Articles
A study was made of the features of phase dissolution in the two-step homogenization of pi-lot-industrial ingots of B-1481 alloy based on the Al–Cu–Li system. It is shown that an increase in exposure at the second stage contributes to the almost complete dissolution of the nonequilibrium eutectic. Homogenization of ingots of alloy B-1481 according to the regime: the first stage – at a temperature of 70–100°C below the temperature of the nonequilibrium solidus, and the high-temperature second stage is slightly higher than the temperature of the nonequilibrium solidus, it allows achieving the most complete dissolution of phases precipitated during crystallization, Technological plasticity of the material at the temperature of hot deformation.
2. Kablov E.N., Ospennikova O.G., Vershkov A.V. Redkie metally i redkozemelnye elementy – materialy sovremennyh i budushhih vysokih tehnologij [Rare metals and rare-earth elements are materials for modern and future high technologies] // Aviacionnye materialy i tehnologii. 2013. №S2. S. 3–10.
3. Kablov E.N., Antipov V.V., Klochkova Yu.Yu. Alyuminij-litievye splavy novogo pokoleniya i sloistye alyumostekloplastiki na ih osnove [Aluminum-lithium alloys of new generation and layered aluminum glass plastics on their basis] // Tsvetnye metally. 2016. №8 (884). S. 86–91.
4. Fridlyander I.N., Chuistov K.V., Berezina A.L., Kolobnev N.I. Alyuminij-litievye splavy. Struktura i svojstva [Aluminum-lithium alloys. Structure and properties]. Kiev: Naukova dumka, 1992. 192 s.
5. Fridlyander I.N., Kolobnev N.I., Sandler V.S. Alyuminij-litievye splavy [Aluminum-lithium alloys] // Mashinostroenie: enciklopediya. M.: Mashinostroenie, 2001. T. II-3. Tsvetnye metally i splavy. Kompozicionnye metallicheskie materialy. S. 156–184.
6. Antipov V.V., Senatorova O.G., Tkachenko E.A., Vahromov R.O. Alyuminievye deformiruemye splavy [Aluminum deformable alloys] // Aviacionnye materialy i tehnologii. 2012. №S. S. 167–182.
7. Priemoperedayushhee ustrojstvo: pat. 2463364 Ros. Federaciya [Transceiving device: pat. 2463364 Rus. Federation]; zayavl. 03.05.11; opubl. 10.10.12, Byul. №28.
8. Ovsyannikov B.V., Komarov S.B. Razvitie proizvodstva deformirovannyh polufabrikatov iz alyuminievo-litievyh splavov v OAO «KUMZ» [Development of production of the deformed semi-finished products from aluminum-lithium alloys in JSC «KUMZ»] // Tehnologiya legkih splavov. 2014. №1. S. 97–103.
9. Ovsyannikov B.V., Zamyatin V.M., Mushnikov V.S., Oglodkov M.S. Termicheskij i mikrorentgenospektralnyj analiz slitkov splava V-1461 na osnove sistemy Al–Cu–Li [Thermal and microx ray spectral analysis of ingots of alloy V-1461 on the basis of Al–Cu–Li system] // Metallovedenie i termicheskaya obrabotka metallov. 2014. №6 (708). S. 12–17.
10. Kolobnev N.I., Hohlatova L.B., Antipov V.V. Perspektivnye alyuminij-litievye splavy dlya samoletnyh konstrukcij [Perspective aluminum-lithium alloys for aircraft designs] // Tehnologiya legkih splavov. 2007. №2. S. 35–38.
11. Ryabova E.N., Kolobnev N.I., Hohlatova L.B., Oglodkov M.S. Osobennosti struktury i svojstv listov iz splavov sistemy Al–Cu–Li–Mg [Features of structure and properties of sheets from Al–Cu–Li–Mg system alloys] // Metallurgiya mashinostroeniya. 2015. №1. S. 17–19.
12. Oglodkov M.S., Hohlatova L.B., Kolobnev N.I., Alekseev A.A., Lukina E.A. Vlijanie termomehanicheskoj obrabotki na svojstva i strukturu splava sistemy Al–Cu–Mg–Li–Zn [Influence of thermomechanical processing on properties and Al–Cu–Mg–Li–Zn system alloy structure] // Aviacionnye materialy i tehnologii. 2010. №4. S. 7–11.
13. Antipov V.V., Kolobnev N.I., Hohlatova L.B. Razvitie alyuminijlitievyh splavov i mnogostupenchatyh rezhimov termicheskoj obrabotki [Development aluminum lithium alloys and multistage modes of thermal processing] // Aviacionnye materialy i tehnologii. 2012. №S. S. 183–195.
14. Hohlatova L.B., Kolobnev N.I., Oglodkov M.S., Mihajlov E.D. Alyuminij-litievye splavy dlya samoletostroeniya [Aluminum-lithium alloys for aircraft construction] // Metallurg. 2012. №5. S. 31–35.
15. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period to 2030] // Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
16. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
The article presents a review of studies of different research teams on the technology of selective laser melting of aluminum alloys. The review considers features of aluminum alloys, including the presence of stable oxide films, high reflectivity, thermal conductivity and low fluidity of the powder composition, influencing the fusion process and obtains high-quality structure. The presented results on the influence of different parameters and the chemical composition of materials to their characteristics. Brief description of the main systems of alloying of aluminum alloys used for the manufacturing samples and prototypes using additive technologies.
2. Buchbinder D. Rapid Manufacturing of Aluminium Parts for serial Production via Selective Laser Melting // Proc. of International User’s Conference on Rapid Prototyping-Tooling&Manufacturing «Euro-uRapid 2007» (Dec. 3–4, 2007, Frankfurt/Main, Germany). 2007. P. 2:2394–2400.
3. Sercombe T.B., Li X. Selective laser melting of aluminium and aluminium metal matrix composites: review // Materials Technology, 2016. Vol. 31 (2). P. 77–85. DOI: 10.1179/1753555715Y.0000000078.
4. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
5. Aboulkhair E.T., Tuck C., Ashcroft I., Maskery I., Everitt N.M. On the precipitation hardening of selective laser melted AlSi10Mg // Metallurgical and Materials Transactions: A. 2015. Vol. 46. Issue 8. P. 3337–3341. DOI: 10.1007/s11661-015-2980-7.
6. Aversa A., Lorusso M., Cattano G., Manfredi D. A study of the microstructure and the mechanical properties of an Al-Si-Ni alloy produced via selective laser melting // Journal of Alloys and Compounds. 2016. Vol. 695. P. 1470–1478. DOI: 10.1016/j.jallcom.2016.10.285.
7. Jia Y.D., Ma P., Prashanth K.G., Wang G. Microstructure and thermal expansion behavior of Al-50Si synthesized by selective laser melting // Journal of Alloys and Compounds. 2017. Vol. 699. P. 548–553. DOI: 10.1016/j.jallcom.2016.12.429.
8. Casati R., Lemke J.N., Alarcon A.Z. Aging behavior of high-strength al alloy 2618 produced by selective laser melting // Metallurgical and materials transactions A. December, 2016. DOI: 10.1007/s11661-016-3883-y.
9. Shaobo Sun, Lijing Zheng, Yingying Liu. Characterization of Al–Fe–V–Si heat-resistant aluminum alloy components fabricated by selective laser melting // Materials Research Society. 2015. Vol. 30. No. 10. DOI:10.1557/jmr.2015.110.
10. Zhang H., Zhu H. Fabrication and heat treatment of high strength Al-Cu-Mg alloy processed using selective laser melting // Proc. of SPIE. Vol. 9738: Laser 3D Manufacturing III, 97380X. 2016. DOI:10.1117/12.2211362.
11. Spierings A.B., Dawson K., Heeling T. Microstructural features of Sc- and Zr-modified Al-Mg alloys processed by selective laser melting // Materials and Design. 2017. Vol. 115. P. 52–63. DOI: 10.1016/j.matdes.2016.11.040.
12. Montero Sistiaga M.L., Mertens R., Vrancken B. et al. Changing the alloy composition of Al7075 for better processability by selective laser melting // Journal of Materials Processing Technology. 2016. Vol. 238. P. 437–445. DOI: 10.1016/j.jmatprotec.2016.08.003.
13. Aboulkhai N.T., Maskery I., Tuck C. The microstructure and mechanical properties of selectively laser melted AlSi10Mg: The effect of a conventional T6-like heat treatment // Materials Science & Engineering: A. 2016. Vol. 667. P. 139–146. DOI: 10.1016/j.msea.2016.04.092.
14. Maskery I., Aboulkhair N.T., Aremu A.O. A mechanical property evaluation of graded density Al-Si10-Mg lattice structures manufactured by selective laser melting // Materials Science & Engineering A. 2016. Vol. 670. P. 264–274. DOI:10.1016/j.msea.2016.06.013.
15. Reschetnik W. Fatigue crack growth behavior and mechanical properties of additively processed EN AW-7075 aluminium alloy // Procedia Structural Integrity. 2016. Vol. 2. P. 3040–3048. DOI:10.1016/j.prostr.2016.06.380.
16. Tang M., Pistorius P.C. Anisotropic Mechanical Behavior of AlSi10Mg Parts Produced by Selective Laser Melting // Journal of Metals. 2017. Vol. 69. No. 3. DOI: 10.1007/s11837-016-2230-5.
17. Rosenthal I., Stern A., Frage N. Strain rate sensitivity and fracture mechanism of AlSi10Mg parts produced by selective laser melting // Materials Science & Engineering: A. 2017. Vol. 682. P. 509–517. DOI: 10.1016/j.msea.2016.11.070.
18. Noriko Read, Wei Wang, Khamis Essa. Selective laser melting of AlSi10Mg alloy: Process optimisation and mechanical properties development // Materials and Design. 2015. Vol. 65. P. 417–424. DOI: 10.1016/j.matdes.2014.09.044.
19. Maskery I., Aboulkhair N.T., Corfield M.R. Quantification and characterisation of porosity in selectively lasermelted Al–Si10–Mg using X-ray computed tomography // Materials Characterization. 2016. Vol. 111. P. 193–204. DOI: 10.1016/j.matchar.2015.12.001.
20. Ryabov D.K., Antipov V.V., Korolev V.A., Medvedev P.N. Vliyanie tehnologicheskih faktorov na strukturu i svojstva silumina, poluchennogo s ispolzovaniem tehnologii selektivnogo lazernogo sinteza [Effect of technological factors on structure and properties of Al–Si alloy obtained by selective laser melting] // Aviacionnye materialy i tehnologii. 2016. №S1. S. 44–51. DOI: 10.18577/2071-9140-2016-0-S1-44-51.
21. Kempen K., Thijs L., Yasa E., Badrossamay M., Verheecke W., Kruth J. Process optimization and microstructural analysis for selective laser melting of AlSi10Mg // Solid Freeform Fabrication Symposium. 2011. Vol. 22. P. 484–495.
22. Kimura T. Effect of silicon content on densification, mechanical and thermal properties of Al-xSi binary alloys fabricated using selective laser melting // Materials Science & Engineering: A. 2017. Vol. 682. P. 593–602. DOI: 10.1016/j.msea.2016.11.059.
23. Aboulkhair N.T., Everitt N.M., Ashcroft I., Tuck C. Reducing porosity in AlSi10Mg parts processed by selective laser melting // Additive Manufacturing. 2014. Vol. 1–4. P. 77–86.
24. Prashanth K.G., Scudino S., Klauss H.J. Microstructure and mechanical properties of Al–12Si produced by selective laser melting: Effect of heat treatment // Materials Science & Engineering: A. 2014. Vol. 590. P. 153–160.
25. Weingarten С., Buchbinder D. Formation and reduction of hydrogen porosity during selective laser melting of AlSi10Mg // Journal of Materials Processing Technology. 2015. Vol. 221. P. 112–120.
26. Kablov E.N., Lukina E.A., Sbitneva S.V., Hohlatova L.B., Zajcev D.V. Formirovanie metastabilnyh faz pri raspade tverdogo rastvora v processe iskusstvennogo stareniya Al-splavov [Forming of metastable phases at disintegration of solid solution in the course of artificial aging of Al-alloys] // Tehnologiya legkih splavov. 2016. №3. S. 7–17.
27. Kablov E.N., Shchetanov B.V., Grashhenkov D.V., Shavnev A.A., Nyafkin A.N. Metallomatrichnye kompozicionnye materialy na osnove Al–SiC [Metalmatrix composite materials on the basis of Al–SiC] // Aviacionnye materialy i tehnologii. 2012. №S. S. 373–380.
28. Lukina E.A., Filonova E.V., Treninkov I.A. Mikrostruktura i preimushhestvennye kristallograficheskie orientirovki zharoprochnogo nikelevogo splava, sintezirovannogo metodom SLS, v zavisimosti ot energeticheskogo vozdejstviya i termoobrabotki [The microstructure and preferential crystallographic orientation of nickel superalloy, synthesized by SLM method, depending of the energy impact and heat treatment] // Aviacionnye materialy i tehnologii. 2017. №1 (46). S. 38–44. DOI: 10.18577/2071-9140-2017-0-1-38-44.
29. Berezovskij V.V., Shavnev A.A., Lomov S.B., Kurganova Yu.A. Poluchenie i analiz struktury dispersno-uprochnennyh kompozicionnyh materialov sistemy Al–SiC s razlichnym soderzhaniem armiruyushhej fazy [Receiving and the analysis of structure of the disperse strengthened composite materials of Al–SiC system with the different maintenance of the reinforcing phase] // Aviacionnye materialy i tehnologii. 2014. №S6. S. 17–23. DOI: 10.185577/2071-9140-2014-0-S6-17-23.
30. Gu D., Wang H., Dai D. et al. Rapid fabrication of Al-based bulk-form nanocomposites with novel reinforcement and enhanced performance by selective laser melting // Scr. Mater. 2015. Vol. 96. P. 25–28.
31. Gu D., Wang H., Chang F. et al. Selective laser melting additive manufacturing of TiC/AlS–i10Mg bulk-form nanocomposites with tailored microstructures and properties // Phys. Procedia. 2014. Vol. 56. P. 108–116.
32. Ghosh S.K., Saha P. Crack and wear behavior of SiC particulate reinforced aluminium based metal matrix composite fabricated by direct metal laser sintering process // Mater. Des. 2011. Vol. 32 (1). P. 139–145.
33. Dadbakhsh S., Hao L. Effect of Fe2O3 content on microstructure of Al powder consolidated parts via selective laser melting using various laser powers and speeds // Int. J. Adv. Manuf. Technol. 2014. Vol. 73 (9–12). P. 1453–1463.
34. Ocelik V., Vreeling J.A., De Hosson J.T.M. EBSP study of reaction zone in SiC/Al metal matrix composite prepared by laser melt injection. // J. Mater. Sci. 2001. Vol. 36 (20). P. 4845–4849.
35. Li X.P., Ji G., Chen Z. Selective laser melting of nano-TiB2 decorated AlSi10Mg alloy with high fracture strength and ductility // Acta Materialia. 2017. Vol. 129. P. 183–193. DOI: 10.1016/j.actamat.2017.02.062.
The efficiency method for concentration of nonmetallic inclusions with sulfur, phosphorus and silicon from melt of nickel-based superalloys in high gradient conditions and reduced rate of moving the crystallization front (V=6 mm/h). Experimentally established that using of this method allows to concentrate a main part of nonmetallic inclusions with sulfur, phosphorus and silicon in casting top limited volume. It makes enable detection of inclusions, chemical composition research, morphology and location in structure of alloy. In this case occurs reducing of impurities content in bottom part of casting.
2. Kablov E.N., Sidorov V.V., Kablov D.E., Min P.G. Metallurgicheskie osnovy obespecheniya vysokogo kachestva monokristallicheskih zharoprochnyh nikelevykh splavov [The metallurgical fundamentals for high quality maintenance of single crystal heat-resistant nickel alloys] // Aviacionnye materialy i tehnologii. 2017. №S. S. 55–71. DOI: 10.18577/2071-9140-2017-0-S-55-71.
3. Kablov D.E., Sidorov V.V., Min P.G., Vadeev V.E. Vliyanie primesej i lantana na ekspluatacionnye svojstva splava ZhS36-VI [Influence of impurity and lanthanum on operational properties of alloy ZhS36-VI] // Metallurgiya mashinostroeniya. 2015. №6. S. 19–23.
4. Kablov D.E., Sidorov V.V., Min P.G., Gerasimov V.V., Bondarenko Yu. A. Vliyanie primesej sery i fosfora na svojstva monokristallov zharoprochnogo splava ZhS36-VI i razrabotka effektivnyh sposobov ego rafinirovaniya [The sulfur and phosphorus influence on properties of single crystals GHS36-VI supperalloy and design of effective methods their refining] // Aviacionnye materialy i tehnologii. 2015. №3 (36). S. 3–9. DOI: 10.18577/2071-9140-2015-0-3-3-9.
5. Kablov D.E., Belyaev M.S., Sidorov V.V., Min P.G. Vliyanie primesej sery i fosfora na malociklovuyu ustalost monokristallov zharoprochnogo splava ZhS36-VI [The influence of sulfur and phosphorus impurities on low cycle fatigue of single crystals of ZhS36-VI alloy] // Aviacionnye materialy i tehnologii. 2015. №4 (37). S. 25–28. DOI: 10.18577/2071-9140-2015-0-4-25-28.
6. Sidorov V.V., Rigin V.E., Timofeeva O.B., Min P.G. Vliyanie kremniya i fosfora na zharoprochnye svojstva i strukturno-fazovye prevrashheniya v monokristallah iz vysokozharoprochnogo splava VZhM4-VI [An effect of silicon and phosphorus on high temperature properties and structure-phase transformations of single crystals of VGM4-VI superalloy] // Aviacionnye materialy i tehnologii. 2013. №3. S. 32–38.
7. Sidorov V.V., Rigin V.E., Min P.G., Folomejkin Yu.I. Vliyanie fosfora i kremniya na strukturu i svojstva vysokozharoprochnyh litejnyh splavov i razrabotka effektivnyh metodov ustraneniya ih otricatelnogo vliyaniya [Influence of phosphorus and silicon on structure and properties of high-heat resisting cast alloys and development of effective methods of elimination of their negative influence] // MiTOM. 2015. №6 (720). S. 55–59.
8. Sidorov V.V., Rigin V.E., Min P.G., Folomejkin Yu.I., Timofeeva O.B., Filonova E.V., Ishodzhanova I.V. Vliyanie primesej na strukturu i svojstva vysokozharoprochnyh litejnyh splavov i razrabotka effektivnyh metodov ustraneniya ih otricatelnogo vliyaniya [Influence of impurity on structure and property of high-heat resisting cast alloys and development of effective methods of elimination of their negative influence] // Novosti materialovedeniya. Nauka i tehnika: elektron. nauch.-tehnich. zhurn. 2014. №2. St. 03. Available at: http://www.materialsnews.ru (accessed: June 19, 2017).
9. Min P.G., Sidorov V.V., Budinovskij S.A., Vadeev V.E. Vliyanie sery na zharostojkost monokristallov zharoprochnogo nikelevogo splava sistemy Ni–Al–Co–Re–Ta–Mo–W–Ru–Cr [Influence of sulfur on the heat resistance of monocrystals of heat resisting nickel alloy of Ni–Al–Co–Re–Ta–Mo–W–Ru–Cr system] // Materialovedenie. 2016. №7. S. 9–12.
10. Kablov D.E., Sidorov V.V., Budinovskij S.A., Min P.G. Vliyanie primesi sery na zharostojkost monokristallov zharoprochnogo splava ZhS36-VI s zashhitnym pokrytiem [The influence of sulfur impurity on heat resistance of single crystals of ZhS36-VI alloy with protective coating] // Aviacionnye materialy i tehnologii. 2016. №1 (40). S. 20–23. DOI: 10.18577/2071-9140-2016-0-1-20-23.
11. Min P.G., Sidorov V.V., Budinovskiy S.A., Vadeev V.E. Influence of Sulfur on Heat Resistance of Single Crystals of Heat-Resistant Nickel Alloy of Ni–Al–Co–Re–Ta–Mo–W–Ru–Cr System // Inorganic Materials: Applied Research. 2017. Vol. 8. No. 1. P. 90–93.
12. Min P.G., Vadeev V.E., Kramer V.V. Resursosberegayushhaya tehnologiya polucheniya deformiruemogo nikelevogo zharoprochnogo splava VZh175 s primeneniem nekondicionnyh othodov [Resource-saving technology of receiving deformable nickel VZh175 hot strength alloy using unconditioned waste] // Metallurg. 2016. №9. S. 88–94.
13. Min P.G., Vadeev V.E., Kalicev V.A., Kramer V.V. Tehnologiya polucheniya deformiruemogo splava VZh175 dlya diskov GTD iz kondicionnyh othodov [Technology of receiving deformable alloy ВЖ175 for disks GTE from conditioned waste] // Metallurg. 2015. №9. S. 76–80.
14. Min P.G., Vadeev V.E., Kalicev V.A., Kramer V.V. Rafinirovanie nekondicionnyh othodov deformiruemyh nikelevyh splavov v vakuumnoj indukcionnoj pechi [Refinement of unconditioned waste of deformable nickel alloys in the vacuum induction furnace] // Tehnologiya metallov. 2015. №4. S. 8–13.
15. Min P.G., Goryunov A.V., Vadeev V.E. Sovremennye zharoprochnye nikelevye splavy i effektivnye resursosberegayushhie tehnologii ih izgotovleniya [Modern heat resisting nickel alloys and effective resource-saving technologies of their manufacturing] // Tehnologiya metallov. 2014. №8. S. 12–23.
16. Kablov E.N., Sidorov V.V., Kablov D.E., Min P.G., Rigin V.E. Resursosberegayushhie tehnologii vyplavki perspektivnyh litejnyh i deformiruemyh superzharoprochnyh splavov s uchetom pererabotki vseh vidov othodov [Resource-saving smelting technologies of perspective cast and deformable superhot strength alloys taking into account processing of all types of waste] // Elektrometallurgiya. 2016. №9. S. 30–41.
17. Kablov E.N., Sidorov V.V., Kablov D.E., Min P.G., Rigin V.E. Resource-Saving Technologies of Making Advanced Cast and Deformable Superalloys with Allowance for Processing All Types of Wastes // Russian Metallurgy (Metally). 2016. Vol. 2016. No. 12. P. 1187–1195.
18. Ospennikova O.G., Min P.G., Vadeev V.E., Kalitsev V.A., Kramer V.V. Resursosberegayushhaya tehnologiya pererabotki nekondicionnyh othodov deformiruemogo splava VZh175 dlya diskov GTD [Resource-saving processing technology of off-grade scrap of wrought superalloy VG175 for GTE disks production] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №2. St. 01. Available at: http://www.viam-works.ru (accessed: June 19, 2017). DOI: 10.18577/2307-6046-2016-0-2-1-1.
19. Min P.G., Sidorov V.V. Opyt pererabotki litejnyh othodov splava ZhS32-VI na nauchno-proizvodstvennom komplekse VIAM po izgotovleniyu lityh prutkovyh (shihtovyh) zagotovok [The experience of GS32-VI alloy scrap recycling at the VIAM scientific and production complex for cast bars production] // Aviacionnye materialy i tehnologii. 2013. №4. S. 20–25.
20. Min P.G., Sidorov V.V., Kablov D.E., Vadeev V.E. Rafinirovanie monokristallicheskih zharoprochnyh nikelevyh splavov ot primesej sery i kremniya i nejtralizaciya vrednogo vliyaniya fosfora [Refining of single-crystal superalloys to remove a sulfur and silicon impurity and eliminating unfavorable effect of phosphorus] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2017. №4. St. 04. Available at: http://www.viam-works.ru (accessed: June 19, 2017). DOI: 10.18577/2307-6046-2017- 0-4-4-4.
21. Sidorov V.V., Min P.G., Burcev V.T., Kablov D.E., Vadeev V.E. Komp'yuternoe modelirovanie i eksperimental'noe issledovanie reakcij rafinirovaniya v vakuume slozhnolegirovannyh renijsoderzhashhih nikelevyh rasplavov ot primesej sery i kremniya [Computer modeling and pilot study of reactions of refinement in vacuum complex-alloyed rhenium containing nickel melt from sulfur and silicon impurity] // Vestnik RFFI. 2015. №1 (85). S. 32–36.
22. Min P.G., Sidorov V.V. Rafinirovanie othodov zharoprochnogo nikelevogo splava ZhS32-VI ot primesi kremniya v usloviyah vakuumnoj indukcionnoj plavki [Refining of scraps of Ni-base superalloy ZhS32-VI to eliminate silicon impurity under conditions of vacuum induction melting] // Trudy VIAM : elektron. nauch.-tehnich. zhurn. 2014. №9. St. 01. Available at: http://viam-works.ru (accessed: June 19, 2017). DOI: 10.18577/2307-6046-2014-0-9-1-1.
23. Min P.G., Sidorov V.V., Kablov D.E., Vadeev V.E. Issledovanie sery i fosfora v litejnyh zharoprochnyh nikelevyh splavah i razrabotka effektivnyh sposobov ih rafinirovaniya [Sulfur and phosphorus research in cast heat resisting nickel alloys and development of effective ways of their refinement] // Tehnologiya metallov. 2015. №12. S. 2–9.
24. Sidorov V.V., Rigin V.E., Min P.G., Folomejkin Yu.I. Issledovanie processov rafinirovaniya v vakuume slozhnolegirovannyh nikelevyh rasplavov ot primesi sery [Research of refining processes in vacuum complex-alloyed nickel melt from sulfur impurity] // Metally. 2015. №6. S. 37–43.
25. Sidorov V.V., Min P.G. Rafinirovanie slozhnolegirovannogo nikelevogo rasplava ot primesi sery pri plavke v vakuumnoj indukcionnoj pechi (chast 2) [Refinement complex-alloyed nickel melt from sulfur impurity when melting in the vacuum induction furnace (part 2)] // Elektrometallurgiya. 2014. №5. S. 26–30.
26. Sidorov V.V., Min P.G., Folomejkin Yu.I., Vadeev V.E. Vliyanie skorosti filtracii slozhnolegirovannogo nikelevogo rasplava cherez penokeramicheskij filtr na soderzhanie primesi sery v metalle [Influence of speed of filtering complex-alloyed nickel rasplava via the foam ceramics filter on the content of impurity of sulfur in metal] // Elektrometallurgiya. 2015. №5. S. 12–15.
27. Kablov D.E., Sidorov V.V., Min P.G., Puchkov Yu.A. Vliyanie lantana na kachestvo i ekspluatacionnye svojstva monokristallicheskogo zharoprochnogo nikelevogo splava ZhS36-VI [The lanthanum influence on quality and operational properties of single crystal nickel base ZhS36-VI superalloy] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №12. St. 02. Available at: http://www.viam-works.ru (accessed: June 19, 2017). DOI: 10.18577/2307-6046-2015-0-12-2-2.
28. Sidorov V.V., Min P.G., Kablov D.E. Desulfuraciya monokristallicheskih zharoprochnyh nikelevyh splavov pri plavke v vakuume [Desulphuration of single-crystal heat resisting nickel alloys when melting in vacuum] // Metallurg. 2017. №5. S. 57–62.
29. Kablov D.E., Sidorov V.V., Min P.G., Puchkov Yu.A. Vliyanie poverhnostno-aktivnyh primesej i dobavki lantana na strukturu i svojstva monokristallicheskogo zharoprochnogo nikelevogo splava ZhS36 [Influence of surface-active impurities and lanthanum on structure and properties of singlecrystal nickel superalloy ZhS36] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2017. №4. St. 02. Available at: http://www.viam-works.ru (accessed: June 19, 2017). DOI: 10.18577/2307-6046-2017-0-4-2-2.
30. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
31. Pfann V. Zonnaya plavka. 2-e izd., pererab. i dop. [Zone melting. 2nd ed., rev. and add.]. M.: Mir, 1970. 336 s.
32. Mehanik E.A., Min P.G., Gundobin N.V., Rastegaeva G.Yu. Opredelenie massovoj doli sery v zharoprochnyh nikelevyh splavah i stalyah v diapazone koncentracij ot 0,0001 do 0,0009% (po masse) [Determination of sulfur mass fraction in heat-resistant nickel alloy and steels within the concentration range from 0,0001 to 0,0009% wt.] // Trudy VIAM : elektron. nauch.-tehnich. zhurn. 2014. №9. St. 12. Available at: http://viam-works.ru (accessed: June 19, 2017). DOI: 10.18577/2307-6046-2014-0-9-12-12.
33. Yakimovich P.V., Alekseev A.V., Min P.G. Opredelenie nizkih soderzhanij fosfora v zharoprochnyh nikelevyh splavah metodom ISP-MS [Determination of low phosphorus content in heat-resistant nickel alloys by ICP-MS method] // Trudy VIAM : elektron. nauch.-tehnich. zhurn. 2014. №10. St. 02. Available at: http://viam-works.ru (accessed: June 19, 2017). DOI: 10.18577/2307-6046-2014-0-10-2-2.
34. Jakubowski N., Prohaska T., Rottmann L., Vanhaecke F. Inductively coupled plasma- and glow discharge plasma-sector field mass spectrometry // J. Anal. At. Spectrom. 2011. Vol. 26. P. 693–726.
The influence of SLS process parameters on material structure is considered in this article. As the results of this work the main connections between SLS parameters were determined. Some conclusions about SLS process were made. It is shown that there are a few ways of SLS process optimization and the determination of peak hatch spacing value is one of them. Another way includes the correlation between hatch spacing and scanning speed. The increase in scanning speed value should be performed with decrease in hatch spacing value and vice versa. The other ways of SLS process optimization were also considered in this paper. The volume energy density should be taken into consideration while SLS parameters optimization is carried out. It is also shown that an applying HIP to SLS material could eliminate pores with diameter less than 80 μm.
2. Kablov E.N. Osnovnye itogi i napravleniya razvitiya materialov dlya perspektivnoj aviacionnoj tehniki [The main results and the directions of development of materials for perspective aviation engineering] // 75 let. Aviacionnye materialy. Izbrannye trudy «VIAM» 1932–2007: yubil. nauch.-tehnich. sb. M.: VIAM, 2007. S. 20–26.
3. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
4. Evgenov A.G., Suhov D.I., Nerush S.V., Rogalev A.M. Mehanicheskie svojstva i struktura splava sistemy Ni–Cr–W–Mo–Al–Ti–Nb, poluchaemogo metodom selektivnogo lazernogo splavleniya [Mechanical properties and alloy structure of the Ni–Cr–W–Mo–Al–Ti–Nb system, the selection laser fusing received by method] // Tehnologiya mashinostroeniya. 2016. №3. S. 5–9.
5. Evgenov A.G., Gorbovec M.A., Prager S.M. Struktura i mehanicheskie svojstva zharoprochnyh splavov VZh159 i EP648, poluchennyh metodom selektivnogo lazernogo splavleniya [Structure and mechanical properties of heat resistant alloys VZh159 and EP648, prepared by selective laser fusing] // Aviacionnye materialy i tehnologii. 2016. №S1. S. 8–15. DOI: 10.18577/2071-9140-2016-0-S1-8-15.
6. Mazalov I.S., Evgenov A.G., Prager S.M. Perspektivy primeneniya zharoprochnogo strukturno-stabilnogo splava VZh159 dlya additivnogo proizvodstva vysokotemperaturnyh detalej GTD [Perspectives of heat resistant structurally stable alloy VZh159 application for additive production of high-temperature parts of GTE] // Aviacionnye materialy i tehnologii. 2016. №S1. S. 3–7. DOI: 10.18577/2071-9140-2016-0-S1-3-7.
7. Gu H., Gong H., Pal D. et al. Influences of Energy Density on Porosity and Microstructure of Selective Laser Melted 17-4PH Stainless Steel // Proceedings of Solid Freeform Fabrication Symposium. 2013. P. 474–479.
8. Li R., Liu J., Shi Y. et al. Balling behavior of stainless steel and nickel powder during selective laser melting process // International Journal of Advanced Manufacturing Technology. 2012. Vol. 59 (9–12). P. 1025–1035.
9. Kempen K., Thijs L., Van Humbeeck J., Kruth J.-P. Processing AlSi10Mg by selective laser melting: parameter optimization and material characterization // Materials Science and Technology. 2015. Vol. 31. No. 8. P. 917–923.
10. Kruth J.-P., Froyen L., Vaerenbergh J.V. et al. Selective laser melting of iron-based powder // Material Processing Technology. 2004. Vol. 149. No. 1. P. 616–622.
11. Olakanmi E. Selective laser sintering/melting of pure Al, Al–Mg and Al–Si powders: effect of processing conditions and powder properties // Material Processing Technolology. 2013. Vol. 213. P. 1387–1405.
12. Gibson I., Shi D. Material properties and fabrication parameters in selective laser sintering process // Rapid Prototyping Journal. 1997. Vol. 3. No. 4. P. 129–136.
13. Dadbakhsh S., Hao L., Sewell N. Effect of selective laser melting layout on the quality of stainless steel parts // Rapid Prototyping Journal. 2012. No. 18. P. 241–249.
14. Tonysheva O.A., Voznesenskaya I.M., Eliseev E.A., Shalkevich A.B. Novaya vysokoprochnaya ekonomnolegirovannaya azotsoderzhashchaya stal povyshennoj nadezhnosti [The new high-strength containing steel of increased reliability economically alloyed nitrogen] //Aviacionnye materialy i tehnologii. 2012. №S. S. 84–88.
15. Tonysheva O.A., Voznesenskajya N.M., Shalkevich A.B., Petrakov A.F. Issledovanie vliyaniya vysokotemperaturnoj termomehanicheskoj obrabotki na strukturu, tehnologicheskie, mehanicheskie i korrozionnye svojstva vysokoprochnoj korrozionnostojkoj stali perehodnogo klassa s povyshennym soderzhaniem azota [Research of influence of high-temperature thermomechanical processing on structure, technological, mechanical and corrosion properties of high-strength corrosion-resistant steel of transitional class with the raised content of nitrogen] // Aviacionnye materialy i tehnologii. 2012. №3. S. 31–36.
In article results of researches of heat resisting wear-resistant alloys on the basis of cobalt (systems Co–Cr–W–C, Co–Cr–Mo–Si) are provided. For the purpose of choice of composition of wear-resistant alloy for receiving the high-pure metalpowder composition designed for repair and hardening of high-pressure turbines blades by method of laser welding, comparative researches of properties of experimental cobalt-based alloys are conducted. By results of researches the alloys possessing optimum properties on wear resistances, heat resistance, weldability which can be used for development of technology of receiving from them powder compositions by atomization method are defined.
2. Tobar M.J., Amado J.M., Alvarez C. et al. Characteristics of Tribaloy T-800 and T-900 coatings on steel substrates by laser cladding // Surface and Coatings Technology. 2008. Vol. 202. P. 2297–2301.
3. Petrik I.A., Perimilovskij I.A. Dalnejshee razvitie tehnologii uprochneniya bandazhnyh polok lopatok turbiny iz zharoprochnyh splavov [Further development of technology of hardening of bandage shelves of turbine blades from hot strength alloys ] // Tehnologicheskie sistemy. 2001. №3 (9). S. 90–92.
4. Pejchev G.I., Zamkovoj V.E., Andrejchenko N.V. Sravnitelnye harakteristiki iznosostojkih splavov dlya uprochneniya bandazhnyh polok rabochih lopatok [Comparative characteristics of wear-resistant alloys for hardening of bandage shelves of working blades] // Aviacionno-kosmicheskaya tehnika i tehnologiya. 2010. №9 (76). S. 102–104.
5. Dmitrieva G.P., Cherepova T.S., Kosorukova T.A., Nichiporenko V.I. Struktura i svojstva iznosostojkogo splava na osnove kobalta s karbidom niobiya [Structure and properties of wear-resistant alloy on the basis of cobalt with columbium carbide]// Metallofizika i novejshie tehnologii. 2015. T. 37. №7. S. 973–986.
6. Migunov V.P., Chatynyan L.A., Ivanov E.V., Antonova G.S., Soloveva T.A. Iznosostojkie i antifrikcionnye materialy dlya uzlov treniya [Wearproof and antifriction materials for friction nodes] // Aviacionnaya promyshlennost. 1982. №8. S. 71–73.
7. Pejchev G.I., Miloserdov A.B., Andrejchenko N.V. Issledovanie legkoplavkih evtektik v mikrostrukture iznosostojkogo splava HTN-61 [Research fusible eutectic in HTN-61 wear-resistant alloy microstructure] // Vestnik dvigatelestroeniya. 2012. №1. S. 211–214.
8. Tihomirova T.V., Gajduk S.V. Issledovanie metodom CALPHAD vliyaniya otnosheniya volframa k kremniyu na fazovyj sostav i harakteristicheskie temperatury kobaltovogo splava [Research by the CALPHAD method of influence of the relation of tungsten to silicon on phase structure and characteristic temperatures of cobalt alloy] // Vestnik dvigatelestroeniya. 2014. №2. S. 206–210.
9. Tihomirova T.V., Gajduk S.V., Belikov S.B. Issledovanie vliyaniya soderzhaniya nikelya na fazovyj sostav i harakteristicheskie temperatury kobaltovogo splava metodom CALPHAD [Research of influence of the nickel content on phase structure and characteristic temperatures of cobalt alloy the CALPHAD method] // Aviacionno-kosmicheskaya tehnika i tehnologiya. 2015. № 10. S. 45–48.
10. Pejchev G.I., Zamkovoj V.E., Andrejchenko N.V. Razrabotka analoga iznosostojkogo splava HTN61 povyshennoj zharostojkosti dlya gazoturbinnyh dvigatelej [Development of analog of XTH61 wear-resistant alloy of the increased heat resistance for gas turbine engines] // Aviacionno-kosmicheskaya tehnika i tehnologiya. 2007. №8 (44). S. 11–13.
11. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period to 2030] // Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
12. Kablov E.N., Ospennikova O.G., Lomberg B.S. Strategicheskie napravleniya razvitiya konstrukcionnyh materialov i tehnologij ih pererabotki dlya aviacionnyh dvigatelej nastoyashhego i budushhego [The strategic directions of development of constructional materials and technologies of their processing for aircraft engines of the present and the future] // Avtomaticheskaya svarka. 2013. №10. S. 23–32.
13. Evgenov A.G., Nerush S.V., Vasilenko S.A. Poluchenie i oprobovanie melkodispersnogo metallicheskogo poroshka vysokohromistogo splava na nikelevoj osnove primenitelno k lazernoj LMD-naplavke [The obtaining and testing of the fine-dispersed metal powder of the high-chromium alloy on nickel-base for laser metal deposition] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №5. St. 04. Available at: http://www.viam-works.ru (accessed: May 15, 2017). DOI: 10.18577/2307-6046-2014-0-5-4-4.
14. Nerush S.V., Evgenov A.G., Ermolaev A.S., Rogalev A.M. Issledovanie melkodispersnogo metallicheskogo poroshka zharoprochnogo splava na nikelevoj osnove dlya lazernoj LMD-naplavki [Research of finely divided metal powder of hot strength alloy on nickel basis for laser LMD welding] // Voprosy materialovedeniya. 2013. №4 (76). S. 98–107.
15. Nerush S.V., Evgenov A.G. Issledovanie melkodispersnogo metallicheskogo poroshka zharoprochnogo splava marki EP648-VI primenitelno k lazernoj LMD-naplavke, a takzhe ocenka kachestva naplavki poroshkovogo materiala na nikelevoj osnove na rabochie lopatki TVD [Research of fine-dispersed metal powder of the heat resisting alloy of the EP648-VI brand for laser metal deposition (LMD) and also the assessment quality of welding of powder material on the nickel basis on working blades THP] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №3. St. 01. Available at: http://www.viam-works.ru (accessed: May 15, 2017). DOI: 10.18577/2307-6046-2014-0-3-1-1.
16. Kablov E.N., Evgenov A.G., Ospennikova O.G., Semenov B.I., Semenov A.B., Korolev V.A. Metalloporoshkovye kompozicii zharoprochnogo splava EP648 proizvodstva FGUP «VIAM» GNC RF v tehnologiyah selektivnogo lazernogo splavleniya, lazernoj gazoporoshkovoj naplavki i vysokotochnogo litya polimerov, napolnennyh metallicheskimi poroshkami [Metalpowder compositions of EP648 hot strength alloy of production of FSUE «VIAM» SRC RF in technologies of the selection laser fusing, laser gas of powder welding and high-precision molding of the polymers filled with metal powders] // Izvestiya vysshih uchebnyh zavedenij. Mashinostroenie. 2016. №9 (678). S. 62–80.
17. Kablov E.N. Additivnye tehnologii – dominanta nacionalnoj tehnologicheskoj iniciativy [The additive technologies are the dominant of national technological initiative] // Intellekt i tehnologii. 2015. №2 (11). S. 52–55.
18. Soloveva T.A., Zadyabina T.B., Buntushkin V.P. Primenenie iznoso- i zharostojkih splavov dlya uprochneniya lopatok GTD [Application wear and heat resisting alloys for hardening of blades of GTE] // Aviacionnaya promyshlennost. 1982. №8. S. 25–26.
19. Farafonov D.P., Migunov V.P., Aleshina R.Sh. Issledovanie tribotehnicheskih harakteristik materialov, primenyaemyh dlya uprochneniya bandazhnyh polok rabochih lopatok turbin GTD [Tribotechnical characteristics research of materials used for gas turbine engines blade shroud hardening] // Aviacionnye materialy i tehnologii. 2016. № S1. S. 24–30. DOI: 10.18577/2071-9140-2016-0-S1-24-30.
20. Farafonov D.P., Bazyleva O.A., Rogalev A.M. Splavy dlya uprochneniya bandazhnyh polok rabochih lopatok GTD [Alloys for blade shroud hardening] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №9. St. 07. Available at: http://www.viam-works.ru (accessed: May 15, 2017). DOI: 10.18577/2307-6046-2016-0-9-7-7.
21. Sims C.T. Superalloys 1984 // TMS-AIME. 1984. P. 399.
The effect of external loads and the type of welded joint on the stress-strain state in the seam at the electron beam welding. It is shown that the argon arc welding, which is characterized by multilayer during welding of large thickness and a large residual strain in the welded joint leads to a weakening of the retention of structural elements. In some cases, the technical task conditions on structural elements should not be heated above a certain temperature during welding. This constraint greatly increases the TIG welding, since the imposition of a weld produced in small areas. The efficiency of electron beam welding with respect to TIG. Calculated temperature field and the stress-strain state of welded joint during welding and after.
2. Kablov E.N. Aviacionnoe materialovedenie: itogi i perspektivy [Aviation materials science: results and perspectives] // Vestnik Rossijskoj akademii nauk. 2002. T. 72. №1. S. 3–12.
3. Kablov E.N. Tendencii i orientiry innovacionnogo razvitiya Rossii: sb. nauch.-inform. mater. [Tendencies and reference points of innovative development of Russia: collection of scientific information materials]. M.: VIAM, 2013. 543 s.
4. Kablov E.N., Lukin V.I., Ospennikova O.G. Svarka i pajka v aviakosmicheskoj promyshlennosti [Welding and the soldering in the aerospace industry] // Sb. mater. Vseros. nauch.-praktich. konf. «Svarka i bezopasnost». 2012. T. 1. S. 21–30.
5. Kablov E.N., Ospennikova O.G., Vershkov A.V. Redkie metally i redkozemelnye elementy – materialy sovremennyh i budushhih vysokih tehnologij [Rare metals and rare earth elements – materials of modern and future high technologies] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №2. St. 01. Available at: http://www.viam-works.ru (accessed: June 30, 2017).
6. Kablov E.N., Petrushin N.V., Svetlov I.L., Demonis I.M. Nikelevye litejnye zharoprochnye splavy novogo pokoleniya [Nickel foundry heat resisting alloys of new generation] // Aviacionnye materialy i tehnologii. 2012. №S. C. 36–52.
7. Kablov E.N., Bondarenko Yu.A., Kablov D.E. Osobennosti struktury i zharoprochnyh svojstv monokristallov <001> vysokorenievogo nikelevogo zharoprochnogo splava, poluchennogo v usloviyah vysokogradientnoj napravlennoj kristallizacii [Features of structure and heat resisting properties of monocrystals of <001> high-rhenium nickel hot strength alloys received in the conditions of high-gradient directed crystallization] // Aviacionnye materialy i tehnologii. 2011. №4. S. 25–31.
8. Ospennikova O.G. Strategiya razvitiya zharoprochnyh splavov i stalej specialnogo naznacheniya, zashhitnyh i teplozashhitnyh pokrytij [Strategy of development of hot strength alloys and steels special purpose, protective and heat-protective coverings] // Aviacionnye materialy i tehnologii. 2012. №S. S. 19–36.
9. Lukin V.I., Ospennikova O.G., Ioda E.N., Panteleev M.D. Svarka alyuminievyh splavov v aviakosmicheskoj promyshlennosti [Welding of aluminum alloys in the aerospace industry] // Svarka i diagnostika. 2013. №2. S. 47–52.
10. Sorokin L.I., Lukin V.I., Bagdasarov Yu.S. Optimizaciya svarochnoj remontnoj tehnologii detalej gazoturbinnyh dvigatelej (GTD) iz zharoprochnyh splavov [Optimization of welding repair technology of details of gas turbine engines (GTD) from hot strength alloys] // Svarochnoe proizvodstvo. 1997. S. 19–23.
11. Lukin V.I., Sorokin L.I., Bagdasarov Yu.S. Svarivaemost litejnyh zharoprochnyh nikelevyh splavov tipa ZhS6 [Bondability of cast heat resisting nickel alloys of the ZhS6 type] // Svarochnoe proizvodstvo. 1997. №6. S. 12–17.
12. Lukin V.I., Semenov V.N., Starova L.L. i dr. Obrazovanie goryachih treshhin pri svarke zharoprochnyh splavov [Formation of hot cracks when welding hot strength alloys] // MiTOM. 2007. №12. S. 7–14.
13. Lukin V.I., Ioda E.N., Panteleev M.D., Skupov A.A. Svarka plavleniem titanovogo splava VT18U [Fusion welding of VT18U titanium alloy] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №5. St. 03. Available at: http://www.viam-works.ru (accessed: June 30, 2017). DOI: 10.18577/2307-6046-2015-0-5-3-3.
14. Lukin V.I., Voznesenskaya N.M., Kovalchuk V.G. Svarka vysokoprochnoj korrozionnostojkoj stali VNS-72 [Welding of high-strength VNS-72 corrosion-resistant steel] // Svarochnoe proizvodstvo. 2012. №10. S. 31–35.
15. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period to 2030] // Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
16. Lihachev V.A., Malinin V.G. Strukturno-analiticheskaya teoriya prochnosti [Structural and analytical failure theory]. L.: Nauka, 1992. 400 s.
17. Gurevich S.M., Zamkova V.N. i dr. Metallurgiya i tehnologiya svarki titana i ego splavov / pod red. V.N. Zamkova [Metallurgy and welding technology of titanium and its alloys]. Kiev: Naukova dumka, 1986. 240 s.
18. Svarka elektronno-luchevaya izdelij tyazhelogo mashinostroeniya: RD 24.949.04–90 [Welding electron beam products of heavy mechanical engineering: Regulating Document 24.949.04–90]: utv. Min-vom tyazhelogo mashinostroeniya SSSR. M: CNIITMASh, 1990.
The content of moisture sorbed in polymeric composite materials of various nature was estimated by three different methods of physico-chemical analysis. The applicability of all analytical methods is shown. Recommendations on preparation conditions for each type of materials studied are proposed.
2. Kablov E.N. Kontrol kachestva materialov – garantiya bezopasnosti ekspluatacii aviacionnoj tehniki [Quality control of materials is the security accreditation of operation of aviation engineering] // Aviacionnye materialy i tehnologii. 2001. №1. S. 3–8.
3. SNiP 28.13330.2012. Zashhita stroitelnyh konstrukcij ot korrozii [Health Regulations and Norms 28.13330.2012. Protection of construction designs against corrosion]. M.: Min-vo regionrazvitiya RF, FAU «FCS», 2012. 54 s.
4. FWHA-RD-01-156. Nace Corrosion 2010 Wrap-Up report. 19 р. Available at: http://www.nace.org (accessed: April 05, 2017).
5. Polyakova A.V., Krivushina A.A., Goryashnik Yu.S., Yakovenko T.V. Ispytaniya na mikrobiologicheskuyu stojkost v usloviyah teplogo i vlazhnogo klimata [Microbiological resistance tests under conditions of warm and damp climate] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №7. St. 06. Available at: http://www.viam-works.ru (accessed: April 05, 2017).
6. Ahiyarov R.Zh., Bugaj D.E., Laptev A.B. Problemy podgotovki oborotnyh i stochnyh vod predpriyatij neftedobychi [Problems of preparation reverse and drain waters of the enterprises of oil production] // Neftepromyslovoe delo. 2008. №9. S. 61–65.
7. Ahiyarov R.Zh., Laptev A.B., Ibragimov I.G. Povyshenie promyshlennoj bezopasnosti ekspluatacii obektov neftedobychi pri biozarazhenii i vypadenii solej metodom kompleksnoj obrabotki plastovoj vody [Increase of industrial safety of operation of objects of oil production at bioinfection and loss of salts by method of complex processing of formation water] // Neftepromyslovoe delo. 2009. №3. S. 44–46.
8. Ahiyarov R.Zh., Matveev Yu.G., Laptev A.B., Bugaj D.E. Resursosberegayushhie tehnologii predotvrashheniya biozarazheniya plastovyh vod predpriyatij neftedobychi [Resource-saving technologies of prevention of bioinfection of formation waters of the enterprises of oil production] // Neftegazovoe delo. 2011. №5. S. 232–242.
9. Laptev A.B., Lucenko A.N., Kurs M.G., Buharev G.M. Opyt issledovanij biokorrozii metallov [Experience of researches of biocorrosion of metals] // Praktika protivokorrozionnoj zashhity. 2016. №2 (80). S. 36–57.
10. Antyufeeva N.V., Aleksashin V.M., Pavlov M.R., Stolyankov Yu.V. Issledovanie vozmozhnosti ispolzovaniya ugleplastikov v usloviyah arkticheskogo klimata [Research of possibility of use carbon fiber reinforced polymers in the conditions of the Arctic climate] // Aviacionnye materialy i tehnologii. 2016. №4 (45). S. 86–94. DOI: 10.18577/2071-9140-2016-0-4-86-94.
11. Kablov E.N., Starcev O.V., Krotov A.S., Kirillov V.N. Klimaticheskoe starenie kompozicionnyh materialov aviacionnogo naznacheniya. I. Mehanizmy stareniya [Climatic aging of composite materials of aviation assignment. I. Aging mechanisms] // Deformaciya i razrushenie materialov. 2010. №11. S. 19–27.
12. Kablov E.N., Starcev O.V., Krotov A.S., Kirillov V.N. Klimaticheskoe starenie kompozicionnyh materialov aviacionnogo naznacheniya. II. Relaksaciya ishodnoj strukturnoj neravnovesnosti i gradient svojstv po tolshhine [Climatic aging of composite materials of aviation assignment. II. Relaxation of initial structural non-equilibrium and gradient of properties on thickness] // Deformaciya i razrushenie materialov. 2010. №12. S. 40–46.
13. Sugita Y., Winkelmann C., La Saponara V. Environmental and chemical degradation of carbon/epoxy lap joints for aerospace applications, and effects on their mechanical performance // Compos. Sci. and Technol. 2010. Vol. 70. No. 5. P. 829–839.
14. Kirillov V.N., Efimov V.A. Problemy issledovaniya klimaticheskoj stojkosti aviacionnyh nemetallicheskih materialov [Problems of research of climatic firmness of aviation non-metallic materials] // 75 let. Aviacionnye materialy. Izbrannye trudy «VIAM» 1932–2007: yubil. nauch.-tehnich. sb. M.: VIAM, 2007. S. 379–388.
15. Mikols W.J., Seferis J.C., Apicella A., Nicolais L. Evaluation of structural changes in epoxy systems by moisture sorption-desorption and dynamic mechanical studies // Polym. Compos. 1982. Vol. 3. No. 3. P. 118–24.
16. Nikolaev E.V., Kirillov V.N., Skirta A.A., Grashhenkov D.V. Issledovanie zakonomernostej vlagoperenosa i razrabotka standarta po opredeleniyu koefficienta diffuzii i predelnogo vlagosoderzhaniya dlya ocenki mehanicheskih svojstv ugleplastikov [Study of moisture transport rules and development of a standard on measurement of the diffusion coefficient and moisture content limit to evaluate mechanical properties of carbon fiber reinforced plastics] // Aviacionnye materialy i tehnologii. 2013. №3. S. 44–48.
17. Mishra G., Mohapatra S.R., Behera P.R., Dash B., Mohanty U.K., Ray B.C. Environmental stability of GFRP laminated composites: an emphasis on mechanical behaviour // Aircraft Eng. and Aerosp. technol. 2010. Vol. 82. No. 4. P. 258–266.
18. Kirillov V.N., Startsev O.V., Efimov V.A. Klimaticheskaya stojkost i povrezhdaemost polimernyh kompozicionnyh materialov, problemy i puti resheniya [Climatic firmness and damageability of polymeric composite materials, problems and solutions] // Aviacionnye materialy i tehnologii. 2012. №S. S. 412–423.
19. Efimov V.A., Shvedkova A.K., Korenkova T.G., Kirillov V.N. Issledovanie polimernyh konstrukcionnyh materialov pri vozdejstvii klimaticheskih faktorov i nagruzok v laboratornyh i naturnyh usloviyah [Research of polymeric constructional materials at influence of climatic factors and loadings in laboratory and natural conditions] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №1. St. 05. Available at: http://viam-works.ru (accessed: April 6, 2017).
20. Firefighting and emergency responsestudy of advanced composites aircraft. Objective 2: Firefighting Effectiveness of Technologies and Agents on Composite Aircraft Fires. Distribution A: Approved for public release; distribution unlimited. 88ABW-2012-0190. January 10, 2012.
21. Nikolaev E.V., Barbotko S.L., Andreeva N.P., Pavlov M.R. Kompleksnoe issledovanie vozdeystviya klimaticheskikh i ekspluatatsionnykh faktorov na novoe pokolenie epoksidnogo svyazuyushchego i polimernykh kompozitsionnykh materialov na ego osnove. Chast 1. Issledo-vanie vliyaniya sorbirovannoy vlagi na epoksidnuyu matritsu i ugleplastik na ee osnove [Complex research of influence of climatic and operational factors on new generation epoxy binding and polymeric composite materials on its basis. Part 1. Research of influence of sorbirovanny moisture on epoxy matrix and carbon plastics on its basis] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2015. №12. St. 11. Available at: http://www.viam-works.ru (accessed: April 6, 2017). DOI: 10.18577/2307-6046-2015-0-12-11-11.
22. Nikolaev E.V., Barbotko S.L., Andreeva N.P., Pavlov M.R. Kompleksnoe issledovanie vozdejstviya klimaticheskih i ekspluatacionnyh faktorov na novoe pokolenie epoksidnogo svyazuyushhego i polimernyh kompozicionnyh materialov na ego osnove. Chast 2. Obosnovanie vybora rezhimov i provedenie teplovogo stareniya polimernyh kompozicionnyh materialov na osnove epoksidnoj matricy [Comprehensive research of the influence of climatic and operational factors on new generation epoxy binding and polymeric composite materials on its basis Part 2. Substantiation of the choice of modes and conducting heat aging of polymeric composite materials based on epoxy matrix] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №1. St. 10. Available at: http://www.viam-works.ru (accessed: April 7, 2017). DOI: 10.18577/2307-6046-2016-0-1-10-10.
23. Nikolaev E.V., Barbotko S.L., Andreeva N.P., Pavlov M.R., Grashchenkov D.V. Kompleksnoe issledovanie vozdejstviya klimaticheskih i ekspluatacionnyh faktorov na novoe pokolenie epoksidnogo svyazuyushhego i polimernyh kompozicionnyh materialov na ego osnove. Chast 3. Raschet energii aktivacii i teplovogo resursa polimernyh kompozicionnyh materialov na osnove epoksidnoj matricy [Comprehensive research of the influence of climatic and operational factors on new generation epoxy binding and polymeric composite materials on its basis Part 3. Calculation of activation energy and thermal resource of polymeric composite materials on the basis of epoxy matrix] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №5. St. 11. Available at: http://www.viam-works.ru (accessed: April 7, 2017). DOI: 10.18577/2307-6046-2016-0-5-11-11.
24. Nikolaev E.V., Barbotko S.L., Andreeva N.P., Pavlov M.R., Grashchenkov D.V. Kompleksnoe issledovanie vozdeystviya klimaticheskikh i ekspluatatsionnykh faktorov na novoe pokolenie epoksidnogo svyazuyushchego i polimernykh kompozitsionnykh materialov na ego osnove. Chast 4. Naturnye klimaticheskie ispytaniya polimernykh kompozitsionnykh materialov na osnove epoksidnoy matritsy [Complex research of influence of climatic and operational factors on new generation epoxy binding and polymeric composite materials on its basis. Part 4. Natural climatic tests of polymeric composite materials on the basis of epoxy matrix] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2016. №6. St. 11. Available at: http://www.viam-works.ru (accessed: April 7, 2017). DOI: 10.18577/2307-6046-2016-0-6-11-11.
25. Kirillov V.N., Efimov V.A., Shvedkova A.K., Aleksashin V.N., Zuev A.V., Nikolaev E.V. Issledovanie vliyaniya klimaticheskih faktorov i mehanicheskogo nagruzheniya na strukturu i mehanicheskie svojstva ugleplastika KMU-11TR [Research of influence of climatic factors and mechanical loading on structure and mechanical properties carbon plastic KMU-11TP] // Sb. dokl. VIII nauch. konf. po gidroaviacii «Gidroaviasalon–2010». M.: VIAM, 2010. Ch. II. S. 111–115.
26. Nikolaev E.V., Kirillov V.N., Efimov V.A., Grashhenkov D.V. Moskovskij centr klimaticheskih ispytanij FGUP «VIAM» – regionalnyj centr ispytanij materialov v predstavitelnoj zone umerennogo klimata [The Moscow center of climatic tests of FSUE «VIAM» – the regional center of tests of materials in representative zone of temperate climate] // Ibid. S. 202–208.
The influence of climatic factors and fluids on the properties of CFRP VKU-29, on the basis of reinforcing carbon fabric and epoxy binder VSE-1212, manufactured by autoclave molding is investigated. It is shown that the CFRP VKU-29 has a high level of property preservation (not less than 72% of the initial value) when exposed to environmental factors (thermal and hydrothermal aging, resistance to the salt spray chamber, water, moisture, fuel, oil, anti-icing fluid and solvent ) and replies by the aviation safety requirements for corrosion and flammability.
2. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period to 2030] // Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
3. Gunyaev G.M., Krivonos V.V., Rumyancev A.F., Zhelezina G.F. Polimernye kompozicionnye materialy v konstrukciyah letatel'nyh apparatov [Polymeric composite materials in designs of flight vehicles] // Konversiya v mashinostroenii. 2004. №4 (65). S. 65–69.
4. Kablov E.N. Materialy i himicheskie tehnologii dlya aviacionnoj tehniki [Materials and chemical technologies for aviation engineering] // Vestnik Rossijskoj akademii nauk. 2012. T. 82. №6. S. 520–530.
5. Hrulkov A.V., Dushin M.I., Popov Yu.O., Kogan D.I. Issledovaniya i razrabotka avtoklavnyh i bezavtoklavnyh tehnologij formovaniya PKM [Researches and development autoclave and out-of-autoclave technologies of formation of PCM] // Aviacionnye materialy i tehnologii. 2012. №S. S. 292–301.
6. Gulyaev I.N., Zelenina I.V., Raskutin A.E. Ugleplastiki na osnove uglerodnyh tkanej importnogo proizvodstva i rossijskih rastvornyh svyazuyushhih [Carbon plastics on the basis of carbon fabrics of import production and the Russian solution binding] // Voprosy materialovedeniya. 2014. №1 (77). S. 116–125.
7. Platonov A.A., Dushin M.I. Konstrukcionnyj ugleplastik VKU-25 na osnove odnonapravlennogo preprega [Carbon composites VKU-25 based on unidirectional prepregs] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №11. St. 06. Available at: http://www.viam-works.ru (accessed: April 29, 2017). DOI: 10.18577/2307-6046-2015-0-11-6-6.
8. Efimov V.A., Shvedkova A.K., Korenkova T.G., Kirillov V.N. Issledovanie polimernyh konstrukcionnyh materialov pri vozdejstvii klimaticheskih faktorov i nagruzok v laboratornyh i naturnyh usloviyah [Investigation of polymer composite materials under effect of climatic factors and loads in laboratory and environmental conditions] // Aviacionnye materialy i tehnologii. 2013. №S2. S. 68–73.
9. Kablov E.N., Starcev O.V., Krotov A.S., Kirillov V.N. Klimaticheskoe starenie kompozicionnyh materialov aviacionnogo naznacheniya. III. Znachimye faktory stareniya [Climatic aging of composite materials of aviation assignment. III. Significant factors of aging] // Deformaciya i razrushenie materialov. 2011. №1. S. 34–40.
10. Kablov E.N., Starcev O.V., Krotov A.S., Kirillov V.N. Klimaticheskoe starenie kompozicionnyh materialov aviacionnogo naznacheniya. I. Mehanizmy stareniya [Climatic aging of composite materials of aviation assignment. I. Aging mechanisms] // Deformaciya i razrushenie materialov. 2010. №11. S. 19–27.
11. Kirillov V.N., Startsev O.V., Efimov V.A. Klimaticheskaya stojkost i povrezhdaemost polimernyh kompozicionnyh materialov, problemy i puti resheniya [Climatic firmness and damageability of polymeric composite materials, problems and solutions] // Aviacionnye materialy i tehnologii. 2012. №S. S. 412–423.
12. Kablov E.N., Starcev O.V., Krotov A.S., Kirillov V.N. Klimaticheskoe starenie kompozicionnyh materialov aviacionnogo naznacheniya. II. Relaksaciya ishodnoj strukturnoj neravnovesnosti i gradient svojstv po tolshhine [Climatic aging of composite materials of aviation assignment. II. Relaxation of initial structural non-equilibrium and gradient of properties on thickness] // Deformaciya i razrushenie materialov. 2010. №12. S. 40–46.
13. Kablov E.N., Grashhenkov D.V., Erasov V.S., Anchevskij I.E., Ilin V.V., Valter R.S. Stend dlya ispytaniya na klimaticheskoj stancii GCKI krupnogabaritnyh konstrukcij iz PKM [The stand for testing for the GCCT climatic stations of large-size designs from PKM] // Sb. dokl. IX Mezhdunar. nauch. konf. po gidroaviacii «Gidroaviasalon-2012», 2012. S. 122–123.
14. Kablov E.N., Starcev O.V., Medvedev I.M., Panin S.V. Korrozionnaya agressivnost' primorskoj atmosfery. Ch. 1. Faktory vliyaniya (obzor) [Corrosion aggression of the seaside atmosphere. P.1. Factors of influence (overview)] // Korroziya: materialy, zashhita. 2013. №12. S. 6–18.
15. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
Cured samples from the binder VST-1210 with the help of a laboratory sclerometer were applied to scratches under various loads on the diamond indenter, after which the character of the formed grooves and their geometry were studied. It has been established that the microhardness of the samples and the nature of the grooves depend on the modes of curing the binder. The applied method of sclerometry made it possible to determine the curing regimes of the samples in which, after the action of the indenter, the plastic is cracked, or the chevron character of the channel of the groove, indicating a low degree curing.
2. Kablov E.N. Materialy dlya izdeliya «Buran» – innovacionnye resheniya formirovaniya shestogo tehnologicheskogo uklada [Materials for «Buran» spaceship – innovative solutions of formation of the sixth technological mode] // Aviacionnye materialy i tehnologii. 2013. №S1. S. 3–9.
3. Kablov E.N. VIAM. Napravlenie glavnogo udara [Direction of main attack] // Nauka i zhizn. 2012. №6. S. 14–18.
4. Grashhenkov D.V., Chursova L.V. Strategiya razvitiya kompozicionnyh i funkcionalnyh materialov [Strategy of development of composite and functional materials] // Aviacionnye materialy i tehnologii. 2012. №S. S. 231–242.
5. Istoriya aviacionnogo materialovedeniya. VIAM – 80 let: gody i lyudi / pod obshh. red. E.N. Kablova [History of aviation materials science. VIAM – 80 years: years and people / gen. ed. by E.N. Kablov]. M.: VIAM, 2012. 520 s.
6. Sposob izgotovleniya detalej iz polimernyh kompozicionnyh materialov: pat. 2574269 Ros. Federaciya [Way of manufacturing of details from polymeric composite materials: part. 2574269 Rus. Federation]; opubl. 14.11.14, Byul. №4.
7. Postnov V.I., Strelnikov S.V., Makrushin K.V., Veshkin E.A. Semipreg dlya polimernyh osnastok [Semipreg for polymeric equipments] // Izvestiya Samarskogo nauchnogo centra Rossijskoj akademii nauk. 2016. T. 18. №4 (3). S. 183–185.
8. Postnov V.I., Pletin I.I., Veshkin E.A., Starostina I.V. Tehnologicheskie osobennosti proizvodstva tonkolistovyh obshivok lopastej vertoleta iz konstrukcionnogo stekloplastika VPS-53K [Technological features of production it is thin sheet coverings of blades of the helicopter from constructional VPS-53K fibreglass] // Izvestiya Samarskogo nauchnogo centra Rossijskoj akademii nauk. 2016. T. 18. №4 (3). S. 186–188.
9. Veshkin E.A. Osobennosti bezavtoklavnogo formovaniya nizkoporistykh PKM [Features of out-of-autoclave forming of poor-porous PCM] // Trudy VIAM elektron. nauch.-tehnich. zhurn. 2016. №2. St. 07. Available at: http://www.viam-works.ru (accessed: May 11, 2017). DOI 10.1857/2307-6046-2016-0-2-7-7
10. Semenychev V.V. Nikelirovanie stali metodom elektronatiraniya [Nickel plating became method of electrograting] // Galvanotehnika i obrabotka poverhnosti. 2017. №1. S. 23–27.
11. Semenychev V.V., Panarin A.V. Primenenie sklerometrii dlya povysheniya informativnosti izmeryaemyh harakteristik hromovyh i nikelevyh pokrytij [Application of sclerometry for more informativeness measured characteristics of chromium and nickel coatings] // Novosti materialovedeniya. Nauka i tehnika: elektron. nauch.-tehnich. zhurn. 2016. №3 (21). St. 05. Available at: http://materialsnews.ru (accessed: May 11, 2017).
12. Semenychev V.V., Salahova R.K. Ocenka adgezii nikel-kobaltovogo pokrytiya k steklo- i ugleplastiku metodom carapanya [Evaluation of nickel-cobalt coating adhesion to fiberglass and carbon fiber–reinforced plastic by scratching] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №7 (43). St. 06. Available at: http://www.viam-works.ru (accessed: May 11, 2017). DOI: 10.18577/2307-6046-2016-0-7-6-6.
13. Semenychev V.V., Salahova R.K. Sklerometriya kak metod ocenki intensivnosti mezhkristallitnoj korrozii [Sclerometry as method of assessment of intensity between crystallite corrosion] // Korroziya: materialy, zashhita. 2015. №12. S. 37–41.
14. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
15. Semenychev V.V., Salahova R.K. Pribor dlya ocenki svojstv pokrytij [The device for assessment of properties of coverings] // Zavodskaya laboratoriya. Diagnostika materialov. 2017. T. 83. №2. S. 60–65.
The effect of time and storage conditions of the prepreg, based on the phenol-formaldehyde binder VSF-16M and T-64 glass fiber cloth (VMP), on its technological properties was evaluated. Elastic-strength properties of GRP based on this prepreg are investigated. To assess the prepreg of fiberglass, the differential scanning calorimetry (DSC) method was used and the gel time of the binder in it was analyzed. Based on the results of the study, conclusions were drawn as to the shelf life of the prepreg.
2. Kablov E.N. Aviacionnoe materialovedenie: itogi i perspektivy [Aviation materials science: results and perspectives] // Vestnik Rossijskoj akademii nauk. 2002. T. 72. №1. S. 3–12.
3. Kablov E.N. Materialy i himicheskie tehnologii dlya aviacionnoj tehniki [Materials and chemical technologies for aviation engineering] // Vestnik Rossijskoj akademii nauk. 2012. T. 82. №6. S. 520–530.
4. Kablov E.N. Kompozity: segodnya i zavtra [Composites: today and tomorrow] // Metally Evrazii. 2015. №1. S. 36–39.
5. Postnova M.V., Postnov V.I. Opyt razvitiya bezavtoklavnyh metodov formovaniya PKM [Development experience out-of-autoclave methods of formation PCM] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №4. St. 06. Available at: http://www.viam-works.ru (accessed: April 17, 2017). DOI: 10.18577/2307-6046-2014-0-4-6-6.
6. Veshkin E.A. Osobennosti bezavtoklavnogo formovaniya nizkoporistykh PKM [Features of out-of-autoclave forming of poor-porous PCM] // Trudy VIAM elektron. nauch.-tehnich. zhurn. 2016. №2 (38). St. 07. Available at: http://www.viam-works.ru (accessed: April 20, 2017). DOI 10.1857/2307-6046-2016-0-2-7-7
7. Veshkin E.A., Postnov V.I., Zastrogina O.B., Satdinov R.A Tehnologiya uskorennogo formovaniya trehslojnyh panelej interera samoleta [Technology of the accelerated formation of three-layered panels of interior of airplane] // Izvestiya Samarskogo nauchnogo centra RAN. 2013. T. 15. №4 (4). S. 799–805.
8. Minakov V.T., Postnov V.I., Shvec N.I., Zastrogina O.B., Petuhov V.I., Makrushin K.V. Osobennosti izgotovleniya trehslojnyh sotovyh panelej s polimernym zapolnitelem goryachego otverzhdeniya [Features of manufacturing of three-layered cellular panels with polymeric filler of hot curing] // Aviacionnye materialy i tehnologii. 2009. №3. S. 6–19.
9. Veshkin E.A., Postnov V.I., Strelnikov S.V., Abramov P.A., Satdinov R.A. Opyt primeneniya tehnologicheskogo kontrolya polufabrikatov PKM [Experience of application of technological control of semi-finished products of PCM] // Izvestiya Samarskogo nauchnogo centra RAN. 2014. T. 16. №6 (2). S. 393–398.
10. Zastrogina O.B., Shvets N.I., Postnov V.I., Serkova E.A. Fenolformaldegidnye svjazuyushhie novogo pokoleniya dlya materialov interera [Phenolformaldehyde binding new generation for interior materials] // Aviacionnye materialy i tehnologii. 2012. №S. S. 265–272.
11. Satdinov R.A., Istyagin S.E., Veshkin E.A. Analiz temperaturno-vremennyh parametrov rezhimov otverzhdeniya PKM s zadannymi harakteristikami [Analysis of the temperature-time parameters mode curing PCM with specified characteristics] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2017. №3. St. 09. Available at: http://www.viam-works.ru (accessed: April 19, 2017). DOI: 10.18577/2307-6046-2017-0-3-9-9.
12. Bobovich B.B. Polimernye konstrukcionnye materialy (struktura, svojstva, primenenie) [Polymeric constructional materials (structure, properties, application)]. M.: FORUM INFRA-M, 2014. 400 s.
13. Davydova I.F., Kavun N.S. Stekloplastiki ‒ mnogofunkcionalnye kompozicionnye materialy [Fibreglasses ‒ multipurpose composite materials] // Aviacionnye materialy i tehnologii. 2012. №S. S. 253–260.
14. Satdinov R.A., Veshkin E.A., Postnov V.I., Strelnikov S.V. Vozduhovody nizkogo davleniya iz PKM v letatelnyh apparatah [РСМ low-pressure air ducts in aircraft] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №8. St. 08. Available at: http://www.viam-works.ru (accessed: April 22, 2017). DOI: 10.18577/2307-6046-2016-0-8-8-8.
15. Nikitin K.E., Burhan O.L., Postnov V.I., Petuhov V.I. Laboratornaya ustanovka dlya issledovaniya i otrabotki processov formovaniya IPF-2003 polimernyh kompozicionnyh materialov ultrazvukovym metodom [Laboratory installation for research and working off of processes of formation IPF-2003 of polymeric composite materials by ultrasonic method] // Zavodskaya laboratoriya. Diagnostika materialov. 2008. №4. S. 38–41.
16. Postnov V.I., Burhan O.L., Rahmatullin A.E., Kachura S.M. Nerazrushayushhie metody kontrolya soderzhaniya svyazuyushhih v prepregah i PKM (obzor) [Nondestructive control methods of the content of binders in prepregs and PCM (review)] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №12. St. 06 Available at: http://www.viam-works.ru (accessed: April 22, 2017).
17. Veshkin E.A., Abramov P.A., Postnov V.I., Strelnikov S.V. Vliyanie tehnologii podgotovki preprega na svojstva PKM [Influence of technology of preparation of prepreg on PCM properties] // Vse materialy. Enciklopedicheskij spravochnik. 2013. №9. S. 8–14.
18. Satdinov R.A., Veshkin E.A., Postnov V.I., Abramov P.A. Rol antiadgezionnyh pokrytij v tehnologicheskom processe formovaniya PKM [The role of anti-adhesive coatings in the technological process of PCM molding] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №4 (40). St. 10. Available at: http://www.viam-works.ru (accessed: March 20, 2017). DOI: 10.18577/2307-6046-2016-0-4-10-10.
Using a photometer KFK-3-01-«ZOMZ», the light transmission of sulfamino acid electrolyte of nickel plating containing nanosized particles of various manufacturers was investigated. In the initial and each electrolyte with nanoparticles, nickel coatings were deposited on samples from steel 30ХГСА. The effect of the presence of nanoparticles in the electrolyte was evaluated by measuring the porosity of the deposited coating, its thickness and microhardness, as well as by studying the geometry of the grooves formed by the diamond indentor under various loads.
2. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period to 2030] // Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
3. Semenychev V.V. Korrozionnaya stojkost obrazcov splava 1201 v morskih subtropikah [Corrosion resistance of samples of alloy 1201 in sea subtropics] // Korroziya: materialy, zashhita. 2015. №3. S. 1–5.
4. Kablov E.N. Korroziya ili zhizn [Corrosion or life] // Nauka i zhizn. 2012. №3. S. 16–21.
5. Semenychev V.V., Salahova R.K., Tyurikov E.V., Ilin V.A. Zashhitnye i funkcionalnye galvanicheskie pokrytiya, poluchaemye s primeneniem nanorazmernyh chastic [The protective and functional galvanic coverings received using nanodimensional particles] // Aviacionnye materialy i tehnologii. 2012. №S. S. 335–342.
6. Tyurikov E.V., Ilin V.A. Semenychev V.V. O roli nanorazmernyh chastic oksida alyuminiya v samoreguliruyushhemsya elektrolite hromirovaniya [About role of nanodimensional particles of aluminum oxide in self-regulating electrolit of chromizing] // Izvestiya Samarskogo nauchnogo centra RAN. T. 14. №4 (3). 2012. S. 208–807.
7. Nagaeva L.V. Primenenie nanoporoshkov v elektrolitah nikelirovaniya kak sposob polucheniya nikelevyh pokrytij, po svojstvam ne ustupayushhim hromovym pokrytiyam [Application of nanopowders in nickel plating electrolits, as way of receiving nickel coverings, on the properties which are not conceding to chrome platings] // Korroziya: materialy, zashhita. 2007. №9. S. 32–36.
8. Elektrolit nikelirovaniya: pat. 2293803 Ros. Federaciya. №2005124342/02 [Nickel plating electrolit: pat. 2293803 Rus. Federation. No. 2005124342/02]; zayavl. 01.08.05; opubl. 20.02.07, Byul. №5.
9. Semenychev V.V., Nagaev V.V. Galvanicheskie pokrytiya na osnove cinka, poluchennye iz elektrolitov, soderzhashhih soli nikelya ili kobalta i nanoporoshki oksidov i karbidov [Galvanic coverings on the basis of the zinc, received from the electrolits containing salts of nickel or cobalt and nanopowders of oxides and carbides] // Izvestiya Samarskogo nauchnogo centra RAN. 2008. T. 1. Spec. vyp. S. 29–32.
10. Elektrolit cinkovaniya: pat.№2301289 Ros. Federaciya. №2005139708/02 [Electrolyte of zinc-plating: pat. 2301289 Rus. Federation. No. 2005139708/02]; zayavl. 20.12.05; opubl. 20.06.07, Byul. №17.
11. Koshelev V.N., Semenychev V.V., Panarin A.V. Ekologicheski bezopasnyj tehnologicheskij process naneseniya zashhitnyh piroliticheskih alyuminievyh pokrytij bez navodorozhivaniya stalnoj podlozhki [Ecologically safe technological process of drawing protective pyrolitic aluminum coverings without hydrogen saturation of steel substrate] // Izvestiya Samarskogo nauchnogo centra RAN. 2008. T. 1. Spec. vyp. S. 18–23.
12. Panarin A.V. Piroliticheskie karbidohromovye pokrytiya. Tehnologiya polucheniya i svojstva [Pyrolitic carbide chrome platings. Technology of receiving and property] // Aviacionnye materialy i tehnologii. 2011. №4. S. 14–18.
13. Panarin A.V., Semenychev V.V., Salahova R.K. Svojstva titanovyh i alyuminievyh splavov s piroliticheskim karbidohromovym pokrytiem [Properties of titanium and aluminum alloys with pyrolitic carbide chrome plating] // Tehnologiya legkih splavov. 2015. №3. S. 131–137.
14. Semenychev V.V. Korrozionnaya stojkost listov splava D16ch.-T v morskih subtropikah [Corrosion resistance of alloy D16ch.-T sheets in marine subtropics] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №7. St. 11. Available at: http://www.viam-works.ru (accessed: July 18, 2017). DOI: 10.18577/2307-6046-2014-0-7-11-11.
15. Semenychev V.V. Degradaciya prochnostnyh i ustalostnyh harakteristik splavov sistemy Al–Cu–Mg posle dlitelnyh korrozionnyh ispytanij v morskih subtropikah [Degradation of strength and fatigue characteristics of alloys of Al–Cu–Mg system after long corrosion tests in sea subtropics] // Tehnologiya legkih splavov. 2015. №1. S. 62–69.
16. Zhirnov A.D., Semenychev V.V., Holshev S.I. Ispytanie aviacionnyh materialov v usloviyah morskogo subtropicheskogo klimata: metodicheskoe rukovodstvo [Testing of aviation materials in the conditions of sea subtropical climate: methodical management]. M.: VIAM, 1987. 48 s.
17. Salahova R.K., Semenychev V.V., Tyurikov E.V., Tihoobrazov A.B. Issledovanie vnutrennih (ostatochnyh) napryazhenij v kompozicionno-klasternyh hromovyh i nikelevyh pokrytiyah [Investigation of internal (residual) stresses in composite-cluster chrome and nickel coatings] // Aviacionnye materialy i tehnologii. 2014. № S3. S. 42–46. DOI: 10.18577/2071-9140-2014-0-s3-42-46.
18. Vulf B.K., Romadin K.P. Aviacionnoe materialovedenie [Aviation materials science]. M.: Mashinostroenie, 1967. 392 s.
19. Kostrzhickij A.I., Karpov V.F., Kabanchenko M.P. i dr. Spravochnik operatora ustanovok po naneseniyu pokrytij v vakuume [The directory of the operator of installations on drawing coverings in vacuum. M.: Mashinostroenie, 1991. 125 s.
20. Semenychev V.V., Smirnova T.B. O vozmozhnosti ocenki poristosti pokrytij potenciostaticheskimi metodami [About possibility of assessment of porosity of coverings potential static methods] // Aviacionnye materialy i tehnologii. 2009. №2. S. 7–10.
21. Semenychev V.V., Smirnova T.B. Ocenka poristosti karbidohromovyh pokrytij na razlichnyh klassah konstrukcionnyh materialov putem izmereniya stacionarnyh potencialov sistemy [Evaluation of porosity of chromecarbide coatings on different classes of structural materials using measurement of systems stationary potential] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №4. St. 07. Available at: http://www.viam-works.ru (accessed: July 18, 2017). DOI: 10.18577/2307-6046-2016-0-4-7-7.
22. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
23. Semenychev V.V., Salahova R.K. Sklerometriya kak metod ocenki intensivnosti mezhkristallitnoj korrozii [Sclerometry as method of assessment of intensity of between crystallite corrosion] // Korroziya: materialy, zashhita. 2015. №12. S. 37–41.
Magnesium alloys have good specific mechanical and technological properties and represent high interest for the aviation industry. Today the issue of corrosion protection of magnesium alloys is not resolved. In work use question plasma electrolytic an oxidation (PEO) for protection of magnesium alloys is considered. Are compared structure and PEO properties of the coating created in silicate electrolit solution at various duration of polarizing impulses. The received results were confirmed power efficiency of short impulses with a squared duration of 2•10-4 over sinusoidal impulses lasting 2•10-2. Short impulses were increased microhardness and kept protective properties of PEO coating.
2. Leonov A.A., Duyunova V.A., Stupak E.V., Trofimov N.V. Lite magnievyh splavov v razovye formy, poluchennye novymi metodami [Casting of magnesium alloys in disposable moulds produced by new methods] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №12. St. 01. Available at: http://www.viam-works.ru (accessed: June 23, 2017). DOI: 10.18577/2307-6046-2014-0-12-1-1.
3. Uridiya Z.P., Muhina I.Yu., Duyunova V.A., Kosarina E.I. Kontrol kachestva litya iz magnievyh splavov i sposoby vosstanovleniya germetichnosti otlivok [Quality control of magnesium alloy casting and methods of restoration of cast products impermeability] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №12. St. 04. Available at: http://www.viam-works.ru (accessed: June 23, 2017). DOI: 10.18577/2307-6046-2014-0-12-4-4.
4. Kablov E.N. Korroziya ili zhizn [Corrosion or life] // Nauka i zhizn. 2012. №11. S. 16–21.
5. Karimova S.A., Duyunova V.A., Kozlov I.A. Konversionnoe pokrytie dlya zharoprochnogo litejnogo magnievogo splava ML10 [Conversion coating for heat resisting cast ML10 magnesium alloy] // Litejshhik Rossii. 2012. №2. S. 26–28.
6. Kozlova A.A., Kondrashov Je.K. Sistemy lakokrasochnyh pokrytij dlja protivokorro-zionnoj zashhity magnievyh splavov [Systems of paint coatings for anticorrosive protection of magnesium alloys] // Aviacionnye materialy i tehnologii. 2014. №2. S. 44–47. DOI: 10.18577/2071-9140-2014-0-2-44-47.
7. Kablov E.N. Osnovnye itogi i napravleniya razvitiya materialov dlya perspektivnoj aviacionnoj tehniki [The main results and the directions of development of materials for perspective aviation engineering] // 75 let. Aviacionnye materialy. Izbrannye trudy «VIAM» 1932–2007: yubil. nauch.-tehnich. sb. M.: VIAM, 2007. S. 20–26.
8. Kozlov I.A., Karimova S.A. Korrozija magnievyh splavov i sovremennye metody ih zashhity [Corrosion of magnesium alloys and modern methods of their protection] // Aviacionnye materialy i tehnologii. 2014. №2. S. 15–20. DOI: 10.18577/2071-9140-2014-0-2-15-20.
9. Gnedenkov S.V., Sidorova M.V., Sinebrjuhov S.L., Antipov V.V., Buznik V.M., Volkova E.F., Sergienko V.I. Stroenie i svojstva pokrytij, poluchennyh metodom plazmennogo jelektroliticheskogo oksidirovanija na aviacionnyh magnievyh splavah [Structure and properties of the coverings received by method of plasma electrolytic oxidation on aviation magnesium alloys] // Aviacionnye materialy i tehnologii. 2013. №SP2. S. 36–45.
10. Yerokhin A.L., Snizhko L.O., Gurevina N.L. et al. Discharge characterization in plasma electrolytic oxidation of aluminum // J. Phys. D: Appl. Phys. 2003. Vol. 36. P. 2110–2120.
11. Yerokhin A.L., Shatrov T.A., Samsonov V.I. et al. Oxide ceramic coatings on aluminum alloys produced by a pulsed bipolar plasma electrolytic oxidation process // Surf. Coat. Technol. 2005. Vol. 199. P. 150–157.
12. Dunleavy C.S., Curran J.A., Clyne T.W. Time dependent statistics of plasmadischarge parameters during bulk AC plasma electrolytic oxidation of aluminium // Appl. Surf. Sci. 2013. Vol. 268. P. 397–409.
13. Nomine A., Troughton S.C., Nomine A.V. et al. High speed video evidence for localised discharge cascades during plasma electrolytic oxidation // Surf. Coat. Technol. 2015. Vol. 269. P. 125–130.
14. Troughton S.C., Nomine A., Nomine A.V. et al. Synchronised electrical monitoring and high speed video of bubble growth associated with individual discharges during plasma electrolytic oxidation // Appl. Surf. Sci. 2015. Vol. 359. P. 405–411.
15. Troughtona S.C., Nominéb A., Deana J., Clyne T.W. Effect of individual discharge cascades on the microstructure of plasma electrolytic oxidation coatings // Appl. Surf. Sci. 2016. Vol. 389. P. 260–269.
16. Kozlov I.A., Kulyushina N.V., Kutyrev A.E. Vliyanie formy polyarizuyushhego toka na zashhitnye svojstva plazmennogo elektroliticheskogo pokrytiya na splave ML5 [Influence of form of polarizing current on protective properties of plasma electrolytic covering on ML5 alloy] // Materialovedenie. 2015. №9. S. 25–31.
17. Kozlov I.A., Kulyushina N.V., Vinogradov S.S. Vliyanie samoproizvolnogo i prinuditelnogo zatuhaniya mikroplazmennogo razryada na svojstva formiruemogo PEO-pokrytiya na splave ML5 [Influence of spontaneous and forced attenuation of microplasma discharge on the properties created PEO coating on ML5 alloy] // Sb. nauch.-tehnich. konf.: Fundamentalnye issledovaniya i poslednie dostizheniya v oblasti zashhity ot korrozii, stareniya i biopovrezhdenij materialov i slozhnyh tehnicheskih sistem v razlichnyh klimaticheskih usloviyah. M.: VIAM, 2016. S. 8.
18. Kozlov I.A., Vinogradov S.S., Kulyushina N.V., Kutyrev A.E., Pastuhov A.S. Vliyanie sootnosheniya amplitud polyarizuyushhego toka na zashhitnye svojstva PEO pokrytiya, formiruemogo na splave ML5 [Influence of ratio of amplitudes of polarizing current on the PEO protective properties of covering of ML5 created on alloy] // Korroziya: materialy, zashhita. 2016. №11. S. 40–48.
19. Kozlov I.A., Pavlovskaja T.G., Volkov I.A. Vliyanie polyarizuyushhego toka na svojstva plazmennogo elektroliticheskogo pokrytiya dlya magnievyh splavov sistemy Mg–Zn–Zr [Influence of polarizing current on properties of plasma electrolytic covering for magnesium alloys of Mg–Zn–Zr system] //Aviacionnye materialy i tehnologii. 2013. №3. S. 7–12.
20. Karimova S.A., Kozlov I.A., Volkov I.A. Povyshenie zashhitnyh svojstv nemetallicheskih neorganicheskih pokrytij na magnievyh splavah [Increase of protective properties of non-metallic inorganic on magnesium alloys] // Trudy VIAM : elektron. nauch.-tehnich. zhurn. 2014. №9. St. 09. Available at: http://viam-works.ru (accessed: June 23, 2017). DOI: 10.18577/2307-6046-2014-0-9-9-9.
21. Kozlov I.A., Duyunova V.A. Vliyanie napolneniya v rastvore natrievogo zhidkogo stekla na elektrohimicheskie svojstva plazmennogo elektroliticheskogo pokrytiya na splave VML20 [Influence of filling in solution of sodium silicate solute on electrochemical properties of theVML20 alloy plasma electrolytic coating] // Aviacionnye materialy i tehnologii. 2015. №4 (37). S. 61–66. DOI: 10.18577/2071-9140-2015-0-4-61-66.
22. Kozlov I.A., Kulyushina N.V., Kutyrev A.E. Influence of polarizing current form on protective properties of plasma-sprayed electrolytic coating on alloy ML5 // Inorganic Materials: Applied Research. 2016. No. 1. P. 119–125. DOI: 10.1134/S2075113316010111.