Articles
Improvement of characteristics of aluminum alloys is a topical issue because of increasing requirements to weight efficiency of advanced structures for aeronautic and mechanical engineering. One of ways to improve strength of aluminum alloys is the alloying with elements, which modifies structure. This paper deals with the results of research of the influence of scandium and cobalt on microstructure of ingots and extruded profiles of aluminum alloy of 1913 type as well as their influence on tensile strength and corrosion resistance after complete cycle of heat treatment. Work is executed within implementation of the complex scientific direction 8.1 «High-strength welded aluminum and aluminum - lithium alloys with lower density andincreased fracture toughness» («The strategic directions of development of materials and technologies of their processing for the period till 2030»)
2. Kablov E.N. Aviakosmicheskoe materialovedenie [Aerospace materials science] // Vse materialy. Jenciklopedicheskij spravochnik. 2008. №3. S. 2–14.
3. Kablov E.N. Sovremennye materialy – osnova innovacionnoj modernizacii Rossii [Modern materials – basis of innovative modernization of Russia] // Metally Evrazii. 2012. №3. S. 10–15.
4. Kablov E.N., Ospennikova O.G., Vershkov A.V. Redkie metally i redkozemelnye elementy – materialy sovremennyh i budushhih vysokih tehnologij [Rare metals and rare earth elements – materials of modern and future high technologies] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №2. St. 01. Available at: http://www.viam-works.ru (accessed: September 24, 2015).
5. Kablov E.N., Logunov A.V., Sidorov V.V. Mikrolegirovanie RZM – sovremennaya tehnologiya povysheniya svojstv litejnyh zharoprochnyh nikelevyh splavov [RZM microalloying – modern technology of increase of properties of cast heat resisting nickel alloys] // Perspektivnye materialy. 2001. №1. S. 23–34.
6. Ryabov D.K., Kolobnev N.I., Mahsidov V.V., Fomina M.A. O stabilnosti peresyshhennogo tverdogo rastvora listov splava 1913 pri zakalke [About stability of super-saturated solid solution of sheets of alloy 1913 when tempering] // Metallurgiya mashinostroeniya. 2012. №3. S. 30–33.
7. Ryabov D.K., Kolobnev N.I., Samohvalov S.V., Mahsidov V.V. Vliyanie predvaritelnogo estestvennogo stareniya na svojstva splava 1913 v iskusstvenno sostarennom sostoyanii [Influence of preliminary natural aging on properties of alloy 1913 in artificially made old condition] // Aviacionnye materialy i tehnologii. 2013. №2. S. 8–11.
8. Ryabov D.K., Kolobnev N.I., Samohvalov S.V., Vahromov O.V. Izmenenie mehanicheskih i korrozionnyh svojstv splava 1913 pri iskusstvennom starenii [Change of mechanical and corrosion properties of alloy 1913 at artificial aging] // Voprosy materialovedeniya. 2013. №4 (76). C. 24–29.
9. Elagin V.I. Legirovanie deformirovannyh alyuminievyh splavov perehodnymi metallami [Alloying of the deformed aluminum alloys transition metals]. M.: Metallurgiya, 1975. 321 s.
10. Fridlyander I.N. Vysokoprochnye deformiruemye alyuminievye splavy [High-strength deformable aluminum alloys]. M.: Oborongiz, 1960. 290 s.
11. Fridlyander I.N. Alyuminievye deformiruemye konstrukcionnye splavy [Aluminum deformable structural alloys]. M.: Metallurgiya, 1979. 208 s.
12. Berezina A.L., Kolobnev N.I., Molebny O.A., Rud A.D., Shmatko O.A. Effect of Sc, Zr on the Al–Cu–Li alloys structure and properties in the dependence of Cu concentration // Proceeding of the International Coonference «Light Alloys and Composites». Poland. Zakopane. 1999. P. 147–155.
13. Zaharov V.V., Rostova T.D. Uprochnenie alyuminievyh splavov pri legirovanii ih skandiem [Hardening of aluminum alloys at alloying their scandium] // Metallovedenie i termicheskaya obrabotka metallov. 2013. №12 (702). S. 24–29.
14. Yin Z., Yang L., Pan Q., Jiang F. // Trans. Nonferrous Met. Soc. China. 2001. V. 11. P. 822–825.
15. Wloka J., Virtanen S. Influence of scandium on the pitting behaviour of Al–Zn–Mg–Cu alloys // Acta Materialia. V. 55 (2007). P. 6666–6672.
16. Nwambu C.N., Nnuka E.E., Odo J.U., Nwoye C.I., Nwakpa S.O. Effect of molybdenum and cobalt addition on structure and mechanical properties of aluminium-12,5% silicon alloy // International Journal of Engineering Science Invention. 2014. V. 3. Issue 4. P. 20–24.
17. Sani A.S., Aliyu I., Polycarp E. Effect of chromium and cobalt additions on the corrosion resistance of aluminium silicon iron alloy (Al–Si–Fe) // International Journal of Scientific & Engineering Research. 2012. V. 3. Issue 12. P. 1–10.
18. Ryabov D.K., Kolobnev N.I., Kochubej A.Ya., Zavodov A.V. Izmenenie mehanicheskih svojstv listov iz splava 1913 pri vvedenii skandiya [Changing of mechanical properties of 1913 alloy sheets after scandium addition] // Aviacionnye materialy i tehnologii. 2014. №4. S. 3–8.
19. Ryabov D., Kolobnev N., Samohvalov S. Effect of scandium addition on mechanical properties and corrosion resistance of medium strength Al–Zn–Mg(–Cu) alloy // Materials Science Forum. 2014. V. 794–796. P. 241–246.
Influence of high-temperature thermomechanical treatment on structure and mechanical properties of high-strength corrosion-resistant steel of the grade 17H13N4К6SАМ3ch microalloyed by rare-earth metals is investigated. It is shown that high-temperature thermomechanical treatment at an optimum mode reduces average grain size in ~5 times in comparison with standard heat treatment. The content of retained austenite thus increases from 12 to 17%. Test results of mechanical properties of samples after high-temperature thermomechanical treatment have shown a noticeable gain of yield point, unit elongation and reduction of area, impact toughness (of KCU and KCV) in comparison with properties after standard heat treatment. Application of high-temperature thermomechanical processing allows to implement the effect of fine grain, developed substructure and positive influence of retained austenite on strength and plastic properties of steel 17H13N4К6SАМ3ch. Work is executed within implementatio
2. Kablov E.N., Ospennikova O.G., Vershkov A.V. Redkie metally i redkozemelnye elementy – materialy sovremennyh i budushhih vysokih tehnologij [Rare metals and rare-earth elements are materials for modern and future high technologies] // Aviacionnye materialy i tehnologii. 2013. №S2.
S. 3–10.
3. Kablov E.N., Ospennikova O.G., Lomberg B.S. Strategicheskie napravleniya razvitiya konstrukcionnyh materialov i tehnologij ih pererabotki dlya aviacionnyh dvigatelej nastoyashhego i budushhego [The strategic directions of development of constructional materials and technologies of their processing for aircraft engines of the present and the future] // Avtomaticheskaya svarka. 2013. №10. S. 23–32.
4. Razuvaev E.I., Lebedev D.Yu., Bubnov M.V. Formirovanie ultramelkozernistoj i nanorazmernoj struktury v metallah i splavah metodami deformacii [Forming of ultrafine grained and nanodimensional structure in metals and alloys deformation methods] // Aviacionnye materialy i tehnologii. 2010. №3. S. 3–8.
5. Razuvaev E.I., Moiseev N.V., Kapitanenko D.V., Bubnov M.V. Sovremennye tehnologii obrabotki metallov davleniem [Modern technologies of plastic working of metals] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №2. St. 03. Available at: http://www.viam-works.ru (accessed: November 10, 2015). DOI: 10.18577/2307-6046-2015-0-2-3-3.
6. Bernshtejn M.L., Zajmovskij V.A., Kaputkina M.L. Termomehanicheskaya obrabotka stali [Thermomechanical steel working]. M.: Metallurgiya, 1983. 480 s.
7. Bernshtejn M.L. Prochnost stali [Steel durability]. M.: Metallurgiya, 1974. 200 s.
8. Bratuhin A.G., Demchenko O.F., Dolzhenkov N.N., Krivonogov G.S. Vysokoprochnye korrozionnostojkie stali sovremennoj aviacii [High-strength corrosion-resistant became modern aircraft]. M.: MAI, 2006. 401 s.
9. Tonysheva O.A., Voznesenskaya N.M. Perspektivnye vysokoprochnye korrozionnostojkie stali, legirovannye azotom (sravnitelnyj analiz) [Perspective high-strength corrosion-resistant steels alloyed with nitrogen (comparative analysis] // Aviacionnye materialy i tehnologii. 2014. №3.
S. 27–32.
10. Voznesenskaya N.M., Kablov E.N., Petrakov A.F., Shalkevich A.B. Vysokoprochnye korrozionnostojkie stali austenitno-martensitnogo klassa [High-strength corrosion-resistant steel of the austenitno-martensitic class] // Metallovedenie i termicheskaya obrabotka metallov. 2002. №7.
S. 34–37.
11. Bannyh O.A., Blinov V.M., Shalkevich A.B., Kostina M.V., Voznesenskaya N.M., Hodyrev M.S. Vliyanie termicheskoj obrabotki na strukturu i mehanicheskie svojstva osobo vysokoprochnoj korrozionnostojkoj martensitno-austenitnoj stali [Influence of thermal processing on structure and mechanical properties of especially high-strength corrosion-resistant martensitic austenitic steel] // Metally. 2005. №3 S. 51‒61.
12. Krivonogov G.S., Kablov E.N. Rol granic zeren v ohrupchivanii vysokoprochnyh korrozionnostojkih stalej [Role of borders of grains in fragility high-strength corrosion-resistant the staly] // Metally. 2002. №1. S. 35–41.
13. Prokoshkina V.G., Kaputkina L.M., Bernshtejn M.L., Krivonogov G.S., Varganov V.A. Vliyanie termomehanicheskoj obrabotki na strukturu i svojstva martensitostareyushhej nerzhaveyushhej stali [Influence of thermomechanical processing on structure and property of maraging stainless steel] // Termicheskaya obrabotka i fizika metallov. 1979. №5. S. 71−76.
14. Kaputkina L.M., Prokoshkina V.G. Vliyanie deformacii i fazovogo naklepa na rekristallizaciyu austenita pri TMO martensitostareyushhih stalej [Influence of deformation and phase peening on austenite recrystallization at TMP maraging the steels] // Tekstura i rekristallizaciya v metallah i splavah: sb. tez. dokl. IV Vsesoyuz. konf.. Gor'kij: GPI, 1983. S. 136–137.
15. Razuvaev E.I., Kapitanenko D.V. Vliyanie termomehanicheskoj obrabotki na strukturu i svojstva austenitnyh stalej [Influence of thermomechanical processing on structure and property austenitny steels] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №5. St. 01. Available at: http://www.viam-works.ru (accessed: November 10, 2015).
16. Tonysheva O.A., Voznesenskaja N.M., Shalkevich A.B., Petrakov A.F. Issledovanie vlijanija vysokotemperaturnoj termomehanicheskoj obrabotki na strukturu, tehnologicheskie, mehanicheskie i korrozionnye svojstva vysokoprochnoj korrozionnostojkoj stali pere-hodnogo klassa s povyshennym soderzhaniem azota [Research of influence of high-temperature thermomechanical processing on structure, technological, mechanical and corrosion properties of high-strength corrosion-resistant steel of transitional class with the raised content of nitrogen] // Aviacionnye materialy i tehnologii. 2012. №3. S. 31–36.
17. Pevzner L.M., Kubyshkina T.D. Metody kontrolya i issledovaniya mashinostroitel'nyh materialov: spravochnoe posobie [Control methods and researches of machine-building materials: handbook]. M.: Mashinostroenie, 1971. T. 1. Fizicheskie metody issledovaniya metallov. S. 446.
18. Bernshtejn M.L. Struktura deformirovannyh metallov [Structure of the deformed metals]. M.: Metallurgiya, 1977. 432 s.
19. Gorelik S.S. Rekristallizaciya metallov i splavov [Recrystallization of metals and alloys]. M.: Metallurgiya, 1967. 403 s.
20. Sadovskij V.D., Fokina E.A. Ostatochnyj austenit v zakalennoj stali [Residual austenite in hardened steel]. M.: Nauka, 1986. 113 s.
21. Bernshtejn M.L., Zajmovskij V.A. Struktura i mehanicheskie svojstva metallov [Structure and mechanical properties of metals]. M.: Metallurgiya, 1970. 472 s.
Determination of low niobium content (0,01–0,1 wt. %) in the alloys having in their composition a large amount of alloying elements (which obstruct this determination), is a difficult task. Such types of alloys as steels, especially high-strength, are constantly subjected to modifications of their chemical composition to give them new properties, such as those associated with the impact toughness at various temperatures, lower thermal coefficient of linear expansion, temperature of hot forming and others. Niobium in small amounts (less than 0,9 wt. %) is added to various kinds of steel (chromium-nickel, high-strength, corrosion-resistant, high-strength welded, cemented, etc.). To control the low niobium content (0,01 wt. % higher) in high-strength steels with high accuracy (about 10% rel.) a method of spectrophotometric determination of niobium with reagent sulfochlorophenol C was developed. Niobium was preconcentrated at zirconium collector which was used in the course of analysis
2. Kablov E.N., Ospennikova O.G., Lomberg B.S., Sidorov V.V. Prioritetnye napravleniya razvitiya tehnologij proizvodstva zharoprochnyh materialov dlya aviacionnogo dvigatelestroeniya [The priority directions of development of production technologies of heat resisting materials for aviation engine building] // Problemy chernoj metallurgii i materialovedeniya. 2013. №3. S. 47–54.
3. Kablov E.N. Sovremennye materialy – osnova innovacionnoj modernizacii Rossii [Modern materials – basis of innovative modernization of Russia] // Metally Evrazii. 2012. №3. S. 10–15.
4. Kablov E.N., Ospennikova O.G., Bazyleva O.A. Materialy dlya vysokoteplonagruzhennyh detalej gazoturbinnyh dvigatelej [Materials for the high-heatloaded details of gas turbine engines] // Vestnik MGTU im. N.E. Baumana. Ser. «Mashinostroenie». 2011. №SP2. S. 13–19.
5. Shmotin Yu.N., Starkov R.Yu., Danilov D.V., Ospennikova O.G., Lomberg B.S. Novye materialy dlya perspektivnogo dvigatelya OAO «NPO „Saturn”» [New materials for the perspective engine of JSC «NPO „Saturn”»] // Aviacionnye materialy i tehnologii. 2012. №2. S. 6–8.
6. Kablov E.N. Materialy dlya izdeliya «Buran» – innovacionnye resheniya formirovaniya shestogo tehnologicheskogo uklada [Materials for «Buran» spaceship – innovative solutions of formation of the sixth technological mode] //Aviacionnye materialy i tehnologii. 2013. №S1. S. 3–9.
7. Tonysheva O.A., Voznesenskaja N.M., Shalkevich A.B., Petrakov A.F. Issledovanie vlijanija vysokotemperaturnoj termomehanicheskoj obrabotki na strukturu, tehnologicheskie, mehanicheskie i korrozionnye svojstva vysokoprochnoj korrozionnostojkoj stali pere-hodnogo klassa s povyshennym soderzhaniem azota [Research of influence of high-temperature thermomechanical processing on structure, technological, mechanical and corrosion properties of high-strength corrosion-resistant steel of transitional class with the raised content of nitrogen] // Aviacionnye materialy i tehnologii. 2012. №3. S. 31–36.
8. Tonysheva O.A., Voznesenskaya I.M., Eliseev E.A., Shalkevich A.B. Novaya vysokoprochnaya ekonomnolegirovannaya azotsoderzhashchaya stal povyshennoj nadezhnosti [The new high-strength containing steel of increased reliability economically alloyed nitrogen] //Aviacionnye materialy i tehnologii. 2012. №S. S. 84–88.
9. Netesov V.M., Bereznyak P.A., Ozhigov L.S., Handak V.V. Vliyanie mikrolegirovaniya na martensitnoe prevrashhenie i svojstva reaktornyh stalej [Influence of microalloying on the martensite transformation and property reactor steels] // Voprosy atomnoj nauki i tehniki. 2003. №6. S. 24–27.
10. Gibalo I.M. Analiticheskaya himiya niobiya i tantala [Analytical chemistry of niobium and tantalum]. M.: Nauka, 1967. 352 s.
11. Elinson S.V. Novye fotometricheskie metody opredeleniya niobiya i tantala v metallah i splavah [New photometric methods of definition of niobium and tantalum in metals and alloys] // Sovremennye metody analiza materialov. M.: Metallurgiya, 1969. S. 3–17.
12. Elinson S.V. Spektrofotometriya niobiya i tantala [Niobium and tantalum spectrophotometry]. M.: Atomizdat, 1973. 288 s.
13. Gundobin N.V., Titov V.I., Pilipenko L.V., Dvoreckov R.M. Spektrofotometricheskoe opredelenie niobiya v zharoprochnyh nikelevyh splavah, soderzhashhih tantal [Spektrofotometric definition niobium in the heat resisting nickel alloys containing tantalum] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №8. St. 10. Available at: http://www.viam-works.ru (accessed: November 18, 2015). DOI: 10.18577/2307-6046-2014-8-10-10.
14. Marchenko Z.N. Fotometricheskoe opredelenie jelementov [Photometric definition of elements]. M.: Mir, 1971. S. 276–282.
15. Elinson S.V., Petrov K.I. Analiticheskaya himiya cirkoniya i gafniya [Analytical chemistry of zirconium and hafnium]. M.: Nauka, 1965. 267s.
16. Savvin S.B., Propiscova A.L., Ohanova A.N. Sulfonitrofenol M – novyj reagent na palladij, niobij i drugie jelementy [Sulfonitrophenol M – new reagent on palladium, niobium and other elements] // Analiticheskaya himiya AN SSSR. 1969. T. 24. Vyp. 11. S. 1634–1641.
Technological and mechanical properties of epoxy binders suitable for producing structural composite materials based on such aromatic curing agents as 4,4'-methylene-bis-(2,6-diisopropylaniline), 4,4'-methylene-bis-(2-isopropyl-6-methylaniline), bis-(4-amino-2-chloro-3,5-diethylphenyl) methane and 4,4'-diaminodiphenylsulfone are studied. Particle size distribution of the samples of 4,4' diaminodiphenylsulfone curing agent and its impact on the process of dissolution in epoxy resins are studied as well. Work is executed within implementation of the complex scientific directions 13.1. «Binding for polymeric and composite materials of structural and special purposes », 13.2. «Structural PСM» («The strategic directions of development of materials and technologies of their processing for the period till 2030»)
2. Kablov E.N. Himiya v aviacionnom materialovedenii [Chemistry in aviation materials science] // Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 3–4.
3. Grashhenkov D.V., Chursova L.V. Strategiya razvitiya kompozicionnyh i funkcionalnyh materialov [Strategy of development of composite and functional materials] // Aviacionnye materialy i tehnologii. 2012. №S. S. 231–242.
4. Chursova L.V., Dushin M.I., Kogan D.I., Panina N.N., Kim M.A., Gurevich Ya.M., Platonov A.A. Plenochnye svyazuyushhie dlya RFI-tehnologii [Film binding for RFI technology] // Rossijskij himicheskij zhurnal. 2010. T. LΙV. №1. S. 63–66.
5. Panina N.N., Kim M.A., Gurevich Ya.M., Grigor'ev M.M., Chursova L.V., Babin A.N. Svyazuyushhie dlya bezavtoklavnogo formovaniya izdelij iz polimernyh kompozicionnyh materialov [Binding for autoclave-free formation of products from polymeric composite materials] // Klei. Germetiki. Tehnologii. 2013. №10. S. 18–27.
6. Grigorev M.M., Hrulkov A.V., Gurevich Ya.M., Panina N.N. Izgotovlenie stekloplastikovyh obshivok metodom vakuumnoj infuzii s ispolzovaniem epoksiangidridnogo svyazuyushhego i polupronicaemoj membrany [Manufacture of fiberglass skins using vacuum infusion using epoksiangidrid resin and a semipermeable membrane] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №2. St. 04. Available at: http://viam-works.ru (accessed: November 30, 2015). DOI: 10.18577/2307-6046-2014-0-2-4-4.
7. Grigorev M.M., Kogan D.I., Tverdaya O.N., Panina N.N. Osobennosti izgotovleniya PKM metodom RFI [Features of manufacturing of PCM RFI method] // Trudy VIAM: electron. nauch.-tehnich. zhurn. 2013. №4. St. 03. Available at: http://www.viam-works.ru (accessed: November 30, 2015).
8. Lapitskaya T.V., Lapickij V.A. Epoksidnye materialy [Epoxy materials] // Kompozitnyj mir. 2006. №7. S. 16–17.
9. Hozin V.G. Usilenie epoksidnyh polimerov [Strengthening of epoxy polymers]. Kazan: PIK «Dom pechati», 2004. S. 446.
10. Kuznetsova V.A., Deev I.S., Kondrashov E.K., Kuznetsov G.V. Vliyanie otverditelej na mikrostrukturu i svojstva modificirovannogo jepoksidnogo svyazuyushhego dlya toplivostojkogo pokrytiya [Influence of hardeners on microstructure and property modified epoxy binding for toplivostoyky covering] // Vse materialy. Enciklopedicheskij spravochnik. 2012. №11. S. 38–41.
11. Kozlova A.A., Kondrashov Je.K., Deev I.S., Shchegoleva N.E. Issledovanie vliyaniya frakcionnogo sostava i udelnoj poverhnosti antikorrozionnyh pigmentov na zashhitnye svojstva epoksidnyh pokrytij [Research of influence of fractional structure and specific surface of anticorrosive pigments on protective properties of epoxy coverings] // Korroziya: materialy, zashhita. 2013. №3. S. 42–48.
12. Available at: http://www.lonza.com (accessed: November 30, 2015).
13. Available at: http://www.huntsman.com (accessed: November 30, 2015).
14. Available at: http://www.chemsystem.ru (accessed: November 30, 2015).
15. Tkachuk A.I., Chursova L.V., Kim M.A., Gurevich Ya.M., Panina N.N., Babin A.N. Diaminodifenilsulfon: poluchenie, primenenie, perspektivy [Diaminodiphenylsulphone: receiving, application, perspectives] // Vse materialy. Eniklopedicheskij spravochnik. 2013. №10. S. 30–42.
16. Available at: http://www.high-performance-materials.com (accessed: November 30, 2015).
17. 17. Low moisture absorption epoxy resin systems with alkylated diamine hardeners: pat. 6379799 US; publ. 30.04.02.
18. Epoksidnoe svyazuyushhee, prepreg na ego osnove i izdelie, vypolnennoe iz preprega: pat. 2184128 Ros. Federaciya [Epoxy binding, prepreg on its basis and the product executed from prepreg: pat 2184128 Rus. Federation]; opubl. 27.06.02.
19. Vysokoprochnaya epoksidnaya kompoziciya i sposob ee polucheniya: pat. 2363712 Ros. Federaciya [High-strength epoxy composition and way of its receiving: pat. 2363712 Rus. Federation]; opubl.10.08.09.
20. Epoksidnoe svyazuyushhee, prepreg na ego osnove i izdelie, vypolnennoe iz preprega: pat. 2424259 Ros. Federaciya [Epoxy binding, prepreg on its basis and the product executed from prepreg: pat. 2424259 Rus. Federation]; opubl. 20.07.11.
21. Epoksidnoe svyazuyushhee, prepreg na ego osnove i izdelie, vypolnennoe iz preprega: pat. 2513916 Ros. Federaciya [Epoxy binding, prepreg on its basis and the product executed from prepreg: pat. 2513916 Rus. Federation]; opubl. 20.04.14.
22. Epoksidnoe svyazuyushhee, prepreg na ego osnove i izdelie, vypolnennoe iz preprega: pat. 2520543 Ros. Federaciya [Epoxy binding, prepreg on its basis and the product executed from prepreg: pat. 2520543 Rus. Federation]; opubl. 27.06.14.
23. Hrulkov A.V., Dushin M.I., Popov Yu.O., Kogan D.I. Issledovaniya i razrabotka avtoklavnyh i bezavtoklavnyh tehnologij formovaniya PKM [Researches and development autoclave and out-of-autoclave technologies of formation of PCM] //Aviacionnye materialy i tehnologii. 2012. №S. S. 292–301.
24. Dushin M.I., Hrulkov A.V., Muhametov R.R. Vybor tehnologicheskih parametrov avtoklavnogo formovaniya detalej iz polimernyh kompozicionnyh materialov [A choice of technological parameters of autoclave formation of details from polymeric composite materials] // Aviacionnye materialy i tehnologii. 2011. №3. S. 20–26.
25 Muhametov R.R., Ahmadieva K.R., Chursova L.V., Kogan D.I. Novye polimernye svyazujushhie dlya perspektivnyh metodov izgotovleniya konstrukcionnyh voloknistyh PKM [New polymeric binding for perspective methods of manufacturing of constructional fibrous PCM] //Aviacionnye materialy i tehnologii. 2011. №2. S. 38–42.
26. Kablov E.N., Kondrashov S.V., Yurkov G.Yu. Perspektivy ispolzovaniya uglerodsoderzhashhih nanochastic v svyazuyushhih dlya polimernyh kompozicionnyh materialov [Perspectives of use of carbon-containing nanoparticles in binding for polymeric composite materials] // Rossijskie nanotehnologii. 2013. T. 8. №3–4. S. 28–46.
27. Gunyaev G.M., Kablov E.N., Aleksashin V.M. Modificirovanie uglerodnyh stekloplastikov uglerodnymi nanochasticami [Modifying of carbon fibreglasses by carbon nanoparticles] // Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 5–11.
28. Kobets L.P., Deev I.S. Strukturoobrazovanie v termoreaktivnyh svyazuyushhih i matricah kompozicionnyh materialov na ih osnove [Structurization in thermosetting binding and matrixes of composite materials on their basis] // Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 67–78.
29. Muhametov R.R., Ahmadieva K.R., Kim M.A., Babin A.N. Rasplavnye svyazujushhie dlya perspektivnyh metodov izgotovleniya PKM novogo pokoleniya [Melt binding for perspective methods of production of PCM of new generation] // Aviacionnye materialy i tehnologii. 2012. №S. S. 260–265.
30. Deev I.S., Kablov E.N., Kobets L.P., Chursova L.V. Issledovanie metodom skaniruyushhej elektronnoj mikroskopii deformacii mikrofazovoj struktury polimernyh matric pri mehanicheskom nagruzhenii [Research of the scanning electron microscopy method deformation of microphase structure of polymeric matrix at mechanical loading] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №7. St. 06. Available at: http://www.viam-works.ru (accessed: November 30, 2015). DOI: 10.18577/2307-6046-2014-0-7-6-6.
31. Vinogradov G.V., Malkin A.Ya. Reologiya polimerov [Rheology of polymers]. M.: Himiya, 1977. 440 s.
32. Malkin A.Ya., Kulichihin S.G. Reologiya v processah obrazovaniya i prevrashheniya polimerov [Rheology in processes of education and transformation of polymers]. M.: Himiya, 1985. 240 s.
33. Simonov-Emelyanov I.D., Trofimov A.N., Surikov P.V., Shheulova L.K. Osobennosti reokinetiki processa otverzhdeniya dianovyh epoksidnyh oligomerov promyshlennyh marok aminnym otverditelem [Features reokinetiki process of curing of dianovy epoxy oligomers of industrial brands by amine hardener] // Vestnik MITHT. 2010. T. 5. №3. S. 102–107.
34. Strong A.B. Fundamentals of Composites Manufacturing: Materials, Methods and Applications. Dearborn: SME, 2008. 620 p.
35. Moshinskij L. Epoksidnye smoly i otverditeli [Epoxies and hardeners]. Tel-Aviv: Arkadiya press Ltd, 1995. S. 370.
36. Deev I.S., Sokolov I.I., Panina N.N. et al. Properties and Structural Features of Nanodisperse Powder Fillers // Polymer Science. Series D. Glues and Sealing Materials. 2013. V. 6. №3. P. 217–222.
In this work a compatibility of the components of polymer composition «polysulfone–epoxy oligomer» has been studied by rheological method. The processes and factors influencing the solubility of polysulfone in epoxides of different molecular structure have been established. Samples have been studied both in rotation and oscillation conditions. Work is executed within implementation of the complex scientific direction 13.1. «Binding for polymeric and composite materials of structural and special purposes» («The strategic directions of development of materials and technologies of their processing for the period till 2030»)
2. Babin A.N., Petrova A.P. Metody ispytanij i issledovanij osnovnyh svojstv polimernyh svyazuyushhih dlya konstrukcionnyh PKM [Test methods and researches of the main properties polymeric binding for constructional PСM] // Vse materialy. Kommentarii k standartam, TU, sertifikatam. 2016. №3. S. 2.
3. Kablov E.N. Rossii nuzhny materialy novogo pokoleniya [Materials of new generation are necessary to Russia] // Redkie zemli. 2014. №3. S. 813.
4. Kablov E.N. Tendencii i orientiry innovacionnogo razvitiya Rossii. 3-e izd. [Tendencies and reference points of innovative development of Russia. 3rd ed.]. M.: VIAM, 2015. 720 s.
5. Petrovа A.P., Dementyevа L.A., Lukina N.F., Chursova L.V. [Adhesive binders for polymer composite materials based on carbon- and glass fillers] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №9. St. 11. Available at: http://www.viam-works.ru (accessed: November 02, 2015). DOI: 10.18577/2307-6046-2015-0-9-11-11.
6. Alentev A.Yu., Yablokova M.Yu. Svyazuyushhie dlya polimernyh kompozicionnyh materialov: ucheb. posobie [Binding for polymeric composite materials: studies. grant.]. M.: Izd-vo MGU im. M.V. Lomonosova, 2010. 69 s.
7. Kablov E.N., Bejder E.Ya., Petrova G.N., Stolyankov Yu.V., Rumyanceva T.V. Penopoliimidy // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №4. St. 09. Available at: http://www.viam-works.ru (accessed: November 02, 2015). DOI: 10.18577/2307-6046-2015-0-4-9-9.
8. Yakovlev N.O. Issledovanie i opisanie relaksacionnogo povedeniya polimernyh materialov (obzor) [Study and description of relaxation behavior of polymers (review)] // Aviacionnye materialy i tehnologii. 2014. №S4. S. 50–54.
9. Muranov A.N., Malysheva G.V., Nelyub V.A. i dr. Issledovanie svojstv polimernyh kompozicionnyh materialov na osnove geterogennoj matricy [Research of properties of polymeric composite materials on the basis of heterogeneous matrix] // Vse materialy. Enciklopedicheskij spravochnik. 2012. №4. S. 2–6.
10. Guseva M.A. Cianovye efiry – perspektivnye termoreaktivnye svyazujushhie (obzor) [Cyanic esters are prospective thermosetting binders (review)] // Aviacionnye materialy i tehnologii. 2015. №2 (35). S. 45–50.
11. Merkulova Yu.I., Muhametov R.R. Nizkovyazkoe epoksidnoe svyazuyushhee dlya pererabotki metodom vakuumnoj infuzii [Development of a low-viscosity epoxy binder for processing by vacuum infusion] // Aviacionnye materialy i tehnologii. 2014. №1. S. 39–41.
12. Bejder E.Ya., Petrova G.N. Termoplastichnye svyazuyushhie dlya polimernyh kompozicionnyh materialov [The thermoplastic binder for polymeric composite materials] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №11. St. 05. Available at: http://viam-works.ru. (accessed: December 07, 2015). DOI: 10.18577/2307-6046-2015-0-11-5-5.
13. Gryaznov V.I., Petrova G.N., Yurkov G.Yu., Buznik V.M. Smesevye termojelastoplasty so specialnymi svojstvami [Thermoplastic mixtures with special properties] // Aviacionnye materialy i tehnologii. 2014. №1. S. 25–29.
14. Brantseva T.V., Gorbatkina Yu.A., Dutschek V., Kerber M.L. et al. Modification of epoxy resin by polysulfone to improve the interfacial and mechanical properties in glass fibre composites. I. Study of processes during matrix/glass fibre interface formation // J. Adhesion Sci. Technol. 2003. V. 17. №15. P. 2047–2063.
15. Mezhikovskij S.M., Arinshtejn A.E., Deberdeev R.Ya. Oligomernoe sostoyanie veshhestva [Oligomerous condition of substance]. M.: Nauka, 2005. 252 s.
16. Novakov I.A., Sidorenko N.V., Vaniev M.A. i dr. Fazovaya stabil'nost' i reologicheskie harakteristiki sistem termoplast–polimerizacionnosposobnoe soedinenie v usloviyah prilozheniya mehanicheskogo polya [Phase stability and rheological characteristics of systems thermoplastic – capable connection to polymerization in the conditions of the appendix of mechanical field] // Vestnik Bashkirskogo universiteta. 2008. T.13. №4. S. 911–915.
This paper discusses a difference between fibrous, cellular and grained sound-absorbing materials on structure and properties. A comparative analysis of different porous sound-absorbing materials based on their performance at 250, 500, 1000 and 2000 Hz is provided The effect of the thickness of material on its sound absorption at different frequencies is discussed. The through macroporosity was found to affect the acoustic properties of material. Fibrous materials, including nonwoven fabrics made of PET or glass wool, were found to have the best sound absorbing properties at 250, 500, 1000 and 2000 Hz. The data provided in this paper can be used for a comparative evaluation of sound absorbing materials in frequency range from 250 to 2000 Hz. Work is executed within implementation of the complex scientific direction 15.3. «Materials and coatings for protection against EMЕ, shock, vibration, acoustic and electric influences» («The strategic directions of development of materials and
2. Kablov E.N., Kondrashov S.V., Yurkov G.Yu. Prospects of using carbonaceous nanoparticles in binders for polymer composites // Russian nanotechnologies. 2013. V. 8. Issue 3–4. P. 163–185.
3. Kablov E.N. Konstrukcionnye i funkcionalnye materialy – osnova ekonomicheskogo i nauchno-tehnicheskogo razvitiya Rossii [Constructional and functional materials – basis of economic and scientific and technical development of Russia] // Voprosy materialovedeniya. 2006. №1. S. 64–67.
4. Kablov E.N. Materialy dlya izdeliya «Buran» – innovacionnye resheniya formirovaniya shestogo tehnologicheskogo uklada [Materials for «Buran» spaceship – innovative solutions of formation of the sixth technological mode] //Aviacionnye materialy i tehnologii. 2013. №S1. S. 3–9.
5. Platonov M.M., Zhelezina G.F., Nesterova T.A. Poristovoloknistye polimernye materialy dlya izgotovleniya shirokodiapazonnyh ZPK i issledovanie ih akusticheskih svojstv [Porous fibrous polymer materials for wide range sound absorbing structures and investigation of their acoustical properties] // Trudy VIAM: elektron. nauch-tehnih. zhurn. 2014. №6. St. 09. Available at: http://viam-works.ru (accessed: Septenber 10, 2015). DOI: 10.18577/2307-6046-2014-0-6-9-9.
6. Kraev I.D., Shuldeshov E.M., Platonov M.M., Yurkov G.Yu. Obzor kompozicionnyh materialov, sochetayushhih zvukozashhitnye i radiozashhitnye svojstva [The overview of the composite materials combining sound protective and radio protective properties] // Aviacionnye materialy i tehnologii. 2016 (v pechati).
7. Jacobsen F., Poulsen T., Rindel J.H., Gade A.Ch., Ohlrich M. Fundamentals of acoustic and noise control. Orsted: Technical University of Denmark. 2007. P. 172.
8. Arenas J.P., Crocker M.J. Recent Trends in Porous Sound-Absorbing Materials // Sound and Vibration. July 2010. P. 12–17.
9. Kablov E.N., Bejder Je.Ya., Petrova G.N., Stolyankov Yu.V., Rumyanceva T.V. Penopoliimidy [Foamed polyimides] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №4. St. 09. Available at: http://viam-works.ru (accessed: Septenber 10, 2015). DOI: 10.18577/2307-6046-2015-0-4-9-9.
10. Isakovich M.I. Obshhaya akustika [General acoustics]. M.: Nauka, 1973. 502 s.
11. Rumyancev B.M., Zhukov A.D. Eksperiment i modelirovanie pri sozdanii novyh izolyacionnyh i otdelochnyh materialov [Experiment and modeling at creation of new insulating and finishing materials]. M.: Izd-vo MISI–MGSU, 2013. 156 s.
12. Liu Sh., Chen W., Zhang Y. Design optimization of porous fibrous materials for maximizing absorption of sound under set frequency bands // Applied Acoustics. 2014. V. 76. P. 319–328.
13. Han F., Seiffert G., Zhao Yu., Gibbs B. Acoustic absorption behavior of an open-cell aluminium foam // J. Phys. D: Appl. Phys. 2003. V. 36. P. 294–302.
14. Xie Zh., Ikeda T., Okuda Yo., Nakajima H. Sound absorption characteristics of lotus-type porous copper fabricated by unidirectional solidification // Materials Science and Engineering A. 2001.
V. 386. P. 390–395.
15. Sagartzazu X., Hervella-Nieto L., Pagalday J.M. Review in Sound Absorbing Materials. 2008.
V. 15. P. 311–342.
16. Yamashita T., Suzuki K., Nishino S., Tomota Yo. Relationship between Sound Absorption Property and Microscopic Structure Determined by X-ray Computed Tomography in Urethane Foam Used as Sound Absorption Material for Automobiles // Materials Transactions. 2008. V. 49. №2.
P. 345–351.
17. Castagnede B., Moussatov A., Lafarge D., Saeid M. Low frequency in situ metrology of absorption and dispersion of sound absorbing porous materials based on high power ultrasonic non-linearly demodulated waves // Applied Acoustics. 2008. V. 69. P. 634–648.
18. Sun P., Guo Zh. Preparation of steel slag porous sound-absorbing materials using powder as pore former // Journal of Environmental Sciences. 2015. V. 36. P. 67–75.
19. Rey R., Alba J., Arenas J.P., Sanchis V.J. An empirical modeling of porous sound absorbing materials made of recycled foam // Applied Acoustics. 2012. V. 73. P. 604–609.
20. Lu T.J., Chen F., He D. Sound absorption of cellular metals with semiopen cells // J. Acoust. Soc. Am. 2000. V. 108. №4. P. 1697–1709.
21. Doutres O., Salissou Ya., Atalla N., Panneton R. Evaluation of the acoustic and non-acoustic properties of sound absorbing materials using a three-microphone impedance tube // Applied acoustics. 2010. V. 71. P. 506–509.
22. Yu X., Lv L., Wei Ch., Cui Yo., Wang X., Liu T. Research on sound absorption properties of multilayer structural material based on discarded polyester fiber // The Journal of The Textile Institute. 2014. V. 105. №10. P. 1009–1013.
23. Kino N., Ueno T. Evaluation of acoustical and non-acoustical properties of sound absorbing materials made of polyester fibres of various cross-sectional shapes // Applied Acoustic. 2008. V. 69.
P. 575–582.
24. Seddeq H.S., Aly N.M., A A.M., Elshakankery M.H. Investigation on sound absorption properties for recycled fibrous materials // J. Industrial Textile. 2012. V. 43. №1. P. 56–73.
25. Cuiyun D., Guang C., Xinbang X., Peisheng L. Sound absorption characteristics of a high-temperature sintering porous ceramic material // Applied Acoustics. 2012. V. 73. P. 865–871.
26. Ersoy S., Kucuk H. Investigation of industrial tea-leaf-fibre waste material for its sound absorption properties // Applied Acoustics. 2009. V. 70. P. 215–220.
27. Arenas J. P., Rebolledo J., Rey R., Alba J. Sound Absorption Properties of Unbleached Cellulose Loose-Fill Insulation Material // BioResources. 2014. V. 9. №4. P. 6227–6240.
28. Bo Zh., Tianning Ch. Calculation of sound absorption characteristics of porous sintering fiber metal // Applied Acoustics. 2009. V. 70. P. 337–346.
29. Lee Y.E., Joo Ch.Wh. Sound Absorption Properties of Thermally Bonded Nonwovens Based on Composing Fibers and Production Parameters // J. Applied Polymer Science. 2004. V. 92.
P. 2295–2302.
30. Hajj N.E., Mboumba-Mamboundou B., Dheilly R.-M., Aboura Z., Benzeggagh M., Queneudec M. Development of thermal insulating and sound absorbing agro-sourced materials from auto linked flax-tows //Industrial Crops and Products. 2011. V. 34. P. 921–928.
31. Wassilieff C. Sound Absorption of Wood-Based Materials // Applied Acoustics. 1996. V. 48. №4.
P. 339–356.
32. Sgard F.C., Olny X., Atalla N., Castel F. On the use of perforations to improve the sound absorption of porous materials // Applied Acoustics. 2005. V. 66. P. 625–651.
33. Yang T.L., Chiang D.-M., Chen R. Development of a Novel Porous Laminated Composite Material for High Sound Absorption // J. Vibration and Control. 2001. V. 7. P. 675–698.
34. Narang P.P. Material Parameter Selection in Polyester Fibre Insulation for Sound Transmission and Absorption //Applied Acoustics. 1995. V. 45. P. 335-358.
35. Wu G., Li R., Yuan Y., Jiang L., Sun D. Sound absorption properties of ceramic hollow sphere structure with micro-sized open cell // Materials Letters. 2014. V. 134. P. 268–271.
36. Sun P., Guo Zh.-Ch. Sintering preparation of porous sound-absorbing materials from steel slag // Trans. Nonferrous Met. Soc. China. 2015. V. 25. P. 2230–2240.
37. Takahara H. The Sound Absorption Characteristics of Particulate Porous Ceramic Materials // Applied Acoustics. 1994. V. 41. P. 265–274.
38. Hung T.-Ch., Huang J.-Sh., Wang Yi.-W., Lin K.-Yi. Inorganic polymeric foam as a sound absorbing and insulating material // Construction and Building Materials. 2014. V. 50. P. 328–334.
The sorption of water by epoxy-based nanocomposites with carbon nanotubes in glassy and rubber states of polymer matrix was studied. It was shown, that at sorption of water by polymer matrix in glassy state the addition of carbon nanotubes causes decreasing of both the average diffusion coefficient and water uptake. The hydrothermal aging above the glass transition temperature (Tg) of polymer matrix results in inverse correlation. It is suggested, that the lower water sorption below Tg originates from reduced cure degree of polymer matrix and enhanced rate of structural relaxation of nano-modified polymer causing «mobility freezing» of polymer chains and, as a result, decreasing of water diffusion coefficient in polymer matrix. Enhanced water sorption by nano-modified composite above Tg, originates, probably, from a bigger fraction of free volume in polymer matrix. Work is executed within implementation of the complex scientific directions 13.1. «Binding for polymeric and composite
2. Kablov E.N., Kondrashov S.V., Yurkov G.Yu. Perspektivy ispolzovaniya uglerodsoderzhashhih nanochastic v svyazuyushhih dlya polimernyh kompozicionnyh materialov [Perspectives of use of carbon-containing nanoparticles in binding for polymeric composite materials] // Rossijskie nanotehnologii. 2013. T. 8. №3–4. S. 24–42.
3. Chursova L.V., Kim M.A., Panina N.N., Shvetsov E.P. Nanomodificirovannoe epoksidnoe svyazuyushhee dlya stroitelnoj industrii [Nanomodified epoxy binder for the construction industry] // Aviacionnye materialy i tehnologii. 2013. №1. S. 40–47.
4. Gunyaev G.M., Kablov E.N., Aleksashin V.M. Modificirovanie konstrukcionnyh ugleplastikov uglerodnymi nanochasticami [Modifying constructional carbon of plastics carbon nanoparticles] // Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 5–11.
5. Corcione C.E., Frigione M. Characterization of Nanocomposites by Thermal Analysis // Materials. 2012. V. 5. P. 2960–2980.
6. Urvanov S.A., Haskov M.A., Alshevskij Yu.L., Karaeva A.R., Mordkovich V.Z., Bejlina N.Yu. Uglerodnye niti, kombinirovannye fullerenami i dlinnomernymi nanotrubkami [The carbon threads combined by fullerenes and lengthy nanotubes] // Izvestiya vysshih uchebnyh zavedenij. Ser.: Himiya i himicheskaya tehnologiya. 2013. T. 56. №7. S. 116–119.
7. Kumar M.S.S., Raju N.M.S., Sampath P.S., Jayakumari L.S. Effects of nanomaterials on polymer composites – an expatiate view // Reviews on Advanced Materials Science. 2014. V. 38. P. 40–54.
8. Njuguna J., Pielichowski K., Alcock J.R. Epoxy-Based Fibre Reinforced Nanocomposites: Current Status // Advanced Engineering Materials. 2007. V. 9. №10. P. 835–847.
9. Karak N. Vegetable Oil-Based Polymers: Properties, Processing and Applications. Cambridge: Woodhead Publishing Limited. 2012. 612 p.
10. Haskov M.A., Ahmadieva K.R., Kudryavceva A.N., Grebeneva T.A. Vliyanie fullerena S60 na kinetiku otverzhdeniya termoreaktivnyh svyazuyushhih na osnove jepoksidnyh smol [Influence of C60 fullerene on kinetics of curing thermosetting binding on the basis of epoxies] // Kompozity i nanostruktury (v pechati).
11. Harris P.J.F. Carbon nanotube composites // International Materials Reviews. 2004. V. 49. №1. P. 31–43.
12. Bolshakov V.A., Kondrashov S.V., Merkulova Y.I., Dyachkova T.P., Yurkov G.Y., Ilyichyov F.V. Issledovanie svojstv nanomodificirovannyh uglekompozitov do i posle termovlazhnostnogo stareniya [Research of nanomodified carbon composites before and after hydrothermal aging] //Aviacionnye materialy i tehnologii. 2015. №2 (35). S. 61–66.
13. Haskov M.A. O specifike opredeleniya temperatury steklovaniya vlagonasyshhennyh polimernyh kompozicionnyh materialov metodom dinamicheskogo mehanicheskogo analiza [About specifics of determination of glass transition temperature of vlagonasyshchenny polymeric composite materials method of the dynamic mechanical analysis] // Zavodskaya laboratoriya (v pechati).
14. Efimov V.A., Shvedkova A.K., Korenkova T.G., Kirillov V.N. Issledovanie polimernyh konstrukcionnyh materialov pri vozdejstvii klimaticheskih faktorov i nagruzok v laboratornyh i naturnyh usloviyah [Research of polymeric constructional materials at influence of climatic factors and loadings in laboratory and natural conditions] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №1. St. 05. Available at: http://www.viam-works.ru (accessed: December 22, 2015).
15. Kablov E.N., Startsev O.V. Fundamentalnye i prikladnye issledovanija korrozii i starenija materialov v klimaticheskih uslovijah (obzor) [The basic and applied research in the field of corrosion and ageing of materials in natural environments (review)] // Aviacionnye materialy i tehnologii. 2015. №4 (37). S. 38–52. DOI: 10.18577/2071-9140-2015-0-4-38-52.
16. Kablov E.N., Kirillov V.N., Zhirnov A.D., Startsev O.V., Vapirov Yu.M. Centry dlya klimaticheskih ispytanij aviacionnyh PKM [The centers for climatic tests of aviation PCM] // Aviacionnaya promyshlennost. 2009. №4. S. 36–46.
17. Komorowski J.P. Hydrothermal effects in continuous fibre reinforced composites. Part II: Physical properties // Aeronautical note NEA-AN-10. 1983. V. 22700. P. 1–56.
18. Walter H., Shirangi H., Dermitzaki E., Wunderle B., Michel B. Study on the Effect of Moisture and Elevated Temperature on the Fracture Properties of Visco Elastic Polymers // Proceedings of the 12-th International Conference on Fracture. Ottawa. 2009. P. 1775–1783.
19. Lee S.G., Choi J.I., Koh W., Jang S.S., Kim J., Kim G. Effect of Temperature on Water Molecules in a Model Epoxy Molding Compound: Molecular Dynamics Simulation Approach // IEEE Transactions On Components, Packaging And Manufacturing Technology. 2011. V. 1. №10. P. 1533–1542.
20. Enns J.B., Gillham J.K. Effect of the extent of cure on the modulus, glass transition, water absorption, and density of an amine-cured epoxy // Journal of Applied Polymer Science. 1983. V. 28. №9. P. 2831–2846.
21. Li L., Yu Y., Su H., Zhan G., Li S., Wu P. The Diffusion Mechanism of Water Transport in Amine-Cured Epoxy Networks // Applied Spectroscopy. 2010. V. 64. № 4. P. 458–465.
22. Efimov V.A., Shvedkova A.K., Korenkova T.G., Kirillov V.N. Issledovanie polimernyh konstrukcionnyh materialov pri vozdejstvii klimaticheskih faktorov i nagruzok v laboratornyh i naturnyh usloviyah [Investigation of polymer composite materials under effect of climatic factors and loads in laboratory and environmental conditions] // Aviacionnye materialy i tehnologii. 2013. №S2. S. 68–73.
23. Lucas J.P., Zhou J. Moisture Interaction Characteristics and Fracture in Polymer Compo-sites // Proceedings of the Tenth International Conference on Composite Materials (ICCM-10). Canada. 1995. P. VI-247–VI-255.
24. Starkova O., Chandrasekaran S., Prado L.A.S.A., Tölle F., Mülhaupt R., Schulte K. Hydrothermally resistant thermally reduced graphene oxide and multi-wall carbon nanotube based epoxy nanocomposites // Polymer Degradation and Stability. 2013. V. 98. P. 519–526.
25. Pan M., Zhang C., Liu B., Mu J. Dielectric and Thermal Properties of Epoxy Resin Nanocomposites Containing Polyhedral Oligomeric Silsesquioxane // Journal of Materials Science Research. 2013. V. 2. №1. P. 153–162.
26. Zulfli N.H.M., Bakar A.A., Chow W.S. Mechanical and water absorption behaviors of carbon nanotube reinforced epoxy/glass fiber laminates // Journal of Reinforced Plastics and Composites November. 2013. V. 32. №22. P. 1715–1721.
27. Barkoula N.M., Paipetis A., Matikas T., Vavouliotis A., Karapappas P., Kostopoulos V. Environmental degradation of carbon nanotube-modified composite laminates: a study of electrical resistivity // Mechanics of Composite Materials. 2009. V. 45. №1. P. 21–32.
28. Mir I.A., Kumar D. Carbon nanotube-filled conductive adhesives for electronic applica-tions // Nanoscience Methods. 2012. V. 1. P. 183–193.
29. Ma P.-C., Siddiqui N.A., Marom G., Kim J.-K. Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review // Composites Part A: Applied Science and Manufacturing. 2010. V. 41. №10. P. 1345–1367.
30. Haskov M.A., Grebeneva T.A., Babin A.N. Vliyanie dobavok uglerodnyh nanotrubok na kinetiku otverzhdeniya jepoksidnyh smol do i posle zasteklovyvaniya [Influence of additives of carbon nanotubes on kinetics of curing of epoxies before glass transformation] // Kompozity i nanostruktury. 2014. T. 6. №1. S. 49–64.
31. Crank J. The mathematics of diffusion. Oxford: Clarendon Press, 1975. 414 p.
32. Liu W., Hoa S.V., Pugh M. Water uptake of epoxy–clay nanocomposites: Experiments and model validation // Composites Science and Technology. 2008. V. 68. №9. P. 2066–2072.
33. Panin S.V., Startsev O.V., Krotov A.S. Diagnostika nachalnoj stadii klimaticheskogo stareniya PKM po izmeneniyu koefficienta diffuzii vlagi [Initial stage environmental degradation of the polymer matrix composites evaluated by Water diffusion coefficient] // Trudy VIAM : electron. nauch.-tehnich. zhurn. 2014. №7. St. 09. Available at: http://viam-works.ru (accessed: December 22, 2015). DOI: 10.18577/2307-6046-2014-0-7-9-9.
34. Kablov E.N., Starcev O.V., Panin S.V. Vlagoperenos v ugleplastike s destruktirovannoj poverhnostyu [Moisture transfer in coal to plastics with destructured surface] // Doklady akademii nauk. 2015. T. 461. №2. S. 433–436.
35. Klopffer M.H., Flaconnèche B. Transport Properties of Gases in Polymers: Bibliographic Review // Oil & Gas Science and Technology – Rev. IFP. 2011. V. 56. №3. P. 223–244.
36. Shen C.-H., Springer G.S. Moisture Absorption and Desorption of Composite Materials // Journal of composite materials. 1976. V. 10. P. 2–20.
37. Wei C., Srivastava D., Cho K. Thermal Expansion and Diffusion Coefficients of Carbon Nanotube-Polymer Composites // Nano Letters. 2002. V. 2. №6. P. 647–650.
38. Fox T. G., Loshaek S. J. Influence of Molecular Weight and Degree of Crosslinking of the Specific Volume and Glass Temperature of Polymers // Journal of Polymer Science. 1955. V. 15. №80.
P. 371–390.
39. Pascault J.P., Sautereau H., Verdu J. et al. Thermosetting polymers. N-Y.: Marcel Dekker AG, 2002. 477 р.
40. McCallum C.L., Bandosz T.J., McGrother S.C., Müller E. A., Gubbins K.E. A Molecular Model for Adsorption of Water on Activated Carbon: Comparison of Simulation and Experi-ment // Langmuir. 1999. V. 15. P. 533–544.
41. Haskov M.A., Bolshakov V.A., Merkulova Yu.I., Grebeneva T.A. Vliyanie uglerodnyh na-notrubok na kineticheskie aspekty otverzhdeniya termoreaktivnyh svyazuyushhih na primere jepoksidnyh smol [Influence of carbon nanotubes on kinetic aspects of curing of thermosetting binding epoxies on example] // Izvestiya vysshih uchebnyh zavedenij. Ser.: Himiya i himicheskaya tehnologiya. 2015. T. 58. №7. S. 58–62.
42. Blank W.J., He Z.A., Picci M. Catalysis of the epoxy-carboxyl reaction // Journal of Coatings Technology. 2002. V. 74. №926. P. 33–41.
It is known that porosity in polymeric composite materials (PCM) exerts a considerable impact on strength properties of the products working in the conditions of bending, compression and shearing load. Now in Federal state unitary enterprise «All-Russian scientific research institute of aviation materials» the works on creation of pore-free PCM produced by methods of autoclave and out-of-autoclave molding are conducted according to the strategic directions of development of materials and technologies of their processing for the period up to 2030 (13.2. «Structural PCM») [1]. The purpose of this work is the identification of main sources of porosity formation when manufacturing PCM by different methods. It is established on the tested flat samples collected from humidified prepregs molded in the autoclave or under vacuum that the main source of porosity formation is the moisture containing in binding and reinforcing fillers. Results of the study of feasibility of carbon plastics produ
2. Mihajlin Yu.A. Konstrukcionnye polimernye kompozicionnye materialy [Constructional polymeric composite materials]. SPb.: Nauchnye osnovy i tehnologi. 2008. 822 s.
3. Brautman L. Razrushenie i ustalost [Destruction and fatigue]. M.: Mir, 1978. 153 s.
4. Void Content of Reinforced Plastic: ASTM D 2734-09. Standard by ASTM International. 2009. 3 p.
5. Tavares S.S., Michaud V., Manson J.A.E. Through thickness air permeability of prepregs during cure // Composites: Part A. 2009. V. 40. P. 1587–1596.
6. Thomas S., Nutt S.R. In situ estimation of though-thickness resin flow using ultrasound // Compos. Sci. Technol. 2008. 68:3093-8.
7. Tavares S.S., Michaud V., Manson J.A.E. Assessment of semi-impregnated fabrics in honeycomb sandwich structures // Composites: Part A. 2010. V. 41. P. 8–15.
8. Jackson K., Crabtree M. Autoclave guality composites tooling for composite from vacuum bag only processing // 47th International SAMPLE symposium. 2002. P. 800–807.
9. Kablov E.N., Kondrashov S.V., Yurkov G.Yu. Perspektivy ispolzovaniya uglerodsoderzhashhih nanochastic v svyazuyushhih dlya polimernyh kompozicionnyh materialov [Perspectives of use of carbon-containing nanoparticles in binding for polymeric composite materials] // Rossijskie nanotehnologii. 2013. T. 8. №3–4. S. 24–42.
10. Donetskij K.I., Kogan D.I., Hrulkov A.V. Svojstva polimernyh kompozicionnyh materialov, izgotovlennyh na osnove pletenyh preform [Properties of the polymeric composite materials made on the basis of braided preforms] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №3. St. 05. Available at: http://www.viam-works.ru (accessed: January 14, 2015). DOI: 10.18577/2307-6046-2014-0-3-5-5.
11. Donetskij K.I., Hrulkov A.V., Kogan D.I., Belinis P.G., Lukyanenko Yu.V. Primenenie obemno-armiruyushhih preform pri izgotovlenii izdelij iz PKM [Use of three-dimensional reinforcing preforms during the production of polymer composite products] // Aviacionnye materialy i tehnologii. 2013. №1. S. 35–39.
12. Kablov E.N. Materialy i himicheskie tehnologii dlya aviacionnoj tehniki [Materials and chemical technologies for aviation engineering] // Vestnik Rossijskoj akademii nauk. 2012. T. 82. №6. S. 520–530.
13. Kablov E.N., Grashhenkov D.V., Erasov V.S., Anchevskij I.Je., Ilin V.V., Valter R.S. Stend dlya ispytaniya na klimaticheskoj stancii GCKI krupnogabaritnyh konstrukcij iz PKM [The stand for testing for the GTsKI climatic stations of large-size designs from PCM] // Sb. dokl. IX Mezhdunar. nauch. konf. po gidroaviacii «Gidroaviasalon-2012». 2012. S. 122–123.
14. Hrulkov A.V., Dushin M.I., Popov Yu.O., Kogan D.I. Issledovaniya i razrabotka avtoklavnyh i bezavtoklavnyh tehnologij formovaniya PKM [Researches and development autoclave and out-of-autoclave technologies of formation of PCM] //Aviacionnye materialy i tehnologii. 2012. №S. S. 292–301.
15. Dushin M.I., Hrulkov A.V., Muhametov R.R. Vybor tehnologicheskih parametrov avtoklavnogo formovaniya detalej iz polimernyh kompozicionnyh materialov [A choice of technological parameters of autoclave formation of details from polymeric composite materials] // Aviacionnye materialy i tehnologii. 2011. №3. S. 20–26.
16. Wood J.R., Bader M.G. Void control for polymer-matrix composites (1) theoretical and experimental methods for determining the growth and collapse of gas bubbles // Compos. Manuf. 1994. V. 5 (3). P. 139–147.
17. Wood J.R., Bader M.G. Void control for polymer-matrix composites (1) theoretical and experimental evaluation of a diffusion model for the growth and collapse of gas bubbles // Compos. Manuf. 1994. V. 5 (3). P. 149–158.
18. Liu L., Zhang B., Wang D., Wu Z. Effects of cure cycle on void content and mechanical properties of composite laminates // Compos. Struct. 2006. V. 73. P. 303–309.
19. Liu L., Zhang B., Wu Z., Wang D. Effects of cure pressure induced voids on the mechanical strength of carbon/epoxy laminates // J. Mater. Sci. Technol. 2005. V. 21 (1). P. 87–91.
20. Olivier P., Cottu J.P., Ferret B. Effects of cure cycle pressure and voids on some mechanical properties of carbon/epoxy laminates // Composites. 1995. V. 26 (7). P. 509–515.
21. Huang H., Talreja R. Effects of void geometry on elastic properties of unidirectional fiber reinforced composites // Composites Science and Technology. 2005. V. 65. P. 1964–1981.
22. Costa M.L., Almeida S.F.M., Rezende M.C. The influence of porosity on the interlaminar shear strength of carbon/epoxy and carbon/bismaleimide fabric laminates // Composites Science and Technology. 2001. V. 61. P. 2101–2108.
23. Grunenfelder L.K., Nutt S.R. Void formation in composite prepregs – effect of dissolved moisture // Composites Science and Technology. 2010. V. 70. Р. 2304–2309.
24. Kardos J.L., Dudukovic M.P., Dave R. Void growth and resin transport during processing of thermosetting-matrix composites // Adv. Polym. Sci. 1986. V. 80. P. 102–123.
25. Boey F.Y.C., Lye S.W. Void reduction in autoclave processing of thermoset composites part 1: high pressure effects on void reduction // Composites. 1992. V. 23 (4). P. 261–265.
26. Hayward J.S., Harris B. Effect of process variables on the quality of RTM mouldings // SAMPE J. 1990. V. 26 (3). P. 39–46.
27. Dushin M.I., Hrulkov A.V., Platonov A.A., Ahmadieva K.R. Bezavtoklavnoe formovanie ugleplastikov na osnove prepregov, poluchennyh po rastvornoj tehnologii [Out-of-autoclave formation coal plastics on the basis of the prepregs received on solution technology] // Aviacionnye materialy i tehnologii. 2012. №2. S. 43–48.
28. Lundstrom T.S., Gebart B.R., Lundemo C.Y. Void formation in RTM // The 49th annual conference. Session 16-F. Composite Institute of the Society of the Plastics Industry. 1992.
29. Patel N., Lee L.J. Effect of fiber mat architecture on void formation and removal in liquid composite molding // Polym. Compos. 1995. V. 16 (5). P. 386–399.
30. Patel N., Rohatgi V., Lee L.J. Modeling of void formation and removal in liquid composite molding. Part II. Model development // Polym. Compos. 1996. V. 17 (1). P. 104–114.
31. Chen Y.T., Davis H.T., Macosko C.W. Wetting of fiber mats for composite manufacturing: I. Visualization experiments. AlChE // J. Polym. Compos. 1995. V. 41 (10). P. 2261–2273.
32. Patel N., Rohatgi V., Lee L.J. Micro scale flow behavior and void formation mechanism during impregnation through a unidirectional stitched fiberglass mat // Polym. Eng. Sci. 1995. V. 35 (10). P. 837–851.
33. Rohatgi V., Patel N., Lee L.J. Experimental investigation of flow induced microvoids during impregnation of unidirectional stitched fiberglass mat // Polym. Compos. 1996. V. 17 (2). P. 161–170.
34. Ruiz E., Achim V., Bread J., Chatel S., Trouchu F. A fast numerical approach to reduce voud formation in liquid composite molding // The 8th International Conference on Flow Processes in Composite Materials (FPCM8). Douai. 2006. P. 251–260.
35. Bread J., Henzel Y., Trouch F., Gauvin R. Analysis of dynamic flow through porous media. Part I: Comparison between saturated and unsaturated flows in fibrous reinforcements // Polymer Composites. 2003. V. 24. №3. P. 409–421.
36. Lee G.W., Lee K.J. Mechanism of void formation in composite processing with woven fabrics // Polymer and Polymer Composites. 2003. V. 11. №7. P. 563–570.
37. Hayward J.S., Harris B. Effect of vacuum assistance in resin transfer moulding // Compos. Manuf. 1990. V. 1 (33). P. 161–166.
38. Lykov A.V. Teoriya sushki [Drying theory]. M.: Energiya, 1968. 472 s.
39. High-performance infusion system for VARTM fabrication: pat. 6964561 США; publ. 15.11.05.
40. Method for making composite structures: pat. 6630095 US; publ. 07.10.03.
41. Method and device for producing fibre-reinforced components using an injection method: пат. 1181149 EU; publ. 10.12.03.
42. Sposob izgotovleniya voloknistyh kompozitov vakuumnoj infuziej i ustrojstvo dlya osushhestvleniya sposoba: pat. 2480335 PU [Way of manufacturing of fibrous composites vacuum infusion and the device for implementation of way: pat. 2480335 PU]; opubl. 27.04.13.
The process of urethane formation of varnish compositions based on fluorinated oligomers was investigated. Reaction of producing conformal coatings based on film-forming fluoropolyurethanes was presented and their adhesion, physical- mechanical, electroinsulating properties and water absorption were investigated in the article. Work is executed within implementation of the complex scientific direction 17.7. «Paint- and- lacquer materials and coatings on polymeric basis» («The strategic directions of development of materials and technologies of their processing for the period till 2030»)
2. Malichenko B.F. Ftorsoderzhashhie poliamidy i poliuretany [Fluorinated polyamides and poliuretany]. Kiev: Naukova dumka, 1977. 232 s.
3. Lipatova T.E., Ivashhenko V.K. Sintez i fiziko-himiya polimerov (poliuretany) [Synthesis and physics chemistry of polymers (poliuretany)]. Kiev: Naukova dumka, 1970. S. 73–96.
4. Lipatov Yu.S., Kercha Yu.Yu., Sergeeva L.M. Struktura i svojstva poliuretanov [Structure and properties poliuretanov]. Kiev: Naukova dumka, 1970. 280 s.
5. Kondrashov E.K., Kozlova A.A., Malova N.E. Issledovanie kinetiki otverzhdeniya ftorpoliuretanovyh emalej alifaticheskimi poliizocianatami razlichnyh tipov [Study and curing kinetics of fluoropolyurethane enamels by the use of aliphatic polysocyanates of various types] // Aviacionnye materialy i tehnologii. 2013. №1. S. 48–49.
6. Istoriya aviacionnogo materialovedeniya. VIAM – 80 let: gody i lyudi / pod obshh. red. E.N. Kablov [History of aviation materials science. VIAM – 80 years: years and people / gen. ed. by E.N. Kablov]. M.: VIAM, 2012. 520 s.
7. Kablov E.N. Materialy i himicheskie tehnologii dlya aviacionnoj tehniki [Materials and chemical technologies for aviation engineering] // Vestnik Rossijskoj akademii nauk. 2012. T. 82. №6. S. 520–530.
8. Kondrashov E.K., Kuznetsova V.A., Semenova L.V., Lebedeva T.A., Malova N.E. Razvitie aviacionnyh lakokrasochnyh materialov [Development of aviation paint and varnish materials] // Vse materialy. Enciklopedicheskij spravochnik. 2012. №5. S. 49–54.
9. Kondrashov Je.K., Kuznetsova V.A., Semenova L.V., Lebedeva T.A. Osnovnye napravleniya povysheniya jekspluatacionnyh, tehnologicheskih i jekologicheskih harakteristik lakokrasochnyh pokrytij dlya aviacionnoj tehniki [The main directions of increase of utilization, technical and ecological properties of paint coatings for aviation engineering] // Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 96–102.
10. Kuznetsova V.A., Semenova L.V., Kondrashov E.K., Lebedeva T.A. Lakokrasochnye materialy s ponizhennym soderzhaniem vrednyh i toksichnyh komponentov dlya okraski agregatov i konstrukcij iz PKM [Paint-and-lacquer materials with a low content of harmful and design of polymer composite materials] // Trudy VIAM: elektron. nauch-tehnich. zhurn. 2013. №8. St. 05. Available at: http://www.viam-works.ru (accessed: December 17, 2015).
11. Buznik V.M. Sverhgidrofobnye materialy na osnove ftorpolimerov [Superwaterproof materials on the basis of fluoropolymers] // Aviation materials and technologies] // Aviacionnye materialy i tehnologii. 2013. №1. S. 29–34.
12. Beider E.Ya., Donskoi A.A., Zhelezina G.F., Kondrashov E.K., Sytyi Y.V., Surnin E.G. An experience of using fluoropolymer materials in aviation engineering // Russian Journal of General Chemistry. 2009. T. 79. №3. P. 548–564.
13. Semenova L.V., Malova N.E., Kuznetsova V.A., Pozhoga A.A. Lakokrasochnye materialy i pokrytiya [Paint and varnish materials and coatings] // Aviacionnye materialy i tehnologii. 2012. №S. S. 315–327.
14. Nefedov N.I., Semenova L.V., Onosova L.A. Issledovanie processov otverzhdeniya ftorpolimernyh kompozicij [Research of processes of curing of ftorpolimerny compositions] // Vse materialy. Enciklopedicheskij spravochnik. 2013. №11. S. 23–27.
15. Nefedov N.I., Salihov T.R., Mel'nikov D.A. Issledovanie processa otverzhdeniya ftorsoderzhashhih oligomerov i konformnyh pokrytij na ih osnove [Research of process of curing of fluorinated oligomers and conformal coverings on their basis] // Lakokrasochnye materialy i ih primenenie. 2015. № 1–2. S. 62–65.
16. Nefyodov N.I., Semyonova L.V. Nanesenie lakokrasochnyh pokrytij metodom «syroj po syromu» [The application of paint and varnish coatings by method «crude on crude»] // Aviacionnye materialy i tehnologii. 2013. №4. S. 39–42.
17. Semenova L.V., Kondrashov E.K. Modificirovannyj bromjepoksidnyj lak VL-18 dlya zashhity polimernyh kompozicionnyh materialov [Modified bromepoksidny varnish VL-18 for protection of polymeric composite materials] // Aviacionnye materialy i tehnologii. 2010. №1. S. 29–32.
18. Nefyodov N.I., Semyonova L.V. Tendencii razvitiya v oblasti konformnyh pokrytij dlya vlagozashhity i elektroizolyacii plat pechatnogo montazha i jelementov radiojelektronnoj apparatury [Development of tendencies in the field of conformal coatings for the moisture protection and electrical insulation of printed circuit boards and electronic element] // Aviacionnye materialy i tehnologii. 2013. №1. S. 50–52.
With use of complex of metallophysical methods the research of physical-chemical, structural and phase conditions of the surface layer before and after modifying is carried out by means of radiation by high-current electron beams of samples with heat-resisting condensed ion-plasma coatings of three different compositions on 5 chosen modes at variation of values of electron energy and pulse number. Work is executed within implementation of the complex scientific direction 2.1. «Fundamental-oriented researches» («The strategic directions of development of materials and technologies of their processing for the period till 2030»)
2. Kablov E.N. Sovremennye materialy – osnova innovacionnoj modernizacii Rossii [Modern materials – basis of innovative modernization of Russia] // Metally Evrazii. 2012. №3. S. 10–15.
3. Kablov E.N., Ospennikova O.G., Lomberg B.S. Strategicheskie napravleniya razvitiya kon-strukcionnyh materialov i tehnologij ih pererabotki dlya aviacionnyh dvigatelej nastoyashhego i budushhego [The strategic directions of development of constructional materials and technologies of their processing for aircraft engines of the present and the future] // Avtomaticheskaya svarka. 2013. № 10. S. 23–32.
4. Kablov E.N., Muboyadzhyan S.A. Zharostojkie i teplozashhitnye pokrytiya dlya lopatok turbiny vysokogo davleniya perspektivnyh GTD [Heat resisting and heat-protective coverings for turbine blades of high pressure of perspective GTE] //Aviacionnye materialy i tehnologii. 2012. №S. S. 60–70.
5. Muboyadzhyan S.A., Aleksandrov D.A., Gorlov D.S., Egorova L.P., Bulavinceva E.E. Zashhitnye i uprochnyayushhie ionno-plazmennye pokrytiya dlya lopatok i drugih otvetstvennyh detalej kompressora GTD [Protective and strengthening ion-plasma coverings for blades and other responsible details of the GTE compressor] //Aviacionnye materialy i tehnologii. 2012. №S. S. 71–81.
6. Budinovskij S.A., Smirnov A.A., Matveev P.V., Chubarov D.A. Razrabotka teplozashhitnyh pokrytij dlja rabochih i soplovyh lopatok turbiny iz zharoprochnyh i intermetallidnyh splavov [Development of thermal barrier coatings for rotor and nozzle turbine blades made of nickel-base super- and intermetallic alloys] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №4. St. 05. Available at: http://www.viam-works.ru (accessed: February 18, 2015). DOI: 10.18577/2307-6046-2015-0-4-5-5.
7. Litye lopatki gazoturbinnyh dvigatelej: splavy, tehnologii, pokrytiya. 2-e izd. / pod obshh. red. E.N. Kablova [Cast blades of gas turbine engines: alloys, technologies, coverings. 2nd ed. / gen. ed. by E.N.Kablov]. M.: Nauka, 2006. 632 s.
8. Shulov V.A., Engelko V.I., Gromov A.N., Teryaev D.A., Bycenko O.A. Primenenie silnotochnyh impul'snyh jelektronnyh puchkov dlya modificirovaniya poverhnosti lopatok gazoturbinnogo dvigatelya s perforacionnymi otverstiyami [Application of high-current pulse electronic bunches for modifying of surface of blades of the gas turbine engine with perforation openings] // Uprochnyayushhie tehnologii i pokrytiya. 2013. № 10 (106). S. 23–25.
9. Pajkin A.G., L'vov A.F., Shulov V.A. i dr. Ispolzovanie silnotochnyh impulsnyh jelektronnyh puchkov dlya modifikacii svojstv lopatok GTD [Use of high-current pulse electronic bunches for updating of properties of blades of GTE] // Problemy mashinostroeniya i avtomatizacii. 2003. №3. S. 41–49.
10. Novikov A.S., Pajkin A.G., Lvov A.F., Shulov V.A. Perspektivnye tehnologii poverhnostnoj obrabotki pri izgotovlenii i remonte lopatok GTD [Perspective technologies of surface processing during the manufacturing and repair of blades of GTE] // Dvigatel. 2004. №2 (32). S. 18–19.
11. Pajkin A.G., Shulov V.A., Petuhov A.N., L'vov A.F. Perspektivy primeneniya silnotochnyh impul'snyh elektronnyh puchkov dlya modifikacii poverhnosti pri izgotovlenii i remonte lopatok GTD [Perspectives of application of high-current pulse electronic bunches for surface updating during the manufacturing and repair of blades of GTE] // Voprosy aviacionnoj nauki i tehniki: sb. tr. TsIAM. Ser.: Aviacionnoe dvigatelestroenie. 2006. №4 (1327). S. 5–32.
12. Chabina E.B., Alekseev A.A., Filonova E.V., Lukina E.A. Primenenie metodov analiticheskoj mikroskopii i rentgenostrukturnogo analiza dlya issledovaniya strukturno-fazovogo sostoyaniya materialov [Application of methods of analytical microscopy and X-ray of the structural analysis for research of structural and phase condition of materials] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №5. St. 06. Available at: http://www.viam-works.ru (accessed: February 18, 2015).
13. Pajkin A.G., Krajnikov A.V., Shulov V.A., Bytsenko O.A., Engelko V.I., Tkachenko K.I., Chikiryaka A.V. Tehnologicheskie osnovy modificirovaniya poverhnosti detalej iz zharoprochnyh nikelevyh splavov s zharostojkim NiCrAlY pokrytiem s primeneniem silnotochnyh impulsnyh jelektronnyh puchkov [Technological bases of modifying of surface of details from heat resisting nickel alloys with heat resisting NiCrAlY covering using high-current pulse electronic bunches] // Fizika i himiya obrabotki materialov. 2008. №3. S. 56–60.
14. Shulov V.A., Pajkin A.G., Bytsenko O.A., Teryaev D.A., Engelko V.I., Tkachenko K.I. Razrabotka elektronno-luchevogo tehnologicheskogo processa vosstanovleniya svojstv lopatok turbiny GTD iz splava ZhS26NK s zharostojkim pokrytiem NiCrAlY [Development of electron beam technological process of recovery of properties of turbine blades of GTD from alloy ZhS26NK with heat resisting covering of NiCrAlY] // Uprochnyayushhie tehnologii i pokrytiya. 2010. №3. S. 34–38.
15. Shulov V.A., Pajkin A.G., Teryaev D.A., Bycenko O.A., Engelko V.I., Tkachenko K.I. Strukturno-fazovye izmeneniya v poverhnostnyh sloyah detalej iz titanovogo splava VT6 pri obluchenii sil'notochnym impul'snym jelektronnym puchkom [Структурно-фазовые изменения в поверхностных слоях деталей из титанового сплава ВТ6 при облучении сильноточным импульсным электронным пучком] // Fizika i himiya obrabotki materialov. 2012. № 3. S. 5–9.
Stability of strength characteristics of polymeric composite materials (layered carbon fiber and fiberglass based on epoxy binder) by results of natural weathering tests in four climatic zones has been evaluated. Calculation of effective values of temperature and air humidity for each zone of exposure is carried out. The interrelation between change of mechanical characteristics of polymeric composite materials and change of surface profile of the samples determined by method of optical microscopy is shown. The work is executed within implementation of the complex scientific direction 18.3. «Modeling and forecasting of climatic tolerance» («The strategic directions of development of materials and technologies of their processing for the period till 2030»)
2. Kablov E.N., Startsev O.V., Krotov A.S., Kirillov V.N. Klimaticheskoe starenie kompozicionnyh materialov aviacionnogo naznacheniya. II. Relaksaciya ishodnoj strukturnoj neravnovesnosti i gradient svojstv po tolshhine [Climatic aging of composite materials of aviation assignment. II. Relaxation of initial structural non-equilibrium and gradient of properties on thickness] // Deformaciya i razrushenie materialov. 2010. №12. S. 40–46.
3. Kirillov V.N., Efimov V.A. Problemy issledovaniya klimaticheskoj stojkosti aviacionnyh nemetallicheskih materialov [Problems of research of climatic firmness of aviation non-metallic materials] // 75 let. Aviacionnye materialy. Izbrannye trudy «VIAM» 1932–2007: yubilejnyj nauch.-tehnich. sb. M.: VIAM, 2007. S. 379–388.
4. Kablov E.N., Startsev O.V., Krotov A.S., Kirillov V.N. Klimaticheskoe starenie kompozicionnyh materialov aviacionnogo naznacheniya. I. Mehanizmy stareniya [Climatic aging of composite materials of aviation assignment. I. Aging mechanisms] // Deformaciya i razrushenie materialov. 2010. №11. S. 19–27.
5. Kablov E.N., Startsev O.V. Fundamentalnye i prikladnye issledovaniya korrozii i stareniya materialov v klimaticheskih usloviyah (obzor) [The basic and applied research in the field of corrosion and ageing of materials in natural environments (review)] // Aviacionnye materialy i tehnologii. 2015. №4 (37). S. 38–52. DOI: 10.18577/2071-9140-2015-0-4-38-52.
6. Kirillov V.N., Startsev O.V., Efimov V.A. Klimaticheskaya stojkost i povrezhdaemost polimernyh kompozicionnyh materialov, problemy i puti resheniya [Climatic firmness and damageability of polymeric composite materials, problems and solutions] //Aviacionnye materialy i tehnologii. 2012. №S. S. 412–423.
7. Efimov V.A., Shvedkova A.K., Korenkova T.G., Kirillov V.N. Issledovanie polimernyh konstrukcionnyh materialov pri vozdejstvii klimaticheskih faktorov i nagruzok v laboratornyh i naturnyh usloviyah [Research of polymeric constructional materials at influence of climatic factors and loadings in laboratory and natural conditions] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №1. St. 05. Available at: http://www.viam-works.ru (accessed: February 01, 2016).
8. Kablov E.N., Startsev O.V., Krotov A.S., Kirillov V.N. Klimaticheskoe starenie kompozicionnyh materialov aviacionnogo naznacheniya. III. Znachimye faktory stareniya [Climatic aging of composite materials of aviation assignment. III. Significant factors of aging] // Deformaciya i razrushenie materialov. 2011. №1. S. 34–40.
9. Kirillov V.N., Vapirov Yu.M., Drozd E.A. Issledovanie atmosfernoj stojkosti polimernyh kompozicionnyh materialov v usloviyah atmosfery teplogo vlazhnogo i umerenno teplogo klimata [Research of atmospheric firmness of polymeric composite materials in the conditions of the atmosphere of warm wet and moderately warm climate] // Aviacionnye materialy i tehnologii. 2012. №4. S. 31–38.
10. Kirillov V.N., Efimov V.A., Nikolaev E.V., Shvedkova A.K., Korenkova T.G., Deev I.S. K voprosu o metodike provedeniya naturnyh klimaticheskih ispytanij polimernyh kompozicionnyh materialov [To question of technique of carrying out natural climatic tests of polymeric composite materials] // Sb. dokl. VIII nauch. konf. po gidroaviacii «Gidroaviasalon-2010». M., 2010. Ch. II. S. 102–106.
11. Kirillov V.N., Efimov V.A., Shvedkova A.K., Aleksashin V.N., Zuev A.V., Nikolaev E.V. Issledovanie vliyaniya klimaticheskih faktorov i mehanicheskogo nagruzheniya na strukturu i mehanicheskie svojstva ugleplastika KMU-11TR [Research of influence of climatic factors and mechanical loading on structure and mechanical properties ugleplastika KMU-11TP] // Sb. dokl. VIII nauch. konf. po gidroaviacii «Gidroaviasalon-2010». M., 2010. Ch. II. S. 111–115.
12. Nikolaev E.V., Kirillov V.N., Efimov V.A., Grashhenkov D.V. Moskovskij centr klimaticheskih ispytanij FGUP «VIAM» – regionalnyj centr ispytanij materialov v predstavitelnoj zone umerennogo klimata [The Moscow center of climatic tests of VIAM Federal State Unitary Enterprise – the regional center of tests of materials in representative zone of temperate climate] // Sb. dokladov IX nauch. konf. po gidroaviacii «Gidroaviasalon-2012». M., 2012. Ch. II. S. 202–208.
13. Efimov V.A., Kirillov V.N., Dobryanskaya O.A., Nikolaev E.V., Shvedkova A.K. Metodicheskie voprosy provedeniya naturnyh klimaticheskih ispytanij polimernyh kompozicionnyh materialov [Methodical questions of carrying out natural climatic tests of polymeric composite materials] // Aviacionnye materialy i tehnologii. 2010. №4. S. 25–31.
14. Kirillov V.N., Efimov V.A., Shvedkova A.K., Nikolaev E.V. Issledovanie vliyaniya klimaticheskih faktorov i mehanicheskogo nagruzheniya na strukturu i mehanicheskie svojstva PKM [Research of influence of climatic factors and mechanical loading on structure and the PCM mechanical properties] //Aviacionnye materialy i tehnologii. 2011. №4. S. 41–45.
15. Kirillov V.N., Efimov V.A., Barbot'ko S.L., Nikolaev E.V. Metodicheskie osobennosti provedeniya i obrabotki rezultatov klimaticheskih ispytanij polimernyh kompozicionnyh materialov [Methodical features of carrying out and processing of results of climatic tests of polymeric composite materials] // Plasticheskie massy. 2013. №1. S. 37–41.
16. Kirillov V.N., Efimov V.A., Gunyaev G.M., Krivonos V.V., Vapirov Yu.M. Osobennosti povedeniya nemetallicheskih materialov v morskih usloviyah [Features of behavior of non-metallic materials in sea conditions] // Gelendzhik-96: sb. dokl. M., 1996. S. 124–129.
17. Kirillov V.N., Efimov V.A., Vapirov Yu.M., Hanin A.G. Vliyanie vlagi na svojstva polimernyh kompozicionnyh materialov [Influence of moisture on properties of polymeric composite materials] // Gelendzhik-98: sb. dokl. M.: VIAM, 1998. S. 208–211.
18. Kirillov V.N., Efimov V.A., Kislyakova V.I., Baritko N.V., Savenkova A.V., Sytyj Yu.V., Kosteltsev V.V., Vapirov Yu.M. Vliyanie vozdejstviya vlazhnogo subtropicheskogo klimata na svojstva nemetallicheskih materialov [Influence of influence of humid subtropical climate on properties of non-metallic materials] // Sb. dokl. ІV nauch. konf. po gidroaviacii «Gidroaviasalon-2002». M.: VIAM, 2002. S. 214–221.
19. Vapirov Yu.M., Kirillov V.N., Krivonos V.V. Zakonomernosti izmeneniya svojstv polimernyh kompozitov konstrukcionnogo naznacheniya pri dlitel'nom klimaticheskom starenii v svobodnom i nagruzhennom sostoyaniyah [Influence of influence of humid subtropical climate on properties of non-metallic materials] // V sb. dokl. VІ nauch. konf. po gidroaviacii «Gidroaviasalon-2006». M.: VIAM, 2006. Ch. ІІ. S.103–108.
20. Kirillov V.N., Efimov V.A., Mazaev P.Yu. Metodika obrabotki rezul'tatov naturnyh ispytanij materialov [Technique of processing of results of natural tests of materials] // Sb. dokl. VІ nauch. konf. po gidroaviacii «Gidroaviasalon-2006». M.: VIAM, 2006. Ch. ІІ. S. 117–123.
21. Nikolaev E.V., Barbotko S.L., Andreeva N.P., Pavlov M.R. Kompleksnoe issledovanie vozdejstviya klimaticheskih i ekspluatacionnyh faktorov na novoe pokolenie epoksidnogo svyazuyushhego i polimernyh kompozicionnyh materialov na ego osnove. Chast 3. Raschet energii aktivacii i teplovogo resursa polimernyh kompozicionnyh materialov na osnove epoksidnoj matricy [Comprehensive research of the influence of climatic and operational factors on new generation epoxy binding and polymeric composite materials on its basis. Part 3. Calculation of activation energy and thermal resource of polymeric composite materials on the basis of epoxy matrix] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №5. St. 11 Available at: http://www.viam-works.ru (accessed: May 16, 2016). DOI: 10.18577/2307-6046-2016-0-5-11-11.
22. Nikolaev E.V., Barbotko S.L., Andreeva N.P., Pavlov M.R. Kompleksnoe issledovanie vozdejstviya klimaticheskih i ekspluatacionnyh faktorov na novoe pokolenie epoksidnogo svyazuyushhego i polimernyh kompozicionnyh materialov na ego osnove. Chast 2. Obosnovanie vybora rezhimov i provedenie teplovogo stareniya polimernyh kompozicionnyh materialov na osnove epoksidnoj matricy [Comprehensive research of the influence of climatic and operational factors on new generation epoxy binding and polymeric composite materials on its basis. Part 2. Substantiation of the choice of modes and conducting heat aging of polymeric composite materials based on epoxy matrix] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №1. St. 10. Available at: http://www.viam-works.ru (accessed: February 01, 2016). DOI: 10.18577/2307-6046-2016-0-1-10-10.
23. Nikolaev E.V., Barbotko S.L., Andreeva N.P., Pavlov M.R. Kompleksnoe issledovanie vozdejstviya klimaticheskih i ekspluatacionnyh faktorov na novoe pokolenie epoksidnogo svyazuyushhego i polimernyh kompozicionnyh materialov na ego osnove. Chast 1. Issledovanie vliyaniya sorbirovannoj vlagi na epoksidnuyu matricu i ugleplastik na ee osnove [Comprehensive research of the influence of climatic and operational factors on new generation epoxy binding and polymeric composite materials on its basis. Part 1. Research of the influence of sorbate moisture on epoxy matrix and layered carbon fiber on its basis] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №12. St. 11. Available at: http://www.viam-works.ru (accessed: February 01, 2016). DOI: 10.18577/2307-6046-2015-0-12-11-11.
24. Plastiki konstrukcionnogo naznacheniya (reaktoplasty) / pod. red. E.B. Trostyanskoj [Plastics of constructional assignment (thermosets) / ed. by E.B.Trostyanskaya]. M.: Himiya, 1974. 304 s.
Using device R5035 the corrosion rate, expressed as current units (A/sm2), of different protective and functional coatings, deposited on steel 12H18N9T was assessed. Samples with galvanic nickel, nickel-cobalt, tin and zinc coatings were investigated. Measurements of polarization resistance were carried out in a 3% aqueous solution of NaCl with the addition of 1 ml of HCl per 100 ml of solution. Polarization resistance of pairs of samples with similar coatings was defined for forward and reverse polarization current, amounting to 800 Ω for nickel, 700 Ω for nickel-cobalt, 96 Ω for tin, 6 Ω for zinc and550 Ω for steel without coating. From the values of polarization resistance the corrosion rate of coatings in the current units was calculated and the comparison of obtained values with the sample mass loss per surface unit was given. Using «Olympus» microscope the depth of the pits formed on the surface of coatings was assessed. Work is executed within implementation of the comp
2. Dospehi dlya «Burana». Materialy i tehnologii VIAM dlya MKS «Energiya–Buran» / pod obshh. red. E.N. Kablova [Armor for «Buran». VIAM’s materials and technologies for ISS of «Energiya-Buran» / gen. ed. by E.N. Kablov]. M.: Nauka i zhizn, 2013. S. 10–27.
3. Kablov E.N. Himiya v aviacionnom materialovedenii [Chemistry in aviation materials science] // Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 3–4.
4. Dolmatov V.Yu., Fudzhimura T., Burkat G.K., Orlova E.A. Poluchenie iznosostojkih hromovyh pokrytij s primeneniem nanoalmazov razlichnoj prirody [Receiving anti wear chrome platings using nanodiamonds of the different nature] // Sverhtverdye materialy. 2002. №6. S. 16–21.
5. Vinokurov E.G., Arsenkin A.M., Grigorovich K.V., Bondar V.V. Elektroosazhdenie modificirovannyh dispersnymi chasticami hromovyh pokrytij i ih fiziko-mehanicheskie svojstva [Electrosedimentation of the chrome platings modified by dispersion particles and their physicomechanical properties] // Zashhita metallov. 2006. T. 42. №3. S. 312–316.
6. Tyurikov E.V. Svojstva hromovyh pokrytij, poluchennyh v jelektrolitah, soderzhashhih nanoporoshok oksida alyuminiya [Properties of the chrome platings received in electrolits, containing aluminum oxide nanopowder] // Korroziya: materialy, zashhita. 2007. №11. S. 33–37.
7. Muboyadzhyan S.A., Budinovskij S.A., Gayamov A.M., Matveev P.V. Vysokotemperaturnye zharostojkie pokrytiya i zharostojkie sloi dlya teplozashhitnyh pokrytij [High-temperature heat resisting coverings and heat resisting layers for heat-protective coverings] // Aviacionnye materialy i tehnologii. 2013. №1. S. 17–20.
8. Azarovskij E.N., Muboyadzhyan S.A. Modificirovanie poverhnosti detalej iz konstrukcionnyh stalej v vakuumno-dugovoj plazme titana [Modifying of surface of details from constructional staly in vacuum and arc plasma of titanium] // Aviacionnye materialy i tehnologii. 2013. №3. S. 20–25.
9. Shapnik M.S. Galvanicheskie pokrytiya splavami [Galvanic coverings alloys] // Sorosovskij obrazovatelnyj zhurnal. 2001. Tom 7. №6. S. 42–47.
10. Nagaeva L.V., Nagaev V.V., Semenychev V.V. Galvanicheskie pokrytiya na osnove cinka, poluchennye iz elektrolitov, soderzhashhih soli nikelya ili kobalta i nanoporoshki oksidov i karbidov [Galvanic coverings on the basis of the zinc, received from the electrolits containing salts of nickel or cobalt and nanopowders of oxides and carbides] // Aviacionnye materialy i tehnologii. 2009. №1. S. 3–6.
11. Spiridonov B.A., Falicheva A.I., Shalimov Yu.N. Elektroosazhdenie splava hrom-kobalt v sernokislom jelektrolite [Alloy electrosedimentation chrome-cobalt in sulphuric acid electrolit] // Zashhita metallov. 1982. T. 18. №5. S. 782–784.
12. Spiridonov B.A. Elektroosazhdenie pokrytij splavom hrom-kobalt iz sulfatnyh rastvorov [Electrosedimentation of coverings by alloy chrome-cobalt from sulphatic solutions] // Zashhita metallov. 2005. T. 41. №3. S. 273–277.
13. Shluger M.A., Pozdeeva Yu.V., Tok L.D. Zashhitnye svojstva elektroliticheskih hromomolibdenovyh pokrytij [Protective properties of electrolytic chrome molybdenum coverings] // Zashhita metallov. 1981. T. 22. №4. S. 468–470.
14. Nagaeva L.V. Primenenie nanoporoshkov v elektrolitah nikelirovaniya kak sposob polucheniya nikelevyh pokrytij, po svojstvam ne ustupayushhim hromovym pokrytiyam [Application of nanopowders in nickel plating electrolits as way of receiving nickel coverings, on properties to not conceding chrome platings] // Korroziya: materialy, zashhita. 2007. №9. S. 32–36.
15. Salahova R.K., Semenychev V.V., Tyurikov E.V., Tihoobrazov A.B. Issledovanie vnutrennih (ostatochnyh) napryazhenij v kompozicionno-klasternyh hromovyh i nikelevyh pokrytiyah [Investigation of internal (residual) stresses in composite-cluster chrome and nickel coatings] // Aviacionnye materialy i tehnologii. 2014. №S3. S. 42–46.
16. Semenychev V.V., Nagaev V.V. Gal'vanicheskie pokrytiya na osnove cinka, poluchennye iz elektrolitov, soderzhashhih soli nikelya ili kobalta i nanoporoshki oksidov i karbidov [Galvanic coverings on the basis of the zinc, received from the electrolits containing salts of nickel or cobalt and nanopowders of oxides and carbides] // Izvestiya Samarskogo nauchnogo centra RAN. Specializirovannyj vypusk. 2008. T. 1. S. 29–32.
17. Semenychev V.V., Salahova R.K., Tyurikov E.V., Ilin V.A. Zashhitnye i funkcionalnye galvanicheskie pokrytiya, poluchaemye s primeneniem nanorazmernyh chastic [The protective and functional galvanic coverings received using nanodimensional particles] // Aviacionnye materialy i tehnologii. 2012. №S. S. 335–342.
18. Kablov E.N., Starcev O.V., Medvedev I.M., Panin S.V. Korrozionnaya agressivnost' primorskoj atmosfery. Ch. 1. Faktory vliyaniya (obzor) [Corrosion aggression of the seaside atmosphere. P.1. Factors of influence (overview)] // Korroziya: materialy, zashhita. 2013. №12. S. 6–18.
19. Kablov E.N., Startsev O.V., Medvedev I.M. Obzor zarubezhnogo opyta issledovanij korrozii i sredstv zashhity ot korrozii [Review of international experience on corrosion and corrosion protection] //Aviacionnye materialy i tehnologii. 2015. №2 (35). S. 76–87.
20. Semenychev V.V., Salahova R.K., Smirnova T.B. Ocenka tokov korrozii razlichnyh par materialov metodom pryamogo izmereniya [Assessment of currents of corrosion of different couples of materials method of direct measurement] // Praktika protivokorrozionnoj zashhity. 2015. №2 (76). S. 44–50.
21. Semenychev V.V., Smirnova T.B. O vozmozhnosti ocenki poristosti pokrytij potenciostaticheskimi metodami [About possibility of assessment of porosity of coverings potentsiostatichesky methods] // Aviacionnye materialy i tehnologii. 2009. №2. S. 7–10.
22. Vulf B.K., Romadin K.P. Aviacionnoe materialovedenie [Aviation materials science]. M.: Mashinostroenie, 1967. 391 s.
23. Rozenfeld I.L. Korroziya i zashhita metallov [Corrosion and protection of metals]. M.: Metallurgiya, 1969. 448 s.
24. Elektrolit nikelirovaniya: pat. 2293803 Ros. Federaciya [Nickel plating electrolit: pat. 2293803 Rus. Federation]; zayavl. 01.08.05; opubl. 20.02.07. Byul. №5.
25. Elektrolit nikelirovaniya: pat. 2449063 Ros. Federaciya [Nickel plating electrolit: pat. 2449063 Rus. Federation]; zayavl. 05.04.11; opubl. 27.04.12. Byul. №12.
26. Elektrolit hromirovaniya: pat. 2409707 Ros. Federaciya [Chromizing electrolit: pat. 2409707 Rus. Federation]; zayavl. 28.10.09; opubl. 20.01.11. Byul. №2.