Articles
Selective laser melting (SLM) technology allows the manufacture of geometrically-complex parts, including aluminum alloys, which can find their application in various industries. To provide high performance products, an important task is to obtain dense (with low content of defects), fine structure of the material. One possible solution is the choice of the optimal modes of production parts using SLM. The article presents the results of a study of the influence of SLM process parameters on the porosity of the synthesized samples of aluminum alloy system Al–Si–Mg. Shows the change in the structure depending on the energy density, scan speed, distance between the tracks and laser power.
2. Buchbinder D. High Power Selective Laser Melting of Aluminum Parts // Physics Procedia. 2011. Vol. 12. P. 271–278. DOI: 10.1016/j.phpro.2011.03.035.
3. Maskery I., Aboulkhair N.T., Aremu A.O. A mechanical property evaluation of graded density Al–Si10–Mg lattice structures manufactured by selective laser melting // Materials Science & Engineering A. 2016. Vol. 670. P. 264–274. DOI:10.1016/j.msea.2016.06.013.
4. Maskery I., Aboulkhair N.T., Corfield M.R. Quantification and characterisation of porosity in selectively laser melted Al–Si10–Mg using X-ray computed tomography // Materials Characterization. 2016. Vol. 111. P. 193–204. DOI:10.1016/j.matchar.2015.12.001.
5. Aboulkhair N.T., Everitt N.M., Ashcroft I., Tuck C. Reducing porosity in AlSi10Mg parts processed by selective laser melting // Additive Manufacturing. 2014. Vol. 1–4. P. 77–86.
6. Weingartena С. Formation and reduction of hydrogen porosity during selective laser melting of AlSi10Mg // Journal of Materials Processing Technology. 2015. Vol. 221. P. 112–120.
7. Ivanova A.O., Ryabov D.K., Antipov V.V., Pahomkin S.I. Vozmozhnost' primeneniya programmnogo kompleksa Thermo-Calc dlya opredeleniya parametrov termicheskoj obrabotki splava 1913 i temperatur atomizacii alyuminievyh splavov [Application of Thermo-Calc software for determination of parameters of heat treatment 1913 alloy and temperatures of gas atomization for aluminium alloys] // Aviacionnye materialy i tehnologii. 2016. №S1. S. 52–59. DOI: 10.18577/2071-9140-2016-0-S1-52-59.
8. Ivanova A.O., Vahromov R.O., Grigor'ev M.V., Senatorova O.G. Issledovanie vliyaniya malyh dobavok serebra na strukturu i svojstva resursnyh splavov sistemy Al–Cu–Mg [Effect of small additive of silver on structure and properties of Al–Cu–Mg alloys] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №10. St. 01. Available at: http://www.viam-works.ru (accessed: May 25, 2017). DOI: 10.18577/2307-6046-2014-0-10-1-1.
9. Rosenthal I., Stern A., Frage N. Strain rate sensitivity and fracture mechanism of AlSi10Mg parts produced by selective laser melting // Materials Science & Engineering A. November 21, 2016. DOI:10.1016/j.msea.2016.11.070.
10. Aboulkhair N.T., Tuck C., Ashcroft I. et al. On the precipitation hardening of selective laser melted AlSi10Mg //The Minerals, Metals & Materials Society and ASM International 2015. Metallurgical and materials transactions A. 2015. Vol. 46a. DOI:10.1007/s11661-015-2980-7.
11. Aboulkhai N.T., Maskery I., Tuck C. The microstructure and mechanical properties of selectively laser melted AlSi10Mg: The effect of a conventional T6-like heat treatment // Materials Science & Engineering A. 2016. Vol. 667. P. 139–146. DOI:10.1016/j.msea.2016.04.092.
12. Tang M., Pistorius P.C. Anisotropic Mechanical Behavior of AlSi10Mg Parts Produced by Selective Laser Melting // The Minerals, Metals & Materials Society. January, 2017. DOI: 10.1007/s11837-016-2230-5.
13. Read N., Wang W., Essa K. Selective laser melting of AlSi10Mg alloy: Process optimisation and mechanical properties development // Materials and Design. 2015. Vol. 65. P. 417–424. DOI: 10.1016/j.matdes.2014.09.044.
14. Kempen K., Thijs L., Yasa E. et al. Process optimization and microstructural analysis for selective laser melting of AlSi10Mg // Solid Freeform Fabrication Symposium (Austin, Texas, USA, August 8–10, 2011). P. 484–495.
15. Kimura T. Effect of silicon content on densification, mechanical and thermal properties of Al–xSi binary alloys fabricated using selective laser melting // Materials Science & Engineering A, 17 November 2016. DOI: http://dx.doi.org/10.1016/j.msea.2016.11.059.
16. Prashanth K.G., Scudino S., Klauss H.J. Microstructure and mechanical properties of Al–12Si produced by selective laser melting: Effect of heat treatment // Materials Science & Engineering A. 2014. Vol. 590. P. 153–160.
17. Ryabov D.K., Antipov V.V., Korolev V.A., Medvedev P.N. Vliyanie tehnologicheskih faktorov na strukturu i svojstva silumina, poluchennogo s ispolzovaniem tehnologii selektivnogo lazernogo sinteza [Effect of technological factors on structure and properties of Al–Si alloy obtained by selective laser melting] // Aviacionnye materialy i tehnologii. 2016. №S1. S. 44–51. DOI: 10.18577/2071-9140-2016-0-S1-44-51.
18. Ryabov D.K., Morozova L.V., Korolev V.A., Ivanova A.O. Izmenenie mehanicheskih svojstv splava AK9ch., poluchennogo po tehnologii selektivnogo lazernogo splavleniya [Alternation of mechanical features of alloy AK9ch manufactured by selective laser melting] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №9 (45). St. 02. Available at: http://www.viam-works.ru (accessed: June 02, 2017). DOI: 10.18577/2307-6046-2016-0-9-2-2.
19. Ryabov D.K., Zajcev D.V., Dynin N.V., Ivanova A.O. Izmenenie struktury splava AK9ch., poluchennogo selektivnym lazernym spekaniem, v processe termicheskoj obrabotki [Alternation of structure of selective laser melted aluminum alloy AK9ch during heat treatment] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №9. St. 03. Available at: http://www.viam-works.ru (accessed: June 02, 2017). DOI: 10.18557/2307-6046-2016-0-9-3-3.
20. Kablov E.N., Lukina E.A., Sbitneva S.V., Hohlatova L.B., Zajcev D.V. Formirovanie metastabilnyh faz pri raspade tverdogo rastvora v processe iskusstvennogo stareniya Al-splavov [Forming of metastable phases at disintegration of solid solution in the course of artificial aging of Al-alloys] // Tehnologiya legkih splavov. 2016. №3. S. 7–17.
21. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
22. Pei W., Zhengying W., Zhen C. The AlSi10Mg samples produced by selective laser melting: single track, densification, microstructure and mechanical behavior // Applied surface science. 2017. DOI: 10.1016/j.apsusc.2017.02.215.
23. Spierings A.B., Dawson K., Heeling T. Microstructural features of Sc- and Zr-modified Al–Mg alloys processed by selective laser melting // Materials and Design. 2017. Vol. 115. P. 52–63. DOI:10.1016/j.matdes.2016.11.040.
The paper presents the investigation results of the influence of non-standard deformation technology with the using of superplastic deformation upon the microstructure, phase composition and properties of commercial MA14 alloy. It was suggested the solution of the problem connected with anisotropy of strengthening properties of MA14 alloy and increasing the material utilization coefficient using the technology of volumetric deformation under isothermal conditions. It was showed the effect of rising of alloy mechanical properties according to the changes in microstructure and in phase composition, that took place with alloying the basic Mg–Zn–Zr system alloy with RE elements.
2. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
3. Kablov E.N. Aviakosmicheskoe materialovedenie [Aerospace materials science] // Vse materialy. Enciklopedicheskij spravochnik. 2008. №3. S. 2–14.
4. Kornysheva I.S., Volkova E.F., Goncharenko E.S., Muhina I.Yu. Perspektivy primeneniya magnievyh i litejnyh alyuminievyh splavov [Perspectives of application of magnesium and cast aluminum alloys] // Aviacionnye materialy i tehnologii. 2012. №S. S. 212–222.
5. Volkova E.F., Duyunova V.A. O sovremennyh tendenciyah razvitiya magnievyh splavov [About current trends of development of magnesium alloys] // Tehnologiya legkih splavov. 2016. №3. S. 94–105.
6. Antipov V.V. Strategiya razvitiya titanovyh, magnievyh, berillievyh i alyuminievyh splavov [Strategy of development of titanium, magnesium, beryllium and aluminum alloys] // Aviacionnye materialy i tehnologii. 2012. №S. S. 157–167.
7. Kablov E.N. Nauka kak otrasl ekonomiki [Science as economy industry] // Nauka i zhizn. 2009. №10. S. 7–8.
8. Volkova E.F., Duyunova V.A. Effekt primeneniya nestandartnoj tehnologii deformacii k nekotorym serijnym magnievym splavam [Effect of unconventional deformation technology applicable to some commercial magnesium–based alloys] // Aviacionnye materialy i tehnologii. 2016. №3. S. 17–23. DOI: 10.18577/2071-9140-2016-03-17-23.
9. Lashko N.F., Zaslavskaya L.V., Kozlova M.N. i dr. Fiziko-himicheskij fazovyj analiz stalej i splavov [Physical and chemical phase analysis staly and alloys]. M.: Metallurgiya, 1978. 336 s.
10. Volkova E.F., Antipov V.V., Morozova G.I. Osobennosti formirovaniya struktury i fazovogo sostava deformirovannyh polufabrikatov iz serijnogo splava MA14 // Aviacionnye materialy i tehnologii. 2011. №3. S. 8–15.
11. Volkova E.F., Ishodzhanova I.V., Tarasenko L.V. Strukturnye izmeneniya v magnievom splave MA14 pod vozdejstviem tehnologicheskih faktorov [Structural changes in MA14 magnesium alloy under the influence of technology factors] // Metallovedenie i termicheskaya obrabotka metallov. 2010. №12. S. 19–23.
12. Volkova E.F., Moiseev N.V., Akinina M.V. Razvitie effekta sverhplastichnosti v serijnyh splavah sistem Mg–Al–Zn–Mn i Mg–Zn–Zr [Development of effect of superplasticity in serial alloys of Mg-Al-Zn-Mn and Mg-Zn-Zr systems] // Tehnologiya legkih splavov. 2014. №4. S. 52–57.
13. Emli E.F. Osnovy tehnologii proizvodstva i obrabotki magnievyh splavov [Bases of the production technology and processing of magnesium alloys]. M.: Metallurgiya, 1972. 488 s.
14. Kajbyshev R.O., Galiev A.M. Ispolzovanie yavleniya sverhplastichnosti dlya sozdaniya tehnologii izgotovleniya izdelij iz magnievyh splavov [Use of the phenomenon of superplasticity for creation of manufacturing techniques of products from magnesium alloys] // Metallovedenie i termicheskaya obrabotka metallov. 2006. №11. S. 23–25.
15. Volkova E.F., Rohlin L.L., Becofen S.Ya., Akinina M.V. Issledovanie vliyaniya RZE ittrievoj i cerievoj podgrupp na svojstva magnievyh splavov [Research of influence of REE of yttric and ceric subgroups on properties of magnesium alloys] // Tehnologiya legkih splavov. 2014. №2. S. 42–48.
16. Kablov E.N., Volkova E.F., Filonova E.V. Issledovanie vliyaniya RZE na fazovyj sostav i svojstva novogo zharoprochnogo magnievogo splava sistemy Mg–Zn–Zr–RZE [Research of influence of REE on phase structure and properties of new heat resisting magnesium alloy of Mg–Zn–Zr–REE system] // Metallovedenie i termicheskaya obrabotka metallov. 2017. №7. S. 19–26.
Isothermal punching is the perspective cost-efficient form-building technological process for the titanium alloys, allowing to lower materials consumption and labor input of the manufacturing in comparison with the traditional multitransitional manufacturing techniques of details from forgins and plates. One of the problems of this work is research of the influence of modes of deformation and thermal processing on structure and mechanical properties of isothermal punching from alloy VT6ch. It has been shown that isothermal die forging on the final step of deformation leads to elongation increase up to 14%. Further heat treatment (recrystallization annealing) results in globular-lamellar structure formation which is most favorable in order to provide ultimate tensile strength values not less than 995 MPa.
2. Nochovnaya N.A., Shiryaev A.A., Alekseev E.B., Antashev V.G. Optimizaciya rezhimov termicheskoj obrabotki dlya lopatochnyh zagotovok iz opytnogo zharoprochnogo titanovogo splava [Optimization of modes of thermal processing for scapular preparations from experimental heat resisting titanium alloy] // MiTOM. 2014. №12 (714). S. 22–26.
3. Nochovnaya N.A., Alekseev E.B., Izotova A.Yu., Novak A.V. Pozharobezopasnye titanovye splavy i osobennosti ih primeneniya [Fireproof titanium alloys and features of their application] // Titan. 2012. №4 (38). S. 42–46.
4. Tarasov Yu.M., Antipov V.V. Novye materialy VIAM – dlya perspektivnoj aviacionnoj tehkniki proizvodstva OAO «OAK» [The VIAM new materials – for perspective aviation engineering of production of JSC «OAK»] // Aviacionnye materialy i tehnologii. 2012. №2. S. 5–6.
5. Kablov E.N. Materialy i himicheskie tehnologii dlya aviacionnoj tehniki [Materials and chemical technologies for aviation engineering] // Vestnik Rossijskoj Akademii Nauk. 2012. T. 82. №6. S. 520–530.
6. Kablov E.N. Shestoj tehnologicheskij uklad [Sixth technological way] // Nauka i zhizn. 2010. №4. S. 2–7.
7. Horev A.I., Belov S.P., Glazunov S.G. Metallovedenie titana i ego splavov [Metallurgical science of titanium and its alloys]. M.: Metallurgiya, 1992. 352 S.
8. Nochovnaya N.A., Panin P.V., Kochetkov A.S., Bokov K.A. Sovremennye zharoprochnye splavy na osnove gamma-alyuminida titana: perspektivy razrabotki i primeneniya [Modern hot strength alloys on the basis of titanium gamma aluminide: development and application perspectives] // MiTOM. 2014. №7. S. 23–27.
9. Nochovnaya N., Ivanov V., Alexeev E., Izotova A. Opportunities of increase of mechanical properties of the deformed semi-finished products from Ti–Al–Nb system alloys // Proc. 12th World Conf. on Titanium (Ti-2011). 2011. Vol. 2. P. 1383–1386.
10. Nochovnaya N.A., Skvorcova S.V., Anishhuk D.S., Alekseev E.B., Panin P.V., Umarova O.Z. Otrabotka tehnologii opytnogo zharoprochnogo splava na osnove intermetallida Ti2AlNb [Working off of technology of pilot hot strength alloy on the basis of Ti2AlNb intermetallic compound] // Titan. 2013. №4. S. 24–29.
11. Alekseev E.B., Nochovnaya N.A., Skvorcova S.V., Grushin I.A., Agarkova E.O. Vliyanie termicheskoj obrabotki na strukturno-fazovyj sostav i mehanicheskie svojstva titanovogo splava na osnove orto-fazy [Influence of thermal processing on structural and phase structure and mechanical properties of titanium alloy on the basis of orto-phase] // Titan. 2014. №4. S. 34–38.
12. Alekseev E.B., Nochovnaya N.A., Ivanov V.I., Panin P.V., Novak A.V. Issledovanie vliyaniya alyuminiya na fazovyj sostav i svojstva deformirovannyh polufabrikatov iz intermetallidnogo titanovogo splava VTI-4 [Research of influence of aluminum on phase structure and properties of the deformed semi-finished products from intermetallic VTI-4 titanium alloy] // Tehnologiya legkih splavov. 2015. №1. S. 57–61.
13. Alekseev E.B., Nochovnaya N.A., Panin P.V. Issledovanie struktury i fazovogo sostava opytnogo zharoprochnogo splava na osnove intermetallida Ti2AlNb v deformirovannom sostoyanii // Titan. 2014. №4. S. 12–17.
14. Splav na osnove titana i izdelie, vypolnennoe iz nego: pat. 2210612 Ros. Federaciya [Сплав на основе титана и изделие, выполненное из него]; opubl. 20.08.03.
15. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period to 2030] // Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
16. Nochovnaya N.A., Alekseev E.B., Yasinskij K.K., Kochetkov A.S. Specifika plavki i sposoby polucheniya slitkov intermetallidnyh titanovyh splavov s povyshennym soderzhaniem niobiya // Vestnik MGTU im. N.E. Baumana. Ser.: Mashinostroenie. 2011. №SP2. C. 53–59.
17. Kablov D.E., Panin P.V., Shiryaev A.A., Nochovnaya N.A. Opyt ispolzovaniya vakuumno-dugovoj pechi ALD VAR L200 dlya vyplavki slitkov zharoprochnyh splavov na osnove aljuminidov titana [The use of ADL VAR L200 vacuum-arc furnace for ingots fabrication of high-temperature titanium aluminides base alloys] //Aviacionnye materialy i tehnologii. 2014. №2. S. 27–33. DOI: 10.18577/2071-9140-2014-0-2-27-33.
18. Alekseev E.B., Nochovnaya N.A., Skvorcova S.V., Panin P.V., Umarova O.Z. Opredelenie tehnologicheskih parametrov deformacii opytnogo zharoprochnogo splava na osnove intermetallida Ti2AlNb [Determination of technological parameters of deformation of pilot hot strength alloy on the basis of Ti2AlNb intermetallic compound] // Titan. 2014. №2. S. 36–41.
19. Kazanceva N.V., Lepihin S.V. Issledovanie diagrammy sostoyaniya Ti–Al–Nb [Research of the chart of condition of Ti-Al-Nb] // Fizika metallov i metallovedenie. 2006. T. 102. №2. S. 184–195.
20. Demakov S.L., Stepanov L.S., Popov A.A. Fazovye PREVRASHHENIYA V SUPER α2-titanovom splave. I. Vliyanie temperatury i vremeni vyderzhki pod zakalku na fazovyj sostav i strukturu splava // Fizika metallov i metallovedenie. 1998. T. 86. №5. S. 115–122.
21. Kolachev B.A., Ilyin A.A., Volodin V.A., Ryndenkov D.V. About the purposefulness of comparison of titanium alloys in terms of aluminium and molybdenum equivalents // Proc. 9th World Conf. on Titanium (Titanium'99: Science and Technology). 1999. Vol. 1. P. 53–60.
22. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
23. Horev A.I. Fundamentalnye i prikladnye raboty po konstrukcionnym titanovym splavam i perspektivnye napravleniya ih razvitiya [Fundamental and applied works on structural titanium alloys and perspective directions of their development] //Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №2. St. 04. Available at: http://www.viam-works.ru (accessed: July 07, 2017).
24. Ilin A.A., Kolachev B.A., Polkin I.S. Titanovye splavy. Sostav. Struktura. Svojstva [Titanium alloys. Structure. Structure. Properties]. M.: VILS–MATI, 2009. 520 s.
25. Material Needs and RandD strategy for Future Military Aerospace Propulsion Systems. USA.: National Research council, 2009. 737 p.
26. Macdonald K. A. Fracture and fatigue of welded joints and structires. Woodhead Publishing Limited, 2011. 360 p.
27. Lin J., Balint D., Pietzyk M. Microstructure evolution in metal forming process. Woodhead Publishing Limited, 2012. 416 p.
The effect of cooling rate on structure formation processes upon hydrogenating annealing of VT6 alloy (Ti–6,25Al–4,1V% wt.) has been studied, the mentioned processes being governed by mechanism and kinetics of transformations in hydrogen-containing β-phase. It has been shown that cooling rate of 1 K/s gives the opportunity to reduce diffusion-based decomposition of hydrogen-containing β-phase in the samples subjected to hydrogenation at 850–900°С to a concentration of 0,6% wt. H and higher. Thus a single-phase β-structure is formed at room temperature, which is uncommon for the VT6 alloy upon equilibrium conditions.
2. Kolachev B.A., Ilin A.A., Nosov V.K., Mamonov A.M. Dostizheniya vodorodnoj tehnologii titanovyh splavov [Achievements of hydrogen technology of titanium alloys] // Tehnologiya legkih splavov. 2007. №3. s. 10–26.
3. Ilin A.A., Skvorcova S.V., Mamonov A.M., Kollerov M.Yu. Fazovye i strukturnye prevrashheniya v titanovyh splavah raznyh klassov pod dejstviem vodoroda [Phase and structural transformations in titanium alloys of different classes under the influence of hydrogen] // Titan. 2007. №1. S. 32–37.
4. Panin P.V., Dzunovich D.A., Alekseev E.B. Sposoby opisaniya fazovogo sostava titanovyh splavov, dopolnitelno legirovannyh vodorodom (obzor) [Ways of phase areas representation in titanium alloys additionally doped with hydrogen (review)] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №3. St. 03. Available at: http://www.viam-works.ru (accessed: August 03, 2017). DOI: 10.18577/2307-6046-2015-0-3-3-3.
5. Ilin A.A. Mehanizm i kinetika fazovyh i strukturnyh prevrashhenij v titanovyh splavah [The mechanism and kinetics of phase and structural transformations in titanium alloys]. M.: Nauka, 1994. 304 s.
6. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
7. Kablov E.N. Tendencii i orientiry innovacionnogo razvitiya Rossii: sb. nauch.-inform. mater. 3-e izd. [Tendencies and reference points of innovative development of Russia: collection of scientific and technical information. 3rd ed.]. M.: VIAM, 2015. 720 s.
8. Kablov E.N. Iz chego sdelat budushhee? Materialy novogo pokoleniya, tehnologii ih sozdaniya i pererabotki – osnova innovacij [What the future to make of? Materials of new generation, technology of their creation and processing – basis of innovations] // Krylya Rodiny. 2016. №5. s. 8–18.
9. Kablov D.E., Panin P.V., Shiryaev A.A., Nochovnaya N.A. Opyt ispolzovaniya vakuumno-dugovoj pechi ALD VAR L200 dlya vyplavki slitkov zharoprochnyh splavov na osnove aljuminidov titana [The use of ADL VAR L200 vacuum-arc furnace for ingots fabrication of high-temperature titanium aluminides base alloys] //Aviacionnye materialy i tehnologii. 2014. №2. S. 27–33. DOI: 10.18577/2071-9140-2014-0-2-27-33.
10. Nochovnaya N.A., Panin P.V., Kochetkov A.S. Problemy polucheniya himicheski i strukturno odnorodnyh slitkov iz zharoprochnyh splavov na osnove gamma-alyuminida titana [Receiving problems chemically and structurally uniform ingots from hot strength alloys on the basis of titanium gamma aluminide] // Mater. konf. «Problemy proizvodstva slitkov i polufabrikatov iz slozhnolegirovannyh i intermetallidnyh titanovyh splavov» (30 okt. 2015 g.). M.: VIAM, 2015. St. 03. 1 elektron. opt. disk (CD).
11. Ovchinnikov A.V., Nosov V.K., Afonin V.E., Panin P.V. Osnovnye zakonomernosti deformacii splavov titan-vodorod [Main patterns of deformation of alloys titanium-hydrogen] // Tehnologiya legkih splavov. 2007. №3. S. 96–99.
12. Skvorcova S.V., Ilin A.A., Becofen S.Ya., Filatov A.A., Dzunovich D.A., Panin P.V. Anizotropiya mehanicheskih svojstv i tekstura listovyh polufabrikatov iz titanovyh splavov [Anisotropy of mechanical properties and structure of sheet semi-finished products from titanium alloys] // Tehnologiya legkih splavov. 2006. №1–2. S. 81–87.
13. Panin p.v. zakonomernosti formirovaniya fazovogo sostava i struktury v titanovyh splavah pri termovodorodnoj obrabotke i plasticheskoj deformacii: avtoref. dis. … kand. tehn. nauk [Patterns of forming of phase structure and structure in titanium alloys at thermohydrogen treating and plastic strain: thesis, PhD (Tech.)]. M.: MATI, 2009. 24 s.
14. Panin P.V., Dzunovich D.A., Zasypkin V.V. Sozdanie dvuhfaznoj kompozitnoj struktury v alfa-splave Ti–6Al s pomoshhyu termovodorodnoj obrabotki [Creation of diphasic composite structure in Ti–6Al alpha alloy by means of thermohydrogen treating] // Nauchnye trudy (Vestnik MATI). 2012. №19 (91). S. 33–37.
15. Panin P.V., Dzunovich D.A., Lukina E.A. Upravlenie strukturoj i svojstvami titanovyh splavov pri obratimom legirovanii vodorodom i plasticheskoj deformacii [Management of structure and properties of titanium alloys at reversible alloying hydrogen and plastic strain] // Sb. nauch. tr. RKK «Energiya» im. S.P. Koroleva. Korolev, 2012. Ser. xii. Vyp. 1–2: Materialy XIX nauch.-tehnich. konf. molodyh uchenyh i specialistov. S. 103–107.
16. Panin P.V., Manohin S.S., Dzunovich D.A. Poluchenie i issledovanie submikrokristallicheskoj struktury v titanovyh splavah pri obratimom legirovanii vodorodom i plasticheskoj deformacii [Receiving and research of submicrocrystalline structure in titanium alloys at reversible alloying hydrogen and plastic strain] // Voprosy materialovedeniya. 2016. №4 (88). S. 7–17.
17. Skvorcova S.V., Panin P.V., Nochovnaya N.A., Grushin I.A., Mitropolskaya N.G. Vliyanie vodoroda na fazovye i strukturnye prevrashheniya v titanovom splave VT6 [Influence of hydrogen on phase and structural transformations in BT6 titanium alloy] // Tehnologiya legkih splavov. 2011. №4. S. 35–40.
18. Panin P.V., Grushin I.A., Mitropolskaya N.G. Issledovanie zakonomernostej izmeneniya strukturno-fazovogo sostoyaniya titanovogo splava VT6 pri dopolnitelnom legirovanii vodorodom [Research of patterns of change of structural and phase condition of VT6 titanium alloy at additional alloying hydrogen] // Nauchnye trudy (Vestnik MATI). 2013. №20 (92). S. 31–34.
19. Panin P.V., Shiryaev A.A., Dzunovich D.A. Postroenie temperaturno-koncentracionnoj diagrammy fazovogo sostava titanovogo splava VT6, dopolnitelno legirovannogo vodorodom [Creation of the temperature and concentration chart of phase composition of the BT6 titanium alloy which has been in addition alloyed by hydrogen] // Tehnologiya mashinostroeniya. 2014. №3 (141). S. 5–9.
20. Panin P.V., Dzunovich D.A., Alekseev E.B. Fazovyj sostav i struktura titanovogo splava VT6, dopolnitelno legirovannogo vodorodom, posle vakuumnogo otzhiga [Phase composition and structure of hydrogenated titanium alloy VT6 after vacuum annealing] // Trudy VIAM: jelektron. nauch.-tehnich. zhurn. 2016. №2 (38). St. 05. Available at: http://www.viam-works.ru (accessed: August 03, 2017). DOI: 10.18577/2307-6046-2016-0-2-5-5.
21. Panin P.V., Dzunovich D.A., Shiryaev A.A. Issledovanie termicheskoj stabilnosti struktury titanovogo splava VT6 posle termovodorodnoj obrabotki [Research on thermal stability of VT6 titanium alloy structure after thermohydrogen treatment] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №3. St. 06. Available at: http://www.viam-works.ru (accessed: August 03, 2017). DOI: 10.18577/2307-6046-2016-0-3-6-6.
22. Dzunovich D.A., Shalin A.V., Panin P.V. Struktura, tekstura i mehanicheskie svojstva deformirovannyh polufabrikatov iz splava VT6, poluchennyh po promyshlennym i opytnym tehnologiyam [Structure, structure and mechanical properties of the deformed semi-finished products from alloy of VT6 received on industrial and pilot technologies] // Deformaciya i razrushenie materialov. 2017. №6. S. 19–27.
For the first time investigated the influence of foreign and domestic chemical technologies removal of operational carbon pollution on the complex properties of the surface of the heat-resistant titanium alloy VT20. Visually, the gravimetric method, and using scanning electron microscopy and X-ray microanalysis of samples evaluated cleaning performance against carbon polution. The change in surface roughness, microhardness and surface activity of purified samples. It is established that when cleaning samples from carbon pollution chemically, an increase in the microhardness and a reduction in surface activity may occur, as compared to those for the initial samples. By its technological characteristics VPr16 solder picked possibility of reconditioning by soldering after the removal of carbon polution from the surface of titanium alloy VT20 chemical means.
2. Shiryaev A.A., Nochovnaya N.A. Issledovanie struktury i himicheskogo sostava slitkov opytnogo vysokolegirovannogo titanovogo splava [Study of structure and chemical composition of pilot high-alloyed titanium alloy ingots] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №9. St. 06. Available at: http://www.viam-works.ru (accessed: September 01, 2017). DOI: 10.18577/2307-6046-2015-0-9-6-6
3. Alekseev E.B., Nochovnaya N.A., Panin P.V., Novak A.V. Tehnologicheskaya plastichnost, struktura i fazovyj sostav opytnogo titanovogo orto-splava, soderzhashhego 13% (po masse) alyuminiya [Technological plasticity, structure and phase composition of a pilot titanium ortho alloy with 13 wt. рct. aluminum] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №12. St. 08. Available at: http://www.viam-works.ru (accessed: September 01, 2017). DOI: 10.18577/2307-6046-2015-0-12-8-8.
4. Nochovnaia N.A., Panin P.V., Kochetkov A.S., Bokov K.A. Opyt VIAM v oblasti razrabotki i issledovaniia ekonomnolegirovannykh titanovykh splavov novogo pokoleniia [VIAM experience in the field of development and research of economically alloyed titanium alloys of new generation] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2016. №9 (45). St. 05. Available at: http://www.viam-works.ru (accessed: September 01, 2017). DOI: 10.18577/2307-6046-2014-0-9-5-5.
5. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
6. Kablov E.N. Materialy kak osnova bezopasnosti [Materials as the base of safety] // Industriya. 2014. №16. S. 1–2.
7. Kablov E.N. Chtoby sobrat samolet po atomam [To collect airplane on atoms] // Industriya. Inzhenernaya gazeta. 2015. №12. S. 1–2.
8. Kablov E.N., Ospennikova O.G., Lomberg B.S. Strategicheskie napravleniya razvitiya konstrukcionnyh materialov i tehnologij ih pererabotki dlya aviacionnyh dvigatelej nastoyashhego i budushhego [The strategic directions of development of constructional materials and technologies of their processing for aircraft engines of the present and the future] // Avtomaticheskaya svarka. 2013. №10. S. 23–32.
9. Kablov E.N. Tendencii i orientiry innovacionnogo razvitiya Rossii: sb. nauch.-inform. mater. 3-e izd. [Tendencies and reference points of innovative development of Russia: collection of scientific and technical information. 3rd ed.]. M.: VIAM, 2015. 720 s.
10. Huadong Y., Hong X. The Effect of Surface Roughness on Thermodynamic Performance Parameter of Axial Flow Compressor // Research Journal of Applied Sciences, Engineering and Technology. 2013. No. 5 (18). P. 4458–4463.
11. Stepankov I.A. Kompleksnoe reshenie dlya ochistki kompressorov GTU: ochistitel Turbo-K i antifriz AF10 [The complex decision for cleaning of GTU compressors: cleaner of Turbo-K and AF10 antifreeze] // Turbiny i dizeli. 2015. №1. S. 54–55. Available at: http://www.turbine_diesel.ru (accessed: September 01, 2017).
12. Malcev E.N. Razrabotka obobshhennogo metoda rascheta i proektirovaniya sistemy vlazhnoj ochistki protochnoj chasti GTD i sredstv ee realizacii: avtoref. dis. … kand. tehn. nauk [Development of the generalized method of calculation and design of system of wet cleaning of flowing part of GTD and means of its implementation: thesis, PhD (Tech.)]. Samara, 2013. 20 s.
13. Docenko G.N. Razrabotka principov ochistki detalej aviacionnoj tehniki ot nagaropodobnyh zagryaznenij biotehnologicheskim metodom: avtoref. dis. … kand. tehn. nauk [Development of principles of cleaning of details of aviation engineering from nagaropodobny pollution by biotechnological method: thesis, PhD (Tech.)]. M., 2000. 37 s.
14. Shulov V.A., Bycenko O.A., Teryaev D.A. i dr. Razrabotka tehnologicheskogo processa vosstanovleniya svojstv lopatok kompressora GTD iz zharoprochnoj stali EP866-Sh s primeneniem silnotochnyh impul'snyh elektronnyh puchkov [Development of technological process of recovery of properties of compressor blades of GTD from heat resisting EP866-Sh steel using high-current pulse electronic bunches] // Vzaimodejstvie izluchenij s tverdym telom: mater. 8-j Mezhdunar. konf. Minsk, 2009. S. 360–362.
15. Enyia J.D., Li Y., Thank-God I., Igbong D.I. Industrial Gas Turbine On-line Compressor Washing for Power Generation. // Isaiah International Journal of Engineering Research and Technology. 2015. Vol. 4. Issue 08. P. 500–506.
16. Kurz R., Brun K., Mokhatab S. Gas turbine compressor blade fouling mechanisms // Pipeline & Gas Journal. 2011. Vol. 238. No. 9 . P. 18–21.
17. Maiwada B., Muaz N.I., Ibrahim S., Musa S.M. Impacts of Compressor Fouling On the Performance of Gas Turbine // International Journal of Engineering Science and Computing. 2016. Vol. 6. Issue 3. P. 2118–2125.
Here are physical and mechanical properties, rheological properties of two adhesive binders of melting type VSK-14-2m and VSK-14-2mR. Here are next properties: tensile strength, bending strength, relative extension, fracture viscosity, glass transition temperature, modulus of elasticity under tension and bending. Shown the influence of selected technology for processing of binder to demands for rheological properties. Processing technologies of bindings in PCM are proposed on the basis of rheological properties.
2. Kablov E.N. Kontrol kachestva materialov – garantiya bezopasnosti ekspluatacii aviacionnoj tehniki [Quality control of materials – security accreditation of operation of aviation engineering] // Aviacionnye materialy i tehnologii. 2001. №1. S. 3–8.
3. Anihovskaya L.I., Minakov V.T. Klei i kleevye prepregi dlya perspektivnyh izdelij aviakosmicheskoj tehniki [Glues and glue prepregs for perspective products of aerospace equipment] // Aviacionnye materialy. Izbrannye trudy «VIAM» 1932–2002: yubil. nauch.-tehnich. sb. M.: MISiS–VIAM, 2002. S. 315–326.
4. Kirienko T.A., Lukina N.F., Kucevich K.E., Petrova A.P. Issledovanie reologicheskih svojstv kleevyh svyazuyushhih [Research of rheological properties of the glue binding] // Klei. Germetiki. Tehnologii. 2016. №2. S. 6–8.
5. Kablov E.N., Chursova L.V., Lukina N.F., Petrova A.P. Issledovanie epoksidno-polisulfonovyh polimernyh sistem kak osnovy vysokoprochnyh kleev aviacionnogo naznacheniya [Research of epoxy and polysulfonic polymeric systems as bases of high-strength adhesives of aviation assignment] // Klei. Germetiki. Tehnologii. 2017. №3. S. 7–12.
6. Dementeva L.A., Kucevich K.E., Lukina N.F., Petrova A.P. Ispolzovanie kleevyh svyazuyushhih dlya polucheniya polimernyh kompozicionnyh materialov [The use of adhesive binders for production of polymeric composite materials] // Novosti materialovedeniya. Nauka i tehnika: elektron. nauch.-tehnich. zhurn. 2016. №2 (20). St. 03. Available at: http://materialsnews.ru (accessed: August 02, 2017).
7. Melnikov D.A., Gromova A.A., Raskutin A.E., Kurnosov A.O. Teoreticheskij raschet i eksperimentalnoe opredelenie modulya uprugosti i prochnosti stekloplastika VPS-53/120 [Theoretical calculation and experimental determination of modulus of elasticity and strength of GRP VPS-53/120] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2017. №1 (49). St. 08. Available at: http://www.viam-works.ru (accessed: August 03, 2017). DOI: 10.18577/2307-6046-2017-0-1-8-8.
8. Haskov M.A., Melnikov D.A., Dementeva L.A. Optimizaciya rezhimov otverzhdeniya epoksidnyh kompozicij s uchetom masshtabnogo faktora [Optimization of modes of curing of epoxy compositions taking into account large-scale factor] // Novye materialy i tehnologii glubokoj pererabotki syr'ya – osnova innovacionnogo razvitiya ekonomiki Rossii: sb. dokl. II Mezhdunar. nauch.-tehnich. konf. M.: VIAM, 2017. S. 30.
9. Lukina N.F., Dement'eva L.A., Petrova A.P., Kirienko T.A., Chursova L.V. Kleevye svyazuyushhie dlya detalej iz PKM sotovoj konstrukcii [Glue binding for details from PCM of cellular design] // Klei. Germetiki. Tehnologii. 2016. №5. S. 12–16.
10. Babin A.N., Petrova A.P. Metody ispytanij i issledovanij osnovnyh svojstv polimernyh svyazuyushhih dlya konstrukcionnyh PKM [Test methods and researches of the main properties polymeric binding for constructional PCM] // Vse materialy. Enciklopedicheskij spravochnik. 2016. №3. S. 52–59.
11. Kirienko T.A., Lukina N.F., Kutsevich K.E., Petrova A.P. A study of the rheological properties of adhesive binders // Polymer Science. D. 2016. Vol. 9. No. 3. P. 295–297.
12. Deev I.S., Kablov E.N., Kobets L.P., Chursova L.V. Issledovanie metodom skaniruyushhej elektronnoj mikroskopii deformacii mikrofazovoj struktury polimernyh matric pri mehanicheskom nagruzhenii [Research of the scanning electron microscopy method deformation of microphase structure of polymeric matrix at mechanical loading] // Trudy VIAM: elektron. nauch-tehnich. zhurn. 2014. №7. St. 06. Available at: http://www.viam-works.ru (accessed: July 20, 2017). DOI: 10.18577/2307-6046-2014-0-7-6-6.
13. Sharova I.A., Petrova A.P. Obzor po materialam mezhdunarodnoj konferencii po kleyam i germetikam (WAC-2012, Franciya) [Review of world adhesive and sealant conference (WAC-2012, France] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №8. St. 06. Available at: http://www.viam-works.ru (accessed: July 19, 2017).
14. Grashhenkov D.V., Chursova L.V. Strategiya razvitiya kompozicionnyh i funkcionalnyh materialov [Strategy of development of composite and functional materials] // Aviacionnye materialy i tehnologii. 2012. №S. S. 231–242.
15. Lukina N.F., Dementeva L.A., Petrova A.P., Serezhenkov A.A. Konstrukcionnye i termostojkie klei [Constructional and heat-resistant glues] // Aviacionnye materialy i tehnologii. 2012. №S. S. 328–335.
16. Petrova A.P., Dementeva L.A., Lukina N.F., Chursova L.V. Kleevye svyazuyushhie dlya polimernyh kompozicionnyh materialov na ugle- i steklonapolnitelyah // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №9. St. 11. URL: http//www.viam-works.ru (data obrashheniya: 20.07.2017). DOI: 10.18577/2307-6046-2015-0-9-11-11.
17. Lukina N.F., Dementeva L.A., Serezhenkov A.A., Kotova E.V., Senatorova O.G., Sidelnikov V.V., Kucevich K.E. Kleevye prepregi i kompozicionnye materialy na ih osnove [Glue prepregs and composite materials on their basis] // Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 53–56.
The comparative rate analysis of thermo-oxidative destruction of the film-forming agent of various nature is carried out and necessity of applying polyorganosiloxanes for the development of heat-resistant putties is proved. The choice of the inorganic heat-resistant fillers providing the minimum internal stresses in coatings with putties taking into account influence of fillers on the rate of thermo-oxidative destruction polyorganosiloxanes is reasonable. Results of assessment of technological, physic-mechanical, rheological and dielectric properties of KO-0035, KO-0066, KO-0067, KO-0070 putties, and also their heat resistance when heating in isothermal conditions and in gas-dynamic flow are given.
2. Kondrashov E.K., Semenova L.V. Termookislitelnaya stabilnost nenapolnennyh i dispersno-napolnennyh polimernyh plenkoobrazuyushhih [Thermooxidizing stability of the unfilled and disperse filled polymeric film-forming] // Aviacionnye materialy i tehnologii. 2003. Vyp.: Lakokrasochnye materialy i pokrytiya. S. 36–41.
3. Semenova L.V. Termostojkaya emal VE-63 [Heat-resistant VE-63 enamel] // Aviacionnye materialy i tehnologii. 2003. Vyp.: Lakokrasochnye materialy i pokrytiya. S. 41–44.
4. Kondrashov E.K., Kuznecova V.A., Lebedeva T.A., Malova N.E. Antikorrozionnye, termoreguliruyushhie, termostojkie i vlagozashhitnye pokrytiya MKS «Buran» [Anticorrosion, temperature-controlled, heat-resistant and vlagozashchitny coatings of ISS «Buran»] // Aviacionnye materialy i tehnologii. 2013. №S1. S. 137–141.
5. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
6. Kablov E.N., Grashhenkov D.V., Isaeva N.V., Solncev S.S., Sevostyanov V.G. Vysokotemperaturnye konstrukcionnye kompozicionnye materialy na osnove stekla i keramiki dlya perspektivnyh izdelij aviacionnoj tehniki [High-temperature constructional composite materials on the basis of glass and ceramics for perspective products of aviation engineering] // Steklo i keramika. 2012. №4. S. 7–11.
7. Sanzharovskij A.T. Fiziko-mehanicheskie svojstva polimernyh i lakokrasochnyh pokrytij [Physicomechanical properties of polymer and paint coatings]. M.: Himiya, 1975. 264 s.
8. Kondrashov E.K., Vladimirskij V.N., Bejder E.Ya. Erozionnostojkie lakokrasochnye pokrytiya [Erosion resistance paint coatings]. M.: Himiya, 1989. 136 s.
9. Chebotarevskij V.V., Kondrashov E.K. Tehnologiya lakokrasochnyh pokrytij v mashinostroenii [Technology of paint coatings in mechanical engineering]. M.: Mashinostroenie, 1978. 296 s.
10. Kiselev F.F., Krylov S.V. Adsorbcionnye processy na poverhnosti poluprovodnikov i dielektrikov. M.: Nauka, 1978. 255 s.
11. Roginskij S.Z. Elektronnye yavleniya v geterogennom katalize [The electronic phenomena in heterogeneous catalysis]. M.: Nauka, 1975. 270 s.
12. Golenko Yu.V., Kondrashov E.K., Starina A.I. Opredelenie reologicheskih svojstv pokrytiya emali FP-5105 [Definition of rheological properties of covering of FP-5105 enamel] // Oboronnaya tehnika. 1977. №7. S. 73–74.
13. Golenko Yu.V., Kondrashov E.K., Starina A.I. Issledovanie reologicheskih svojstv lakokrasochnyh pokrytij pri realno dejstvuyushhih nagruzkah [Research of rheological properties of paint coatings at really actual loads] // Aviacionnaya promyshlennost. 1977. №5. S. 27–28.
14. Buznik V.M., Kablov E.N., Koshurina A.A. Materialy dlya slozhnyh tehnicheskih ustrojstv arkticheskogo primeneniya [Materials for difficult engineering devices of the Arctic application] // Nauchno-tehnicheskie problemy osvoeniya Arktiki. M.: Nauka, 2015. S. 275–285.
15. Kondrashov E.K., Malovа N.E. Lakokrasochnye pokrytiya na osnove sopolimerov triftorhloryetilena [Paint coatings based on copolymers of trifluorochloroethylene] // Aviacionnye materialy i tehnologii. 2015. №2 (35). S. 39–44. DOI: 10.18577/2071-9140-2015-0-2-39-44.
16. Kablov E.N. Kontrol kachestva materialov – garantiya bezopasnosti i ekspluatacii aviacionnoj tehniki [Quality control of materials is a security accreditation and operation of aviation engineering] // Aviacionnye materialy i tehnologii. 2001. №1. S. 3–8.
An antifriction organoplastic based on epoxy binder and combined fabric filler including polytetrafluoroethylene and polyimide fibers was investigated. Data on its basic physical properties, physico-mechanical properties under uniaxial tension were obtained. The stress-strain curves were analyzed, the temperature dependences of the modulus of elasticity, strength and elongation at tension were established. Antifrictional organoplastic was a polymer composite material with 0,25–0,30 mm thickness and 1,55 g/cm3 density, has resistance to water and aviation petroleum products. It was shown that in the investigated temperature range from -40 to +60°С the organoplastic was characterized by strength of 30–110 MPa, elastic modulus of 0,7–4,5 GPa and deformations of 3–22%. According to the results of the research, antifriction organoplastics can be successfully used as a coating of a given size and shape for the modification of friction surfaces without significant weight gain and changes in t
2. Kablov E.N. Tendencii i orientiry innovacionnogo razvitiya Rossii: sb. nauch.-inform. mater. 3-e izd. [Tendencies and reference points of innovative development of Russia: collection of scientific information materials. 3rd ed.]. M.: VIAM, 2015. 720 s.
3. Kablov E.N. Kompozity: segodnya i zavtra [Composites: today and tomorrow] // Metally Evrazii. 2015. №1. S. 36–39.
4. Kablov E.N. Materialy dlya aviakosmicheskoj tehniki [Materials for aerospace equipment] // Vse materialy. Enciklopedicheskij spravochnik. 2007. №5. S. 7–27.
5. Kablov E.N. Aviakosmicheskoe materialovedenie [Aerospace materials science] // Vse materialy. Enciklopedicheskij spravochnik. 2008. №3. S. 2–14.
6. Bejder E.Ya., Donskoj A.A., Zhelezina G.F., Kondrashov E.K. i dr. Opyt primeneniya ftorpolimernyh materialov v aviacionnoj tehnike [Experience of application of ftorpolimerny materials in aviation engineering] // Rossijskij himicheskij zhurnal. 2008. T. LII. №3. S. 30–44.
7. Zhelezina G.F. Konstrukcionnye i funkcionalnye organoplastiki novogo pokoleniya [Constructional and functional organoplastics of new generation] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №4. St. 06. Available at: http://www.viam-works.ru (accessed: July 03, 2017).
8. Kulagina G.S., Korobova A.V., Zuev S.V., Zhelezina G.F. Issledovanie tribologicheskih svojstv organoplastikov na osnove tkanogo armiruyushhego napolnitelya [Study of tribological properties of organoplastics on the basis of reinforcing fabric filler] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №11. St. 06. Available at: http://www.viam-works.ru (accessed: June 02, 2017). DOI: 10.18577/2307-6046-2016-0-11-6-6.
9. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
10. Timoshkov P.N., Hrulkov A.V. Sovremennye tehnologii pererabotki polimernyh kompozitsionnyh materialov, poluchaemyh metodom propitki rasplavnym svyazuyushchim [Modern technologies of hotmelt polymer composite materials processing] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №8. St. 04. Available at: http://www.viam-works.ru (accessed: May 16, 2017). DOI: 10.18577/2307-6046-2014-0-8-4-4.
11. Muhametov R.R., Ahmadieva K.R., Chursova L.V., Kogan D.I. Novye polimernye svyazujushhie dlya perspektivnyh metodov izgotovleniya konstrukcionnyh voloknistyh PKM [New polymeric binding for perspective methods of manufacturing of constructional fibrous PCM] // Aviacionnye materialy i tehnologii. 2011. №2. S. 38–42.
12. Mihajlov M.M. Vlagopronicaemost organicheskih dielektrikov [Humidity permeability of organic dielectrics]. M.: Gosenergizdat, 1961. 163 s.
13. Perepelkin K.E. Himicheskie volokna: razvitie proizvodstva, metody polucheniya, svojstva, perspektivy [Chemical fibers: production development, methods of receiving, property, perspective]. SPb.: SPGUTD, 2008. 354 s.
14. Sovremennye mashinostroitelnye materialy. Nemetallicheskie materialy: spravochnik / pod obshh. red. I.V. Gorynina, A.S. Oryshhenko [Modern machine-building materials. Non-metallic materials: directory / gen ed. by I.V. Gorynin, A.S. Oryshhenko]. SPb.: Professional, 2012. 916 s.
15. Available at: http://www.lirsot.ru (accessed: March 01, 2017).
16. Eshbi M., Dzhons D. Konstrukcionnye materialy. Polnyj kurs [Constructional materials. Full course]. Dolgoprudnyj: Intellekt, 2010. 672 s.
17. Mihajlin Yu.A. Konstrukcionnye polimernye kompozicionnye materialy. 2-e izd. [Constructional polymeric composite materials. 2nd ed.]. SPb.: Nauchnye osnovy i tehnologii, 2013. 822 s.
18. Lipatov Yu.S. Mezhfaznye yavleniya v polimerah [The interphase phenomena in polymers]. Kiev: Nauk. Dumka, 1980. 260 s.
19. Panshin Yu.A., Malkevich S.G., Dunaevskaya C.S. Ftoroplasty [Fluoropolymers]. L.: Himiya, 1978. 232 s.
The comparative results of surface coating removal from the carbon fiber, which determine the efficiency of interphase coating deposition and ceramic matrix composite manufacturing, are discussed. The physical-chemical and thermal analysis, tensile strength measurements and microstructure of carbon fillers with surface coating and after its removal were carried out. It was shown, that the most optimal method from technological point of view is the surface coating removal by annealing of carbon fiber at static air atmosphere at 400°С.
2. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
3. Kablov E.N. Tendencii i orientiry innovacionnogo razvitiya Rossii: sb. inform. materialov. 3-e izd., pererab. i dop. [Tendencies and reference points of innovative development of Russia: collection of information materials. 3rd ed., rev. and add.]. M.: VIAM, 2015. 720 s.
4. Haskov M.A., Shestakov A.M., Sorokin O.Yu., Gulyaev A.I., Davydova E.A., Sulyanova E.A., Sinyakov S.D. Termoanaliticheskie issledovaniya formirovaniya interfaznogo pokrytiya na osnove sistem polikarbosilan–oligosilazan–Rolivsan [Thermoanalytical researches of forming of interphase covering on the basis of systems polycarbosilane-oligoclase-Rolivsan] // Tez. dokl. III Vseros. nauch.-tehnich. konf. «Materialy i tehnologii novogo pokoleniya dlya perspektivnyh izdelij aviacionnoj i kosmicheskoj tehniki» (Moskva, 17 iyulya 2017 g.). M.: VIAM, 2017. S. 1–14. Available at: https://conf.viam.ru/conf/250/proceedings (accessed: September 10, 2017).
5. Kablov E.N., Grashhenkov D.V., Isaeva N.V., Solncev S.S. Perspektivnye vysokotemperaturnye keramicheskie kompozicionnye materialy [Perspective high-temperature ceramic composite materials] // Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 20–24.
6. Sorokin O.Yu. K voprosu o mehanizme vzaimodejstviya uglerodnyh materialov s kremniem (obzor) [On the issue of the mechanism of interaction between carbon materials and Si melt (review)] //Aviacionnye materialy i tehnologii. 2015. №1. S. 65–70. DOI: 10.18577/2071-9140-2015-0-1-65-70.
7. Lebedeva Yu.E., Popovich N.V., Orlova L.A. Zashhitnye vysokotemperaturnye pokrytiya dlya kompozicionnyh materialov na osnove SiC [Protective high temperature coatings for composite materials on the basis of SiC] // Trudy VIAM: elektron. nauch.-tehnich. zhurnal. 2013. №2. St. 06. Available at: http://www.viam-works.ru (accessed: August 01, 2017).
8. Meleshko A.I., Polovnikov S.P. Uglerod, uglerodnye volokna, uglerodnye kompozity [Carbon, carbon fibers, carbon composites]. M.: SAJNS-PRESS, 2007. 192 s.
9. Baklanova N.I. Interfejsnye pokrytiya na armiruyushhih uglerodnyh i karbidokremnievyh voloknah dlya kompozitov s keramicheskoj matricej: avtoref. dis. ... dokt. him. nauk [The interface coverings on reinforcing carbon and carborundum fibers for composites with ceramic matrix: thesis, Dr. Sci. (Tech.)]. Novosibirsk, 2010. 40 s.
10. Tkachenko L.A., Shaulov A.Yu., Berlin A.A. Zashhitnye zharoprochnye pokrytiya uglerodnyh materialov // Neorganicheskie materialy. 2012. T. 48. №3. S. 261–271.
11. Zajcev B.N., Baklanova N.I., Zima T.M. Issledovanie metodom atomno-silovoj mikroskopii poverhnostno-modificirovannyh uglerodnyh volokon [Research by method of nuclear and power microscopy of the surface modified carbon fibers] // Neorganicheskie materialy. 2008. T. 44. №6. S. 682–688.
12. Baklanova N.I., Zima T.M., Utkin A.V., Titov A.T. Mikrostrukturnye osobennosti
TaC-pokrytij na uglerodnyh voloknah [Microstructural features of TaC-coatings on carbon fibers]// Neorganicheskie materialy. 2011. T. 47. №7. S. 812–817.
13. Utkin A.V., Matvienko A.A., Titov A.T., Baklanova N.I. Formirovanie i issledovanie mnogoslojnogo ZrO2-pokrytiya na karbidokremnievyh voloknah dlya SiC/SiC-kompozitov [Forming and research of multi-layer ZrO2-covering on carborundum fibers for SiC/SiC-composites] // Neorganicheskie materialy. 2011. T. 47. №10. S. 1176–1181.
14. Uglerodnye volokna / pod red. S.M. Simamury [Carbon fibers / ed. by S.M. Simamura]. M.: Mir, 1987. 304 s.
15. Morgan P. Carbon fibers and their composites. USA: CRC Press, 2005. 1131 p.
16. Kondrashova I.A., Cheblakova E.G., Evteeva E.E. Obrabotka uglerodnogo volokna dlya dalnejshej ekspluatacii v tehnologicheskih processah [Processing of carbon fiber for further operation in technological processes] // Evrazijskij Soyuz Uchenyh (ESU). Tehnicheskie nauki. 2015. №3 (12). S. 36–38.
17. Raskutin A.E. Strategiia razvitiia polimernykh kompozitsionnykh materialov [Development strategy of polymer composite materials] // Aviatsionnye materialy i tekhnologii. 2017. №S. S. 344–348. DOI: 10.18577/2071-9140-2017-0-S-344-348.
18. Park S.-J. Carbon Fiber. Korea: Springer, 2015. 330 p.
19. Available at: https://www.tohotenax.com/ru/produkci%d1%8f/uglerodn%d1%8be-volokna-tenax%c2%ae/zzgut%d1%8b-tenax%c2%ae/ (accessed: September 10, 2017).
20. Cuj Syuj, Guseva R.I., Li Vej, Chzhan Linyuni, Gao Yuj. Analiz sostoyaniya poverhnosti vysokoprochnyh kompozicionnyh materialov s uglerodnym voloknom i issledovanie ih mehanicheskih harakteristik [The analysis of surface condition of high-strength composite materials with carbon fiber and research of their mechanical characteristics] // Uchenye zapiski Komsomol'skogo-na-Amure gosudarstvennogo tehnicheskogo universiteta. 2011. №IV-1 (8). S. 4–8.
21. Urvanov S.A. Modificirovanie uglerodnogo volokna uglerodnymi nanostrukturami: avtoref. dis. ... kand. him. nauk [Modifying of carbon fiber by carbon nanostructures: thesis, PhD (Tech.)]. M., 2016. 20 s.
22. Kern F., Gadow R. Liquid phase process for protective ceramic layers on carbon fibers // Surface and Coatings Technology. 2002. Vol. 151–152. P. 418–423.
23. Available at: http://rus-carbon.ru/main/catalog/CarbonTk.aspx (accessed: September 10, 2017).
24. Orlov M.R. Strategicheskie napravleniya razvitiya Ispytatelnogo centra FGUP «VIAM» [Strategic directions of development of the Test center FSUE «VIAM»] // Aviacionnye materialy i tehnologii. 2012. №S. S. 387–393.
25. Erasov V.S. Vizualizaciya processov ispytaniya i eksperimentalnyh dannyh v 3D-prostranstve [Visualization of mechanical testing processes and experimental data processing via 3D-presentation] // Aviacionnye materialy i tehnologii. 2014. №S4. S. 22–28. DOI: 10.18577/2071-9140-2014-0-s4-22-28.
26. Gulyaev A.I., Shurtakov S.V. Kolichestvennyj analiz mikrostruktury granichnogo sloya «volokno–matrica» v ugleplastikah [Quantitative analysis of fiber–matrix interface microstructure in carbon composites] // Trudy VIAM: elektron. nauch.-tehnich. zhurnal. 2016. №7. St. 08. Available at: http://www.viam-works.ru (accessed: August 01, 2017). DOI: 10.18577/2307-6046-2016-0-7-8-8.
27. Nefedov N.I., Haskov M.A., Petrova A.P., Buznik V.M. Issledovanie termicheskih svojstv ftorparafinov i gidrofobnyh pokrytij na ih osnove [Study of the thermal properties of fluorinated paraffins and hydrophobic coatings on their base] // Trudy VIAM: elektron. nauch.-tehnich. zhurnal. 2017. №2. St. 11. Available at: http://www.viam-works.ru (accessed: September 11, 2017). DOI: 10.18577/2307-6046-2017-0-2-11-11.
28. Kablov E.N. Materialy – osnova lyubogo dela [Materials are the base of any business] // Delovaya slava Rossii. 2013. №2 (40). S. 4–9.
29. Kablov E.N. Materialy novogo pokoleniya [Materials of new generation] // Zashhita i bezopasnost. 2014. №4. S. 28–29.
30. Kablov E.N. Kompozity: segodnya i zavtra [Composites: today and tomorrow] // Metally Evrazii. 2015. №1. S. 36–39.
Studied the protective properties of polysulfide sealants UT-32NT and VITEF-1NT on the samples of magnesian alloy MA8 after exposure to the tropical chamber during for 7 months, salt spray chamber during for 2 months, andML5 after fuel TS-1. It was found that, when working in an environment of air and tropical climate sealants VITEF-1NT or UT-32NT (film thickness of 1,5–2 mm) are suitable for protecting alloy MA8 oxidized as a sheet and in contact with the rivets on KFО-30 ground or sealant. Sealants VITEF-1NT or UT-32NT after exposure in the fuel TS-1, containing water in the form of a separate phase, have weak adhesion to a magnesian alloy of ML5 oxidized and do not protect it from corrosion.
2. Kablov E.N. Shestoj tehnologicheskij uklad [Sixth technological way] // Nauka i zhizn. 2010. №4. S. 2–7.
3. Istoriya aviacionnogo materialovedeniya. VIAM – 80 let: gody i lyudi / pod obshh. red. E.N. Kablova [History of aviation materials science. VIAM – 80 years: years and people / gen. ed. by E.N. Kablov]. M.: VIAM, 2012. S. 346–348.
4. Grashhenkov D.V., Chursova L.V. Strategiya razvitiya kompozicionnyh i funkcionalnyh materialov [Strategy of development of composite and functional materials] // Aviacionnye materialy i tehnologii. 2012. №S. S. 231–242.
5. Savenkova A.V., Chursova L.V., Eliseev O.A., Glazov P.A. Germetiki aviacionnogo naznacheniya [Hermetics of aviation assignment] // Aviacionnye materialy i tehnologii. 2012. №3. S. 40–43.
6. Minkin V.S., Hakimullin Yu.N., Deberdeev T.R., Berlin Al.Al. Vliyanie ionov Fe (III) v sostave MnO2 na kinetiku vulkanizacii zhidkih tiokolov [Influence of ions of Fe (III) as a part of MnO2 on kinetics of curing of the liquid it is thiokol] // Klei. Germetiki. Tehnologii. 2009. №4. S. 28–30.
7. Zajceva E.I., Chursova L.V. Issledovanie mikrobiologicheskoj stojkosti polisul'fidnogo germetika s novymi antisepticheskimi dobavkami [Research of microbiological firmness of polysulphide hermetic with new antiseptic additives] // Klei. Germetiki. Tehnologii. 2012. №1. S. 16–20.
8. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
9. Zaicheva Е.I., Donskoi А.А. Sealants Based on Polysulfide Elastomers // Polymer Science. Ser. С. 2008. Vol. 1. P. 15–25.
10. Zajceva E.I., Donskoj A.A. Germetiki na osnove polisulfidnyh elastomerov [Hermetics on the basis of polysulphide elastomer] // Klei. Germetiki. Tehnologii. 2008. №6–7. S. 15–25.
11. Zajceva E.I., Donskoj A.A. Novye polisulfidnye germetiki dlya aviacionnoj promyshlennosti [New polysulphide hermetics for the aviation industry] // Klei. Germetiki. Tehnologii. 2009. №3. S. 18–23.
12. Petrova A.P., Donskoj A.A. Kleyashhie materialy, germetiki: spravochnik [Gluing materials, hermetics: directory]. SPb.: Professional, 2008. S. 503–567.
13. Zajceva E.I., Chursova L.V., Smirnov D.N. Perspektivy snizheniya plotnosti polisul'fidnyh germetikov [Perspectives of decrease in density of polysulphide hermetics] // Klei. Germetiki. Tehnologii. 2012. №5. S. 10–14.
14. Eliseev O.A., Krasnov L.L., Zajceva E.I., Savenkova A.V. Razrabotka i modificirovanie elastomernyh materialov dlya primeneniya vo vseklimaticheskih usloviyah [Development and modifying of elastomeric materials for application in all weather conditions] // Aviacionnye materialy i tehnologii. 2012. №S. S. 309–314
15. Karimova S.A., Pavlovskaya T.G. Razrabotka sposobov zashhity ot korrozii konstrukcij, rabotajushhih v usloviyah kosmosa [Development of ways of corrosion protection of the designs working in the conditions of space] // Trudy VIAM: electron. nauch.-tehnich. zhurn. 2013. №4. St. 02. Available at: http://www.viam-works.ru (accessed: August, 01 2017).
16. Eliseev O.A., Bryk Ya.A., Smirnov D.N. Modifikaciya polisulfidnyh germetikov ingibitorami korrozii [Polysulfide sealants modification by corrosion inhibitors] // Aviacionnye materialy i tehnologii. 2016. №S2 (44). S. 15–21. DOI: 10.18577/2071-9140-2016-0-S2-15-21.
Force, deformation and energy criteria of destruction are considered. It is shown that in elastic area communication between characteristics of destruction has linear character. Size defining criterion is the size of the specific volume energy necessary for education or development of the available surface of destruction. It is thus considered, what not all spent at formation of a new free surface energy goes on formation of a surface. The part of energy dissipates in the form of heat, sound and electromagnetic waves. At the expense of it the body reduces the potential energy and thus resists to further destruction. The destruction model in which a formula Griffitsa is a special case is offered. Work is executed within implementation of the complex scientific direction 3.3. «Technology of forecasting of properties, modeling and implementation of modern processes of designing and production of products from nonmetallic and composite materials with use of the digital methods compatible
2. Kablov E.N., Grashhenkov D.V., Erasov V.S., Anchevskij I.E. i dr. Stend dlya ispytaniya na klimaticheskoj stancii GCKI krupnogabaritnyh konstrukcij iz PKM [The stand for testing for the GCTC climatic stations of large-size designs from PCM] // Sb. dokl. IX Mezhdunar. nauch. konf. po gidroaviacii «Gidroaviasalon–2012». 2012. S. 122–123.
3. Kablov E.N., Grinevich A.V., Erasov V.S. Harakteristiki prochnosti metallicheskih aviacionnyh materialov i ih raschetnye znacheniya [Characteristics of durability of metal aviation materials and their calculated values] // 75 let. Aviacionnye materialy. Izbrannye trudy «VIAM» 1932–2007: yubil. nauch.-tehnich. sb. M.: VIAM, 2007. S. 370–379.
4. Buznik V.M., Kablov E.N., Koshurina A.A. Materialy dlya slozhnyh tehnicheskih ustrojstv arkticheskogo primeneniya [Materials for difficult engineering devices of the Arctic application] // Nauchno-tehnicheskie problemy osvoeniya Arktiki. M.: Nauka, 2015. S. 490.
5. Oreshko E.I., Erasov V.S., Podzhivotov N.Yu. Vybor shemy raspolozheniya vysokomodulnyh sloev v mnogoslojnoj gibridnoj plastine dlya ee naibolshego soprotivleniya potere ustojchivosti // Aviacionnye materialy i tehnologii. 2014. №S4. S. 109–117. DOI: 10.18577/2071-9140-2014-0-s4-109-117.
6. Oreshko E.I., Erasov V.S., Podjivotov N.Yu. Vybor shemy raspolozheniya vysokomodulnyh sloev v mnogoslojnoj gibridnoj plastine dlya ee naibolshego soprotivleniya potere ustojchivosti [Arrangement of high-modular layers in a multilayer hybrid plate for its greatest resistance to stability loss] // Aviacionnye materialy i tehnologii. 2014. №S4. S. 109–117. DOI: 10.18577/2071-9140-2014-0-S4-109-117.
7. Oreshko E.I., Erasov V.S., Podzhivotov N.Yu., Lutsenko A.N. Raschet na prochnost gibridnoj paneli kryla na baze listov i profilej iz vysokoprochnogo alyuminijlitievogo splava i sloistogo alyumostekloplastika [Strength calculation of hybrid wing panel on the basis of sheets and profiles from high-strength aluminum lithium alloy and laminated aluminum fiberglass] // Aviacionnye materialy i tehnologii. 2016. №1 (40). S. 53–61. DOI: 10.18577/2071-9140-2016-0-1-53-61.
8. Dimitrienko Yu.I., Gubareva E.A., Sborshhikov S.V., Bazyleva O.A., Lucenko A.N., Oreshko E.I. Modelirovanie uprugoplasticheskih harakteristik monokristallicheskih intermetallidnyh splavov na osnove mikrostrukturnogo chislennogo analiza [Modeling of elasto-plastic characteristics of single-crystal intermetallidny alloys on the basis of the microstructural numerical analysis] // Matematicheskoe modelirovanie i chislennye metody. 2015. №2. S. 3–22.
9. Kollerov M.Yu., Gusev D.E., Oreshko E.I. Eksperimentalno-teoreticheskoe obosnovanie vybora metoda i implantatov dlya ustraneniya voronkoobraznoj deformacii grudnoj kletki [Experimental and theoretical justification of choice of method and implants for elimination of funneled deformation of thorax] // Nauchnye trudy (Vestnik MATI). 2012. №19 (91). S. 331–336.
10. Oreshko E.I., Erasov V.S., Lucenko A.N. Osobennosti raschetov ustojchivosti sterzhnej i plastin // Aviacionnye materialy i tehnologii. 2016. №4 (45). S. 74–79. DOI: 10.18577/2071-9140-2016-0-4-74-79.
11. Dimitrienko Yu.I., Lucenko A.N., Gubareva E.A., Oreshko E.I., Sborshhikov S.V., Bazyleva O.A., Turenko E.Yu. Integrirovannaya informacionnaya sistema dlya hraneniya dannyh po svojstvam zharoprochnyh nikelevyh splavov i rascheta ih mehanicheskih harakteristik [The data storage integrated information system on properties of heat resistant nickel alloys and calculation of their mechanical characteristics] // Aviacionnye materialy i tehnologii. 2017. №1 (46). S. 86–94. DOI: 10.18577/2071-9140-2017-0-1-86-94.
12. Oreshko E.I., Erasov V.S., Lutsenko A.N. Matematicheskoe modelirovanie deformirovaniya konstrukcionnogo ugleplastika pri izgibe [Mathematical modeling of deformation constructional carbon fiber at a bend] // Aviacionnye materialy i tehnologii. 2016. №2 (41). S. 50–59. DOI: 10.18577/2071-9140-2016-2-50-59.
13. Kollerov M.Yu., Usikov V.D., Kuftov V.S., Gusev D.E., Oreshko E.I. Mediko-tehnicheskoe obosnovanie ispolzovaniya titanovyh splavov v implantiruemyh konstrukciyah dlya stabilizacii pozvonochnika [Medico-technical justification of use of titanium alloys in implanted designs for backbone stabilization] // Titan. 2013. №1 (40). S. 39–45.
14. Gusev D.E., Kollerov M.Yu., Rudakov S.S., Korolev P.A., Oreshko E.I. Ocenka biomehanicheskoj sovmestimosti implantiruemyh opornyh plastin iz splavov na osnove titana i nikelida titana metodom kompyuternogo modelirovaniya [Оценка биомеханической совместимости имплантируемых опорных пластин из сплавов на основе титана и никелида титана методом компьютерного моделирования] // Titan. 2011. №3 (33). S. 39–44.
15. Oreshko E.I., Erasov V.S., Lucenko A.N., Terentev V.F., Slizov A.K. Postroenie diagramm deformirovaniya v trehmernom prostranstve σ–ε–t [Creation of the 3D stress-strain diagrams ––t] // Aviacionnye materialy i tehnologii. 2017. №1 (46). S. 61–68. DOI: 10.18577/2071-9140-2017-0-1-61-68.
16. Kollerov M.Yu., Egorova M.V., Rtishhev S.N., Oreshko E.I. i dr. Eksperimentalno-teoreticheskoe obosnovanie algoritma rannego ortodonticheskogo lecheniya detej s odnostoronnej rasshhelinoj guby i neba nesemnymi apparatami [Experimental and theoretical justification of algorithm of early orthodontic treatment of children with one-sided crevice of lip and the sky fixed devices] // Stomatologiya detskogo vozrasta i profilaktika. 2011. T. 10. №1. S. 23–27.
17. Antipov V.V., Oreshko E.I., Erasov V.S., Serebrennikova N.Y. Hybrid laminates for application in north conditions // Mechanics of Composite Materials. 2016. Vol. 52. No. 5. P. 973–990.
18. Oreshko E.I., Erasov V.S., Lucenko A.N. Kriticheskie napryazheniya poteri ustojchivosti v gibridnyh sloistyh plastinah [The critical tension of loss of stability in hybrid layered plates] // Materialovedenie. 2016. №11. S. 17–21.
19. Erasov V.S., Nuzhnyj G.A., Grinevich A.V. Ob ocenke povrezhdaemosti metallicheskih materialov metodami mehanicheskih ispytanij [About assessment of damageability of metal materials methods of mechanical tests] // Deformaciya i razrushenie materialov. 2015. S. 42–47.
20. Erasov V.S., Oreshko E.I., Lutsenko A.N. Povrezhdaemost materialov pri staticheskom rastyazhenii [Damageability of materials in tension testing] // Aviacionnye materialy i tehnologii. 2015. №4 (37). S. 91–94. DOI: 10.18577/2071-9140-2015-0-4-91-94.
21. Griffith A.A. The Phenomenon of Rupture and flow in solids // London Royal Society. 1921. Vol. 221. Ser. A. P. 163–198.
22. Morozov E.M. Vvedenie v mehaniku razvitiya treshhin: ucheb. posobie [Introduction in mechanics of development of cracks: manual]. M.: MIFI, 1977. S. 36–39.
23. Erasov V.S., Oreshko E.I. Deformaciya i razrushenie kak processy izmeneniya obema, ploshhadi poverhnosti i linejnyh razmerov v nagruzhaemyh telah [Deformation and destruction as processes of change of volume, the areas of a surface and the linear sizes in loaded bodies] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №8. St. 11. Available at: http://www.viam-works.ru (accessed: September 11, 2017). DOI: 10.18577/2307-6046-2016-0-8-11-11.
24. Erasov V.S., Oreshko E.I., Lucenko A.N. Ploshhad svobodnoj poverhnosti kak kriterij hrupkogo razrusheniya [Area of a free surface as criterion of brittle fracture] // Aviacionnye materialy i tehnologii. 2017. № 2 (47). S. 69–79. DOI: 10.18577/2071-9140-2017-0-2-69-79.
25. Fridman Ya.B. Mehanicheskie svojstva metallov [Mechanical properties of metals]. M.: Mashinostroenie, 1974. T. 2: Mehanicheskie ispytaniya. Konstrukcionnaya prochnost. S. 232–233.
26. Terentev V.F., Korableva S.A. Ustalost metallov [Fatigue of metals]. M. Nauka, 2015. S. 68–71.
27. Kershtejn I.M, Klyushnikov V.D., Lomakin E.V., Shesterikov S.A. Osnovy eksperimental'noj mehaniki razrusheniya [Bases of experimental fracture mechanics]. M.: Izd-vo Mosk. un-ta. 1989. S. 42–46.
28. Shvechkov E.I. Analiz rossijskih i zarubezhnyh metodov ispytanij na staticheskuyu treshhinostojkost aviacionnyh materialov [The analysis of the Russian and foreign test methods on static crack resistance of aviation materials] // Tehnologiya legkih splavov. 2016. №1. S. 99–106.
29. GOST 25.506–85. Raschety i ispytaniya na prochnost. Metody mehanicheskih ispytanij metallov. Opredelenie harakteristik treshhinostojkosti (vyazkosti razrusheniya) pri staticheskom nagruzhenii [Calculations and strength tests. Methods of mechanical tests of metals. Definition of characteristics of crack resistance (fracture toughness) at static loading]. M.: Izd-vo standartov, 1985. 61 s.
30. OST1 90356–84. Metally. Metod opredeleniya staticheskoj treshhinostojkosti (vyazkosti razrusheniya) obshivochnyh materialov pri ploskom napryazhennom sostoyanii [Metals. Method of definition of static crack resistance (fracture toughness) of sheathing materials at flat tension]. M., 1984. 31 s.
31. OST1 92122–88. Metally. Metod opredeleniya krivoj soprotivleniya rasprostraneniyu treshhiny pri staticheskom nagruzhenii (R-krivoj) obshivochnyh materialov pri ploskom napryazhennom sostoyanii [Metals. Method of definition of curve of resistance to crack distribution at static loading (R-curve) of sheathing materials at flat tension]. M., 1988. 32 s.
32. ASTM E 561-10. Standard Test Method for K-R Curve Determination. American Society for Testing and Materials, 2010.
33. Parton V.Z., Morozov E.M. Mehanika uprugoplasticheskogo razrusheniya [Mechanics of elasto-plastic destruction]. M.: Nauka, 1985. S. 134–135.
34. Zhu X.-K., Joyce J.A. Review of fracture toughness (G, K, J, CTOD, CTOA) testing and standardization // U.S. Navy Research. 2012. Paper 49.
35. ASTM E 1290-08. Standard Test Method for Crack-Tip Opening Displacement (CTOD) Fracture Toughness Measurement. American Society for Testing and Materials, 2008.
36. ASTM E 2472-06. Standard Test Method for Determination of Resistance to Stable Crack Extension under Low-Constraint Conditions. American Society for Testing and Materials, 2006.
37. ASTM E 1820-11. Standard Test Method for Measurement of Fracture Toughness. American Society for Testing and Materials, 2011.
38. ASTM E 1922-04. Standard Test Method for Translaminar Fracture Toughness of Laminated and Pultruded Polymer Matrix Composite Materials. American Society for Testing and Materials, 2010.
For the 2012–2015 period at FSUE «VIAM» carried out important experimental work, aimed at obtaining the strength characteristics of the single crystals with the orientation , and of the most promising Nickel-based superalloys. This work is devoted to study the anisotropic characteristics of elasticity in tension (рoisson's ratio and static modulus of elasticity) single crystal Nickel-based superalloys VZHM7 and VZHM8 with crystallographic orientations (CGO) , , in the temperature range 20–1000°C.
2. Toloraiya V.N., Kablov E.N., Demonis I.M. Tehnologiya polucheniya monokristallicheskih otlivok turbinnyh lopatok GTD zadannoj kristallograficheskoj orientacii iz renijsoderzhashhih zharoprochnyh splavov [Technology of receiving single-crystal molding of turbine blades of GTE of the set crystallographic orientation from rhenium containing hot strength alloys] // Aviacionnye materialy i tehnologii. 2004. №1. S. 107–117.
3. Shalin R.E., Svetlov I.L., Kachanov E.B., Toloraiya V.N., Gavrilin O.S. Monokristally nikelevyh zharoprochnyh splavov [Monocrystals of nickel hot strength alloys]. M.: Mashinostroenie, 1997. 336 s.
4. Nozhnickij Yu.A., Golubovskij E.R. Obespechenie prochnostnoj nadezhnosti monokristallicheskih rabochih lopatok vysokotemperaturnyh turbin perspektivnyh GTD [Ensuring strength reliability of single-crystal working blades of high-temperature turbines of perspective GTE] // Nauchnye idei S.T. Kishkina i sovremennoe materialovedenie: tr. mezhdunar. nauch.-tehnich. konf. M.: VIAM, 2006. S. 65–71.
5. Miner R.V., Voigt R.S., Gayda J., Gabb T.P. Orientation and temperature dependence of some mechanical properties of the single-crystal nickel-base superalloy René N4: Part I. Tensile behavior // Metallurgical Transactions A. 1986. Vol. 17. Issue. 3. P. 491–496.
6. Sass V., Glatzel U., Feller-Kniepmeier M. Creep anisotropy in monocrystalline nickel-base superalloy CMSX-4 // Superalloys-1996. Champion (Pennsylvania): Minerals, Metals & Materials Society. 1996. P. 283–290.
7. Golubovskij E.R., Svetlov I.L. Temperaturno-vremennaya zavisimost' anizotropii dlitelnoj prochnosti monokristallov ZhNS [Temperature and time dependence of anisotropy of long durability of monocrystals of heat resisting nickel alloys] // Problemy prochnosti. 2002. №2. S. 5–19.
8. Svetlov I.L., Petrushin N.V., Golubovskij E.R. i dr. Mehanicheskie svojstva monokristallov nikelevogo zharoprochnogo splava, soderzhashhego renij i rutenij [Mechanical properties of monocrystals of the nickel hot strength alloy, containing reniye and ruthenium] // Deformaciya i razrushenie materialov. 2008. №11. S. 26–35.
9. Golubovskij E.R., Svetlov I.L., Petrushin N.V. i dr. Malociklovaya ustalost' monokristallov zharoprochnyh nikelevyh splavov pri povyshennyh temperaturah [Low-cyclic fatigue of monocrystals of heat resisting nickel alloys at elevated temperatures] // Deformaciya i razrushenie materialov. 2009. №8. S. 41–48.
10. Kablov E.N., Petrushin N.V., Svetlov I.L., Demonis I.M. Nikelevye litejnye zharoprochnye splavy novogo pokoleniya [Nickel foundry heat resisting alloys of new generation] // Aviacionnye materialy i tehnologii. 2012. №S. C. 36–52.
11. Petrushin N.V., Svetlov I.L., Ospennikova O.G. 1) Litejnye zharoprochnye nikelevye splavy [Cast heat resisting nickel alloys] // Vse materialy. Enciklopedicheskij spravochnik. 2012. №5. S. 15–19; 2) Litejnye zharoprochnye nikelevye splavy [Cast heat resisting nickel alloys] // Vse materialy. Enciklopedicheskij spravochnik. 2012. №6. S. 16–21.
12. Petrushin N.V., Visik E.M., Gorbovec M.A., Nazarkin R.M. Strukturno-fazovye harakteristiki i mehanicheskie svojstva monokristallov zharoprochnyh nikelevyh renijsoderzhashhih splavov s intermetallidno-karbidnym uprochneniem [Structural phase characteristics and mechanical properties of monocrystals of heat resisting nickel rhenium containing alloys with intermetallic-carbide hardening] // Metally. 2016. №4. S. 57–70.
13. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
14. Solovyev A.E., Golynets S.A., Khvatsky K.K., Aslanyan I.R. Provedenie staticheskih ispytanij pri rastyazhenii na mashinah firmy Zwick/Roell [Performing of static tensile tests on Zwick/Roell machines] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №8. St. 12. Available at: http://viam-works.ru (accessed: August 28, 2017). DOI: 10.18577/2307-6046-2015-0-8-12-12.
15. Kablov E.N., Svetlov I.L., Petrushin N.V. Nikelevye zharoprochnye splavy, legirovannye ruteniem [The nickel hot strength alloys alloyed by ruthenium] // Aviacionnye materialy i tehnologii. 2004. №1. S. 80–90.
16. Tolorajya V.N., Kablov E.N., Svetlov I.L., Orehov N.G., Golubovskij E.R. Anizotropiya prochnostnyh harakteristik v monokristallah nikelevyh zharoprochnyh splavov [Anisotropy of strength characteristics in monocrystals of nickel hot strength alloys] // Gornyj informacionno-analiticheskij byulleten. Tematich. prilozhenie: Funkcionalnye materialy. 2005. S. 225–236.