/2071-9140-2015-0-3-79-83.
30. Kondrashov S.V., Marakhovsky P.S., Mayorova I.A., Egorov A.A., Mansurova I.A., Yurkov G.Yu. Influence of the curing regime on the formation of the structure of epoxy composites in the presence of carbon nanotubes. Perspektivnye materialy, 2014, no. 6, pp. 56–63.
31. Solovyanchik L.V., Kondrashov S.V. The prospects of using carbon nanotubes to impart functional properties to the surface of polymer materials (review). Trudy VIAM, 2021, no. 9 (103), paper no. 02. Available at: http://www.viam-works.ru (accessed: July 05, 2022). DOI: 10.18577/2307-6046-2021-0-9-11-21.
32. Zagora A.G., Kondrashov S.V., Antyufeeva N.V., Pykhtin A.A. Research of influence of technological modes of production of epoxy nanocomposites with carbon nanotubes on their heat resistance. Trudy VIAM, 2019, no. 1 (73), paper no. 08. Available at: http://www.viam-works.ru (accessed: July 15, 2022). DOI: 10.18577/2307-6046-2019-0-1-64-73.
33. Epoxy composition for the manufacture of products from PCM: pat. 2488612 Rus. Federation; filed 18.04.12; publ. 27.07.13.
34. Kondrashov S.V., Merkulova Yu.I., Marakhovsky P.S., Dyachkova T.P., Shashkeev K.A., Popkov O.V., Startsev O.V., Kurshev E.V., Yurkov G.Yu. Features of the degradation of the physical and mechanical properties of epoxy nanocomposites with carbon nanotubes under heat and moisture exposure. Zhurnal prikladnoy khimii, 2017, vol. 90, no. 5, pp. 657–665.
35. Deev I.S., Zhelezina G.F., Lonsky S.L., Kurshev E.V. Features of forming of the microstructure of the polymeric matrix in organoplasty on the basis of the multicomponent epoxy binding. Trudy VIAM, 2019, no. 5 (77), paper no. 03. URL: http://www.viam-works.ru (accessed: July 10, 2022). DOI: 10.18577/2307-6046-2014-0-7-6-6.
Research results on definition of the main mechanical properties constructional CFRP based on the carbon medium-modulus carbon fillers and woven carbon fillers and epoxy polymeric matrix depending on the mass contents are provided to them resin which determined by etching method. It is established that the mechanical characteristic same CFRP can change to 20 %. It is shown that for investigated CFRP the optimum contents resin is 33–34 mass of %.
2. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
3. Kablov E.N., Chursova L.V., Babin A.N., Mukhametov R.R., Panina N.N. Developments of FSUE "VIAM" in the field of melt binders for polymer composite materials. Polimernye materialy i tekhnologii, 2016, vol. 2, no. 2, pp. 37–42.
4. Kablov E.N. Materials of a new generation and digital technologies for their processing. Vestnik Rossiyskoy akademii nauk, 2020, vol. 90, no. 4, pp. 331–334.
5. Grashchenkov D.V. Strategy of development of non-metallic materials, metal composite materials and heat-shielding. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 264–271. DOI: 10.18577/2071-9140-2017-0-S-264-271.
6. Bondaletova L.I., Bondaletov V.G. Polymer composite materials: textbook at 2 parts. Tomsk: Tomsk Publ. House Polytech. Univ., 2013, part 1, 118 p.
7. Kolobkov A.S. Polymer composite materials for various aircraft structures (review). Trudy VIAM, 2020, no. 6–7 (89), paper no. 05. Available at: http://www.viam-works.ru (accessed: December 12, 2021). DOI: 10.18577/2307-6046-2020-0-67-38-44.
8. Gunyaeva A.G., Sidorina A.I., Kurnosov A.O., Klimenko O.N. Polymeric composite materials of new generation on the basis of binder VSE-1212 and the filling agents alternative to ones of Porcher Ind. and Toho Tenax. Aviacionnye materialy i tehnologii, 2018, no. 3 (52), pp. 18–26. DOI: 10.18577/2071-9140-2018-0-3-18-26.
9. Kondrashov S.V., Shashkeev K.A., Petrova G.N., Mekalina I.V. Constructional polymer composites with functional properties. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 405–419. DOI: 10.18577/2071-9140-2017-0-S-405-419.
10. Mishkin S.I., Malakhovskiy S.S., Gunyaeva A.G., Gulyaev I.N. Features of definition the resin content in carbon fiber reinforced plastics based on various types of carbon fillers by thermo-oxidative destruction method. Trudy VIAM, 2020, no. 12 (94), paper no. 06. Available at: http://www.viam-works.ru (accessed: July 29, 2022). DOI: 10.18577/2307-6046-2020-0-12-59-66.
11. State Standard R 56682–2015. Polymer and metal composites. Methods for determining the volume of the matrix, reinforcing filler and voids. Moscow: Standartinform, 2016, 26 p.
12. Mukhametov R.R., Petrova A.P. Thermosetting binders for polymer composites (review). Aviacionnye materialy i tehnologii, 2019, no. 3 (56), pp. 48–58. DOI: 10.18577/2071-9140-2019-0-3-48-58.
13. ASTM D 3039 M-00. Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials. ASTM International, 2000, pp. 1–13.
14. ASTM D 6641M-14. Standard Test Method for Compressive Properties of Polymer Matrix Composite Materials Using a Combined Loading Compression (CLC) Test Fixture. ASTM International, 2014, pp. 1–9.
15. ASTM D 2344 M-16. Standard Test Method for Short Beam Strength of Polymer Matrix Composite Materials and Their Laminates. ASTM International, 2016, pp. 1–8.
The article is devoted to the study of the influence of thermocyclic effects and operating temperature on the properties of polymer composite materials based on the fiberglass and epoxy binder. It is established that the «heating–cooling» cycles for fiberglass with different polymer matrix content and reinforcement options cause some decreases in strength and elastic dynamic characteristics, but this does not adversely affect the operation of protective screens or engine nacelles for gas turbine engines made of fiberglass.
2. Kablov E.N., Podzhivotov N.Yu., Lutsenko A.N. On the need to create a unified information and analytical center for aviation materials of the Russian Federation. Problemy mashinostroyeniya i avtomatizatsii, 2019, no. 3, pp. 28–34.
3. Kablov E.N. What is the future to be made of? Materials of a new generation, technologies for their creation and processing – the basis of innovation. Krylya Rodiny, 2016, no. 5, pp. 8–18.
4. Popov Y.O., Kolokolceva T.V., Gusev Y.A., Gromova A.A. Development of the constructive and technological solution for a sheet fibreglass for tail section skins of helicopter rotor blades. Trudy VIAM, 2016, no. 1 (37), paper no. 05. Available at: http://www.viam-works.ru (accessed: November 12, 2020). DOI: 10.18577/2307-6046-2016-0-1-42-49.
5. Soloviev P.V., Dmitriev N.N. Influence of technological parameters and thermal cycling effects on the strength properties of modified carbon plastics. Vestnik Ufimskogo gosudarstvennogo aviatsionnogo tekhnicheskogo universiteta, 2019, vol. 23, no. 2 (84), pp. 75–80.
6. Kablov E.N., Erasov V.S., Panin S.V., Kurs M.G., Gladkikh A.V., Avtaev V.V., Sorokina N.I., Lukyanychev D.A. Investigation of the combined effect of mechanical loads and climatic factors on the properties of materials in the composition of a large-sized design of the experimental wing compartment after 4 years of testing. Reports of II Int. sci.-tech. conf. "Corrosion, Aging, and Biostability of Materials in Marine Climates". Moscow: VIAM, 2016, p. 6.
7. Kablov E.N., Startsev V.O., Inozemtsev A.A. The moisture absorption of structurally similar samples from polymer composite materials in open climatic conditions with application of thermal spikes. Aviacionnye materialy i tehnologii, 2017, no. 2 (47), pp. 56–68. DOI: 10.18577/2071-9140-2017-0-2-56-68.
8. Kablov E.N., Startsev O.V., Krotov A.S., Kirillov V.N. Climatic aging of aviation composite materials. I. Mechanisms of aging. Deformatsiya i razrusheniye materialov, 2010, no. 11, pp. 19–27.
9. Popov Yu.O., Koloкoltseva T.V., Gromova A.A., Gusev Yu.A. Influence of operational factors on the main physical and mechanical properties of a fiberglass product VPS-31. Trudy VIAM, 2021, no. 11 (105), paper no. 08. Available at: http://www.viam-works.ru (accessed: November 12, 2020). DOI: 10.18577/2307-6046-2021-0-11-82-90.
10. Laptev A.B., Nikolayev E.V., Kolpachkov E.D. Thermodynamic characteristics of aging of polymeric composite materials under conditions of real exploitation. Aviaсionnye materialy i tehnologii, 2018, no. 3, pp. 80–88. DOI: 10.18577/2071-9140-2018-0-3-80-88.
11. Veshkin E.A., Postnov V.I., Semenychev V.V., Barannikov A.A. Anisotropy of the properties of the polymer matrix in composite materials. Proceedings of the VI All-Rus. Sci.-techn. сonf."The role of fundamental research in the implementation of strategic directions for the development of materials and technologies for their processing for the period up to 2030". Moscow, 2020, pp. 14–35.
12. Kablov E.N., Startsev V.O. Systematical analysis of the climatics influence on mechanical properties of the polymer composite materials based on domestic and foreign sources (review). Aviacionnye materialy i tehnologii, 2018, no. 2 (51), pp. 47–58. DOI: 10.18577/2071-9140-2018-0-2-47-58.
13. Popov Yu.O., Kolokoltseva T.V., Khrulkov A.V. The new generation of materials and technologies for helicopter blade spars. Aviacionnye materialy i tehnologii, 2014, no. S2, pp. 5–9. DOI: 10.18577/2071-9140-2014-0-S2-5-9.
14. Kablov E.N., Startsev V.O. Climatic aging of polymer composite materials for aviation purposes. II. Development of methods for studying the early stages of aging. Deformatsiya i razrusheniye materialov, 2020, no. 1, pp. 15–21.
15. Kablov E.N., Startsev O.V., Medvedev I.M., Shelemba I.S. Fiber optic sensors for monitoring corrosion processes in units of aviation engineering (review). Aviacionnye materialy i tehnologii, 2017, no. 3 (48), pp. 26–34. DOI: 10.18577/2071-9140-2017-0-3-26-34.
The second part of the article presents a review of scientific and technical literature in the field of spheroidization of powder compositions based on tungsten. Due to the high melting point of refractory metals, it is impossible to obtain products of complex shape from such metals and their alloys by traditional methods (for example, by casting or using powder metallurgy), in comparison with the capabilities of additive technologies. To obtain metal powders of tungsten or compositions based on it, which meet the requirements of additive laser technologies, the most promising technology is the plasma treatment of metal powders.
2. Kablov E.N. Materials of the new generation – the basis of innovation, technological leadership and national security of Russia. Intellekt i tekhnologii, 2016, no. 2 (14), pp. 16–21.
3. Kablov E.N. Present and future of additive technologies. Metally of Evrazii, 2017, no. 1, pp. 2–6.
4. Wohlers T. Wohlers Report 2014: Additive Manufacturing and 3D Printing State of the Industry. Annual Worldwide Progress Report. Wohlers Associates Inc., 2014, 275 p.
5. Uriondo A., Esperon-Miguez M., Perinpanayagam S. The present and future of additive manufacturing in the aerospace sector: A review of important aspects: Proceedings of the Institution of Mechanical Engineers, Part G. Journal of Aerospace Engineering, 2015, vol. 229, no. 11, pp. 2132–2147.
6. Zlenko M.A., Popovich A.A., Mutylina I.N. Additive technologies in mechanical engineering. St. Petersburg: Publ. House of Polytechnic Univ., 2013, 222 p.
7. Lopatin A.N., Zverkov I.D. Shaping molding tools production for composite parts by means of additive technologies. Aviacionnye materialy i tehnologii, 2019, no. 2 (55), pp. 53–59. DOI: 10.18577/2071-9140-2019-0-2-53-59.
8. Frazier W.E. Metal Additive Manufacturing: A Review. Journal of Materials Engineering and Performance, 2014, vol. 23, no. 6, pp. 1917–1928.
9. Chekhovich A. Technology of selective laser melting. Available at: https://blog.iqb.ru/slm-technology (accessed: August 27, 2021).
10. Dudikhin D.V. Plasma spheroidization of metal powders for additive technologies. Tomsk: Nat. research Tomsk Polytechnic Univ., 2018. 53 p.
11. Grigoriev A.V., Razumov N.G., Popovich A.A., Samokhin A.V. Plasma spheroidization of powders based on Nb–Si alloys obtained by mechanical alloying. Nauchno-tekhnicheskiye vedomosti SpbGPU, 2017, vol. 23, no. 1, pp. 247–255. DOI: 10.18721/JEST.230125.
12. Gao W., Zhang Y., Ramanujan D. et al. The status, challenges, and future of additive manufacturing in engineering. Computer-Aided Design, 2015, vol. 69, pp. 65–89.
13. Dovbysh V.M., Zabednov P.V., Zlenko M.A. Additive technologies and metal products. Available at: https://nami.ru/uploads/docs/centr_technology_docs/55a62fc89524bAT_metall.pdf (accessed: August 27, 2021).
14. Baskoro A.S., Supriadi S., Dharmanto. Review on Plasma Atomizer Technology for Metal Powder. MATEC Web of Conferences, 2019, vol. 269, pp. 1–9. DOI: 10.1051/matecconf/201926905004.
15. Rodionov A.I., Efimochkin I.Ju., Bujakina A.A., Letnikov M.N. Sphereidizatsiya of metal powders (review). Aviacionnye materialy i tehnologii, 2016, no. S1, pp. 60–64. DOI: 10.18577/2071-9140-2016-0-S1-60-64.
16. Dudikhin D.V., Saprykin A.A. Methods for obtaining spherical powders for additive laser technologies. Masters journal, 2016, no. 1, pp. 51–55.
17. Tong J.B., Lu X., Liu C.C. et al. Fabrication of Micro-fine Spherical High Nb Containing Plasma Spheroidization TiAl Alloy Powder Based on Reaction Synthesis and RF. Powder Technology, 2015, vol. 283, pp. 9–15. DOI: 10.1016/j.powtec.2015.04.062.
18. Goncharov I.S., Razumov N.G., Silin A.O. et al. Synthesis of Nb-based powder alloy by mechanical alloying and plasma spheroidization processes for additive manufacturing. Materials Letters, 2019, vol. 245, pp. 188–191.
19. Sheng Y.W., Guo Z.M., Hao J.J. et al. Preparation of micro-spherical titanium powder by RF plasma. Rare metal materials and engineering, 2013, vol. 42, no. 6, pp. 1291–1297.
20. Zhang H.B., Bai L.Y., Hu P. et al. Single-step pathway for the synthesis of tungsten nanosized powders by RF induction thermal plasma. International Journal of Refractory Metals and Hard Materials, 2012, vol. 31, pp. 33–38.
21. Knyazev A.E., Vostrikov A.V. Sieving of powders additive and powder manufacturings (review). Trudy VIAM, 2020, no. 11 (93), paper no. 02. Available at: http://www.viam-works.ru (accessed: November 22, 2021). DOI: 10.18577/2307-6046-2020-0-11-11-20.
22. Liu X.-P., Wang K.-S., Hu P. et al. Spheroidization of molybdenum powder by radio frequency thermal plasma. International Journal of Minerals, Metallurgy and Materials, 2015, vol. 22, no. 11, pp. 1212–1218. DOI: 10.1007/s12613-015-1187-7.
23. Saheb N. Spark plasma and microwave sintering of Al6061 and Al2124 alloys. International Journal of Minerals, Metallurgy and Materials, 2013, vol. 20, no. 2, pp. 152–159.
24. Lu X., Sun B., Zhao T.F. et al. Microstructure and mechanical properties of spark plasma sintered Ti-Mo alloys for dental applications. International Journal of Minerals, Metallurgy and Materials, 2014, vol. 21, no. 5, pp. 479–486.
25. Kersten H., Rohde D., Berndt J. et al. Investigations on the energy influx at plasma processes by means of a simple thermal probe. Thin Solid Films, 2000, vol. 377–378, pp. 585–591.
26. Belmonte M., Osendi M.I., Miranzo P. Modeling the effect of pulsing on the spark plasma sintering of silicon nitride materials. Scripta Materialia, 2011, vol. 65, no. 3, pp. 273–276.
27. Ryu T., Sohn H.Y., Hwang K.S. et al. Chemical vapor synthesis (CVS) of tungsten nanopowder in a thermal plasma reactor. International Journal of Refractory Metals and Hard Materials, 2009, vol. 27, no. 1, pp. 149–154.
28. Jiang X.L., Boulos M. Induction plasma spheroidization of tungsten and molybdenum powders. Transactions of Nonferrous Metals Society of China, 2000, vol. 16, no. 1, pp. 13–17.
29. Peiquan Z. Application and Processing Method of Molybdenum and Molybdenum Alloy. China Molybdenum Industry, 2000, vol. 24, no. 5, pp. 15–16.
30. Qiua S., Chen B., Xiang C. Preparation and Properties of Spherical Mo Powders by Plasma Rotating Electrode Process for Additive Manufacturing. Materials Science Forum, 2019, vol. 993, pp. 391–397. DOI: 10.4028/www.scientific.net/MSF.993.391.
31. Krasnov A.N. Theory, Technology and Properties of Powders Plasma Atomization of Tungsten. Translated from Poroshkovaya Metallurgiya, 1966, vol. 38, no. 2, pp. 1–5.
32. Li R., Qin M., Huang H. et al. Fabrication of fine-grained spherical tungsten powder by radio frequency (RF) inductively coupled plasma spheroidization combined with jet milling. Advanced Powder Technology, 2017, vol. 28, no. 12, pp. 3158–3163. DOI: 10.1016/j.apt.2017.09.019.
33. Qiu W.T., Li Z., Xiao Z. et al. Sphericizing tungsten particles by means of localized preferential oxidation and alkaline washing. Powder Technology, 2012, vol. 228, pp. 187–192.
34. Li B., Sun Z., Jin H. et al. Fabrication of homogeneous tungsten porous matrix using spherical tungsten powders prepared by thermal plasma spheroidization process. International Journal of Refractory Metals and Hard Materials, 2016, vol. 59, pp. 105–113.
35. Jiang X.L., Boulos M. Induction plasma spheroidization of tungsten and molybdenum powders. Transactions of Nonferrous Metals Society of China (English Edition), 2006, vol. 16, pp. 13–17.
36. Károly Z., Szépvölgyi J. Plasma spheroidization of ceramic particles. Chemical Engineering and Processing: Process Intensification, 2005, vol. 44, pp. 221–224.
37. Method for spheroidization of refractory material powder: pat. no. 2469817 Rus. Federation; filed 27.06.11; publ. 20.12.12.
38. Yu C.F., Zhou X., Wang D.Z. et al. Study on the RF inductively coupled plasma spheroidization of refractory W and W–Ta alloy powders. Plasma Sources Science and Technology, 2018, vol. 20, no. 1, art. 014019.
39. Tan Zh., Wu X., Wang Y. et al. In situ synthesis of spherical W–Mo alloy powder for additive manufacturing by spray granulation combined with thermal plasma spheroidization. International Journal of Refractory Metals and Hard Materials, 2021, vol. 95, no. 9. DOI: 10.1016/j.ijrmhm.2020.105460.
40. Senkov O.N., Wilks G.B., Scott J.M., Miracle D.B. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics, 2011, vol. 19, pp. 698–706. DOI: 10.1016/j.intermet.2011.01.004.
41. Senkov O.N., Senkova S.V., Meisenkothen F. et al. Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy. Journal of Materials Science, 2012, vol. 47, pp. 4062–4074. DOI: 10.1007/s10853-012-6260-2.
42. Liu B., Duan H., Li L. et al. Microstructure and mechanical properties of ultra-hard spherical refractory high-entropy alloy powders fabricated by plasma spheroidization. Powder Technology, 2021, vol. 382, pp. 550–555.
43. Park J.-M., Kang J.-W., Lee W.-H. et al. Preparation of spherical WTaMoNbV refractory high entropy alloy powder by inductively-coupled thermal plasma. Materials Letters, 2019, vol. 255, art. 126513. DOI: 10.1016/j.matlet.2019.126513.
44. Lee W.-H., Park K.B., Yi K.-W. et al. Synthesis of Spherical V–Nb–Mo–Ta–W High-Entropy Alloy Powder Using Hydrogen Embrittlement and Spheroidization by Thermal Plasma. Metals, 2019, vol. 9, pp. 1296–1312. DOI: 10.3390/met9121296.
45. The method of rare refractory metal of a kind of laser spheroidization and the non-spherical powder of carbide alloy: pat. CN 101602107; filed 16.12.09; publ. 16.11.11.
46. A kind of nodularization MMC composite coating material and its laser cladding method: pat. CN 109943845, filed 28.06.19; publ. 14.05.21.
. Considers the chemical, physical and mechanical properties of polymer-derived ceramics obtained on the basis of organosilicon polymers. High resistance of ceramics to oxidation, creep, crystallization and phase separation up to temperatures above 1500 °C, high chemical resistance in harsh environments are noted. The unique set of properties of ceramics provides it with a wide range of applications, including in the composition of ceramic matrix composites (fibers and matrices), in 3D printing, in protective coatings and microcomponents for electronics. Promising areas of application of ceramics and specific examples of its current use in various constructions are considered.
2. Kablov E.N. Composites: today and tomorrow. Metally Evrazii, 2015, no. 1, pp. 36–39.
3. Grashchenkov D.V. Strategy of development of non-metallic materials, metal composite materials and heat-shielding. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 264–271. DOI: 10.18577/2071-9140-2017-0-S-264-271.
4. Grashchenkov D.V., Evdokimov S.A., Zhestkov B.E., Solntsev S.St., Shtapov V.V. Research of thermochemical influence of the air plasma flow on high-temperature ceramic composite material. Aviacionnye materialy i tehnologii, 2017, no. 2 (47), pp. 31–40. DOI: 10.18577/2071-9140-2017-0-2-31-40.
5. Kablov E.N., Nikiforov A.A., Demin S.A., Chesnokov D.V., Vinogradov S.S. Promising coatings for corrosion protection of carbon steels. Stal, 2016, no. 6, pp. 70–81.
6. Grashchenkov D.V., Efimochkin I.Yu., Bolshakova A.N. High-temperature metal-matrix composite materials reinforced with particles and fibers of refractory compounds. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 318–328. DOI: 10.18577/2071-9140-2017-0-S-318-328.
7. Kablov E.N., Grashchenkov D.V., Isaeva N.V., Solntsev S.S., Sevastyanov V.G. High-Temperature Structural Composite Materials Based on Glass and Ceramics for Advanced Aircraft Products. Steklo i keramika, 2012, no. 4, pp. 7–11.
8. Sorokin O.Yu., Grashhenkov D.V., Solntsev S.St., Evdokimov S.A. Ceramic composite materials with high oxidation resistance for the novel aircrafts (review). Trudy VIAM, 2014, no. 6, paper no. 8. Available at: http://www.viam-works.ru (accessed: June 21, 2022). DOI: 10.18577/2307-6046-2014-0-6-8-8.
9. Kablov E.N., Grashchenkov D.V., Isaeva N.V., Solntsev S.St. Promising high-temperature ceramic composite materials. Rossiyskiy khimicheskiy zhurnal, 2010, vol. LIV, vol. 1, pp. 20–24.
10. Sorokin O.Yu. On the issue of the mechanism of interaction between carbon materials and Si melt (review). Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 65–70. DOI: 10.18577/2071-9140-2015-0-1-65-70.
11. Shestakov A.M. Ceramics based on organosilicon polymers-precursors: methods of preparation and properties (review). Trudy VIAM, 2020, no. 11 (93), paper no. 9. Available at: http://www.viam-works.ru (accessed: accessed: June 21, 2022). DOI: 10.18577/2307-6046-2020-0-11-76-92.
12. Shestakov A.M. Ceramics based on organosilicon polymers-precursors: microstructure and properties (review). Part 1. Trudy VIAM, 2021, no. 8 (102), paper no. 03. Available at: http://www.viam-works.ru (accessed: June 21, 2022). DOI: 10.18577/2307-6046-2021-0-8-21-33.
13. Shestakov A.M. Ceramics based on organosilicon polymers-precursors: microstructure and properties (review). Part 1. Trudy VIAM, 2021, no. 9 (103), paper no. 03. Available at: http://www.viam-works.ru (accessed: June 21, 2022). DOI: 10.18577/2307-6046-2021-0-9-22-32.
14. Chollon G. Oxidation Behaviour of Polymer-Derived Ceramics. Polymer Derived Ceramics: From Nanostructure to Applications. Eds. P. Colombo, R. Riedel, G.D. Sorarù, H.-J. Kleebe. Lancaster: DEStech Publications Inc., 2010, pp. 292–307.
15. Modena S., Sorarù G.D., Blum Y., Raj R. Passive Oxidation of an Effluent System: The Case of Polymer-Derived SiCO. Journal of the American Ceramic Society, 2005, vol. 88, pp. 339–345.
16. Morcos R.M., Navrotsky A., Varga T. et al. Thermodynamically Stable SiwCxNyOz Polymer-Like, Amorphous Ceramics Made from Organic Precursors. Journal of the American Ceramic Society, 2008, vol. 91, pp. 2391–2393.
17. Varga T., Navrotsky A., Moats J.L. et al. Thermodynamically Stable SixOyCz Polymer-Like Amorphous Ceramics. Journal of the American Ceramic Society, 2007, vol. 90, pp. 3213–3219.
18. Colombo P., Mera G., Riedel R., Soraru G.D. Polymer-Derived Ceramics: 40 Years of Research and Innovation in Advanced Ceramics. Journal of the American Ceramic Society, 2010, vol. 93, pp. 1805–1837.
19. Butchereit E., Nickel K.G., Muller A. Precursor-Derived Si–B–C–N Ceramics: Oxidation Kinetics. Journal of the American Ceramic Society, 2001, vol. 84, pp. 2184–2188.
20. Saha A., Shah S.R., Raj R. Oxidation Behavior of SiCN–ZrO2 Fiber Prepared from Alkoxide-Modified Silazane. Journal of the American Ceramic Society, 2004, vol. 87, pp. 1556–1558.
21. Sorarù G.D., Modena S., Guadagnino E. et al. Chemical Durability of Silicon Oxycarbide Glasses. Journal of the American Ceramic Society, 2002, vol. 85, pp. 1529–1536.
22. Pena-Alonso R., Mariotto G., Gervais C. et al. New Insights on the High-Temperature Nanostructure Evolution of SiCO and B-Doped SiBOC Polymer-Derived Glasses. Chemistry of Materials, 2007, vol. 19, pp. 5694–5702.
23. Yajima S., Hayashi J., Omori M., Okamura K. Development of a Silicon Carbide Fiber with High Tensile Strength. Nature, 1976, vol. 261, pp. 683–685.
24. Hasegawa Y., Iimura M., Yajima S. Synthesis of Continuous Silicon Carbide Fibre. Part. 2. Conversion of Polycarbosilane Fibre into Silicon Carbide Fibres. Journal of Materials Science, 1980, vol. 15, pp. 720–728.
25. Yajima S., Iwai T., Yamamura T. et al. Synthesis of a Polytitanocarbosilane and its Conversion into Inorganic Compounds. Journal of Materials Science, 1981, vol. 16, pp. 1349–1355.
26. Ishikawa T., Kohtoku Y., Kumagawa K. et al. High-Strength, Alkali-Resistant Sintered SiC Fibre Stable up to 2200 °C. Nature, 1998, vol. 391, pp. 773–775.
27. Bunsell A.R., Piant A. A Review of the Development of Three Generations of Small Diameter Silicon Carbide Fibres. Journal of Materials Science, 2006, vol. 41, pp. 823–839.
28. Shestakov A.M., Khaskov M.A., Sorokin O.Yu. Organosilicon polymer compounds based inorganic fibers for high-temperature composite materials (review). Trudy VIAM, 2019, no. 1 (73), paper no. 09. Available at: http://viam-works.ru (accessed: June 21, 202). DOI: 10.18577/2307-6046-2019-0-1-74-91.
29. Bernard S., Weinmann M., Gerstel P. et al. Boron-Modified Polysilazane as a Novel Single-Source Precursor for SiBCN Ceramic Fibers: Synthesis, Melt-Spinning, Curing and Ceramic Conversion. Journal of Materials Chemistry, 2005, vol. 15, pp. 289–299.
30. Sorarù G.D., Mercadini M., Dal Maschio R. et al. Si–Al–O–N Fibers from Polymeric Precursor: Synthesis, Structural, and Mechanical Characterization. Journal of the American Ceramic Society, 1993, vol. 76, pp. 2595–2600.
31. Sorarù G.D., Dallapiccola E., D’Andrea G. Mechanical Characterization of Sol-Gel-Derived Silicon Oxycarbide Glasses. Journal of the American Ceramic Society, 1996, vol. 79, pp. 2074–2080.
32. Renlund G.M., Prochazka S., Doremus R.H. Silicon Oxycarbide Glasses: Part II. Structure and Properties. Journal of Materials Research, 1991, vol. 6, pp. 2723–2734.
33. Nishimura T., Haug R., Bill J., Thurn G., Aldinger F. Mechanical and Thermal Properties of Si–C–N Material from Polyvinylsilazane. Journal of Materials Science, 1998, vol. 33, pp. 5237–5241.
34. Janakiraman N., Aldinger F. Fabrication and Characterization of Fully Dense Si–C–N Ceramics from a Poly(ureamethylvinyl)Silazane Precursor. Journal of the European Ceramic Society, 2009, vol. 29, pp. 163–173.
35. Shah S.R., Raj R. Mechanical Properties of a Fully Dense Polymer Derived Ceramic Made by a Novel Pressure Casting Process. Acta Materialia, 2002, vol. 50, pp. 4093–4103.
36. Walter S., Sorarù G.D., Brequel H., Enzo S. Microstructural and Mechanical Characterization of Sol-Gel-Derived SiOC Glasses. Journal of the European Ceramic Society, 2002, vol. 22, pp. 2389–2400.
37. Kroll P. Modelling and Simulation of Amorphous Silicon Oxycarbide. Journal of Materials Chemistry, 2003, vol. 13, pp. 1657–1668.
38. Rouxel T. Elastic Properties and Short-to Medium-Range Order in Glasses. Journal of the American Ceramic Society, 2007, vol. 90, pp. 3019–3039.
39. Moysan C., Riedel R., Harshe R. et al. Mechanical Characterization of a Polysiloxane-Derived SiOC Glass. Journal of the European Ceramic Society, 2007, vol. 27, pp. 397–403.
40. Moraes K.V., Interrante L.V. Processing, Fracture Toughness, and Vickers Hardness of Allylhydridopolycarbosilane-Derived Silicon Carbide. Journal of the American Ceramic Society, 2003, vol. 86, pp. 342–346.
41. Bauer A., Christ M., Zimmermann A., Aldinger F. Fracture Toughness of Amorphous Precursor-Derived Ceramics in the Silicon–Carbon–Nitrogen System. Journal of the American Ceramic Society, 2001, vol. 84, pp. 2203–2207.
42. Bernard S., Weinmann M., Cornu D. et al. Preparation of High-Temperature Stable Si–B–C–N Fibers from Tailored Single Source Polyborosilazanes. Journal of the European Ceramic Society, 2005, vol. 25, pp. 251–256.
43. Cornu D., Bernard S., Duperrier S. et al. Alkylaminoborazine-Based Precursors for the Preparation of Boron Nitride Fibers by the Polymer-Derived Ceramics (PDCs) Route. Journal of the European Ceramic Society, 2005, vol. 25, pp. 111–121.
44. Kokott S., Heymann L., Motz G. Rheology and Processability of Multi-Walled Carbon Nanotubes-ABSE Polycarbosilazane Composites. Journal of the European Ceramic Society, 2008, vol. 28, pp. 1015–1021.
45. Ishikawa T. Photocatalytic Fiber with Gradient Surface Structure Produced from a Polycarbosilane and its Applications. International Journal of Applied Ceramic Technology, 2004, vol. 1, pp. 49–55.
46. Shestakov A.M., Minakov V.T., Shvets N.I. et al. Ceramic-forming polymeric precursors based on polycarbosilane and diallylbisphenol A. Zhurnal prikladnoy khimii, 2014, vol. 87, no. 11, pp. 1626–1635.
47. Minakov V.T., Shvets N.I., Zaitsev B.A. et al. Study of the influence of Rolivsan on the process of obtaining a ceramic matrix from a polycarbosilane precursor. Zhurnal prikladnoy khimii, 2016, vol. 89, no. 2, pp. 161–167.
48. Shestakov A.M., Shvets N.I., Rozenenkova V.A., Khaskov M.A. Ceramic-forming compositions based on polycarbosilane and modified polyorganosilazanes. Zhurnal prikladnoy khimii, 2017, vol. 90, no. 8, pp. 1066–1073.
49. Vorobyov A.G., Borovik I.N., Kazennov I.S. et al. Development of liquid-propellant low-thrust rocket engines with a combustion chamber made of carbon-ceramic composite material. Vestnik MAI, 2010, vol. 17, no. 3, pp. 135–142.
50. Sherwood W.J. Composite Fabrication and CMCs. Polymer Derived Ceramics: From Nanostructure to Applications. Eds. P. Colombo, R. Riedel, G.D. Sorarù, H.-J. Kleebe. Lancaster: DEStech Publications Inc., 2010, pp. 326–340.
51. Yeon S.-H., Reddington P., Gogotsi Y. et al. Carbide-Derived-Carbons with Hierarchical Porosity from a Preceramic Polymer. Carbon, 2010, vol. 48, pp. 201–210.
52. Pivin J.C., Sendova-Vassileva M., Colombo P., Martucci A. Photoluminescence of Composite Ceramics Derived from Polysiloxanes and Polycarbosilanes by Ion Irradiation. Materials Science and Engineering: B, 2000, vol. 69–70, pp. 574–577.
53. Khaskov M.A., Shestakov A.M., Sorokin O.Yu. et al. The formation of Si–C–N interfacial coating on carbon fibers. Materials Today: Proceedings, 2018, vol. 5, pp. 26046–26051.
54. Gadow R., Kern F. Liquid-Phase Coating of Carbion Fibers with Pre-Ceramic Polymer Precursors: Process and Applications. Advanced Engineering Materials, 2002, vol. 4, pp. 883–886.
55. Lim T.W., Son Y., Yang D.-Y. et al. Net Shape Manufacturing of Three-Dimensional SiCN Ceramic Microstructures Using an Isotropic Shrinkage Method by Introducing Shrinkage Guiders. International Journal of Applied Ceramic Technology, 2008, vol. 5, pp. 258–264.
56. Eckel Z.C., Zhou C., Martin J.H. et al. Additive manufacturing of polymer-derived ceramics. Science, 2016, vol. 351, pp. 58–62.
57. Li S., Duan W.Y., Zhao T. et al. The fabrication of SiBCN ceramic components from preceramic polymers by digital light processing (DLP) 3D printing technology. Journal of the European Ceramic Society, 2018, vol. 38, pp. 4597–4603.
58. Zocca A., Gomes C.M., Staude A. et al. SiOC ceramics with ordered porosity by 3D-printing of a preceramic polymer. Journal of Materials Research, 2013, vol. 28, pp. 2243–2252.
59. Chen H., Wang X., Xue F. et al. 3D printing of SiC ceramic: Direct ink writing with a solution of preceramic polymers. Journal of the European Ceramic Society, 2018, vol. 38, pp. 5294–5300.
60. Pierin G., Grotta C., Colombo P., Mattevi C. Direct Ink Writing of micrometric SiOC ceramic structures using a preceramic polymer. Journal of the European Ceramic Society, 2016, vol. 36, pp. 1589–1594.
61. Fu Sh., Zhu M., Zhu Y. Organosilicon polymer-derived ceramics: An overview. Journal of Advanced Ceramics, 2019, vol. 8, pp. 457–478.
62. Liebau-Kunzmann V., Fasel C., Kolb R., Riedel R. Lithium Containing Silazanes as Precursors for SiCN: Li Ceramics – A Potential Material for Electrochemical Applications. Journal of the European Ceramic Society, 2006, vol. 26, pp. 3897–3901.
63. Ferrari S., Orlandi M., Turani S. et al. Use of Polysiloxane Resins in Friction Materials. Advances in Applied Ceramics, 2009, vol. 108, pp. 461–467.
64. Ceramic Electric Resistor: pat. 5961888 US; filed 10.08.98; publ. 05.10.99.
65. Riedel R., Toma L., Janssen E. Piezoresistive Effect in SiOC Ceramics for Integrated Pressure Sensors. Journal of the American Ceramic Society, 2010, vol. 93, pp. 920–924.
Current trends in various industries are aimed at the use of structural elements, their coatings and binders of non-metallic materials. The molecular structure of this group of components is basically contains organic, organoelement, straight or branched carbon-containing polymers obtained by chemical synthesis from derivatives of petroleum products. The widespread use of such materials increases the total area of their contact with the external environment, which leads to the gradual destruction of both the material itself and all structural elements as a whole. The issues of biodegradation and metabolic assimilation of polyethylene terephthalate, polyvinyls and nylon oligomers are considered.
2. Movenko D.A., Laptev A.B., Golubev A.V., Kireev D.M. The analysis of the material surface biodegradation in the petrochemical plant cooling water system. Trudy VIAM, 2019, no. 7 (79), paper no. 12. Available at: http://viam-works.ru (accessed: September 24, 2022). DOI: 10.18577/2307-6046-2019-0-7-112-124.
3. Kablov E.N., Startsev V.O. Climatic aging of aviation polymer composite materials. II. Development of methods for studying the early stages of aging. Russian metallurgy (Metally), 2020, vol. 2020, no. 10, pp. 1088–1094. DOI: 10.1134/S0036029520100110.
4. Kablov E.N., Startsev O.V., Krotov A.S., Kirillov V.N. Climatic aging of aviation composite materials. III. Significant factors of aging. Deformatsiya i razrusheniye materialov, 2011, no. 1, pp. 34–40.
5. Kablov E.N., Startsev V.O. Systematical analysis of the climatics influence on mechanical properties of the polymer composite materials based on domestic and foreign sources (review). Aviacionnye materialy i tehnologii, 2018, no. 2 (51), pp. 47–58. DOI: 10.18577/2071-9140-2018-0-2-47-58.
6. Staudinger H. Über Polymerisation. Berichte der Deutschen Chemischen Gesellschaft, 1920, no. 53, p. 1081.
7. Jordansky A.L., Zaikov G.E., Berlin A.A. Diffusion kinetics and hydrolysis biodegradable polymers. Mass loss and control of the release of low molecular weight substances. Vestnik Kazanskogo tekhnologicheskogo universiteta, 2015, vol. 18, no. 2, pp. 2–11.
8. Laptev A.B., Golubev A.V., Kireev D.M., Nikolaev E.V. To the question of biodegradation of polymeric materials in natural environments (review). Trudy VIAM, 2019, no. 9 (81), paper no. 11. Available at: http://www.viam-works.ru (accessed: September 24, 2022). DOI: 10.18577/2307-6046-2019-0-9-100-107.
9. Focht D.D. Biodegradation. AccessScience, 2020, vol. 27, pp. 57–72. DOI: 10.1036/1097-8542.422025.
10. Lucas N., Bienaime C., Belloy C. et al. Polymer biodegradation: mechanisms and estimation techniques. Chemosphere, 2008, no. 4, p. 429. DOI: 10.1016/j.chemosphere.2008.06.064.
11. Cappitelli F., Sorlini C. Microorganisms attack synthetic polymers in items Representing our cultural heritage. Applied and Environmental Microbiology, 2008, vol. 74, no. 3, pp. 564–569. DOI: 10.1128/AEM.01768-07.
12. Eskander S., Saleh H. Biodegradation: Process Mechanism. Environmental Science and Engineering, 2017, vol. 8, no. 1, pp. 1–31.
13. Startsev O.V., Meletov V.P., Perov B.V., Mashinskaya G.P. Study of the mechanism of aging of organotextolite in a subtropical climate. Mechanics of Composite Materials, 1986, no. 3, pp. 462–467.
14. Startsev O.V., Krotov A., Mashinskaya G. Climatic Ageing of Organic Fiber Reinforced Plastics: Water Effect. Journal Polymeric Material, 1997, vol. 37, pp. 161–171.
15. Startsev O.V. Structural Heterogeneity and Physical Properties of Climatic Aged Polymeriс Composite Materials. EUROMЕCH 350: Proc. Conf. Image Analysis, Porous Materials and Physical Properties, 1996, pp. 114–117.
16. Frisch H.L. Diffusion in polymers. Journal of Applied Polymer Science, 1970, no. 14, pp. 1657.
17. Kablov E.N., Startsev V.O., Inozemtsev A.A. The moisture absorption of structurally similar samples from polymer composite materials in open climatic conditions with application of thermal spikes. Aviacionnye materialy i tehnologii, 2017, no. 2 (47), pp. 56–68. DOI: 10.18577/2071-9140-2017-0-2-56-68.
18. Chetna S., Madhuri S. Studies on biodegradation of polyethylene terephthalate: A synthetic polymer. Journal of Microbiology and Biotechnology Research, 2012, no. 2, pp. 248–257. Available at: https://www.researchgate.net/publication/306202944 (accessed: September 24, 2022).
19. Sinha V., Patel M.R., Patel J.V. Pet Waste Management by Chemical Recycling: A Review. Journal of Polymers and the Environment, 2010, no. 18, pp. 8–25. DOI: 10.1007/s10924-008-0106-7.
20. Sharon M., Sharon C. Studies on biodegradation of polyethylene terephthalate: a synthetic polymer. Journal Microbiology and Biotechnology Research, 2012, vol. 2, pp. 248–257. Available at: https://www.researchgate.net/publication/306202944 (accessed: September 24, 2022).
21. Ghosh S., Pal S., Ray S. Study of microbes having potentiality for biodegradation of plastics. Environmental Science and Pollution Research, 2013, vol. 20, pp. 4339–4355. DOI: 10.1007/s11356-013-1706.
22. Danso D., Schmeisser C., Chow J. et al. New insights into the function and global distribution of polyethylene terephthalate PET-degrading bacteria and enzymes in marine and terrestrial metagenomes. Applied and Environmental Microbiology, 2018, vol. 84, pp. 3–17. DOI: 10.1128/AEM.02773-17.
23. Zheng Y., Yanful E.K., Bassi A.S. A Review of Plastic Waste Biodegradation. Critical Reviews in Biotechnology, 2005, vol. 25, pp. 243–250. DOI: 10.1080/07388550500346359.
24. Yoshida S., Hiraga K., Takehana T. et al. A bacterium that degrades and assimilates poly(ethylene terephthalate). Science, 2016, vol. 353, pp. 759–759.
25. Tourova T.P., Sokolova D.Sh., Nazina T.N. et al. Phylogenetic Diversity of Microbial Communities from the Surface of Polyethylene Terephthalate Materials Exposed to Different Water Environments. Microbiology, 2020, vol. 89, no. 1, pp. 96–106. DOI: 10.1134/S0026261720010154.
26. Liu C., Shi C., Zhu S. et al. Structural and functional characterization of polyethylene terephthalate hydrolase from Ideonella sakaiensis. Biochemical and Biophysical Research Communications, 2019, vol. 508, pp. 289–294. DOI: 10.1016/j.bbrc.2018.11.148.
27. Loh K., Chua S. Ortho pathway of benzoate degradation in Pseudomonas putida: induction of meta pathway at high substrate concentrations. Enzyme and Microbial Technology, 2002, vol. 30, pp. 620–626. DOI: 10.1016/S0141-0229(02)00016-9.
28. Banerjee A., Ghoshal A. Phenol degradation by Bacillus cereus: Pathway and kinetic modeling. Bioresource Technology, 2010, vol. 101, pp. 5501–5507. DOI: 10.1016/j.biortech.2010.02.018.
29. Grant D.J., Patel J.C. The non-oxidative decarboxylation of p-hydroxybenzoic acid, gentisic acid, protocatechuic acid and gallic acid by Klebsiella aerogenes (Aerobacter aerogenes). Antonie van Leeuwenhoek, 1969, no. 35, pp. 325–343. DOI: 10.1007/BF02219153.
30. Mpofu E., Chakraborty J., Suzuki-Minakuchi C. et al. Biotransformation of Monocyclic Phenolic Compounds by Bacillus licheniformis TAB7. Microorganisms, 2019, vol. 8, pp. 1–12. DOI: 10.3390/microorganisms8010026.
31. Wilkes R.A., Aristilde L. Degradation and metabolism of synthetic plastics and associated products by Pseudomonas sp.: capabilities and challenges. Journal of Applied Microbiology, 2017, vol. 123, pp. 582–593. DOI: 10.1111/jam.13472.
32. Revitt D.M., Worrall P. Low temperature biodegradation of airport deicing fluids. Water Science and Technology, 2003, vol. 48, no. 9, pp. 103–111.
33. Narancic T., Kevin E. Plastic waste as a global challenge: are biodegradable plastics the answer to the plastic waste problem. Microbiology, 2019, vol. 165, рр. 129–137. DOI: 10.1099/mic.0.000749.
34. Kricheldorf H.R., Nuyken O., Swift G. Handbook of polymer synthesis. Second edition. CRC Press, 2004, pp. 97–124.
35. Premraj R., Mukesh D. Biodegradation of polymers. Indian Journal of Biotechnology, 2005, vol. 4, pp. 186–193.
36. Hu X., Mamoto R., Shimomura Y. et al. Cell surface structure enhancing uptake of polyvinyl alcohol (PVA) is induced by PVA in the PVA-utilizing Sphingopyxis sp.strain 113P3. Archives of Microbiology, 2007, no. 188, pp. 235–241. DOI: 10.1007/s00203-007-0239-4.
37. Kim M., Yoon M. Isolation of strains degrading poly(Vinyl alcohol) at high temperatures and their biodegradation ability. Polymer Degradation and Stability, 2010, no. 95, pp. 89–93. DOI: 10.1016/j.polymdegradstab.2009.09.014.
38. Hatanaka T., Kawahara T., Asahi N., Tsuji M. Effects of the structure of poly(vinylalcohol) on the dehydrogenation reaction by poly(vinyl alcohol) dehydrogenase from Pseudomonas sp. 113P3. Bioscience, Biotechnology and Biochemistry, 1995, no. 59, pp. 1229–1231.
39. Matsumura S., Tomizawa N., Toki A. et al. Novel Poly(vinyl alcohol)-Degrading Enzyme and the Degradation Mechanism. Macromolecules, 1999, vol. 32, no. 23, pp. 7753–7761. DOI: 10.1021/ma990727b.
40. Klomklang W., Tani A., Kimbara K. et al. Biochemical and molecular characterization of a periplasmic hydrolase for oxidized polyvinyl alcohol from Sphingomonas sp. strain 113P3. Microbiology, 2005, vol. 151, pp. 1255–1262. DOI: 10.1099/mic.0.27655-0.
41. Shimao M., Onishi S., Kato N., Sakazawa C. Pyrroloquinoline Quinone-Dependent Cytochrome Reduction in Polyvinyl Alcohol-Degrading Pseudomonas sp. Strain VM15C. Applied and Environmental Microbiology, 1989, vol. 55, no. 2, pp. 275–278. DOI: 10.1128/aem.55.2.275-278.1989.
42. Hu X., Kawai F. Biochemistry of microbial polyvinyl alcohol degradation. Applied and Environmental Microbiology, 2009, vol. 84, pp. 227–237.
43. Welgos R.J. Polyamides, Plastics. 2nd ed. Allied Chemical Corporation in EPSE, 1975, vol. 11, рр. 445–476.
44. Kolosova A.S., Sokolskaya M.K., Vitkalova I.A., Torlova A.S., Pikalov E.S. Modern polymer composite materials and their application. Mezhdunarodnyy zhurnal prikladnykh i fundamentalnykh issledovaniy, 2018, no. 5, part 1, pp. 245–256.
45. Palmer R.J. Polyamides, Plastics. Encyclopedia of Polymer Science and Technology, 2002, no. 3, p. 251. DOI: 10.1002/0471440264.pst251.
46. Iizuka H., Tanabe I., Fukumura T., Kato K. Taxonomic study on the ε-caprolactam-utilizing bacteria. Journal of General Microbiology, 1967, no. 13, pp. 125–137.
47. Вoronin A.M., Grishchenkov V.G., Kulakov L.A., Naumova R.P. Characteristics of plasmid pBS271 controlling epsilon-caprolactam degradation by bacteria in the genus Pseudomonas. Mikrobiologiya, 1986, no. 55 (2), p. 231.
48. Friedrich J., Zalar P., Mohorcic M. et al. Ability of fungi to degrade synthetic polymer nylon-6. Chemosphere, 2007, no. 67, pp. 2089–2095. DOI: 10.1016/j.chemosphere.2006.09.038.
49. Kakudo S., Negoro S., Urabe I., Okada H. Nylon Oligomer Degradation Gene, nylC, on Plasmid pOAD2 from a Flavobacterium Strain Encodes Endo-Type 6-Aminohexanoate Oligomer Hydrolase: Purification and Characterization of the nylC Gene Product. Applied and environmental microbiology, 1993, vol. 59, no. 11, pp. 3978–3980. DOI: 10.1128/aem.59.11.3978-3980.1993.
50. Okada H., Negoro S., Kimura H., Nakamura S. Evolutionary adaptation of plasmid-encoded enzymes for degrading nylon oligomers. Nature, 1983, no. 306 (5939), pp. 203–206. DOI: 10.1038/306203a0.
51. Baxi N., Shah A. Biological treatment of the components of solid oligomeric waste from a nylon-6 production plant. World Journal of Microbiology and Biotechnology, 2000, no. 16, pp. 835–840. DOI: 10.1023/A:1008971216941.
52. Negoro S. Biodegradation of nylon Oligomers. Applied Microbiology and Biotechnology, 2000, no. 54, pp. 461–466. DOI: 10.1007/s002530000434.
53. Parke D., Garcia M.A., Ornston L.N. Cloning and Genetic Characterization of dca Genes Required for Oxidation of Straight-Chain Dicarboxylic Acids in Acinetobacter sp. Strain ADP1. Applied and Environmental Microbiology, 2001, vol. 67, no. 10. DOI: 10.1128/AEM.67.10.4817-4827.2001.
54. Takehara I., Fujii T., Tanimoto Y. et al. Metabolic pathway of 6-aminohexanoate in the nylon oligomer-degrading bacterium Arthrobacter sp. KI72: identification of the enzymes responsible for the conversion of 6-aminohexanoate to adipate. Applied Microbiology and Biotechnology, 2018, no. 102, vol. 2, pp. 801–814. DOI: 10.1007/s00253-017-8657-y.
The change in the set of deformation-strength parameters of carbon fiber reinforced plastics during aging under real operating conditions is accompanied by an irreversible change in their thermal expansion. In the first part of the work, the effect of temperature, thermal cycles, humidity, solar radiation, mechanical loads and other external factors on the coefficients of linear thermal expansion of reinforcing fillers, thermosetting polymers, unidirectional carbon fiber in the reinforcement direction, in the transverse direction and perpendicular to the reinforcement plane is considered.
2. Irving P., Soutis C. Polymer composites in the aerospace industry. Polymer Composites in the Aerospace Industry. 2nd ed. Woodhead Publishing, 2019, 688 p.
3. Kolobkov A.S. Polymer composite materials for various aircraft structures (review). Trudy VIAM, 2020, no. 6–7 (89), paper no. 05. Available at: http://www.viam-works.ru (accessed: September 28, 2022). DOI: 10.18577/2307-6046-2020-0-67-38-44.
4. Gunyaeva A.G., Kurnosov A.O., Gulyaev I.N. High-temperature polymer composite ma-terials developed FSUE «VIAM» for aero-space engineering: past, present and future (review). Trudy VIAM, 2021, no. 1 (95), paper no. 05. Available at: http://www.viam-works.ru (accessed: September 28, 2022). DOI: 10.18577/2307-6046-2021-0-1-43-53.
5. Ageing of composites. Ed. R. Martin. Cambridje: Woodhead Publishing Limited, 2008, 544 p.
6. Aviation materials: a directory in 13 vols. Ed. E.N. Kablov. Moscow: VIAM, 2015, vol. 13: Climate and microbiological resistance of non-metallic materials, 270 p.
7. Fahmy A.A., Cunningham T.G. Investigation of thermal fatigue in fiber composite materials. NASA CR-2641, 1976, 60 p.
8. Startsev O.V., Vapirov Y.M., Deev I.S., Yartsev V.A., Krivonos V.V., Mitrofanova E.A., Chubarova M.A. Effect of prolonged atmospheric aging on the properties and structure of carbon plastic. Mechanics of Composite Materials, 1987, vol. 22, no. 4, pp. 444–449.
9. Baker D.J. Ten-Year Ground Exposure of Composite Materials Used on the Bell Model 206L Helicopter Flight Service Program. Nasa Technical Paper 3468, 1994, 54 p.
10. Startsev V.O., Slavin A.V. Carbon and glass reinforced polymer based on solvent-free binders resistance to the impact of a moderate cold and moderate warm climate. Trudy VIAM, 2021, no. 5 (99), paper no. 12. Available at: http://www.viam-works.ru (accessed: September 28, 2022). DOI: 10.18577/2307-6046-2021-0-5-114-126.
11. Kablov E.N., Startsev V.O. Systematical analysis of the climatics influence on mechanical properties of the polymer composite materials based on domestic and foreign sources (review). Aviacionnye materialy i tehnologii, 2018, no. 2 (51), pp. 47–58. DOI: 10.18577/2071-9140-2018-0-2-47-58.
12. Startsev O.V., Nikishin E.F. Aging of polymer composite materials exposed to the conditions in outer space. Mechanics of Composite Materials, 1994, no. 4, pp. 338–346.
13. Startsev O.V., Krotov A.S., Golub P.D. Effect of climatic and radiation ageing on properties of VPS-7 glass fibre reinforced epoxy composite. Polymer Degradation and Stability, 1999, vol. 63, no. 3, pp. 353–358.
14. Odegard G.M., Bandyopadhyay A. Physical aging of epoxy polymers and their composites. Journal of Polymer Science. Part B: Polymer Physics, 2011, vol. 49, no. 24, pp. 1695–1716.
15. Nikolaev E.V., Barbotko S.L., Andreeva N.P., Pavlov M.R., Grashchenkov D.V. Comprehensive research of the influence of climatic and operational factors on new generation epoxy binding and polymeric composite materials on its basis Part 3. Calculation of activation energy and thermal resource of polymeric composite materials on the basis of epoxy matrix. Trudy VIAM, 2016, no. 5 (41), paper no. 11. Available at: http://www.viam-works.ru (accessed: September 28, 2022). DOI: 10.18577/2307-6046-2016-0-5-11-11.
16. Park S.Y., Choi W.J., Choi C.H., Choi H.S. An experimental study into aging unidirectional carbon fiber epoxy composite under thermal cycling and moisture absorption. Composite Structures, 2019, vol. 207, pp. 81–92.
17. Startsev O.V., Lebedev M.P., Blaznov A.N. The aging of polymer composite materials in a loaded state. Vse materialy. Entsiklopedicheskiy spravochnik, 2020, no. 10, pp. 7–18.
18. Startsev O.V., Lebedev M.P., Blaznov A.N. The aging of polymer composite materials in a loaded state (ending). Vse materialy. Entsiklopedicheskiy spravochnik, 2020, no. 11, pp. 2–12.
19. Startsev O.V., Suranov A.Ya., Startsev V.O. Automated linear dilatometer. Pribory i tekhnika eksperimenta, 2009, no. 3, pp. 166–167.
20. Startsev O.V., Vapirov Y.M., Lebedev M.P., Kychkin A.K. Comparison of Glass-Transition Temperatures for Epoxy Polymers Obtained by Methods of Thermal Analysis. Mechanics of Composite Materials, 2020, vol. 56, no. 2, pp. 227–240.
21. Johnson R.R., Kural M.H., Mackey G.B. Thermal expansion properties of composite materials. Report NASA-CR-165632, 1981, 60 p.
22. Rogers K.F., Kingston-Lee D.M., Phillips L.N., Yates B., Chandra M., Parker S.F.H. The thermal expansion of carbon-fibre reinforced plastics. Journal of Materials Science, 1981, vol. 16, no. 10, pp. 2803–2818.
23. Startsev O.V., Vapirov Y.M., Perepechko I.I., Kobets L.P. Effect of the concentration of a carbon filler on the molecular mobility and relaxational processes of an expoxide polymer. Polymer Science U.S.S.R., 1986, vol. 28, no. 9, pp. 2048–2055.
24. Bowles D.E., Tompkins S.S. Prediction of Coefficients of Thermal Expansion for Unidirectional Composites. Journal of Composite Materials, 1989, vol. 23, no. 4, pp. 370–388.
25. Bouadi H., Sun C.T. Hygrothermal Effects on the Stress Field of Laminated Composites. Journal of Reinforced Plastics and Composites, 1989, vol. 8, no. 1, pp. 40–54.
26. Schapery R.A. Thermal Expansion Coefficients of Composite Materials Based on Energy Principles. Journal of Composite Materials, 1968, vol. 2, no. 3, pp. 380–404.
27. Dong K., Zhang J., Cao M. et al. A mesoscale study of thermal expansion behaviors of epoxy resin and carbon fiber/epoxy unidirectional composites based on periodic temperature and displacement boundary conditions. Polymer Testing, 2016, vol. 55, pp. 44–60.
28. Karadeniz Z.H., Kumlutas D. A numerical study on the coefficients of thermal expansion of fiber reinforced composite materials. Composite Structures, 2007, vol. 78, no. 1, pp. 1–10.
29. Dong C. Development of a model for predicting the transverse coefficients of thermal expansion of unidirectional carbon fibre reinforced composites. Applied Composite Materials, 2008, vol. 15, no. 3, pp. 171–182.
30. Startsev O.V., Khristoforov D.A., Klyushnichenko A.B., Rumyantsev A.F., Gunyaev G.M., Raskutin A.E. Relaxation of temperature deformations in carbon fibers. Doklady Physics, 2003, vol. 48, no. 6, pp. 303–305.
31. Sorina T.G., Gunyaev G.M. Structural carbon-fibre-reinforced plastics and their properties. Polymer Matrix Composites. Chapman & Hall, 1995, pp. 132–198.
32. Gulyaev I.N. Carbon tensure-resistant built-in sensory elements for monitoring highly loaded structures from carbon fiber. Zavodskaya laboratoriya. Diagnostika materialov, 2010, vol. 76, pp. 46–51..
33. Carbon fiber and prepreg data sheets. Available at: https://www.toraycma.com/resources/data-sheets/ (accessed: September 28, 2022).
34. Gowayed Y. Types of fiber and fiber arrangement in fiber-reinforced polymer (FRP) composites. Developments in Fiber-Reinforced Polymer (FRP) Composites for Civil Engineering, 2013, pp. 3–17.
35. Mashinskaya G.P., Perov B.V. Principles of developing organic-fibre-reinforced plastics for air-craft engineering. Polymer Matrix Composites. Soviet Advanced Composites Technology Series. Eds.: R.E. Shalin et al. Dordrecht: Springer, 1995, vol 4, рр. 305–425. DOI: 10.1007/978-94-011-0515-6_7.
36. Gutnikov S.I., Lazoryak B.I., Seleznev A.N. Glass fibers. Moscow: МGU, 2010, 53 р.
37. Sathishkumar T.P., Satheeshkumar S., Naveen J. Glass fiber-reinforced polymer composites – A review. Journal of Reinforced Plastics and Composites, 2014, vol. 33, no. 13, pp. 1258–1275.
38. Startsev O.V., Litvinov A.A., Startsev V.O., Krotov A.S. Relaxation of the linear thermal expansion of basaltoplasty and their components. Vestnik Yugorskogo gosudarstvennogo universiteta, 2009, no. 2, pp. 80–86.
39. Kamarian S., Bodaghi M., Isfahani R.B., Shakeri M., Yas M.H. Influence of carbon nanotubes on thermal expansion coefficient and thermal buckling of polymer composite plates: experimental and numerical investigations. Mechanics Based Design of Structures and Machines, 2021, vol. 49, no. 2, pp. 217–232.
40. Kulkarni R., Ochoa O. Transverse and longitudinal CTE measurements of carbon fibers and their impact on interfacial residual stresses in composites. Journal of Composite Materials, 2006, vol. 40, no. 8, pp. 733–754.
41. Jones F.R., Mulheron M., Bailey J.E. Generation of thermal strains in GRP – Part 1. Effect of water on the expansion behaviour of unidirectional glass fibre-reinforced laminates. Journal of Materials Science, 1983, vol. 18, no. 5, pp. 1522–1532.
42. Zheng Q., Morgan R.J. Synergistic Thermal-Moisture Damage Mechanisms of Epoxies and Their Carbon Fiber Composites. Journal of Composite Materials, 1993, vol. 27, no. 15, pp. 1465–1478.
43. Khamidulin O.L., Madiyarova G.I., Reskovy A.V., Andrianova K.A., Amirova L.M. A comparative analysis of the thermal expansion and heat capacity of polymers based on a number of epoxinolaine resins in a wide range of temperatures. Vestnik tekhnologicheskogo universiteta, 2021, vol. 24, pp. 40–44.
44. Reskovy A.V., Madiyarova G.M., Khamidullin O.L., Amirova L.M. Militic expansion of polymers based on a number of epoxinolain resins. Vestnik tekhnologicheskogo universiteta, 2022, vol. 25, pp. 46–50.
45. Startsev O.V., Rudnev V.P. Changing the structural heterogeneity of epoxy compounds during water supply. Aviation materials. Corrosion and aging of materials in sea subtropics, 1983, pp. 71–77.
46. Ahmed A., Tavakol B., Das R. et al. Study of thermal expansion in carbon fiberreinforced polymer composites. International SAMPE Technical Conference, 2012, p. 13.
47. Kong E.S.-W. Physical aging in epoxy matrices and composites. Epoxy Resins and Composites, Berlin, 1986, pp. 125–171.
48. Zhavoronok E.S., Senchikhin I.N., Roldugin V.I. Physical aging and relaxation processes in epoxy systems. Vysokomolekulyarnye soyedineniya A, 2017, vol. 59, no. 2, pp. 113–149.
49. Startsev V.O., Krotov A.S., Suranov A.Ya., Startsev O.V. Spectrometric processing of the results of dilatometric measurements of polymer composite materials. Materialovedenie, 2009, no. 11, pp. 11–15.
50. Motoc D.L., Ivens J., Dadirlat N. Coefficient of thermal expansion evolution for cryogenic preconditioned hybrid carbon fiber/glass fiber-reinforced polymeric composite materials. Journal of Thermal Analysis and Calorimetry, 2013, vol. 112, no. 3, pp. 1245–1251.
51. Marahovskiy P.S., Maltceva E.Yu., Barinov D.Ya., Zuev A.V., Smirnov M.V. Experience in measuring the thermal linear expansion coefficient of combined cords using organic and glass fibers. Aviacionnye materialy i tehnologii, 2019, no. 1 (54), pp. 82–87. DOI: 10.18577/2071-9140-2019-0-1-82-87.
52. Decelle J., Huet N., Bellenger V. Oxidation induced shrinkage for thermally aged epoxy networks. Polymer Degradation and Stability, 2003, vol. 81, no. 2, pp. 239–248.
53. Inamdar A., Yang Y.H., Prisacaru A., Gromala P., Han B. High temperature aging of epoxy-based molding compound and its effect on mechanical behavior of molded electronic package. Polymer Degradation and Stability, 2021, vol. 188, pp. 109572.
54. Ogata M., Kinjo N., Kawata T. Effects of crosslinking on physical properties of phenol-formaldehyde novolac cured epoxy resins. Journal of Applied Polymer Science, 1993, vol. 48, no. 4, pp. 583–601.
55. Perepacko I.I., Trepelkova L.I., Bodrova L.A. The abnormal effect of the density of the spatial grid of epoxy polymers on their viscous-capacity in glass-shaped state. Vysokomolekulyarnyye soyedineniya. Seriya B, 1969, vol. 11, no. 1, pp. 3–4.
56. Perepechnko I.I., Kvacheva L.A. Molecular mobility and relaxation processes in stitched epoxy polymers. Vysokomolekulyarnyye soyedineniya. Seriya A, 1971, vol. 13, no. 1, pp. 124–130.
57. Kablov E.N., Startsev V.O. The Influence of Internal Stresses on the Aging of Polymer Composite Materials: a Review. Mechanics of Composite Materials, 2021, vol. 57, no. 5, pp. 565–576.
58. Lebedev M.P., Startsev O.V., Petrov M.G., Kopyrin M.M. The formation of microcracks with climatic aging of polymer composite materials. Vse materialy. Entsiklopedicheskiy spravochnik, 2022, no. 4, pp. 2–11.
59. Hahn H.T. Residual Stresses in Polymer Matrix Composite Laminates. Journal of Composite Materials, 1976, vol. 10, no. 4, pp. 266–278.
60. Nairn J.A. Thermoelastic analysis of residual stresses in unidirectional, high-performance composites. Polymer Composites, 1985, vol. 6, no. 2, pp. 123–130.
61. Abrate S. Matrix cracking in laminated composites: A review. Composites Engineering, 1991, vol. 1, no. 6, pp. 337–353.
62. Shin K.B., Kim C.G., Hong C.S., Lee H.H. Prediction of failure thermal cycles in graphite/epoxy composite materials under simulated low earth orbit environments. Composites. Part B: Engineering, 2000, vol. 31, no. 3, pp. 223–235.
63. Startsev O.V., course I.S., Deev I.S., Nikishin E.F. Thermal expansion of carbon fiber KMU-4L after 12 years of exhibiting in an open cosmos. Voprosy materialovedeniya, 2013, no. 4 (76), рр. 77–85.
64. Mahdavi S., Gupta S.K., Hojjati M. Thermal cycling of composite laminates made of out-of-autoclave materials. Science and Engineering of Composite Materials, 2018, vol. 25, no. 6, pp. 1145–1156.
65. Asai S., Goto K., Yoneyama S. et al. Effect of space environment on thermal and mechanical properties of CFRP. ICCM International Conferences on Composite Materials, 2015, vol. 2015-July, art. 43-16-2.
66. Kato A., Goto K., Kogo Y., Inoue R. Changes in thermal expansion coefficient of CFRP laminate due to thermal cycle // 21st International Conferences on Composite Materials. Xi'an, 2017.
67. Herakovich C.T., Hyer M.W. Damage-induced property changes in composites subjected to cyclic thermal loading. Engineering Fracture Mechanics, 1986, vol. 25, no. 5–6, pp. 779–791.
68. Aniskevich K., Korkhov V., Faitelsone J., Jansons J. Mechanical properties of pultruded glass fiber reinforced plastic after freeze–thaw cycling. Journal of Reinforced Plastics and Composites, 2012, vol. 31, no. 22, pp. 1554–1563.
69. Pipes R.B., Vinson J.R., Chou T.-W. On the Hygrothermal Response of Laminated Composite Systems. Journal of Composite Materials, 1976, vol. 10, no. 2, pp. 129–148.
70. Browning C.E. The mechanisms of elevated temperature property losses in high performance structural epoxy resin matrix materials after exposures to high humidity environments. Polymer Engineering & Science, 1978, vol. 18, no. 1, pp. 16–24.
71. Crossman F.W., Mauri R.E., Warren W.J. Hygrothermal damage mechanisms in graphite-epoxy composites. NASA Contractor Reports, 1979, vol. 3189, 52 p.
72. Zhang J., Herrmann K.P. Modeling Matrix Cracking in Composite Laminates Under Thermo-mechanical Loading. Proceedings in Applied Mathematics and Mechanics, 2002, vol. 1, no. 1, pp. 203–204.
73. Lafarie-Frenot M., Hénaff-Gardin C., Gamby D. Matrix cracking induced by cyclic ply stresses in composite laminates. Composites Science and Technology, 2001, vol. 61, no. 15, pp. 2327–2336.
74. Lafarie-Frenot M., Rouquie S. Influence of oxidative environments on damage in c/epoxy laminates subjected to thermal cycling. Composites Science and Technology, 2004, vol. 64, no. 10–11, pp. 1725–1735.
75. Lim S.G., Hong C.S. Effect of transverse cracks on the thermomechanical properties of cross-ply laminated composites. Composites Science and Technology, 1989, vol. 34, no. 2, pp. 145–162.
76. Adams D.S., Herakovich C.T. Influence of damage on the thermal response of graphite-epoxy laminates. Journal of Thermal Stresses, 1984, vol. 7, no. 1, pp. 91–103.
77. Geng G., Ma X., Geng H., Wu Y. Effect of load on the thermal expansion behavior of T700 carbon fiber bundles. Polymers, 2018, vol. 10, no. 2, art. 152.
78. Lebedev M.P., Startsev O.V. Radiation aging of polymer composite materials. Klei. Germetiki. Tekhnologii, 2022, no. 8, pp. 21–32.
79. Arkhipov A.A., Korkhov V.P., Pudnik V.V., Rodin Y.P. Change in the structure and properties of carbon fiber-reinforced plastic with a polysulfone matrix under the effect of gamma irradiation. Mechanics of Composite Materials, 1993, vol. 28, no. 6, pp. 591–596.
80. Wu Z.X., Li J.W., Huang C.J. et al. Effect of gamma irradiation on the mechanical behavior, thermal properties and structure of epoxy/glass-fiber composite. Journal of Nuclear Materials, 2013, vol. 441, no. 1–3, pp. 67–72.
81. Wu Z., Li J., Huang C., Huang R., Li L. Processing characteristic and radiation resistance of various epoxy insulation materials for superconducting magnets. Fusion Engineering and Design, 2013, vol. 88, no. 11, pp. 3078–3083.
82. Zheng L.F., Wang L.N., Wang Z.Z., Wang L. Effects of γ-ray irradiation on the fatigue strength, thermal conductivities and thermal stabilities of the glass fibres/epoxy resins composites. Acta Metallurgica Sinica (English Letters), 2018, vol. 31, no. 1, pp. 105–112.
83. Shelby J.E. Effect of radiation on the physical properties of borosilicate glasses. Journal of Applied Physics, 1980, vol. 51, no. 5, pp. 2561–2565.
84. Memory J.D., Fornes R.E., Gilbert R.D. Radiation Effects on Graphite Fiber Reinforced Composites. Journal of Reinforced Plastics and Composites, 1988, vol. 7, no. 1, pp. 33–65.
85. Kablov E.N., Startsev V.O., Inozemtsev A.A. The moisture absorption of structurally similar samples from polymer composite materials in open climatic conditions with application of thermal spikes. Aviacionnye materialy i tehnologii, 2017, no. 2 (47), pp. 56–68. DOI: 10.18577/2071-9140-2017-0-2-56-68.
86. Startsev V.O., Lebedev M.P., Kychkin A.K. Influence of moderately warm and extremely cold climate on properties of basalt plastic armature. Heliyon, 2018, vol. 4, no. 12, art. e01060.
87. Kychkin A.K., Lebedev M.P., Kychkin А.А. et al. Investigation of the Coefficient of Linear Temperature Expansion of Composite Rods and Heavy Concrete. Proceedings of the International Symposium «Engineering and Earth Sciences: Applied and Fundamental Research» dedicated to the 85th anniversary of H.I. Ibragimov (ISEES 2019). Paris: Atlantis Press, 2019, pp. 447–451.
88. Startsev V.O. Across-the-thickness gradient of the interlaminar shear strength of a CFRP after its long-term exposure to a marine climate. Mechanics of Composite Materials, 2016, vol. 52, no. 2, pp. 171–176.
89. Kablov E.N., Startsev V.O. Measurement and forecasting of materials samples’ temperature during weathering in different climatic zones. Aviacionnye materialy i tehnologii, 2020, no. 4 (61), pp. 47–58. DOI: 10.18577 / 2071-9140-2020-0-4-47-58.
Polymer materials
Shitov R.О., Butuzov А.V. Commercial silicone resin (review). Part 1
Composite materials
Tolstikov A.A., Arislanov A.A., Putyrskiy S.V., Shestov V.V. Study of the mechanical properties of titanium composite laminates materials based on titanium alloys
Lebedeva Yu.E., Chainikova A.S., Shchego-leva N.E., Belyachenkov I.O., Turchenko M.V. Synthesis and study of the properties of
yttrium oxide sols
Korolev D.V., Valeev R.A., Morgunov R.B., Piskorsky V.P. Calculation of the temperature dependence of the magnetization of sintered materials Pr–Dy–Fe–Co–B using molecular field approximation theory
Satdinov R.A., Savitsky R.S. Influence of weft thread deflection in reinforcing filler on elastic-strength properties of PCM
Tkachuk A.I., Kurshev E.V., Lonskii S.L.,Lyubimova A.S. Modification of epoxy binderes with multi-walled carbon nanotubes
Mishkin S.I., Zhakova L.S., Klimenko O.N., Vasilchuk E.A. Research of influence of the contents resin in CFRP on their mechanical properties
Postnov V.I., Mantusova O.Yu., Postnova M.V., Barannikov A.A. Influence of thermocyclic effects on the properties of fiberglass
Burkovskaya N.P., Bobrovsky A.P., Efimochkin I.Yu., Bol’shakova A.N. Spheroidization of powder compositions based on refractory metals (review). Part 2
Shestakov A.M. Ceramics based on organosilicon polymers-precursors: properties and applications (review)
Material tests
Ermishev V.Yu. Metabolic possibilities of bacteria with respect to synthetic hydrocarbons used in the production of non-metallic materials (review)
Startsev V.O., Vardanyan A.M. Influence of external influences on the coefficient of linear thermal expansion of carbon fiber plastics. Part 1. Analysis of theoretical and experimental results (review)