Articles
Results of design and experimental studies of a nickel-based superalloy VZhL20 with a density of 8.04 g/cm3 for the manufacture of turbine blades with a columnar granular structure and a single-crystal structure are presented. It is shown that alloy VZHL20 with a single-crystal structure of the crystallographic orientation [001] in the heat-treated state possesses high phase stability, and enhanced short-term strength and long-term strength
2. Bondarenko Yu.A. Trends in the development of high-temperature metal materials and technologies in the production of modern aircraft gas turbine engines. Aviacionnye materialy i tehnologii, 2019, no. 2 (55), pp. 3–11. DOI: 10.18577 / 2071-9140-2019-0-2-3-11.
3. Kablov E.N. Casting heat-resistant alloys. Mechanical engineering: encyclopedia in 40 vols. Moscow: Mashinostroyenie, 2001, vol. II-3: Non-ferrous metals and alloys. Composite materials, pp. 519−552.
4. Nazarkin R.M., Kolodochkina V.G., Ospennikova O.G., Orlov. M.R. The microstructure modifications of single crystals of Ni-based superalloys in time-tested turbine blades. Aviacionnye materialy i tehnologii, 2016, no. 4 (45), pp. 9–17. DOI: 10.18577/2071-9140-2016-0-4-9-17.
5. Walston W.S., O'Hara K.S., Ross E.W., Pollock T.M., Murphy W.H. René N6: Third generation single crystal superalloy. Superalloys. Pennsylvania: Minerals, Metals and Materials Society, 1996, pp. 27–34.
6. Jo C.-Y., Jones N., Choe S.-J., Knowles D. High temperature mechanical properties and creep crack initiation of DS CM186LC for nozzle guide vane. Metals and Materials, 1998, vol. 4, no. 5, pp. 1017-1025.
7. Kablov E.N., Ospennikova O.G., Petrushin N.V., Visik E.M. Single-crystal nickel-based superalloy of a new generation with low-density. Aviacionnye materialy i tehnologii, 2015, no. 2 (35), pp. 14–25. DOI: 10.18577/2071-9140-2015-0-2-14-25.
8. Toloraya V.N., Kablov E.N., Orekhov N.G. Casting technologies for single-crystal turbine blades of GTE and GTU. Aviacionnye materialy i tehnologii, 2003, no. 1, pp. 63–79.
9. Low carbon directional solidification alloy – CM186LC: pat. US 5069873; filed 14.08.89; publ. 03.12.91.
10. Ross E.W., O'Hara K.S. RENÉ N4: A first generation single crystal turbine airfoil alloy with improved oxidation resistance, low angle boundary strength and superior long time rupture strength. Superalloys. Pennsylvania: Minerals, Metals and Materials Society, 1996, pp. 19–25.
11. Kablov E.N., Petrushin N.V. Computer-aided design method for casting heat-resistant nickel alloys. Foundry heat-resistant alloys. The effect of S.T. Kishkina. Moscow: Nauka, 2006, pp. 56–78.
12. Gerasimov V.V., Petrushin N.V., Visik E.M. Improvement of casting technology and composition of single crystal blades made of heat-resistant intermetallic alloy. Trudy VIAM, 2015, no. 3, paper no. 01. Available at: http://www.viam-works.ru (accessed: December 21, 2020). DOI: 10.18577/2307-6046-2015-0-3-1-1.
13. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
14. Petrushin N.V., Visik E.M., Elyutin E.S. Improvement of the chemical composition and structure of castable nickel-base superalloy with low density. Part 1. Trudy VIAM, 2021, no. 3 (97), paper no. Available at: http://www.viam-works.ru (date of access: March 15, 2021). DOI: 10.18577/2307-6046-2021-0-3-3-15.
15. Zadgenidze I.G. Planning an experiment for the study of multicomponent systems. Moscow: Nauka, 1976, 390 p.
16. Kablov E.N., Petrushin N.V., Parfenovich P.I. Construction of cast heat-resistant nickel alloys with polycrystalline structure. Metallovedenie i termicheskaya obrabotka metallov, 2018, no. 2 (752), pp. 47–55.
17. Morozova G.I. Regularity of the formation of the chemical composition of γʹ/γ-matrices of multicomponent nickel alloys. Doklady Akademii nauk SSSR, 1991, vol. 320, no. 6, pp. 1413–1416.
18. Morozova G.I. The importance of physicochemical phase analysis technique in the development of aviation metallic material science and creation of Ni-based superalloys. Trudy VIAM, 2016, no. 1 (37), paper no. 7. Available at: http://www.viam-works.ru (accessed: December 10, 2020). DOI: 10.18577/2307-6046-2016-0-1-50-55.
19. Yukawa N., Morinaga M., Ezaki H., Murata Y. Alloy design of superalloys by the d-electrons concept. High temperature alloys for gas turbines and other applications: Proceedings of Conference. Dordrecht: CRM, 1986, pp. 935–944.
20. Argence D., Vernault C., Desvallees Y., Fournier D. MC-NG: a 4th generation single-crystal superalloy for future aeronautical turbine blades and vanes. Superalloys. Pennsylvania: Minerals, Metals & Materials Society, 2000, pp. 829–837.
21. Visik E.M., Gerasimov V.V., Petrushin N.V., Kolyadov E.V., Filonova E.V. Technological testing of casting of monocrystalline blades from a heat-resistant nickel alloy VZhL20 of low density. Liteyshchik Rossii, 2018, no. 5, pp. 17–22.
22. Toloraya V.N., Kablov E.N., Orekhov N.G., Demonis I.M., Ostroukhova G.A., Chubarova E.N. Methods of obtaining single crystals of nickel heat-resistant alloys. Proceedings of the Mezhdunar. scientific and technical conf. “Scientific ideas of S.T. Kishkina and modern materials science”. Moscow: VIAM, 2006, pp. 270–279.
23. Kuzmina N.A., Pyankova L.A. Control of crystallographic orientation of monocrystalline nickel castings heat-resistant alloys by х-ray diffractometry. Trudy VIAM, 2019, no. 12 (84), paper no. 02. Available at: http://www.viam-works.ru (accessed: August 12, 2020). DOI: 10.18577/2307-6046-2019-0-12-11-19.
24. Nazarkin R.M. X-ray diffraction techniques for precise determination of lattice constants in Ni-based superalloys: a brief review. Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 41–48. DOI: 10.18577/2071-9140-2015-0-1-41-48
25. Kablov E.N., Golubovsky E.R. Heat resistance of nickel alloys. Moscow: Mashinostroenie, 1998, 464 p.
26. Golikov I.N., Maslenkov S.B. Dendritic segregation in steels and alloys. Moscow: Metallurgiya, 1977, 224 p.
27. Reed R.C. The Superalloys. Fundamentals and Applications. Cambridge: United Kingdom at University Press, 2006, 372 p.
28. Gabb T.P., Dreshfill R.L. Properties of superalloys. Superalloys II. Heat-resistant materials for aerospace and industrial power plants: in 2 vols. Ed. Ch.T. Sims, N.S. Stoloff, W.C. Hagel. Moscow: Metallurgy, 1995, book 2, pp. 352–371.
The relationship between the long-term strength and the structural-phase and physico-chemical parameters of castable polycrystalline nickel-based superalloys is considered. A regression model for prediction of the durability at a temperature of 1100 °C and a stress of 80 MPa of the considered class of alloys is proposed. The model takes into account the amount of the γ'-phase, the γ'-solvus and solidus temperatures, γ/γ'-misfit, the lattice spacing of the γ- and γ'-phases, and the atomic mass of the alloy. The reliability of the durability prediction is confirmed by comparison with the experimental results on the long-term strength at temperatures 1000, 1050 and 1100 °C of a number of industrial and experimental castable polycrystalline nickel-based superalloys.
2. Cabers E.N. The materials of the new generation are the basis of innovation, technological leadership and national security of Russia. Intellekt i tekhnologii, 2016, no. 2 (14), pp. 16–21.
3. Pollock T.M. Alloy Design for Aircraft Engines. Nature Materials. 2016, vol. 15, pp. 809–815.
4. Ospennikova O.G. Implementation results of the strategic directions on creation of new generation of heat-resisting cast and wrought alloys and steels for 2012–2016. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 17–23. DOI: 10.18577/2071-9140-2017-0-S-17-23.
5. Bondarenko Yu.A. Trends in the development of high-temperature metal materials and technologies in the production of modern aircraft gas turbine engines. Aviacionnye materialy i tehnologii, 2019, no. 2 (55), pp. 3–11. DOI: 10.18577/2071-9140-2019-0-2-3-11.
6. Ohno T., Watanabe R., Tanaka K. Development of a Nickel-Base Single Crystal Superalloy Contai Ning Molybdenum by An Alloy Designing Method. Journal of the Iron and Steel Institute of Japan, 1988, vol. 74, is. 11, pp. 133–140. DOI: 10.2355/tetsutohagane1955.74.11_2193.
7. Harada H., Ohno K., Yamagata T. et al. Phase Calculation and Its Use in Aloy Design Program for Nickel-Base Superaloys. Superalloys 1988. Pennsylvania: The Metallurgical Society, 1988, pp. 733–741.
8. Shalin R.E., Svetlov I.L., Kachanov E.B., Tolorai V.N., Gavrilin O.S. Single crystals of nickel heat-resistant alloys. Moscow: Mashinostroyenie, 1997. 336 p.
9. Reed R.C. The Superalloys. Fundamentals and Applications. Cambridge: United Kingdom at University Press, 2006. 372 p.
10. Cabers E.N., Petrins N.V. Computer method for constructing foundry heat-resistant nickel alloys. Aviacionnye materialy i tehnologii, 2004, no. 1, pp. 3-21.
11. Logunov A.V. Heat resistant nickel alloys for blades and gas turbine discs. Rybinsk: Gazoturbinnye tekhnologii, 2017, 854 p.
12. Yokokawa T., Harada H., Kawagishi K. et al. Advanced Alloy Design Program and Improvement of Sixth-Generation Ni-Base Single Crystal Superalloy TMS-238. Superalloys 2020. Pennsylvania: Minerals, Metals & Materials Society, 2020, pp. 122–130.
13. Mills K.C., Youssef Y.M., Li Z., Su Y. Calculation of Thermophysical Properties of Ni-Based SuperalOlys. ISIJ International, 2006, vol. 46, no. 5, pp. 623–632.
14. Collins H.E., Quigg R.J., DRENSHFIELD R.L. Development of a Nickel-Base Superalloy Using Statistically Designed Experiments. Transactions of American Society for Metals, 1968, vol. 61, pp. 711–721.
15. Rtishchev V.V. Estimated methods for predicting the phase composition, structural characteristics and limits of long-term strength of the chemical composition of heat-resistant alloys on a nickel-based basis. Heat resistant and heat-resistant steel and nickel-based alloys. Moscow: Nauka, 1984, pp. 144–150.
16. Petrushin N.V., Visik E.M., Elyutin E.S. Improvement of the chemical composition and structure of castable nickel-base superalloy with low density. Part 1. Trudy VIAM, 2021, no. 3 (97), paper no. Available at: http://www.viam-works.ru (date of access: March 30, 2021). DOI: 10.18577/2307-6046-2021-0-3-3-15.
17. Boxtein S.Z., Ginzburg S.S., Kishkin S.T. et al. Autoradiography of the surfaces of the section and the structural stability of alloys. Moscow: Metallurgiya, 1987, 272 p.
18. Petrushshin N.V., Logunov A.V., Kishkin S.T. et al. Study of patterns of changes in the physicomechanical properties and structural stability of nickel heat-resistant alloys. Aviatsionnyye materialy. Moscow: VIAM, 1983. Is.: Thermophysical studies of heat-resistant alloys and heat-shielding coatings, pp. 17–30.
19. Logunov A.V., Petrushin N.V., Kuleshova E.A., Dolzhany Yu.M. Forecasting the influence of structural factors on the mechanical properties of heat-resistant alloys. Metallovedeniye i termicheskaya obrabotka metallov, 1981, no. 6, pp. 16–20.
20. Kishkin S.T., Logunov A.V., Petrushin N.V., Glezer G.M., Kuleshova E.A., Morozova S.G. Scientific bases for doping heat-resistant nickel alloys. Aviation materials. Moscow: VIAM, 1987, is.: Methods for the study of structural materials. pp. 6–18.
21. Caron P. High γ' solvus new generation nickel-based superalloys for single crystal turbine blade applications. Superalloys 2000. Pennsylvania: Minerals, Metals & Materials Society, 2000, pp. 737–746.
22. Boxtein B.S., Boxtein S.Z., Zhukhovitsky A.A. Thermodynamics and kinetics of diffusion in solids. Moscow: Metallurgiya, 1974, 280 p.
23. Physical metal studies: at 3 vols. Ed. R.U. Kan, P.T. Haazen; trans. from English. Moscow: Metallurgiya, 1987, vol. 3: Physico-chemical properties of metals and alloys. 663 p.
24. Superplays II. Heat resistant materials for aerospace and industrial power plants: in 2 books. Ed. Ch.T. Sims, N.S. Tornoff, U.K. Chagel; trans. from English. Moscow: Metallurgiya, 1995, book 1. 384 p.
25. Petrushin N.V., Ignatova I.A., Logunov A.V., Samoilov A.I., Razumovsky I.M. The study of the influence of dimensional inconsistency of the parameters of crystalline lattices γ- and γ'-phases on the characteristics of the heat resistance of dispersion-hardening nickel alloys. Izvestiya AN SSSR, metals. 1981, no. 6, pp. 153–159.
26. Boxtein S.Z., Ignatova I.A., Bolberova E.V., Kishkin S.T., Razumovsky I.M. Effect of inconsistency of phase lattices parameters on diffusion permeability of interfacial boundaries. Fizika metallov i metallovedeniye, 1985, vol. 59, is. 5, pp. 936–942.
27. Svetlov I.L., Oldakovsky I.V., Petrins N.V., Ignatova I.A. Concentration dependence of lattice periods γ- and γ'-phases of nickel heat-resistant alloys. Metally, 1991, no. 6, pp. 150–157.
28. Zhang J.x., Murakumo T., Harada H., Koizumi Y. Dependence of Creep Strength On The Interfacial Dislocations in A Fourth Generation SC Superaloy TMS-138. Scripta Materialia, 2003, vol. 48, pp. 287–293.
29. Koizumi Y., Kobayashi T., Yokokawa T., Zhang J., Osawa M., Harada H., Aoki Y., Arai M. Development of Next-Generation Ni-Base Single Crystal Superalloys. Superalloys 2004, Pennsylvania : Minerals, Metals & Materials Society, 2004, pp. 35–43.
30. Ignatova I.A., Petrins N.V., Samoilov A.I., Logunov A.V., Kozlova V.S. High-temperature study of structural factors of heat resistance of complexized nickel alloys. Aviation materials. Moscow: VIAM, 1983. is: Thermophysical studies of heat-resistant alloys and heat-shielding coatings, pp. 39–46.
31. Biermann H., Strehler V., Mughrabi H. High Temperature Measurement of Lattice Parameters and Internal Stresses of A Creep-Deformed Monocrystalline Nickel-Base Superalloy. Metallurgical and Material Transaction, 1996, vol. 27, pp. 1003–1014.
32. Heckl A., NEUMEIER S., Göken M., Singer R.F. The effect of Re and Ru on γ/γ' Microstructure, γ-Solid Solutions Strength and Creep Strength in Nickel-Base Superaloys. Materials Science and Engineering A, 2011, vol. A528, no. 9, pp. 3435–3444.
33. Rtishchev V.V. Methods for predicting the structural characteristics and properties of heat-resistant alloys on a nickel basis. Metallovedeniye i termicheskaya obrabotka metallov, 1994, no. 9, pp. 13–20.
34. Yamagata T., Harada H., Nakazawa S., Yamasaki M. Effect of TA / W Ratio in γ 'Phase on Creep Strength of Nickel-Base Single Crystal Superaloys. Transactions of the Iron and Steel Institute of Japan, 1986, vol. 26, is. 7, pp. 638–642.
35. Harada H., Yamagata T., Yokokawa T. et al. Computer Analysis on Microstructure and Property of Nickel-Base Single Crystal Superalloys. Proceedings of the Fifth International Conference Held At University College (Swansea, 28 March – 2 April, 1993). Swansea: The Institute of Metals, 1993, pp. 255–264.
36. Yokokawa T., Harada H., Mory Y. et al. Design of Next Generation Ni-Base Single Crystal Superalloys Containing IR: Towards 1150 °C Temperature Capability. Superalloys 2016. Pennsylvania: Minerals, Metals & Materials Society, 2016, pp. 123–130.
37. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
38. Spool K.Ya., Sidorov V.V. High-grade foundry alloy on nickel-based brand ZhS6F. Construction and heat-resistant materials for new techniques. Moscow: Nauka, 1978, pp. 31–35.
39. Peregienidze I.G. Planning an experiment for study of multicomponent systems. Moscow: Nauka, 1976, 390 p.
40. Kablov E.N. Foundry heat-resistant alloys. Mechanical engineering: Encyclopedia: 40 vols: Mashinostroyeniye, 2001. T. II-3: non-ferrous metals and alloys. Composite materials, pp. 519–552.
41. Cast blades of gas turbine engines. Alloys, technology, coatings Ed. E.N. Kablov. 2nd ed. Moscow: Nauka, 2006. 632 p.
42. A method for determining the relative volumetric content of the strengthening γ'-phase in alloys: a.c. No. 687965 USSR; filed 16.05.77; publ. 15.03.92.
43. Link T., Epishin A., Paulisch M., May T. TOPOGRAPHY OF SEMICOHERENT γ/γ'-Interfaces in Superalloys: Investigation of the formation Mechanism. Materials Science Engineering A, 2011, vol. A528, no. 19-20, pp. 6225–6234.
44. Petrushin N.V., Logunov A.V., Kovalev A.I. Temperature intervals of dissolving strengthening intermetallic phases in heat-resistant alloys for GTD. Aviation materials. Moscow: VIAM, 1983, is: Thermophysical studies of heat-resistant alloys and heat-shielding coatings, pp. 30–35.
45. Samojlov A.I., Nazarkin R.M., Moiseeva N.S. Definition miss-fit in fragmental single crystals of nickel hot strength alloys. Trudy VIAM, 2013, no. 5, paper no. 02. Available at: http://www.viam-works.ru (accessed: March 30, 2021).
46. Arginbaeva E.G., Nazarkin R.M., Shestakov A.V., Karachevtsev F.N. Research of heat treatment influence on structural-phase parameters of intermetallic nickel based alloys. Aviacionnye materialy i tehnologii, 2017, no. 3 (48), pp. 8–13. DOI: 10.18577/2071-9140-2017-0-3-8-13.
47. Calculation of the parameters of heat-resistant nickel alloys: Certificate of state registration of the program for computer RU 2019661855: filed 28.08.19; opubl. 10.09.19.
48. Stepnov M.N. Statistical processing of mechanical test results. Moscow: Mashinostroyeniye, 1972, 232 p.
49. Drayer N., Smith G. Applied Regression Analysis. Moscow: Statistika, 1973, 392 p.
50. Foundry heat-resistant nickel-based alloy: pat. 2148100 Rus. Federation; filed 18.01.99; opubl. 27.04.00.
51. Foundry heat-resistant alloy based on nickel: pat. 2153020 Rus. Federation; filed 27.05.99; opubl. 20.07.00.
52. Foundry heat-powered alloy based on nickel: pat. 2434069 Rus. Federation; filed 05.10.10; opubl. 20.11.11.
53. Foundry heat-resistant alloy on a nickel basis and a product made of it: pat. 2530932 Rus. Federation; filed 29.10.13; opubl. 20.10.14.
Intermetallide alloys based on the Al2Ti compound are the most promising heat-resistant materials for future energy plants.The review examines the mechanical properties of the Al2Ti Intermetalide, two-phase alloys based on it and the doped niobium alloy. For use at temperatures of up to 950 °С, alloys with phase composition r-Al2Ti + γ-TiAl and platemicrostructure with additional doping of refractory elements are of interest.
2. Kablov E. N. VIAM: new generation materials for PD-14. Krylya Rodiny, 2019, no. 7-8. S. 54–58.
3. Kablov E.N., Bondarenko Yu.A., Kolodyazhny M.Yu., Surova V.A., Narsky A.R. Prospects for the creation of high-temperature heat-resistant alloys based on refractory matrices and natural composites. Voprosy materialovedeniya, 2020, no. 4 (104), pp. 64–78.
4. Nochovnaya N.A., Bazyleva O.A., Kablov D.E., Panin P.V. Intermetallic alloys based on titanium and nickel. Ed. E.N. Kablov. Moscow: VIAM, 2018, 318 p.
5. Antipov V.V. Prospects for development of aluminium, magnesium and titanium alloys for aerospace engineering. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 186–194. DOI: 10.18577/2107-9140-2017-0-S-186-194.
6. Benci J.E., Maa J.C., Feistb T.P. Evaluation of the intermetallic compound Al2Ti for elevated temperature applications. Journal of Materials Science and Engineering A, 1995, vol. 192/193. pp. 38–44.
7. Umakoshi Y., Nakano T., Ashida K. High Temperature Deformation in Ti–62,5 at. % Al Single Crystals Containing Small Al2Ti-type Precipitates. Journal of Materials Science Forum, 1999, vol. 304–306, pp. 163–168.
8. Blum M., Jarczyk G., Scholz H., Plier S. et al. Prototype plant for economical mass production of TiAl-vales. Journal of Materials Science and Engineering A, 2002, vol. 329–331, pp. 616–620.
9. Zhang W.J., Reddy B.V., Deeve S.C. Physical properties of TiAl alloys. Journal of Scripta Materialia, 2001, vol. 45, no. 6, pp. 645–651.
10. Рininsky M., Drevermann A., Schmitz G.J., Palm M. et al. Casting and properties of Al-rich Ti–Al alloys. Proceedings International Conference «Ti-2007. Science and Technology». The Japan Institute of Metals, 2007, pp. 1059–1062.
11. Sturm D., Heilmaer M., Saage H., Pininssky M. et al. Creep strength of centrifugally cast Al-rich TiAl alloys. Journal of Materials Science and Engineering A, 2009, vol. 510–511, pp. 373–376.
12. Ymamoto R., Mizogicni K., Wegman G., Maruyama K. Effect of discontinuour coarsening of lamellae on creep strength of fully lamellar TiAl alloys. Journal of Intermetallics, 1998, vol. 5, pp. 699–702.
13. Sturm D., Heimaier M., Naumenko K., Rozhar S., Kruger M. Creep deformation characteristics of Al-rich Ti–Al alloys. Proceedings International Conference «Creep and Fracture of Engineering Materials and Structures» (Bed Berneck 4–9 May 2008). The Japan Institute of Metals, 2008. S0921-5093(08)01463-9.
14. Hayes R.W., Martin P.L. Tension creep wrought single phase γ TiAl. Journal of Acta Metalugica et Materialia, 1995, vol. 43, no. 7, pp. 2761–2772.
15. Kim S., Cho W., Hong C.P. Creep behavior of cast TiAl based intermetallics. Journal of Materials Science and Technology, 1995, vol. 11, no. 5, pp. 1147–1155.
16. Jimenez J.A., Carsi M., Frommeyer G., Knipperscher S. et al. The effect microstructure on the creep behavior of theTi–46Al–1Mo–0,2Si alloy. Journal of Intermetallics, 2005, vol. 13, no. 11, pp. 1021–1029.
17. Sturm D., Heilmaier M., Saage H., Agular J. et al. High temperature creep behavior of Al-rich Ti–Al alloys. Journal of Physics. 2010. Conference Series 240, no. 1, pp. 012084. DOI: 10.1088/1742-6596/240/1/012084.
18. Sturm D., Heilmaier M., Saage H., Agular J. et al. Creep strength of binary Al62Ti38 alloy. International Journal of Materials Research, 2010, vol. 101, no. 5. Р. 676–679.
19. Sturm D. Herstellung und Eigenschaften Al-reicher TiAl Legierungen: dis. zur Erlangung des akademischen Grades. Magdeburg: Otto-von-Guericke-Universitat Magdeburg, 2010. 118 s.
20. Palm M., Zhangl L.C., Stein F., Sauthoff G. Phases and phase equilibria in the Al-rich part of the Al–Ti system above 900 °С. Journal of Intermetallics, 2002, vol. 10, no. 6. Р. 523–540.
21. Karthikeyan S., Visvanathan G.B. Evaluation of the jogged-screw model of creep in equiexed γ-TiAl: identification of the key substructural parameters. Journal of Acta Materialia, 2004, vol. 52, no. 9, pp. 2577–2589.
22. Mishin Y., Herzig C. Diffusion in the Ti–Al system. Journal of Acta Materialia, 2000, vol. 48, no. 3, pp. 589–623.
23. Chakravadhanula V.S.K., Kelm K., Kienle L., Duppel V. et al. TEM studies of the ternary Ti36Al62Nb2 alloy. Material Research Society Symposium Proceeding, 2011, vol. 1295. DOI: 10.1557/opl.2011.181.
24. Alekseev Е.B., Nochovnaya N.A., Novak A.V., Panin P.V. Wrought intermetallic titanium ortho alloy doped with yttrium Part 1. Research on ingot microstructure and rheological curves plotting. Trudy VIAM, 2018, no. 6 (66), paper no. 02. Available at: http://www.viam-works.ru (accessed: January 14, 2021). DOI: 10.18577/2307-6046-2018-0-6-12-21.
25. Alexeev Е.B., Nochovnaya N.A., Novak A.V., Panin P.V. Wrought intermetallic titanium ortho alloy doped with yttrium. Part 2. Research on heat treatment effect on rolled slab microstructure and mechanical properties. Trudy VIAM, 2018, no. 12 (72), paper no. 04. Available at: http://www.viam-works.ru (accessed: January 14, 2021). DOI: 10.18577/2307-6046-2018-0-12-37-45.
26. Novak A.V., Alekseev E.B., Ivanov V.I., Dzunovich D.A. The study of the quenching parameters influence on structure and hardness of orthorhombic titanium aluminide alloy VТI-4. Trudy VIAM, 2018, no. 2, paper no. 05. Available at: http://www.viam-works.ru (accessed: January 14, 2021). DOI: 10.18577/2307-6046-2018-0-2-5-5.
The review concerns the major application of materials based on cyanate ester resins in various branches of technology, indicating examples of implementation in modern devices. This article being the first part of the review highlights the cyanate esters implementation in the development of materials for aviation and space technology. The paper presents the most significant properties of polycyanurates in relation to their application. Information about the development of new cyanate ester resin-based composite materials for aircrafts and space shuttles is provided.
2. Licari J.J., Swanson D.W. Applications. Adhesives Technology for Electronic Applications: Material, Processing, Reliability. Elsevier, 2011, pp. 217–288. DOI: 10.1016/b978-1-4377-7889-2.10005-1.
3. Mouritz A. Polymers for aerospace structures. Introduction to Aerospace Materials. Woodhead Publishing, 2012, pp. 262–302. DOI: 10.1533/9780857095152.268.
4. Fang T., Shimp D.A. Polycyanate Esters: Science and Applications. Progress in Polymer Science, 1995, vol. 20, pp. 61–118.
5. Snow A. W., Hamerton E. Chemistry and technology of cyanate ester resins. Springer, 1994, p. 357.
6. Reghunadhan Nair C.P., Mathew D., Ninan K.N. Cyanate Ester Resins, Recent Developments. Advances in Polymer Science, 2001, vol. 155, pp. 1–99.
7. Hamerton I., Hay J.N. Recent developments in the chemistry of cyanate esters. Polymer International, 1998, vol. 47 (4), pp. 465–473.
8. Kessler M.R. Cyanate ester resins. Wiley Encyclopedia of Composites. John Wiley & Sons, 2011, pp. 1–15.
9. Fink J.K. Cyanate Ester Resins. Reactive Polymers: Fundamentals and Applications. William Andrew, 2018, pp. 345–366. DOI: 10.1016/B978-0-12-814509-8.00010-5.
10. Debdatta R. Handbook of Thermoset Resins. Smithers Rapra Technology, 2009, p. 410.
11. Hamerton I., Mooring L. The use of thermosets in aerospace applications. Thermosets. Woodhead Publishing, 2012, pp. 189–227.
12. Kumar K.S.S., Nair C.P.R. Polybenzoxazine – new generation phenolics. Handbook of Thermoset Plastics. William Andrew Publishing, 2014, pp. 45–73.
13. Pankratov V.A., Vinogradova S.V., Korshak V.V. Synthesis of polycyanates by polycyclotrimerization of aromatic and organoelement cyanate ethers. Uspekhi khimii, 1977, vol. XLVI, is. 3, pp. 530–566.
14. Pankratov V.A., Vinogradova S.V. Polytriazines. Uspekhi khimii, 1972, vol. XLI, is. 1, pp. 117–149.
15. Kuznetsov A.A., Semenova G.K. Promising high-temperature binders for polymer composite materials. Rossiyskiy khimicheskiy zhurnal, 2009, vol. LIII, no. 4, pp. 86–96.
16. Prokhorova E.V., Mukhametov R.R. Modification of triazine-containing formulations. Trudy VIAM, 2013, no. 9, paper no. 06. Available at: http://www.viam-works.ru (accessed: May 15, 2020).
17. Guseva M.A. Cyanic esters are prospective thermosetting binders (review). Aviacionnye materialy i tehnologii, 2015, no. 2 (35), pp. 45–50. DOI: 10.18577 / 2071-9140-2015-0-2-45-50.
18. Merkulova Yu.I., Muhametov R.R., Dolgova E.V., Ahmadieva K.R. Polycyanurates binding for composites production by impregnation under pressure. Trudy VIAM, 2016, no. 11 (47), paper no. 05. Available at: http://www.viam-works.ru (accessed: May 15, 2020). DOI: 10.18577/2307-6046-2016-0-11-5-5.
19. Dolgova E.V., Akhmadieva K.R., Bokov V.V., Lavrova K.S., Mukhametov R.R. Cyanester binders. Obtaining, properties, application. Polymer composite materials for the aerospace industry: Materials of the All-Russian scientific and technical conf. Moscow, 2019, pp. 42–52.
20. Sokolov I.I., Vavilova M.I. Structural fiberglass based on melt binders and PORCHER fabrics. Novosti materialovedeniya. Nauka I tekhnika, 2013, no. 5. Art. 02. Available at: http://www.materialsnews.ru (accessed: November 24, 2020).
21. Sokolov I.I., Kogan D.I., Raskutin A.E., Babin A.N. et al. Multilayer structures with spheroplastics for aircraft products. Konstruktsii iz kompozitsionnykh materialov, 2014, no. 1, pp. 37–42.
22. Mukhametov R.R., Akhmadieva K.R., Dolgova E.V., Merkulova Yu.I. Cyanester glue. Klei. Germetiki. Tekhnologii, 2016, no. 4, pp. 2–7.
23. Aristov V.F., Vikhrov I.A., Mironovich V.V. Development of cyanate ester structural adhesives with a low curing temperature. Reshetnevskie readings: collection of articles conf. Krasnoyarsk: Siberian State University of Science and Technology, 2017, pp. 63–65.
24. Aristov V.F., Vikhrov I.A. Radiotransparent cyanate-ether syntactics (spheroplastics) based on hollow glass or polymer microspheres for transceiver devices of spacecraft. Reshetnevskie readings: collection of articles. conf. Krasnoyarsk: Siberian State University of Science and Technology, 2017, pp. 66–67.
25. Kablov E.N. Materials and chemical technologies for aircraft engineering. Herald of the Russian Academy of Sciences, 2012, vol. 82, no. 3, pp. 158–167. DOI: 10.1134/S1019331612030069.
26. Mukhametov R.R., Petrova A.P. Thermosetting binders for polymer composites (review). Aviacionnye materialy i tehnologii, 2019, no. 3 (56), pp. 48–58. DOI: 10.18577/2071-9140-2019-0-3-48-58.
27. Kablov E.N., Chursova L.V., Babin A.N., Mukhametov R.R., Panina N.N. Development of FSUE "VIAM" in the field of melt binders for polymer composite materials. Polimernye materialy i tekhnologii, 2016, vol. 2, no. 2, pp. 37–42.
28. Raskutin A.E. Development strategy of polymer composite materials. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 344–348. DOI: 10.18577/2071-9140-2017-0-S-344-348.
29. Raskutin A.E. Russian polymer composite materials of new generation, their exploitation and implementation in advanced developed constructions. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 349–367. DOI: 10.18577/2071-9140-2017-0-S-349-367.
30. Kablov E.N. Composites: Today and Tomorrow. Metally Evrazii, 2015, no. 1, pp. 36–39.
31. Cyanate Ester Resins Market Size, Share, Trend, Forecast, & Competitive Analysis: 2018–2023. Available at: https://www.stratviewresearch.com/351/Cyanate-Ester-Resins-Market.html (accessed: November 24, 2020).
32. Cyanate Ester Resins Market Size, Share, Trend, Forecast. Available at: https://www.transparencymarketresearch.com/cyanate-ester-resins-market.html (accessed: November 24, 2020).
33. Novel Use of Cyanate Esters in Aerospace Applications. Available at: https://www.fire.tc.faa.gov/2007conference/files/Fire_Resistant_Materials/ThursPM/DasCyanate/DasCyanatePres.pdf (accessed: December 10, 2020).
34. Aerospace Qualified Prepreg Materials. Available at: https://www.gurit.com/Our-Business/Composite-Materials/Prepregs/Aerospace (accessed: December 10, 2020).
35. High-quality aircraft composites thanks to cyanate esters. Available at: https://cordis.europa.eu/article/id/159887-highquality-aircraft-composites-thanks-to-cyanate-esters (accessed: November 24, 2020).
36. Are high-temp thermosets ready to go commercial? Available at: https://www.compositesworld.com/articles/are-high-temp-thermosets-ready-to-go-commercial (accessed: December 22, 2020).
37. High-Performance Materials for Radomes and Antennas. Available at: https://www.toraytac.com/markets/aerospace/radome-antenna-systems (accessed: December 16, 2020).
38. Multilayer radome structure and its fabrication: pat. US 5849234A; filed 15.07.97; publ. 15.12.98.
39. Antenna radome: pat. EP 1852938; filed 05.05.06; publ. 07.11.07.
40. Fan Ch., Tian Ch., Chen K. et al. Preparation and characterization of cyanate/epoxy foam. High Performance Polymers, 2015, vol. 28 (1), pp. 96–109. DOI: 10.1177/0954008315573337.
41. Bibin J., Reghunadhan Nair C.P., Ninan K.N. On the Processing and Compressive Properties of Cellular Foams of Cyanate Ester. Cellular Polymers, 2009, vol. 28, no. 3, pp. 193–205.
42. La Delfa G., Voig W., Abgottspon M. High Temperature And Flame Retardant Cyanate Ester Resins For Aerospace Applications. 2010. Available at: https://www.researchgate.net/publication/283322027 (accessed: December 22, 2020).
43. Fire, Smoke, and Toxicity Retardant (FST) Composite Resin Market – Global Industry Analysis, Size, Share, Growth, Trends and Forecast 2016–2024. Available at: https://www.transparencymarketresearch.com/fire-smoke-toxicity-retardant-composite-resin-market.html (accessed: October 06, 2020).
44. Armistead J.P., Snow A.W. Fiber/matrix adhesion in cyanate resin systems. Polymer Preprints, 1990, vol. 31 (2), pp. 537.
45. Rapid-curing adhesive formulation for semiconductor devices: pat. US 5150195A; filed 24.10.90; publ. 22.09.92.
46. Wang G., Fu G., Gao T. et al. Preparation and characterization of novel film adhesives based on cyanate ester resin for bonding advanced radome. International Journal of Adhesion and Adhesives, 2016, vol. 68, pp. 80–86. DOI: 10.1016/j.ijadhadh.2016.02.004.
47. John B., Reghunadhan Nair C. P., Mathew D. et al. Foam sandwich composites with cyanate ester based syntactic foam as core and carbon – cyanate ester as skin: Processing and properties. Journal of applied polymer science, 2008, vol. 110, no. 3, pp 1366–1374. DOI: 10.1002/app.28658.
48. Sommer M. Tailor-made composite performance properties for high temperature applications. 2010. Available at: http://www.nasa.gov/hubble (accessed: December 21, 2020).
49. Hubble Space Telescope Servicing Mission 4. Available at: https://www.nasa.gov/mission_pages/hubble/servicing/SM4/main/SLIC_FS_HTML.html (accessed: December 22, 2020).
50. Feldman J., Venkatapathy E., Wilkinson C., Mercer K. Development of an Ablative 3D Quartz/Cyanate Ester Composite for the Orion Spacecraft Compression Pad. 2015. Available at: https://ntrs.nasa.gov/citations/20190002016 (accessed: November 24, 2020).
51. Wienhold P.D., Persons D.F. The development of high-temperature composite solar array substrate panels for the MESSENGER spacecraft. SAMPE journal, 2003, vol. 39, no. 6, pp. 6–17.
52. Ivanov A.V., Belov O.A., Guliev R.Sh. Development of a precision dimensionally stable reflector for an onboard antenna of a telecommunications spacecraft made of Russian-made polymer composite materials. Polymer composite materials for the aerospace industry: materials of the All-Russian. scientific and technical conf. (Moscow, December 6, 2019). Moscow: VIAM, 2019, pp. 121–136.
53. Shape memory cyanate ester copolymers: pat. WO 2005/108448; filed 05.05.05; publ. 17.11.05.
54. Biju R., Gouri C., Nair C.P.R. Shape memory polymers based on cyanate ester-epoxy-poly (tetramethyleneoxide) co-reacted system. European polymer journal, 2012, vol. 48, no. 3, pp. 499–511.
55. Aristov V.F., Chernyshenko A.O. Composites with shape memory effect for creating self-unfolding structures for space purposes. Reshetnevskie chteniya: collection of articles conf. Krasnoyarsk: Siberian State University of Science and Technology, 2015, pp. 67–68.
The rheological properties, processes of structure and phase formation of the Al2O3–ZrO2 system compositions obtained by the sol-gel method have been investigated. The temperature range of crystallization of the compositions is 900–1100 °C. With an increase in the concentration of zirconium dioxide in the system, the temperature of the transition from the tetragonal to the monoclinic phase decreases. The effect of the ratio of the components in the initial solutions and the temperature regime of heat treatment of gels on the physicochemical properties of nanopowders and sintered materials has been studied. Ceramic materials of eutectic composition give the highest density and lower values of porosity and water absorption.
2. Balkevich V.L. Technical ceramics. Moscow: Stroyizdat, 1984, 256 p.
3. Kablov E.N. Trends and guidelines for innovative development in Russia: collection of articles. inform. mater. 3rd ed., Rev. and add. M .: VIAM, 2015.720 p.
4. Evdokimov S.A., Shchegoleva N.E., Sorokin O.Yu. Ceramic materials aviation engineering (review). Trudy VIAM, 2018, no. 12 (72), paper no. 06. Available at: http://www.viam-works.ru (accessed: October 05, 2020). DOI: 10.18577/2307-6046-2018-0-12-54-61.
5. Grashchenkov D.V. Strategy of development of non-metallic materials, metal composite materials and heat-shielding. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 264–271. DOI: 10.18577/2071-9140-2017-0-S-264-271.
6. Buchilin N.V., Lyulyukina G.Yu. Characteristics of sintering of highly porous alumina-based ceramic materials. Aviacionnye materialy i tehnologii, 2016, no. 4 (45), pp. 40–46. DOI: 10.18577/2071-9140-2016-0-4-40-46.
7. Kablov E.N., Grashchenkov D.V., Shchegoleva N.E. et al. Radiotransparent glass ceramics based on strontium aluminosilicate glass. Ogneupory i tekhnicheskaya keramika, 2016, no. 6, pp. 31–38.
8. Lebedeva Yu.E., Popovich N.V., Orlova L.A., Chaynikova A.S., Grachshencov D.V. Investigation of rheological properties at sol-gel synthesis of materials in Y2O3–SiO2 system. Aviacionnye materialy i tehnologii, 2014, no. S6, pp. 67–72. DOI: 10.18577/2071-9140-2014-0-s6-67-72.
9. Chainikova A.S., Kovaleva V.S., Zabelin D.A., Belyachenkov I.O. Processes of gel-, phase formation and sintering during the preparation of a sol-gel by the method of aluminosilicate glass ceramics modified with refractory oxides of hafnium and zirconium. Steklo i keramika, 2019, no. 6. pp. 5–12.
10. Simonenko N.P., Simonenko E.P., Sevastyanov V.G., Kuznetsov N.T. Production of 8% Y2O3 – 92% ZrO2 (8YSZ) Thin Films by Sol-Gel Technology. Russian Journal of Inorganic Chemistry, 2015, vol. 60, no. 7. pp. 795–803.
11. Simonenko N.P., Simonenko E.P., Sevastyanov V.G., Kuznetsov N.T. Preparation of Nanostructured Thin Films of Yttrium Iron Garnet (Y3Fe5O12) by Sol-Gel Technology. Russian Journal of Inorganic Chemistry, 2016, vol. 61, no. 7, pp. 805–810.
12. Simonenko N.P., Nikolaev V.A., Simonenko E.P. et al. Influence of the Composition of [Ti(OC4H9)4 – x(O2C5H7)x] Complexes and Hydrolysis Conditions on the Synthesis of Titania by Sol-Gel Technology. Russian Journal of Inorganic Chemistry, 2016, vol. 61, no. 8, pp. 929–939.
13. Simonenko E.P., Simonenko N.P., Kopitsa G.P. et al. How Xerogel Carbonization Conditions Affect the Reactivity of Highly Disperse SiO2–C Composites in the Sol-Gel Synthesis of Nanocrystalline Silicon Carbide. Russian Journal of Inorganic Chemistry, 2016, vol. 61, no. 11, pp. 1347–1360.
14. Simonenko E.P., Derbenev A.V., Simonenko N.P. et al. Gel Formation during Sol-Gel Synthesis of Silicon Dioxide. Russian Journal of Inorganic Chemistry. 2015, vol. 60, no. 12, pp. 1444–1451.
15. Simonenko N.P., Nikolaev V.A., Simonenko E.P. et al. Preparation of Nanostructured Titania Thin Films by Sol-Gel Technology. Russian Journal of Inorganic Chemistry, 2016, vol. 61, no. 12. P. 1505-1511.
16. Simonenko E.P., Simonenko N.P., Sevastianov V.G., Grashchenkov D.V., Kuznetsov N.T., Kablov E.N. Functionally gradient composite material SiC / (ZrO2–HfO2–Y2O3) obtained using the sol-gel method. Kompozity i nanostruktury, 2011, no. 4, pp. 52–64.
17. Makarov N.A. Composite material in the aluminum oxide – zirconium dioxide system. Steklo i keramika, 2007, no. 4, pp. 12–15.
18. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
19. Guzeev V.V., Khorobraya E.G. Thermal method of obtaining microfibers of zirconium dioxide. Steklo i keramika, 2002, no. 10. P. 18–21.
20. Karakchiev L.G., Lyakhov N.Z. Heat treatment of zirconium dioxide gel. Neorganicheskie materialy, 1998, vol. 34, no. 5, pp. 575–579.
21. Konstantinova T.E., Danilenko I.A., Tokiy V.V., Glazunova V.A. Obtaining zirconium dioxide nanopowders. From innovation to innovation. Nauka i innovatsii, 2005, vol. 1, no. 3, pp. 76–87.
22. McHale J. M., Auroux A., Perrotta A. J., Navrotsky A. Suface Energies and Thermodynamic Phase Stability in Nanocrystalline Aluminas. Journal Sceince, 1997, vol. 277, no. 5327, pp. 788–791.
23. Kikkawa S., Kijima A., Hirota K., Yamaguchi O. Soft solution preparation methods in a ZrO2–Al2O3 binary system. Journal of Solid State Ionics, 2002, vol. 151, pp. 359–364.
24. Klimova T., Rojas M., Castillo P. et al. Characterization of Al2O3–ZrO2 mixed oxide catalytic supports prepared by the sol-gel method. Journal Microporous and Mesoporous Materials, 1998, vol. 20, is. 4-6, pp. 293–306.
25. Belyakov A.V., Pershikov S.A., Sukhozhak A.N. Chemisorption and catalytic reduction in the sintering temperature of ceramics. Glass and ceramics. 1996, no. 6, pp. 16–18.
In this work the effect of five cycles of heating to a temperature of 1000 °C and three cycles of heating to a temperature of 1100 °C on the structure of multilayered composite material consisted of 100 alternating layers of 08H18 and U8 steels was investigated via the methods of microstructural analysis. It is shown that already in the initial state after rolling there was a redistribution of carbon between the layers of the material. Thermal cycling led to a partial redistribution of chromium in the material, a change in the structure and thickness of the layers.
2. Kashin D.S., Dergacheva P.E., Stekhov P.A. Heat resistant slurry coatings (review). Trudy VIAM, 2018, no. 5 (65), paper no. 08. Available at: http://www.viam-works.ru (accessed: December 17, 2020). DOI: 10.18577/2307-6046-2018-0-5-64-75.
3. Trofimenko N.N., Efimochkin I.Yu., Bolshakova A.N. Problems of creation and prospects for the use of heat-resistant high-entropy alloys. Aviacionnye materialy i tehnologii, 2018, no. 2 (51), pp. 3–8. DOI: 10.18577/2071-9140-2018-0-2-3-8.
4. Grashchenkov D.V., Efimochkin I.Yu., Bolshakova A.N. High-temperature metal-matrix composite materials reinforced with particles and fibers of refractory compounds. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 318–328. DOI: 10.18577/2071-9140-2017-0-S-318-328.
5. Kablov E.N. New generation materials – the basis of innovation, technological leadership and national security of Russia. Intellekt & Tekhnologii, 2016, no. 2, pp. 41–46.
6. Kablov E.N. New generation materials and digital technologies for their processing. Bulletin of the Vestnik Rossiyskoy akademii nauk, 2020, vol. 90, no. 4, pp. 331–334.
7. Kablov E.N., Antipov V.V., Senatorova O.G., Lukina N.F. A new class of laminated aluminum-glass-fiber-reinforced plastics based on an aluminum-lithium alloy 1441 with a reduced density. Vestnik MGTU im. N.E. Bauman, ser.: Mechanical engineering, 2011, no. SP2, pp. 174–183.
8. Kablov E.N., Antipov V.V., Klochkova Yu.Yu. Aluminum-lithium alloys of a new generation and layered aluminum-glass-fiber-reinforced plastics based on them. Tsvetnye metally, 2016, no. 8, pp. 86–91.
9. Schmiedt A., Luecker L., Kolesnikov A., Plokhikh A.I., Walther F. Production- and microstructure-based fatigue assessment of metallic AISI 304/430 multilayer materials produced by hot pack rolling. Materialpruefung, 2017, vol. 59 (2), pp. 123-129.
10. Karpov M.I., Vnukov V.I., Medved N.V. et al. Possibilities of the vacuum rolling method as a method of obtaining multilayer composites with nanometric thicknesses of layers. Materialovedenie, 2004, no. 1, pp. 48–53.
11. Kobelev AG, Lysak VI, Chernyshev VN et al. Production of layered composite materials. Moscow: Intermet-Inzhiniring, 2002, 496 p.
12. Batiyenkov R.V., Bolshakova A.N., Efimochkin I.Yu. The problem of low-temperature plasticity of molybdenum and alloys based on it (review). Trudy VIAM, 2018, no. 3 (63), paper no. 02. Available at: http://www.viam-works.ru (accessed: December 11, 2020). DOI: 10.18577/2307-6046-2018-0-3-12-17.
13. Chuvildeev V.N., Shchavleva A.V., Nokhrin A.V. et al. Influence of grain size and structural state of grain boundaries on the parameters of low-temperature and high-speed superplasticity of nano- and microcrystalline alloys. Fizika tverdogo tela, 2010, vol. 52, no. 5, pp. 1026–1033.
14. Korzhov V.P., Karpov M.I., Prokhorov D.V. Multilayer structure and high-temperature strength of heat-resistant materials based on compounds of niobium with aluminum and silicon obtained from composites Nb–Al and Nb–Si. Fizika i tekhnika vysokikh davleniy, 2013, vol. 23, no. 1, pp. 99–107.
15. Firstov S.A., Karpov M.I., Korzhov V.P. et al. The structure and properties of a layered composite made of a high-entropy alloy with carbide and intermetallic hardening. Izvestiya Rossiyskoy akademii nauk, ser.: Physical, 2015, vol. 79, no. 9, pp. 1267–1267.
16. Karpov M.I., Korzhov V.P., Kiiko V.M. et al. Influence of heat treatment under pressure on the structure of layered composites Ni/Al. Perspektivnyye materialy, 2011, no. S13, pp. 704–712.
17. Kolesnikov A.G., Plokhikh A.I., Komisarchuk Yu.S., Mikhaltsevich I.Yu. Investigation of the peculiarities of the formation of a submicro- and nanoscale structure in multilayer materials by the hot rolling method. Metallovedeniye i termicheskaya obrabotka metallov, 2010, no. 6, pp. 44–49.
18. Plokhikh A.I., Vlasova D.V., Khovova O.M., Polyansky V.M. Investigation of the influence of diffusion mobility of alloying elements on the stability of the structure of multilayer metallic materials. Nauka i obrazovanie, 2011, no. 11. Available at: http://technomag.edu.ru/doc/262116.html (accessed: December 15, 2020).
19. Arzamasov B.N., Makarova V.I., Mukhin G.G. et al. Materials Science. 8th ed. Moscow: MSTU im. N.E.Bauman, 2008, 648 p.
20. Gasik M.I., Lyakishev N.P. Theory and technology of electrometallurgy of ferroalloys: Textbook. Moscow: Intermet-Inzhiniring, 1999, 764 p.
21. Blanter M.E. Metallurgy and heat treatment. Moscow: Mashgiz, 1963, 416 p.
22. Lee C. G., Iijima Y., Hiratani T., Hirano K. Diffusion of chromium in α-iron. Materials Transactions, JIM, 1990, vol. 31, no. 4, pp. 255–261.
23. Blanter M.E. Phase transformations during heat treatment of steel. Moscow: Metallurgizdat, 1962, 268 p.
24. Tabatchikova T.I., Plokhikh A.I., Yakovlev I.L., Klyueva S.Yu. Structure and properties of multilayer material on the basis of steels obtained by hot batch rolling. Fizika metallov i metallovedenie, 2013, vol. 114, no. 7, pp. 633–647.
25. Vlasova DV, Plokhikh AI, Semenov M.Yu. et al. Diffusion in multilayer materials based on carbon and alloy steels obtained by hot batch rolling. Metallurg, 2018, no. 5, pp. 33–38.
26. Kintsel A.B., Franks R. High-chromium stainless and heat-resistant steels. Moscow: Metallurgizdat, 1945.473 p.
27. Plokhikh A.I., Chan Yu., Karpukhin S.D. Investigation of the influence of interlayer diffusion carbon redistribution on the impact toughness of multilayer materials. Izvestiya Volgogradskogo gosudarstvennogo tekhnicheskogo universiteta, 2015, no. 8, pp. 86–91.
28. Heat treatment in mechanical engineering: a reference book. Ed. Yu.M. Lakhtin, A.G. Rakhstadt. Moscow: Mashinostroenie, 1980, 783 p.
29. Sozykina A.S., Okishev K.Yu. Phase equilibria and transformations in high-chromium iron alloys: textbook. Chelyabinsk: IC SUSU, 2019, 40 p.
30. Bungardt K., Kunze E., Horn E. Untersuchungen über den Aufbau des Systems Eisen – Chrom – Kohlenstoff. Archiv für das Eisenhüttenwesen, 1958, vol. 29, no. 3, pp. 193–203.
31. Sozykina A.S. Modeling of transformations during austenitization and quenching and forecasting the hardness of high-chromium steels and cast irons on the basis of thermodynamic and kinetic calculations: thesis, Cand. Sc. (Tech.). Chelyabinsk: SUSU, 2018, 153 p.
Curing parameters have the greatest impact on the physical and mechanical properties of FRP, therefore their optimum value is of particular importance for obtaining quality products. During curing temperature of the inner layers of the FRP can increase unevenly, which can lead to the formation of a gradient in the degree of conversion and heterogeneity of physical and mechanical properties. The article is devoted to the development of a mathematical model of the curing process of the EDT-69N resin, taking into account the kinetic parameters of curing and implementation thermophysical modeling using the finite element method.The correspondence of the family of curves for the degree of conversion along the sample cross-section and the family of microhardness curves is also shown.
2. Raskutin A.E. Development strategy of polymer composite materials. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 344–348. DOI: 10.18577/2071-9140-2017-0-S-344-348.
3. Marakhovsky P.S. Modeling of heat transfer in multilayer epoxy fiberglass and determination of the temperature-time regime of their molding by direct pressing: thesis, Cand. Sc. (Tech.). Moscow, 2019, 124 p.
4. Veshkin E.A., Postnov V.I., Semenychev V.V. Methodology for assessing changes in matrix properties in the volume of polymer composites. Vse materialy. Entsiklopedicheskiy spravochnik, 2020, no. 7, pp. 25–32.
5. Veshkin E.A., Postnov V.I., Semenychev V.V., Krasheninnikova E.V. Research of microhardness and sclero-metric characteristics of the binding UP-2227N, cured by different regimes. Aviacionnye materialy i tehnologii, 2018, no. 1 (50), pp. 39–45. DOI: 10.18577/2071-9140-2018-0-1-39-45.
6. Kablov E.N. New generation materials and digital technologies for their processing. Vestnik Rossiyskoy akademii nauk, 2020, vol. 90, no. 4, pp. 331–334.
7. Kablov E.N. The sixth technological order. Nauka i zhizn, 2010, no. 4, pp. 2–7.
8. Zhelezina G.F., Solovyeva N.A., Makrushin K.V., Rysin L.S. Polymer composite materials for manufacturing engine air particle separation of advanced helicopter engine. Aviacionnye materialy i tehnologii, 2018, no. 1 (50), pp. 58–63. DOI: 10.18577/2071-9140-2018-0-1-58-63.
9. Barinov D.Ya., Marakhovsky P.S., Kutsevich K.E., Chutskova E.Yu. Mathematical modeling of temperature fields taking into account the kinetics of solidification of a thick-walled fiberglass plate. Perspektivnyye materialy, 2017, no. 5, pp. 19–28.
10. Bulgakov B.A., Kalugin D.I., Babkin A.V. Mathematical modeling of the curing process of composite materials based on propargyl-modified phenol-formaldehyde resins. Khimiya i khimicheskaya tekhnologiya, 2015, vol. 58, no. 12, pp. 73–76.
11. Dimitrienko Yu.I., Zakharova Yu.V., Sbornikov S.V. Modeling of the curing process of thick-walled structures made of polymer composite materials. Innovatsionnaya nauka. 2016, no. 12-4. C. 31–36.
12. Chutskova E.Yu., Aleksashin V.M., Barinov D.Ya., Dementyeva L.A. The differential scanning calorimetry application for kinetic regularities investigation of the epoxy adhesive VK-36R curing process. Trudy VIAM, 2015, no. 1, paper no. 12. Available at: http://www.viam-works.ru (accessed: December 24, 2020). DOI: 10.18577/2307-6046-2015-0-1-12-12.
13. Postnova M.V., Postnov V.I. Modern thermoanalytical methods for studying the properties of prepregs and materials based on them. Izvestiya Samarskogo nauchnogo tsentra Rossiyskoy akademii nauk, 2014, vol. 16, no. 1–5, pp. 1577–1582.
14. Veshkin E.A., Postnov V.I., Semenichev V.V., Krasheninnikova E.V. Microhardness and sclerometry as criteria for the degree of curing of the EDT-69N binder. Materialovedenie, 2018, no. 10, pp. 3–7.
15. Chen Yanyan, Marakhovskij P.S., Malysheva G.V. Determination of thermophysical properties of epoxy materials during their curing. Trudy VIAM, 2018, no. 9 (69), paper no. 12. Available at: http://www.viam-works.ru (accessed: December 12, 2020). DOI: 10.18577/2307-6046-2018-0-9-119-123.
16. Barinov D.Ya., Marahovskiy P.S., Maltceva E.Yu., Besprozvanniy E.D., Aliasova E.E. Research of thermal conductivity of printed circuit boards based on aluminum substrate and alumina dielectric. Aviacionnye materialy i tehnologii, 2019, no. 1 (54), pp. 43–48. DOI: 10.18577/2071-9140-2019-0-1-43-48.
17. Khaskov M.A., Safronov E.V. The optimization of thermosetting matrixes curing schedule on the example of complex shape sample. Trudy VIAM, 2019, no. 12 (84), paper no. 06. Available at: http://www.viam-works.ru (accessed: December 24, 2020). DOI: 10.18577/2307-6046-2019-0-12-46-54.
18. Heinze S., Echtermeyer A. A Practical Approach for Data Gathering for Polymer Cure Simulations. Applied Sciences, 2018, vol. 8, no. 11, p. 2227.
19. Behzad T., Sain M. Cure Simulation of Hemp Fiber Acrylic Based Composites during Sheet Molding Process. Polymers and Polymer Composites, 2005, vol. 13, no. 3, pp. 235–244.
20. Behzad T., Sain M. Finite element modeling of polymer curing in natural fiber reinforced composites. Composites Science and Technology, 2007, vol. 67, no. 7-8, pp. 1666–1673.
The article discusses devices for fixing sheet metal blanks from PCM: a perforated vacuum table, its design features, advantages and disadvantages. Based on these data, the upper part of the vacuum table was made for cutting samples for Iosipescu tests and dielectric tests. The article describes various types of tools for PCM processing and an experiment on the wear resistance of a diamond-like coated rasp cutter when milling carbon fiber reinforced plastic, carried out by foreign researchers.
2. Kablov E.N. New Generation Materials and Technologies for their Digital Processing. Herald of the Russian Academy of Sciences, 2020, vol. 90, no. 2, pp. 225–228.
3. Kablov E.N. VIAM: new generation materials for PD-14. Krylya Rodiny, 2019, no. 7-8, pp. 54–58.
4. Kablov E.N. New generation materials and digital technologies for their processing. Bulletin of the Russian Academy of Sciences, 2020, vol. 90, no. 4, pp. 331–334.
5. Draft order of the Government of the Russian Federation «On approval of the Strategy for the development of the aviation industry of the Russian Federation for the period up to 2030». Available at: https://www.minpromtorg.gov.ru (accessed: December 1, 2020).
6. Minibaev M.I., Raskutin A.E, Goncharov V.A. Peculiarities of technology production specimens of PCM on CNC machines (review). Trudy VIAM, 2019, no. 1 (73), paper no. 11. Available at: http://www.viam-works.ru (accessed: December 2, 2020). DOI: 10.18577/2307-6046-2019-0-1-105-114.
7. Ozkan D., Sabri Gok M., Oge M., Cahit Karaoglanli A. Milling Behavior Analysis of Carbon Fiber-Reinforced Polymer (CFRP) Composites. Materials Today: Proceedings, 2019, vol. 11, pp. 526–533.
8. Kondrashov S.V., Shashkeev K.A., Petrova G.N., Mekalina I.V. Constructional polymer composites with functional properties. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 405–419. DOI: 10.18577/2071-9140-2017-0-S-405-419.
9. Kutsevich K.E., Tyumeneva T.Yu., Petrova A.P. Influence of fillers on properties of adhesive prepregs and PCM on their basis. Aviacionnye materialy i tehnologii, 2017, no. 4 (49), pp. 51–55. DOI: 10.18577/2071-9140-2017-0-4-51-55.
10. Ilichev A.V., Gubin A.M., Akmeev A.R., Ivanov N.V. Definition of area of the maxi-mum shear deformations for CFRP samples on Iosipescu method, with use of optical system of measurements. Trudy VIAM, 2018, no. 6 (66), paper no. 10. Available at: http://www.viam-works.ru (accessed: December 1, 2020). DOI: 10.18577/2307-6046-2018-0-6-99-109.
11. Zastrogina O.B., Serkova E.А., Sarychev I.A., Vavilova M.I. Influence of Russian and Chinese vinyflex on the properties of the VFT binder and fiberglass based on it. Aviacionnye materialy i tehnologii, 2020, no. 3 (60), pp. 3–9. DOI: 10.18577/2071-9140-2020-0-3-3-9.
12. ASTM D5379/D5379M-19. Standard Test Method for Shear Properties of Composite Materials by the V-Notched Beam Method. ASTM International, West Conshohocken, 2019. Available at: http://astm.org (accessed: accessed: December 1, 2020). DOI: 10.1520/D5379_D5379M-19.
13. Thakur R.K., Singh K.K., Karumesh K. Investigation of milling characteristics in grapheme-embedded epoxy/carbon fiber reinforced composite. Materials Today: Proceedings, 2020, vol. 33, pp. 5643–5648.
14. Aristova Е.Yu., Denisova V.А., Drozhzhin V.S. et al. Composite materials using hollow microspheres. Aviacionnye materialy i tehnologii, 2018, no. 1 (50), pp. 52–57. DOI: 10.18577/2071-9140-2018-0-1-52-57.
15. Gao C., Xiao J., Xu J., Ke Y. Factor analysis of machining parameters of fiber-reinforced polymer composites based on finite element simulation with experimental investigation. International Journal of Advanced Manufacturing Technology, 2016, vol. 83, is. 5-8, pp. 1113–1125. DOI: 10.1007/s00170-015-7592-2.
16. Vorobyov V.V. Manufacturing technology of structures from composite materials. Moscow: MAI Publishing House, 1996, 178 p.
A number of domestic and foreign publications devoted to research on the possibility of using laser surface treatment technologies for cleaning from dirt, removing paint coatings and preparing the metal surface for subsequent technological operations are considered. The most striking examples of the use of technologies in the foreign aviation industry are given and the high readiness of their implementation in practice is noted. Theoretical information about laser technology is presented and the most progressive directions are highlighted.
2. Franchuk G.M., Savchenko V.I. Experience of using aerosol gas-dynamic flows in technological cleaning processes. Kiev: Znanie, 1988, 16 p.
3. Technology of paints and varnishes: collection of scientific articles. Moscow: LKM-press, 2009, p. 63.
4. Stoye D., Freytag V. Paints, coatings and solvents. Saint Petersburg: Professiya, 2007, 528 p.
5. Itsko E.F., Drinberg A.S. Removal of paint and varnish coatings. Moscow: LKM-press, 2010, 116 p.
6. Agarwala V.S., Rajeshwar K. Paint and coating removal technologies: Past, present and future. NACE – International Corrosion Conference Series. Houston, 2001, paper no. NACE-01577.
7. Maeno T., Mori K., Ogihara T., Fujita T. Removal of thin oxide scale by ultrasonic cleaning with diluted hydrochloric acid in hot stamping of bare 22MnB5 sheet using resistance heating. Procedia Manufacturing, 2019, vol. 29, pp. 225–231.
8. Kablov E.N., Semenova L.V., Eskov A.A., Lebedeva T.A. Complex systems of paint and varnish coatings for the protection of metal polymer composite materials, as well as their contact compounds from aggressive factors. Lakokrasochnye materialy i ikh primenenie, 2016, no. 6, pp. 32–35.
9. Kablov E.N. Innovative development is the most important priority of the state. Metally Evrazii, 2010, no. 2, pp. 6–11.
10. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
11. Kablov E.N. What to make the future of? New generation materials, technologies for their creation and processing – the basis of innovations. Krylya Rodiny, 2016, no. 5, pp. 8–18.
12. Kablov E.N. The sixth technological order. Science and Life. 2010, no. 4, pp. 2–7.
13. Shcherbakov I.A. Laser. Great Russian Encyclopedia. Available at: https://bigenc.ru/physics/text/ 4341828 (accessed: January 22, 2021).
14. Schawlow A.L. Lasers. Science, 1965, vol. 149, no. 3679, pp. 13–22.
15. Bo Y., Geng A., Xu Z. High average power Q-switched quasi-continue-wave Nd: YAG laser. Acta Physica Sinica, 2006, vol. 55, no. 3, pp. 1171–1175.
16. Furuta K., Kojima T., Fujikawa S. Diode-pumped 1 kW Q-switched Nd: YAG rod laser with high peak power and high beam quality. Applied Optics, 2005, vol. 44, no. 19, pp. 4119–4122.
17. Roberts D.E. Pulsed laser coating removal by detachment and ejection. Applied Physics, 2004, vol. 79, no. 4, pp. 1067–1070.
18. Method of removing rust from metallic objects: pat. US 4368080; filed 10.27.80; publ. 11.01.83.
19. Method of laser surface cleaning: pat. RU 2538161C2; filed 28.12.12; publ. 10.01.15.
20. Method of surface cleaning and device for its implementation: pat. RU 2297886; filed 06.06.05; publ. 27.04.07.
21. Method for cleaning the surface of materials and a device for its implementation: pat. RU 2037342C1; filed 17.09.90; publ. 19.06.95.
22. Method of surface laser treatment and device for its implementation: pat. RU 2445175C1; filed 28.06.10; publ. 20.03.12.
23. Method for laser cleaning of metals: pat. RU 2619692C1; filed 24.05.16; publ. 17.05.17.
24. Method of laser surface cleaning: pat. RU 2668619C1; filed 14.08.17; publ. 10.02.18.
25. Shastin V.I., Belunnik A.I., Lotsmanov G.S. Removal of paint and varnish coatings by laser radiation. Proceedings of the meeting "Laser technological installations and prospects for their application at the enterprises of the industry". Moscow: NIAT, 1986, p. 3.
26. Shastin V.I. Removal of highly resistant paint and varnish coatings using laser radiation. Lakokrasochnye materialy i ikh primenenie, 2015, no. 8, pp. 42–46.
27. Kuang Z., Guo W., Li J. et al. Nanosecond fiber laser paint stripping with suppression of flames and sparks. Journal of Materials Processing Technology, 2019, vol. 266, pp. 474–483.
28. Jasim H.A., Demir A.G., Previtali B., Taha Z.A. Process development and monitoring in stripping of a highly transparent polymeric paint with ns-pulsed fiber laser. Optics and Laser Technology, 2017, vol. 93, pp. 60–66.
29. Madhukar Y.K., Mullick S., Shukla D.K. et al. Effect of laser operating mode in paint removal with a fiber laser. Applied Surface Science, 2013, vol. 264, pp. 892–901.
30. Schmidt M. J. J., Li L., Spencer J. T. An investigation into the feasibility and characteristics of using a 2.5 kW high power diode laser for paint stripping. Journal of Materials Processing Technology, 2003, vol. 138, is. 1-3, pp. 109–115.
31. Samokhvalov A.A. Laser cleaning of the surface of industrial objects from paint and varnish coatings and contamination: thesis, Cand. Sc. (Tech.). Saint Petersburg, 2013, 107 p.
32. Smirnov V.N. Development of technology for processing aircraft engine parts. Lazernye tekhnologii, 2016. Available at: http://laser.com.ru/refinement_aviation.html (accessed: January 24, 2021).
33. Smirnov V.N. Mobile laser modules: solving problems of repair and restoration work in the field conditions of engines. Lazernye tekhnologii, 2016. Available at: http://laser.com.ru/article_mlm.html (accessed: January 24, 2021).
34. Smirnov V.N. Anti-corrosion treatment of engines. Lazernye tekhnologii, 2016. Available at: http://laser.com.ru/anti.html (accessed: January 24, 2021).
35. Panych D.S. Application of laser-plasma treatment to remove the corrosion layer in machines and metal structures. Evraziyskiy nauchny zhurnal, 2016, no. 9, pp. 197–199.
36. Verger R. How to most effectively remove paint from a jet fighter. Pokrytiya segodnya, 2021. Available at: http://coatings-today.com/articles/view/69 (accessed: January 22, 2021).
37. Schlett J. Laser paint removal takes off in aerospace. Vision Spectra, 2016. Available at: https://www.photonics.com/Articles/Laser_Paint_Removal_Takes_Off_in_Aerospace/a61353 (accessed: January 22, 2021).
38. Muboyadzhan S.A., Alexandrov D.A., Gorlov D.S. Ion-plasma nanolayer erosion-resistant coatings based on metal carbides and nitrides. Metally, 2010, no. 5, pp. 39–51.
39. Aleksandrov D.A. The research of wear-resistant coatings based on multicomponent titanium nitrides Trudy VIAM, 2020, no. 4-5 (88), paper no. 07 Available at: http://www.viam-works.ru (accessed: February 01, 2021). DOI: 10.18577/2307-6046-2020-0-45-62-69.
40. Aleksandrov D.A., Muboyadzhyan S.A., Zhuravleva P.L., Gorlov D.S. Investigation of the effect of surface preparation and ion-assisted deposition on the structure and properties of erosion-resistant ion-plasma coating. Trudy VIAM, 2018, no. 10 (70), paper no. 08. Available at: http://www.viam-works.ru (accessed: February 01, 2021). DOI: 10.18577/2307-6046-2018-0-10-62-73.
41. Muboyadzhyan S.A., Aleksandrov D.A., Gorlov D.S., Egorova L.P., Bulavinceva E.E. Protective and strengthening ion-plasma coverings for blades and other responsible details of the GTE compressor. Aviacionnye materialy i tehnologii, 2012, no. S, pp. 71–81.
42. Kablov E.N., Muboyadzhyan S.A. Erosion-resistant coatings for compressor blades of gas turbine engines. Elektrometallurgiya, 2016, no. 10, pp. 23–38.
43. Nochovnaya N.A., Nikitin Ya.Yu., Grigorenko V.B., Kozlov I.A. Changes in the surface properties of titanium alloy VT20 in the chemical removal of operational carbon pollution. Trudy VIAM, 2017, no. 10 (58), paper no. 05. Available at: http://www.viam-works.ru (accessed: February 01, 2021). DOI: 10.18577/2307-6046-2017-0-10-5-5.
44. Nochovnaya N.A., Nikitin Ya.Yu. The current state of the question in the field of cleaning of the compressor GTE from operational pollution (review). Trudy VIAM, 2017, no. 3, paper no. 05. Available at: http://www.viam-works.ru (accessed: February 01, 2021). DOI: 10.18577 / 2307-6046-2017-0-3-5-5.
45. Plankovsky S.I., Golovin I.I., Sirenko F.F. Analysis of existing methods for cleaning the surface of turbine blades in gas turbine engines. Aviatsionno-kosmicheskaya tekhnika i tekhnologiya, 2013, no. 6, pp. 8–14.
46. Plankovsky S.I., Tsegelnik E.V., Golovin I.I., Melnichuk P.I. Prospects for laser cleaning in the repair of gas turbine engines. Aviatsionno-kosmicheskaya tekhnika i tekhnologiya, 2015, no. 10 (127), pp. 54–57.
47. Method for cleaning and stripping a gas turbine engine blade by means of a pulsed laser: pat. RU 2604406C2; filed 02.05.12; publ. 10.12.16.
48. Turner M.W., Crouse P.L., Li L., Smith A.J.E. Investigation into CO2 laser cleaning of titanium alloys for gas-turbine component manufacture. Applied Surface Science, 2006, vol. 252, is. 13, pp. 4798–4802.
49. State Standard EN 4678–2016. Aerospace series. Welded and brazed products for aerospace structures. Connections of metallic materials, made laser welded. Quality of welded products (as amended). Mosocow: Standartinform, 2017, 38 p.
50. Li X., Zhang Q., Zhou X. et al. The influence of nanosecond laser pulse energy density for paint removal. Optik, 2018, vol. 156, pp. 841–846.
51. Veiko V.P., Smirnov V.N., Chirkov A.M., Shakhno E.A. Laser cleaning in mechanical engineering and instrument making. Saint Petersburg: NIU ITMO, 2013, 103 p.
52. Veiko V.P., Mutin T.Yu., Smirnov V.N. et al. Laser cleaning of metal surfaces: physical processes and application. Izvestiya vysshikh uchebnykh zavedeniy. Priborostroyenie, 2008, vol. 51, no. 4, pp. 30–36.
53. Levin A. The Quantum Beacon: The History of One of the Most Important Inventions of the 20th Century – the Laser. Populyarnaya mekhanika, 2019. Available at: https://www.popmech.ru/technologies/5466-kvantovyy-svetoch-istoriya-odnogo-iz-samykh-vazhnykh-izobreteniy-xx-veka-lazera (accessed: Febryary 02, 2021).
54. Schweizer G., Werner L. Industrial 2 kW TEA CO2 laser for paint stripping of aircraft. Proceedings of SPIE, 1994, vol. 2502, pp. 57–62.
55. Liu K., Garmire E. Paint removal using lasers. Applied Optics, 1995, vol. 34, pp. 4409–4415.
56. Prinsloo F.J., Heerden S.P.V., Ronander E., Botha L.R. Efficient TEA CO2 laser based coating removal system. Proceedings of SPIE, 2007, vol. 6346, pp. 1–8.
57. Tsunemi A., Hagiwara K., Saito N., Nagasaka K., Miyamoto Y., Suto O. Complete removal of paint from metal surface by ablation with a TEA CO2 laser. Applied Physics A, 1996, vol. 63, pp. 435–439.
58. Chen G.X., Kwee T.J., Tan K.P., Choo Y.S., Hong M.H. Laser cleaning of steel for paint removal. Applied Physics A, 2010, vol. 101, pp. 249–253.
59. Forbes A., Du Preez N.C., Belyi V., Botha L.R. Paint stripping with high power flattened Gaussian beams. Proceedings of SPIE, 2009, vol. 7430, pp. 1–5.
60. Pantelakis S.G., Kermanidis T.B., Haidemenopoulos G.N. Mechanical 2024 Al alloy specimen behavior subjected to paint stripping by laser radiation and plasma etching. Theoretical and Applied Fracture Mechanics, 1996, vol. 25, pp. 139–146.
61. Arabgari S., Aghaie M., Radmard S., Nabavi S.H. Thin-disk laser resonator design: The dioptric power variation of thin-disk and the beam quality factor. Optik, 2019, vol. 185, pp. 868–874.
62. Shayganmanesh M., Beirami R. Evaluation of thermal effects on the beam quality of disk laser with unstable resonator. Optics communications, 2017, vol. 38315, pp. 92–100.
63. Gavili A., Shayganmanesh M. Thin disk laser with unstable resonator and reduced output coupler. Optics & Laser Technology, 2018, vol. 101, pp. 349–357.
64. Larionov M. Thin disk lasers. Encyclopedia of modern optics. Second edition. Oxford: Academic Press, 2018, vol. 2, pp. 407–414.
65. Apollonov V.V. Disk lasers: advantages and prospects. Ekspertny soyuz. Available at: http: //laser.rf/2017/09/15/5383 (accessed: January 28, 2021).
66. Routering M. Targeted paint removal with a powerful Nd: YAG laser. Photonics, 2010, no. 2, pp. 12–14.
67. Zhanga Z., Zhang J., Wang Y. et al. Removal of paint layer by layer using a 20 kHz 140 ns quasicontinuous wave laser. Optik, 2018, vol. 174, pp. 46–55.
68. Brygo F., Dutouquet Ch., Le Guern F. et al. Laser fluence, repetition rate and pulse duration effects on paint ablation. Applied Surface Science, 2006, vol. 252, is. 6, pp. 2131–2138.
69. Losev V.F., Tsipilev V.P. Laser technologies and equipment: textbook. Tomsk: Publ. House Tomsk Polytech. University, 2008, 148 p.
70. Delaporte Ph., Gastaud M., Marine W. et al. Dry excimer laser cleaning applied to nuclear decontamination. Applied Surface Science, 2003, vol. 208-209, pp. 298–305.
71. Vinokhodov A.Yu. Electric-discharge laser and plasma sources of UV and VUV radiation with a high pulse repetition rate: thesis, Cand. Sc. (Phys.-Math.) . Troitsk: RFNC "VNIIEF", 2004, 301 p.
72. Galantucci L. M., Gravina A., Chita G., Cinquepalmi M. An experimental study of paint-stripping using excimer laser. Polymer and Polymer Composites, 1997, vol. 5, no. 2, pp. 87–94.
73. Kumar M., Bhargava P., Biswas A.K. et al. Epoxy-paint stripping using TEA CO2 laser: Determination of threshold fluence and the process parameters. Optics & Laser Technology, 2013, vol. 46. P. 29–36.
74. Beck M., Berger P., Hugel H. The effect of plasma formation on beam focusing in deep penetration welding with CO2 laser. Journal of Physics D: Applied Physics, 1995, vol. 28, pp. 2430-2442.
75. Panchenko Yu.N., Losev V.F., Puchikin A.V., Yao Jun. TEA CO2 lasers with high output radiation intensity. Izvestiya vysshikh uchebnykh zavedeniy, Fizika, 2013, vol. 56, no. 11, pp. 33–36.
76. Zhu G., Wang S., Cheng W. et al. Corrosion and wear performance of aircraft skin after laser cleaning. Optics & Laser Technology. 2020, vol. 132, pp. 64-75.
77. Razab M.K.A.A., Jaafar M.S., Abdullah N.H. et al. Influence of elemental compositions in laser cleaning for automotive coating systems. Journal of Russian laser research, 2016, vol. 37, no. 2, pp. 197–206.
78. Coutouly J.-F., Deprez P., Breaban F., Longuemard J.-P. Optimization of a paint coating ablation process by CO2 TEA laser: Thermal field modeling and real-time monitoring of the process. Journal of Materials Processing Technology, 2009, vol. 209, is. 17, pp. 5730-5735.
79. Plankovsky S.I., Tsegelnik E.V., Melnichuk P.I., Lebed V.I. Computational and experimental algorithm for assigning modes of laser removal of paint and varnish coatings. Voprosy proyektirovaniya i proizvodstva konstruktsiy letatelnykh apparatov, 2017, is. 4 (92), pp. 34–41.
80. Plankovsky S.I., Tsegelnik E.V., Melnichuk P.I., Golovin I.I. On the question of the appointment of modes of laser cleaning of elements of aircraft structures made of aluminum alloys from paint and varnish coatings. Voprosy proyektirovaniya i proizvodstva konstruktsiy letatelnykh apparatov, 2015. is. 4 (84), pp. 105–111.
81. Plankovsky S.I., Tsegelnik E.V., Melnichuk P.I., Chashchin N.A. Experimental and computational method for determining the limitations of the modes of laser cleaning of parts made of aluminum alloys. Voprosy proyektirovaniya i proizvodstva konstruktsiy letatelnykh apparatov, 2017, is. 3 (91), pp. 61–70.
82. Han J., Cui X., Wang S. et al. Laser effects based optimal laser parameter identifications for paint removal from metal substrate at 1064 nm: A multi-pulse model. Journal of Modern Optics, 2017, vol. 64, no. 19, p. 1947–1959.
83. Tsegelnik E.V. Promising directions of application of laser technologies in the aviation industry. Otkrytye informatsionnyye i kompyuternye integrirovannye tekhnologii, 2015, is. 70, pp. 121–129.
84. Weissling D.H., Wiedmann S.L., Solomon D.P. A Large-Scale Robotic System for Depainting Advanced Fighter Aircraft. SAE International Journal of Aerospace, 2011, vol. 4. Is. 2, pp. 1125–1132.
85. Blinkov V.V. Application of laser technologies in the aviation industry. LazerInform, 2009, no. 23 (422), pp. 5–9.
86. Tsegelnik E.V., Melnichuk P.I. Modern approaches to the automation of the processes of laser cleaning of elements of aircraft structures from paint and varnish coatings. AVIA-2015: materials of the XII Intern. scientific and technical conf. Kiev: Nat. Aviation University, 2015, pp. 16.35–16.38.
87. Tochenov L.A. State and prospects of mechanization of technological processes for cleaning aircraft. Moscow: TsSTI Civil Aviation, 1985, 54 p.
88. Kremeres D., Radziemski L. Laser-spark emission spectroscopy. Moscow: Tekhnosfera, 2009, 360 p.
89. Veiko V.P., Volkov S.A., Mutin T.Yu., Smirnov V.N. On the possibility of spectroscopic control of the laser cleaning process. Priborostroenie, 2011, no. 2, pp. 65–68.
90. Hsu S.-C., Lin J. Removal mechanisms of micro-scale particles by surface wave in laser cleaning. Optics & Laser Technology, 2006, vol. 38, is. 7, pp. 544–551.
The determination of the elements Cu, Ni, Sb, Bi, Pb, Zn and Fe in the tin-based solder VPr35, as well as the elements Sn, Ni, Sb, Bi and In in the lead-based VPr40 solder by the method of х-ray fluorescence spectroscopy has been carried out. The calibration dependences are corrected taking into account the superposition of signals from interfering elements on the analytical signal and changes in intensity caused by inter-element influences in the matrix. The analysis was carried out by the method of fundamental parameters without using standard samples. The correctness of the results obtained was confirmed by their comparative analysis by atomic emission spectroscopy and high-resolution mass spectrometry with a glow discharge.
1. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
2. Kablov E.N., Ospennikova O.G., Svetlov I.L. Highly efficient cooling of GTE hot section blades. Aviacionnye materialy i tehnologii, 2017, no. 2 (47), pp. 3–14. DOI: 10.18577/2071-9140-2017-0-2-3-14.
3. Kablov E.N., Bondarenko Yu.A., Echin A.B. Development of technology of cast superalloys directional solidification with variable controlled temperature gradient. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 24–38. DOI: 10.18577/2071-9140-2017-0-S-24-38.
4. Bazyleva O.A., Ospennikova O.G., Arginbaeva E.G., Letnikova E.Yu., Shestakov A.V. Development trends of nickel-based intermetallic alloys. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 104–115. DOI: 10.18577/2071-9140-2017-0-S-104-115.
5. Rylnikov V.S., Lukin V.I. Solders used for soldering materials aviation applications. Trudy VIAM, 2013, no. 8, paper no. 02. Available at: http://viam-works.ru (accessed: November 25, 2020).
6. Kablov E.N., Chabina E.B., Morozov G.A., Muravskaya N.P. Conformity assessment of new materials using high-level CRM and MI. Kompetentnost, 2017, no. 2, pp. 40–46.
7. State Standard 15483.4–78. Tin. Methods for the determination of copper. Moscow: Publishing house of standards, 1978, pp. 3–7.
8. State Standard 20580.4–80. Lead. Methods for the determination of bismuth. Moscow: Publishing house of standards, 1985, pp. 2–5.
9. State Standard 15483.1–78. Tin. Methods for the determination of antimony. Moscow: Publishing house of standards, 1978, pp. 9–15.
10. State Standard 26880.1–86. Lead. Atomic absorption method of analysis. Moscow: Publishing house of standards, 1986, pp. 2–14.
11. State Standard 15483.6–78. Tin. Methods for the determination of iron. Moscow: Publishing house of standards, 1978, pp. 11–13.
12. State Standard 15483.10-2004. Tin. Atomic emission spectral analysis methods. Moscow: Publishing house of standards, 2004, pp. 21–32.
13. State Standard 8857–77. Lead. Spectral analysis method. Moscow: Publishing house of standards, 1977, pp. 4–17.
14. Handbook of x-ray spectrometry. Ed. R.E. Van Grieken, A.A. Marcowicz. 2nd ed., rev. and exp. New-York: Marcel Dekker, Inc., 2001, pp. 14–56.
15. Criss J.W., Birks L.S. Calculation methods for fluorescent X-ray spectrometry. Empirical coefficients vs. fundamental parameters. Analytical Chemistry, 1968, vol. 40, pp. 1080–1086.
16. Mashin N.I., Lebedeva R.V., Tumanova A.N. X-ray fluorescence analysis of systems Ni–Fe–Mn–Cr. Analitika i kontrol, 2004, no. 2, vol. 8, pp. 160–164.
Studies have been carried out to assess the effectiveness of fire retardants on the flammability of an epoxy composition – graphene and an organophosphorus compound DOPO-THPO. The concentrations of the added flame retardants were 2 and 4 % (mass). Flammability characteristics were determined using the method according to GOST 28157 (UL 94) with vertical and horizontal samples. It was found that the introduction of fire retardants reduces the flammability of the epoxy composition, but the introduction of even 4 % was insufficient to ensure self-extinguishing of the epoxy composition during vertical testing.
2. State Standard 25076–81. Non-metallic materials for interior decoration of vehicles. Flammability determination method. Moscow: Publishing house of standards, 2003, 4 p.
3. State Standard R 55183–2012. Locomotive-hauled passenger cars. Fire safety requirements. Moscow: Standartinform, 2013.16 p.
4. Standards of airworthiness of transport category aircraft: AP-25. Ed. 5th as amended 1–8. Moscow: Aviaizdat, 2015, 288 p.
5. Airworthiness Standards: Transport Category Airplanes: Part 25. Electronic Code of Federal Regulation. Title 14: Aeronautic and Space. Chapter 1. Subchapter C. Available at: https://www.ecfr.gov/cgi-bin/text-idx?SID=9091f0ebbfbf1539cdb87015908ad369&mc=true&node=pt14.1.25&rgn=div5 (accessed: December 01, 2020).
6. International Code for Application of Fire Test Procedures, 2010 (2010 FTR Code, IMO resolution MSC.307 (88)). Saint Petersburg: TsNIIMF, 2011, 60 p.
7. State Standard R ISO 14624-1-2010. Space systems. Safety and material compatibility. Part 1. Determination of upward flammability of materials. Moscow: Standartinform, 2011, 15 p.
8. State Standard R ISO 14624-2–2010. Space systems. Safety and material compatibility. Part 2. Determination of flammability of insulation of electrical wires and auxiliary materials. Moscow: Standartinform, 2012, 18 p.
9. State Standard R ISO 14624-4-2010. Space systems. Safety and material compatibility. Part 4. Determination of vertical flammability of materials in compressed oxygen or oxygen-enriched environment. Moscow: Standartinform, 2011.8 p.
10. Van Krevelen D. W., Te Nijenhuis K. Properties of Polymers: Their Correlation with Chemical Structure; Their Numerical Estimation and Prediction From Additive Group Contributions. 4th Revised Edition. Elsevier Science & Technology, 2009, 1004 p.
11. Kodolov V.I. Fire retardants for polymer materials. Moscow: Khimiya, 1980, 274 p.
12. Barbotko S.L., Volny O.S., Kirienko O.A., Shurkova E.N. Assessment of fire safety of polymer materials for aviation purposes: state analysis, test methods, development prospects, methodological features. Ed. E.N. Kablov. Moscow: VIAM, 2018, 424 p.
13. Kablov E.N. The role of chemistry in the creation of new generation materials for complex technical systems. Report XX Mendeleev Congress on General and Applied Chemistry. Ekaterinburg: Ural Branch of the Russian Academy of Sciences, 2016, pp. 25–26.
14. Raskutin A.E. Development strategy of polymer composite materials. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 344–348. DOI: 10.18577/2071-9140-2017-0-S-344-348.
15. Raskutin A.E. Russian polymer composite materials of new generation, their exploitation and implementation in advanced developed constructions. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 349–367. DOI: 10.18577/2071-9140-2017-0-S-349-367.
16. Barbotko S.L. Ways of providing fire safety of aviation materials. Russian Journal of General Chemistry, 2011, vol. 81, no. 5, pp. 1068–1074.
17. Flame Retardant Chemicals: Technologies and Global Markets. BCC Research, 2018. 128 p.
18. Aseeva R.M., Zaikov G.E. Combustion of polymeric materials. Moscow: Khimiya, 1981. 280 p.
19. Korobeinichev O.P., Trubachev S.A., Joshi A.K. et al. Experimental and numerical studies of downward flame spread over PMMA with and without addition of tri phenyl phosphate. Proceedings of the Combustion Institute. 2020. DOI: 10.1016/j.proci.2020.07.082. Available at: https://www.sciencedirect.com/science/article/abs/pii/S1540748920305320 (accessed: December 12, 2020).
20. Jayarama K.J.V., Srivatsa K.S., Korobeinichev O.P., Vinu R. Detailed kinetic analysis of slow and fast pyrolysis of poly (methyl methacrylate)-Flame retardant mixtures. Thermochimica Acta, 2020, vol. 687. DOI: 10.1016/j.tca.2020.178545.
21. Tuzhikov O.I., Khokhlova T.V., Bondarenko S.N. et al. Elastomers and plastics with low combustibility. Volgograd: Volgograd State Tech. University, 2005, 230 p.
22. Polymer Green Flame Retardant. Ed. C.D. Papaspyrides, P. Kiliaris. Elsevier, 2014, 943 p.
23. Chemical Weapons Convention Available at: http://www.opcw.org/sites/default/files/documents/CWC/CWC_ru.pdf (accessed: February 10, 2021).
24. Serkova EA, Zastrogina O. B., Barbotko S. L. Study of the possibility of use of new environmentally friendly organophosphorus flame retardants in the composition of binders for interior fire safety materials. Trudy VIAM, 2019, no. 2 (74), paper no. 03. Available at: http://www.viam-works.ru (accessed: February 10, 2020). DOI: 10.18577/2307-6046-2019-0-2-24-34.
25. Leonov D.V. Development of polyamide-6 functional purpose modified with oxidized graphite: thesis, Cand. Sc. (Tech.). Saratov: Saratov State Tech. University named Yu.A. Gagarin, 2018, 163 p.
26. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
27. Kablov E.N. What to make the future of? New generation materials, technologies for their creation and processing - the basis of innovations. Krylya Rodiny, 2016, no. 5, pp. 8–18.
28. Graphene in the form of microparticles in powder. Available at: https://rusgraphene.ru/product-page/graphene-powder (accessed: February 10, 2021).
29. Wang J., Ma C., Wang P. et al. Ultra-low phosphorus loading to achieve the superior flame retardancy of epoxy resin. Polymer Degradation and Stability, 2018, no. 149, pp. 119–128. DOI: 10.1016/j.polymdegradstab.2018.01.024.
30. Barbotko S.L., Bochenkov M.M., Volnyj O.S., Korobeinichev O.P., Shmakov A.G. Evaluation of the effectiveness of the fire retardants, promising for the creation of new polymer composite materials intended for aviation techniques. Trudy VIAM, 2021, no. 2 (96), paper no. 03. Available at: http://www.viam-works.ru (accessed: February 24, 2021). DOI: 10.18577 / 2307-6046-2021-0-2-20-29.
31. Yan W., Zhang M.-Q., Yu J. et al. Synergistic Flame-retardant Effect of Epoxy Resin Combined with Phenethyl-bridged DOPO Derivative and Graphene Nanosheets. Chinese Journal of Polymer Science, 2019, no. 37, pp. 79–88. DOI: 10.1007/s10118-019-2175-6.
32. State Standard 28157–2018. Plastics. Methods for determination of resistance to combustion. Moscow: Standartinform, 2018, 11 p.
33. Tests for Flammability of Plastic Materials for Parts in Devices and Appliances: UL 94. Underwriters Laboratories Inc., 2006, 54 p.
A laboratory study for biodegradation of polymer film materials (high-density and low-density polyethylene, polypropylene, polyethylene terephthalate, polyvinyl chloride) under the action of mircomycete strains isolated under conditions of the island of Cuba was carried out. The maximum growth of micromycetes was observed in case of PVC samples. The minimum level of biodegradation for PVC films revealed at the mould resistance test (28 days) was confirmed by the results of tensile testing.
2. Kablov E.N., Startsev V.O. Systematical analysis of the climatics influence on mechanical properties of the polymer composite materials based on domestic and foreign sources (review). Aviacionnye materialy i tehnologii, 2018, no. 2 (51), pp. 47–58. DOI: 10.18577/2071-9140-2018-0-2-47-58.
3. Kablov E.N., Startsev V.O., Inozemtsev A.A. The moisture absorption of structurally similar samples from polymer composite materials in open climatic conditions with application of thermal spikes. Aviacionnye materialy i tehnologii, 2017, no. 2 (47), pp. 56–68. DOI: 10.18577/2071-9140-2017-0-2-56-68.
4. Petrov A.V., Doriomedov M.S., Skripachev S.Yu. Recycling technologies of polymer composite materials (review). Trudy VIAM, 2015, no. 8, paper no. 09. Available at: http://viam-works.ru (accessed: August 10, 2020). DOI: 10.18577/2307-6046-2015-0-8-9-9.
6. Perov N.S. Design of polymer materials on the molecular principles. I. The development of polymer materials with additional mechanisms of dissipation of mechanical energy at low temperatures. Aviacionnye materialy i tehnologii, 2017, No. 3 (48), pp. 50–55. DOI: 10.18577/2071-9140-2017-0-3-50-55.
7. Krivushina A.A., Bobyreva T.V., Mosunova D.N., Novikov A.A. Destructive activity of micromycetes isolated from materials in a tropical climate on selective nutrient media. Materialovedenie, 2021, no. 6 (in press).
8. Alshehrei F. Biodegradation of synthetic and natural plastic by microorganisms. Journal of Applied & Environmental Microbiology, 2017, vol. 5, no. 1, pp. 8–19. DOI: 10.12691/jaem-5-1-2.
9. Ahmed T., Shahid M., Azeem F. et al. Biodegradation of plastics: current scenario and future prospects for environmental safety. Environmental Science and Pollution Research, 2018, vol. 25, no. 8, pp. 7287–7298. DOI: 10.1007/s11356-018-1234-9.
10. Shah A.A., Hasan F., Hameed A., Ahmed S. Biological degradation of plastics: a comprehensive review. Biotechnology Advances, 2008, vol. 26, pp. 246–265. DOI: 10.1016/j.biotechadv.2007.12.005.
11. Laptev A.B., Turova T.P., Golubev A.V., Kireev D.M. Distribution of biodestructors of polymer composite materials in natural environments. Polymer composite materials and production technologies of a new generation: materials of the IV All-Russian scientific and technical conf. Moscow: VIAM, 2019, pp. 84–98.
12. Laptev A.B., Nikolaev E.V., Lutsenko A.N., Skripachev S.Yu. Research directions in the field of protection against corrosion, aging and biodeterioration of materials. Climate-2017. Problems of assessing the climatic resistance of materials and complex technical systems: collection of articles. materials of the II All-Russia. scientific and technical conf. Moscow: VIAM, 2017, pp. 46–54.
13. Kalinina I.G., Gumargalieva K.Z., Semenov S.A. Biocorrosion of plasticized polyvinyl chloride under the influence of the microscopic fungus Aspergillus niger. Korroziya: materialy, zashchita, 2017, no. 2, pp. 37–40.
14. Turova T.P., Nazina T.N., Sokolova D.Sh., Laptev A.B. Specific features of microbiological contamination of polymer materials in sea and fresh water. The role of fundamental research in the implementation of "Strategic directions for the development of materials and technologies for their processing for the period up to 2030": materials of the VI All-Russian scientific and technical conf. Moscow: VIAM, 2020, pp. 61–77.
15. Laptev A.B., Turova T.P., Sokolova D.Sh. Destruction of polyesters by fouling microorganisms in aquatic environments. Climate-2019. Modern approaches to assessing the impact of external factors on materials and complex technical systems: materials of the IV All-Russian. scientific and technical conf. Moscow: VIAM, 2020, pp. 212–216.
16. Laptev A.B., Ermishev V.Yu., Startsev V.O., Sokolova D.Sh. Application of molecular biology methods for assessing biostability. Materials of XII All-Russian conf. on testing and research of properties of materials "TestMat" on the topic "Modern aspects in the field of research of structural and phase transformations in the creation of materials of a new generation". Moscow: VIAM, 2020, pp. 471–478.
17. Krivushina A.A., Goryashnik Yu.S. Ways of protection of materials and products from microbiological damage (review). Aviacionnye materialy i tehnologii, 2017, no. 2 (47), pp. 80–86. DOI: 10.18577/2071-9140-2017-0-2-80-86.
Authors named |
Position, academic degree |
FSUE «All-Russian scientific research institute of aviation materials» SSC of RF; e-mail:This email address is being protected from spambots. You need JavaScript enabled to view it. |
|
Leonid Yu. Avilochev |
Leading Engineer |
Andrey V. Alekseev |
Researcher, Candidate of Sciences (Bio.) |
Sergey L. Barbotko |
Head of Sector, Doctor of Sciences (Tech.) |
Mikhail M. Bochenkov |
Second Category Technician |
Evgeny A. Veshkin |
Head of USTC, Candidate of Sciences (Tech.) |
Elena M. Visik |
Head of Sector, Candidate of Sciences (Tech.) |
Oleg S. Volnyj |
Leading Engineer |
Vsevolod A. Voronov |
Head of Sector, Candidate of Sciences (Chem.) |
Vitaliy A. Goncharov |
Head of Laboratory |
Mikhail I. Daskovsky |
Chief Specialist, Candidate of Sciences (Tech.) |
Roman M. Dvoretskov |
Head of Sector, Candidate of Sciences (Chem.) |
Elena V. Dolgova |
Deputy Head of Laboratory of Scientific, Candidate of Sciences (Chem.) |
Vyacheslav S. Dyshenko |
Head of Sector |
Evgeny S. Elyutin |
Leading Engineer |
Viktor I. Ivanov |
Senior Researcher |
Sergey M. Kachura |
Second category engineer-technologist |
Ilia A. Kozlov |
Head of Laboratory, Candidate of Sciences (Tech.) |
Alesya A. Kozlova |
Head of Sector |
Anastasia A. Krivushina |
Senior Researcher, Candidate of Sciences (Bio.) |
Kristina S. Lavrova |
Second Category Engineer |
Yulia E. Lebedeva |
Deputy Head of Laboratory of Scientific, Candidate of Sciences (Tech.) |
Marat I. Minibaev |
Second Category Engineer |
Nadezhda A. Nochovnaya |
Deputy Head of Laboratory, Doctor of Sciences (Tech.) |
Gennady V. Orlov |
Leading Engineer |
Olga G. Ospennikova |
Deputy Director General, Doctor of Sciences (Tech.) |
Pavel S. Petrov |
First Category Technician |
Nikolay V. Petrushin |
Chief Researcher, Doctor of Sciences (Tech.) |
Vyacheslav I. Postnov |
Deputy Head of USTC, Doctor of Sciences (Tech.) |
Denis V. Sevastyanov |
Chief Specialist, Candidate of Sciences (Chem.) |
Andrey V. Slavin |
Head of Testing Center, Doctor of Sciences (Tech.) |
Stanislav S. Solntcev |
Assistant to Director General, Doctor of Sciences (Tech.) |
Maria N. Usacheva |
Second Category Technician |
Aleksey A. Khudnev |
Technician |
Evgeny A. Shein |
Chief Specialist, Candidate of Sciences (Tech.) |
Boris V. Schetanov |
Chief Researcher, Doctor of Sciences (Tech.) |
Natalia E. Shchegoleva |
Head of Sector, Candidate of Sciences (Tech.) |
Voevodsky Institute of Chemical Kinetics and Combustion Siberian Branch of the Russian Academy |
|
Oleg P. Korobeinichev |
Chief Researcher, Doctor of Sciences (Phys. & Math.) |
Andrey G. Shmakov |
Head of Laboratory, Doctor of Sciences (Tech.) |
Bauman Moscow State Technical University (National Research University of Technology); |
|
Andrey I. Plokhikh |
Associate Professor, Candidate of Sciences (Tech.) |
Cienfuegos Environmental Studies Center, Cienfuegos, the Republic of Cuba; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it. |
|
Gleisy Perez Avilleria |
Engineer |
Miguel Gomez Batista |
Chief Specialist |
Zenaida Usagawa |
Chief Specialist |