Articles
Possibility of reduction of the silicon content in ZhS32-VI alloy by combined intro-duction of AEE and REE additions followed by filtration of the melt through the ceramic foam filter with activated working surface from CaO. It was established that filtration rate influences the completeness of removal of nonmetallic inclusions from the melt. The effective use of yttrium for Ni-base melt refining from silicon impurity was demonstrated.
2. Kablov E.N., Sidorov V.V., Kablov D.E., Rigin V.E., Gorjunov A.V. Sovremennye tehnologii poluchenija prutkovyh zagotovok iz litejnyh zharoprochnyh splavov novogo pokolenija [Modern technologies for bar stock of casting superalloys new generation] //Aviacionnye materialy i tehnologii. 2012. №S. S. 97–105.
3. Sidorov V.V., Rigin V.E., Kablov D.E. Organizacija proizvodstva lityh prutkovyh zagotovok iz sovremennyh litejnyh vysokozharoprochnyh nikelevyh splavov [Organization of production of cast bar stock of modern casting nickel-base superalloys] //Litejnoe proizvodstvo. 2011. №10. S. 2–5.
4. Kablov D.E., Sidorov V.V., Min P.G. Vlijanie primesi azota na strukturu monokristallov zharoprochnogo nikelevogo splava ZhS30-VI i razrabotka jeffektivnyh sposobov ego rafinirovanija [Influence of nitrogen impurities on the structure of single-crystal nickel superalloys ZhS30-VI and develop effective ways of refining it] //Aviacionnye materialy i tehnologii. 2012. №2. S. 32–36.
5. Kablov D.E., Chabina E.B., Sidorov V.V., Min P.G. Issledovanie vlijanija azota na strukturu i svojstva monokristallov iz litejnogo zharoprochnogo splava ZhS30-VI [Investigation of the influence of nitrogen on the structure and properties of single crystals of cast superalloy ZhS30-VI] //MiTOM. 2013. №8. S. 3–7.
6. Kablov D.E., Sidorov V.V., Min P.G. Zakonomernosti povedenija azota pri poluchenii monokristallov zharoprochnogo nikelevogo splava ZhS30-VI i ego vlijanie na jekspluatacionnye svojstva [Of the behavior of nitrogen in the preparation of single crystals of heat-resistant nickel alloy ZhS30-VI and its impact on the performance of the] //MiTOM. 2014. №1. S. 8–12.
7. Improved low sulfur nickel-base single crystal superalloy with ppm additions of lanthanum and yttrium: pat. 2415888 EU; publ. 14.10.2010.
8. Zhuanggi HU, Hongwei SONG, Shouren GUO, Wenru SUN and Dezhong LU. Effects of Phosphorus on Microstructure and Creep Property of IN718 Superalloy //J. Mater. Sci. Technol. 2005. V. 21. Suppl. P. 73–76.
9. Sidorov V.V., Rigin V.E., Filonova E.V., Timofeeva O.B. Strukturnye issledovanija i svojstva monokristallov splavov VZhM4-VI i VZhM5-VI, soderzhashhih povyshennye kolichestva fosfora [Structural studies of the properties of single crystals and alloys VZhM4-VI-VI and VZhM5 containing elevated levels of phosphorus] //Trudy VIAM. 2014. №3. St. 02 (viam-works.ru).
10. Sposob poluchenija izdelija iz zharoprochnogo nikelevogo splava [A method of manufacturing a heat-resistant nickel alloy]: pat. 2215059 Ros. Federacija; opubl. 26.12.2001.
11. Sidorov V.V., Rigin V.E., Gorjunov A.V., Kablov D.E. Vysokojeffektivnye tehnologii i sovremennoe oborudovanie dlja proizvodstva shihtovyh zagotovok iz litejnyh zharoprochnyh splavov [Enabling technologies and modern equipment for the production of charge billets casting of superalloys] //Metallurg. 2012. №5. S. 26–30.
12. Sidorov V.V., Rigin V.E., Gorjunov A.V., Min P.G., Kablov D.E. Poluchenie Re–Ru-soderzhashhego splava s ispol'zovaniem nekondicionnyh othodov [Preparation of Re–Ru-containing alloy using unconditioned waste] //Metallurgija mashinostroenija. 2012. №3. S. 15–17.
13. Kablov E.N., Petrushin N.V., Bronfin M.B., Alekseev A.A. Osobennosti monokristallicheskih zharoprochnyh nikelevyh splavov, legirovannyh reniem [Features single-crystal high-temperature nickel alloys, alloyed with rhenium] //Metally. 2006. №5. S. 47–57.
14. Kablov E.N., Petrushin N.V., Vasilenok L.B., Morozova G.I. Renij v zharoprochnyh nikelevyh splavah dlja lopatok gazovyh turbin (prodolzhenie) [Measurements in high-temperature nickel alloys for gas turbine blades (continued)] //Materialovedenie. 2000. №3. S. 38–43.
15. Kablov E.N., Ospennikova O.G., Sidorov V.V., Rigin V.E. Proizvodstvo lityh prutkovyh (shihtovyh) zagotovok iz sovremennyh litejnyh vysokozharoprochnyh nikelevyh splavov [Production of cast semifinished (of charge) blanks of the modern casting nickel-base superalloys] /V sb. trudov nauch.-tehnich. konf., posvjashhennoj 310-letiju ural'skoj metallurgii i sozdaniju tehniko-vnedrencheskogo centra metallurgii i tjazhelogo mashinostroenija. T. 1. Ekaterinburg: «Nauka Servis». 2011. S. 31–38.
16. Kablov E.N., Bondarenko Ju.A., Echin A.B., Surova V.A. Razvitie processa napravlennoj kristallizacii lopatok GTD iz zharoprochnyh splavov s monokristallicheskoj i kompozicionnoj strukturoj [The development process of directional solidification of gas turbine engine blades with a single-crystal superalloys and composite structure] //Aviacionnye materialy i tehnologii. 2012. №1. S. 3–8.
17. Kablov E.N., Ospennikova O.G., Vershkov A.V. Redkie metally i redkozemel'nye jelementy – materialy sovremennyh i budushhih vysokih tehnologij [Rare metals and rare-earth elements – materials for current and future high-tech] //Trudy VIAM. 2013. №2. St. 01 (viam-works.ru).
18. Sidorov V.V., Rigin V.E., Zajcev D.V., Gorjunov A.V. Formirovanie nanostrukturirovannogo sostojanija v litejnom zharoprochnom splave pri mikrolegirovanii ego lantanom [Formation of nanostructured state in casting superalloy with microalloying its lanthanum] //Trudy VIAM. 2013. №1. St. 01 (viam-works.ru).
19. Kablov E.N., Svetlov I.L., Petrushin N.V. Nikelevye zharoprochnye splavy dlja lit'ja lopatok s napravlennoj i monokristallicheskoj strukturoj [Nickel superalloys for blades casting with directional and single-crystal structure]. Ch. I //Materialovedenie. 1997. №4. S. 32–39.
20. Kablov E.N., Svetlov I.L., Petrushin N.V. Nikelevye zharoprochnye splavy dlja lit'ja lopatok s napravlennoj i monokristallicheskoj strukturoj [Nickel superalloys for blades casting with directional and single-crystal structure]. Ch. II //Materialovedenie. 1997. №5. S. 14–16.
21. Sidorov V.V., Rigin V.E., Timofeeva O.B., Min P.G. Vlijanie kremnija i fosfora na zharoprochnye svojstva i strukturno-fazovye prevrashhenija v monokristallah ih vysokozharoprochnogo splava VZhM4-VI [Effect of silicon and phosphorus on the heat-resistant properties and structural phase transitions in single crystals of a highly heat resistant alloy VZhM4-VI] //Aviacionnye materialy i tehnologii. 2013. №3. S. 32–38.
The results of investigation of heat treatment influence on microstructure and me-chanical properties of NiAl-based alloy are presented in the paper. Tensile strength and elongation of NiAl-based alloy at room temperature reached their top values owing to heat treatment (TS=120°С/2 h) followed by ageing.
2. Shmotin Ju.N., Starkov R.Ju., Danilov D.V., Ospennikova O.G., Lomberg B.S. Novye materialy dlja perspektivnogo dvigatelja OAO «NPO „Saturn”» [New materials for advanced engine JSC «NPO „Saturn”»] //Aviacionnye materialy i tehnologii. 2012. №2. S. 6–8.
3. Gorjunov A.V., Rigin V.E. Sovremennaja tehnologija poluchenija litejnyh zharoprochnyh nikelevyh splavov [Modern technology for producing heat-resistant nickel alloys casting] //Aviacionnye materialy i tehnologii. 2014. №2. S. 3–7.
4. Kablov E.N., Svetlov I.L., Petrushin N.V. Nikelevye zharoprochnye splavy dlja lit'ja lopatok s napravlennoj i monokristallicheskoj strukturoj [Nickel superalloys for blades casting with directional and single-crystal structure]. Ch. I //Materialovedenie. 1997. №4. S. 32–39.
5. Kablov E.N., Svetlov I.L., Petrushin N.V. Nikelevye zharoprochnye splavy dlja lit'ja lopatok s napravlennoj i monokristallicheskoj strukturoj [Nickel superalloys for blades casting with directional and single-crystal structure]. Ch. II //Materialovedenie. 1997. №5. S. 14–16.
6. Bazyleva O.A., Arginbaeva Je.G., Turenko E.Ju. Vysokotemperaturnye intermetallidnye splavy dlja detalej GTD [High-temperature intermetallic alloys for GTD parts] //Aviacionnye materialy i tehnologii. 2013. №3. S. 26‒31.
7. Bazyleva O.A., Arginbaeva Je.G., Turenko E.Ju. Zharoprochnye litejnye intermetallidnye splavy [Heat-resistant casting intermetallic alloys] //Aviacionnye materialy i tehnologii. 2012. №S. S. 57–60.
8. Kablov E.N., Buntushkin V.P., Povarova K.B., Bazyleva O.A., Morozova G.I., Kazanskaja N.K. Malolegirovannye legkie zharoprochnye vysokotemperaturnye materialy na osnove intermetallida Ni3Al [Low-alloy high-temperature heat-resistant lightweight materials based on the intermetallic Ni3Al] //Metally. 1999. № 1. S. 58–65.
9. Bazyleva O.A., Arginbaeva Je.G., Turenko E.Ju. Intermetallidnye splavy na osnove Ni3Al [Intermetallic alloys based on Ni3Al] //Vse materialy. Jenciklopedicheskij spravochnik. 2012. №5. S. 27–29.
10. Bei H., George E.P. Microstructures and mechanical properties of a directionally solidified NiAl–Mo eutectic alloy //Acta Materialia. 2005. №53. Р. 69–77.
11. Tang Lin-zhi, Zhang Zhi-gang, LI Shu-suo, Gong Sheng-kai. Mechanical behaviors of NiAl–Cr(Mo)-based near eutectic alloy with Ti, Hf, Nb and W additions //Trans. Nonferrous Met. Soc. 2010. V. 20. P. 212−216.
12. Zhang Yanfang, Li Shusuo, Han Yafang. Effect of yttrium on oxidation behavior of Ni3Al-based single crystal alloys //RARE metals. 2011. V. 30. Spec. Issue. P. 538–543.
13. Wufeng D., Tietao Zh., Heli L., Li Shangping, Peiying L. Effects of hafnium and yttirium on the oxidation resistence of Ni3Al/CrMoB alloy //Rare Metal Materials and Engineering. 2008. V. 37 (9). Р. 1549.
14. Ballard D.L., Pilchak A.L. The use of precious-metal-modified nickel-based superalloys for thin gage applications //JOM. 2010. V. 62. №10. Р. 45–47.
15. Kablov E.N., Bondarenko Ju.A., Kablov D.E. Osobennosti struktury i zharoprochnyh svojstv monokristallov <001> vysokorenievogo nikelevogo zharoprochnogo splava, poluchennogo v uslovijah vysokogradientnoj napravlennoj kristallizacii [Features of the structure and properties of single crystals of high-temperature <001> vysokorenievogo nickel superalloy, obtained with high-gradient directional solidification] //Aviacionnye materialy i tehnologii. 2011. №4. S. 25–31.
16. Kablov E.N., Buntushkin V.P., Povarova K.B., Bazyleva O.A., Morozova G.I., Kazanskaja N.K. Malolegirovannye legkie zharoprochnye vysokotemperaturnye materialy na osnove intermetallida Ni3Al [Low-alloy high-temperature heat-resistant lightweight materials based on the intermetallic Ni3Al] //Metally. 1999. №1. S. 58–65.
17. Bondarenko Ju.A., Kablov E.N. Napravlennaja kristallizacija zharoprochnyh splavov s povyshennym temperaturnym gradientom [Directional solidification of superalloys with a high temperature gradient] //MiTOM. 2002. №7. S. 20–23.
18. Frommeyer G., Rablbauer R. High Temperature Materials Based on the Intermetallic Compound NiAl Reinforced by Refractory Metals for Advanced Energy Conversion Technologies //Steel Research International. 2008. V. 79. Р. 507–513.
19. Xie Y., Guo J.T., Liang Y.C., Zhou L.Z., Ye H.Q. Modification of NiAl–Cr(Mo)–0.15Hf alloy by Sc addition //Intermetallics. 2009. №17. Р. 400–403.
20. Sajjadi S.A., Zebarjad S.M., Guthrie R.I.L., Isac M. Microstructure evolution of highperformance Ni-base superalloy GTD-111 with heat treatment parameters //Journal of Materials Processing Technology. 2006. V. 175. Р. 376–381.
21. He L.Z., Zheng Q., Sun X.F., Guan H.R., Hu Z.Q., Tieu A.K. et al. Effect of heat treatment on microstructures and tensile properties of Ni-base superalloy M963 //Materials Science and Engineering. A. 2005. V. 398. Р. 128–136.
22. Kablov E.N., Bondarenko Ju.A., Echin A.B., Surova V.A. Razvitie processa napravlennoj kristallizacii lopatok GTD iz zharoprochnyh splavov s monokristallicheskoj i kompozicionnoj strukturoj [The development process of directional solidification of gas turbine engine blades with a single-crystal superalloys and composite structure] //Aviacionnye materialy i tehnologii. 2012. №1. S. 3–8.
An influence of the thickness of the composite barrier layer [SDP-2+CrC] on heat resistance and kinetics of changes in elemental compositions of VZHM1 and ZHS36 superalloys with heat-resistant coating. Microstructural investigations of «nickel super-alloy–coating» compositions were carried out after the heat resistance test. It has been established that an increase in thickness of the barrier layer reduces significantly diffusion rate of elements across the «nickel superalloy–coating» interface, but the use of barrier layers with the thickness of 20 microns or more leads to a premature detachment of the coating from the substrate. The obtained results allow us to recommend the use of [SDP-2+CrC] barrier layer of 10–15 microns in thickness as a part of the heat-resistant coating.
2. Walston W.S., Schaefer J.C., Murphy W.H. A new type of microstructural instability in superalloys – SRZ /In: Superalloys–1996. The Mineral, Metals & Materials Society. 1996. P. 9–18.
3. Locci I., MacKay R., Garg A., Ritzert F. Successful surface treatments for reducing instabilities in advanced nickel-base superalloys for turbine blades /In: Technical Memorandum NASA/TM-2004-206622.
4. Suzuki A., Rae C.M.F., Hobbs R.A., Murakami H. Secondary reaction zone formations in Pt-Aluminised fourth generation Ni-base single crystal superalloys //Advanced Materials Research. 2011. V. 278. P. 78–83.
5. Budinovskij S.A., Mubojadzhjan S.A., Gajamov A.M., Stepanova S.V. Ionno-plazmennye zharostojkie pokrytija s kompozicionnym bar'ernym sloem dlja zashhity ot okislenija splava ZhS36-VI [Ion-plasma heat-resistant coating with composite barrier layer for protection against oxidation of the alloy ZhS36-VI] //MiTOM. 2011. №1. S. 34–40.
6. Sposob obrabotki poverhnosti metallicheskogo izdelija [A method of surface treatment of metal products]: pat. 2368701 Ros. Federacija; opubl. 27.09.2009. Bjul. 2009. №27.
7. Kablov E.N., Petrushin N.V., Vasilenok L.B., Morozova G.I. Renij v zharoprochnyh nikelevyh splavah dlja lopatok gazovyh turbin (Prodolzhenie) [Measurements in high-temperature nickel alloys for gas turbine blades] //Materialovedenie. 2000. №3. S. 38–43.
8. Kablov E.N. Fiziko-mehanicheskie i tehnologicheskie osobennosti sozdanija zharoprochnyh splavov, soderzhashhih renij [Physical, mechanical and technological features of a high-temperature alloys containing rhenium] //Vestnik Moskovskogo universiteta. Serija 2. «Himija». 2005. T. 46. №3. S. 155–167.
9. Kablov E.N., Mubojadzhjan S.A. Zharostojkie i teplozashhitnye pokrytija dlja lopatok turbiny vysokogo davlenija perspektivnyh GTD [Heat-resistant and heat-resistant coatings for turbine blades of high pressure promising GTD] //Aviacionnye materialy i tehnologii. 2012. №S. S. 60–70.
10. Matveev P.V., Budinovskij S.A., Mubojadzhjan S.A., Kos'min A.A. Zashhitnye zharostojkie pokrytija dlja splavov na osnove intermetallidov nikelja [Heat-resistant protective coatings for alloys based on nickel intermetallic] //Aviacionnye materialy i tehnologii. 2013. №2. S. 12–15.
11. Mubojadzhjan S.A., Budinovskij S.A., Gajamov A.M., Matveev P.V. Vysokotemperaturnye zharostojkie pokrytija i zharostojkie sloi dlja teplozashhitnyh pokrytij [High-temperature heat-resistant coating and heat-resistant layers for thermal barrier coatings] //Aviacionnye materialy i tehnologii. 2013. №1. S. 17–20.
12. Kablov E.N., Mubojadzhjan S.A. Ionnoe travlenie i modificirovanie poverhnosti otvetstvennyh detalej mashin v vakuumno-dugovoj plazme [Ion etching and surface modification of critical parts of machines in the vacuum arc plasma] //Vestnik MGTU im. N.Je. Baumana. Ser. «Mashinostroenie». 2011. №SP2. S. 149–163.
13. Kablov E.N., Mubojadzhjan S.A. Teplozashhitnye pokrytija dlja lopatok turbin vysokogo davlenija perspektivnyh GTD [Thermal barrier coatings for turbine blades of the high pressure turbine engine perspective] //Metally. 2012. №1. S. 5–13.
14. Kablov E.N., Mubojadzhjan S.A., Budinovskij S.A., Lucenko A.N. Ionno-plazmennye zashhitnye pokrytija dlja lopatok gazoturbinnyh dvigatelej [Ion-plasma protective coatings for gas turbine engine blades] //Metally. 2007. № 5. S. 23–34.
15. Mubojadzhjan S.A., Budinovskij S.A., Gajamov A.M., Smirnov A.A. Poluchenie keramicheskih teplozashhitnyh pokrytij dlja rabochih lopatok turbin aviacionnyh GTD magnetronnym metodom [Preparation of ceramic thermal barrier coatings for turbine blades working GTD magnetron sputtering] //Aviacionnye materialy i tehnologii. 2012. №4. S. 3–8.
16. Chubarov D.A., Matveev P.V. Novye keramicheskie materialy dlja teplozashhitnyh pokrytij rabochih lopatok GTD [New ceramic materials for thermal barrier coatings operating gas turbine engine blades] //Aviacionnye materialy i tehnologii. 2013. №4.
S. 43–46.
17. Azarovskij E.N., Mubojadzhjan S.A. Modificirovanie poverhnosti detalej iz konstrukcionnyh stalej v vakuumno-dugovoj plazme titana. Chast' II [Surface modification of parts made of structural steel in the vacuum arc plasma titanium] //Aviacionnye materialy i tehnologii. 2014. №1. S. 3–11.
18. Gajamov A.M., Budinovskij S.A., Mubojadzhjan S.A., Kos'min A.A. Vybor zharostojkogo pokrytija dlja zharoprochnogo nikelevogo renij-rutenijsoderzhashhego splava marki VZhM4 [The choice of a heat-resistant coatings for heat-resistant nickel-rhenium alloy grade ruthenium VZhM4] //Trudy VIAM. 2014. №1. St. 01 (viam-works.ru).
19. Galojan A.G., Mubojadzhjan S.A., Egorova L.P., Bulavinceva E.E. Korrozionnostojkoe pokrytie dlja zashhity detalej GTD iz vysokoprochnyh konstrukcionnyh martensitostarejushhih stalej na rabochie temperatury do 450°C [Corrosion-resistant coating for protection GTD parts of high-strength structural steels martensitostareyuschih at operating temperatures up to 450°C] //Trudy VIAM. 2014. №6. St. 03 (viam-works.ru).
Possibility of creation of abradable sealing material from metal fibers with high op-erational properties, workable in GTE compressor with blades and stator parts made of titanium alloys was investigated. Usage of discrete fibers from copper alloys as an initial material for abradable seals of radial gap in compressor has been offered.
2. Vinogradov A.S., Badykov R.R., Shpakov I.D. Issledovanie germetichnosti radial'no-torcevogo kontaktnogo uplotnenija opory kompressora aviacionnogo dvigatelja na razlichnyh rezhimah raboty [Investigation tightness radial mechanical contact seal support aircraft engine compressor at different operating modes] //Vestnik SGAU. 2012. №3. S. 260–264.
3. Inozemcev A.A., Sandrackij V.L. Gazoturbinnye dvigateli [Gas turbine engines]. Perm': OAO «Aviadvigatel'». 2006. S. 278–280.
4. Migunov V.P., Farafonov D.P., Degovec M.L., Stupina T.I. Uplotnitel'nye materialy dlja protochnogo trakta GTD [Sealing materials for GTD flow path] //Aviacionnye materialy i tehnologii. 2012. №S. S. 94–97.
5. Rozenenkova V.A., Solncev St.S., Mironova N.A. Tonkoplenochnye pokrytija dlja uplotnitel'nyh istiraemyh materialov na osnove diskretnyh volokon dlja protochnogo trakta GTD [Thin-film coating for sealing abrasive materials on the basis of discrete fibers to the flow path of GTD] //Trudy VIAM. 2013. №5. St. 04 (viam-works.ru).
6. Sporer D., Wilson S., Giovannetti I., Refke A., Giannozzi M. On the potential of metal and ceramic based abradables in turbine seal applications /Proceedings of the 36-th turbomachinery symposium. Texas A&M University, Turbomachinery Laboratory. 2007. P. 79–86.
7. Potter D.J., Chai Y.W., Tatlock G.J. Improvements in honeycomb abradable seals //Materials at High Temperatures. 2009. V. 26. №2. P. 127–135.
8. Il'in A.A., Kolachev B.A., Pol'kin I.S. Titanovye splavy. Sostav, struktura, svojstva [Titanium alloys. The composition, structure and properties]. Spravochnik. M.: VILS–MATI. 2009. 520 s.
9. Kashapov O.S., Pavlova T.V., Nochovnaja N.A. Vlijanie rezhimov termicheskoj obrabotki na strukturu i svojstva zharoprochnogo titanovogo splava dlja lopatok KVD [Effect of heat treatment on the structure and properties of heat-resistant titanium alloy blades for HPC] //Aviacionnye materialy i tehnologii. 2010. №2. S. 8–14.
10. Antashev V.G., Nochovnaja N.A. Sovremennoe sostojanie i tendencii razvitija issledovanij v oblasti titanovyh splavov [Current status and trends of research in the field of titanium alloys] /V sb.75 let. Aviacionnye materialy. Izbrannye trudy «VIAM» 1932–2007: Jubilejnyj nauch.-tehnich. sb. M.: VIAM. 2007. S. 70–74.
11. Zheng N.X., Däubler M.A., Schweitzer K.K., Hensle W., Schlegel H. Development of air seal system for modern jet engines. Munich: MTU Aero Engines GmbH. 2003.
P. 1‒9.
12. Nochovnaja N.A., Alekseev E.B., Izotova A.Ju., Novak A.V. Pozharobezopasnye titanovye splavy i osobennosti ih primenenija [Fireproof titanium alloys and features of their application] //Titan. 2012. №4. S. 42–46.
13. Sporer D., Wilson S., Dorfman M. Ceramics for abradable shroud seal applications //Advanced ceramic coatings and interfaces. 2009. V. 30. P. 39–53.
14. Migunov V.P., Farafonov D.P. Issledovanie osnovnyh jekspluatacionnyh svojstv novogo klassa uplotnitel'nyh materialov dlja protochnogo trakta GTD [Investigation of the basic operational properties of a new class of materials for sealing the flow path GTD] //Aviacionnye materialy i tehnologii. 2011. №3. S. 15–20.
15. Migunov V.P., Farafonov D.P., Degovec M.L. Poristovoloknistyj material sverhnizkoj plotnosti na osnove metallicheskih volokon [Porous and fibrous material, ultra low density on the basis of metal fibers] //Aviacionnye materialy i tehnologii. 2012. №4. S. 38–41.
16. Borisov B.V. Razrabotka tehnologii poluchenija volokon i poristyh materialov iz zharostojkih splavov metodom jekstrakcii visjashhej kapli rasplava [Development of technology for the manufacture of fibers and porous materials of the heat-resistant alloys by hanging drop melt extraction]: Avtoref. diss. k.t.n. M.: MATI–RGTU im. K.Je. Ciolkovskogo. 2011. 19 s.
17. Serov M.M., Borisov B.V. Poluchenie metallicheskih volokon i poristyh materialov iz nih metodom jekstrakcii visjashhej kapli rasplava [Preparation of metallic fibers and porous materials, including extraction method hanging molten droplet] //Tehnologija legkih splavov. 2007. №3. S. 62–65.
18. Migunov V.P. Uplotnitel'nye materialy [Sealing materials] /V sb. Aviacionnye materialy na rubezhe XX–XXI vekov: Nauch.-tehnich. sb. M.: VIAM. 1994. S. 344–346.
19. Sposob poluchenija poristogo istiraemogo materiala iz metallicheskih volokon [A method for producing a porous abradable material of metal fibers]: pat. 2382828 Ros. Federacija; opubl. 28.04.2008.
20. Kablov E.N., Ospennikova O.G., Lomberg B.S., Sidorov V.V. Prioritetnye napravlenija razvitija tehnologij proizvodstva zharoprochnyh materialov dlja aviacionnogo dvigatelestroenija [Priorities for the development of production technologies, high temperature materials for aircraft engine] //Problemy chernoj metallurgii i materialovedenija. 2013. №3. S. 47–54.
Samples of a cord produced by a foreign company were investigated for high-temperature use. Appearance and cord structure, threads of the first and second type as a part of a cord were investigated. In addition, the structure of threads of the first and second type was studied by binocular microscope, SEM and RFA. The linear density of thr cord and its components was determined. The analysis of behavior of samples of threads of the first and second type after calcining at various temperatures was carried out (loss of weight, RFA, SEM, an optical microscope). As a result of the conducted re-search it was found out that for production of Ø8 mm cord with linear density of 18 ktex, two types of threads were used: two threads of 3 mm in diameter with glass fabric warp were used as the core and six threads of ~1.5 mm diameter, reinforced with metal wire as the braid. Each of threads, i.e. the thread of the first type (with the wire) and the thread of the second type (with glass fabric), cons
2. Ivahnenko Ju.A., Babashov V.G., Zimichev A.M., Tinjakova E.V. Vysokotemperaturnye tep-loizoljacionnye i teplozashhitnye materialy na osnove volokon tugoplavkih soedinenij [High-temperature and heat-insulating materials based on fibers of refractory compounds] //Aviacionnye materialy i tehnologii. 2012. №S. S. 380–385.
3. Tinjakova E.V., Grashhenkov D.V. Teploizoljacionnyj material na osnove mullito-korundovyh i kvarcevyh volokon [Thermal insulation material on the basis of mullite-corundum and quartz fibers] //Aviacionnye materialy i tehnologii. 2012. №3. S. 43–46.
4. Kablov E.N., Shhetanov B.V., Abuzin Ju.A., Ivahnenko Ju.A. Metallicheskie i keramicheskie kompozicionnye materialy [Metal and ceramic composite materials] /V sb. materialov Mezhdunarodnoj nauch.-praktich. konf. «Sovremennye tehnologii – kljuchevoe zveno v vozrozhdenii otechestvennogo aviastroenija». T. 1. Kazan'. 2008. S. 181–188.
5. Kablov E.N., Grashhenkov D.V., Isaeva N.V., Solncev S.S. Perspektivnye vysokotemperaturnye keramicheskie kompozicionnye materialy [Promising high-temperature ceramic composites] //Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 20–24.
6. Kablov E.N., Shhetanov B.V., Ivahnenko Ju.A., Balinova Ju.A. Perspektivnye armirujushhie vysokotemperaturnye volokna dlja metallicheskih i keramicheskih kompozicionnyh materialov [Prospective reinforcing fibers for high temperature ceramic composites and metal materials] //Trudy VIAM. 2013. №2. St. 05 (viam-works.ru).
7. Grashhenkov D.V., Shhetanov B.V., Tinjakova E.V., Shheglova T.M. O vozmozhnosti ispol'zovanija kvarcevogo volokna v kachestve svjazujushhego pri poluchenii legkovesnogo teplozashhitnogo materiala na osnove volokon Al2O3 [The possibility of using a silica fiber as a binder in the preparation of a lightweight heat-fiber-based material Al2O3] //Aviacionnye materialy i tehnolo-gii. 2011. №4. S. 8–14.
8. Zimichev A.M., Varrik N.M., Dalin M.A. Izmerenie modulja uprugosti volokon iz tugo-plavkih oksidov [Measurement of modulus fibers of refractory oxides] //Trudy VIAM. 2014. №6. St. 05 (viam-works.ru).
9. Zimichev A.M., Varrik N.M. Termogravimetricheskie issledovanija nitej na osnove oksida aljuminija [Thermogravimetric studies yarns based on alumina] //Trudy VIAM. 2014. №6. St. 06 (viam-works.ru).
10. Varrik N.M. Termostojkie volokna i teplozvukoizoljacionnye ognezashhitnye materialy [Heat and sound insulation, heat-resistant fiber and fire-retardant materials] //Trudy VIAM. 2014. №6. St. 07 (viam-works.ru).
11. Kablov E.N. Materialy dlja izdelija «Buran» – innovacionnye reshenija formirovanija shestogo tehnologicheskogo uklada [Materials for the product «Buran» – innovative solutions forming the sixth technological order] //Aviacionnye materialy i tehnologii. 2013. №S1. S. 3–9.
12. Dospehi dlja «Burana». Materialy i tehnologii VIAM dlja MKS «Jenergija–Buran» [Armor for the «Buran». Materials and technologies for VIAM ISS «Energia–Buran»] /Pod obshh. red. E.N. Kablova. M.: Fond «Nauka i zhizn'». 2013. 128 s.
13. Shhetanov B.V., Ivahnenko Ju.A., Babashov V.G. Teplozashhitnye materialy [Heat-proof materials] //Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 12–20.
14. Arambakam R., Vahedi Tafreshi H. A simple simulation method for designing fibrous insulation materials //Materials & Design. 2013. V. 44. №2. P. 99–106.
15. Ning Du, Weiwei Sun. Optimal porosity distribution of fibrous insulation International //Journal of Heat and Mass Transfer. 2009. V. 52. №19–20. P. 4350–4357.
16. Krenkel W., Lamon J. Hight-Temperature Ceramic Materials and Composites /In: 7-th Internatiolal Conference on Ceramic Matrix Composites (HT-CMC 7). 2010. 938 p.
17. Ceramic Fibers and Coatings. Advanced Materials for the Twenty-First Century Committee on Advanced Fibers for High-Temperature Ceramic Composites. Washington: National Academy Press. 1998. 95 р.
18. Wilson D.M., Visser L.R. High performance oxide fibers for metal and ceramic composites /In: Processing of fibers & Сomposites. Barga. 2000. 31 p.
19. Parlier M., Ritti M.-H., Jankowiak A. Potential and Perspectives for Oxide-Oxide Composites //Journal Aerospacelab. 2011. №3. Р. 1–12.
20. Веб-сайт компании Johns Manville (США) www.jm.com.
21. Веб-сайт компании VitCas (Великобритания) www.vitcas.com.
22. Веб-сайт международного холдинга Unifrax www.unifrax.com.
23. Bunsell A.R. Oxide fibers for high-temperature reinforcement and insulation //JOM. 2005. V. 57. №2. Р. 48–51.
Article is devoted to research of the aramid layered and woven material intended for protective structures, in particular for reinforcements of the fan frame of an aviation turbojet. The material will provide the impenetrability of the frame in case of fan blades failure. An influence of composition and structure of the layered and woven material on its impact and ballistic resistance is considered.
2. Kablov E.N. Strategicheskie napravlenija razvitija materialov i tehnologij ih pererabotki na period do 2030 goda [Strategic directions of development of materials and technologies to process them for the period up to 2030] //Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
3. Gunjaev G.M., Krivonos V.V., Rumjancev A.F., Zhelezina G.F. Polimernye kompozicionnye materialy v konstrukcijah letatel'nyh apparatov [Polymer composite materials in the construction of aircraft] //Konversija v mashinostroenii. 2004. №4 (65). S. 65–69.
4. Kablov E.N. Materialy i himicheskie tehnologii dlja aviacionnoj tehniki [Materials and chemical technologies for aircraft equipment] //Vestnik Rossijskoj akademii nauk. 2012. T. 82. №6. S. 520–530.
5. Zhelezina G.F. Konstrukcionnye i funkcional'nye organoplastiki novogo pokolenija [Structural and Functional organoplastics new generation] //Trudy VIAM. 2013. №4 (viam-works.ru).
6. Zhelezina G.F. Osobennosti razrushenija organoplastikov pri udarnyh vozdejstvijah [Features destruction organic plastics under Impact] //Aviacionnye materialy i tehnologii. 2012. №S. S. 272–277.
7. Shul'deshova P.M., Zhelezina G.F. Vlijanie atmosfernyh uslovij i zapylennosti sredy na svojstva konstrukcionnyh organoplastikov [Effects of atmospheric conditions and dusty environment on the structural properties of organic plastics] //Aviacionnye materialy i tehnologii. 2014. №1. S. 64–68.
8. Zhelezina G.F., Shul'deshova P.M. Konstrukcionnye organoplastiki na osnove plenochnyh kleev [Structural organoplastics based film adhesives] //Klei. Germetiki. Tehnologii. 2014. №2. S. 9–14.
9. Prepreg i stojkoe k udaru i ballisticheskomu vozdejstviju izdelie, vypolnennoe iz nego [Prepreg and resistant to impact and ballistic impact of a product made from it]: pat. 2304270 Ros. Federacija; opubl. 27.02.08.
10. Zhelezina G.F., Solov'eva N.A., Orlova L.G., Vojnov S.I. Ballisticheski stojkie aramidnye sloisto-tkanye kompozity dlja aviacionnyh konstrukcij [Ballistic aramid-layered woven composites for aircraft structures] //Vse materialy. Jenciklopedicheskij spravochnik. Kompozicionnye materialy. 2012. №12. S. 23–26.
11. Deev I.S., Kobec L.P. Issledovanie mikrostruktury i osobennostej razrushenija jepoksidnyh polimerov i kompozicionnyh materialov na ih osnove. Ch. 1 [The microstructure and fracture features of epoxy polymers and composite materials based on them] //Materialovedenie. 2010. №5. S. 8–16.
12. Deev I.S., Kobec L.P. Issledovanie mikrostruktury i osobennostej razrushenija jepoksidnyh polimerov i kompozicionnyh materialov na ih osnove. Ch. 2 [The microstructure and fracture features of epoxy polymers and composite materials based on them] //Materialovedenie. 2010. №6. S. 13–18.
13. Hrul'kov A.V., Dushin M.I., Popov Ju.O., Kogan D.I. Issledovanija i razrabotka avtoklavnyh i bezavtoklavnyh tehnologij formovanija PKM [Research and development and autoclave molding technology bezavtoklavnogo RMB] //Aviacionnye materialy i tehnologii. 2012. №S. S. 292–301.
14. Timoshkov P.N., Kogan D.I. Sovremennye tehnologii proizvodstva polimernyh kompozicionnyh materialov novogo pokolenija [Modern technologies of production of polymer composite materials of new generation] //Trudy VIAM. 2013. №4 (viam-works.ru).
15. Lukina N.F., Dement'eva L.A., Petrova A.P., Serezhenkov A.A. Konstrukcionnye i termostojkie klei [Structural and heat-resistant adhesives] //Aviacionnye materialy i tehnologii. 2012. №S. S. 328–335.
16. Kogan D.I., Chursova L.V., Petrova A.P. Polimernye kompozicionnye materialy, poluchennye putem propitki plenochnym svjazujushhim [Polymer composite material obtained by impregnating a film binder] //Vse materialy. Jenciklopedicheskij spravochnik. Kompozicionnye materialy. 2011. №11. S. 2–6.
17. Kogan D.I., Chursova L.V., Petrova A.P. Tehnologija izgotovlenija PKM sposobom propitki plenochnym svjazujushhim [Manufacturing technology RMB impregnation method binder film] //Klei. Germetiki. Tehnologii. 2011. №6. S. 25–29.
18. Muhametov R.R., Ahmadieva K.R., Kim M.A., Babin A.N. Rasplavnye svjazujushhie dlja perspektivnyh metodov izgotovlenija PKM novogo pokolenija [Melt binders for advanced methods of manufacturing a new generation of PCM] //Aviacionnye materialy i tehnologii. 2012. №S. S. 260–265.
19. Muhametov R.R., Ahmadieva K.R., Chursova L.V., Kogan D.I. Novye polimernye svjazujushhie dlja perspektivnyh metodov izgotovlenija konstrukcionnyh voloknistyh PKM [New polymeric binders for the promising methods for the manufacture of structural fibrous PCM] //Aviacionnye materialy i tehnologii. 2011. №2. S. 38–42.
Results of investigation of coupling agents chosen for glass fiber reinforced plastics (GFRP) on the basis of thermoplastic heat-resistant binder - polysulfone PSU-150 aimed to get polymer composite materials with advanced properties is given. The influence of such coupling agents as epoxy resins solutions with different epoxy equivalent, rolivsan, furfuryl alcohol, polysulfone etc. was investigated. Mechanical properties of GFRP are shown as a dependence on coupling agent’s na-ture and its quantity. Fireproof characteristics (combustibility, smoke density, heat release) of the developed thermoplastics GFRP and their accordance to domestic (AP-25) and foreign (FAR-25) requirements are considered. It is shown that coupling agent’s nature does not effect on combustibility and smoke density of GFRP but has an influence on their heat release. Recommendations on the use of thermoplastic GFRP based on polysulfone PSU-150 binder are given.
2. Bejder Je.Ja., Malyshenok S.V., Petrova G.N. Kompozicionnye termoplastichnye materialy – svojstva i sposoby pererabotki [The composite thermoplastic materials – Properties and processing methods] //Plasticheskie massy. 2013. №7. S. 56–60.
3. Petrova G.N., Bejder Je.Ja. Konstrukcionnye materialy na osnove armirovannyh termoplastov [Structural materials based on reinforced thermoplastics] //Rossijskij himicheskij zhurnal. 2010. T. LІV. №1. S. 30–40.
4. Kablov E.N. Strategicheskie napravlenija razvitija materialov i tehnologij ih pererabotki na period do 2030 goda [Strategic directions of development of materials and technologies to process them for the period up to 2030] //Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
5. Kablov E.N. Aviakosmicheskoe materialovedenie [Aerospace Materials] //Vse materialy. Jenciklopedicheskij spravochnik. 2008. №3. S. 2–14.
6. Agafonova A.S., Kondrashov S.V. Osobennosti tehnologii izgotovlenija monolitnogo stekloplastika radiotehnicheskogo naznachenija (MSRN) [Features reinforced fiberglass manufacturing technology of Radio destination (MTRD)] //Aviacionnye materialy i tehnologii. 2014. №1. S. 30–33.
7. Kablov E.N. Himija v aviacionnom materialovedenii [Chemistry aviation materials] //Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 3–4.
8. Komarov G.A. Sostojanie, perspektivy i problemy primenenija PKM v tehnike [Condition, prospects and problems of application of PCM in the art] //Polimernye materialy. 2009. №2. S. 5–9.
9. Davydova I.F., Kavun N.S. Stekloplastiki – mnogofunkcional'nye kompozicionnye materialy [GRP – multifunctional composite materials] //Aviacionnye materialy i tehnologii. 2012. №S. S. 253–260.
10. Kerber M.L., Vinogradov V.M., Golovkin G.S. i dr. Polimernye kompozicionnye materialy: struktura, svojstva, tehnologija [Polymer composites: Structure, properties and Technology]. SPb.: Professija. 2011. S. 32–33, 104–140, 180–188.
11. Stepashkin A.A., Churkov D.N. i dr. Poverhnostnaja obrabotka uglerodnyh volokon [Surface treatment of carbon fibers] //Materialovedenie. 2013. №2. S. 44–50.
12. Bejder Je.Ja., Petrova G.N., Izotova T.F., Barbot'ko S.L. Stekloplastiki na termoplastichnoj matrice [Glass-reinforced thermoplastic matrix on] //Trudy VIAM. 2013. №7. St. 03 (viam-works.ru).
13. Petrova G.N., Bejder Je.Ja., Izotova T.F., Malyshenok S.V. Kompozicionnye termoplastichnye materialy – sposoby poluchenija i pererabotki [Composite thermoplastic materials – methods of obtaining and processing] //Vse materialy. Jenciklopedicheskij spravochnik. 2013. №10. S. 10–17.
14. Bejder Je.Ja., Petrova G.N., Izotova T.F., Gureeva E.V. Kompozicionnye termoplastichnye materialy i penopoliimidy [Thermoplastic composite materials and partly penopoliimidy] //Trudy VIAM. 2013. №11. St. 01 (viam-works.ru).
15. Petrova G.N., Barbot'ko S.L., Bolotina L.M., Chebotarev V.P. i dr. Pozharobezopasnye svojstva polisul'fonov [Fireproof properties of polysulfones] //Plasticheskie massy. 2005. №1. S. 46–48.
16. Barbot'ko S.L., Vol'nyj O.S., Izotova T.F. Matematicheskoe modelirovanie teplovy-delenija pri gorenii dlja polimernyh kompozicionnyh materialov razlichnoj tolshhiny [Mathematical modeling of heat during combustion to polymer composite materials of different thicknesses] //Pozharovzryvobezopasnost'. 2007. T. 16. №4. S. 16–20.
17. Korotkov M.M., Izotova T.F., Zuev A.V., Barbot'ko S.L. Vlijanie teplofizicheskih svojstv na pozharobezopasnost' termostojkih polimerov na osnove polisul'fona [Influence of thermo-physical properties on heat-resistant fire safety polysulfone-based polymers] //Pozharovzryvobezopasnost'. 2008. T. 17. №6. S. 11–15.
18. Shurkova E.N., Vol'nyj O.S., Izotova T.F., Barbot'ko S.L. Issledovanie vozmozhnosti snizhenija teplovydelenija pri gorenii kompozicionnogo materiala putem izmenenija ego struktury [Feasibility study for reducing the combustion heat of the composite material by modifying its structure] //Aviacionnye materialy i tehnologii. 2012. №1. S. 27–30.
Possibility of development of insulating enamel coatings for substrates based on glass and ceramics is shown. The optimum compositions of insulating enamel coatings in phosphate and zinc borosilicate glass forming systems are chosen. Tests of chemical resistance have showed a high stability of the synthesized glasses. Enamels have high insulating properties. Maximum surface resistance of samples is 7.29·1014 Оhm•сm.
2. Kablov E.N. Aviakosmicheskoe materialovedenie [Aerospace materials] //Vse materialy. Jenciklopedicheskij spravochnik. 2008. №3. S. 2–14.
3. Kablov E.N. Materialy i himicheskie tehnologii dlja aviacionnoj tehniki [Materials and chemical technologies for aircraft equipment] //Vestnik Rossijskoj akademii nauk. 2012. T. 82. №6. S. 520–530.
4. Solncev St.S., Rozenenkova V.A., Mironova N.A., Solov'eva G.A. Vysokotemperaturnye pokrytija dlja voloknistyh substratov [High temperature coatings for fibrous substrates] //Trudy VIAM. 2013. №10. St. 03 (viam-works.ru).
5. Solncev S.S. Vysokotemperaturnye kompozicionnye materialy i pokrytija na osnove stekla i keramiki [High-temperature composite materials and coatings based on glass and ceramics] /V sb. 75 let. Aviacionnye materialy. Izbrannye trudy «VIAM» 1932–2007: Jubilejnyj nauch.-tehnich. sb. M.: VIAM. 2007. S. 90–99.
6. Solncev St.S., Rozenenkova V.A., Mironova N.A. Vysokotemperaturnye steklokeramicheskie pokrytija i kompozicionnye materialy [High-temperature glass-ceramic coatings and composite materials] //Aviacionnye materialy i tehnologii. 2012. №S. S. 359–368.
7. Solncev S.S., Shvagireva V.V., Isaeva N.V., Solov'eva G.A. Armirovannye zharostojkie steklojemali dlja kamer sgoranija gazoturbinnyh dvigatelej [Reinforced heat-resistant glass enamel to the combustion chambers of gas turbine engines] //Aviacionnye materialy i tehnologii. 2010. №1. S. 26–29.
8. Solncev S.S., Rozenenkova V.A., Mironova N.A., Gavrilov S.V. Vysokotemperaturnye tonkoplenochnye pokrytija dlja uplotnitel'nyh materialov iz metallicheskih volokon [High-temperature thin-film coatings for sealing materials of metal fibers] //Aviacionnye materialy i tehnologii. 2012. №1. S. 30–36.
9. Solncev S.S., Rozenenkova V.A., Mironova N.A., Gavrilov S.V. Keramicheskie pokrytija dlja zashhity vysokoprochnoj stali pri termicheskoj obrabotke [The ceramic coating to protect the high-strength steel during heat treatment] //Aviacionnye materialy i tehnologii. 2011. №4. S. 3–8.
10. Solncev S.S., Rozenenkova V.A., Mironova N.A., Kas'kov V.S. Kompleksnaja sistema zashhity berillija ot okislenija [A comprehensive system of protection against oxidation of beryllium] //Aviacionnye materialy i tehnologii. 2010. №1. S. 12–16.
11. Kablov E.N., Grashhenkov D.V., Isaeva N.V., Solncev S.S., Sevast'janov V.G. Perspektivnye vysokotemperaturnye keramicheskie kompozicionnye materialy [Promising high-temperature ceramic composites] //Rossijskij himicheskij zhurnal. 2010. T.LIV. №1.
S. 20–24.
12. Sokolov I.I., Raskutin A.E. Ugleplastiki i stekloplastiki novogo pokolenija [Carbon and fiberglass new generation] //Trudy VIAM. 2013. №4. (viam-works.ru).
13. Shelbi Dzh. Struktura, svojstva i tehnologija stekla [The structure and properties of glass technology]: Per. s angl. M.: Mir. 2006. 288 s.
14. Anand T. Krishnan, Sanghoon Bae, Stephen J. Fonash. Low temperature microcrystalline silicon thin film resistors on glass substrates //Solid-State Electronics. 2000. V. 44. №7. Р. 1163–1168.
15. Ruqiang Bao, Carl M. Busta, Xiaofeng Su, Minoru Tomozawa, Douglas B. Chrisey. Microstructures, phases, and properties of low melting BaO–B2O3–ZnO glass films prepared by pulsed laser deposition //Journal of Non-Crystalline Solids. 2013. V. 371–372. P. 28–32.
16. Hrovat M., Kielbasinski K., Makarovič K., Belavič D., Jakubowska M. The characterisation of lead-free thick-film resistors on different low temperature Co-fired ceramics substrates //Materials Research Bulletin. 2012. V. 47. №12. P. 4131–4136.
17. Amelina O., Nesterov S. Vakuum-plotnaja korundovaja keramika na osnove ul'tradispersnyh poroshkov [The vacuum-tight alumina ceramic-based ultrafine powders] //Nanoindustrija. 2010. №5. S. 40–41.
18. Shutov D.A., Sitanov D.V. Processy mikro- i nanotehnologij [Processes of micro-and nanotechnology]: Laboratornyj praktikum. Ch. 2. Ivanovo: GOUVPO Ivan. gos. him.-tehnol. un-t. 2006. 135 s.
19. Appen A.A. Himija stekla [Chemistry glass]. L.: Himija. 1974. 352 s.
20. Mohajerani A., Martin V., Boyd D., Zwanziger J.W. On the mechanical properties of lead borate glass //Journal of Non-Crystalline Solids. 2013. V. 381. P. 29–34.
21. Nemilov S.V. Opticheskoe materialovedenie. Opticheskie stekla [Optical materials. Optical glass]: Ucheb. posob. SPb.: CPbGU ITMO. 2011. 175 s.
22. Winterstein-Beckmann A., Möncke D., Palles D., Kamitsos E.I., Wondraczek L. Structure–property correlations in highly modified Sr, Mn-borate glasses //Journal of Non-Crystalline Solids. 2013. V. 376. P. 165–174.
The efficiency to improve protective properties of inorganic non-metallic coatings applied on magnesium alloys by impregnation with organic compounds (polyamide lac-quers and anaerobic compositions) was investigated. The efficiency of different impreg-nation methods – vacuum impregnation, dipping, application with a brush, as well as the possibility of using available impregnating materials were studied. The efficiency of the impregnation of non-metallic inorganic coatings on parts made of magnesium alloys was shown. Different methods such as gravimetric, immersion in NaCl solution, exposure in tropical climate chamber was used to determine protective properties of coatings.
2. Kablov E.N. Materialy i himicheskie tehnologii dlja aviacionnoj tehniki [Materials and chemical technologies for aircraft] //Vestnik Rossijskoj akademii nauk. 2012. T. 82. №6. S. 520–530.
3. Kozlov I.A., Karimova S.A. Korrozija magnievyh splavov i sovremennye metody ih zashhity [Corrosion of magnesium alloys and modern methods of protection] //Aviacionnye materialy i tehnologii. 2014. №2. S. 15–20.
4. Volkova E.F., Morozova G.I. Struktura i svojstva cirkonijsoderzhashhego magnievogo splava MA14 [Structure and properties of zirconium-containing magnesium alloy MA14] //MiTOM. 2006. №1. S. 24–28.
5. Volkova E.F., Antipov V.V., Morozova G.I. Osobennosti formirovanija struktury i fazovogo sostava deformirovannyh polufabrikatov iz serijnogo splava MA14 [Features of formation of structure and phase composition of deformed semifinished serial alloy MA14] //Aviacionnye materialy i tehnologii. 2011. №3. S. 8–15.
6. Caizhen Yao, Zichao Wang, See Leng Tay, Tianping Zhu, Wei Gao. Effects of Mg on microstructure and corrosion properties of Zn–Mg alloy //Journal of Alloys and Compounds. 2014. V. 602. P. 101–107.
7. He S.M., Zeng X.Q., Peng L.M., Gao X., Nie J.F., Ding W.J. Microstructure and strengthening mechanism of high strength Mg–10Gd–2Y–0,5Zr alloy //J. Alloys Compd. 2007. P. 316–323.
8. Wu D., Chen R.S., Ke W. Microstructure and mechanical properties of a sand-cast Mg–Nd–Zn alloy //Materials&Design. 2014. V. 58. P. 324–331.
9. Method for producing a magnesium alloy and a magnesium alloy produced accordingly: pat. 2013034134 WO; pabl. 14.03.2013.
10. Magnesium alloy: pat. 2013039805 US; pabl. 14.02.2013.
11. Magnesium alloy sheet: pat. 2557188 EP; pabl. 13.02.2013.
12. Magnesium alloy: pat. 2745861 CA; pabl. 01.08.2013.
13. Muhina I.Ju., Shirokov Ju.G., Lebedev A.A. Osobennosti plavki magnievyh splavov v zashhitnoj atmosfere, soderzhashhej inertnyj gaz [Features melting of magnesium alloys in a protective atmosphere containing an inert gas] //Aviacionnaja promyshlennost'. 1984. №4. S. 63–65.
14. Jian W.W., Kang Z.X., Li Y.Y. Effect of hot plastic deformation on microstructure and mechanical property of Mg–Mn–Ce magnesium alloy Trans //Nonferr Met Soc China. 2007. V. 17. P. 1158–1163.
15. Chino Y., Mabuchi M. Influences of grain size on mechanical properties of extruded AZ91mg alloy after different extrusion processes //Adv. Eng. Mater. 2001. V. 3.
P. 981–983.
16. Karimova S.A., Dujunova V.A., Kozlov I.A. Konversionnoe pokrytie dlja zharoprochnogo litejnogo magnievogo splava ML10 [Conversion coating for heat-resistant casting magnesium alloy ML10] //Litejshhik Rossii. 2012. №2. S. 26–29.
17. Kablov E.N. Korrozija ili zhizn' [Corrosion or life] //Nauka i zhizn'. 2012. №11. S. 16–21.
18. Gnedenkov S.V., Sidorova M.V., Sinebrjuhov S.L., Antipov V.V., Buznik V.M., Volkova E.F., Sergienko V.I. Stroenie i svojstva pokrytij, poluchennyh metodom plazmennogo jelektroliticheskogo oksidirovanija na aviacionnyh magnievyh splavah [Structure and properties of the coatings produced by plasma electrolytic oxidation in aviation magnesium alloys] //Aviacionnye materialy i tehnologii. 2013. №S2. S. 36–45.
19. Buznik V.M. Sverhgidrofobnye materialy na osnove ftorpolimerov [Superhydrophobic materials based on fluoropolymers] //Aviacionnye materialy i tehnologii. 2013. №1.
S. 29–34.
20. Sposob obrabotki poverhnosti magnievyh splavov [The method of treating the surface of magnesium alloys]: pat. 2403326 Ros. Federacija; opubl. 28.10.2009.
21. Kozlov I.A., Pavlovskaja T.G., Volkov I.A. Vlijanie poljarizujushhego toka na svojstva plazmennogo jelektroliticheskogo pokrytija dlja magnievyh splavov sistemy Mg–Zn–Zr [Effect of polarizing current on the properties of plasma electrolytic coating for magnesium alloys of Mg–Zn–Zr] //Aviacionnye materialy i tehnologii. 2013. №3. S. 7–12.
22. Karimova S.A., Pavlovskaja T.G. Razrabotka sposobov zashhity ot korrozii konstrukcij, rabotajushhih v uslovijah kosmosa [Development of methods of corrosion protection structures operating in space] //Trudy VIAM. 2013. №4. St. 02 (viam-works.ru).
23. Semenova L.V., Malova N.E., Kuznecova V.A., Pozhoga A.A. Lakokrasochnye materialy i pokrytija [Coating materials and coating] //Aviacionnye materialy i tehnologii. 2012. №S. S. 315–327.
The present article is devoted to receiving the combined polymers based on the mixed resol-novolak resins. As a result of the carried-out researches technological properties (viscosity, cured and other) of the combined polymers on the basis of the mixed resol-novolak compositions and also their heat resistance were determined. It is shown that introduction of novolak oligomer in composition on the based of solid resol resins leads to reducing the viscosity of the composition that simplifies carrying out technological process of their receiving. This fact greatly simplifies the technological process. At the same time, studying of kinetics of thermal decomposition of studied compositions has allowed to identify that additives of novolak oligomer have certain thermostabilizing effect on decrease in speed of destruction of the mixed resol-novolak compositions. Durability of the carbon residue of the received compositions also significantly increases in comparison with initial systems.
2. Kablov E.N. Himija v aviacionnom materialovedenii [Chemicals in aviation materials] //Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 3–4.
3. Tkachuk A.I., Grebeneva T.A., Chursova L.V., Panina N.N. Termoplastichnye svjazujushhie. Nastojashhee i budushhee [Thermoplastic binders. Present and Future] //Trudy VIAM. 2013. №11. St. 07 (viam-works.ru).
4. Vlasenko F.S., Raskutin A.E. Primenenie polimernyh kompozicionnyh materialov v stroitel'nyh konstrukcijah [The use of polymer composite materials in building construction] //Trudy VIAM. 2013. №8. St. 03 (viam-works.ru).
5. Seo J.H., Cha S.W., Kim H.B. Diffused Reflection of Microcellular Foamed Polycarbonate //Polym. Plastics Technol. Eng. 2009. V. 48. P. 351–358.
6. Neoh S.B., Azura A.R., Hashim A.S. Comparison of the Different Vulcanization Techniques of Styrene Modified Natural Rubber (SNR) as an Impact Modifier of Natural Rubber-Based High Impact Polystyrene (NRHIPS) //Polym. Plastics Technol. Eng. 2011. V. 49. P. 121–126.
7. Zastrogina O.B., Shvec N.I., Postnov V.I., Serkova E.A. Fenolformal'degidnoe svjazujushhee dlja novogo pokolenija materialov inter'era [Phenol-formaldehyde binder for a new generation of interior materials] //Aviacionnye materialy i tehnologii. 2012. №S. S. 265–272.
8. Yoganathan R.B., Mammucari R., Foster N.R. Dense Gas Processing of Polymers //Polymer Reviews. 2011. V. 50. №2. Р. 144–177.
9. Bing Li, Qingfeng Wu, Nanqiao Zhou, Baoshan Shi Batch Foam. Processing of Polypropylene/Polydimethylsiloxane Blends //International Journal of Polymeric Materials. 2010. V. 60. №1. Р. 51‒61.
10. Jorge R.M., Lopes L., Benzi M.R., Ferreira M.T., Gomes A.S., Nunes R.C.R. Thiol Addition to Epoxidized Natural Rubber: Effect on the Tensile and Thermal Properties //International Journal of Polymeric Materials. 2010. V. 59. №5. Р. 330–341.
11. Gofman V. Vulkanizacija i vulkanizujushhie agenty [Vulcanization and curing agents] /Per. s nem. M.: Inostrannaja literatura. 1968. 345 s.
12. Dogadkin B.A. Vulkanizacionnye struktury i ih izmenenija pri vulkanizacii, termomehanicheskom vozdejstvii i utomlenii vulkanizatov [Vulcanization structures and their changes during curing, thermo-mechanical stress and fatigue vulcanizates] //Himicheskaja nauka i promyshlennost'. 1959. T. 4. S. 420–426.
13. Sytyj Ju.V., Kisljakova V.I., Sagomonova V.A., Nikolaeva M.F. Novyj mnogoslojnyj uplotnitel'nyj material VTP-2P [Новый многослойный уплотнительный материал ВТП-2П] //Aviacionnye materialy i tehnologii. 2011. №4. S. 32–34.
14. Sunil Jose T., Anoop Anand K. Joseph Rani. On the Mechanical Properties of EPDM/CIIR Blends Cured with Reactive Phenolic Resin //International Journal of Polymeric Materials. 2010. V. 59. №7. Р. 488–497.
15. Gao Jungang, Jiang Chaojie, Su Xiaohui Synthesis and Thermal Properties of Boron – Nitrogen Containing Phenol Formaldehyde Resin/MMT Nanocomposites //International Journal of Polymeric Materials. 2010. V. 59. №8. Р. 544–552.
16. Xie Chan, Jia Zhixin, Jia Demin, Luo Yuanfang, You Changjiang. The Effect of Dy (III) Complex with 2-Mercaptobenzimidazole on the Thermo-Oxidation Aging Behavior of Natural Rubber Vulcanizates //International Journal of Polymeric Materials. 2010. V. 59. №9. Р. 663–679.
17. Samatadze A.I., Parahin I.V., Porosova N.F., Tumanov A.S. Poluchenie fenolo-kauchukovyh penoplastov metodom «bessernoj» vulkanizacii [Preparation of phenol-rubber foam method «bessernoy» vulcanization] //Aviacionnye materialy i tehnologii. 2013. №3. S. 49‒52.
18. Parahin I.V., Tumanov A.S. Fenol'no-kauchukovyj penoplast marki VPP-4 [Phenolic foam rubber stamps Runway 4] //Aviacionnye materialy i tehnologii. 2014. №1.
S. 42‒46.
19. Patel Hasmukh S., Patel Bhavdeep K., Morekar Manish M., Dixit Bharat C. Synthesis, Characterization and Glass Reinforcement of Urea-Formaldehyde-Phenol Resins //International Journal of Polymeric Materials. 2009. V. 58. №11. Р. 604–611.
20. Kablov E.N. Strategicheskie napravlenija razvitija materialov i tehnologij ih pererabotki na period do 2030 goda [Strategic directions of development of materials and technologies to process them for the period up to 2030] //Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
A comparative analysis of national standards of RF and the USA on test methods of low-cycle fatigue (LCF) and high-cycle fatigue (HCF) was carried out in this work. The following national standards were considered: RF standard GOST 25.502–79, last revi-sion in 1985, «Strength analysis and testing in machine building. Methods of mechanical testing of metals. Methods of fatigue testing» and two national standards of the USA – ASTM E466–07 «Standard Practice for Conducting Force Controlled Constant Am-plitude Axial Fatigue Tests of Metallic Materials» and ASTM E606–04 «Standard Prac-tice for Strain-Controlled Fatigue Testing». It was shown that there is no noticeable difference between gage sizes of specimens in the standards mentioned above. As compared with GOST, ASTM E standards specify additional high requirements to specimen surfaces and to loading errors. Thus, National standard of RF GOST 25.502–79, last revision in 1985, has to be essentially modified.
2. Lucenko A.N. Ispytatel'nyj centr FGUP «VIAM»: Osnovnye napravlenija issledovanij i ispytanij, perspektivy razvitija [Testing center of FSUE «VIAM»: Trends of research and testing, development prospects] /V sb. materialov konf. «TestMat–2013». M.: VIAM. 2013 (CD-disk).
3. Terent'ev V.F., Petuhov A.N. Ustalost' vysokoprochnyh metallicheskih materialov [Tired of high-metallic materials]. M.: IMET RAN – CIAM. 2013. 515 s.
4. Kablov E.N. Strategicheskie napravlenija razvitija materialov i tehnologij ih pererabotki na period do 2030 goda [Strategic directions of development of materials and technologies to process them for the period up to 2030] //Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
5. Erasov V.S., Grinevich A.V., Senik V.Ja., Konovalov V.V., Trunin Ju.P., Nesterenko G.I. Raschetnye znachenija harakteristik prochnosti aviacionnyh materialov [The calculated values of the strength characteristics of aircraft materials] //Aviacionnye materialy i tehnologii. 2012. №2. S. 14–16.
6. Kablov E.N., Lomberg B.S., Ospennikova O.G. Sozdanie sovremennyh zharoprochnyh materialov i tehnologij ih proizvodstva dlja aviacionnogo dvigatelestroenija [The creation of modern high-temperature materials and manufacturing technologies for aircraft engine] //Kryl'ja Rodiny. 2012. №3–4. S. 34.
7. Kablov E.N. Sovremennye materialy – osnova innovacionnoj modernizacii Rossii [Modern materials – the basis of innovative modernization of Russia] //Metally Evrazii. 2012. №3. S. 10–15.
8. Erasov V.S., Jakovlev N.O., Nuzhnyj G.A. Kvalifikacionnye ispytanija i issledovanija prochnosti aviacionnyh materialov [Qualification testing and research strength of aircraft materials] //Aviacionnye materialy i tehnologii. 2012. №S. S. 440–448.
9. Krylov V.D. Metody ispytanij i osobennosti razrushenija tonkolistovyh materialov [Test methods and especially the destruction of thin materials] //Aviacionnye materialy i tehnologii. 2013. №4. S. 54–57.
10. Kablov E.N. Aviakosmicheskoe materialovedenie [Aerospace Materials] //Vse materialy. Jenciklopedicheskij spravochnik. 2008. №3. S. 2–14.
11. Beljaev M.S., Gorbovec M.A., Komarova T.I. Sposob ispytanij i raschetnoe opredelenie predela vynoslivosti dlja gorizontal'nogo uchastka krivoj ustalosti [Test Method and settlement definition of the fatigue limit for the horizontal part of the fatigue curve] //Aviacionnye materialy i tehnologii. 2012. №3. S. 50–55.
12. Schijve J. Fatigue of structures and materials. Berlin-Heidelberg: Springer-Verlag. 2009. 185 с.
13. Hvackij K.K., Gorbovec M.A. Sovremennye metody issledovanija vysokotemperaturnoj prochnosti metallicheskih materialov [Modern methods of research of high-strength metallic materials] /V sb. materialov konf. «TestMat–2013». M.: VIAM. 2013 (CD-disk).
14. Erasov V.S., Nuzhnyj G.A. Zhestkij cikl nagruzhenija pri ustalostnyh ispytanijah [Hard loading cycle fatigue tests at] //Aviacionnye materialy i tehnologii. 2011. №4. S. 35–40.
15. Wright J.K., Carroll L.J., Simpson J.A. et al. Low Cycle Fatigue of Alloy 617 at 850°C and 950°C //J. of Eng. Mat. and Tech. 2013. V. 135. №7. P. 031005-1–031005-8.
16. Levkovitch V., Sievert R., Svendsen B. Simulation of deformation and lifetime behavior of a FCC single cristal superalloy at high temperature under low-cycle fatigue loading //Int. J. Fatigue. 2006. V. 28 (12). P. 1791–1802.
17. Stepnov M.N., Naumkin A.S. Chuvstvitel'nost' konstrukcionnyh materialov k koncentracii naprjazhenij v oblasti mnogociklovoj ustalosti [Sensitivity of structural materials to stress concentration in the high-cycle fatigue] //Vestnik mashinostroenija. 2011. №4. S. 22–25.
Sulfur mass fraction in heat-resistant nickel alloys and steels was determined by using infrared absorption of sulfur dioxide SO2 formed during combustion of samples with flux (catalyst) by oxygen flow in the induction furnace of gas analyzer LECO CS-444. A new composition of catalyst for full sulfur extraction from the analyzed alloys was chosen in this work. The catalyst consists of 1 g of flux LECOSEL II HP and 0.5 g of tin. The minimum time of the analysis required for full sulfur extraction was chosen. The possibility of sulfur content determination in heat-resistant nickel alloys and steels with in concentrations range from 0.0001 to 0.0009% wt. is shown.
2. Kablov E.N., Ospennikova O.G., Vershkov A.V. Redkie metally i redkozemel'nye jelementy – materialy sovremennyh i budushhih vysokih tehnologij [Rare metals and rare earth elements – materials of current and future high-tech] //Trudy VIAM. 2013. №2. St. 01 (viam-works.ru).
3. Kablov E.N., Bondarenko Ju.A., Echin A.B., Surova V.A. Razvitie processa napravlennoj kristallizacii lopatok GTD iz zharoprochnyh splavov s monokristallicheskoj i kompozicionnoj strukturoj [The development process of directional solidification of GTE blades with single crystal superalloys and composite structure] //Aviacionnye materialy i tehnologii. 2012. №1. S. 3–8.
4. Kablov E.N., Petrushin N.V., Svetlov I.L., Demonis I.M. Nikelevye litejnye zharoprochnye splavy novogo pokolenija [Casting nickel superalloys new generation] //Aviacionnye materialy i tehnologii. 2012. №S. S. 36–52.
5. Kablov E.N., Petrushin N.V., Bronfin M.B., Alekseev A.A. Osobennosti monokristallicheskih zharoprochnyh nikelevyh splavov, legirovannyh reniem [Features single-crystal high-temperature nickel alloys alloyed with rhenium] //Metally. 2006. №5. S. 47–57.
6. Kablov E.N., Ospennikova O.G., Bazyleva O.A. Materialy dlja vysokoteplonagruzhennyh detalej gazoturbinnyh dvigatelej [Materials for high-thermal components of gas turbine engines] //Vestnik MGTU im. N.Je. Baumana. Ser. «Mashinostroenie». 2011. №SP2.
S. 13–19.
7. Bondarenko Ju.A., Kablov E.N. Napravlennaja kristallizacija zharoprochnyh splavov s povyshennym temperaturnym gradientom [Directional solidification of superalloys with a high temperature gradient] //MiTOM. 2002. №7. S. 20–23.
8. Kablov E.N., Svetlov I.L., Petrushin N.V. Nikelevye zharoprochnye splavy dlja lit'ja lopatok s napravlennoj i monokristallicheskoj strukturoj. [Nickel superalloys for blades casting with directional and single-crystal structure] Ch. I //Materialovedenie. 1997. №4.
S. 32–39.
9. Kablov E.N., Svetlov I.L., Petrushin N.V. Nikelevye zharoprochnye splavy dlja lit'ja lopatok s napravlennoj i monokristallicheskoj strukturoj. [Nickel superalloys for blades casting with directional and single-crystal structure] Ch. II //Materialovedenie. 1997. № 5. S. 14–16.
10. Sidorov V.V., Min P.G. Rafinirovanie slozhnolegirovannogo nikelevogo rasplava ot primesi sery pri plavke v vakuumnoj indukcionnoj pechi (chast' 1) [Refining complex-nickel impurities from molten sulfur melting in a vacuum induction furnace] //Jelektrometallurgija. 2014. №3. S. 18–23.
11. Sidorov V.V., Min P.G. Rafinirovanie slozhnolegirovannogo nikelevogo rasplava ot primesi sery pri plavke v vakuumnoj indukcionnoj pechi (chast' 2) [Refining complex-nickel impurities from molten sulfur melting in a vacuum induction furnace] //Jelektrometallurgija. 2014. №4. (v pechati).
12. Mc Vay R.V., William P., Meier G.H., Pettit F.S. Oxidation of Low Sulfur Single Crystal Nickel-base Superalloys //Superalloys. 1992. P. 807–816.
13. Sarioglu C., Stinner C., Blanchere J.R., Birks N., Pettit F.S., Meier G.H. The control of sulfur content in nickel-base, single crystal superalloys and its effect on cyclic oxidation resistance /In: Superalloys. 1996. P. 71–80.
14. Simpson T.M., Price A.R. Oxidation improvements of low sulfur processed superalloys
/In: Superalloys. 2000. P. 387–392.
15. Ultra low sulfur supperalloy casting and method of making: pat. 5922148 US; pabl. 13.07.1999.
16. Improved low sulfur nickel-base single crystal supperalloy with ppm additions of lanthanum and yttrium: pat. 2415888 EU; pabl. 14.10.2010.
17. Sidorov V.V., Rigin V.E., Kablov D.E. Organizacija proizvodstva lityh prutkovyh za-gotovok iz sovremennyh litejnyh vysokozharoprochnyh nikelevyh splavov [Organization of production of cast bar stock of modern casting nickel-base superalloys] //Litejnoe proizvodstvo. 2011. №10. S. 2–5.
18. Kablov E.N., Sidorov V.V., Kablov D.E., Rigin V.E., Gorjunov A.V. Sovremennye tehnologii poluchenija prutkovyh zagotovok iz litejnyh zharoprochnyh splavov novogo pokolenija [Modern technologies for bar stock of casting superalloys new generation] //Aviacionnye materialy i tehnologii. 2012. №S. S. 97–105.
19. Min P.G., Sidorov V.V. Opyt pererabotki litejnyh othodov splava ZhS32-VI na nauchno-proizvodstvennom komplekse VIAM po izgotovleniju lityh prutkovyh (shihtovyh) zagotovok [Experience processing waste foundry alloy ZHS32-VI at the scientific-industrial complex for the production of cast VIAM of bar (of charge) blanks] //Aviacionnye materialy i tehnologii. 2013. №4. S. 20–25.
20. Sidorov V.V., Rigin V.E., Zajcev D.E., Gorjunov A.V. Formirovanie nanostrukturirovannogo sostojanija v litejnom zharoprochnom splave pri mikrolegirovanii ego lantanom [Formation of nanostructured state in casting superalloy with microalloying its lanthanum] //Trudy VIAM. 2013. №1. St. 01 (viam-works.ru).
21. Sidorov V.V., Rigin V.E., Gorjunov A.V., Kablov D.E. Vysokojeffektivnye tehnologii i sov-remennoe oborudovanie dlja proizvodstva shihtovyh zagotovok iz litejnyh zharoprochnyh splavov [Enabling technologies and modern equipment for production of charge billets casting superalloys] //Metallurg. 2012. №5. S. 26–30.
22. Sidorov V.V., Rigin V.E., Gorjunov A.V., Min P.G., Kablov D.E. Poluchenie Re–Ru soderzhashhego splava s ispol'zovaniem nekondicionnyh othodov [Preparation of Re–Ru-containing alloy using rejects] //Metallurgija mashinostroenija. 2012. №3. S. 15–17.
23. Lawrenz D. Ultra-low sulfur determination in high purity base metals and high temperature nickel base alloys //Psys. stat. sol. 1998. V. 167. P. 373–381.
24. Liu Y., Shao X., Qu L. Study on analytical method for carbon and sulfur in high nickel corrosion resistant alloy tubing //ICPTT. 2011. P. 1099–1103.
25. GOST 24018.8–91. Splavy zharoprochnye na nikelevoj osnove. Metody opredelenija sery[High-temperature nickel-based. Methods for determination of sulfur].
26. ASTM E1019–11. Standard test methods for determination of carbon, sulfur, nitrogen, and ox-ygen in steel, iron, nickel, and cobalt alloys by various combustion and fusion techniques.
27. Kablov E.N., Buntushkin V.P., Povarova K.B., Bazyleva O.A., Morozova G.I., Kazanskaja N.K. Malolegirovannye legkie zharoprochnye vysokotemperaturnye materialy na osnove intermetallida Ni3Al [Low-alloy high-temperature heat-resistant lightweight materials based on the intermetallic Ni3Al] //Metally. 1999. №1. S. 58–65.
28. Kablov E.N., Bondarenko Ju.A., Kablov D.E. Osobennosti struktury i zharoprochnyh svojstv monokristallov <001> vysokorenievogo nikelevogo zharoprochnogo splava, poluchennogo v uslovijah vysokogradientnoj napravlennoj kristallizacii [Features of the structure and properties of single crystals of high-temperature <001> vysokorenievogo nickel superalloy, obtained with high-gradient directional solidification] //Aviacionnye materialy i tehnologii. 2011. №4. S. 25–31.