Articles
Directional solidification with a flat front of a nickel alloy of the Ni‒Al‒Re‒Ru system was performed. As a result, a casting with a variable length content of the elements Al, Re and Ru (gradient casting) was obtained. It is established that during solidification in a gradient casting, nickel alloys with the structures γ + γʹ, γʹ, γʹ + β are successively formed. The solubility’s of Re and Ru in the γʹ and β phases of the γ + γʹ, γʹ, γʹ + β alloys were determined. For the same alloys, the temperatures γʹ-solvus, solidus and liquidus are determined. It was found that in the Ni–Al–Re–Ru nickel system, the γʹ phase is formed by a peritectic reaction L + γ → γ' at 1374 °C and a eutectic reaction L → γʹ + β at 1372 °C.
2. Kablov E.N. Materials of the new generation – the basis of innovation, technological leadership and national security of Russia. Intellekt i tekhnologii, 2016, no. 2 (14), pp. 16–21.
3. Logunov A.V. Heat-resistant nickel alloys for blades and disks of gas turbines. Rybinsk: Gas Turbine Technologies, 2017, 854 p.
4. Reed R.C. The Superalloys. Fundamentals and Applications. Cambridge: United Kingdom at University Press, 2006, 372 p.
5. Bondarenko Yu.A. Trends in the development of high-temperature metal materials and technologies in the production of modern aircraft gas turbine engines. Aviacionnye materialy i tehnologii, 2019, no. 2 (55), pp. 3–11. DOI: 10.18577/2071-9140-2019-0-2-3-11.
6. Kablov E.N. Physico-chemical and technological features of the creation of heat-resistant alloys containing rhenium. Vestnik Moskovskogo universiteta. Ser. 2: Chemistry, 2005, vol. 46, no. 3, рр. 155–167.
7. Lu F., Antonov S., Zheng Y. et al. Effect of Re on long-term creep behavior of nickel-based single-crystal superalloys for industrial gas turbine applications. Superalloys 2020. TMS, 2020, pp. 218–227.
8. Svetlov I.L., Petrushin N.V., Epishin A.I., Elyutin E.S. Synergistic effect of rhenium and ruthenium on the long-term strength of single crystals of nickel heat-resistant alloys III–IV generations. Fizika metallov i metallovedenie, 2022, vol. 123, no. 8, pp. 888–894.
9. Matuszewski K., Rettig R., Matysiak H. et al. Effect of ruthenium on the precipitation of topologically close packed phases in Ni-base superalloys of 3rd and 4th generation. Acta Materialia, 2015, vol. 95, pp. 274‒283. DOI: 10.1016/j.actamat.2015.05.033.
10. Glatzel U. Microstructure and internal strains of undeformed and creep deformed samples of a Nickel-base superalloy. Berlin: Verlag Dr. Köster, 1994, 80 p.
11. Kablov E.N., Petrushin N.V., Morozova G.I., Svetlov I.L. Physical and chemical factors of heat resistance of nickel alloys containing rhenium. Aviacionnye materialy i tekhnologii, 2004, no. 1, pp. 37–47.
12. Shu D., Tian S., Liu L. et al. Influence of Re/Ru on concentration in γ/γʹ phases of in nickel-base single crystal superalloys. Materials and Design, 2017, vol. 132, pp. 198–207.
13. Saunders N. Phase diagram calculation for Ni-base superalloys. Superalloys 1996. Pennsylvania: Minerals, Metals & Materials Society, 1996, рр. 101–110.
14. Petrushin N.V., Bronfin M.B., Chabina E.B., Dyachkova L.A. Phase transformations and structure of directionally crystallized intermetallic alloys of the Ni–Al–Re system. Metally, 1994, no. 3, pp. 85–93.
15. Chakravorty S., West D.R.F. Constitution of Ni3Al–Ni3Mo–Ni3W section of Ni–Al–Mo–W system. Materials Science and Technology, 1986, vol. 2, no. 10, pp. 989–996.
16. Udovskiy A.L., Oldakovskiy I.V., Moldavskiy V.G. Theoretical and experimental studies of phase equilibria of the Ni–NiAl–W system in the range of 900–1500 °С. Metally, 1991, no. 4, pp. 112–123.
17. Tryon B., Pollock T.M. Experimental assessment of the Ru‒Al‒Ni ternary phase diagram at 1000 and 1100 °C. Materials Sciences and Engineering A, 2006, vol. 430, pp. 266–276.
18. Van Sluytman J.S., La Fontaine A., Cairney J.M., Pollock T.M. Elemental portioning of platinum metal containing Ni-base superalloys using electron microprobe analysis and atom probe tomography. Acta Materialia, 2010, vol. 58, pp. 1952–1962.
19. Kuznetsov V.P., Lesnikov V.P., Konakova I.P. Structural and phase transformations in a single-crystal nickel alloy alloyed with rhenium and ruthenium under conditions of long-term strength testing. Metallovedenie i termicheskaya obrabotka metallov, 2015, no. 8 (722), pp. 55–59.
20. Wang X.G., Liu J.L., Jin T., Sun X.F. The effects of ruthenium additions on tensile deformation mechanisms of single crystal superalloys at different temperatures. Materials and Design, 2014, vol. 63, p. 286–293.
21. Wang Y.-J., Wang C.-J. The alloying mechanisms of Re, Ru in quaternary Ni-based superalloys γ/γʹ interface: A first principle calculation. Materials Science and Engineering A, 2008, vol. 490, pp. 242–249.
22. Kablov E.N., Gerasimov V.V., Visik E.M. Technological features of obtaining single-crystal samples and turbine blades from high-rhenium heat-resistant alloys at UVNK-9 and VIAM-1790 units. Aviacionnye materialy i tekhnologii, 2004, no. 1, pp. 91–97.
23. Kablov E.N., Echin A.B., Bondarenko Yu.A. History of development of directional crystallization technology and equipment for casting blades of gas turbine engines. Trudy VIAM, 2020, no. 3 (87), paper no. 01. Available at: http://www.viam-works.ru (accessed: October 18, 2022). DOI: 10.18577/2307-6046-2020-0-3-3-12. (дата обращения: 18.10.2022). DOI: 10.18577/2307-6046-2020-0-3-3-12.
24. Vigdorovich V.N., Volpyan A.E., Kurdyumov G.M. Directed crystallization and physical and chemical analysis. Moscow: Khimiya, 1976, 200 p
25. Epishin A., Brückner U., Portella P.D., Link T. Influence of small rhenium additions on the lattice spacing of nickel solid solution. Scripta Materialia, 2003, vol. 48, pp. 455–459.
26. Epishin A.I., Rodin A.O., Bokshtein B.S., Svetlov I.L. Mutual diffusion in binary alloys of the Ni–Re system. Fizika metallov i metallovedeniye, 2015, vol. 116, no. 2, pp. 184–190.
27. Petrushin N.V., Elyutin E.S., Chabina E.B. Phase and structural transformations in directionally solidified with plant front intermetallic eutectic Ni-based alloys. Trudy VIAM, 2020, no. 3 (87), paper no. 02. Available at: http://www.viam-works.ru (accessed: January 16, 2023). DOI: 10.18577/2307-6046-2020-0-3-13-29.
28. Petrushin N.V., Elyutin E.S., Nazarkin R.M. et al. Segregation of alloying elements in directionally solidified Re–Ru-containing Ni-based superalloy. Inorganic Materials: Applied Research, 2016, vol. 7, no. 6, pp. 824–831.
29. Kurz W., Fisher D.J. Fundamentals of solidification. Fourth revised edition. Uetikon-Zuerich: Trans Tech Publications Ltd., 1998, 306 p.
30. Bridgman P.W. Certain physical properties of single crystals of tungsten, antimony, bismuth, tellurium, cadmium, zinc, and tin. Proceedings of the American Academy of Arts and Sciences, 1925, vol. 60, pp. 305–383. DOI: 10.2307/25130058.
31. Kurts V., Deputy P.R. Directed crystallization of eutectic materials. Moscow: Metallurgiya, 1980, 274 p.
32. Lashko N.F., Zaslavskaya L.V., Kozlova M.N. et al. Physico-chemical phase analysis of steels and alloys. Moscow: Metallurgiya, 1978, 336 p.
33. Superalloys II. Heat-resistant materials for aerospace and industrial power plants: in 2 books. Ed. Ch.T. Sims, N.S. Stoloff, W.K. Hagel. Trans. from Engl. Moscow: Metallurgiya, 1995, book 1, 768 p.
34. Shalin R.E., Svetlov I.L., Kachanov E.B., Tolorayya V.N., Gavrilin O.S. Single crystals of nickel heat-resistant alloys. Moscow: Mashinostroenie, 1997, 336 p.
35. Barabash O.M., Koval Yu.N. Crystal structure of metals and alloys: reference book. Kyiv: Naukova Dumka, 1986, 598 p.
36. Kablov E.N., Svetlov I.L., Petrushin N.V. Nickel heat-resistant alloys for blades with directional and single-crystal structure (part I). Materialovedenie, 1997, no. 4, pp. 32–39.
37. Feng Q., Nandy T.K., Tin S., Pollock T.M. Solidification of high-refractory ruthenium-containing superalloys. Acta Materialia, 2003, vol. 51, no. 1, pp. 269‒284. DOI: 10.1016/S1359-6454(02)00397-X.
38. Bremer F.J., Beyss M., Karthaus E. et al. Experimental analysis of the Ni–Al phase diagram. Journal Crystal Growth, 1988, vol. 87, no. 2–3, pp. 185–192.
39. Hilpert K., Kobertz D., Venugopal V. et al. Phase diagram studies on the Al–Ni system. Zeitschrift fur Naturforschung, 1987, vol. 42a, pp. 1327–1332.
40. Verhoeven J.D., Lee J.H., Laabs F.C., Jones L.L. The phase equilibria of Ni3Al evaluated by directional solidification and diffusion couple experiment. Journal Phase Equilibrium, 1991, vol. 12, no. 1, pp. 15–23.
41. Udovskiy A.L., Oldakovskiy I.V., Moldavskiy V.G. On the revision of the state diagram of the nickel-aluminum system. Doklady AN SSSR, 1991, vol. 317, no. 1, pp. 161–165.
The main physical and mechanical properties of polyimide adhesive VK-103 are discussed. The film adhesive VK-103 is a mixture of imide-forming components reinforced with non-woven glass veil. The effect of reinforcing filler on the shear strength of adhesive bonds are investigated. The properties of the adhesive VK-103 after exposure to various operational factors and in comparison with existing foreign analogues are given. The adhesive VK-103 is specialized for bonding metals and multilayer structures of PCM with an operating temperature of up to 320 °C.
2. Hergenrother P.M. The use, design, synthesis, and properties of high performance/high temperature polymers: an overview. High Performance Polymers, 2003, vol. 15, no. 1, pp. 3–45.
3. Ebnesajjad S. Handbook of adhesives and surface preparation: technology, applications and manufacturing. William Andrew, 2010, 450 р.
4. Kurnosov A.O., Raskutin A.E., Mukhametov R.R., Melnikov D.A. Polymer composite materials based on thermosetting polyimide binders for aerospace engineering. Review. Voprosy materialovedeniya, 2016, no. 4, pр. 50–62.
5. Gunyaeva A.G., Kurnosov A.O., Gulyaev I.N. High-temperature polymer composite materials developed FSUE «VIAM» for aerospace engineering: past, present and future (review). Trudy VIAM, 2021, no. 1 (95), paper no. 05. Available at: http://www.viam-works.ru (accessed: November 10, 2022). DOI: 10.18577/2307-6046-2021-0-1-43-53.
6. Kablov E.N. Materials for aerospace engineering. Vse materialy. Entsiklopedicheskiy spravochnik, 2007, no. 5, pp. 7–27.
7. Mukhametov R.R., Petrova A.P. Thermosetting binders for polymer composites (review). Aviacionnye materialy i tehnologii, 2019, no. 3 (56), pp. 48–58. DOI: 10.18577/2071-9140-2019-0-3-48-58.
8. Kablov E.N., Chursova L.V., Babin A.N., Mukhametov R.R., Panina N.N. Developments of FSUE "VIAM" in the field of melt binders for polymer composite materials. Polimernye materialy i tekhnologii, 2016, vol. 2, no. 2, pp. 37–42.
9. Kablov E.N., Valueva M.I., Zelenina I.V., Khmelnitskiy V.V., Aleksashin V.M. Carbon plastics based on benzoxazine oligomers – perspective materials. Trudy VIAM, 2020, no. 1, paper no. 07. Available at: http://www.viam-works.ru (accessed: October 31, 2022). DOI: 10.18577/2307-6046-2020-0-1-68-77.
10. Valueva M.I., Zelenina I.V., Zharinov M.A., Khaskov M.A. High-temperature carbon plastics based on thermosetting polyimide binder. Voprosy materialovedeniya, 2020, no. 3 (103), pp. 89–102.
11. Kolpachkov E.D., Kurnosov A.O., Papina S.N., Petrova A.P. Specificity of the formation of fiberglass based on PMR-polyimides. Trudy VIAM, 2022, no. 6 (112), paper no. 04. Available at: http://www.viam-works.ru (accessed: November 14, 2022) DOI: 10.18577/2307-6046-2022-0-7-37-49.
12. Mikhailin Yu.A. Heat-resistant polymers and polymeric materials. St. Petersburg: Professiya, 2006, 624 p.
13. Subrahmanian K.P. High-Temperature Polymers and Adhesives. Structural Adhesives: Chemistry and Technology. Ed. S.R. Hartshorn. Boston: Springer, 1986, pp. 309–345.
14. Rabilloud G. Heat-Resistant Adhesives. Handbook of Adhesives and Surface Preparation. William Andrew Publishing, 2011, pp. 185–220.
15. Potsius A. Adhesives, adhesion, bonding technology. Trans. from Engl. St. Petersburg: Profession, 2016, 384 p.
16. Scola D.A., Vontell J.H. High temperature polyimides, chemistry and properties. Polymer Composites, 1988, vol. 9, no. 6, pp. 443–452.
17. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
Article is devoted to the analysis of the elastomeric and fabric materials which are widely applied at development and operation of products of special equipment, including in the aviation and space industry. The main technical properties of elastomeric and textile materials are given, applied designs of rubber-and-canvas materials are described. The main technological processes of production of elastomeric and fabric materials are described. The approaches applied at forecasting of their operability.
2. Kablov E.N. The role of chemistry in the creation of new generation materials for complex technical systems. XX Mendeleev Congress on General and Applied Chemistry: in 5 vols. Ekaterinburg: Ural Branch of the Russian Academy of Sciences, 2016, pp. 25–26.
3. Kablov E.N. The sixth technological order. Nauka i zhizn, 2010, no. 4, pp. 2–7.
4. History of aviation materials science. VIAM – 80 years: years and people. Ed. E.N. Kablov. Moscow: VIAM, 2012, рр. 346–348.
5. Kablov E.N. Aerospace materials science. Vse materialy. Entsiklopedicheskiy spravochnik, 2008, no. 3, pp. 2–14.
6. Big rubber band guide. Ed. S.V. Reznichenko, Yu.L. Morozov. Moscow: Tekhinform, 2012, part 2: Rubbers and rubber products, 648 p.
7. Technology of rubber: Formulation and testing: trans. from Engl. Ed. J.S. Dick. St. Petersburg: Nauchnye osnovy i tekhnologii, 2010, 620 p.
8. Fedyukin D.P., Makhlis F.A. Technical and technological properties of rubbers. Moscow: Chemistry, 1985, 240 p.
9. Makhlis F.A., Fedyukin D.L. Terminological guide to rubber. Moscow: Khimiya, 1989, 400 p.
10. Kornev A.E., Bukanov A.M., Sheverdyaev O.N. Technology of elastomeric materials. Moscow: NPPA "Istek", 2009, 502 p.
11. Agayants I.M. Five centuries of rubber and rubber. Moscow: Modern-A, 2002, 432 p.
12. Koshelev F.F., Kornev A.E., Bukanov A.M. General rubber technology. 4th ed. Moscow: Khimiya, 1978, 528 p.
13. Ososhnik I.A., Shutilin Yu.F., Karmanova O.V. Manufacture of rubber technical products. Ed. Yu.F. Shutilina. Voronezh: Voronezh State Technol. Acad., 2007, 972 p.
14. Grishin B.S. Materials of the rubber industry (information-analytical database). Kazan: KSTU, 2010, vol. 2, 488 p.
15. Rubber and rubber. Science and technology. Ed. J. Mark, B. Erman, F. Eyrich; trans. from Engl. Ed. A.A. Berlin, Yu.L. Morozov. Dolgoprudny: Intelligence, 2011, 768 p.
16. Nudelman Z.N. Fluororubbers: basics, processing, application. Moscow: RIAS, 2007, 383 p.
17. Grinevich D.V., Yakovlev N.O., Slavin A.V. The criteria of the failure of polymer matrix composites (review). Trudy VIAM, 2019, no. 7 (79), paper no. 11. Available at: http://viam-works.ru (accessed: December 01, 2022). DOI: 10.18577/2307-6046-2019-0-7-92-111.
18. Goldenblat I.I., Kopnov V.A. Strength criterion for anisotropic materials. Mekhanika, 1965, no. 6, pp. 77–83.
19. Goldenblat I.I., Kopnov V.A. Criterion of strength and plasticity of structural materials. Moscow: Mashinostroenie, 1968, 192 p.
20. Makovenko S.Ya. On the reciprocity of the components of the strength tensors of some theories of the strength of anisotropic materials. Stroitelnaya mekhanika inzhenernykh konstruktsiy i sooruzheniy, 2005, no. 1, pp. 65–70.
21. On the soundproofing properties of sound-absorbing materials used in multilayer building envelopes. Nauchnoe obozrenie, 2017, no. 12, pp. 68–72.
22. Lipatov Yu.S. Physical and chemical bases of filling polymers. Moscow: Khimiya, 1991, 260 p.
23. Mikhailin Yu.A. Structural polymeric composite materials. 2nd ed. St. Petersburg: Scientific foundations and technologies, 2016, 820 p.
24. Barbotko S.L. Fire safety of aviation materials for aviation purposes and structural elements based on them: thesis abstract, Dr. Sc. (Tech.). Moscow: VIAM, 2019, 47 p.
25. Raskutin A.E. Russian polymer composite materials of new generation, their exploitation and implementation in advanced developed constructions. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 349–367. DOI: 10.18577/2071-9140-2017-0-S-349-367.
26. Barbotko S.L., Volnyj O.S. Veshkin E.A., Goncharov A.E. Estimation of fire resistance of material and structural elements for aviation equipment. Aviatsionnaya promyshlennost, 2018, no. 2, pp. 63–67.
27. Barbotko S.L., Volny O.S., Kirienko O.A., Shurkova E.N. Evaluation of the fire safety of polymeric materials for aviation purposes: state analysis, test methods, development prospects, methodological features. Ed. E.N. Kablov. Moscow: VIAM, 2018, 424 p.
28. Handbook of composite materials: in 2 books. Moscow: Mashinostroenie, 1988, book 2, 448 p.
29. Erasov V.S., Oreshko E.I. Poisson ratio and poisson force. Aviacionnye materialy i tehnologii, 2018, no. 4 (53), pp. 79–86. DOI: 10.18577/2071-9140-2018-0-4-79-86.
30. Erasov V.S., Oreshko E.I. Reasons for dependence of mechanical characteristics of material fracture resistanceon sample sizes. Aviaсionnye materialy i tehnologii, 2018, no. 3, pp. 56–64. DOI: 10.18577/2071-9140-2018-0-3-56-64.
31. Oreshko E.I., Erasov V.S., Yastrebov A.S. Prediction of strength and deformation characteristics of materials during tensile and creep tests. Materialovedenie, 2019, no. 1, pp. 3–9.
32. Popov L.N., Kerimov S.G. Textile materials for technical purposes: directory-catalogue. Yaroslavl, 2006, 492 p.
33. Kolpachkov E.D., Petrova A.P., Kurnosov A.O., Sokolov I.I. Methods of molding aviation products from PCM (review). Trudy VIAM, 2019, no. 11 (83), paper no. 03. Available at: http://www.viam-works.ru (accessed: December 01, 2022). DOI: 10.18577/2307-6046-2019-0-11-22-36.
34. Timoshkov P.N., Khrulkov A.V., Usacheva M.N., Purvin K.E. Technological features of the manufacture of thick-walled parts of the PCM (review). Trudy VIAM, 2019, no. 3 (75), paper no. 07. Available at: http://viam-works.ru (accessed: December 01, 2022). DOI: 10.18577/2307-6046-2019-0-3-61-67.
35. Callister U., Ristic D. Materials science: from technology to application (metals, ceramics, polymers). St. Petersburg: Nauchnye osnovy i tekhnologii, 2011, 896 p.
36. Vlasov S.V., Kandyrin L.B., Kuleznev V.N. et al. Fundamentals of plastics processing technology. Moscow: Khimiya, 2004, 600 p.
37. Rudd C.D., Long A.C., Kendall K.N., Mangin C.G.E. Liquid Moulding Technologies. Wood head Publishing and SAE International, 1997, pp. 42–57.
38. Kryzhanovsky V.K., Kerber M.L., Burlov V.V. Manufacture of products from polymeric materials. St. Petersburg: Profession, 2004, 464 p.
39. Dmitriev A.O. Problems of development of technology and organization of production of thick-walled products from polymer composites. Razvitie sovremennoy nauki: teoreticheskiye i prikladnye aspekty, 2016, no. 7, pp. 8–10.
40. Tyukov N.I., Dautov A.I., Zakurdaeva E.A. Mathematical model for controlling the process of autoclave heating in the production of products from composite materials. Vestnik UGATU, 2008, vol. 10, no. 2 (27), pp. 159–163.
41. Shershak P.V. National standardization specifics of polymer composites materials tests methods. Trudy VIAM, 2019, no. 2 (74), paper no. 08. Available at: http://www.viam-works.ru (accessed: December 01, 2022). DOI: 10.18577/2307-6046-2019-0-2-77-88.
42. Klimenko O.N., Valueva M.I., Rybnikova A.N. Polymers and polymer composites in sport (review). Trudy VIAM, 2020, no. 10 (92), paper no. 09. Available at: http://www.viam-works.ru (accessed: December 01, 2022). DOI: 10.18577/2307-6046-2020-0-10-81-89.
Porous ceramic materials are in demand in many industries using high-temperature furnaces and other equipment operating at elevated temperatures. In this work, a porous ceramic material was obtained from a mullite fiber, and a solid binder containing fine boron powder and crushed quartz fibers was used as a binder. Samples of porous ceramic materials were obtained and their mechanical and thermal characteristics after heat treatment at various temperatures were evaluated.
2. Sadik C., El Amranib I.-E., Albizane A. Recent advances in silica-alumina refractory: A review. Journal of Asian Ceramic Societies, 2014, vol. 2, pp. 83–96.
3. Parlier M., Ritti M.H. State of the art and perspectives for oxide/oxide composites. Aerospace Science and Technology, 2003, vol. 7, no. 3, pp. 211–221.
4. Buznik V.M., Kablov E.N. Arctic materials sciences. Tomsk: Tomsk State Univ., 2018, is. 3, 44 p.
5. Babashov V.G., Maksimov V.G., Varrik N.M., Samorodova O.N. Studying of structure and properties of samples of ceramic composite materials on the basis of mullite. Aviacionnye materialy i tehnologii, 2020, no. 1 (58), pp. 54–63. DOI: 10.8577/2071-9140-2020-0-1-54-63.
6. Baklouti S., Bouaziz J., Chartier T., Baumard J.-F. Binder burnout and evolution of the mechanical strength of dry-pressed ceramics containing poly (vinyl alcohol). Journal of the European Ceramic Society, 2001, vol. 21, no. 8, pp. 1087–1092.
7. Wiśniewska M., Chibowski S., Urban T., Sternik D. Investigation of the alumina properties with adsorbed polyvinyl alcohol. Journal of Thermal Analysis and Calorimetry, 2011, vol. 103, no. 1, pp. 329–337.
8. Process for gelling a sol in fiberformed ceramic insulation: pat. 5021369 USA; filed 01.08.88; publ. 04.06.91.
9. Refractory fibrous ceramic insulation and process of making same: pat. 6183852 USA; filed 11.03.94; publ. 06.02.01.
10. Thermal insulation system employing oxide ceramic matrix composite: pat. 6969546 USA; filed 20.10.03; publ. 29.11.05.
11. Bonding of Thermal Tile Insulation: pat. 6494979 USA; filed 29.09.00; publ. 17.12.02.
12. Buchilin N.V., Lyulyukina G.Yu., Varrik N.M. Influence of the mode of roasting on structure and property of high-porous ceramic mullite materials. Trudy VIAM, 2017, no. 5 (53), paper no. 04. Available at: http://www.viam-works.ru (accessed: October 05, 2020). DOI: 10.18577/2307-6046-2017-0-5-4-4.
13. Kudryavtsev P.G., Figovsky O.L. Inorganic heat-resistant binders. Nanotekhnologii v stroitelstve, 2017, vol. 9, no. 2, pp. 66–81. Available at: http://nanobuild.ru/ru_RU/journal/Nanobuild-2-2017/66-81.pdf (accessed: October 05, 2020). DOI: 10.15828/2075-8545-2017-9-2-66-81.
14. Aviation materials: reference book in 13 vols. Ed. E.N. Kablov. Moscow: VIAM, 2011, vol. 9: Heat-shielding, heat-insulating and composite materials, high-temperature non-metallic coatings, pp. 31–37.
15. Zuev A.V., Zarichnyak Yu.P., Barinov D.Ya., Krasnov L.L. Measurement of thermophysical properties of flexible thermal insulation. Aviation materials and technology, 2021, no. 1 (62), paper no. 11. Available at: http://www.journal.viam.ru (accessed: January 30, 2023). DOI: 10.18577/2713-0193-2021-0-1-119-126.
16. Oreshko E.I., Erasov V.S., Krylov V.D. Construction of 3D stress-strain diagram for the analysis of mechanical behavior of the material tested at various loading rates. Aviacionnye materialy i tehnologii, 2018, no. 2 (51), pp. 59–66. DOI: 10.18577/2071-9140-2018-0-2-59-66.
17. Barinov D.Ya., Shorstov S.Yu., Razmahov M.G., Gulyaev A.I. Examination of thermophysical characteristics of a heat-protective material based on fiberglass during destruction. Aviation materials and technologies, 2021, no. 4 (65), paper no. 10. Available at: http://www.journal.viam.ru (accessed: January 30, 2023). DOI: 10.18577/2713-0193-2021-0-4-91-97.
The results of studies of the effect of laboratory-simulated exposure to elevated temperatures (of 250, 280 and 320 °С) on the structure and properties of high-temperature carbon fiber reinforced plastic (CFRP) based on a thermosetting polyimide binder are presented. The mass loss of CFRP under prolonged exposure to elevated temperatures has been determined, and the activation energy of the thermal aging process has been calculated. For comparison, the data of scientific and technical literature on the thermal-oxidative effect of elevated temperatures on CFRP of foreign manufacturers based on polyimide binders of the PMR-type are presented.
2. Kablov E.N., Startsev V.O. Climatic aging of aviation polymer composite materials: I. Influence of significant factors. Russian metallurgy (Metally), 2020, vol. 2020, no. 4, pp. 364–372.
3. Kablov E.N., Startsev V.O. Climatic aging of aviation polymer composite materials: II. Development of methods for studying the early stages of aging. Russian metallurgy (Metally), 2020, vol. 2020, no. 10, pp. 1088–1094.
4. Kablov E.N., Startsev V.O. Measurement and forecasting of materials samples’ temperature during weathering in different climatic zones. Aviacionnye materialy i tehnologii, 2020, no. 4 (61), pp. 47–58. DOI: 10.18577/2071-9140-2020-0-4-47-58.
5. Abramova M.G., Lutsenko A.N., Varchenko E.A. Concerning the aspects of validation of climate resistance of airborne materials at all life cycle stages (review). Aviacionnye materialy i tehnologii, 2020, no. 1 (58), pp. 86–94. DOI: 10.18577/2071-9140-2020-0-1-86-94.
6. Kurs M.G., Nikolayev E.V., Abramov D.V. Full-scale and accelerated tests of metallic and nonmetallic materials: key factors and specialized stands. Aviacionnye materialy i tehnologii, 2019, no. 1 (54), pp. 66–73. DOI: 10.18577/2071-9140-2019-0-1-66-73.
7. Laptev A.B., Nikolayev E.V., Kolpachkov E.D. Thermodynamic characteristics of aging of polymeric composite materials under conditions of real exploitation. Aviaсionnye materialy i tehnologii, 2018, no. 3, pp. 80–88. DOI: 10.18577/2071-9140-2018-0-3-80-88.
8. Perov NS, Gulyaev A.I. About the importance of structure evolution control of polymer composite materials with the microheterogeneous matrix for service life forecasting. Aviacionnye materialy i tehnologii, 2017, no. 1 (46), pp. 75–85. DOI: 10.18577 / 2071-9140-2017-0-1-75-85.
9. Gulyaev A.I., Medvedev P.N., Sbitneva S.V., Petrov A.A. Experimental research of «fiber–matrix» adhesion strength in carbon fiber epoxy/polysulphone composite. Aviacionnye materialy i tehnologii, 2019, no. 4 (57), pp. 80–86. DOI: 10.18577/2071-9140-2019-0-4-80-86.
10. Grigorenko V.B., Morozova L.V. Application of the scanning electron microscopy for studying of initial destruction stages. Aviacionnye materialy i tehnologii, 2018, no. 1 (50), pp. 77–87. DOI: 10.18577/2071-9140-2018-0-1-77-87.
11. Raskutin A.E. Heat-resistant carbon plastics for aircraft structures operating at temperatures up to 400 °C: thesis, Cand.Sc. … cand. tech. Sciences. Moscow, 2007, 166 p.
12. Mikhailin Yu.A. Heat-resistant polymers and polymeric materials. St. Petersburg: Professiya, 2006, 624 p.
13. Mikhailin Yu.A. Heat, thermal and fire resistance of polymeric materials. St. Petersburg: Nauchnye osnovy i tekhnologii, 2011, 416 p.
14. Zharinov M.A., Shimkin A.A., Akhmadiyeva K.R., Zelenina I.V. Features and properties of solvent-free PMR-type polyimide resin. Trudy VIAM, 2018, no. 12 (72), paper no. 05. Available at: http://www.viam-works.ru (accessed: September 01, 2022). DOI: 10.18577/2307-6046-2018-0-12-46-53.
15. Wilson D. PMR-15 Processing, Properties and Problems – a Review. British Polymer Journal, 1988, no. 20, рр. 405–416.
16. Sheppard C.H., Hoggatt J.T., Symonds W.A. Quality control developments for graphite/PMR-15 polyimide composites materials. NASA, 1979, 181 p.
17. Avimid®R Polyimide Composite. Technical Data Sheet. Available at: https://matweb.com/search/datasheettext.aspx?matguid= 3dcb6c37bd39469c8e92b27045a13ea4 (accessed: December 01, 2022).
18. CYCOM®2237 Polyimide Resin System. Technical Data Sheet. Available at: https://www.solvay.com/en/product/cycom-2237 (accessed: December 01, 2022).
19. MVK-10. RTM Polyimide. Product description. Available at: http://www.maverickcorp.com/_CE/pagecontent/Documents/MVK-10.pdf (accessed: December 01, 2022).
20. MVK-14 FREEFORM®. High temperature polyimide. Available at: http://www.maverickcorp.com/high-temperature-resins/material-options-high/mvk-14-freeform/
(accessed: December 01, 2022).
21. Tsampas S., Fernberg P., Joffe R. Development of novel high Tg polyimide-based composites. Part II: Mechanical characterization. Journal of Composite Materials. 2018, vol. 52, no. 2, pp. 261–274.
22. High tempereture composite materials. Available at: https://pdf4pro.com/amp/view/high-tempereture-composite-materials-upilex-5a5302.html (accessed: December 01, 2022).
23. Aerospace. Advance Composite Materials Selector Guide. Available at: https://www.toraytac.com/media/ca3eea73-6961-4ea8-adc7-5d1b861684f6/Bxgrfg/TAC/Documents/Selector%20Guides/Toray_Advanced_Composite_Material_Portfolio_Selector_Guide.pdf (accessed: December 01, 2022).
24. Bowles K.J., Roberts G.D., Kamvouris J.E. Long-therm isothermal aging effects on carbon fabric-reinforced PMR-15 composites: compression strength. Washington: NASA, 1996, 17 p.
25. Bowles K.J. Thermo-Oxidative Stability Studies of Celion 6000/PMR-15 Unidirectional Composites, PMR-15, and Celion 6000 Fiber. Journal of Composite Materials, 1988, vol. 22, no. 10, pp. 966–985.
26. Back C.A. Effects of prior aging on the creep response of carbon fiber reinforced PMR-15 neat resin at 288 °C in an air environment: Thesis. Air Force Institute of Technology, USA, 2007, 124 p.
27. Bowles K.J., Tsuji L., Kamvouris J., Roberts G.D. Long-Term Isothermal Aging Effects on Weight Loss, Compression Properties, and Dimensions of T650-35 Fabric-Reinforced PMR-15 Composites-Data. Washington: NASA, Glenn Research Center Cleveland, 2003, 65 р.
28. Chuang K.С., Bowles K.J., Papadoulos D. et al. A high Tg PMR polyimide composites (DMBZ-15). Journal of Advanced Materials, 2001, vol. 33, no. 4, pp. 33–38.
29. Chuang K. Development of DMBZ-15 high-glass-transition-temperature polyimides as PMR-15 replacements given R&D 100 awards. Research and technology. Washington: NASA, 2003, pp. 27–28.
30. Connell J.W., Smith J.G. (Jr.), Hergenrother P.M., Criss J.M. High Temperature Transfer Molding Resins: Status of PETI-298 and PETI-330. Available at: https://www.cs.odu.edu/~mln/ltrs-pdfs/NASA-2003-35sampe-jwc.pdf (accessed: December 01, 2022).
31. Avimid®RB Polyimide Composite. Technical Data Sheet. Cytec engineered materials. 2012. AECM-00052. Available at: https://www.matweb.com/search/datasheettext.aspx?matguid=d3d9f6997a2145d087bfc9342a8ee61b (accessed: December 01, 2022).
32. Shoeppner G.A., Tandon G.P., Ripberger E.R. Anistropic oxidation and weight loss in PMR-15 composites. Composites: Part A, 2007, vol. 38, pp. 890–904.
33. Ripberger E.R., Tandon G.P., Shoeppner G.A. Experimental techniques for characterizing thermo-oxidative behavior in high-temperature polyimide composite. Available at: https://www.researchgate.net/publication/267819653 (accessed: December 01, 2022).
34. Tandon G.P., Pochiraju K.V., Shoeppner G.A. Thermo-oxidative behavior of high-temperature PMR-15 resin and composites. Materials Science and Engineering A, 2008, vol. 498, pp. 150–161.
35. Tandon G.P., Ragland W.R., Shoeppner G.A. Using Optical Microscopy to Monitor Anisotropic Oxidation Growth in High-Temperature Polymer Matrix Composites. Journal of composite materials, 2009, vol. 43, no. 05, pp. 583–603.
36. Korshak V.V. Heat resistant polymers. Moscow: Nauka, 1969, 381 p.
37. Valevin E.O., Startsev V.O., Zelenina I.V. Thermal aging, surface degradation and water transfer in carbon fiber reinforced plastic VKU-38TR. Trudy VIAM, 2020, no. 6–7 (89), paper no. 12. Available at: http://www.viam-works.ru (accessed: December 01, 2022). DOI: 10.18577/2307-6046-2020-0-67-118-128.
38. Valevin E.O. Influence of heat and moisture exposure on the properties of heat-resistant polymer composite materials based on a phthalonitrile matrix: thesis, Cand. tech. Sciences. Moscow: MAI, 2018, 130 p.
39. Cavano P.J., Winters W.E. Fiber reinforced PMR polyimide composites. Washington: NASA Lewis Researcher Center, 1978, 105 p.
Samples of 1.5 mm thick carbon fiber-reinforced plastic sheet with different curing modes were loaded according to the scheme of cantilever bending in the elastic region. The acoustic emission sensor was attached to the specimen in the zone of maximum bending moments, and the acoustic signals obtained during sample loading were recorded using an oscilloscope with software. The recorded acoustic emission signals were analyzed and, taking into account the values of microhardness of the matrix obtained at different molding modes, the corresponding dependences were plotted.
2. Popov A.A., Baranets A.S., Gubanov D.V., Petukhov V.L. Positive and negative aspects of the acoustic emission method of diagnostics during non-destructive testing of equipment. Modern scientific research and innovation, 2016, no. 4. Available at: https://web.snauka.ru/issues/2016/04/67330 (accessed: August 03, 2022).
3. Finogenov G.N., Ritter E.G., Mukhutdinov A.G., Kirillov V.N. Acoustic-emission method for assessing the damage of polymer composite materials. Zavodskaya laboratoriya. Diagnostika materialov, 1995, no. 12, pp. 47–49.
4. Nosov V.V., Yamilova A.R. Acoustic emission method. St. Petersburg: Lan, 2017, 304 p.
5. Pollock A. Metals Handbook. 9th ed. ASM International, 1989, vol. 17, pp. 278–294.
6. Chertishchev V.Yu. The estimation of the probability of defects detection by the acoustic methods, depending on their size in constructions from PCM for output control data in the form of binary. Aviaсionnye materialy i tehnologii, 2018, no. 3, pp. 65–79. DOI: 10.18577/2071-9140-2018-0-3-65-79.
7. Murashov V.V. Research and improvement of acoustic low-frequency control methods of products from layered plastics and multilayered glued of constructions. Aviacionnye materialy i tehnologii, 2018, no. 4 (53), pp. 87–93. DOI: 10.18577/2071-9140-2018-0-4-87-93.
8. Raskutin A.E. Russian polymer composite materials of new generation, their exploitation and implementation in advanced developed constructions. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 349–367. DOI: 10.18577/2071-9140-2017-0-S-349-367.
9. Grashchenkov D.V. Strategy of development of non-metallic materials, metal composite materials and heat-shielding. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 264–271. DOI: 10.18577/2071-9140-2017-0-S-264-271.
10. Kablov E.N., Valueva M.I., I.V. Zelenina, Khmelnitskiy V.V., Aleksashin V.M. Carbon plastics based on benzoxazine oligomers – perspective materials. Trudy VIAM, 2020, no. 1, paper no. 07. Available at: http://www.viam-works.ru (accessed: August 04, 2022). DOI: 10.18577/2307-6046-2020-0-1-68-77.
11. Muhametov R.R., Ahmadieva K.R., Kim M.A., Babin A.N. Melt binding for perspective methods of production of PCM of new generation. Aviacionnye materialy i tehnologii, 2012, no. S, pp. 260–265.
12. Grigorenko V.B., Morozova L.V. Application of the scanning electron microscopy for studying of initial destruction stages. Aviacionnye materialy i tehnologii, 2018, no. 1 (50), pp. 77–87. DOI: 10.18577/2071-9140-2018-0-1-77-87.
13. Kuritsyna A.D. Application of the microhardness method to determine some properties of polymeric materials. Metody ispytaniya na mikrotverdost. Moscow: Nauka, 1965, pp. 255–260.
14. State Standard 9450–76. Measurement of microhardness by indentation of diamond tips. Moscow: Publishing house of standards, 1993, 35 p.
15. Veshkin E.A., Postnov V.I., Semenychev V.V., Krasheninnikova E.V. Research of microhardness and sclero-metric characteristics of the binding UP-2227N, cured by different regimes. Aviacionnye materialy i tehnologii, 2018, no. 1 (50), pp. 39–45. DOI: 10.18577/2071-9140-2018-0-1-39-45.
16. Veshkin E.A., Postnov V.I., Semenychev V.V., Krasheninnikova E.V. Patterns of changes in microhardness in the volume of the binder EDT-69N, cured at different temperatures. Fizika i khimiya obrabotki materialov, 2020, no. 4, pp. 65–71. DOI: 10.30791/0015-3214-2020-4-65-71.
17. Veshkin E.A., Postnov V.I., Semenychev V.V., Krasheninnikova E.V. Patterns of the manifestation of anisotropy of properties in three mutually perpendicular sections of glass-carbon plastic. Plasticheskiye massy, 2020, no. 5–6, pp. 15–19.
18. Platonov A.A., Kogan D.I., Dushin M.I. Production of three-dimensional PCM by the method of impregnation with a film binder. Plasticheskiye massy, 2013, no. 6, pp. 56–61.
19. Tager A.A. Physico-chemistry of polymers. Moscow: Scientific world, 2007, 128 p.
20. Kenuy M.G. Fast statistical calculations. Simplified assessment and verification methods: a handbook. Moscow: Statistika, 1979, 69 p.
21. Vulf B.K., Romadin K.P. Aviation materials science. Moscow: Mashinostroenie, 1967, 391 p.
In the manufacture of structures from polymer composite materials (PCM), defects in the form of pores are very often formed. The study of the causes of pore formation in composites began about half a century ago and is still relevant. This is due to the difficulty of preventing their formation with modern PCM manufacturing technologies, such as non-autoclave molding and the manufacture of parts of increased complexity, as well as due to the increased viscosity of the modified resins. To eliminate defects in the form of the time arising by production, it is necessary to carry out search of way of right choice of parameters of processing.
2. Kablov E.N. New Generation Materials and Technologies for Their Digital Processing. Herald of the Russian Academy of Sciences. 2020, vol. 90, no. 2, pp. 225–228.
3. Kablov E.N. The role of fundamental research in the creation of new generation materials. Report XXI Mendeleev Congress on General and Applied Chemistry: in 6 vols. St. Petersburg, 2019, vol. 4, p. 24.
4. Kablov E.N. Aviation materials science in the XXI century. Prospects and tasks. Aviation materials. Selected works of VIAM 1932–2002. Moscow: MISIS; VIAM, 2002, pp. 23–47.
5. Timoshkov P.N., Khrulkov A.V., Yazvenko L.N., Composite materials for non-autoclave technology (review). Trudy VIAM, 2018, no. 3 (63), paper no. 05. Available at: http://www.viam-works.ru (accessed: February 01, 2023). DOI: 10.18577/2307-6046-2018-0-3-37-48.
6. Tkachuk A.I., Donetsky K.I., Terekhov I.V., Karavaev R.Yu. The use of thermosetting matrices for the manufacture of polymer composite materials by the non-autoclave molding methods. Aviation materials and technology, 2021, no. 1 (62), paper no. 03. Available at: https://journal.viam.ru (accessed: February 01, 2023). DOI: 10.18577/2713-0193-2021-0-1-22-33.
7. Mukhametov R.R., Petrova A.P. Thermosetting binders for polymer composites (review). Aviacionnye materialy i tehnologii, 2019, no. 3 (56), рр. 48–58. DOI: 10.18577/2071-9140-2019-0-3-48-58.
8. Veshkin E.A., Postnov V.I., Postnova M.V., Barannikov A.A. Experience in the use of vacuum infusion technologies in the production of PCM structures. Izvestiya Samarskogo nauchnogo tsentra Rossiyskoy akademii nauk, 2018, vol. 20, no. 4-3, pp. 344–350.
9. Goncharov V.A., Raskutin A.E. Computer modeling of the infusion process in the manufacture of composite arched element. Trudy VIAM, 2015, no. 7, paper no. 11. Available at: http://www.viam-works.ru (accessed: February 02, 2023). DOI: 10.18577/2307-6046-2015-0-7-11-11.
10. Kolobkov A.S. Polymer composite materials for various aircraft structures (review). Trudy VIAM, 2020, no. 6–7 (89), paper no. 05. Available at: http://www.viam-works.ru (accessed: January 10, 2023). DOI: 10.18577/2307-6046-2020-0-67-38-44.
11. Timoshkov P.N., Goncharov V.A., Usacheva M.N., Khrulkov A.V. The development of automated laying: from the beginning to our days (review). Part 1. Automated Tape Laying (ATL). Aviation materials and technologies, 2021, no. 2 (63), paper no. 06. Available at: http://www.journal.viam.ru (accessed: January 18, 2023). DOI: 10.18577/2713-0193-2021-0-2-51-61.
12. Kablov E.N., Valueva M.I., I.V. Zelenina, Khmelnitskiy V.V., Aleksashin V.M. Carbon plastics based on benzoxazine oligomers – perspective materials. Trudy VIAM, 2020, no. 1, paper no. 07. Available at: http://www.viam-works.ru (accessed: January 20, 2023). DOI: 10.18577/2307-6046-2020-0-1-68-77.
13. Valueva M.I., Zelenina I.V., Zharinov M.A., Akhmadieva K.R. World market of high temperature polyimide carbon plastic (review). Trudy VIAM, 2019, no. 12 (84), paper no. 08. Available at: http://www.viam-works.ru (accessed: January 10, 2023). DOI: 10.18577/2307-6046-2019-0-12-67-79.
14. Zhelezina G.F., Tikhonov I.V., Chernykh T.E., Bova V.G., Voynov S.I. Aramid fibers of the third generation Rusar NT for reinforcing organotextolites for aviation purposes. Plasticheskie massy, 2019, no. 3–4, pp. 43–46.
15. Popov Yu.O., Koloкoltseva T.V., Gromova A.A., Gusev Yu.A. Influence of operational factors on the main physical and mechanical properties of a fiberglass product VPS-31. Trudy VIAM, 2021, no. 11 (105), paper no. 08. Available at: http://www.viam-works.ru (accessed: January 10, 2023). DOI: 10.18577/2307-6046-2021-0-11-82-90.
16. Sorokin A.E., Ivanov M.S., Sagomonova V.A. Thermoplastic polymer composite materials based on polyetheretherketones of various manufacturers. Aviation materials and technologies, 2022, no. 1 (66), paper no. 04. Available at: http://www.journal.viam.ru (accessed: February 01, 2023). DOI: 10.18577/2071-9140-2022-0-1-41-50.
17. Mahoor M., Gorbatikh L., Verpoest I., Lomov S. Voids in fiber-reinforced polymer composites: A review on their formation, characteristics, and effects on mechanical performance. Journal of Composite Materials, 2018, no. 35, pp. 25–69.
18. Centea T., Grunenfelder L., Nutt S. A review of out-of-autoclave prepregs – Material properties, process phenomena, and manufacturing considerations. Composites. Part A: Applied Science and Manufacturing, 2014, no. 70, pp. 132–154.
19. Tereshkova I. Creation of heat-resistant polymer composites is one of the priority areas of national materials science. Available at: https://viam.ru/news/2734 (accessed: January 13, 2023).
20. Patel N., Rohatgi V., Lee LJ. Micro-scale flow behavior, fiber wetting and void formation in liquid composite molding. Materials Science, 1995, no. 35, рр. 837–851.
21. Park C.H., Lebel A., Saouab A. Modeling and simulation of voids and saturation in liquid composite molding processes. Composites. Part A: Applied Science and Manufacturing, 2011, no. 42, pp. 658–668.
22. Hubert P., Centea T., Grunefelder L. Out-of-Autoclave Prepreg Processing. Reference Module in Materials Science and Materials Engineering, 2017, no. 9, pp. 36–60.
23. Boey F., Lye S. Void reduction in autoclave processing of thermoset composites. I – High pressure effects on void reduction. II – Void reduction in a microwave curing process. Composites, 1992, no. 26, pp. 126–150.
24. James K., Göran F. Processing conditions and voids in out of autoclave prepregs. Department of Materials Engineering, 2012, no. 6, pp. 1–12.
25. Edwards W., Martínez P., Nutt S. Process robustness and defect formation mechanisms in unidirectional semipreg. Advanced Manufacturing: Polymer & Composites Science, 2020, no. 13, pp. 26–39.
26. Kobina E. VIAM will expand the production of composite materials in Ulyanovsk. Available at: https://uldelo.ru/2019/08/28/b-viam-rasshirit-proizvodstvo-b-kompozitnykh-materialov-v-ulyanovske(accessed: January 31, 2023).
27. Kay J., Fahrang L. Effect of process conditions on porosity in out-of-autoclave prepreg laminates. Engineering, 2011, no. 10, pp. 1–27.
28. Grunenfelder L., Dills A. Effect of prepreg format on defect control in out-of-autoclave processing. Composites. Part A: Applied Science and Manufacturing, 2017, no. 4, pp. 37–60.
Considers woven composite materials with a 3D-reinforced structure. A review of studies on the determination of their mechanical properties is carried out. Articles devoted to the study of the microstructure of materials, their properties in tension, compression, interlayer fracture, impact, and cyclic loading are considered. A comparison of 3D-woven composite materials with woven 2D composite materials is carried out, the influence of the structure on mechanical properties is considered, the main parameters of these materials are given, as well as information on the nature of their destruction. A variant of the non-crimp 3D-woven composite materials is considered separately.
2. Kablov E.N., Sagomonova V.A., Sorokin A.E., Tselikin V.V., Gulyaev A.I. Investigation of the structure and properties of a polymer composite material with an integrated vibration-absorbing layer. Vse materialy. Entsiklopedicheskiy spravochnik, 2020, no. 3, pp. 2–9.
3. Kablov E.N., Startsev V.O. Systematical analysis of the climatics influence on mechanical properties of the polymer composite materials based on domestic and foreign sources (review). Aviacionnye materialy i tehnologii, 2018, no. 2 (51), pp. 47–58. DOI: 10.18577/2071-9140-2018-0-2-47-58.
4. Mukhametov R.R., Petrova A.P. Thermosetting binders for polymer composites (review). Aviacionnye materialy i tehnologii, 2019, no. 3 (56), pp. 48–58. DOI: 10.18577/2071-9140-2019-0-3-48-58.
5. Sorokin A.E., Ivanov M.S., Sagomonova V.A. Thermoplastic polymer composite materials based on polyetheretherketones of various manufacturers. Aviation materials and technologies, 2022, no. 1 (66), paper no. 04. Available at: http://www.journal.viam.ru (accessed: July 07, 2022). DOI: 10.18577/2071-9140-2022-0-1-41-50.
6. Grinevich D.V., Yakovlev N.O., Slavin A.V. The criteria of the failure of polymer matrix composites (review). Trudy VIAM, 2019, no. 7 (79), paper no. 11. Available at: http://viam-works.ru (accessed: July 05, 2022). DOI: 10.18577/2307-6046-2019-0-7-92-111.
7. Belinis P.G., Donetskiy K.I., Lukyanenko Yu.V., Rogozhnikov V.N., Mayer Yu., Bystrikova D.V. Volume reinforcing solid-woven preforms for manufacturing of polymer composite materials (review). Aviacionnye materialy i tehnologii, 2019, no. 4 (57), pp. 18–26. DOI: 10.18577/2071-9140-2019-0-4-18-26.
8. Slavin А.V., Silkin A.N., Grinevich D.V., Yakovlev N.O. Composite materials with a 3D-reinforced structure (review). Trudy VIAM, 2022, no. 8 (114), paper no. 09. Available at: http://www.viam-works.ru (accessed: July 05, 2022). DOI: 10.18577/2307-6046-2022-0-8-113-122.
9. Yakovlev N.O., Davydenko A.N., Monakhov A.D. Damage Criteria for Predicting the Residual Fatigue Life of PCM. Physical and Mechanical Testing, Strength and Reliability of Modern Structural and Functional Materials: Proceedings of XIV All-Rus. conf. for testing and research of the properties of materials "TestMat". Moscow, 2022, pp. 240–249.
10. Yakovlev N.O., Popkova E.A., Landik D.N. Deformation as a criterion for the quality of carbon fiber. The role of fundamental research in the implementation of the Strategic directions for the development of materials and technologies for their processing for the period up to 2030: materials of the VII All-Rus. sci.-tech. conf. Moscow, 2021, pp. 198–203.
11. Tong L. 3D Fibre Reinforced Polymer Composites. Elsevier Science, 2002, 254 p.
12. Pankow M.R. The Deformation Response of 3D Woven Composites Subjected to High Rates of Loading: PhD thesis. The University of Michigan, 2010, 208 p. Available at: https://deepblue.lib.umich.edu/handle/2027.42/77889 (accessed: August 25, 2022).
13. Saleh M.N., Yudhanto A., Lubineau G., Soutis C. The effect of z-binding yarns on the electrical properties of 3D woven composites. Composite Structures, 2017, no. 182, pp. 606–616. DOI: 10.1016/j.compstruct.2017.09.081.
14. Saleh M.N., Yudhanto A., Potluri P. et al. Characterising the loading direction sensitivity of 3D woven composites: Effect of z-binder architecture. Composites. Part A: Applied Science and Manufacturing, 2016, no. 90, pp. 577–588. DOI: 10.1016/j.compositesa.2016.08.028.
15. Sidorina A.I., Safronov A.M., Kutsevich K.E., Klimenko O.N. Carbon fabrics for aircraft products. Trudy VIAM, 2020, no. 12 (94), paper no. 05. Available at: http://www.viam-works.ru (accessed: July 05, 2022). DOI: 10.18577/2307-6046-2020-0-12-47-58.
16. Lee L., Rudov-Clark S., Mouritz A. et al. Effect of weaving damage on the tensile properties of three-dimensional woven composites. Composite Structures, 2002, no. 57, pp. 405–413. DOI: 10.1016/s0263-8223(02)00108-3.
17. Lee B., Leong K.H., Herszberg I. Effect of Weaving on the Tensile Properties of Carbon Fibre Tows and Woven Composites. Journal of Reinforced Plastics and Composites, 2001, no. 20 (8), pp. 652–670. DOI: 10.1177/073168401772679011.
18. Cox B.N., Carter W.C., Fleck N.A. A Binary Model of Textile Composites – I. Formulation. Acta Metallurgica et Materialia, 1994, no. 42, pp. 3463–3479.
19. Callus P.J., Mouritz A.P., Bannister M.K., Leong K.H. Tensile properties and failure mechanisms of 3D woven GRP composites. Composites, 1999, no. 30A, pp. 1277–1287.
20. Kuo W.-S., Ko T.-H. Compressive damage in 3-axis orthogonal fabric composites. Composites, 2000, no. 31A, pp. 1091–1105.
21. Leong K.H., Lee B., Herszberg I., Bannister M.K. The effect of binder path on the tensile properties and failure of multilayer woven CFRP composites. Composites Science and Technology, 2000, no. 60, pp. 149–156.
22. Gerlach R., Siviour C.R., Wiegand J., Petrinic N. In-plane and through-thickness properties, failure modes, damage and delamination in 3D woven carbon fibre composites subjected to impact loading. Composites Science and Technology, 2012, no. 72, pp. 397–411. DOI: 10.1016/j.compscitech.2011.11.032.
23. Ding Y.Q., Yan Y., McIlhagger R., Brown D. Comparison of the fatigue behavior of 2D- and 3D- woven fabric reinforced composites. Journal of Materials Processing Technology, 1995, no. 55, pp. 171–177. DOI: 10.1016/0924-0136(95)01950-2.
24. Guess T.R., Reedy E.D. Jr. Comparison of Interlocked Fabric and Laminated Fabric Kevlar 49/Epoxy Composites. Journal of Composites Technology & Research, 1985, no. 7, pp. 136–142.
25. Arendts F.J., Drechler K., Brandt J. Advanced textile structural composites – status and outlook. Proc. of the Int. Conf. on Advanced Composite Materials. Wollongong, 1993, pp. 409–416.
26. Brandt J., Drechsler K., Arendts F.-J. Mechanical performance of composites based on various three-dimensional woven-fibre preforms. Composites Science and Technology, 1996, no. 56, pp. 381–386. DOI: 10.1016/0266-3538(95)00135-2.
27. Lomov S.V., Bogdanovich A.E., Ivanov D.S. et al. A comparative study of tensile properties of non-crimp 3D orthogonal weave and multi-layer plain weave E-glass composites. Part 1: Materials, methods and principal results. Composites. Part A: Applied Science and Manufacturing, 2009, no. 40, pp. 1134–1143. DOI: 10.1016/j.compositesa.2009.03.012.
28. Cox B.N., Flanagan G. Handbook of Analytical Methods for Textile Composites. Rockwell Science Center, 1996, 161 p.
29. Lee C., Liu D. Tensile strength of stitching joint in woven glass fabrics. Journal of Engineering Materials and Technology, 1990, no. 112, pp. 125–130.
30. Farley G.L., Dickinson L.C. Removal of surface loop from stitched composites can improve compression and compression-after-impact strengths. Journal of Reinforced Plastics and Composites, 1992, no. 11, p. 633.
31. Pankow M., Waas A.M., Yen C.-F. Modeling the response of 3D textile composites under compressive loads to predict compressive strength. Computers, Materials and Continua, 2012, no. 32, pp. 81–106.
32. Siyuan Y., Xiuhua C. Tension-compression fatigue behavior of 3D woven composites. IOP Conference. Series: Materials Science and Engineering, 2018, no. 388, pp. 1–6. DOI: 10.1088/1757-899x/388/1/012016.
33. Yakovlev N.O., Gulyaev A.I., Lashov O.A. Crack firmness of layered polymeric composite materials (review). Trudy VIAM, 2016, no. 4, paper no. 12. Available at: http://www.viam-works.ru (accessed: August 26, 2022) DOI: 10.185772307-6046-2016-0-4-12-12. (дата обращения: 26.08.2022). DOI: 10.18577/2307-6046-2016-0-4-12-12.
34. Grinevich D.V., Yakovlev N.O., Slavin A.V., Lashov O.A. Peculiarities of modeling the delamination of polymer composite materials during separation. Deformatsiya i razrusheniye materialov, 2022, no. 1, pp. 2–10. DOI: 10.31044/1814-4632-2022-1-2-10.
35. Shershak P.V. National standardization specifics of polymer composites materials tests methods. Trudy VIAM, 2019, no. 2 (74), paper no. 08. Available at: http://www.viam-works.ru (accessed: August 26, 2022). DOI: 10.18577/2307-6046-2019-0-2-77-88.
36. Wong R. Sandwich construction in the Starship. Proceedings of the 37th international SAMPE symposium and exhibition, 1992, pp. 186–197.
37. Mouritz A.P., Bannister M.K., Falzon P.J., Leong K.H. Review of applications for advanced three-dimensional fibre textile composites. Composites. Part A: Applied Science and Manufacturing, 1999, vol. 30, no. 12, pp. 1445–1461. DOI: 10.1016/S1359-835X(99)00034-2.
38. Byun J.-H., Gillespie J.W., Chou T.-W. Mode I delamination of a three-dimensional fabric composite. Delamination in Advanced Composites, 1989, no. 1, pp. 457–478.
39. Guenon V.A., Chou T.-W., Gillespie J.W. Toughness properties of a three-dimensional carbon-epoxy composite. Journal of Materials Science, 1989, no. 24, pp. 4168–4175.
40. Stegschuster G., Pingkarawat K., Wendland B., Mouritz A.P. Experimental determination of the mode I delamination fracture and fatigue properties of thin 3D woven composites. Composites. Part A: Applied Science and Manufacturing, 2016, no. 84, pp. 308–315. DOI: 10.1016/j.compositesa.2016.02.008.
41. Fishpool D.T., Rezai A., Baker D. et al. Interlaminar toughness characterisation of 3D woven carbon fibre composites. Plastics, Rubber and Composites, 2013, no. 42, pp. 108–114. DOI: 10.1179/1743289812Y.0000000036.
42. Ladani R.B., Nguyen A.T.T., Wang C.H., Mouritz A.P. Mode II interlaminar delamination resistance and healing performance of 3D composites with hybrid z-fibre reinforcement. Composites. Part A: Applied Science and Manufacturing, 2019, no. 120, pp. 21–32. DOI: 10.1016/j.compositesa.2019.02.010.
43. Rudov-Clark S., Mouritz A.P. Tensile fatigue properties of a 3D orthogonal woven composite. Composites. Part A: Applied Science and Manufacturing, 2008, no. 39, pp. 1018–1024. DOI: 10.1016/j.compositesa.2008.03.001.
44. Pankow M., Waas A.M., Yen C.F., Ghiorse S. Resistance to delamination of 3D woven textile composites evaluated using End Notch Flexure (ENF) tests: Cohesive zone based computational results. Composites. Part A: Applied Science and Manufacturing, 2011, vol. 42, no. 12, pp. 1863–1872.
45. Chou S., Wu C.-J. A study of the physical-properties of epoxy-resin composites reinforced with knitted glass-fiber fabrics. Journal of Reinforced Plastics and Composites, 1992, no. 11, pp. 1239–1250.
46. Walter T.R., Subhash G., Sankar B.V., Yen C.F. Monotonic and cyclic short beam shear response of 3D woven composites. Composites Science and Technology, 2010, no. 70, pp. 2190–2197. DOI: 10.1016/j.compscitech.2010.08.022.
47. Kashif M., Hamdani S.T., Zubair M., Nawab Y. Effect of interlocking pattern on short beam strength of 3D woven composites. Journal of Composite Materials, 2019, vol. 53, no. 20, pp. 2789–2799. DOI: 10.1177/0021998319839441.
48. Zhang D., Liu X., Gu Y. et al. Effects of off-axis angle on shear progressive damage of 3D woven composites with X-ray micro-computed tomography. Composites. Part A: Applied Science and Manufacturing, 2019, vol. 53, no. 20, pp. 2789–2799. DOI: 10.1016/j.compositesa.2018.10.007.
49. Zhang D., Liu X., Gu Y. et al. Effects of off-axis angle on shear progressive damage of 3D woven composites with X-ray micro-computed tomography. Composites. Part A: Applied Science and Manufacturing, 2018, no. 115, pp. 311–320. DOI: 10.1016/j.compositesa.2018.10.007.
50. Wu X.C., Shan Z.D., Liu F., Wang Y. The Effect of Guide Sleeves on Shear Behavior of 3D Weaving Composites. Applied Mechanics and Materials, 2014, no. 597, pp. 89–94. DOI: 10.4028/www.scientific.net/amm.597.89.
51. Saleh M.N., Soutis C. Recent advancements in mechanical characterisation of 3D woven composites. Mechanics of Advanced Materials and Modern Processes, 2017, no. 3, pp. 1–17. DOI: 10.1186/s40759-017-0027-z.
52. Billaut F., Roussel O. Impact resistance of 3-D graphite/epoxy composites. Proceedings of the 11 International Conference on Composite Materials. Woodhead Publishing Ltd, 1995, vol. 5, pp. 551–558.
53. Herrick J.W., Globus R. Impact resistance multidimensional composites. Proceedings of the 12 National SAMPE Technical Conference. Seattle, 1980, pp. 845–856.
54. Reedy E.D., Guess T.R. Additional comparisons of interlocked fabric and laminated fabric Kevlar 49/epoxy composites. Journal of Composites Technology and Research, 1986, no. 8, pp. 163–168.
55. Susuki I., Takatoya T. Impact damage properties of 3-D carbonhismaleimide composites. Proceedings of the 5 Japan Int. SAMPE Symposium. Tokyo, 28–31 Oct. 1997, pp. 691–696.
56. James B., Howlett S. Enhancement of post impact structural integrity of GFRP composite by through-thickness reinforcement. Proceedings of the 2nd European Fighting Vehicle Symposium. Shrivenham, 1997, pp. 543–571.
57. Ballistic resistant article comprising a three-dimensional interlocking woven fabric: pat. US 5,456,974; filed 28.02.94; publ. 10.10.95.
58. Walter T.R., Subhash G., Sankar B.V., Yen C.F. Damage modes in 3D glass fiber epoxy woven composites under high rate of impact loading. Composites. Part B: Engineering, 2009, no. 40, pp. 584–589. DOI: 10.1016/j.compositesb.2009.04.021.
59. Pankow M., Waas A.M., Yen C.-F. Modeling the response of 3D textile composites under compressive loads to predict compressive strength. Computers, Materials and Continua, 2012, no. 32, pp. 81–106.
60. Voss S., Fahmy A., West H. Impact tolerance of laminated and 3 dimensionally reinforced graphite-epoxy panels. Proceedings of the International Conference on Advanced Composite Materials, Wollongong, 1993, pp. 591–596.
61. Hart K.R., Chia P.X.L., Sheridan L.E., Wetzel E.D., Sottos N.R., White S.R. Comparison of Compression-After-Impact and Flexure-After-Impact protocols for 2D and 3D woven fiber-reinforced composites. Composites. Part A: Applied Science and Manufacturing, 2017, no. 101, pp. 471–479. DOI: 10.1016/j.compositesa.2017.07.005.
62. Jin L., Niu Z., Jin B.C. et al. Comparisons of static bending and fatigue damage between 3D angle-interlock and 3D orthogonal woven composites. Journal of Reinforced Plastics and Composites, 2012, no. 31, pp. 935–945. DOI: 10.1177/0731684412450626.
63. Yu B., Bradley R.S., Soutis C. et al. 2D and 3D imaging of fatigue failure mechanisms of 3D woven composites. Composites. Part A: Applied Science and Manufacturing, 2015, vol. 77, pp. 37–49.
64. Ruggles-Wrenn M.B., Alnatifat S.A. Fully-reversed tension-compression fatigue of 2D and 3D woven polymer matrix composites at elevated temperature. Polymer Testing, 2021, no. 97, art. 107179. DOI: 10.1016/j.polymertesting.2021.107179.
65. Ma Z., Zhang P., Zhu J. Review on the fatigue properties of 3D woven fiber/epoxy composites: testing and modelling strategies. Journal of Industrial Textiles, 2020, no. 51, pp. 7755–7795. DOI: 10.1177/1528083720949277.
66. Linke M., Greb C., Klingele J. et al. Automating textile preforming technology for mass production of fibre-reinforced polymer (FRP) composites. The Global Textile and Clothing Industry. Ed. R. Shishoo. Cambridge: Woodhead Publishing Ltd, 2012, pp. 171–195. DOI: 10.1533/9780857095626.171.
67. Novello E. Thermomechanical and microscopy Investigation of fatigue damage Development in a 3d e-glass/epoxy woven composite: PhD thesis. Università Degli Studi Di Padova, 2010, 208 p. Available at: https://thesis.unipd.it/bitstream/20.500.12608/19185/1/master_thesis_Novello.pdf (accessed: August 25, 2022).
68. El-Dessouky H.M., Saleh M.N., Wang Y., Alotaibi M.S. Effect of Unit-Cell Size on the Barely Visible Impact Damage in Woven Composites. Applied Sciences, 2021, no. 11, art. 2364. DOI: 10.3390/app11052364.
69. Lomov S.V., Truong Chi T., Verpoest I. Mechanical properties of non-crimp fabric (NCF) based composites: stiffness and strength. Non-Crimp Fabric Composites. Ed. S.V. Lomov. Amsterdam: Elsevier Science, 2011, pp. 263–288. DOI: 10.1533/9780857092533.3.263.
70. Carvelli V., Gramellini G., Lomov S.V. et al. Fatigue behavior of non-crimp 3D orthogonal weave and multi-layer plain weave E-glass reinforced composites. Composites Science and Technology, 2010, no. 70, pp. 2068–2076. DOI: 10.1016/j.compscitech.2010.08.002.
71. Saleh M.N., El-Dessouky H.M., Saeedifar M. et al. Compression After Multiple Low Velocity Impacts of NCF, 2D and 3D Woven Composites. Composites. Part A: Applied Science and Manufacturing, 2019, vol. 125, art. 105576. DOI: 10.1016/j.compositesa.2019.105576.
Presents the results of comparative tests of corrosion resistance of ion-plasma layered coatings of the (Ti–TiN) + VSDP-13 system obtained after vacuum annealing and after saturation in metal plasma to protect the deformable intermetallic titanium ortho-alloy VIT6. Metallographic studies and studies of the phase composition were carried out after accelerated cyclic corrosion tests at a temperature of 700 °C on the basis of 10 cycles. An increase in the corrosion resistance of the alloy-coating composition was found when vacuum annealing was applied at a temperature of 700 °C for 5 hours relative to saturation in metal plasma.
2. Nochovnaya N.A., Bazyleva O.A., Kablov D.E., Panin P.V. Intermetallic alloys based on titanium and nickel. Ed. E.N. Kablov. Moscow: VIAM, 2018, 308 p.
3. Nochovnaya N.A., Shiryaev A.A., Sharapkin D.S. Complex of mechanical and operational properties of rolled blanks from metastable-β-titanium alloy VT47. Aviation materials and technologies, 2022, no. 1 (66), paper no. 05. Available at: http://www.journal.viam.ru (accessed: January 26, 2023). DOI: 10.18577/2713-0193-2022-0-3-50-59.
4. Grigorenko S.G., Grigorenko G.M., Zadorozhnyuk O.M. Titanium intermetallics. Features, application properties (review). Sovremennaya elektrometallurgiya, 2017, no. 3 (128), pp. 51–58. DOI: 10.15407/sem2017.03.08.
5. Kablov E.N., Kashapov O.S., Medvedev P.N., Pavlova T.V. Study of a α + β-titanium alloy based on a system of Ti–Al–Sn–Zr–Si–β-stabilizing alloying elements. Aviacionnye materialy i tehnologii, 2020, no. 1 (58), pp. 30–37. DOI: 10.18577/2071-9140-2020-0-1-30-37.
6. Kablov E.N., Ospennikova O.G., Kucheryaev V.V. Thermomechanical behavior of intermetallic alloys of Ni–Al–Co and Ti–Al–Nb systems during isothermal deformation. Pisma o materialakh, 2016, vol. 6, no. 3 (23), pp. 189–194. DOI: 10.22226/2410-3535-2016-3-189-194.
7. Kapustin V.I., Zakharchenko K.V., Cherepanova V.K., Shayapov V.R. Investigation of dissipative processes of VT6 alloy under fatigue. Aviation materials and technologies, 2022, no. 1 (69), paper no. 09. (accessed: January 26, 2023). DOI: 10.18577/2713-0193-2022-0-4-96-111.
8. Polkin I.S., Grebenyuk O.N., Salenkov V.S. Intermetallic compounds based on titanium. Tekhnologiya legkikh splavov, 2010, no. 2, pp. 59–15.
9. Kablov E.N., Nikiforov A.A., Demin S.A., Chesnokov D.V., Vinogradov S.S. Promising coatings for corrosion protection of carbon steels. Stal, 2016, no. 6, pp. 70–81.
10. Kablov E.N., Kutyrev A.E., Vdovin A.I., Kozlov I.A., Afanasyev-Khodykin A.N. The research of possibility of galvanic corrosion in brazed connections used in aviation engine construction. Aviation materials and technologies, 2021, no. 4 (65), paper no. 01. Available at: http://www.journal.viam.ru (accessed: January 26, 2023). DOI: 10.18577/2713-0193-2021-0-4-3-13.
11. Shubin I.Yu., Nikitin Ya.Yu., Puchkov Yu.A. et al. Investigation of resistance to high-temperature gas and salt corrosion of heat-resistant and intermetallic titanium alloy VTI-4. Vestnik MGTU im. N.E. Bauman. Ser.: Mechanical engineering, 2020, no. 6, pp. 83–105. DOI: 10.18698/0236-3941-2020-6-83-105.
12. Eremin E.N., Yurov V.M., Laurinas V.Ch., Syzdykova A.Sh. Influence of technological parameters of application of multi-element ion-plasma coatings on their quality. Omskiy nauchnyy vestnik, 2019, no. 4 (166), pp. 9–13. DOI: 10.25206/1813-8225-2019-166-9-13.
13. Khamin O.N., Lavro V.N. The use of ion-plasma coatings for soldering titanium alloys with steels. Sovremennye materialy, tekhnika i tekhnologii, 2019, no. 4 (26). pp. 196–201.
14. Lavro V.N. Investigation of the influence of technological parameters of applying ion-plasma coatings on their quality. Sovremennye materialy, tekhnika i tekhnologii, 2018, no. 4 (19), pp. 63–69.
15. Mukhin V.S., Budilov V.V., Shekhtman S.R. Methodology for creating coatings with improved performance properties and technologies for their application to the blades of a gas turbine engine compressor. Vestnik UGATU, 2012, no. 5 (50), art. 16, pp. 149–153.
16. Terukalova N.V., Novitskaya O.S., Sizova O.V. Microstructure and tribotechnical properties of multilayer CrN–TiN ion-plasma coatings. Mezhdunarodny nauchno-issledovatelskiy zhurnal, 2021, no. 12 (114), part 1, pp. 81–85. DOI: 10.23670/IRJ.2021.114.12.011.
17. Doronin O.N., Gorlov D.S., Azarovsky E.N., Kochetkov A.S. Study of the structure and properties of a heat-resistant coating at high-temperature deformation of samples from titanium intermetallic alloy. Aviation materials and technology, 2021, no. 1 (62), paper no. 06. Available at: http://www.journal.viam.ru (accessed: January 26, 2023). DOI: 10.18577/2713-0193-2021-0-1-61-70.
18. Kablov E.N. The strategic directions of development of materials and technologies of their processing for the period to 2030. Aviacionnye materialy i tehnologii, 2012, no. S, pp. 7–17.
A technique is proposed for determining the base elements Ti, Nb, Al and alloying elements Mo, V, Zr, W, Ta in ortho-titanium alloys by inductively coupled plasma atomic emission spectrometry. Analytical lines of elements free from significant spectral overlaps are chosen. The spectral lines of the internal standard were selected. The limits of detection of elements are estimated. The metrological characteristics of the technique were evaluated using model solutions. The correctness of the developed methodology was assessed using standard samples.
2. Kolobov Yu.R., Kablov E.N., Kozlov E.V. et al. Structure and properties of intermetallic materials with nanophase hardening. Moscow: MISiS, 2008, 328 p.
3. Kablov E.N., Kashapov O.S., Medvedev P.N., Pavlova T.V. Study of a α + β-titanium alloy based on a system of Ti–Al–Sn–Zr–Si–β-stabilizing alloying elements. Aviacionnye materialy i tehnologii, 2020, no. 1 (58), pp. 30–37. DOI: 10.18577/2071-9140-2020-0-1-30-37.
4. Abraimov N.V., Petukhov I.G., Zarypov M.S., Lukina V.V. On the issue of heat resistance of titanium alloys operating at temperatures above 650 °C. Elektrometallurgiya, 2021, no. 12, pp. 10–20.
5. Nochovnaya N.A., Panin P.V., Alekseev E.B., Novak A.V. Patterns of the formation of the structural-phase state of alloys based on ortho- and gamma-titanium aluminides in the process of thermomechanical treatment. Vestnik RFFI, 2015, no. 1, pp. 18–26.
6. Novak A.V. Regularities of the effect of microadditives of rare earth elements on the structural-phase state and mechanical characteristics of an intermetallic alloy based on orthorhombic titanium aluminide: thesis, Cand. Sc. (Tech.). Moscow, 2019, 128 p.
7. Skvortsova S.V., Umarova O.Z., Anishchuk D.S., Smirnov V.G. Formation of the structure, phase composition and mechanical properties of an alloy based on titanium aluminide Ti2AlNb during heat treatment. Titan, 2015, no. 3 (49), pp. 29–33.
8. Skvortsova S.V., Umarova O.Z., Agarkova E.O., Chernyshova A.A. Influence of heat treatment on the structure and mechanical properties of the plate from the VTI-4 intermetallic alloy. Titan, 2015, no. 4 (50), pp. 17–21.
9. Makushina M.A., Kochetkov A.S., Nochovnaya N.A. Cast titanium alloys for aviation equipment (review). Trudy VIAM, 2021, no. 7 (101), paper no. 05. Available at: http://www.viam-works.ru (accessed: January 09, 2023). DOI: 10.18577/2307-6046-2021-0-7-39-47.
10. Nochovnaya N.A., Bazyleva O.A., Kablov D.E., Panin P.V. Intermetallic alloys based on titanium and nickel. Ed. E.N. Kablov. Moscow: VIAM, 2018, 308 p.
11. Antipov V.V. Prospects for development of aluminium, magnesium and titanium alloys for aerospace engineering. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 186–194. DOI: 10.18577/2107-9140-2017-0-S-186-194.
12. Alekseev I.E., Pilipenko A.A., Varfolomeev M.S. The possibility of replacing nickel heat-resistant alloys with alloys based on the Ti–Al intermetallic compound. Rapidly quenched materials and coatings: Proceedings of the XIX Intern. sci.-tech. conf. Moscow, 2022, pp. 311–315.
13. Dzunovich D.A., Alekseyev E.B., Panin P.V., Lukina E.A., Novak A.V. Structure and properties of sheet semi-finished products from various wrought intermetallic titanium alloys. Aviacionnye materialy i tehnologii, 2018, no. 2 (51), pp. 17–25. DOI: 10.18577/2071-9140-2018-0-2-17-25.
14. Podkopalov I.A. Review of alloys based on titanium intermetallic compounds. Mavlyutovskie readings: materials of XV All-Rus. youth scientific conference: in 7 vols. Ufa, 2021, vol. 2, pp. 311–315.
15. Polkin I.S., Egorova Yu.B., Davydenko L.V. Alloying, phase composition and mechanical properties of titanium alloys. Technology of light alloys, 2022, no. 2, pp. 4–13.
16. Shubin I.Yu., Nikitin Ya.Yu., Puchkov Yu.A. et al. Investigation of resistance to high-temperature gas and salt corrosion of heat-resistant intermetallic titanium alloy VTI-4. Vestnik Moskovskogo gosudarstvennogo tekhnicheskogo universiteta im. N.E. Baumana. Ser.: Mechanical engineering, 2020, no. 6 (135), pp. 83–105.
17. Bykov Yu.G., Nochovnaya N.A., Timokhin V.M., Alekseev E.B., Novak A.V., Zakharova E.S. Application of intermetallic titanium ortho-alloy in the bling design of the high-pressure compressor guide vane. Electrometallurgiya, 2019, no. 11, pp. 19–26.
18. Duyunova V.A., Oglodkov M.S., Putyrskiy S.V., Kochetkov A.S., Zueva O.V. Modern technologies for melting titanium alloy ingots (review). Aviation materials and technologies, 2022, no. 1 (66), paper no. 03. Available at: http://www.journal.viam.ru (accessed: January 11, 2023). DOI: 10.18577/2071-9140-2022-0-1-30-40.
19. Nadezhdina M.E., Shinkevich A.I., Shinkevich M.V. Monitoring system for digital production of an enterprise of the petrochemical industry. Kompetentnost, 2021, no. 7, pp. 36–39.
20. Karpov Yu.A., Baranovskaya V.B. Analytical control is an integral part of material diagnostics. Zavodskaya laboratoriya. Diagnostika materialov, 2017, vol. 83, no. 1-I, pp. 5–12.
21. Arkhipenko A.A., Koshel E.S., Baranovskaya V.B. Development of a technique for arc atomic emission spectral analysis of cerium oxide. Zavodskaya laboratoriya. Diagnostika materialov, 2021, vol. 87, no. 11, pp. 19–25.
22. Nochovnaya N.A., Kochetkov A.S., Bokov K.A., Ivanov V.I. Research the characteristics of casting titanium superalloy VTI-4. Trudy VIAM, 2017, no. 5 (53), paper no. 02. Available at: http://www.viam-works.ru (accessed: January 10, 2023). DOI: 10.18577/2307-6046-2017-0-5-2-2.
23. Umarova O.Z. Patterns of formation of phase composition and structure in a heat-resistant alloy based on titanium intermetallic compound VTI-4 during thermal and thermohydrogen treatments: thesis, Cand. Sc. (Tech.). Moscow, 2017, 179 p.
24. Oglodkov M.S., Duyunova V.A., Nochovnaya N.A., Ivanov V.I., Avilochev L.Yu. Features of the technology manufacturing of deformed blanks from intermetallic alloys VIT1 for parts of the gas turbine engine. Trudy VIAM, 2021, no. 12 (106), paper no. 01. Available at: http://www.viam-works.ru (accessed: January 11, 2023). DOI: 10.18577/2307-6046-2021-0-12-3-13.
25. Vyacheslavov A.V., Malinkina Yu.Yu., Bichaev V.B., Titova A.D., Ermolaeva T.N. Analysis of corrosion-resistant titanium alloys alloyed with ruthenium by inductively coupled plasma atomic emission spectrometry. Zavodskaya laboratoriya. Diagnostika materialov, 2018, vol. 84, no. 5, pp. 14–19.
26. Baranovskaya V.B., Medvedevskikh M.Yu., Karpov Yu.A. Actual problems of the quality of chemical analysis. Analitika i kontrol, 2021, vol. 25, no. 4, pp. 273–279.
27. Otto M. Modern methods of analytical chemistry: in 2 vols. Moscow: Technosfera, 2003, vol. I, 416 p.
28. Karpov Yu.A., Baranovskaya V.B. The role and possibilities of analytical control in metallurgy. Tsvetnye metally, 2016, no. 8 (884), pp. 63–67. DOI: 10.17580/tsm.2016.08.09.
29. Karpov Yu.A., Baranovskaya V.B. Problems of standardization of methods of chemical analysis in metallurgy. Zavodskaya laboratoriya. Diagnostika materialov, 2019, vol. 85, no. 1–2, pp. 5–14.
30. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
The properties of paint coatings under the influence of standard test cultures and microscopic fungi isolated under natural conditions of a temperate (Moscow) and moderately warm climate (Gelendzhik) were studied. Changes in the decorative properties of coatings VE-69 and EP-140 after exposure to individual strains of micromycetes were revealed. It is shown that the color change of VE-69 and EP-140 coatings with red pigment is higher than for coatings of similar enamels with gray pigment. The study of adhesive properties did not reveal any changes on all samples, both after standard tests with test cultures according to GOST 9.049–91, and after long-term (45 and 90 days) exposure to monocultures of micromycetes isolated in temperate and moderately warm climates.
2. Polyakova A.V., Krivushina A.A., Goryashnik Yu.S., Buharev G.MMicrobiological resistance tests under nature conditions in variety of climatiс zones. Trudy VIAM, 2016, no. 4, paper no. 11. Available at: http://www.viam-works.ru (accessed: December 22, 2022). DOI: 10.18577/2307-6046-2016-0-4-11-11.
3. Startsev V.O., Molokov M.V., Startsev O.V., Nizina T.A., Nizin D.R. Influence of the aliphatic thinner ETAL-1 on the climatic resistance of epoxy polymers based on ED-20 resin. Vse materialy. Entsiklopedicheskiy spravochnik, 2016, no. 12, pp. 26–36.
4. Kablov E.N., Startsev V.O. Influence of internal stresses on the aging of polymer composite materials. Review. Mekhanika kompozitnykh materialov, 2021, vol. 57, no. 5, pp. 805–822.
5. Kablov E.N., Startsev O.V., Medvedev I.M. Corrosive aggressiveness of the coastal atmosphere. 2. New approaches to assessing the corrosiveness of coastal atmospheres. Korroziya: materialy, zashchita, 2016, no. 1, pp. 1–15.
6. Startsev O.V., Medvedev I.M., Kurs M.G. Hardness as the indicator of corrosion of aluminum alloys in sea conditions. Aviacionnye materialy i tehnologii, 2012, no. 3, pp. 16–19.
7. Batraev I.S., Rybin D.K., Ivanyuk K.V., Ulianitsky V.Yu., Shtertser A.A. Wear resistant detonation coatings based on tungsten carbide for aviation products. Aviation materials and technologies, 2022, no. 1 (66), paper no. 08. Available at: http://www.journal.viam.ru (ассеssed: December 22, 2022). DOI:10.18577/2713-0193-2022-0-1-92-109.
8. Merkulova Yu.I., Kuznetsova V.A., Kodachenko E.N., Zheleznyak V.G. Study of the influence of the primer layer’s chemical nature on the properties of the coating system based on fluoropolyurethane enamel. Aviation materials and technologies, 2022, no. 1 (66), paper no. 09. Available at: http://www.journal.viam.ru (ассеssed: December 22, 2022). DOI: 10.18577/2713-0193-2022-0-1-110-119.
9. Zheleznyak V.G., Serdcelyubova A.S., Merkulova Yu.I., Skivko P.V. Paint coating system based on polyurethane enamel for protecting heated frontal surfaces of aviation products. Aviation materials and technologies, 2022, no. 1 (66), paper no. 10. Available at: http://www.journal.viam.ru (ассеssed: December 22, 2022). DOI: 10.18577/2713-0193-2022-0-1-120-128.
10. Merkulova Yu.I., Kurshev E.V., Vdovin A.I., Andreeva N.P. Microstructural and electrochemical studies of paint coatings under natural climate tests of tropical climate of North America. Aviation materials and technologies, 2022, no. 2 (67), paper no. 11. Available at: http://www.journal.viam.ru (accessed: December 22, 2022). DOI: 10.18577/2713-0193-2022-0-2-120-130.
11. Rojas T.I., Aira M.J., Batista A. et al. Fungal biodeterioration in historic buildings of Havana (Cuba). Grana, 2012, vol. 51, is. 1, pp. 44–51.
12. Popikhina E.A., Trepova E.S. Mikodestruktory building materials. Report Fourth Congress of Russian Mycologists "Modern Mycology in Russia". Moscow: National Academy of Mycology, 2017, vol. 6, pp. 424–426.
13. Ogarkova G.R., Bukovskaya N.E., Samusenok L.V., Ogarkov B.N. Biodamage of porous building materials by associations of specific microorganisms. Report Third Congress of Russian Mycologists "Modern Mycology in Russia". Moscow: National Academy of Mycology, 2012, vol. 3, pp. 224–225.
14. Balyuta A.A., Vazhinskaya I.S. The resistance of modern building materials to mold damage. Report Third Congress of Russian Mycologists "Modern Mycology in Russia". Moscow: National Academy of Mycology, 2012, vol. 3, pp. 210.
15. Kataev A.D., Kurakov A.V. Microbial colonization and destruction of biodegradable synthetic materials based on polyhydroxybutyrate and polyhydroxyvalerate in soils. Report Third Congress of Russian Mycologists "Modern Mycology in Russia". Moscow: National Academy of Mycology. 2012, vol. 3, pp. 218–219.
16. Goncharova I.A., Sabadakha E.N., Trigubovich A.M., Chernaya N.V. Mycological analysis of industrial materials contaminated with microscopic fungi. Proceedings of BSTU. Ser.: 2, 2020, no. 2, pp. 163–168.
17. Smolyanitskaya O.L. Micromycetes as potential agents of biodamage of cultural values and a strategy for protection against them in the State Hermitage Museum: thesis, Cand Sc. (Biol.). SPb., 2007, 26 p.
18. Sevastyanov D.V., Sutubalov I.V., Daskovskij M.I., Shein E.A. Polymer biocomposites based on biodegradable binders reinforced by natural fibers (review). Aviacionnye materialy i tehnologii, 2017, no. 4 (49), pp. 42–50. DOI: 10.18577/2071-9140-2017-0-4-42-50.
19. Goryaeva A.G., Velikova T.D., Dobrusina S.A. Mycobiota of air and polymer-coated paper composites in the Russian National Library. Mikologiya i fitopatologiya, 2010, no. 44 (1), pp. 10–18.
20. Lugauskas A.Yu., Mikulskene A.I., Shlyauzhene D.Yu. Catalog of micromycetes – biodestructors of polymeric materials. Moscow: Nauka, 1987, pp. 258–259.
Questions of the nature of noise are considered when forming digital radiographic images. Classification of types of noise is carried out and are defined, what of its types it is possible to clean from the digital image. Ways of modeling of noise and assessment of their level, and also suppression are studied; merits and demerits of each of the considered ways are noted. It is shown, what noise arise at stages of forming of radiation images and their transformations to the digital. It is noted that the quantization noise cannot be eliminated with the subsequent filtering as is the integral characteristic of digital detector system.
2. Kablov E.N., Kondrashov S.V., Melnikov A.A., Schur P.A. Application of functional and adaptive materials obtained by 3D printing (review). Trudy VIAM, 2022, no. 2 (108), paper no. 03. Available at: http://www.viam-works.ru (accessed: April 27, 2022). DOI: 10.18577/2307-6046-2022-0-2-32-51.
3. Slavin A.V., Dalin M.A., Dikov I.A., Boychuk A.S., Chertishchev V.Yu. Current trends in development of acoustic non-destructive testing methods in aviation industry (review). Trudy VIAM, 2021, no. 12 (106), paper no. 11. Available at: http://www.viam-works.ru (accessed: January 19, 2023). DOI: 10.18577/2307-6046-2021-0-12-96-106.
4. Obukhova N.A., Motako A.A., Pozdeev A.A. Research and development of methods for improving endoscopic (medical) images. Izvestiya vuzov Rossii. Radioelectronics, 2019, vol. 22, no. 2, pp. 22–29.
5. Gonzalez R., Woods R. Digital image processing. 3rd ed., rev. and add. Moscow: Technosfera, 2019, 1104 p.
6. Yane B. Digital image processing. Moscow: Technosfera, 2007, 583 p.
7. Kosarina E.I., Demidov A.A., Mikhaylova N.A., Smirnov A.V. Theoretical aspects when creating electronic reference X-ray images containing quantitative information. Aviacionnye materialy i tehnologii, 2019, no. 4 (57), pp. 87–94. DOI: 10.18577/2071-9140-2019-0-4-87-94.
8. Lapshenkov E.M. Non-reference estimation of the noise level of a digital image based on harmonic analysis. Kompyuternaya optika, 2012, vol. 36, no. 3, pp. 439–447.
9. Amer A., Dubois E. Fast and reliable structure-oriented video noise estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2005, vol. 15, pр. 113–118.
10. Babayan P.V., Burkina O.N., Muravyov V.S. Exposure time projection algorithm for video cameras in the image analysis system. Collection of reports of the 24th Intern. conf. "Digital signal processing and its application – DSP-2022". Moscow: RNTO RES im. A.S. Popova, 2022, pp. 201–205.
11. Kolesnikova T.N. Noise Analysis of Electronic Circuits as an Effective Means of Ensuring Signal Integrity. Elektronnye komponenty, 2018, no. 12, pp. 18–22.
12. Yangzhao V. Investigation of the influence of quantum noise on the quality of material recognition by the dual energy method during inspection control of objects: thesis, Cand. Sc. (Tech.). Tomsk, 2018, 164 p.
13. Mingazin A.T. Minimum maximum weighted error of approximation of the frequency response of classical analog and digital filters. Tsifrovaya obrabotka signalov, 2018, no. 4, pp. 18–22.
14. Yan Ch. Development of algorithms for digital data processing for radiographic and tomographic systems of non-destructive testing: thesis, Cand. Sc. (Tech.). Tomsk, 2019, 127 p.
15. Kosarina E.I., Krupnina O.A., Demidov A.A., Mikhaylova N.A. Digital optical pattern and its dependence on the radiation image at non-destructive testing by method of digital radiography. Aviacionnye materialy i tehnologii, 2019, no. 1 (54), pp. 37–42. DOI: 10.18577/2071-9140-2019-0-1-37-42.
16. Bessonov V.B. Software and hardware systems for microfocus X-ray computed tomography: thesis, Dr. Sc. (Tech.). St. Petersburg, 2022, 188 p.
Ingacheva A.S., Sheshkus A.V., Chernov T.S. X-ray computed tomograph – a new tool in recognition. Trudy ISA RAN, 2018. Special issue, pp. 90–95.
Heat-resistant alloys and steels
Elyutin Е.S., Petrushin N.V., Karachevtsev F.N., Chabina E.B. Solubility of rhenium and ruthenium in the γ′-phase and physicochemical properties of nickel alloys of the Ni–Al‒Re‒Ru system
Polymer materials
Akhmadieva K.R., Petrova А.P., Shosheva A.L., Bokov V.V. Heat-resistant polyimide adhesive of constructive purposes
Chaykun A.M., Sergeyev A.V. Pravada E.S. Elastomeric-fabric materials for products of special equipment (review)
Composite materials
Antipov V.V., Varrik N.M., Maksimov V.G., Lugovoy A.A., Babashov V.G., Shavnev A.A. Study of mechanical and thermal characteristics of a porous ceramic material based on mullite
Valueva M.I., Zelenina I.V., Nacharkina A.V., Gulyaev A.I. Research of influence of thermal aging on properties high-temperature polyimide carbon fiber reinforced plastic
Veshkin Е.A., Semenychev V.V., Kirillin S.G., Istyagin S.E. Investigation of acoustic emission signals and matrix microhardness of the matrix in samples from unidirectional carbon fiber
Hrulkov A.V., Karavaev R.Yu., Gorodilova N.A., Donetskiy K.I. Some causes of voids formation in polymer composite materials
(review)
Grinevich D.V., Donetsky K.I., Shershak P.V., Yakovlev N.O. Mechanical properties of woven composite materials with a 3D-reinforced structure (review)
Protective and functional
coatings
Antipov V.V., Gorlov D.S., Chesnokov D.V., Zhuravleva P.L., Ivanov I.M. Investigation of corrosion resistance of ion-plasma coatings for the protection of intermetallic titanium alloy
Material tests
Dvoretskov R.M., Alekseev E.B., Karachevtsev F.N., Zagvozdkina T.N. Analysis of the chemical composition of intermetallic titanium ortho-alloys by inductively coupled plasma atomic emission spectrometry. Part 1
Antipov V.V., Krivushina A.A., Startsev V.O., Kogan A.M. Study of the paint coatings properties after impact of micromycetes in a moderate and moderate warm climate
Kosarina E.I., Mikhaylova N.A., Suvorov P.V., Demidov A.A. The nature of noise in digital radiography, their modeling and ways of suppression in the digital radiographic image (review)