Articles
A complex approach to structure and properties transformation of titanium alloys has been in focus, the approach including thermo-hydrogen treatment and plastic deformation combination. It has been shown that thermo-hydrogen treatment together with plastic deformation allow to obtain a multiphase structure in 2 mm sheet semi-finished products of VT5 (Ti–5,8Al), VT20 (Ti–6,2Al–1,2V–1Mo–2Zr), and VT6 (Ti–5,7Al–4,3V) titanium alloys (wt.%). The obtained structure contain α-phase in two structural constituents: primary αI-phase enriched by aluminum up to Ti3Al-based α2-phase, and secondary αdeg-phase depleted by aluminum.
2. Kablov E.N. Materialy dlya aviakosmicheskoy tekhniki [Materials for aerospace equipment] // Vse materialy. Entsiklopedicheskiy spravochnik. 2007. №5. S. 7–27.
3. Nochovnaja N.A. Perspektivy i problemy primenenija titanovyh splavov [Perspectives and problems of application of titanium alloys] // Sb. dokl. «Perspektivy razvitija i primenenija titanovyh splavov dlja samoletov, raket, dvigatelej i sudov». M.: VIAM, 2007. S. 4–8.
4. Balabuev P.V. Titanovye splavy v izdelijah ANTK im. O.K. Antonova [Titanium alloys in products of ASTC of O.K. Antonov] // Titan. 1998. №1 (10). S. 15–19.
5. Bratuhin A.G., Kolachev B.A., Sadkov V.V. i dr. Tehnologija proizvodstva titanovyh samo-letnyh konstrukcij [Production technology of titanic aircraft designs]. M.: Mashinostroenie, 1995. 448 s.
6. Skvorcova S.V., Ilin A.A., Becofen S.Ja., Filatov A.A., Dzunovich D.A., Panin P.V. Ani-zotropija mehanicheskih svojstv i tekstura listovyh polufabrikatov iz titanovyh splavov [Anisotropy of mechanical properties and structure of sheet semi-finished products from titanium alloys] // Tehnologija legkih splavov. 2006. №1–2. S. 81–87.
7. Ilin A.A., Kolachev B.A., Polkin I.S. Titanovye splavy. Sostav, struktura, svojstva: spravoch-nik [Titanium alloys. Structure, structure, properties: directory]. M.: VILS–MATI, 2009. 520 s.
8. Kajbyshev O.A., Utjashev F.Z. Sverhplastichnost, izmelchenie struktury i obrabotka trudnodeformiruemyh splavov [Over plasticity, crushing of structure and processing of difficult deformable alloys]. M.: Nauka, 2002. 438 s.
9. Panin P.V., Manohin S.S., Dzunovich D.A. Poluchenie i issledovanie submikrokristallicheskoj struktury v titanovyh splavah pri obratimom legirovanii vodorodom i plasticheskoj deformacii [Receiving and research of submicrocrystal structure in titanium alloys at reversible alloying hydrogen and plastic strain] // Voprosy materialovedenija. 2016. №4 (88). S. 7–17.
10. Ilin A.A., Skvorcova S.V., Panin P.V., Shalin A.V. Vlijanie termovodorodnoj obrabotki i plasticheskoj deformacii na strukturoobrazovanie v titanovyh splavah raznyh klassov [Influence of thermohydrogen treating and plastic strain on structurization in titanium alloys of different classes] // Aviacionnaja promyshlennost. 2009. №4. S. 31–36.
11. Panin P.V. Zakonomernosti formirovanija fazovogo sostava i struktury v titanovyh splavah pri termovodorodnoj obrabotke i plasticheskoj deformacii: avtoref. dis. … kand. tehn. Nauk [Patterns of forming of phase structure and structure in titanium alloys at thermohydrogen treating and plastic strain: thesis cand. Sc. (Tech.)] M.: MATI, 2009. 24 s.
12. Ilin A.A., Kolachev B.A., Nosov V.K., Mamonov A.M. Vodorodnaja tehnologija titanovyh splavov [Hydrogen technology of titanium alloys]. M.: MISiS, 2002. 392 s.
13. Kolachev B.A., Ilin A.A., Nosov V.K., Mamonov A.M. Dostizhenija vodorodnoj tehnologii titanovyh splavov [Achievements of hydrogen technology of titanium alloys] // Tehnologija legkih splavov. 2007. №3. S. 10–26.
14. Ovchinnikov A.V., Nosov V.K., Afonin V.E., Panin P.V. Osnovnye zakonomernosti deformacii splavov titan-vodorod [Main patterns of deformation of alloys titanium-hydrogen] // Tehnologija legkih splavov. 2007. №3. S. 96–99.
15. Ilin A.A., Skvorcova S.V., Mamonov A.M., Kollerov M.Ju. Fazovye i strukturnye prevrashhenija v titanovyh splavah raznyh klassov pod dejstviem vodoroda [Phase and structural transformations in titanium alloys of different classes under the influence of hydrogen] // Titan. 2007. №1 (20). S. 32–37.
16. Skvorcova S.V., Popova Ju.A., Panin P.V., Grushin I.A., Kuryshev E.A. Vlijanie termicheskoj obrabotki na strukturu i svojstva svarnyh soedinenij iz titanovogo splava VT23 [Influence of thermal processing on structure and property of welded connections from BT23 titanium alloy] // Titan. 2011. №2 (32). S. 16–21.
17. Skvorcova S.V., Panin P.V., Nochovnaja N.A., Grushin I.A., Mitropolskaja N.G. Vlijanie vodoroda na fazovye i strukturnye prevrashhenija v titanovom splave VT6 [Influence of hydrogen on phase and structural transformations in BT6 titanium alloy] // Tehnologija legkih splavov. 2011. №4. S. 35–40.
18. Panin P.V., Dzunovich D.A., Zasypkin V.V. Sozdanie dvuhfaznoj kompozitnoj struktury v alfa-splave Ti–6Al s pomoshhju termovodorodnoj obrabotki [Creation of diphasic composite structure in Ti–6Al alpha alloy by means of thermohydrogen treating] // Nauchnye trudy (Vestnik MATI). 2012. №19 (91). S. 33–37.
19. Panin P.V., Grushin I.A., Mitropol'skaja N.G. Issledovanie zakonomernostej izmenenija strukturno-fazovogo sostojanija titanovogo splava VT6 pri dopolnitelnom legirovanii vodorodom [Research of patterns of change of structural and phase condition of BT6 titanium alloy at additional alloying hydrogen] // Nauchnye trudy (Vestnik MATI). 2013. №20 (92). S. 31–34.
20. Panin P.V., Shirjaev A.A., Dzunovich D.A. Postroenie temperaturno-koncentracionnoj diagrammy fazovogo sostava titanovogo splava VT6, dopolnitel'no legirovannogo vodorodom [Creation of the temperature and concentration chart of phase composition of the BT6 titanium alloy which has been in addition alloyed by hydrogen] // Tehnologija mashinostroenija. 2014. №3 (141). S. 5–9.
21. Panin P.V., Dzunovich D.A., Alekseev E.B. Sposoby opisaniya fazovogo sostava titanovyh splavov, dopolnitelno legirovannyh vodorodom (obzor) [Ways of phase areas representation in titanium alloys additionally doped with hydrogen (review)] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №3. St. 03. Available at: http://www.viam-works.ru (accessed: August 07, 2017). DOI: 10.18577/2307-6046-2015-0-3-3-3.
22. Panin P.V., Dzunovich D.A., Alekseev E.B. Fazovyj sostav i struktura titanovogo splava VT6, dopolnitelno legirovannogo vodorodom, posle vakuumnogo otzhiga [Phase composition and structure of hydrogenated titanium alloy VT6 after vacuum annealing] // Trudy VIAM: jelektron. nauch.-tehnich. zhurn. 2016. №2 (38). St. 05. Available at: http://www.viam-works.ru (accessed: August 07, 2017). DOI: 10.18577/2307-6046-2016-0-2-5-5.
23. Panin P.V., Dzunovich D.A., Shiryaev A.A. Issledovanie termicheskoj stabilnosti struktury titanovogo splava VT6 posle termovodorodnoj obrabotki [Research on thermal stability of VT6 titanium alloy structure after thermohydrogen treatment] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №3. St. 06. Available at: http://www.viam-works.ru (accessed: August 07, 2017). DOI: 10.18577/2307-6046-2016-0-3-6-6.
24. Dzunovich D.A., Shalin A.V., Panin P.V. Struktura, tekstura i mehanicheskie svojstva de-formirovannyh polufabrikatov iz splava VT6, poluchennyh po promyshlennym i opytnym tehnologijam [Structure, structure and mechanical properties of the deformed semi-finished products from alloy of BT6 received on industrial and pilot technologies] // Deformacija i razrushenie materialov. 2017. №6. S. 19–27.
25. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the develop-ment of materials and technologies of their processing for the period until 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
26. Nochovnaja N.A., Panin P.V., Kochetkov A.S. Problemy poluchenija himicheski i strukturno odnorodnyh slitkov iz zharoprochnyh splavov na osnove gamma-aljuminida titana [Receiving problems chemically and structurally uniform ingots from hot strength alloys on the basis of titanium gamma aluminide] // Materialy konf. «Problemy proizvodstva slitkov i polufabrikatov iz slozhnolegirovannyh i intermetallidnyh titanovyh splavov» (30 okt. 2015 g.). M.: VIAM, 2015. St. 03. 1 jelektr. optich. disk (CD).
27. Kablov D.E., Panin P.V., Shiryaev A.A., Nochovnaya N.A. Opyt ispolzovaniya vakuumno-dugovoj pechi ALD VAR L200 dlya vyplavki slitkov zharoprochnyh splavov na osnove alju-minidov titana [The use of ADL VAR L200 vacuum-arc furnace for ingots fabrication of high-temperature titanium aluminides base alloys] //Aviacionnye materialy i tehnologii. 2014. №2 (31). S. 27–33. DOI: 10.18577/2071-9140-2014-0-2-27-33.
28. Ilin A.A. Mehanizm i kinetika fazovyh i strukturnyh prevrashhenij v titanovyh splavah [The mechanism and kinetics of phase and structural transformations in titanium alloys]. M.: Nauka, 1994. 304 s.
Both technological process protocol and parameters have been developed for a high-strength metastable -titanium REE-containing VT47 alloy, and pilot samples of strips have been produced thereof. The effect of temperature and rate parameters upon interoperation heat treatment (quenching) on mechanical properties of the strips has been studied. A complex quality evaluation of the pilot strips samples, including research on structure and mechanical properties, has showed a reasonability of further work on optimization of strips and foils production technologies for VT47 alloy.
2. Bratukhin A.G., Kolachev B.A., Sadkov V.V. i dr. Tekhnologiia proizvodstva titanovykh samoletnykh konstruktsii [Production technology of titanic aircraft designs]. M.: Mashinostroenie, 1995. 448 s.
3. Nochovnaia N.A., Vaganov V.E., Panin P.V., Shiriaev A.A. i dr. Issledovanie struktury titanovoi provoloki, poluchennoi metodom vysokotemperaturnoi gazovoi ekstruzii [Research of structure of the titanic wire received by method of high-temperature gas ekstruziya] // Titan. 2015. №4 (50). S. 22–28.
4. Kablov E.N., Ospennikova O.G., Lomberg B.S. Kompleksnaya innovacionnaya tehnologiya izotermicheskoj shtampovki na vozduhe v rezhime sverhplastichnosti diskov iz superzharoprochnyh splavov [Complex innovative technology of isothermal punching on air in mode of superplasticity of disks from superhot strength alloys] // Aviacionnye materialy i tehnologii. 2012. №S. S. 129–141.
5. Nochovnaia N.A., Shiriaev A.A., Alekseev E.B., Antashev V.G. Optimizatsiia rezhimov termicheskoi obrabotki dlia lopatochnykh zagotovok iz opytnogo zharoprochnogo splava [Optimization of modes of thermal processing for scapular preparations from pilot hot strength alloy] // MiTOM. 2014. №12. S. 22–26.
6. Nochovnaia N.A., Panin P.V., Kochetkov A.S., Bokov K.A. Opyt VIAM v oblasti razrabotki i issledovaniia ekonomnolegirovannykh titanovykh splavov novogo pokoleniia [VIAM experience in the field of development and research of economically alloyed titanium alloys of new generation] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2016. №9 (45). St. 05. URL: http://www.viam-works.ru (data obrashcheniia: 03.08.2017). DOI: 10.18577/2307-6046-2014-0-9-5-5.
7. Boyer R.R., Briggs R.D. The Use of β Titanium Alloys in the Aerospace Industry //Journal of Materials Engineering and Performance. 2005. 14 (6). P. 681–685.
8. Moiseev V.N. Beta-titanovye splavy i perspektivy ikh razvitiia [Beta titanium alloys and perspectives of their development] //MiTOM. 1998. №12. S. 11–14.
9. Shiriaev A.A., Nochovnaia N.A., Burkhanova A.A., Antashev V.G. Perspektivy i vozmozhnosti sozdaniia ekonomnolegirovannykh beta-titanovykh splavov [Perspectives and possibilities of creation of economically alloyed beta titanium alloys] // Sb. tr. mezhdunar. konf. «Ti-2013 v SNG». 2013. S. 14–18.
10. Tetiukhin V.V., Gribkov Iu.A., Moder N.I., Vodolazskii V.F. Issledovanie strukturnykh i fazovykh prevrashchenii v splave VT35 pri izgotovlenii tonkikh listov [Research of structural and phase transformations in alloy ВТ35 when manufacturing thin sheets] // Titan. 1996. №1 (9). S. 25–29.
11. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tekhnologiy ikh pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their pro-cessing for the period till 2030] // Aviatsionnye materialy i tekhnologii. 2012. №S. S. 7–17.
12. Kablov E.N., Nochovnaia N.A., Gribkov Iu.A., Shiriaev A.A. Razrabotka vysokoprochnogo titanovogo psevdo-β-splava i tekhnologii polucheniia polufabrikatov iz nego [Development high-strength titanic pseudo-β-alloy and technologies of receiving semi-finished products from it] // Voprosy materialovedeniia. 2016. №3 (87). S. 23–31.
13. Vysokoprochnyi splav na osnove titana i izdelie, vypolnennoe iz vysokoprochnogo splava na osnove titana [High-strength alloy on the basis of titanium and the product executed from high-strength alloy on the basis of titanium]: pat. 2569285 Ros. Federatsiia; zaiavl. 29.12.14; opubl. 20.11.15, Biul. №32.
14. Shiriaev A.A., Antashev V.G. Osobennosti razrabotki vysokoprochnogo samozakalivaiushchegosia vysokotekhnologichnogo psevdo-β-titanovogo splava [Peculiarities of development of advanced high-strength self-hardening high-processable pseudo-β-titanium alloys] // Aviatsionnye materialy i tekhnologii. 2014. №4. S. 23–30. DOI: 10.18577/2071-9140-2014-0-4-23-30.
15. Kablov E.N., Ospennikova O.G., Vershkov A.V. Redkie metally i redkozemelnye elementy – materialy sovremennyh i budushhih vysokih tehnologij [Rare metals and rare-earth elements are materials for modern and future high technologies] // Aviacionnye materialy i tehnologii. 2013. №S2. S. 3–10.
16. Shiryaev A.A., Nochovnaya N.A. [Study of structure and chemical composition of pilot high-alloyed titanium alloy ingots] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №9. St. 06. Available at: http://www.viam-works.ru (accessed: August 3, 2017). DOI: 10.18577/2307-6046-2015-0-9-6-6.
17. Aleksandrov V.K., Anoshkin N.F. i dr. Polufabrikaty iz titanovykh splavov [Semi-finished products from titanium alloys]. M.: VILS, 1996. 581 s
Barrel of different guns and small arms are training in different atmospheric and weather conditions by the contingent of different degree of readiness. Different materials and various technologies of their processing are used for barrels manufacturing. There are identical and specific requirements to barrels which are differ from each other depending on fighting assignment of tools, installation on vehicle and caliber. A trunk is most loaded detail of the weapon and its resource is considerably smaller than all other nodes and details of a weapon. The factors influencing weapon trunks, materials for manufacturing of trunks and ways of their processing are considered in the article.
2. Ospennikova O.G. Strategiya razvitiya zharoprochnyh splavov i stalej specialnogo naznacheniya, zashhitnyh i teplozashhitnyh pokrytij [Strategy of development of hot strength alloys and steels special purpose, protective and heat-protective coverings] // Aviacionnye materialy i tehnologii. 2012. №S. S. 19–36.
3. Tukanov A.G. Tehnologiya proizvodstva strelkovo-pushechnogo i artillerijskogo oruzhiya [Production technology of shooting and gun and gun weapon]. M.: Mashinostroenie, 2010. 238 s.
4. Hasenbein R.G. Wear and Erosion in Large Caliber Gun Barrels: RTO-MP-AVT-109. U.S. Army Armament Research, Development & Engineering Center. P. 16-1–16-14.
5. Nowotny S., Spatzier J., Kubisch F. et al. Repair of Erosion Defects in Gun Barrels by Direct Laser Deposition // Journal of Thermal Spray Technology. 2012. Vol. 21. Issue 6. P. 1173–1183.
6. Kablov E.N. Materialy i himicheskie tehnologii dlya aviacionnoj tehniki [Materials and chemical technologies for aviation engineering] // Vestnik Rossijskoj akademii nauk. 2012. T. 82. №6. S. 520–530.
7. Emerson R., Kaste R., Carter R. et al. Approaches for the Design of Ceramic Gun Barrels. U.S. Army Research Laboratory Weapons & Materials Research Directorate. P. 1–7.
8. Kreknin L.T. Proizvodstvo avtomaticheskogo oruzhiya: Ch. 1 [Production of automatic arms: P.1]. Izhevsk: Izhevskij gos. tehnich. un-t, 2012. 236 s.
9. Tonysheva O.A., Voznesenskajya N.M., Shalkevich A.B., Petrakov A.F. Issledovanie vliyaniya vysokotemperaturnoj termomehanicheskoj obrabotki na strukturu, tehnologicheskie, mehanicheskie i korrozionnye svojstva vysokoprochnoj korrozionnostojkoj stali perehodnogo klassa s povyshennym soderzhaniem azota [Research of influence of high-temperature thermomechanical processing on structure, technological, mechanical and corrosion properties of high-strength corrosion-resistant steel of transitional class with the raised content of nitrogen] // Aviacionnye materialy i tehnologii. 2012. №3. S. 31–36.
10. Voznesenskaya N.M., Eliseev E.A., Kapitanenko D.V., Tonysheva O.A. Optimizaciya tehnologicheskih rezhimov polucheniya tonkih listov i lenty iz korrozionnostojkoj stali VNS-9-Sh [Optimization of technological modes of receiving thin sheets and tape from the corrosion-resistant steel VNS-9-Sh] // Metally. 2014. №1. S. 46–51.
11. Orlov M.R., Ospennikova O.G., Gromov V.I. Razvitie mehanizmov vodorodnoj i bejnitnoj hrupkosti konstrukcionnoj stali v processe ekspluatacii krupnogabaritnyh konstrukcij [Development of mechanisms of hydrogen and bainitic embrittlement of structural steel in use large-size designs] // Aviacionnye materialy i tehnologii. 2012. №S. S. 88–93.
12. De Rosset W.S., Montgomery J.S. Cobalt-Base Alloy Gun Barrel Study. Army Research Laboratory. July, 2014. P. 119–123.
13. Orlov B.V., Larman E.K., Malikov V.G. Ustrojstvo i proektirovanie stvolov artillerijskih orudij [Device and design of trunks of artillery pieces]. M.: Mashinostroenie, 1976. 432 s.
14. Zhuk A.B. Strelkovoe oruzhie [Small arms]. M.: Voenizdat, 1992. 735 s.
15. Alferov V.V. Konstrukciya i raschet avtomaticheskogo oruzhiya [Design and calculation of automatic arms]. M.: Mashinostroenie, 1977. 248 s.
16. Fedoseev S.V. Oruzhie sovremennoj pehoty [Weapon of modern infantry]. M.: Astrel, 2001. T. 1. 351 s.
17. Polnaya enciklopediya boevyh tankov i samohodnyh orudij / pod. red. O.V. Doroshkevicha, V.S. Likso, K.L. Arhipova [The full encyclopedia of fighting tanks and self propelled guns / ed. byO. V. Doroshkevich, V. S. Likso, K.L. Arhipov]. M.: AST; Minsk: Harvest, 2008. 384 s.
18. Sposob izgotovleniya stvola artillerijskogo orudiya: pat. 2419757 Ros. Federaciya [Way of manufacturing of trunk of artillery piece: pat. 2419757 Rus. Federation]; zayavl. 31.05.10; opubl. 27.05.11, Byul. №15. 11 s.
19. De Rosset W.S., Gray D. Processing of Niobium-Lined M240 Machine Gun Barrels. Army Research Laboratory. November, 2014. P. 1–20.
20. Salahova R.K. Korrozionnaja stojkost stali 30HGSA s «trehvalentnym» hromovym pokrytiem v estestvennyh i iskusstvennyh sredah [Corrosion resistance of steel 30ХГСА with «trivalent» chrome plating in natural and artificial environments] // Aviacionnye materialy i tehnologii. 2012. №2. S. 59–66.
21. Audino M.J. Use of Electroplated Chromium in Gun Barrels. US Army RDECOM-ARDEC-Benet Laboratories. DoD Metal Finishing Workshop. Washington, DC. May, 2006. P. 22–23.
22. Kopejko S. Oruzhie vojskovogo snajpera [Weapon of the army sniper] // Kalashnikov. Oruzhie, boepripasy, snaryazhenie. 2012. №1. S. 46–52.
23. Kuzmin Yu.A. Sostoyanie i napravleniya razvitiya bronetankovoj tehniki v zarubezhnyh stranah [Condition and the directions of development of armoured equipment in foreign countries] // Zarubezhnoe voennoe obozrenie. 2015. №3. S. 55–59.
24. Golubcov S.G., Kasha O.B. Osnovnye obrazcy bronetankovoj tehniki FRG [Main samples of armoured equipment of Germany] // Zarubezhnoe voennoe obozrenie. 2014. №10. S. 49–54.
25. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
The influence of the main parameters of the mechanical alloying in the planetary ball mill on flowability and morphology of the metalceramiс made from Ni-based superalloy VGH175 and nanoparticles of titanium carbonitride are investigated. As the basis of metalceramiс composition have been used powder of VGH175 superalloy with particle size less than 63 μm produced by gas atomization; аs the reinforcing filler have been used nanoparticles of titanium carbonitride produced by the plasma-chemical synthesis method. The effect of the rotation speed of grinding jars and time process on flowability of compositions and morphology of the particles (average diameter and powder-size distribution) are presented. The optimal parameters for producing metalceramiс powders with the uniform distribution of the nanoparticles on the matrix granules surface with keepping their original spherical form are determined.
2. Kablov E.N. Materialy i tekhnologii VIAM dlya «Aviadvigatelya» [Materials and VIAM technologies for «Aircraft engine»] // Permskie aviatsionnye dvigateli: inform. byull. 2014. №31. S. 43–47.
3. Kablov E.N., Lomberg B.S., Ospennikova O.G. Sozdanie sovremennykh zharoprochnykh materialov i tekhnologii ikh proizvodstva dlia aviatsionnogo dvigatelestroeniia [Creation of modern heat resisting materials and technologies of their production for aviation engine building] // Krylya Rodiny. 2012. №3–4. S. 34–38.
4. Kablov E.N., Ospennikova O.G., Lomberg B.S. Kompleksnaya innovacionnaya tehnologiya izotermicheskoj shtampovki na vozduhe v rezhime sverhplastichnosti diskov iz superzharoprochnyh splavov [Complex innovative technology of isothermal punching on air in mode of superplasticity of disks from superhot strength alloys] // Aviacionnye materialy i tehnologii. 2012. №S. S. 129–141.
5. Cao G., Van I. Nanostruktury i nanomaterialy: sintez, svojstva i primenenie [Nanostructures and nanomaterials: synthesis, properties and application]. M.: Nauchnyj mir, 2012. 515 s.
6. Bykov Ju., Karpuhin S. Konstrukcionnye nanomaterialy, struktura, svojstva, sposoby poluchenija [Constructional nanomaterials, structure, properties, ways of receiving]. Saarbrjukken: LAP LAMBERT Academic Publishing, 2012. 84 s.
7. Azarenkov N.A., Beresnev V.M., Pogrebnjak A.D., Kolesnikov D.A. Nanostrukturnye pokrytija i nanomaterialy: Osnovy poluchenija. Svojstva. Oblasti primenenija. Osobennosti sovremennogo nanostrukturnogo napravlenija v nanotehnologii [Nanostructural coverings and nanomaterials: Receiving bases. Properties. Scopes. Features of the modern nanostructural direction in nanotechnology]. M.: Librokom, 2012. 368 s.
8. Eliseev A.A., Lukashin A.V. Funkcionalnye nanomaterialy [Functional nanomaterials]. M.: Fizmatlit, 2010. 456 s.
9. Rodionov A.I., Efimochkin I.Ju., Bujakina A.A., Letnikov M.N. Sferoidizacija metallicheskih poroshkov (obzor) [The spheroidization of metallic powders (review)] // Aviacionnye materialy i tehnologii. 2016. №S1. S. 60–64. DOI: 10.18577/2071-9140-2016-0-S1-60-64.
10. Grashhenkov D.V., Shhetanov B.V., Efimochkin I.Ju. Razvitie poroshkovoj metallurgii zharoprochnyh splavov [Development of powder metallurgy of hot strength alloys] // Vse materialy. Jenciklopedicheskij spravochnik. 2011. №5. S. 13–26.
11. Kablov E.N. Konstruktsionnye i funktsionalnye materialy – osnova ekonomicheskogo i nauchno-tekhnicheskogo razvitiya Rossii [Constructional and functional materials – basis of economic and scientific and technical development of Russia] // Voprosy materialovedeniya. 2006. №1. S. 64–67.
12. Bolshakova A.N., Efimochkin I.Ju., Murasheva V.V. Mehanicheski legirovannye dispersno-uprochnennye kompozicionnye materialy [Mechanically alloyed disperse strengthened composite materials] // Konstrukcii iz kompozicionnyh materialov. 2015. №1 (137). S. 36–40.
13. Lomberg B.S., Ovsepjan S.V., Bakradze M.M., Letnikov M.N., Mazalov I.S. Primenenie novyh deformiruemyh nikelevyh splavov dlja perspektivnyh gazoturbinnyh dvigatelej [The application of new wrought nickel alloys for advanced gas turbine engines] // Aviacionnye materialy i tehnologii. 2017. №S. S. 116–129. DOI: 10.18577/2071-9140-2017-0-S-116-129.
14. Bakradze M.M., Ovsepjan S.V., Bujakina A.A., Lomberg B.S. Razrabotka kompozicii zharoprochnogo nikelevogo splava s rabochej temperaturoj do 800°S dlja diskov gazoturbinnyh dvigatelej [Development of composition of heat resisting nickel alloy with working temperature to 800°С for disks of gas turbine engines] // Voprosy materialovedenija. 2017. №1 (86). S. 64–74.
15. Garibov G.S., Gric N.M., Volkov A.M., Vostrikov A.V., Fedorenko E.A. Metallovedcheskie aspekty proizvodstva zagotovok diskov iz granuliruemyh zharoprochnyh nikelevyh splavov metodom GIP [Metallovedchesky aspects of production of preparations of disks from granulated heat resisting nickel alloys HIP method] // Tehnologija legkih splavov. 2014. №3. S. 54–59.
16. Samohin A.V., Alekseev N.V., Sinajskij M.A., Cvetkov Ju.V. Ravnovesnye jenergotehnologicheskie harakteristiki plazmennyh processov poluchenija nitrida, karbida i karbonitrida titana iz hlorida titana [Equilibrium power technical characteristics on plasma processes of receiving nitride, carbide and carbotitanium nitride from titanium chloride] // Fizika i himija obrabotki materialov. 2015. №4. S. 18–24.
Studies of crystallization from solution and processing by selective laser alloying of polyamide 12 based compositions have been carried out. It has been shown that process of crystallization under conditions close to equilibrium in the presence of nanoscale silicon dioxide makes it possible to obtain powder compositions with an optimal complex of properties. It has been found that Powder compositions with a narrow particle size distribution (from 20 to 100 μm) and a bulk density of not less than 0,4 g/cm3 can be processed by selective laser sintering into homogeneous samples with a high degree of monolithicity.
2. Kablov E.N. Materialy i khimicheskie tekhnologii dlya aviatsionnoy tekhniki [Materials and chemical technologies for aviation engineering] // Vestnik Rossiyskoy akademii nauk. 2012. T. 82. №6. S. 520–530.
3. Kablov E.N. Aviakosmicheskoe materialovedenie [Aerospace materials science] // Vse materialy. Entsiklopedicheskiy spravochnik. 2008. №3. S. 2–14.
4. Kablov E.N. Tendentsii i orientiry innovatsionnogo razvitiya Rossii [Tendencies and reference points of innovative development of Russia]: sb. nauch.-inform. mater. 3-e izd. M.: VIAM, 2015. 720 s.
5. Petrova G.N., Rumyanceva T.V., Beyder E.Ya. Vliyanie modificiruyushhih dobavok na pozharobezopasnye svojstva i tehnologichnost polikarbonata [Influence of modifying additives on fireproof properties and technological effectiveness of polycarbonate] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №6. St. 06. Available at: http://www.viam-works.ru (accessed: July 25, 2016).
6. Barbotko S.L. Pozharobezopasnost aviacionnyh materialov [Fire safety of aviation materials] // Aviacionnye materialy i tehnologii. 2012. №S. S. 431–439.
7. Platonov M.M., Larionov S.A. Issledovanie fazovyh perehodov i struktury polimernyh poroshkovyh kompozicij na osnove polidodekalaktama, poluchennyh metodom kristallizacii iz rastvorov v poljarnyh aprotonnyh rastvoriteljah [Investigation of phase transitions and structure of the polymer powder compositions based on polydodecanolactam obtained by crystallization from solutions in polar aprotic solvents] // Aviacionnye materialy i tehnologii. 2016. №S1 (43). S. 65–73. DOI: 10.18577/2071-9140-2016-0-S1-65-73.
8. Huang S.H., Liu P., Mokasdar A., Hou L. Additive manufacturing and its societal impact: a literature review // Int. J. Adv. Manuf. Technol. 2013. Vol. 67. P. 1191–1203. DOI: 10.1007/s00170-012-4558-5.
9. Bikas H., Stavropoulos P., Chryssolouris G. Additive manufacturing methods and modeling approaches: a critical review // Int. J. Adv. Manuf. Technol. 2016. Vol. 83. P. 389–405. DOI: 10.1007/s00170-015-7576-2.
10. Novakova-Marcincinova L., Kuric I. Basic and Advanced Materials for Fused Deposition Modeling Rapid Prototyping Technology // Manuf. and Ind. Eng. 2012. Vol. 11 (1). P. 24–27.
11. Hill N., Haghi M. Deposition direction-dependent failure criteria for fused deposition modeling polycarbonate // Rapid Prototyping Journal. 2014. Vol. 20/3. P. 221–227. DOI: 10.1108/RPJ-04-2013-0039.
12. Goodridge R.D., Tuck C.J., Hague R.J.M. Laser sintering of polyamides and other polymers // Progress in Materials Science. 2012. Vol. 57. P. 229–267. DOI: 10.1016/j.pmatsci.2011.04.001.
13. Kruth J.-P., Levy G., Klocke F., Childs T.H.C. Consolidation phenomena in laser and powder-bed based layered manufacturing // Annals of the CIRP. 2007. Vol. 56/2. P. 730–759. DOI: 10.1016/j.cirp.2007.10.004
14. Process for the manufacture of polyamide 12 powder with a high melting point: pat. CA 2498712 C; publ. 15.06.10.
15. Use of a polyamide 12 for selective laser sintering: pat. EP 0911142 B1; publ. 03.08.05.
16. Method of selective laser sintering with improved materials: pat. US 7794647 B1; publ. 14.08.06.
17. Seltzera R., De la Escalerab F.M., Seguradoa J. Effect of water conditioning on the fracture behavior of PA12 composites processed by selective laser sintering // Materials Science and Engineering A. 2011. Vol. 528. P. 6927–6933. DOI: 10.1016/j.msea.2011.05.045.
18. Schmid M., Amado A., Wegener K. Polymer Powders for Selective Laser Sintering (SLS) // 30th International Conference of the Polymer Processing Society. Cleveland, Ohio, 2014. P. 7–12.
19. Tager A.A. Fiziko-himija polimerov [Fiziko-himiya polymers]. 4-e izd., pererab. i dop. M.: Nauchnyj mir. 2007. 573 s.
20. Harakteristiki poroshkovoj kompozicii RA 2200 [Characteristics of powder composition of PA 2200] // e-Manufacturing solutions: katalog materialov kompanii EOS. Available at: http://eos.materialdatacenter.com/eo/ (accessed: July 26, 2017).
21. Harakteristiki poroshkovoj kompozicii PA-12 AdSint [Characteristics of powder composition of PA-12 AdSint] // Material for additive manufacturing: katalog materialov kompanii ADVANC3D Materials® GmbH. Available at: http://www.advanc3dmaterials.com/assets/presentation-sls.pdf (accessed: July 26, 2017).
22. Harakteristiki poroshkovoj kompozicii FS3200PA [Characteristics of powder composition of FS3200PA] // Farsoon technologies: katalog materialov kompanii Human Farsoon High-tech Co. Ltd. Available at: http://www.farsoon.us/wp-content/uploads/2015/04/3200PA_Specs.pdf (accessed: July 26, 2017).
Results of researches on influence of modes of heat treatment of polycarbonate are given in article on quality of products made of it, Is shown that the choice of thermoplastic is caused by high level of the physicist – mechanical properties, dimensional stability, high accuracy when molding, good decorative look, and also expansion of areas of its application. Conditions of need of carrying out heat treatment for this material are given. It is shown that simple on configuration, thin-walled, irresponsible assignment of detail can be not subjected to heat treatment; at the same time the details working in the field of high temperatures, in surface-active environments, details of difficult configuration and having metal armature, it is reasonable to subject to heat treatment. Results of influence of different modes of heat treatment (tempering, annealing, etc.) on physical, strength and deformation properties of samples of material are given. On the basis of the received test results
2. Starostina I.V., Dodonova R.N., Polepkina N.A. Kontrol i upravlenie kachestvom produkcii [Control and product quality control] // Materialy i tehnologii dlya aviacionno-kosmicheskoj tehniki: sb. tez. dokl. nauch.-tehnich. konf. M.: VIAM, 2005. S. 5–12.
3. Orehov N.G., Starostina I.V. Analiz kachestva litoj prutkovoj (shihtovoj) zagotovki iz zharoprochnyh splavov proizvodstva FGUP «VIAM» // Aviacionnye materialy i tehnologii. 2014. №S5. S. 23–30. DOI: 10.18577/2071-9140-2014-0-s5-23-30.
4. Petrova G.N., Starostina I.V., Rumyanceva T.V. Issledovanie vozmozhnosti markirovki detalej iz polikarbonata [Study of the possibility of marking parts of polycarbonate] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №10. St. 11. Available at: http://www.viam-works.ru (accessed: February 08, 2017). DOI: 10.18577/2307-6046-2016-0-10-11-11.
5. Sudarushkin Yu.K., Gudimov M.M., Romanov D.S., Sokolov M.Yu. Primenenie litevyh polikarbonatov v aviapriborostroenii [Application of molding polycarbonates in avionics] // Aviacionnaya promyshlennost. 2003. №2. S. 48–52.
6. Petrova G.N., Bejder E.Ya., Starostina I.V. Litevye termoplasty dlya izdelij aviacionnoj tehniki [Molding thermoplastics for products of aviation engineering] // Vse materialy. Enciklopedicheskij spravochnik. 2016. №6. S. 10–15.
7. Kryzhanovskij V.K., Burlov V.V., Panimatchenko A.D., Kryzhanovskaya Yu.V. Tehnicheskie svojstva polimernyh materialov [Engineering properties of polymeric materials]. SPb.: Professiya, 2005. 238 s.
8. Simonov-Emel'yanov I.D, Yurkin A.A., Surikov P.V. i dr. Ocenka effektivnosti dejstviya reologicheskih dobavok pri pererabotke polikarbonata [Assessment of efficiency of action of rheological additives when processing polycarbonate] // Plasticheskie massy. 2015. №7–8. S. 37–40.
9. Kablov E.N. Aviakosmicheskoe materialovedenie [Aerospace materials science] // Vse materialy. Enciklopedicheskij spravochnik. 2008. №3. S. 2–14.
10. Petrova G.N., Abakumova N.M., Rumyanceva T.V. i dr. Pozharobezopasnye litevye termoplasty [Fireproof molding thermoplastics] // Plasticheskie massy. 2005. №1. S. 45–46.
11. Petrova G.N., Rumyanceva T.V., Beyder E.Ya. Vliyanie modificiruyushhih dobavok na pozharobezopasnye svojstva i tehnologichnost polikarbonata [Influence of modifying additives on fireproof properties and technological effectiveness of polycarbonate] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №6. St. 06. Available at: http://www.viam-works.ru (accessed: July 19, 2017).
12. Lazareva T.K., Ermakin S.N., Kostyagina V.A. Problemy sozdaniya kompozicionnyh materialov na osnove konstrukcionnyh termoplastov [Problems of creation of composite materials on the basis of constructional thermoplastics] // Uspehi v himii i himicheskoj tehnologii. 2010. T. 24. №4. S. 58–63.
13. Kerber M.L., Vinogradov V.M., Golovkin G.S. i dr. Polimernye kompozicionnye materialy: struktura, svojstva, tehnologiya [Polymeric composite materials: structure, properties, technology]. SPb.: Professiya, 2011. S. 32–33.
14. Kablov E.N. Additivnye tehnologii – dominanta nacional'noj tehnologicheskoj iniciativy [The additive technologies – dominant of national technological initiative] // Intellekt i tehnologii. 2015. №2 (11). S. 52–55.
15. Kablov E.N. Rossii nuzhny materialy novogo pokoleniya [Materials of new generation are necessary to Russia] // Redkie zemli. 2014. №3. S. 8–13.
16. Petrova G.N., Larionov S.A., Platonov M.M., Perfilova D.N. Termoplastichnye materialy novogo pokoleniya dlya aviacii [Thermoplastic materials of new generation for aviation] // Aviacionnye materialy i tehnologii 2017. №S. S. 420–436. DOI: 10.18577/2071-9140-2017-0-S-420-436.
17. Petrova G.N., Platonov M.M., Bolshakov V.A., Ponomarenko S.A. Issledovanie kompleksa harakteristik bazovyh materialov dlya FDM tehnologii additivnogo sinteza. Fiziko-mehanicheskie i teplofizicheskie svojstva [Research of complex of characteristics of base materials for FDM technology of the additive synthesis. Physicomechanical and heatphysical properties] // Plasticheskie massy. 2016. №5–6. S. 53–58.
18. Petrova G.N., Larionov S.A., Sapego Yu.A., Platonov M.M. Reologicheskie svojstva termoplastichnoj kompozicii na osnove polikarbonata: zavisimost ot temperatury pererabotki; vliyanie na mehanicheskie harakteristiki i razmernuyu stabilnost obektov, sozdannyh po FDM-tehnologii [Rheological properties of the thermoplastic composition with a reduced fire hazard polycarbonate-based: depending on the temperature processing; effect on mechanical properties and stability dimension objects created software FDM-technology] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2017. №4 (52). St. 09. Available at: http://viam-works.ru (accessed: July 19, 2017). DOI: 10.18577/2307-6046-2017-0-4-9-9.
19. Platonov M.M., Petrova G.N., Larionov S.A., Barbotko S.L. Optimizaciya sostava polimernoj kompozicii s ponizhennoj pozharnoj opasnostyu na osnove polikarbonata dlya tehnologii 3D-pechati rasplavlennoj polimernoj nityu [Optimization of structure of polymeric composition with the lowered fire danger on the basis of polycarbonate for technology of the 3D-press the melted polymeric thread] // Izvestiya vuzov. Himiya i himicheskaya tehnologiya. 2017. T. 60. №1. S. 87–94.
20. Petrova G.N., Beider E.Yа. Construction materials based on reinforced thermoplastics Chemistry and Materials Science // Russian Journal of General Chemistry. 2011. Vol. 81. No. 5. Р. 1001–1007.
21. Novakova-Marcincinova L., Novak-Marcincin J. Verification of mechanical properties of abs materials used in FDM rapid prototyping technology // Proceedings in Manufacturing Systems. 2016. Vol. 8. Is. 2. P. 87–92.
22. Smirnov O.I., Skorodumov S.V. Modelirovanie tehnologii poslojnogo sinteza pri razrabotke izdelij slozhnoj formy [Modeling of technology of level-by-level synthesis when developing products of difficult form] // Sovremennye naukoemkie tehnologii. 2010. №4. S. 83–87.
23. Moskatov K.A. Termicheskaya obrabotka plastmassovyh i rezinovyh detalej mashin [Thermal processing of plastic and rubber details of machines]. M.: Mashinostroenie, 1976. 200 s.
24. Kestelman N.Ya. Termicheskaya obrabotka polimernyh materialov v mashinostroenii [Thermal processing of polymeric materials in mechanical engineering]. M.: Mashinostroenie, 1968. S. 170–201.
25. Sposob obrabotki izdelij iz polikarbonata: a. s. 804659 [Way of processing of products from polycarbonate: copyright certificate 804659]; zayavl. 19.04.79; opubl. 15.02.81.
26. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
Results of researches of the fireproof thermoplastic materials developed in VIAM Federal State Unitary Enterprise for use in FDM of the additive technology 3D are given in article – the press. Requirements for level of utilization and technical characteristics to which such materials have to answer are formulated. Physical-mechanical, rheological and fireproof properties of the developed thermoplastic compositions on the basis of polycarbonate and polyamide are considered. Test results of the samples received on traditional casting technology under pressure and innovative way 3D – the press are given. It is shown that the developed materials on level of properties and technological effectiveness do not concede to foreign analogs. The interrelation between technological parameters of level-by-level synthesis of object (temperature of extrusion, camera temperature, orientation of molecules in strand) on the accuracy of the press and its strength properties is defined. The received pat
2. Kablov E.N. Rossii nuzhny materialy novogo pokoleniya [Materials of new generation are necessary to Russia] // Redkie zemli. 2014. №3. S. 8–13.
3. Kablov E.N., Semenova L.V., Petrova G.N., Larionov S.A., Perfilova D.N. Polimernye kompozicionnye materialy na termoplastichnoj matrice [Polymeric composite materials on thermoflexible matrix] // Izvestiya vuzov. Ser.: Himiya i himicheskaya tehnologiya. 2016. T. 59. №10. S. 61–71.
4. Kablov E.N. Aviakosmicheskoe materialovedenie [Aerospace materials science] // Vse materialy. Enciklopedicheskij spravochnik. 2008. №3. S. 2–14.
5. Sudarushkin Yu.K., Gudimov M.M., Romanov D.S., Sokolov M.Yu. Primenenie lit'evyh polikarbonatov v aviapriborostroenii [Application of lityevy polycarbonates in avionics] // Aviacionnaya promyshlennost. 2003. №2. S. 48–52.
6. Petrova G.N.. Bejder E.Ya., Starostina I.V. Molding termoplasty dlya izdelij aviacionnoj tehniki [Lityevye thermoplastics for products of aviation engineering] // Vse materialy. Enciklopedicheskij spravochnik. 2016. №6. S. 10–15.
7. Kerber M.L., Vinogradov V.M., Golovkin G.S. i dr. Polimernye kompozicionnye materialy: struktura, svojstva, tehnologiya [Polymeric composite materials: structure, properties, technology]. SPb.: Professiya, 2011. S. 32–33.
8. Petrova G.N., Zhuravleva P.L., Iskhodzhanova I.V., Beider E.Ya. Influence of Carbon Fillers on Properties and Structure of Polyethylene-Based Polymer Composites // Nanotechnologies in Russia. 2014. Vol. 9. No. 5–6. Р. 305–310.
9. Muhametov R.R., Ahmadieva K.R., Chursova L.V., Kogan D.I. Novye polimernye svyazujushhie dlya perspektivnyh metodov izgotovleniya konstrukcionnyh voloknistyh PKM [New polymeric binding for perspective methods of manufacturing of constructional fibrous PCM] // Aviacionnye materialy i tehnologii. 2011. №2. S. 38–42.
10. Beider E.Ya., Petrova G.N., Izotova T.F., Gureeva E.V. Kompozicionnye termoplastichnye materialy i penopoliimidy [Thermoplastic composite materials and foam polyimides] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №11. St. 01. Available at: http://www.viam-works.ru (accessed: February 07, 2017).
11. Bejder E.Ya., Petrova G.N., Dykun M.I. Beider E.Ya., Petrova G.N., Dykun M.I. Appretirovanie uglerodnyh volokon-napolnitelej termoplastichnyh karboplastikov [Dressing of carbon fibers – fillers of thermoplastic carbon reinforced plastics] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №10. St. 03. Available at: http://www.viam-works.ru (accessed: July 12, 2017). DOI: 10.18577/2307-6046-2014-0-10-3-3.
12. Sorokin A.E., Bejder E.Ya., Perfilova D.N. Vliyanie klimaticheskih faktorov na svojstva ugleplastika na polifenilensulfidnom svyazuyushhem [Effect of climatic factors on properties of carbon fiber reinforced plastic based on polyphenylenesulfide resin] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №1. St. 10. Available at: http://www.viam-works.ru (accessed: July 12, 2017). DOI: 10.18577/2307-6046-2015-0-1-10-10.
13. Bejder E.Ya., Petrova G.N. Termoplastichnye svyazuyushhie dlya polimernyh kompozicionnyh materialov [The thermoplastic binder for polymeric composite materials] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №11. St. 05. Available at: http://viam-works.ru. (accessed: July 12, 2017). DOI: 10.18577/2307-6046-2015-0-11-5-5.
14. Nazarov V.G., Stolyarov V.P., Petrova G.N., Gryaznov V.I., Buznik V.M. Osobennosti poverhnostnogo ftorirovaniya termoelastoplastov na osnove poliuretana i ego vliyanie na svojstva polimera [Features of surfacing fluorine of thermoelastoplastics on the basis of polyurethane and its influence on properties of polymer] // Perspektivnye materialy. 2016. №2. S. 52–60.
15. Gryaznov V.I., Petrova G.N., Yurkov G.Yu., Buznik V.M. Smesevye termojelastoplasty so specialnymi svojstvami [Thermoplastic mixtures with special properties] // Aviacionnye materialy i tehnologii. 2014. №1. S. 25–29. DOI: 10.18577/2071-9140-2014-0-1-25-29.
16. Sorokin A.E., Krasnov A.P., Zyuzina G.F. i dr. Stroenie i svojstva vysokomolekulyarnogo lit'evogo poliarilata [Structure and properties of high-molecular molding polyarylate] // Plasticheskie massy. 2012. №1. S. 8–12.
17. Petrova G.N., Starostina I.V., Rumyanceva T.V. Issledovanie vozmozhnosti markirovki detalej iz polikarbonata [Study of the possibility of marking parts of polycarbonate] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №10. St. 11. Available at: http://www.viam-works.ru (accessed: February 08, 2017). DOI: 10.18577/2307-6046-2016-0-10-11-11.
18. Kondrashov S.V., Shashkeev K.A., Petrova G.N., Mekalina I.V. Polimernye kompozicionnye materialy konstrukcionnogo naznacheniya s funkcionalnymi svojstvami [Constructional polymer composites with functional properties] // Aviacionnye materialy i tehnologii. 2017. №S. S. 405–419. DOI: 10.18577/2071-9140-2017-0-S-405-419.
19. Petrova G.N., Larionov S.A., Platonov M.M., Perfilova D.N. Termoplastichnye materialy novogo pokoleniya dlya aviacii [Thermoplastic materials of new generation for aviation] // Aviacionnye materialy i tehnologii 2017. №S. S. 420–436. DOI: 10.18577/2071-9140-2017-0-S-420-436.
20. Kryzhanovskij V.K., Burlov V.V., Panimatchenko A.D., Kryzhanovskaya Yu.V. Tehnicheskie svojstva polimernyh materialov [Engineering properties of polymeric materials]. SPb.: Professiya, 2005. 240 s.
21. Kablov E.N. Additivnye tehnologii – dominanta nacional'noj tehnologicheskoj iniciativy [The additive technologies – dominant of national technological initiative] // Intellekt i tehnologii. 2015. №2 (11). S. 52–55.
22. Dudeк P. FDM 3D printing technology in manufacturing composite elements // Archives of Metallurgy and Materials. 2013. Vol. 58. Iss. 4. DOI: 10.2478/amm-2013-0186.
23. Novakova-Marcincinova L., Novak-Marcincin J. Verification of mechanical properties of abs materials used in FDM rapid prototyping technology // Proceedings in Manufacturing Systems. 2013. Vol. 8. Iss. 2. P. 87–92.
24. Smirnov O.I., Skorodumov S.V. Modelirovanie tehnologii poslojnogo sinteza pri razrabotke izdelij slozhnoj formy [Modeling of technology of level-by-level synthesis when developing products of difficult form] // Sovremennye naukoemkie tehnologii. 2010. №4. S. 83–87.
25. Lužanin O., Movrin D., Plančak M. Experimental investigation of extrusion speed and temperature effects on arithmetic mean surface roughness in FDM built spectmens // Journal for Technology of Plasticity. 2013. Vol. 38. No. 2. P. 179–191.
26. Barnatt C. 3D printing: the next industrial revolution. CreateSpace Independent Publishing Platform, 2013. P. 8–20.
27. 3D systems corporation: annual report. Washington D.C., 2012. P. 2.
28. Canessa E., Fonda C., Zennaro M., Ranellucci A. Low-cost 3D printing // Reprap, Slic3r and the Future of 3D Printing / ed. by A. Ranellucci. Trieste, 2013. P. 75–78.
29. Barbotko S.L., Volnyj O.S., Kirienko O.A., Shurkova E.N. Osobennosti ispytanij aviacionnyh materialov na pozharoopasnost. Chast 1. Ispytaniya na goryuchest'. Vliyanie tolshhiny obrazca na registriruemye harakteristiki [Features of tests of aviation materials on fire danger. Part 1. Tests for combustibility. Influence of thickness of sample on registered characteristics] // Pozharovzryvobezopasnost. 2015. №1. S. 40–49.
30. Barbotko S.L., Volnyj O.S., Kirienko O.A., Shurkova E.N. Osobennosti ispytanij aviacionnyh materialov na pozharoopasnost. Chast 2. Ispytaniya na goryuchest – vliyanie prodolzhitelnosti ekspozicii plamenem gorelki [Features of tests of aviation materials on fire danger. Part 2. Tests for combustibility – influence of duration of exposure by torch flame] // Pozharovzryvobezopasnost. 2015. №3. S. 13–24.
31. Barbotko S.L., Volnyj O.S., Kirienko O.A., Shurkova E.N. Osobennosti ispytanij aviacionnyh materialov na pozharoopasnost. Chast 3. Ispytaniya na dymoobrazovanie – vliyanie tolshhiny monolitnogo obrazca polimernogo kompozicionnogo materiala [Features of tests of aviation materials on fire danger. Part 3. Tests for smoke formation – influence of thickness of monolithic sample of polymeric composite material] // Pozharovzryvobezopasnost. 2015. №4. S. 7–23.
32. Mihajlin Yu.A. Pokazateli ognestojkosti PM i metody ih opredeleniya [Indicators of fire resistance of PM and methods of their definition] // Polimernye materialy. 2011. №8. S. 32–34.
33. Petrova G.N., Beider E.Ya., Perfilova D.N., Rumyantseva T.V. Pozharobezopasnye litevye termoplasty i termojelastoplastyv [Fire safety of injection molding thermoplastics and TPE materials] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №11. St. 02. Available at: http://www.viam-works.ru (accessed: February 07, 2017).
34. Platonov M.M., Petrova G.N., Larionov S.A., Barbotko S.L. Polimernaya kompoziciya na osnove polidodekalaktama dlya tehnologii 3D-pechati rasplavlennoj polimernoj nityu [Polymer composition on the basis of polydodecanolactam for 3D-printing technology by melted polymer string] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №10 (46). St. 09. Available at: http://www.viam-works.ru (accessed: July 12, 2017). DOI: 10.18577/2307-6046-2016-0-10-9-9.
35. Platonov M.M., Petrova G.N., Larionov S.A., Barbotko S.L. Optimizaciya sostava polimernoj kompozicii s ponizhennoj pozharnoj opasnostyu na osnove polikarbonata dlya tehnologii 3D-pechati rasplavlennoj polimernoj nityu [Optimization of structure of polymeric composition with the lowered fire danger on the basis of polycarbonate for technology of the 3D-press the melted polymeric thread] // Izvestiya vuzov. Himiya i himicheskaya tehnologiya. 2017. T. 60. №1. S. 87–94.
36. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
In aviation and space technology are widely used materials to ensure absorption or passage of electromagnetic energy – radioabsorbing (RAM) and radio-transparent materials. When designing RРM, especially multi-layer broadband and very important point is determined experimentally of the reflection coefficient (RC) dielectric and magnetic properties of the individual layers of material in a given frequency range (from UHF to millimeter wavelengths). One of the simplest methods for measuring dielectric and magnetic properties of materials is a waveguide method. However, measurements of permeability measurement in waveguides are inherent in large errors due to the inaccu-racy of sample preparation. In addition, at frequencies above 10 GHz waveguide section dimensions become smaller inhomogeneously stey heterogeneous materials, which does not allow for measurement at these frequencies. The measurements were carried out only at certain points range and extremely time-consuming. Resonator m
2. Kablov E.N. Himiya v aviacionnom materialovedenii [Chemistry in aviation materials science] // Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 3–4.
3. Kablov E.N. Aviacionnoe materialovedenie: itogi i perspektivy [Aviation materials science: results and perspectives] // Vestnik Rossijskoj akademii nauk. 2002. T. 72. №1. S. 3–12.
4. Kablov E.N. Kontrol kachestva materialov – garantiya bezopasnosti ekspluatacii aviacionnoj tehniki [Quality control of materials is the security accreditation of operation of aviation engineering] // Aviacionnye materialy i tehnologii. 2001. №1. S. 3–8.
5. Kablov E.N. Konstrukcionnye i funkcionalnye materialy – osnova ekonomicheskogo i nauchno-tehnicheskogo razvitiya Rossii [Constructional and functional materials are the base of economic and scientific and technical development of Russia] // Voprosy materialovedeniya. 2006. №1. S. 64–67.
6. Belyaev A.A., Kondrashov S.V., Lepeshkin V.V., Romanov A.M. Radiopogloshhayushhie materialy [Radio absorbing materials] // Aviacionnye materialy i tehnologii. 2012. №S. S. 348–352.
7. Belyaev A.A., Bespalova E.E., Romanov A.M. Pozharobezopasnye radiopogloshhayushhie materialy dlya bezehovyh kamer [Fireproof radio absorbing materials for anechoic cameras] // Aviacionnye materialy i tehnologii. 2013. №1. S. 53–55.
8. Agafonova A.S., Belyaev A.A., Kondrashov E.K., Romanov A.M. Osobennosti formirovaniya monolitnyh konstrukcionnyh radiopogloshhayushhih materialov na osnove kompozitov, napolnennyh rezistivnym voloknom [Features of the formation of monolithic structural radio absorbing materials based on composites filled with resistive fibers] // Aviacionnye materialy i tehnologii. 2013. №3. S. 56–59.
9. Lushina M.V., Parshin S.G., Rzhevskij A.A. Sovremennye ekraniruyushhie i radiopogloshhayushhie materialy [Modern shielding and radio absorbing materials] // Sistemy upravleniya i obrabotka informacii. 2011. №22. S. 208–223.
10. Bibikov S.B., Titov A.N., Cherepanov A.K. Sintez materiala s zadannym koefficientom otrazheniya v shirokom diapazone chastot i uglov padeniya [Material synthesis with the set reflection coefficient with the broad range of frequencies and incidence angles] // Sb. dokl. XV Mezhdunar. nauch.-tehnich. konf. «Radiolokaciya. Navigaciya. Svyaz». Voronezh, 2009. S. 1578–1584.
11. Mishhenko S.V., Malkov N.A. Proektirovanie radiovolnovyh (SVCh) priborov nerazrushayushhego kontrolya materialov: ucheb. posobie [Design of radio wave (microwave ovens) of devices of non-destructive testing of materials]. Tambov: Izd-vo TGU, 2003. 128 s.
12. Bannyj V.A., Carenko I.V. Radiopogloshhayushhie materialy na osnove napolnennogo polietilena [Radio absorbing materials on the basis of the filled polyethylene] // Vestnik GGTU im. P.O. Suhogo. 2009. №4. S. 3–8.
13. Suslyaev V.I., Docenko O.A., Kuznecov V.L., Mazov I.N., Kochetkova O.A. Elektromagnitnye harakteristiki kompozicionnyh radiomaterialov na osnove nanorazmernyh nanostrukturnyh napolnitelej [Electromagnetic characteristics of composition radio materials on the basis of nanodimensional nanostructural fillers] // Doklady TUSURa. 2011. №2 (24). Ch. 2. S. 59–63.
14. Docenko O.A., Suslyaev V.I., Kuznecov V.L., Mazov I.N., Kochetkova O.A. Mikrovolnovye harakteristiki kompozicionnyh radiomaterialov na osnove polimera i uglerodnyh struktur [Microwave characteristics of composition radio materials on the basis of polymer and carbon structures] // Doklady TUSURa. 2011. №2 (24). Ch. 2. S. 36–40.
15. Garin B.M., Dyakonova O.A., Kazancev Yu.N. Fizicheskie svojstva rezistivnyh nitej i struktur na ih osnove v SVCh diapazone [Physical properties of resistive threads and structures on their basis in the microwave oven range] // Zhurnal tehnicheskoj fiziki. 1999. T. 69. Vyp. 1. S. 104–108.
16. Falkovskij O.I. Tehnicheskaya elektrodinamika [Technical electrodynamics]. SPb.: Lan, 2009. 244 s.
17. Nikolskij V.V., Nikol'skaya T.I. Elektrodinamika i rasprostranenie radiovoln [Electrodynamics and radio propagation]. M.: URSS, 2012. S. 44–164.
18. Bespalova E.E., Belyaev A.A., Romanov A.M., Shirokov V.V. Issledovanie dielektricheskih harakteristik sloev mnogoslojnogo radiopogloshhayushhego materiala dlya bezehovyh kamer na osnove vspenennogo asbesta, napolnennogo nauglerozhennym voloknom [Investigation of the dielectric characteristics of designed for anechoic chambers laminated radar absorbing material layers based with carbonized fiber filled foam asbestos] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №8. St. 12. Available at: http://www.viam-works.ru (accessed: July 15, 2017). DOI: 10.18577/2307-6046-2014-0-8-12-12.
19. Brandt L.A. Issledovaniya dielektrikov na sverhvysokih chastotah [Researches of dielectrics at super-high frequencies]. M.: Gos. izd-vo fiz.-mat. lit., 1963. S. 191–201.
20. Shirokov V.V., Romanov A.M. Issledovanie dielektricheskih harakteristik steklosotoplasta volnovodnym metodom [Waveguide method research of honeycomb glass fibre plastics dielectric characteristics] // Aviacionnye materialy i tehnologii. 2013. №4. S. 62–68.
21. Belyaev A.A., Romanov A.M., Shirokov V.V., Shuldeshov E.M. Izmerenie dielektricheskoj pronicaemosti steklosotoplasta v svobodnom prostranstve [Measurement of honeycomb glass fiber plasticspermittivity in free space] // Trudy VIAM: elektron. nauch-tehnih. zhurn. 2014. №5. St. 06. Available at: http://viam-works.ru (accessed: July 19, 2017). DOI: 10.18577/2307-6046-2014-0-5-6-6.
22. Romanov A.M., Belyaev A.A., Bespalova E.E. Nedostatki volnovodnyh metodov izmereniya harakteristik radiopogloshhayushhih materialov [Disadvantages of waveguide techniques for measurement of radar-absorbing material characteristics] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №3. St. 11. Available at: http://www.viam-works.ru (accessed: July 19, 2017). DOI: 10.18577/2307-6046-2015-0-3-11-11.
23. Kolosov Yu.A., Levkov F.E. Tochnostnye harakteristiki volnovodnogo metoda opredeleniya elektricheskih parametrov dielektrikov [Precision characteristics of the waveguide method of determination of electric parameters of dielectrics] // Voprosy radioelektroniki. Ser.: Obshhie voprosy radioelektroniki. 1985. №12. S. 18–33.
24. Kolosov Yu.A., Levkov F.E. O volnovodnom metode opredeleniya elektricheskih parametrov dielektrikov [About the waveguide method of determination of electric parameters of dielectrics] // Voprosy radioelektroniki. Ser.: Obshhie voprosy radioelektroniki. 1986. №1. S. 41–45.
The effect on the thermal stability of adhesive systems on the basis of various types of polymers (phenolrubber, organosilicon, polyurethane, organo-organic) their modification with carboranes. Data on the effect of the structure of carborane groups (o- or m-carboranes), methods of their introduction into adhesive compositions on the heat-resistance characteristics of glue compounds are given. It is shown that the thermal destruction of carborane-containing adhesive systems proceeds according to a different mechanism than analogous carborane-analogues. A feature of carborane-containing systems is their structuring in the 250–500°С region both in air and in an inert medium with the participation of carborane fragments of macromolecules with the formation of new, energetically strong chemical intermolecular bonds.
2. Petrova A.P., Laptev A.B. Termicheskaya ustojchivost karboransoderzhashhih kleyashhih sistem na osnove fenolformaldegidnyh oligomerov [Thermal stability of carborane containing gluing systems on the basis of formaldehyde oligomers] // Klei. Germetiki. Tehnologii. 2017. №7. S. 2–6.
3. Petrova A.P. Povyshenie termostojkosti poliuretanovyh kleyashhih sistem pri modifikacii karboranami [Increasing thermal resistance of polyurethane adhesive systems with modification of the carborane] // Novosti materialovedeniya. Nauka i tehnika: elektron. nauch.-tehnich. zhurn. 2017. №1. St. 04. Available at: http://www.materialsnews.ru (accessed: June 27, 2017).
4. Petrova A.P., Laptev A.B. Termicheskaya ustojchivost karboransoderzhashhih poliuretanovyh kleyashhih sistem [Thermal stability of carborane containing polyurethane gluing systems] // Klei. Germetiki. Tehnologii. 2017. №8. S. 2–5.
5. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
6. Kablov E.N. Aviacionnoe materialovedenie v XXI veke. Perspektivy i zadachi [Aviation materials science in the XXI century. Perspectives and tasks] // Aviacionnye materialy. Izbrannye trudy «VIAM» 1932–2002: yubil. nauch.-tehnich. sb. M.: MISIS–VIAM, 2002. S. 23–47.
7. Grashhenkov D.V., Chursova L.V. Strategiya razvitiya kompozicionnyh i funkcionalnyh materialov [Strategy of development of composite and functional materials] // Aviacionnye materialy i tehnologii. 2012. №S. S. 231–242.
8. Sharova I.A., Petrova A.P. Obzor po materialam mezhdunarodnoj konferencii po kleyam i germetikam (WAC-2012, Franciya) [Review of world adhesive and sealant conference (WAC-2012, France] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №8. St. 06. Available at: http://www.viam-works.ru (accessed: June 19, 2017).
9. Grajms R. Karborany. Per. s angl. / pod red. A.F. Zhigacha [Carboranes. Trans. from Engl. / ed. by A.F. Zhigach]. M.: Mir, 1974. 264 s.
10. Petrova A.P., Valeckij P.M. Fenolno-kauchukovye karboransoderzhashhie klei s sobstvennym ferromagnetizmom [Phenolic and rubber carborane containing glues with own ferromagnetism] // Klei. Germetiki. Tehnologii. 2007. №4. S. 6–10.
11. Lipatova T.E., Bakalo L.A. Kinetika i mehanizm reakcij obrazovaniya poliuretanov [Kinetics and mechanism of reactions of education polyurethane] // Uspehi himii poliuretanov. Kiev: Naukova dumka. 1972. S. 195–213.
12. Lukina N.F., Dementeva L.A., Petrova A.P., Serezhenkov A.A. Konstrukcionnye i termostojkie klei [Constructional and heat-resistant glues] // Aviacionnye materialy i tehnologii. 2012. №S. S. 328–335.
13. Valeckij P.M., Petrova A.P. Polimernye klei na osnove karboransoderzhashhih soedinenij [Polymeric glues on the basis of carborane containing connections] // Klei. Germetiki. Tehnologii. 2005. №3. S. 2–5.
14. Petrova A.P. Magnitoprovodyashhie kleevye kompozicii na osnove karboransoderzhashhih soedinenij [Magneto conducting glue compositions on the basis of carborane containing connections] // Klei. Germetiki. Tehnologii. 2006. №11. S. 3–4.
15. Petrova A.P., Laptev A.B. Fenolno-kauchukovye klei, modificirovannye karboranami [The phenolic and rubber glues modified by carboranes] // Klei. Germetiki. Tehnologii. 2017. №6. S. 2–6.
The statistical method of control for assessment stability the process of manufactured is considered. The basics principles and series of creation the control Shukhart’s card for process operation of manufactured are described. The statistical processing results of output monitoring by mass fraction of volatile products and content of resins is carried out on example the process of production fiberglass VPS-33. The analysis of control Shukhart’s card and the assessment of controllability the technological process manufacturing of a fiberglass is carried out.
2. Melekhina M.I., Kavun N.S., Rakitina V.P. Epoksidnye stekloplastiki s uluchshennoi vlago- i vodostoikostiu [Epoxy fiberglass plastics with an improved moisture and water resistance] // Aviatsionnye materialy i tekhnologii. 2013. №2. S. 29–31.
3. Kurnosov A.O., Melnikov D.A. The characteristics of fiberglass based on large deformation molten binders under conditions of the impact of operational factors // Polymer Science. Series D. 2016. Vol. 9. No. 2. P. 248–250.
4. Kablov E.N. Kontrol kachestva materialov – garantiya bezopasnosti ekspluatatsii aviatsionnoy tekhniki [Quality control of materials – security accreditation of operation of aviation engineering] // Aviatsionnye materialy i tekhnologii. 2001. №1. S. 3–8.
5. Kablov E.N. Aviakosmicheskoe materialovedenie [Aerospace materials science] // Vse materialy. Entsiklopedicheskiy spravochnik. 2008. №3. S. 2–14.
6. Raskutin A.E. Rossiiskie polimernye kompozitsionnye materialy novogo pokoleniia, ikh osvoenie i vnedrenie v perspektivnykh razrabatyvaemykh konstruktsiiakh [Russian polymer composite materials of new generation, their exploitation and implementation in advanced developed constructions] // Aviatsionnye ma-terialy i tekhnologii. 2017. №S. S. 349–367. DOI: 10.18577/2071-9140-2017-0-S-349-367.
7. Sundaron E.M. Statisticheskie metody kontrolia i upravleniia kachestvom [Statistical control methods and quality managements]: ucheb. posobie. Ulan-Ude: Izd-vo VSGTU, 2002. 54 s.
8. Tsarev Iu.V., Trostin A.N. Statisticheskie metody upravleniia kachestvom. Kontrolnye karty [Statistical methods of control over quality. Control cards]: ucheb.-metod. posobie. Ivanovo: Ivan. gos. khim.-tekhnol. un-t, 2006. 250 s.
9. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the develop-ment of materials and technologies of their processing for the period until 2030»] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
10. Raskutin A.E. Strategiia razvitiia polimernykh kompozitsionnykh materialov [Development strategy of polymer composite materials] // Aviatsionnye materialy i tekhnologii. 2017. №S. S. 344–348. DOI: 10.18577/2071-9140-2017-0-S-344-348.
11. Bykov Iu.M., Bykov S.Iu. SPC. Statisticheskoe upravlenie protsessami [Statistical management of processes]. Available at: http://www.tem-consulting.ru (accessed: June 26, 2017).
12. Statisticheskie metody v upravlenii kachestvom produktsii [Statistical methods in product quality control]: ucheb. posobie / pod red. I.P. Danilova, A.A. Nasyrova-Antonova, V.L. Semenova. Kazan: Poznanie, 2007. 240 s.
13. GOST R ISO 7870-2–2015. Statisticheskie metody. Kontrolnye karty. Chast 2. Kon-trolnye karty Shukharta [Statistical methods. Control cards. Part 2. Shukhart's control cards]. M., 2015. 46 s.
14. Sedler M.I., Sedler M.Kh. Statisticheskie metody v upravlenii kachestvom [Statistical methods in quality management]. Uchebnoe poso-bie. SPb.: SPbGPU, 2013. 156 s.
15. Popov E.A., Uspenskaia G.I. Statisticheskaia obrabotka rezultatov izmerenii v laboratornom praktikume [Statistical processing of results of measurements in laboratory practical work]. N. Novgorod: Nizhegorodskii gos. tekhn. un-t, 2015. 15 s.
The article presents the results of fatigue tests of high-strength steel VKS-9, designed for use in aircraft landing gears and other highly loaded parts of aircraft. Illustrated the main difficulty in the development of high strength steels, due to the fact that the bearing capacity of structures with stress concentrators is significantly below the tensile strength, determined on a standard sample. Along with the assessment of the resistance of material to brittle fracture criterion for fatigue failure is also the basis of determining the bearing capacity. Domestic practice test for fatigue based on the loading scheme «bending and rotation». American reference books provide data on fatigue when tested according to the scheme of loading «expansion-compression». For a correct comparison of fatigue data on comparative testing of high strength steel VKS-9 at various schemes of loading. It is established that the limits of fatigue on the bases 104–106 when tested by loading the «bending-rot
2. Uzhig G.V. Prochnost v mashinostroenii [Durability in mechanical engineering]. M.: Mashinostroenie, 1958. 68 s.
3. Peterson R. Koefficienty koncentracii napryazhenij [Factors of concentration of tension]. M.: Mir, 1977. 302 s.
4. Bojcov B.V. Nadezhnost shassi samoleta [Reliability of the chassis of airplane]. M.: Mashinostroenie, 1976. 216 s.
5. Odesskij P.D., Shuvalov A.N., Emelyanov O.V. Ocenka soprotivleniya zarozhdeniyu ustalostnyh treshhin v svarnyh soedineniyah stalnyh konstrukcij [Assessment of resistance to origin of fatigue cracks in welded connections of steel designs] // Deformaciya i razrushenie. 2016. №9. S. 30–35.
6. Panin V.E., Kablov E.N., Pleshakov V.S. i dr. Vliyanie ultrazvukovoj udarnoj obrabotki na strukturu i soprotivlenie ustalosti svarnyh soedinenij vysokoprochnoj stali VKS-12 [Influence of ultrasonic shock processing on structure and resistance of fatigue of welded compounds of VKS-12 high-strength steel] // Fizicheskaya mezomehanika. 2006. T. 9. №2. S. 85–96.
7. Panin V.E., Kablov E.N., Pochivalov Yu.I., Panin S.V., Kolobnev N.I. Vliyanie nanostrukturirovaniya poverhnostnogo sloya alyuminij-litievogo splava 1424 na mehanizmy deformacii, tehnologicheskie harakteristiki i ustalostnuyu dolgovechnost [Influence of nanostructuring surface layer aluminum-lithium alloy 1424 on deformation mechanisms, technical characteristics and fatigue life] // Fizicheskaya mezomehanika. 2012. T. 15. №6. S. 107–111.
8. Gerov M.V., Vladislavskaya E.Yu., Terentev V.F. i dr. Issledovanie ustalostnoj prochnosti splava Ti–6Al–4V, poluchennogo metodom selektivnogo lazernogo plavleniya [Research of fatigue resistance of alloy of Ti–6Al–4V received by method of the selection laser melting] // Deformaciya i razrushenie. 2016. №5. S. 14–20.
9. Belyaev M.S., Gorbovec M.A. O razryve krivyh malociklovoj ustalosti zharoprochnogo nikelevogo splava [About discontinuity of LCF diagram in S-N coordinates for Ni-based superalloy] // Aviacionnye materialy i tehnologii. 2014. №S4. S. 103–108. DOI: 10.18577/2071-9140-2014-s4-103-108.
10. Grinevich A.V., Rumyancev Yu.S., Morozova L.V., Terehin A.L. Issledovanie ustalostnoj dolgovechnosti alyuminievyh splavov 1163-T i V95o.ch.-T2 posle poverhnostnogo uprochneniya [Study of fatigue life of 1163-T and V95o.ch.-T2 aluminum alloys after surface hardening] // Aviacionnye materialy i tehnologii. 2014. №S4. S. 93–102. DOI: 10.18577/2071-9140-2014-s4-93-102.
11. Kablov E.N., Morozova L.V., Grigorenko V.B., Zhegina I.P., Fomina M.A. Issledovanie vliyaniya korrozionnoj sredy na process nakopleniya povrezhdenij i harakter razrusheniya konstrukcionnyh alyuminievyh splavov 1441 i V-1469 pri ispytaniyah na rastyazhenie i malociklovuyu ustalost [Research of influence of the corrosion environment on process of accumulation of damages and nature of destruction of structural aluminum alloys 1441 and V-1469 at tension tests and low-cyclic fatigue] // Materialovedenie. 2017. №1. S. 41–48.
12. Pisarev V.S., Matvienko Yu.G., Eleonskij S.I., Odincev I.N. Vliyanie malociklovoj ustalosti na parametry mehaniki razrusheniya po dannym metoda spekl-interferometrii [Influence of low-cyclic fatigue on fracture mechanics parameters according to speckle interferometry method] // Zavodskaya laboratoriya. Diagnostika materialov. 2016. №6. S. 44–56.
13. Metallic Materials Properties Development and Standardization (MMPDS). Federal Aviation Administration, 2005. Р. 2-59–2-62.
14. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
15. Bojcov B.V., Kishkina S.I., Kravchenko G.N. i dr. Dolgovechnost' sharnirno-boltovyh soedinenij letatelnyh apparatov [Durability of sharnirno-bolted connections of flight vehicles]. M.: Mashinostroenie, 1996. 256 s.
16. Terentev V.F., Petuhov A.N. Ustalost vysokoprochnyh metallicheskih materialov [Fatigue of high-strength metal materials]. M.: CIAM, 2013. 515 s.
17. Kuzmin O.V., Tihomirova E.A., Sundukov M.Yu., Azizov G.N., Sidohin E.F. Novyj sposob termociklicheskih ispytanij soprotivleniya materiala termicheskoj ustalosti v aviacionnom proizvodstve [A new thermo-cyclic testing method to measure thermal fatigue resistance of materials in aeronautical engineering] // Aviacionnye materialy i tehnologii. 2013. №4. S. 51–53.
18. Muravev V.V., Muraveva O.V. Ocenka rosta ustalostnyh treshhin v bokovyh ramah telezhek gruzovyh vagonov akustiko-emissionnym metodom [Assessment of growth of fatigue cracks in side frames of carts of freight cars acoustic-emission method] // Deformaciya i razrushenie. 2016. №9. S. 24–29.
19. Belyaev M.S., Terentev V.F., Gorbovec M.A., Bakradze M.M., Goldberg M.A. Malociklovaya ustalost pri zadannoj deformacii i parametry uprugoplasticheskogo deformirovaniya zharoprochnogo splava VZh175 [Low-cycle fatigue for a given deformation and parameters of elastic-plastic deformation of superalloy VZh175] // Aviacionnye materialy i tehnologii. 2014. №S4. S. 87–92. DOI: 10.18577/2071-9140-2014-0-s4-87-92.
As a result of the research and experimental work on the possible determination of boron content in solders based on nickel VPr24 and VPr27, a photometric analysis method was used. The main reagent was chosen H-resorcinol. Using this reagent, the reaction proceeds in a weakly acidic medium, there is no need to extract the complex formed with organic solvents. During the experiment, it was found that one of the components of the solder – niobium – interacts with the reagent H-resorcinol, thereby negatively affecting the possibility of correct determination of boron content. Masking reagent, allowing to obtain correct results of the analysis, was selected complexon III. To prevent loss of boron during the sample preparation, phosphoric acid must be added. As a result of the conducted studies, a technique for determining the boron content in the concentration range 0,1–3,0% by weight was developed in solders based on nickel VPr24 and VPr27.
2. Kablov E.N. Materialy dlya izdeliya «Buran» – innovacionnye resheniya formirovaniya shestogo tehnologicheskogo uklada [Materials for «Buran» spaceship – innovative solutions of formation of the sixth technological mode] // Aviacionnye materialy i tehnologii. 2013. №S1. S. 3–9.
3. Kablov E.N. Iz chego sdelat budushhee? Materialy novogo pokoleniya, tehnologii ih sozdaniya i pererabotki – osnova innovacij [What the future to make of? Materials of new generation, technology of their creation and processing – basis of innovations] // Krylya Rodiny. 2016. №5. S. 8–18.
4. Kablov E.N. Kontrol kachestva materialov – garantiya bezopasnosti ekspluatacii aviacionnoj tehniki [Quality control of materials – security accreditation of operation of aviation engineering] // Aviacionnye materialy i tehnologii. 2001. №1. S. 3–8.
5. Kablov E.N. Aviacionnoe materialovedenie v XXI veke. Perspektivy i zadachi [Aviation materials science in the XXI century. Perspectives and tasks] // Aviacionnye materialy. Izbrannye trudy VIAM 1932–2002. M.: MISIS–VIAM, 2002. S. 23–47.
6. Kablov E.N. Tendencii i orientiry innovacionnogo razvitiya Rossii: sb. nauch.-inform. mater. 3-e izd. [Tendencies and reference points of innovative development of Russia: collection scientific informatsio ny materials. 3rd ed.]. M.: VIAM, 2015. 720 s.
7. Lukin V.I., Koval'chuk V.G., Samorukov M.L., Gridnev Yu.M. Issledovanie vliyaniya tehnologii rotacionnoj svarki treniem deformiruemogo zharoprochnogo nikelevogo splava VZh175 na strukturu i prochnostnye harakteristiki svarnyh soedinenij [Research of influence of technology of rotational friction bonding of deformable heat resisting VZh175 nickel alloy on structure and strength characteristics of welded connections] // Vestnik MGTU im. N.E. Baumana. Ser.: Mashinostroenie. 2011. №SP2. S. 114–121.
8. Sorokin L.I. Svarivaemost zharoprochnyh splavov, primenyaemyh v aviacionnyh gazoturbinnyh dvigatelyah [Bondability of the hot strength alloys applied in aviation gas turbine engines] // Svarochnoe proizvodstvo. 1997. №4. S. 4–11.
9. Lukin V.I., Sorokin L.I., Bagdasarov Yu.S. Svarivaemost' litejnyh zharoprochnyh nikelevyh splavov tipa ZhS6M [Bondability of cast heat resisting nickel alloys of the ZhS6M type] // Svarochnoe proizvodstvo. 1997. №6. S. 12–17.
10. Lukin V.I., Semenov V.N., Starova L.L. i dr. Obrazovanie goryachih treshhin pri svarke zharoprochnyh splavov [Formation of hot cracks when welding hot strength alloys] // MiTOM. 2007. №12. S. 7–14.
11. Horunov V.F., Maksimova S.V. Pajka zharoprochnyh splavov na sovremennom etape [The soldering of hot strength alloys at the present stage] // Svarochnoe proizvodstvo. 2010. №10. S. 24–27.
12. Rylnikov V.S. Voprosy po pajke, reshennye v processe izgotovleniya izdeliya «Buran» [Some problems of brazing solved in the course of manufacture of «Buran» reusable spaceship] // Aviacionnye materialy i tehnologii. 2013. №S1. S. 33–34.
13. Lukin V.I., Banas I.P., Kovalchuk V.G., Golev E.V. Argono-dugovaya svarka vysokoprochnoj cementuemoj stali VNS-63 [TIG welding of high-strengthened cemented steel VNS-63] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №8. St. 01. Available at: http://www.viam-works.ru (accessed: June 01, 2017).
14. Afanasev-Hodykin A.N., Lukin V.I., Rylnikov V.S. Vysokotehnologichnye polufabrikaty zharoprochnyh pripoev (lenty i pasty na organicheskom svyazuyushhem) [High-tech semi-finished high-temperature solders (tape and paste on an organic binder] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №9. St. 02. Available at: http://viam-works.ru (accessed: June 01, 2017).
15. Rylnikov V.S., Afanasev-Hodykin A.N., Galushka I.A. Tehnologiya pajki konstrukcii tipa «blisk» iz raznoimennyh splavov [Technology of the soldering of design of the blisk type from heteronymic alloys] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №10. St. 02. URL: http://www.viam-works.ru (accessed: June 01, 2017).
16. Ryl'nikov V.S., Afanas'ev-Hodykin A.N., Krasikov M.I. Issledovanie remontnoj tehnologii ispravleniya defektov payanyh soedinenij toplivnyh kollektorov [Research of repair technology of correction of defects of sweated connections of fuel manifolds] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №12. St. 02. URL: http://www.viam-works.ru (accessed: June 01, 2017).
17. Titov V.I., Gundobin N.V., Pilipenko L.V. Opredelenie niobiya v pripoe VPr17 [Determination of niobium in VPr17 solder] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №5. St. 10. URL: http://www.viam-works.ru (accessed: June 01, 2017). DOI: 10.18577/2307-6046-2015-0-5-10-10.
18. Titov V.I., Gundobin N.V., Pilipenko L.V. Razrabotka metoda opredeleniya soderzhaniya fosfora v pripoe VPr18 [Development of a method for determination of phosphorus in the solder VPr18] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №11. St. 11. URL: http://www.viam-works.ru (accessed: June 01, 2017). DOI: 10.18577/2307-6046-2015-0-11-11-11.