Articles
Results of research of cyclic and isothermal heat resistance and long-term strength of new VIN3 intermetallic alloy with overlay ion-plasma SDP-42+VSDP-18 coating at 1200°С are shown on a base of tests up to 500hrs. It is shown that overlay ion-plasma coating SDP-42 (Ni–Cr–Al–Ta–W–Y–Hf)+VSDP-18 (Al–Ni–Cr–Y) ensures a protection of VIN3 alloy within cyclic oxidation at 1200⇄200°С (100 cycles) and isothermal oxi-dation at 1200°С (500 hours). The coating of SDP-42+VSDP-18 system does not reduce passport characteristics of long-term strength of VIN3 alloy at 1200°С (10, 100 and 500 hours).
2. Kablov E.N., Sidorov V.V., Kablov D.E. i dr. Sovremennye tehnologii poluchenija prutkovyh zagotovok iz litejnyh zharoprochnyh splavov novogo pokolenija [Modern technology of bar stock from the casting of superalloys new generation] //Aviacionnye materialy i tehnologii. 2012. №S. S. 97–105.
3. Kablov E.N., Petrushin N.V., Svetlov I.L., Demonis I.M. Nikelevye litejnye zharoprochnye splavy novogo pokolenija [Casting nickel superalloys new generation] //Aviacionnye materialy i tehnologii. 2012. №S. S. 36–52.
4. Bazyleva O.A., Arginbaeva Je.G., Turenko E.Ju. Zharoprochnye litejnye intermetallidnye splavy [Heat-resistant casting intermetallic alloys] //Aviacionnye materialy i tehnologii. 2012. №S. S. 57–60.
5. Kablov E.N., Bondarenko Ju.A., Echin A.B., Surova V.A., Kablov D.E. Razvitie processa napravlennoj kristallizacii lopatok GTD iz zharoprochnyh i intermetallidnyh splavov s monokristallicheskoj strukturoj [The development process of directional solidification of high-temperature gas turbine engine blades and intermetallic alloys with a single-crystal structure] //Vestnik MGTU im. N.Je. Baumana. Ser. «Mashinostroenie». 2011. №SP2. S. 20–25.
6. Splav na osnove intermetallida Ni3Al [Based alloy Ni3Al intermetallic]: pat. 2434067 Ros. Federacija; opubl. 01.07.2010.
7. Splav na osnove intermetallida Ni3Al [Based alloy Ni3Al intermetallic]: pat. 2434068 Ros. Federacija; opubl. 05.10.2010.
8. Zharoprochnyj splav na nikelevoj osnove dlja monokristallicheskogo lit'ja [Superalloy for single crystal nickel-based casting]: pat. 2439184 Ros. Federacija; opubl. 05.10.2010.
9. Kablov E.N., Ospennikova O.G., Bazyleva O.A. Materialy dlja vysokoteplonagruzhennyh detalej gazoturbinnyh dvigatelej [Materials for high-thermal components of gas turbine engines] //Vestnik MGTU im. N.Je. Baumana. Ser. «Mashinostroenie». 2011. №SP2. S. 13–19.
10. Kablov E.N., Mubojadzhjan S.A. Zharostojkie i teplozashhitnye pokrytija dlja lopatok turbiny vysokogo davlenija perspektivnyh GTD [Heat-resistant and heat-resistant coatings for high-pressure turbine blades promising GTD] //Aviacionnye materialy i tehnologii. 2012. №S. C. 60–70.
11. Kablov E.N., Mubojadzhjan S.A. Ionnoe travlenie i modificirovanie poverhnosti otvetstvennyh detalej mashin v vakuumno-dugovoj plazme [Ion etching and surface modification of critical parts in machines vacuum arc plasma] //Vestnik MGTU im. N.Je. Baumana. Ser. «Mashinostroenie». 2011. №SP2. S. 149–163.
12. Kablov E.N., Muboyadzhyan S.A. Heat-resistant coatings for the high-pressure turbine blades of promising GTES //Russian metallurgy (Metally). 2012. V. 2012. №1. P. 1–7.
13. Muboyadzhyan S.A., Kablov E.N. Vacuum plasma technique of protective coatings production of complex alloys //МиТОМ. 1995. №2. С. 15–18.
14. Kablov E.N., Mubojadzhjan S.A., Budinovskij S.A., Pomelov Ja.A. Ionno-plazmennye za-shhitnye pokrytija dlja lopatok gazoturbinnyh dvigatelej [Ion-plasma protective coatings for gas turbine engine blades] //Konversija v mashinostroenii. 1999. №2. S. 42–47.
15. Matveev P.V., Budinovskij S.A., Mubojadzhjan S.A., Kos'min A.A. Zashhitnye zharostojkie pokrytija dlja splavov na osnove intermetallidov nikelja [Protective coatings for heat-resistant alloys based on nickel intermetallic] //Aviacionnye materialy i tehnologii. 2013. №2. C. 12–15.
16. Mubojadzhjan S.A., Aleksandrov D.A., Gorlov D.S. i dr. Zashhitnye i uprochnjajushhie ionno-plazmennye pokrytija dlja lopatok i drugih otvetstvennyh detalej kompressora GTD [Protective and strengthening ion-plasma coatings for blades and other critical parts of the compressor GTD] //Aviacionnye materialy i tehnologii. 2012. №S. S. 71–81.
The developed Ni–B coating impregnated with VAP-5 suspension ensures a low fric-tion factor, high wear- and fretting resistance for friction parts from steels. The coating is workable in air within -80÷+250°C temperature range under specific loadings up to 50 MPa.
2. Chichinadze A.V., Braun Je.D., Bushe N.A. i dr. Osnovy tribologii (trenie, iznos, smazka) [Fundamentals of Tribology (friction, wear, lubrication)]. 2-e izd., pererabot. i dop. M.: Mashinostroenie. 2001. 664 s.
3. Tribotehnika (iznos i bezyznosnost') [Tribotechnics (wear and bezyznosnogo)]: Uchebnik /Pod red. D.N. Garkunova. 4-e izd., pererabot. i dop. M.: Izd-vo MSHA. 2001. 616 s.
4. Tribologija. Issledovanija i prilozhenija: opyt SShA i stran SNG [Tribology. Research and applications: the US experience and CIS] /Pod red. A.V. Belogo, K. Ludemy, N.K. Myshkina. M.: Mashinostroenie; N'ju-Jork: Allerton Press. 1993. 454 s.
5. Kablov E.N. Materialy dlja izdelija «Buran» – innovacionnye reshenija formirovanija shestogo tehnologicheskogo uklada [Materials for the product «Buran» – innovative solutions forming the sixth technological order] //Aviacionnye materialy i tehnologii. 2013. №S1. S. 3–9.
6. Erasov V.S., Kotova E.A. Jerozionnaja stojkost' aviacionnyh materialov k vozdejstviju tverdyh (pylevyh) chastic [Erosion resistance to the effects of aircraft materials solid (dust) particles] //Aviacionnye materialy i tehnologii. 2011. №3. S. 30–36.
7. Gura G.S. Kachenie tel s treniem. Fretting [Rolling bodies with friction. Fretting]. Sochi: OOO «Poligraficheskij centr „Dorija”». 2009. 295 s.
8. Uoterhauz R.B. Fretting-korrozija [Fretting corrosion]. L.: Mashinostroenie. 1976. 272 s.
9. Elagina O.Ju. Tehnologicheskie metody povyshenija iznosostojkosti detalej mashin [Technological methods to improve the wear resistance of machine parts]: Ucheb. posobie. M.: Logos. 2009. 488 s.
10. Garkunov D.N. Povyshenie iznosostojkosti detalej samoletov [Wear resistance aircraft parts]. M.: Oborongiz. 1960. 142 s.
11. Tonysheva O.A., Voznesenskaja N.M., Shal'kevich A.B., Petrakov A.F. Issledovanie vlijanija vysokotemperaturnoj termomehanicheskoj obrabotki na strukturu, tehnologicheskie, mehanicheskie i korrozionnye svojstva vysokoprochnoj korrozionnostojkoj stali perehodnogo klassa s povyshennym soderzhaniem azota [Investigation of the effect of high-temperature thermomechanical treatment on the structure, process, mechanical and corrosion properties of high-strength stainless steel transition class with a high content of nitrogen] //Aviacionnye materialy i tehnologii. 2012. №3. S. 31–36.
12. Tonysheva O.A., Voznesenskaja N.M., Eliseev Je.A., Shal'kevich A.B. Novaja vysokoprochnaja jekonomnolegirovannaja azotsoderzhashhaja stal' povyshennoj nadezhnosti [New high sparingly nitrogen-containing steel of high reliability] //Aviacionnye materialy i tehnologii. 2012. №S. S. 84–88.
13. Gromov V.I., Kurpjakova N.A., Sedov O.V., Korobova E.N. Vakuumnaja i ionno-plazmennaja himiko-termicheskaja obrabotka otvetstvennyh detalej gazoturbinnyh dvigatelej [Vacuum and ion-plasma chemical-thermal processing of critical parts of gas turbine engines] //Aviacionnye materialy i tehnologii. 2012. №S. S. 147–156.
14. Ovsepjan S.V., Lukina E.A., Filonova E.V., Mazalov I.S. Formirovanie uprochnjajushhej fazy v processe vysokotemperaturnogo azotirovanija svarivaemogo zharoprochnogo deformiruemogo splava na osnove sistemy Ni‒Co‒Cr [Formation of the reinforcing phase in the high-temperature nitriding process weldable superalloy based wrought alloy of Ni–Co–Cr] //Aviacionnye materialy i tehnologii. 2013. №1. S. 3–8.
15. Rjabov D.K., Kolobnev N.I., Samohvalov S.V., Mahsidov V.V. Vlijanie predvaritel'nogo estestvennogo starenija na svojstva splava 1913 v iskusstvenno sostarennom sostojanii [Effect of prior natural aging on the properties of the alloy 1913 in the artificially aged condition] //Aviacionnye materialy i tehnologii. 2013. №2. S. 8–11.
16. Azarovskij E.N., Mubojadzhjan S.A. Modificirovanie poverhnosti detalej iz konstrukcionnyh stalej v vakuumno-dugovoj plazme titana [Surface modification of parts made of structural steel in the vacuum arc plasma titanium] //Aviacionnye materialy i tehnologii. 2013. №3. S. 20–25.
17. Rjabov D.K., Kolobnev N.I. Izmenenie mehanicheskih svojstv splava 1913 pri dvuhstupenchatom iskusstvennom starenii [Changes in mechanical properties of the alloy 1913 in the two-stage artificial aging] //Aviacionnye materialy i tehnologii. 2013. №4. S. 3–7.
18. Solncev St.S. Jerozionnostojkie vlagozashhitnye termoregulirujushhie pokrytija mnogo-razovoj teplozashhity orbital'nogo korablja «Buran» [Erosion-resistant waterproof thermal control coating reusable thermal protection orbiter «Buran»] //Aviacionnye materialy i tehnologii. 2013. №S1. S. 94–124.
19. Ivanov E.V. Sozdanie iznosostojkih i antifrikcionnyh materialov i pokrytij dlja kosmicheskogo korablja «Buran» [Creating a wear-resistant and anti-friction materials and coatings for spacecraft «Buran»] //Aviacionnye materialy i tehnologii. 2013. №S1.
S. 142–151.
20. Azarovskij E.N., Mubojadzhjan S.A. Modificirovanie poverhnosti detalej iz konstrukcionnyh stalej v vakuumno-dugovoj plazme titana. Chast' II [Surface modification of parts made of structural steel in the vacuum arc plasma titanium. Part II] //Aviacionnye materialy i tehnologii. 2014. №1. S. 3–11.
21. Razuvaev E.I., Kapitanenko D.V. Vlijanie termomehanicheskoj obrabotki na strukturu i svojstva austenitnyh stalej [Effect of thermomechanical treatment on the structure and properties of austenitic steels] //Trudy VIAM. 2013. №5. St. 01 (viam-works.ru).
22. Rozenenkova V.A., Solncev St.S., Mironova N.A. Tonkoplenochnye pokrytija dlja uplotnitel'nyh istiraemyh materialov na osnove diskretnyh volokon dlja protochnogo trakta GTD [Thin film coatings for sealing abrasive materials on the basis of discrete fibers to the flow path GTE] //Trudy VIAM. 2013. №5. St. 04 (viam-works.ru).
23. Markova E.S., Jakusheva N.A., Pokrovskaja N.G., Shal'kevich A.B. Tehnologicheskie oso-bennosti proizvodstva martensitostarejushhej stali VKS-180 [Technological features of steel production martensitostareyuschey VKS-180] //Trudy VIAM. 2013. №7. St. 01 (viam-works.ru).
24. Kablov E.N., Lomberg B.S., Ospennikova O.G. Sozdanie sovremennyh zharoprochnyh materialov i tehnologij ih proizvodstva dlja aviacionnogo dvigatelestroenija [The creation of modern high-temperature materials and production technologies for aviation engine] //Kryl'ja Rodiny. 2012. №3–4. S. 34–38.
25. Bakradze M.M., Ovsepjan S.V., Shugaev S.A., Letnikov M.N. Vlijanie rezhimov zakalki na strukturu i svojstva shtampovok diskov iz zharoprochnogo nikelevogo splava JeK151-ID [Effect of tempering on the structure and properties of the disk forgings of heat-resistant nickel alloy EK151-ID] //Trudy VIAM. 2013. №9. St. 01 (viam-works.ru).
26. Baldaev L.H. Renovacija i uprochnenie detalej mashin metodami gazotermicheskogo napylenija [Renovation and strengthening of machine parts methods of thermal spraying]. M.: Izd-vo KHT. 2004. 134 s.
27. Petrov G.L., Burov N.G. Tehnologija i oborudovanie gazoplamennoj obrabotki metallov [Technology and equipment flame treatment of metals]. M.: Mashinostroenie. 1969. 288 s.
28. Mazalov I.S., Filonova E.V., Lomberg B.S. Formirovanie struktury pri deformacii i termicheskoj obrabotke zagotovok detalej iz nikelevogo vysokoprochnogo svarivaemogo splava VZh172 [Structure formation during the deformation and heat treatment blanks welded high-strength nickel alloy VZH172] //Trudy VIAM. 2013. №12. St. 01 (viam-works.ru).
29. Kablov E.N., Mubojadzhjan S.A. Ionnoe travlenie i modificirovanie poverhnosti otvetstvennyh detalej mashin v vakuumno-dugovoj plazme [Ion etching and surface modification of critical parts in machines vacuum arc plasma] //Vestnik MGTU im. N.Je. Baumana. Ser. «Mashinostroenie». 2011. №SP2. S. 149–163.
30. Kablov E.N., Starcev O.V., Krotov A.S., Kirillov V.N. Klimaticheskoe starenie kompozicionnyh materialov aviacionnogo naznachenija. III. Znachimye faktory starenija [Climatic aging of composite materials aviation applications. III. Significant factors of aging] //Deformacija i razrushenie materialov. 2011. №1. S. 34–40.
31. Bogorad L.Ja. Hromirovanie [Chromium-plating]. L.: Mashinostroenie. 1984. 97 s.
32. Solodkova L.N., Kudrjavcev V.N. Jelektroliticheskoe hromirovanie [Electrolytic chrome]. M.: Globus. 2007. 191 s.
33. Beljaev P.P., Zil'berfarb M.I., Garetovskaja M.P. Metallicheskie pokrytija v himicheskom mashinostroenii [Metal coatings in chemical engineering]. Sb. II. M.: Mashgiz. 1951. 144 s.
34. Borisov V.S., Kasparova E.V. Himicheskoe nikelirovanie [Chemical nickel plating]. Sb. 2. M.: MDNTP im. F.Je. Dzerzhinskogo. 1958.
35. Vishenkov S.A., Kasparova E.V. Povyshenie iznosostojkosti i zashhita ot korrozii deta-lej iz chernyh i cvetnyh metallov himicheskim nikelirovaniem [Wear resistance and corrosion protection of ferrous and non-ferrous metal chemical nickel plating] //Bjulleten' obmena proizvodstvenno-tehnicheskim opytom. 1958. №6. 208 s.
36. Gorbunova K.M., Nikiforova A.A. Fiziko-himicheskie osnovy processa himicheskogo nikelirovanija [Physico-chemical foundations of electroless nickel plating]. M.: AN SSSR. 1960. 448 s.
37. Rjabchenkov A.V., Velemicina V.I. Himicheskoe nikelirovanie kak sredstvo zashhity per-litnyh stalej ot vysokotemperaturnoj gazovoj korrozii. Vnutrennie naprjazhenija ni-kel'-fosfornyh pokrytij i ih vlijanie na ustalostnuju prochnost' stali [Chemical nickel plating as a means of protection pearlite steels from high-temperature gas corrosion. Internal voltage nickel-phosphorus coatings and their influence on the fatigue strength of steel] /Trudy CNIITMASh. 1961. №22. 37 s.
38. Vishenkov S.A., Kasparova E.V. Povyshenie nadezhnosti i dolgovechnosti detalej mashin himicheskim nikelirovaniem [Improving the reliability and durability of machine parts electroless nickel plating]. M.: Mashgiz. 1963. 208 s.
39. Vansovskaja K.M. Metallicheskie pokrytija, nanesennye himicheskim sposobom [Metal coatings deposited by chemical means]. L.: Mashinostroenie. 1985. 103 s.
Main methods of manufacture of flexible high-temperature fibrous materials for seal-ing and thermal insulation are considered. The method of manufacture of flexible thermal insulation of high-temperature alumina fiber with addition of low-cost and durable quartz fiber was offered and tested, basic properties of the manufactured material are studied. Results of research showed that the suggested method allows to produce an inexpensive flexible heat-insulating material for using at temperatures up to 1400°С on the basis of home raw materials, which is not inferior to world analogs in characteristics.
2. Kablov E.N. Materialy i himicheskie tehnologii dlja aviacionnoj tehniki [Materials and chemical technologies, aircraft] //Vestnik Rossijskoj akademii nauk. 2012. T. 82. №6. S. 520–530.
3. Kablov E.N. Aviakosmicheskoe materialovedenie [Aerospace Materials] //Vse materialy. Jenciklopedicheskij spravochnik. 2008. №3. S. 2–14.
4. Kablov E.N., Grashhenkov D.V., Isaeva N.V., Solncev S.S. Perspektivnye vysokotempera-turnye keramicheskie kompozicionnye materialy [Promising high-temperature ceramic composite materials] //Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 20–24.
5. Grashhenkov D.V., Balinova Ju.A., Tinjakova E.V. Keramicheskie volokna oksida aljuminija i materialy na ih osnove [Ceramic alumina fibers and materials based on them] //Steklo i keramika. 2012. №4. S. 32–36.
6. Ivahnenko Ju.A., Babashov V.G., Zimichev A.M., Tinjakova E.V. Vysokotemperaturnye teploizoljacionnye i teplozashhitnye materialy na osnove volokon tugoplavkih soedinenij [High-temperature insulating and heat-proof materials for fiber-based refractory compounds] //Aviacionnye materialy i tehnologii. 2012. №S. S. 380–385.
7. Balinova Ju.A., Kirienko T.A. Nepreryvnye vysokotemperaturnye oksidnye volokna dlja teplozashhitnyh, teploizoljacionnyh i kompozicionnyh materialov [Continuous high temperature oxide fibers for thermal protection, thermal insulation and composite materials] //Vse materialy. Jenciklopedicheskij spravochnik. 2012. №4. S. 24–29.
8. Sposob poluchenija vysokotemperaturnogo volokna na osnove oksida aljuminija [A method for producing high-fiber alumina-based]: pat. 2212388 Ros. Federacija; opubl. 20.09.2003. Bjul. №34. 6 s.
9. Balinova Ju.A. Nepreryvnye polikristallicheskie volokna oksida aljuminija dlja kompozicionnyh materialov [Continuous polycrystalline alumina fibers for composite materials]: Avtoref. dis. k.t.n. M.: VIAM. 2012. 19 s.
10. Shhetanov B.V., Shheglova T.M., Balinova Ju.A. Izgotovlenie, struktura i svojstva polikristallicheskih volokon oksida aljuminija [Manufacturing, Structure and properties of polycrystalline alumina fibers] /V sb. materialov 29-j Mezhdunarodnoj konf. «Kompozicionnye materialy v tehnologii». Jalta. 2009. S. 148–150.
11. Shhetanov B.V., Balinova Ju.A., Ljuljukina G.Ju., Solov'eva E.P. Struktura i svojstva nepreryvnyh polikristallicheskih volokon α-Al2O3 [Structure and properties of continuous fibers of polycrystalline α-Al2O3] //Aviacionnye materialy i tehno-logii. 2012. №1. S. 13–17.
12. Balinova Ju.A., Shheglova T.M., Ljuljukina G.Ju., Timoshin A.S. Osobennosti formiro-vanija α-Al2O3 v polikristallicheskih voloknah s soderzhaniem oksida aljuminija 99% v prisutstvii dobavok Fe2O3, MgO, SiO2 [Features of forming α-Al2O3 in polycrystalline fibers with an alumina content of 99% in the presence of additives Fe2O3, MgO, SiO2] //Trudy VIAM. 2014. №3. St. 03 (viam-works.ru).
13. Alumina fiber structure and process for production: pat. 4931239 US; pabl. 05.06.1990.
14. Flexible nonwowen mat: pat. 5380580 US; pabl. 10.06.1995.
15. Method of making of fibre-based products and their used: pat. 6733628 UK; pabl. 11.05.2004.
16. Ivahnenko Ju.A., Babashov V.G., Basargin O.V., Butakov V.V. Model' povedenija volokni-stogo materiala pri izgibe [Model behavior flexural fibrous material] //Vse materialy. Jenciklopedicheskij spravochnik. Prilozhenie «Kommentarii k standartam, TU, sertifikatam». 2012. №12. S. 12–15.
17. Lugovoj A.A., Babashov V.G., Karpov Ju.V. Temperaturoprovodnost' gradientnogo teploizoljacionnogo materiala [The thermal diffusivity of the gradient insulating material] //Trudy VIAM. 2014. №2. St. 02 (viam-works.ru).
18. Process for producing laminated sheet comprising alumina fiber precursor: pat. 6602369 US; pabl. 10.07.2003.
19. Alumina fiber aggregate and its production method: pat. 6746979 US; pabl. 08.06.2004.
20. Process for producing continuous alumina fiber blanket: pat. 7033537 US; pabl. 25.04.2006.
21. Varrik N.M. Termostojkie volokna i teplozvukoizoljacionnye ognezashhitnye materialy [Heat-resistant fibers and sound insulation fireproofing materials] //Trudy VIAM. 2014. №6. St. 07 (viam-works.ru).
The majority of the heat-proofing materials developed for last years (HPM) on a basis of high-heat-resistant inorganic fibers (quartz, silica, on basis of aluminum oxide et al.) have, as a rule, a rigid fibrous structure. When fastening of such material on an isolated metal surface of an aircraft a cracking of material is probable at difference of temperatures owing to a sharp difference on thermal coefficient of linear expansion (TCLE) in the system «metal- fibrous material». For a solution of the problem it is possible to use an intermediate compensating layer (damper), capable to level a pressure between HPM and a metal surface and to prevent a cracking of fibrous material.
2. Kablov E.N., Grashhenkov D.V., Isaeva N.V., Solncev S.S. Perspektivnye vysokotempera-turnye keramicheskie kompozicionnye materialy [Promising high-temperature ceramic composite materials] //Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 20–24.
3. Kablov E.N. Strategicheskie napravlenija razvitija materialov i tehnologii ih perera-botki na period do 2030 goda [Strategic directions of development of materials and processing technologies for the period up to 2030] //Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
4. Kondrashov Je.K., Kuz'min V.V., Minakov V.T., Ponomareva E.A. Netkanye materialy na osnove termostojkih polimernyh volokon i mezhplitochnye uplotnenija [Nonwoven-based heat-resistant polymeric fibers and tile compaction] //Trudy VIAM. 2013. №7. St. 05 (viam-works.ru).
5. Shhetanov B.V., Balinova Ju.A., Ljuljukina G.Ju., Solov'eva E.P. Struktura i svojstva nepreryvnyh polikristallicheskih volokon α-Al2O3 [Structure and properties of continuous fibers of polycrystalline α-Al2O3] //Aviacionnye materialy i tehnolo-gii. 2012. №1. S. 13–17.
6. Ivahnenko Ju.A., Kuz'min V.V., Bespalov A.S. Sostojanie i perspektivy razvitija teplozvukoizoljacionnyh pozharobezopasnyh materialov [Status and prospects of heat sound protection fireproof materials] //Problemy bezopasnosti poletov. 2014. №7.
S. 27–30.
7. Solncev S.S. Vysokotemperaturnye kompozicionnye materialy i pokrytija na osnove stekla i keramiki dlja aviakosmicheskoj tehniki [High-temperature composite materials and coatings based on glass and ceramics for aerospace engineering] //Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. C. 25–33.
8. Ivahnenko Ju.A., Babashov V.G., Zimichev A.M., Tinjakova E.V. Vysokotemperaturnye teploizoljacionnye i teplozashhitnye materialy na osnove volokon tugoplavkih soedinenij [High-temperature insulating and heat-proof materials for fiber-based refractory compounds] //Aviacionnye materialy i tehnologii. 2012. №S. S. 380–386.
9. Shhetanov B.V. Material plitki dlja vneshnego vysokotemperaturnogo teplozashhitnogo po-krytija orbital'nogo korablja «Buran» [Material tiles for external high-temperature thermal protection orbiter «Buran»] //Aviacionnye materialy i tehnologii. 2013. №S1.
S. 41–50.
10. Lugovoj A.A., Babashov V.G., Karpov Ju.V. Temperaturoprovodnost' gradientnogo teploizoljacionnogo materiala [The thermal diffusivity of the gradient insulating material] //Trudy VIAM. 2014 №2. St. 02 (viam-works.ru).
11. Kablov E.N., Grashhenkov D.V., Isaeva N.V. i dr. Vysokotemperaturnye konstrukcionnye kompozicionnye materialy na osnove stekla i keramiki dlja perspektivnyh izdelij aviacionnoj tehniki [High-temperature structural composite materials based on glass and ceramic products for advanced aviation technology] //Steklo i keramika. 2012. №4. S. 7–11.
12. Kablov E.N., Shhetanov B.V., Ivahnenko Ju.A., Balinova Ju.A. Perspektivnye armirujushhie vysokotemperaturnye volokna dlja metallicheskih i keramicheskih kompozicionnyh materialov [Prospective reinforcing fibers for high temperature ceramic composites and metal materials] //Trudy VIAM. 2013. № 2. St. 05 (viam-works.ru).
13. Shhetanov B.V., Ivahnenko Ju.A., Babashov V.G. Teplozashhitnye materialy [Heat-proof materials] //Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 25–33.
14. Dospehi dlja «Burana». Materialy i tehnologii VIAM dlja MKS «Jenergija–Buran» [Armor for «Buran». Materials and technologies for the ISS VIAM «Energia–Buran»] /Pod obshh. red. E.N. Kablova. M.: Fond «Nauka i zhizn'». 2013. 128 s.
The article considers examples of braided preforms application for PCM in various branches of economy , such as construction, machine building, sports and leisure, aero-space industry. Considered the advantages of PCM based on braided preforms as com-pared to composite materials produced by alternative technologies and traditionally used materials.
S. 7–17.
2. Kablov E.N. Aviakosmicheskoe materialovedenie [Aerospace materials] //Vse materialy. Jenciklopedicheskij spravochnik. 2008. №3. S. 2–14.
3. Kablov E.N. Himija v aviacionnom materialovedenii [Chemistry aviation materials] //Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 3–4.
4. Muhametov R.R., Ahmadieva K.R., Chursova L.V., Kogan D.I. Novye polimernye svjazujushhie dlja perspektivnyh metodov izgotovlenija konstrukcionnyh voloknistyh PKM [New polymeric binders for advanced manufacturing methods of structural fiber PKM] //Aviacionnye materialy i tehnologii. 2011. №2. S. 38–42.
5. Kablov E.N., Shhetanov B.V., Ivahnenko Ju.A., Balinova Ju.A. Perspektivnye armirujushhie vysokotemperaturnye volokna dlja metallicheskih i keramicheskih kompozicionnyh materialov [Prospective reinforcing fibers for high temperature ceramic composites and metal materials] //Trudy VIAM. 2013. №2. St. 05 (viam-works.ru).
6. Kablov E.N., Kondrashov S.V., Jurkov G.Ju. Perspektivy ispol'zovanija uglerodsoderzhashhih nanochastic v svjazujushhih dlja polimernyh kompozicionnyh materialov [Prospects for the use of carbonaceous nanoparticles in binders for polymer composites] //Rossijskie nanotehnologii. 2013. T. 8. №3–4. S. 24–42.
7. Dushin M.I., Hrul'kov A.V., Muhametov R.R., Chursova L.V. Osobennosti izgotovlenija izdelij iz PKM metodom propitki pod davleniem [Especially the manufacture of PCM by pressure impregnation] //Aviacionnye materialy i tehnolo-gii. 2012. №1. C. 18–26.
8. Low-Toxicity, high-temperature polyimides: pat. 99/36462 WO; pabl. 22.07.1999.
9. Composition of and method for making high performance resins for infusion and transfer molding processes: pat. 6359107 US; pabl. 19.03.2002.
10. Postnova M.V., Postnov V.I. Opyt razvitija bezavtoklavnyh metodov formovanija PKM [Experience in the development of methods of forming RMB bezavtoklavnogo] //Trudy VIAM. 2014. №4. St. 06 (viam-works.ru).
11. Borshhev A.V., Hrul'kov A.V., Halturina D.S. Izgotovlenie nizkoporistogo polimernogo kompozicionnogo materiala dlja primenenija v slabo- i srednenagruzhennyh konstrukcijah [Production of low porosity of the polymer composite material for use in low- and moderate constructions] //Trudy VIAM. 2014. №7. St. 03 (viam-works.ru).
12. Doneckij K.I., Hrul'kov A.V., Kogan D.I. i dr. Primenenie ob`emno-armirujushhih preform pri izgotovlenii izdelij iz PKM [Use volumetric reinforcing preforms in the manufacture of PCM articles] //Aviacionnye materialy i tehnologii. 2013. №1. S. 35–39.
13. Internet resurs www.braider.com.
14. Perepelkin K.E. Armirujushhie volokna i voloknistye polimernye kompozity [Reinforcing fibers and fibrous polymer composites]. SPb.: Nauchnye osnovy tehnologii. 2009. 380 s.
15. Rapidly deployable lightweight load resisting arch system: pat. 2006/0174549A1 US; pabl. 10.08.2006.
16. Composite construction members and method of making: pat. 2011/0012282A1 US; pabl. 20.01.2011.
17. Internet resurs http://www.maine.gov/mdot/tr/bridgebackpack.htm.
18. Internet resurs http://www.aitbridges.com/compositebridgesystem.
19. Zdraveva E., Gonilho-Pereira C., Lanceros-Mendez S. et al. Вraided composite rods for civil construction applications //Advanced Materials Research. 2010. V. 123–125. P. 149–152.
20. Kollmannsberger A., Brand M., Drechsler K. Braiding a convertible windscreen frame with concave sections //JEC Composite Magazine. 2012. №74. P. 24–25.
21. Carbon/magnesium wheels for high-performance vehicles //JEC Composite Magazine. 2012. №71. P. 36–37.
22. Inai R., Chirwa E.C., Saito H., Uozumi T., Nakai A., Hamada H. Experimental investigation on the crushing properties of carbon fibre braided composite tubes //International Journal of Crashworthiness. 2003. V. 8. №5. P. 513–521.
23. Huawu Liu, Yongxin Yang, Shijie Shen et al. Crash Energy Absorption of Braided Composite Tubes and its Application in Vehicle Passive Safety //Advanced Materials Research. 2012. V. 627. P. 659–671.
24. Okano M., Sugimoto K., Saito H. et al. Effect of the braiding angle on the energy absorption properties of a hybrid braided FRP tube /Proceedings of the Institution of Mechanical Engineers. Part L. 2005. V. 219. №1. P. 59.
25. Erber А., Birkefeld K., Drechsler K. The influence of braiding configuration on damage tolerance of drive shafts /SAMPE EUROPE 30-th international Jubilee Conference and Forum. Paris. 2010. P. 364–371.
26. Braided reinforcement for aircraft fuselage frames and method of producing the same: pat. 8210086B2 US; pabl. 03.07.2012.
27. Griffiths B. Composite fan blade containment case //High-performance Composites. 2005. №5. P. 76–78.
28. JEC Innovation Awards Program 2012: Innovation awards winners //JEC Composite Magazine. 2012. №71. P. 51.
One of relatively new methods of articles manufacture from polymer composite materials is a resin transfer molding technology (RTM -technology). Basic principle of the method is an injection of molding resin into a mold cavity,the preform contains a packet of «dry» reinforcing fiber. During injection resin is spreading throughout an entire volume of the mold cavity, displacing the air located there, and impregnates fibers. Resin transfer molding involves a usage of a rigid sealed form, consisting of a matrix and punch. Study of properties of the binder for articles forming by resin transfer molding method is considered in the present article.
2. Jepoksidnoe svjazujushhee, prepreg na ego osnove i izdelija, vypolnennye iz nego [Epoxy binder prepreg on the basis thereof and articles made therefrom]: pat. 2424259 Ros. Federacija; opubl. 22.10.2009.
3. Christian F. Lightweight automotive design with HP-RTM //Reinforced Plastics. 2011. P. 29–31.
4. Kablov E.N., Kondrashov S.V., Jurkov G.Ju. Perspektivy ispol'zovanija uglerodsoderzhashhih nanochastic v svjazujushhih dlja polimernyh kompozicionnyh materialov [Prospects for the use of carbonaceous nanoparticles in binders for polymer composites] //Rossijskie nanotehnologii. 2013. T. 8. №3–4. S. 24–42.
5. Dushin M.I., Hrul'kov A.V., Muhametov R.R., Chursova L.V. Osobennosti izgotovlenija izdelij iz PKM metodom propitki pod davleniem [Especially the manufacture of PCM by pressure impregnation] //Aviacionnye materialy i tehnolo-gii. 2012. №1. C. 18–26.
6. Chensong Dong. A modified rule of mixture for the vacuum-assisted resin transfer moulding process simulation //Composites Science and Technology. 2008. V. 68. №9. P. 2125–2133.
7. Simacek P., Suresh G., Stanley A. Modeling Flow in Compression Resin Transfer Molding for Manufacturing of Complex Lightweight High-Performance Automotive Parts //Journal of Composite Materials. 2008. №42. P. 2523–2545.
8. Neljub V.A., Grashhenkov D.V., Kogan D.I., Sokolov I.A. Primenenie prjamyh metodov formovanija pri proizvodstve krupnogabaritnyh detalej iz stekloplastikov [The application of direct methods of molding in the production of large parts of fiberglass] //Himicheskaja tehnologija. 2012. T. 13. №12. S. 17–23.
9. Horobryh M.A., Kashirskij D.A. Metody izgotovlenija detalej iz kompozicionnyh materialov propitkoj pod davleniem v osnastke [Methods for manufacturing parts made of composite materials by impregnation under pressure in a snap] //Molodoj uchenyj. 2013. №5. S. 116–122.
10. Mouton S., Teissandier D., Sebastian P., Nadeau J.P. Manufacturing requirements in design: The RTM process in aeronautics //Composites Part A: Applied Science and Manufacturing. 2010. V. 41. №1. P. 125–130.
11. Muhametov R.R., Ahmadieva K.R., Chursova L.V., Kogan D.I. Novye polimernye svjazujushhie dlja perspektivnyh metodov izgotovlenija konstrukcionnyh voloknistyh PKM [New polymeric binders for advanced manufacturing methods of structural fiber PCM] //Aviacionnye materialy i tehnologii. 2011. №2. S. 38–42.
12. Muhametov R.R., Merkulova Ju.I., Chursova L.V. Termoreaktivnye polimernye svjazujushhie s prognoziruemym urovnem reologicheskih i deformativnyh svojstv [Thermosetting polymeric binders with the projected level of rheology and deformation properties] //Klei. Germetiki. Tehnologii. 2012. №5. S. 19–24.
13. ASTM Standard D790. Standard Test Method for flexural properties of unreinforced and reinforced plastics and electrical insulating materials. ASTM International. 2003.
14. GOST 25.601–80. Metody mehanicheskih ispytanij kompozicionnyh materialov s polimernoj matricej (kompozitov). Metod ispytanija ploskih obrazcov na rastjazhenie pri normal'noj, povyshennoj i ponizhennoj temperaturah [Methods of mechanical testing of composite materials with a polymer matrix (composites). Method of testing flat tensile specimens at normal, low and high temperatures].
15. ASTM Standard D3039. Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials. ASTM International. 2002.
16. Deleglise M. Modeling of high speed RTM injection with highly reactive resin with on-line mixing //Applied Science and Manufacturing. 2011. V. 42(10). P. 1390–1397.
17. Kablov E.N., Grashchenkov D.V., Isaeva N.V., Solntsev S.S., Sevast'yanov V.G. Glass and ceramics based high-temperature composite materials for use in aviation technology //Glass and Ceramics. 2012. P. 1–4.
18. Postnova M.V., Postnov V.I. Opyt razvitija bezavtoklavnyh metodov formovanija PKM [Experience in the development of methods of forming RMB bezavtoklavnogo] //Trudy VIAM. 2014. №4. St. 06 (viam-works.ru).
19. Grigor'ev M.M., Kogan D.I., Tverdaja O.N., Panina N.N. Osobennosti izgotovlenija PKM metodom RFI [Peculiarities of PCM by RFI] //Trudy VIAM. 2013. №4. St. 03 (viam-works.ru).
20. Tkachuk A.I., Grebeneva T.A., Chursova L.V., Panina N.N. Termoplastichnye svjazujushhie. Nastojashhee i budushhee [Thermoplastic binders. Present and Future] //Trudy VIAM. 2013. №11. St. 07 (viam-works.ru).
21. Kirillov V.N., Starcev O.V., Efimov V.A. Klimaticheskaja stojkost' i povrezhdaemost' polimernyh kompozicionnyh materialov, problemy i puti reshenija [Weather resistance and defectiveness of polymer composite materials, problems and solutions] //Aviacionnye materialy i tehnologii. 2012. №S. S. 412–423.
One of the main disadvantages of ferroconcrete and metal bridges construction, are low speed and high cost. A possible way to solve these problems is a usage of composite materials. A possibility of application of braided preforms during a construction of bridges and comparison of the speed and cost of construction with ferroconcrete and metal bridges is considered in this article
2. Gunjaev G.M., Gofin M.Ja. Uglerod-uglerodnye kompozicionnye materialy [Carbon-carbon composite materials] //Aviacionnye materialy i tehnologii. 2013. №S1. S. 62–90.
3. Grashhenkov D.V., Chursova L.V. Strategija razvitija kompozicionnyh i funkcional'nyh materialov [The development strategy of composite and functional materials] //Aviacionnye materialy i tehnologii. 2012. №S. S. 231–242.
4. Kablov E.N., Starcev O.V., Krotov A.S., Kirillov V.N. Klimaticheskoe starenie kompozicionnyh materialov aviacionnogo naznachenija. I. Mehanizmy starenija [Climatic aging of composite materials aviation applications. I. Mechanisms of aging] //Deformacija i razrushenie materialov. 2010. №11. S. 19–27.
5. Sloistyj kompozicionnyj material i izdelie, vypolnennoe iz nego [Layered composite material and article made from it]: pat. 2185964 Ros. Federacija; opubl. 19.01.2001.
6. Erasov V.S., Makarycheva A.I. Opredelenie modulja uprugosti mezhfaznoj zony v sloistom polimernom kompozicionnom materiale [Determination of modulus of elasticity in the laminate interfacial area polymer composite] //Aviacionnye materialy i tehnologii. 2014. №2. S. 53–55.
7. Malinin N.N. Mehanika konstrukcij iz kompozicionnyh materialov [Mechanics of composite structures]. M.: Mashinostroenie. 1988. 272 s.
8. Jepoksidnaja kompozicija [Epoxy composition]: pat. 2447104 Ros. Federacija; opubl. 05.10.2010.
9. Dushin M.I., Hrul'kov A.V., Muhametov R.R., Chursova L.V. Osobennosti izgotovlenija izdelij iz PKM metodom propitki pod davleniem [Especially the manufacture of PCM by pressure impregnation] //Aviacionnye materialy i tehnolo-gii. 2012. №1. S. 18–26.
10. Sposob poluchenija kompozicionnogo materiala [A method of producing a composite material]: pat. 2246379 Ros. Federacija; opubl. 25.02.2004.
11. Borshhev A.V., Hrul'kov A.V., Halturina D.S. Izgotovlenie nizkoporistogo polimernogo kompozicionnogo materiala dlja primenenija v slabo- i srednenagruzhennyh konstrukcijah [Production of low porosity of the polymer composite material for use in low- and moderate constructions] //Trudy VIAM. 2014. №7. St. 03 (viam-works.ru).
12. Trostjanskaja E.B. Plastiki konstrukcionnogo naznachenija [Plastic construction purposes]. M.: Himija. 1974. 303 s.
13. Belozerov L.G., Kireev V.A. Kompozitnye obolochki pri silovyh i teplovyh vozdejstvijah [Composite shell with power and thermal effects]. M.: Fizmatlit. 2003. 388 s.
14. Vasil'ev V.V. Kompozicionnye materialy [Composite materials]: Spravochnik. M.: Mashinostroenie. 1990. 512 s.
15. Nemirovskij Ju.V., Reznikov B.S. Prochnost' jelementov konstrukcij iz kompozitnyh materialov [Strength of structural elements made of composite materials]. Novosibirsk: Nauka. 1986. 166 s.
16. Grigor'ev M.M., Hrul'kov A.V., Gurevich Ja.M., Panina N.N. Izgotovlenie steklopla-stikovyh obshivok metodom vakuumnoj infuzii s ispol'zovaniem jepoksiangidridnogo svjazujushhego i polupronicaemoj membrany [Manufacture of fiberglass skins by vacuum infusion using epoksiangidridnogo binder and a semipermeable membrane] //Trudy VIAM. 2014. №2. St. 04 (viam-works.ru).
A determination of content of carbon and sulfur in organic and polymeric nonmetallic materials by method of combustion in an induction furnace of gas analyzer Leco CS-444 followed by detection in an infrared cell of spectrometer was investigated. A deter-mination of content of oxygen and hydrogen in organic and polymeric nonmetallic ma-terials by melting in inert gas were provided on TC-600 and RHEN 602 (Leco) gas an-alyzers followed by detection of oxygen in IR-cell of gas analyzer TC-600 and hydrogen in a conductance-measuring cell of RHEN 602 gas analyzer. In this paper we chose catalysts for complete extraction of these elements from organic and polymeric nonmet-allic materials. Accuracy and correctness of measurement results were confirmed by a good repeatability of the measured on gasanalyzes values of elements mass portion with their calculated values in the studied organic substances of the known molecular formula.
2. Babin A.N. Svjazujushhie dlja polimernyh kompozicionnyh materialov novogo pokolenija [Binders for polymeric composite materials of new generation] //Trudy VIAM. 2013. №4 (viam-works.ru).
3. Garshin A.P., Kulik V.I., Nilov A.S. Analiz sovremennogo sostojanija i perspektiv kommercheskogo primenenija voloknistoarmirovannoj karbidkremnievoj keramiki [Analysis of the current state and prospects of commercial use silicon carbide ceramics voloknistoarmirovannoy] //Novye ogneupory. 2012. № 2. S. 43–52.
4. Solncev S.S., Rozenenkova V.A., Mironova N.A. i dr. Termoarmirujushhie pokrytija dlja teplozvukopogloshhajushhih materialov [Termoarmiruyuschie coating materials teplozvukopogloschayuschih] //Trudy VIAM. 2013. №1. St. 04 (viam-works.ru).
5. Solncev St.S., Rozenenkova V.A., Mironova N.A. Vysokotemperaturnye steklo-keramicheskie pokrytija i kompozicionnye materialy [High glass-ceramic composite materials and coatings] //Aviacionnye materialy i teh-nologii. 2012. №S. S. 359–368.
6. Grashhenkov D.V., Solncev S.St., Shhegoleva N.E. i dr. Steklokeramicheskij kompozicionnyj material [Glass-ceramic composite material] //Aviacionnye materialy i tehnologii. 2012. №S. S. 368–372.
7. Kablov E.N. Strategicheskie napravlenija razvitija materialov i tehnologij ih pererabotki na period do 2030 goda [Strategic directions of development of materials and pro-cessing technologies for the period up to 2030] //Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
8. Kablov E.N., Grashhenkov D.V., Isaeva N.V. i dr. Vysokotemperaturnye konstrukcionnye kompozicionnye materialy na osnove stekla i keramiki dlja perspektivnyh izdelij aviacionnoj tehniki [High-temperature structural composite materials based on glass and ceramic products for advanced aviation technology] //Steklo i keramika. 2012. №4. S. 7–11.
9. Kablov E.N., Shhetanov B.V., Ivahnenko Ju.A., Balinova Ju.A. Perspektivnye armirujushhie vysokotemperaturnye volokna dlja metallicheskih i keramicheskih kompozi-cionnyh materialov [Prospective reinforcing fibers for high temperature ceramic com-posites and metal materials] //Trudy VIAM. 2013. №2. St. 05 (viam-works.ru).
10. Yajima S., Hajashi J., Imori M. Continuous silicon carbide fiber of high tensile strength //Chem. Lett. 1975. V. 4. №9. P. 931–934.
11. Shherbakova G.I., Sidorov D.V., Varfolomeev M.S. i dr. Jelementoorganicheskie soedinenija – dlja sozdanija komponentov sovremennyh keramokompozitov [Organo-metallic compound - to create the components of modern keramokompozitov] //Vse ma-terialy. Jenciklopedicheskij spravochnik. 2010. №11. S. 11–15.
12. Ryzhova O.G., Polivanov A.N., Timofeev I.A. Poliorganosilazany: nastojashhee i budushhee [Poliorganosilazany: present and future] //Vse materialy. Jenciklopedicheskij spravochnik. 2010. №10. S. 47–55.
13. Kablov E.N., Grashhenkov D.V., Isaeva N.V. i dr. Perspektivnye vysokotemperaturnye keramicheskie kompozicionnye materialy [Promising high-temperature ceramic compo-site materials] //Rossijskij himicheskij zhurnal 2010. T. 54. №1. S. 20–24.
The certified reference specimens (CRMs) in the form of rods of 6–15 cm diameter manufactured in 1940–1970 do not fit for modern spectrometers. Standard specimens of 17–40 mm are needed. At present VIAM manufactures CRMs with diameter of 30–40 mm. CRMs in the form of rods, turned out earlier are used with special adapters. A pos-sibility of application of OT4 titanium alloy rod-CRMs for graduation of Q8Magellan spectrometer was studied. Then analysis of 30–40 mm diameter specimens is performed according to graduation. Calibration graphs were plotted. It was shown, that the root-mean-square errors of measurement of rod-CRMs with diameter of 11 mm and CRMs with diameter of 40 mm does not differ practically. The measurement error is in ac-cordance with requirements of standard documentation.
2. Shaevich A.B. Standartnye obrazcy dlja analiticheskih celej [Standard samples for analytical purposes]. M.: Himija. 1987. 184 s.
3. Kablov E.N., Sidorov V.V., Kablov D.E. i dr. Sovremennye tehnologii poluchenija prutkovyh zagotovok iz litejnyh zharoprochnyh splavov novogo pokolenija [Modern technology of bar stock from the casting of superalloys new generation] //Aviacionnye materialy i tehnologii. 2012. №S. S. 97–105.
4. Kablov E.N., Petrushin N.V., Svetlov I.L., Demonis I.M. Nikelevye litejnye zharoprochnye splavy novogo pokolenija [Casting nickel superalloys new generation] //Aviacionnye materialy i tehnologii. 2012. №S. S. 36–52.
5. Petrushin N.V., Ospennikova O.G., Visik E.M. i dr. Zharoprochnye nikelevye splavy nizkoj plotnosti [Heat-resistant nickel alloys, low density] //Litejnoe proizvodstvo. 2012. №6. S. 5–11.
6. Kablov E.N. Strategicheskie napravlenija razvitija materialov i tehnologij ih perera-botki na period do 2030 goda [Strategic directions of development of materials and processing technologies for the period up to 2030] //Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
7. Kablov E.N., Bondarenko Ju.A., Echin A.B., Surova V.A. Razvitie processa napravlennoj kristallizacii lopatok GTD iz zharoprochnyh splavov s monokristallicheskoj i kompozicionnoj strukturoj [The development process of directional solidification of the gas turbine engine blades superalloys with a single-crystal structure and composition] //Aviacionnye materialy i tehnologii. 2012. №1. S. 3–8.
8. Semenko N.G., Paneeva V.I., Lahov V.M. Standartnye obrazcy v sisteme obespechenija edinstva izmerenij [Standard samples in the system for ensuring the uniformity of measurements]. M.: Izd. standartov. 1990. 287 s.
9. Letov A.F., Karachevcev F.N. Opyt razrabotki standartnyh obrazcov aviacionnyh splavov [Experience in the development of standard samples aviation alloys] //Mir izmerenij. 2012. №8. S. 31–35.
10. MI 2589–2000. Obshhie metodicheskie rekomendacii po primeneniju polozhenij GOST 8.315 pri razrabotke i primenenii standartnyh obrazcov [General guidance on the application of the provisions of GOST 8.315 in the development and application of standard samples]. Ekaterinburg: Izd-vo UNIIM Gosstandarta Rossii. 2000.
11. GOST 8.315. Standartnye obrazcy sostava i svojstv veshhestv i materialov. Osnovnye polozhenija [Standard samples of composition and properties of substances and materials. fundamentals].
12. Letov A.F., Karachevcev F.N., Gundobin N.V., Titov V.I. Razrabotka standartnyh obrazcov sostava splavov aviacionnogo naznachenija [Development of standard samples of alloys aviation applications] //Aviacionnye materialy i tehnologii. 2012. №S.
C. 393–398.
13. Federal'nyj zakon ot 26 ijulja 2008 g. №102-FZ «Ob obespechenii edinstva izmerenij». St. 12 «Utverzhdenie tipa standartnyh obrazcov ili tipa sredstv izmerenij» [Federal Law of July 26, 2008 №102-FZ «On ensuring the uniformity of measurements». Art. 12 «Type approval of reference materials or type of measuring»].
14. Kablov E.N., Morozov G.A., Krutikov V.N., Muravskaja N.P. Attestacija standartnyh obrazcov sostava slozhnolegirovannyh splavov s primeneniem jetalona [Certification of standard samples of complex alloys using standard] //Aviacionnye materialy i tehnologii. 2012. №2. C. 9–11.
15. Koz'min V.A., Fedorova S.F., Shhukina M.Ju. Gosudarstvennye standartnye obrazcy stalej, splavov i chugunov s attestovannymi soderzhanijami mikroprimesej. Problemy i uspehi [State standard samples of steel and cast iron alloys with certified contents of trace. Problems and successes] //Standartnye obrazcy. 2008. №2. C. 44–51.
16. Nalobin D.P., Osinceva E.V. Sposoby slichenija standartnyh obrazcov sostava veshhestv i materialov [Methods for comparison of standard samples of substances and materials] //Standartnye obrazcy. 2006. №2. C. 36–43.
Properties of carbon fiber reinforced plastic based on thermoplastic matrix were studied. An influence of different environments and temperatures on properties of carbon plastic polyphenylenesulfide resin was studied.It has been shown that CFRP has a high moisture and water resistance at normal and elevated temperatures. Influence of different lay-ups of carbon plies on the behavior of CFRP during aging in moisture environment and water has been revealed. It was established that the studied material is characterized by a high level of maintenance of strength characteristics after an effect of water, moisture, thermo-moisture aging, thermal aging and treatment by thermal cycles from -60 to +160°C. It has been shown during research that CFRP has a high level of maintenance of the properties and it is competitive with foreign and domestic analogues. It may be used in wide temperature range from -60 to +160°C.
2. Bejder Je.Ja., Petrova G.N., Izotova T.F., Barbot'ko S.L. Stekloplastiki na termoplastichnoj matrice [GRP thermoplastic matrix] //Trudy VIAM. 2013. №7. St. 03 (viam-works.ru).
3. Petrova G.N., Bejder Je.Ja., Izotova T.F., Malyshenok S.V. Kompozicionnye termoplastichnye materialy – sposoby poluchenija i pererabotki [Composite thermoplastic materials – methods of obtaining and processing] //Vse materialy. Jenciklopedicheskij spravochnik. 2013. №10. S. 10–17.
4. Bejder Je.Ja., Malyshenok S.V., Petrova G.N. Kompozicionnye termoplastichnye materialy – svojstva i sposoby pererabotki [The composite thermoplastic materials – properties and processing methods] //Plasticheskie massy. 2013. №7. S. 56–60.
5. Bejder Je.Ja., Petrova G.N., Izotova T.F., Gureeva E.V. Kompozicionnye termoplastichnye materialy i penopoliimidy [Composite and thermoplastic materials penopoliimidy] //Trudy VIAM. 2013. №11. St. 01 (viam-works.ru).
6. Kablov E.N. Himija v aviacionnom materialovedenii [Chemistry aviation materials] //Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 3–4.
7. Kablov E.N. Strategicheskie napravlenija razvitija materialov i tehnologij ih pererabotki na period do 2030 goda [Strategic directions of development of materials and processing technologies for the period up to 2030] //Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
8. Gunjaev G.M., Chursova L.V., Komarova O.A., Gunjaeva A.G. Konstrukcionnye ugleplastiki, modificirovannye nanochasticami [Structural carbon composites modified nanoparticles] //Aviacionnye materialy i tehnologii. 2012. №S. S. 277–286.
9. Kablov E.N. Aviakosmicheskoe materialovedenie [Aerospace materials] //Vse materialy. Jenciklopedicheskij spravochnik. 2008. №3. S. 2–14.
10. Guljaev I.N., Vlasenko F.S., Zelenina I.V., Raskutin A.E. Napravlenija razvitija termostojkih ugleplastikov na osnove poliimidnyh i geterociklicheskih polimerov [Direction of the heat-resistant carbon-fiber-based polyimide and heterocyclic polymers] //Trudy VIAM. 2014. №1. St. 04 (viam-works.ru).
11. Mihajlin Ju.A. Konstrukcionnye polimernye kompozicionnye materialy [Structural polymer composite materials]. SPb.: NOT. 2008. 820 s.
12. Kerber M.L., Vinogradov V.M. Polimernye kompozicionnye materialy: struktura, svojstva, tehnologija [Polymer composite materials: structure, properties, technology]. SPb.: Professija. 2009. 560 s.
13. Nozdrina L.V., Korotkova V.I., Bejder Je.Ja. Primenenie kompozicionnyh materialov s termoplastichnoj matricej [The use of composite materials with a thermoplastic matrix] //Konstrukcii iz kompozicionnyh materialov. 1991. №1. S. 18–24.
14. Ustinov V.A., Bejder Je.Ja. Primenenie kompozicionnyh materialov s termoplastichnoj matricej [The use of composite materials with a thermoplastic matrix] //Konstrukcii iz kompozicionnyh materialov. 1991. №1. S. 25–32.
15. Petrova G.N., Beider E.Ya. Construction materials based on reinforced thermoplastics //Russian Journal of General Chemistry. 2011. T. 81. №5. P. 1001–1007.
16. Kirillov V.N., Starcev O.V., Efimov V.A. Klimaticheskaja stojkost' i povrezhdaemost' polimernyh kompozicionnyh materialov, problemy i puti reshenija [Weather resistance and defectiveness of polymer composite materials, problems and solutions] //Aviacionnye materialy i tehnologii. 2012. №S. S. 412–423.
17. Kablov E.N., Starcev O.V., Krotov A.S., Kirillov V.N. Klimaticheskoe starenie kompozicionnyh materialov aviacionnogo naznachenija. II. Relaksacija ishodnoj strukturnoj neravnovesnosti i gradient svojstv po tolshhine [Climatic aging of composite materials aviation applications. II. Relaxation of the original structural and non-equilibrium properties of gradient across the thickness] //Deformacija i razrushenie materialov. 2012. №6. S. 17–19.
18. Kablov E.N., Starcev O.V., Krotov A.S., Kirillov V.N. Klimaticheskoe starenie kompozicionnyh materialov aviacionnogo naznachenija. I. Mehanizmy starenija [Climatic aging of composite materials aviation applications. I. Mechanisms of aging] //Deformacija i razrushenie materialov. 2010. №11. S. 19–27.
19. Kablov E.N., Starcev O.V., Krotov A.S., Kirillov V.N. Klimaticheskoe starenie kompozicionnyh materialov aviacionnogo naznachenija. III. Znachimye faktory starenija [Climatic aging of composite materials aviation applications. III. Significant factors of aging] //Deformacija i razrushenie materialov. 2011. №1. S. 34–40.
20. Kablov E.N., Starcev O.V., Deev I.S., Nikishin E.F. Svojstva polimernyh kompozici-onnyh materialov posle vozdejstvija otkrytogo kosmosa na okolozemnyh orbitah [Properties of polymer composite materials after exposure to the open space in Earth orbits] //Vse materialy. Jenciklopedicheskij spravochnik. 2012. №10. S. 2–9.
21. Сhen-chi M.M., Chang-lun L., Min-jong C., Wyan-hwa T. Effect of physical aging on the thoughness of carbon fiber-reinforsed poly(ether ether ketone) and poly(phenylene sulfide) composite //Polymer composite. 1992. V. 13. №6. P. 441–447.
22. Сhen-chi M.M., Chang-lun L., Min-jong C., Wyan-hwa T. Hydrothermal behaivor of carbon fiber-reinforsed poly(ether ether ketone) and poly(phenylene sulfide) composite //Polymer composite. 1992. V. 13. №6. P. 448–453.
23. Batista N.L., Faria M.C.M., Jha K., Olivera P.C., Bothelho E.C. Influence of water immersion and ultraviolet weathering on mechanical properties of polyphenylene sulfide-carbon fiber composites //Journal of thermoplastic composite materials. 2013. №1. P. 1–17.
24. Choqueuse D., Davies P., Mareas F., Baireur R. Aging of Composites in water: comparison of five materials in term of absorption kinetics and revolution of mechanical properties //Polymeric composites. 1997. V. 2. P. 73–96.
25. Ishak Z.A., Berry J.P. Hygrothermal aging studies of short carbon fiber reinforced nylon 6.6 //Journal of applied polymer science. 1994. V. 51. №13. Р. 2144–2155.
26. Amore A.D., Cocchini K., Pompo A., Apicella A., Nicolais L. The effect of physical aging on long-term properties of poly ether-ketone (PEEK) and PEEK based composites //Journal of applied polymer science. 1990. V. 39. P. 1163–1174.
27. Dao D., Hodgkin J., Krstina J., Mardel J., Tian W. Accelerated aging versus realistic aging aerospace composites. II Chemistry of thermal aging //Journal of applied polymer science. 2006. V. 102. P. 3221–3232.
The technique of determination of palladium content in powder materials of electrical products, exhausted their service life was developed. One of the most important types of secondary raw material for platinum group metals manufacture are electrical products used in aerospace engineering, which spent their lifetime. Palladium is applied not only for a development of materials of aviation applications. It is also used, for example, for a production of catalysts used in chemical and petrochemical industry. Palladium content in products, exhausted their service life may range from hundredths to integral percent. These are rather high values, so a relevance of this work is obvious, since the earth's resources of rare metals are limited. The developed method allows to control a content of a precious metal (palladium) with sufficiently low level of error.
2. Glazunov S.G., Jasinskij K.K. Titanovye splavy dlja aviacionnoj tehniki i drugih otraslej promyshlennosti [Titanium alloys for aircraft and other industries] //Tehnologija legkih splavov. 1993. №7. S. 45–53.
3. Kablov E.N. Strategicheskie napravlenija razvitija materialov i tehnologij ih pererabotki na period do 2030 goda [Strategic directions of development of materials and processing technologies for the period up to 2030] //Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
4. Kablov E.N. Sovremennye materialy – osnova innovacionnoj modernizacii Rossii [Modern materials - the basis of innovative modernization of Russia] //Metally Evrazii. 2012. №3. S. 10–15.
5. Kablov E.N., Karpov Ju.A., Titov V.I. i dr. Opredelenie renija i rutenija v nanostrukturirovannyh zharoprochnyh nikelevyh splavah dlja aviacionnoj tehniki [Determination of rhenium and ruthenium in nanostructured heat-resistant nickel alloys for aircraft equipment] //Zavodskaja laboratorija. Diagnostika materialov. 2014. T. 80. №1. S. 6–12.
6. Kablov E.N., Petrushin N.V., Bronfin M.B., Alekseev A.A. Osobennosti monokristallicheskih zharoprochnyh nikelevyh splavov, legirovannyh reniem [Features single-crystal high-temperature nickel alloys doped with rhenium] //Metally. 2006. №5. S. 47–57.
7. Kablov E.N., Lomberg B.S., Ospennikova O.G. Sozdanie sovremennyh zharoprochnyh materialov i tehnologij ih proizvodstva dlja aviacionnogo dvigatelestroenija [The creation of modern high-temperature materials and production technologies for aviation engine] //Kryl'ja Rodiny. 2012. №3–4. S. 34–38.
8. Tarasov Ju.M., Antipov V.V. Novye materialy VIAM − dlja perspektivnoj aviacionnoj tehniki proizvodstva OAO «OAK» [New materials VIAM – for promising aviation equipment produced by JSC «UAC»] //Aviacionnye materialy i tehnologii. 2012. №2. S. 5–6.
9. Sidorov V.V., Timofeeva O.B., Kalicev V.A., Gorjunov A.V. Vlijanie mikrolegirovanija RZM na svojstva i strukturno-fazovye prevrashhenija v intermetallidnom splave VKNA-25-VI [Effect of microalloying REM on the properties and structural phase transformations in intermetallic alloys VKNA-25-VI] //Aviacionnye materialy i tehnologii. 2012. №4. S. 8–13.
10. Kablov E.N., Ospennikova O.G., Vershkov A.V. Redkie metally i redkozemel'nye jelementy – materialy sovremennyh i budushhih vysokih tehnologij [Rare metals and rare earth elements - materials of current and future high-tech] //Trudy VIAM. 2013. №2. St. 01 (viam-works.ru).
11. Letov A.F., Karachevcev F.N., Gundobin N.V., Titov V.I. Razrabotka standartnyh obrazcov sostava splavov aviacionnogo naznachenija [Development of standard samples of alloys aviation applications] //Aviacionnye materialy i tehnologii. 2012. №S. S. 393–398.
12. Kablov E.N. Materialy dlja izdelija «Buran» – innovacionnye reshenija formirovanija shestogo tehnologicheskogo uklada [Materials for the product «Buran» – innovative solutions forming the sixth technological order] //Aviacionnye materialy i tehnologii. 2013. №S1. S. 3–9.
13. Ginzburg S.N., Prokof'ev I.V. Analiticheskaja himija platinovyh metallov [Analytical chemistry of platinum metals]. M.: Nauka. 1972. 616 s.
14. Basargin N.N., Rozovskij Ju.G. Metody himicheskogo analiza gornyh porod [Methods for chemical analysis of rocks]. M.: Nauka. 1973. 87 s.
15. Basargin N.N., Rozovskij Ju.G. Spektrofotometricheskoe opredelenie platiny i palladija v katalizatorah [Spectrophotometric determination of platinum and palladium catalysts] //Zavodskaja laboratorija. 1973. T. 39. №1. S. 3–4.
16. Basargin N.N., Rozovskij Ju.G. Fotometricheskij metod opredelenija palladija [Photometric method for the determination of palladium] /V kn. Teoreticheskie i prakticheskie voprosy primenenija organicheskih reagentov v analize. M.: Nauka. 1976. S. 125–131.
17. Zhendareva O.G., Muhina Z.S. Analiz gal'vanicheskih vann [Analysis of electroplating baths]. M.: Himija. 1970. S. 202–205.
18. Maljutina T.M., Alekseeva T.Ju., Karpov Ju.A. Opredelenie platiny i palladija v otrabotannyh katalizatorah metodom ICP OES posle vskrytija proby vysokotemperaturnym splavleniem [Determination of platinum and palladium in the spent catalyst by ICP OES after opening the sample high temperature fusion] //Zavodskaja laboratorija. Diagnostika materialov. 2009. T. 75. №1. S. 4–7.
The reaction heat of the curing epoxy adhesive VK-36R was measured by differential scanning calorimetry. Kinetic calculations based on them were produced. A kinetic model of the curing reaction of the epoxy binder was developed. On the basis of the kinetic model change in concentrations of reactants and the degree of conversion in the polymerization process according to the selected kinetic model were evaluated. The study features of the epoxy adhesive multi-stage curing reaction were revealed.
2. Aleksashin V.M., Antjufeeva N.V. Razvitie metodov termicheskogo analiza v issledovanijah polimernyh kompozicionnyh materialov [Development of thermal analysis studies polymeric composite materials] /V sb. 75 let. Aviacionnye materialy. Izbrannye trudy «VIAM» 1932–2007: Jubilejnyj. nauch.-tehnich. sb. M.: VIAM. 2007. S. 245–249.
3. ASTM E 698–05. Standard Test Method for Arrehenius Kinetic Constants for Thermally Unstable Materials.
4. ASTM E 2041–04. Standard Test Method for Heat of Reaction of Thermally Reactive Materials by Differential Scanning Calorimetry (DSC).
5. RTM 1.2.161–98. Opredelenie reakcionnoj sposobnosti termoreaktivnyh svjazujushhih i prepregov metodom differencial'noj skanirujushhej kalorimetrii [Determination of the reactivity of the thermosetting binder and the prepregs using differential scanning calorimetry]. M.: VIAM. 1998.
6. DIN 65467–1999. Sistemy polimernye s usileniem i bez usilenija aviacionno-kosmicheskogo naznachenija. Metod ispytanija s pomoshh'ju differencial'noj skanirujushhej kalorimetrii [Polymeric systems with and without amplification gain aerospace. Test method using differential scanning calorimetry].
7. ISO 11357-2:1999. Plastmassy. Differencial'naja skanirujushhaja kalorimetrija (DSC). Chast' 2. Opredelenie temperatury steklovanija [Plastics. Differential Scanning Calorimetry (DSC). Part 2: Determination of glass transition temperature].
8. ISO 11357-5:1999. Plastmassy. Differencial'naja skanirujushhaja kalorimetrija (DSC). Chast' 5. Opredelenie harakteristicheskih temperatur i vremeni po krivym reakcii, opredelenie jental'pii reakcii i stepeni prevrashhenija [Plastics. Differential Scanning Calorimetry (DSC). Part 5: Determination of characteristic temperatures and the time for the reaction curve, the determination of the enthalpy of reaction and degree of conversion].
9. Loshhinin Ju.V., Pahomkin S.I., Fokin A.S. Vlijanie skorosti nagrevanija pri issledovanii fazovyh prevrashhenij v aljuminievyh splavah metodom DSK [Effect of heating rate in the study of phase transformations in aluminum alloys by DSC] //Aviacionnye materialy i tehnologii. 2011. №2. S. 3–6.
10. Akatenkov R.V., Kondrashov S.V., Fokin A.S., Marahovskij P.S. Osobennosti formirovanija polimernyh setok pri otverzhdenii jepoksidnyh oligomerov s funkcializovannymi nanotrubkami [Features of formation of polymer networks when cured epoxy oligomers with funktsializovannymi nanotubes] //Aviacionnye materialy i tehnologii. 2011. №2. S. 31–37.
11. Aleksashin V.M. Osobennosti vzaimodejstvija komponentov i vlijanie ih na processy i tehnologiju formirovanija jepoksidnyh organoplastikov [Features of interaction of the components and their influence on the processes and technologies of epoxy organic plastics]: Avtoref. dis. k.t.n. M.: VIAM. 2001. 27 s.
12. Antjufeeva N.V., Komarova O.A., Pavlovskij K.A., Aleksashin V.M. Opyt primenenija kalorimetricheskogo kontrolja reakcionnoj sposobnosti preprega KMU-11tr [Experience of using colorimetric reaction control prepreg CMU-11tr] //Trudy VIAM. 2014. №2. St. 06 (viam-works.ru).
13. Aleksashin V.M., Aleksandrova L.B., Matveeva N.V., Mashinskaja G.P. Primenenie termicheskogo analiza dlja kontrolja tehnologicheskih svojstv termoreaktivnyh prepregov konstrukcionnyh polimernyh kompozicionnyh materialov [Application of thermal analysis to control the processing properties of thermoset prepregs structural polymer composite materials] //Aviacionnaja promyshlennost'. 1997. №5–6. S. 38–43.
14. Antjufeeva N.V., Aleksashin V.M., Zhelezina G.F., Stoljankov Ju.V. Metodicheskie podhody termoanaliticheskih issledovanij dlja ocenki svojstv prepregov i ugleplastikov [Methodological approaches thermoanalytical studies to assess the properties of prepregs and carbon fiber reinforced plastics] //Vse materialy. Jenciklopedicheskij spravochnik. 2012. №4. C. 18–27.
15. Aleksashin V.M., Antjufeeva N.V. Primenenie metodov termicheskogo analiza dlja issledovanija kleevyh kompozicij [Application of thermal analysis to study the adhesive compositions] //Klei. Germetiki. Tehnologii. 2005. №12. C. 28–31.
16. Opfermann J., Delesky H. Optimization of the curing process of epoxy-resin-based casting compounds using the DSC and kinetic analysis //NETZSCH Applications Service. 1995. 30 p.
17. Hajrulin I.I., Aleksashin V.M., Petrova A.P. Primenenie metodov termicheskogo analiza dlja issledovanija kleja-rasplava [Application of thermal analysis for the study of hot melt adhesive] //Klei. Germetiki. Tehnologii. 2006. №5. S. 26–30.
18. Lukina N.F., Petrova A.P., Kotova E.V. Termostojkie klei dlja izdelij aviakosmicheskoj tehniki [Heat-resistant adhesives for aerospace products] //Trudy VIAM. 2014. №3. St. 06 (viam-works.ru).
19. Dement'eva L.A., Serezhenkov A.A., Lukina N.F., Kucevich K.E. Kleevye prepregi i sloistye materialy na ih osnove [The adhesive prepreg and laminates based on them] //Aviacionnye materialy i tehnologii. 2013. №2. S. 19–21.
20. Prepreg i izdelie, vypolnennoe iz nego [Prepreg and article made from it]: pat. 2427594 Ros. Federacija; opubl. 27.08.2011.
21. Kablov E.N. Materialy dlja izdelija «Buran» – innovacionnye reshenija formirovanija shestogo tehnologicheskogo uklada [Materials for the product «Buran» – innovative solutions forming the sixth technological order] //Aviacionnye materialy i tehnologii. 2013. №S1. S. 3–9.
22. Kablov E.N. Shestoj tehnologicheskij uklad [Sixth technological way] //Nauka i zhizn'. 2010. №4. S. 2–7.