Articles
The work is devoted to the development of a technology for producing a cold-rolled sheet from a heat-resistant alloy of the Fe–Cr–Al–Y system. The alloy of the Fe–Cr–Al–Y is intended for the manufacture of honeycomb seals for the flow path of gas turbine engines with an operating temperature of up to 1100 °С. This alloy is intended to replace heat-resistant alloys ЭИ435 and ЭИ868, which are currently used for the manufacture of honeycomb seals. In terms of heat resistance, the alloy of the Fe–Cr–Al–Y system is significantly superior to nickel alloys ЭИ435 and ЭИ868.
2. Kablov E.N. New generation materials and digital technologies for their processing. Vestnik Rossiyskoy akademii nauk, 2020, vol. 90, no. 4, pp. 331–334.
3. Kablov E.N. The role of fundamental research in the creation of new generation materials. Reports of the XXI Mendeleev Congress on General and Applied Chemistry: in 6 vols. St. Petersburg, 2019, vol. 4, pp. 24.
4. Ospennikova O.G. Implementation results of the strategic directions on creation of new generation of heat-resisting cast and wrought alloys and steels for 2012–2016. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 17–23. DOI: 10.18577/2071-9140-2017-0-S-17-23.
5. Farafonov D.P., Leshchev N.E., Afanasiev-Khodykin A.N., Artemenko N.I. Abrasive wear-resistant seal materials of the gas turbine engine flow section. Aviacionnye materialy i tehnologii, 2019, no. 3 (56), pp. 67–74. DOI: 10.18577/2071-9140-2019-0-3-67-74.
6. Farafonov D.P., Degovets M.L., Aleshina R.Sh. The metal fibers of heat-resistant alloys alloyed by platinum group metals. Aviacionnye materialy i tehnologii, 2016, no. 1 (40), pp. 44–52. DOI: 10.18577/2071-9140-2016-0-1-44-52.
7. Kapitanenko D.V., Nekrasov B.R., Izakov I.A., Chebotareva E.S. Deforming equipment for isothermal stamping (part 1). Kuznechno-shtampovochnoye proizvodstvo. Obrabotka materialov davleniyem, 2021, no. 10, pp. 12–20.
8. Bakradze M.M., Skugorev A.V., Kucheryayev V.V., Bubnov M.V. Computer modeling of technological metal forming processes as effective instrument for development of new technologies. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 175–185. DOI: 10.18577/2071-9140-2017-0-S-175-185.
9. Denisova V.S., Malinina G.A., Vlasova O.V., Vinogradova A.Yu. The influence of silicon tetraboride additives on properties of heat-resistant coatings for nickel alloys protection. Aviacionnye materialy i tehnologii, 2019, no. 2 (55), pp. 68–73. DOI: 10.18577/2071-9140-2019-0-2-68-73.
10. Eliseev E.A., Leonov A.V., Voznesenskaya N.M., Nefedkin D.Yu. Study of changes in structure under the influence of various technological factors on the properties of cold-rolled strip made of nickel-beryllium alloy grade 97NL-VI. Problemy chernoy metallurgii i materialovedeniya, 2022, no. 1, pp. 29–34.
11. Kablov E.N., Bakradze M.M., Gromov V.I., Voznesenskaya N.M., Yakusheva N.A. New high strength structural and corrosion-resistant steels for aerospace equipment developed by FSUE «VIAM» (review). Aviacionnye materialy i tehnologii, 2020, no. 1 (58), pp. 3–11. DOI: 10.18577/2071-9140-2020-0-1-3-11.
12. Kuksenova L.I., Gerasimov S.A., Alekseeva M.S., Gromov V.I. Influence of vacuum chemical and thermal processing on wear resistance of VKS-7 and VKS-10 steels. Aviacionnye materialy i tehnologii, 2018, no. 1 (50), pp. 3–8. DOI: 10.18577/2071-9140-2018-0-1-3-8.
13. Smirnov A.E., Fahurtdinov R.S., Semenov M.Yu., Gromov V.I., Kurpyakova N.A., Sevalnev G.S. Application of complex chemical-thermal treatment for strengthening high-strength dispersion-hardening heat-resistant steel microalloyed with rare-earth metals. Metallovedenie i termicheskaya obrabotka metallov, 2018, no. 7 (757), pp. 38–42.
14. Abraimov N.V. High temperature materials and coatings for gas turbines. Moscow: Mashinostroyeniye, 1993, 336 p.
15. Zhukov L.L., Plemyannikova I.M., Mironova M.N. et al. Alloys for heaters. Moscow: Metallurgiya, 1985, 146 p.
16. Ivanov V.V., Tagiltsev S.V. Comparative analysis of technologies for manufacturing honeycomb seals. Gazoturbinnye tekhnologii, 2019, no. 6, pp. 26–29.
The paper presents a comparative analysis of the microstructure, size and distribution of carbides, hardness and tribotechnical properties during research and testing under the same conditions of bearing steel grades 60Kh13S-ShD, 95Kh18-Sh and 110Kh18M-ShD, commercially used in the Russian industry. Based on the results of the research, steel grades were identified that have the best set of properties after hardening heat treatment.
2. Sprishevsky A.I. Rolling bearings. Moscow: Mashinostroenie, 1968, 632 p.
3. Pinegin S.V. Rolling bearings in machines. Moscow: Publ. House of the RAS of the USSR, 1961, 150 p.
4. Instrument ball bearings: a reference book. Ed. K.N. Yavlensky et al. Moscow: Mashinostroenie, 1981, 351 p.
5. Kablov E.N., Bakradze M.M., Gromov V.I., Voznesenskaya N.M., Yakusheva N.A. New high strength structural and corrosion-resistant steels for aerospace equipment developed by FSUE «VIAM» (review). Aviacionnye materialy i tehnologii, 2020, no. 1 (58), pp. 3–11. DOI: 10.18577/2071-9140-2020-0-1-3-11.
6. Geller Yu.A. Tool steels. Moscow: Metallurgiya 1983, 525 p.
7. Sevalnev G.S., Yakusheva N.A., Korobova E.N., Dulnev K.V. Study of the diffusion saturation kinetics of high-chromium carbon steels of the martensitic class after various types of chemical-heat treatment. Aviation materials and technologies, 2022, no. 3 (68), paper no. 01. Available at: http://www.journal.viam.ru (accessed: April 20, 2023). DOI: 10.18577/2713-0193-2022-0-3-3-14.
8. Krishna S.C., Tharian K.T., Chakravarthi K.V.A. et al. Heat treatment and thermo-mechanical treatment to modify carbide banding in AISI 440C steel: a case study. Metallography, Microstructure, and Analysis, 2016, vol. 5, no. 2, pp. 108–115.
9. Zheng C., Fu B., Tang Y. et al. Microstructure and mechanical properties of 9Cr18Mo martensitic stainless steel fabricated by strengthening-toughening treatment. Materials Science and Engineering: A, 2023, vol. 869, p. 144783.
10. Yang J.R., Yu T.H., Wang C.H. Martensitic transformations in AISI 440C stainless steel. Materials Science and Engineering: A, 2006, vol. 438, pp. 276–280.
11. Shen Y., Moghadam S.M., Sadeghi F. et al. Effect of retained austenite – Compressive residual stresses on rolling contact fatigue life of carburized AISI 8620 steel. International Journal of Fatigue, 2015, vol. 75, pp. 135–144.
12. Gromov V.I., Kurpyakova N.A., Korobova E.N., Sedov O.V. New heat resistant steel for aircraft bearings. Trudy VIAM, 2019, no. 2 (74), paper no. 02. Available at: http://www.viam-works.ru (accessed: April 27, 2023). DOI: 10.18577/2307-6046-2019-0-2-17-23.
13. Korobova E.N., Sevalnev G.S., Gromov V.I., Leonov A.V. Steels for the manufacture of roller bearings for special purposes (review). Trudy VIAM, 2021, no. 11 (105), paper no. 01. Available at: http://www.viam-works.ru (accessed: April 25, 2023). DOI: 10.18577/2307-6046-2021-0-11-3-11.
14. Stive O.O.I., Bhadeshia H.K.D.H. Duplex hardening of steels for aeroengine bearings. ISIJ international, 2012, vol. 52, no. 11, pp. 1927–1934.
15. Smirnov A.E., Shevchenko S.Y., Shchipunov V.S. et al. Special features of the carbonitriding of parts of instrument bearings designed for extreme service conditions. Metal Science and Heat Treatment, 2016, vol. 58, no. 5–6, pp. 287–292.
16. Pakhomova S.A., Klimkina A.A., Gress M.A. Technology of heat treatment of corrosion-resistant bearings for the mining industry. Sovremennye innovatsionnyye tekhnologii podgotovki inzhenernykh kadrov dlya gornoy promyshlennosti i transporta, 2015, no. 1, pp. 98–104.
17. Sevalnev G.S., Sevalneva T.G., Kolmakov A.G., Dulnev K.V., Yazvitsky M.Yu. Influence of the phase composition of austenitic-martensitic trip steel VNS9-Sh on the characteristics of dry sliding friction in tribocontact with steel ShKh15. Deformatsiya i razrusheniye materialov, 2021, no. 10, pp. 20–27. DOI: 10.31044/1814-4632-2021-10-20-27.
18. Martensitic Stainless Steel for Knife Applications – Part 1: Fe–Cr–C. Computational Thermodynamics Calculation of Phase Diagrams using the CALPHAD Method. URL: http://www.calphad.com/ (accessed: April 26, 2023).
19. Kazarin S.I. On the chipping of carbides on the surface of the grooves of bearing rings made of corrosion-resistant steel 110Х18М-ShD. Vestnik Samarskogo gosudarstvennogo tekhnicheskogo universiteta. Series: Technical Sciences, 2014, no. 2 (42), pp. 69–73.
20. Special steels: 2 vols; trans. for Germ. 2nd ed. Moscow: Metallurgiya, 1966, vol. 1. 741 p.
21. Special steels: 2 vols; trans. for Germ. 2nd ed. Moscow: Metallurgiya, 1966, vol. 2. 532 p.
This article presents the results of studies of the influence of various modes of hot isostatic pressing (HIP) and heat treatment on the mechanical properties and structure of cast samples from the VT40L alloy. The temperature of the polymorphic transformation in the alloy was determined experimentally using the test quenching method. Tensile tests were carried out to determine the short-term strength and yield strength, the endurance limit on the basis of N = 2·107 cycle, impact strength and hardness were determined. Based on the test results, a casting processing mode was selected that provides a set of properties necessary for parts of aircraft products.
2. Kablov E.N. VIAM: new generation materials for PD-14. Krylya Rodiny, 2019, no. 7–8, pp. 54–58.
3. Kablov E.N. New generation materials and digital technologies for their processing. Vestnik Rossiyskoy akademii nauk, 2020, vol. 90, no. 4, pp. 331–334.
4. Tarasenko E.N., Prokhodtseva L.V., Rudakov A.G. High-strength economically alloyed titanium alloy with increased durability for precision shaped casting. Aviacionnye materialy i tehnologii, 2005, no. 2, pp. 37–42.
5. Putyrskiy S.V., Yakovlev A.L., Nochovnaya N.A., Krokhina V.A. Research of different heat treatment modes influence on properties of semi-finished products and welded joints from titanium alloy ВТ22М. Aviacionnye materialy i tehnologii, 2019, no. 1 (54), pp. 3–10. DOI: 10.18577/2071-9140-2019-0-1-3-10.
6. Krokhina V.A., Putyrskiy S.V., Gribkov M.S. Analysis of structure and mechanical properties of welded joint from titanium alloy VT22M. Aviation materials and technologies, 2022, no. 2 (67), paper no. 05. Available at: http://www.journal.viam.ru (accessed: September 08, 2023). DOI: 10.18577/2713-0193-2022-0-2-52-62. (дата обращения: 08.09.2023).
7. Alekseev E.B., Nochovnaya N.A., Panin P.V., Novak A.V. Technological plasticity, structure and phase composition of a pilot titanium ortho alloy with 13 wt. рct. aluminum. Trudy VIAM, 2015, no. 12, paper no. 08. Available at: http://www.viam-works.ru (accessed: September 08, 2023). DOI: 10.18577/2307-6046-2015-0-12-8-8.
8. Ilyin A.A., Kolachev B.A., Polkin I.S. Titanium alloys. Composition, structure, properties: reference book. Moscow: VILS; MATI, 2009, 520 p.
9. Kablov E.N., Akinina M.V., Volkova E.F., Mostyaev I.V., Leonov A.A. The research of aspects of phase composition and fine structure of magnesium alloy ML9 in the as-cast and heat-treated conditions. Aviacionnye materialy i tehnologii, 2020, no. 2 (59), pp. 17–24. DOI: 10.18577/2071-9140-2020-0-2-17-24.
10. Panin P.V., Zavodov A.V., Lukina E.A. Effect of thermal exposure on microstructure evolution and mechanical properties of cast beta-solidifying TiAl-based alloy doped with Gd. Intermetallics, 2022, vol. 145, art. 107534. DOI: 10.1016/j.intermet.2022.107534.
11. Kablov E.N. The strategic directions of development of materials and technologies of their processing for the period to 2030. Aviacionnye materialy i tehnologii, 2012, no. S, pp. 7–17.
12. Makushina M.А., Kochetkov A.S., Vinogradov I.D. Statistical evaluation of the homogeneity of the chemical composition of vacuum-arc remelting ingots from economic alloy titanium VT40L. Trudy VIAM, 2022, no. 11 (117), paper no. 03. Available at: http://www.viam-works.ru (accessed: September 08, 2023). DOI: 10.18577/2307-6046-2022-0-11- 27-36.
13. Kochetkov A.S., Panin P.V., Nochovnaya N.A., Makushina M.A. Study of chemical heterogeneity of beta-hardening TiAl alloy ingots of variable composition. Metallurg, 2020, no. 9, pp. 93–100.
14. Duyunova V.A., Oglodkov M.S., Putyrskiy S.V., Kochetkov A.S., Zueva O.V. Modern technologies for melting titanium alloy ingots (review). Aviation materials and technologies, 2022, no. 1 (66), paper no. 03. Available at: http://www.journal.viam.ru (accessed: September 08, 2023). DOI: 10.18577/2071-9140-2022-0-1-30-40.
15. Dobatkin V.I., Anoshkin N.F., Andreev A.L., Bochvar G.A., Musatov M.I., Tetyukhin V.V., Chistyakov E.P. Ingots of titanium alloys. Moscow: Metallurgiay, 1966, 287 p.
16. Panin P.V., Nochovnaya N.A., Kablov D.E., Alekseev E.B., Shiryaev A.A., Novak A.V. Practical guide to metallography of alloys based on titanium and its intermetallic compounds: textbook. Ed. E.N. Kablov. Moscow: VIAM, 2020, 200 p.
17. Belov V.D., Fadeev A.V., Ivashchenko A.I., Beltyukova S.O. Vacuum melting and production of shaped castings from titanium and thianium alloys. Moscow: Publ. House of MISiS, 2013, 107 p.
18. Bratukhin A.G., Bibikov E.L., Glazunov S.G. et al. Production of shaped castings from titanium alloys. 2nd ed., rev. and add. Moscow: VILS, 1998, 293 p.
19. Nochovnaya N.A., Bazyleva O.A., Kablov D.E., Panin P.V. Intermetallic alloys based on titanium and nickel. Ed. E.N. Kablov. 2nd ed. Moscow: VIAM, 2019, 316 p.
20. Sergeev V.V., Galitsky N.V., Kiselev V.P., Kozlov V.M. Titanium metallurgy. Moscow: Metallurgiya, 1971, 320 p.
21. Yasinsky K.K., Tarasenko E.N. New high-strength cast titanium alloy VT40L. Aviacionnye materialy i tehnologii, 2007, no. 1, pp. 58–60.
22. Kolachev B.A., Eliseev Yu.S., Bratukhin A.G., Talalaev V.D. Titanium alloys in the design and production of aircraft engines and aerospace equipment. Moscow: MAI, 2001, 412 p.
23. Aviation materials: reference book in 13 vols. Ed. E.N. Kablov. 7th ed., rev. and add. Moscow: VIAM, 2010, vol. 6: Titanium alloys, 96 р.
A porous carbon material and a metal composite material (MCM) based on an aluminum casting alloy of the Al–Si–Cu system containing 79±2 % (vol.) carbon, obtained using the vacuum-compression impregnation technology, have been studied. A study of the structure of MCM was carried out, the density, volumetric filling and temperature coefficients of linear expansion (TCLE) of the carbon frame and MCM were measured in the temperature range from 20 to 200 °C. It has been established that depending on the direction of the basal planes, the TCLE value decreases by 30–35 % at the carbon frame and by 15–20 % at MCM.
2. Vishnyakov L.R., Kokhany V.L., Moroz V.P., Kladnitsky E.I. Aluminum composites for tribotechnical purposes, obtained by vacuum-compression impregnation. Composite materials in industry: materials of the 23rd Intern. conf. Yalta, 2003, pp. 161–162.
3. Structure and properties of composite materials: collection. scientific tr. Ed. K.I. Portnoy. Moscow: Mashinostroyenie, 1979, 253 p.
4. Kotval P.S. Wear resistant aluminum – a new approach: cast surface composites. Journal of Metals, 1974, vol. 26, no. 1, pp.13–17.
5. Pepper R.T., Upp J.W., Rossi R.C., Kendall E.G. The tensile properties of graphite-fiber reinforced Al–Si alloy. Metallurgical Transactions, 1971, vol. 2, no. 1, pp. 117–120.
6. Salibekov S.E., Zabolotsky A.A. Study of the influence of nickel coatings on fiber on the structure and properties of aluminum-carbon fiber composite material. Fiber and dispersion-strengthened composite materials. Moscow: Nauka, 1976, pp. 33–37.
7. Device for producing a product from a metal matrix composite material: pat. 110310 Rus. Federation; appl. 31.05.11; publ. 20.11.11.
8. Method for producing a product from a composite material: patent. 2448808 Rus. Federation; appl. 05.10.10; publ. 27.04.12.
9. Kablov E.N., Solovyanchik L.V., Kondrashov S.V. and others. Electrically conductive hydrophobic polymer composite materials based on oxidized carbon nanotubes modified with tetrafluoroethylene telomers. Rossiyskie nanotekhnologii, 2016, vol. 11, no. 11–12, pp. 91–97.
10. Lukina E.A., Zaitsev D.V., Romanenko V.A. Structure and properties of a composite material based on aluminum alloy with the addition of carbon nanotubes. Aviacionnye materialy i tehnologii, 2019, no. 4 (57), pp. 27–34. DOI: 10.18577/2071-9140-2019-0-4-27-34.
11. Kablov E.N., Belov E.V., Trapeznikov A.V., Leonov A.A., Zaitsev D.V. Strengthening features and aging kinetics of high-strength cast aluminum alloy AL4MS based on Al–Si–Cu–Mg system. Aviation materials and technologies, 2021, no. 2 (63), paper no. 03. Available at: http://www.journal.viam.ru (accessed: July 17, 2023). DOI: 10.18577/2713-0193-2021-0-2-24-34.
12. Nyafkin A.N., Shavnev A.A., Kurbatkina E.I., Kosolapov D.V. Studying the effect of silicon carbide particle size on the linear thermal expansion coefficient of the composite material based on aluminum alloy. Trudy VIAM, 2020, no. 2 (86), paper no. 05. Available at: http://www.viam-works.ru (accessed: July 25, 2023). DOI: 10.18577/2307-6046-2020-0-2-41-49.
13. ASTM E228. Standard test method for linear thermal expansion of solid materials with a push-rod dilatometer. West Conshohocken, PA: ASTM International, 2017, pp. 1–10. DOI: 10.1520/Е0228-17.
14. Parker W.J., Jenkins R.J., Butler С.Р., Abbott G.L. Rash method of determining thermal diffusivity, heat capacity and thermal conductivity. Journal of Applied Physics, 1961, no. 32, pp. 1679–1684.
15. ASTM E831. Standard test method for linear thermal expansion of solid materials by thermomechanical analysis. West Conshohocken, PA: ASTM International, 2019, pp. 1–5. DOI: 10.1520/Е0831-19.
16. Nyafkin A.N., Loshchinin Yu.V., Kurbatkina E.I., Kosolapov D.V. Investigation of influence of silicon carbide fractional composition on thermal conductivity of compo-site material based on aluminium alloy. Trudy VIAM, 2019, no. 11 (83), paper no. 6. Available at: http://www.viam-works.ru (accessed: July 21, 2023). DOI: 10.18577/2307-6046-2019-0-11-53-59.
17. State Standard 18898–89 (ISO 2738–87). Powder products. Methods for determining density, oil content and porosity. Moscow: Publ. house of standards, 1990, 10 p.
18. State Standard R 22309–2015 (ISO 22309–2011). State system for ensuring the uniformity of measurements. Electron probe microanalysis. Quantitative analysis using energy dispersive spectrometry for elements with atomic number 11 (Na) and higher. Moscow: Standartinform, 2015, 19 p.
The process of agglomeration of granules of high-temperature metal-ceramic material based on molybdenum by high-temperature diffusion is discussed. The dependence of the size of the obtained granules on the agglomeration temperature is established. The influence of the agglomeration temperature on the strength of diffusion bonds arising between granules during high-temperature exposure is given is demonstrated.
2. Trofimenko N.N., Efimochkin I.Yu., Bolshakova A.N. Problems of creation and prospects for the use of heat-resistant high-entropy alloys. Aviacionnye materialy i tehnologii, 2018, no. 2 (51), pp. 3–8. DOI: 10.18577/2071-9140-2018-0-2-3-8.
3. Grashchenkov D.V., Efimochkin I.Yu., Bolshakova A.N. High-temperature metal-matrix composite materials reinforced with particles and fibers of refractory compounds. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 318–328. DOI: 10.18577/2071-9140-2017-0-S-318-328.
4. Kablov E.N. New generation materials are the basis of innovation, technological leadership and national security of Russia. Intellekt & Tekhnologii, 2016, no. 2, pp. 41–46.
5. Kablov E.N. New generation materials and digital technologies for their processing. Vestnik Rossiyskoy akademii nauk, 2020, vol. 90, no. 4, pp. 331–334.
6. Svetlov I.L. High-temperature Nb–Si composites (beginning). Materialovedenie, 2010, no. 9, pp. 29–38.
7. Svetlov I.L. High-temperature Nb–Si composites (end). Materialovedenie, 2010, no. 10, pp. 18–27.
8. Kablov E.N. VIAM: new generation materials for PD-14. Krylya Rodiny, 2019, no. 7–8, pp. 54–58.
9. Kablov E.N., Svetlov I.L., Efimochkin I.Yu. High-temperature Nb–Si composites. Vestnik MGTU im. N.E. Baumana, ser.: Mechanical engineering, 2011, no. SP2, pp. 164–173.
10. Batienkov R.V., Burkovskaya N.P., Bolshakova A.N., Khudnev A.A. High temperature metal matrix composite materials (review). Trudy VIAM, 2020, no. 6–7 (89), paper no. 07. Available at: http://www.viam-works.ru (accessed: July 28, 2023). DOI: 10.18577/2307-6046-2020-0-67-45-61.
11. Bondarenko Yu.A. Trends in the development of high-temperature metal materials and technologies in the production of modern aircraft gas turbine engines. Aviacionnye materialy i tehnologii, 2019, no. 2 (55), pp. 3–11. DOI: 10.18577/2071-9140-2019-0-2-3-11.
12. Titov D.D., Kargin Yu.F., Lysenkov A.S., Popova N.A., Gorshkov V.A. Influence of WSi2 content and magnesium aluminosilicate additives on the oxidation and strength properties of MoSi2–WSi2 composites. Materialovedenie, 2012, no. 7, pp. 45–49.
13. Klimkina A.A. Study of the structure and properties of molybdenum alloys obtained by additive technologies. XLVII Gagarin Readings: collection. tr. Intl. youth science conf. M.: FGBUN Institute of Problems of Mechanics named after. A.Yu. Ishlinsky Russian Academy of Sciences, 2021, p. 81.
14. Varaksin A.V., Lisin V.L., Kostylev V.A. and others. Preparation of composite powders containing metal carbides. Butlerovskie soobshcheniya, 2015, vol. 43, no. 8, pp. 102–110.
15. Varaksin A.V., Kostylev V.A., Lisin V.L. and others. Application of composite agglomerates based on WC and TiC, obtained using electrochemical technology, to create wear-resistant coatings by direct laser deposition. Butlerovskie soobshcheniya, 2016, vol. 48, no. 10, pp. 14–22.
Using the method of high-speed solidification of a hanging drop of a melt, discrete of the Ме–3TiC–2B4C, where Me is a metal Co, Ni or Fe. The microstructure of the alloy was studied, and mechanical properties of discrete fibers were obtained. To assess the effect of high-speed solidification of the melt on the properties of the alloys, cast samples were made without quenching. It was shown that the cobalt – based alloy in the initial state after quenching contains a metastable phase whit a face-centered cubic lattice, the proportion of which is 58 %. In addition, cobalt-based fibers contain metastable disperse intermetallic compounds of Co2B and Co3B.
2. Dvoretskaya E.V., Korolev D.V., Piskorskii V.P., Valeev R.A., Koplak O.V., Morgunov R.B. Magnetron sputtering of the iron shell and microinclusions in microwires PrDyFeCoB. Aviation materials and technologies, 2022, no. 2 (67), paper no. 08. Available at: http://www.journal.viam.ru (accessed: April 08, 2023). DOI: 10.18577/2713-0193-2022-0-2-85-96.
3. Vershinin G.A., Panova T.V. Distribution analysis of impurity atoms in binary systems after high-speed solidification of the melt. International research journal, 2015, no. 8 (39). Available at: https://research-journal.org/archive/8-39-2015-september/ (accessed: April 08, 2023).
4. Stasiak T., Oleszak D., Fraczkiewicz A. Effects of solidification condition on microstructure and properties of high-entropy alloys from the CoCrFeMnNi family. JOM, 2022, vol. 74, pp. 4842–482. DOI: 10.1007/s11837-022-05543-2.
5. Korolev D.V., Valeev R.A., Morgunov R.B., Piskorsky V.P. Calculation of the temperature dependence of the magnetization of sintered materials Pr–Dy–Fe–Co–B using molecular field approximation theory. Trudy VIAM, 2023, no. 2 (120), paper no. 4. Available at: http://www.viam-works.ru (accessed: April 08, 2023). DOI: 10.18577/2307-6046-2023-0-2-42-52.
6. Tamizifar H., Hadian A.M., Tamizifar M. The comparison between boron carbide (B4C) with other common inhibitors on physical and mechanical properties of WC/Co. International Journal of Modern Physics: Conference Series, 2012, vol. 5, pp. 102–110. DOI: 10.1142/S2010194512001900.
7. Davies I.J., Nozue A., Nakabayashi S., Okubo T. Fracture behaviour of boride-dispresed composites fabricated by hot-pressing amorphous Ni60Mo30B10 powder. Journal of materials science, 1998, vol. 33 (19), pp. 4727–4732. DOI: 10.1023/A:1004441205253.
8. Perez N.L., Place T.A. X-ray diffraction of a heat-treated rapidly solidified Ni35Mo35Fe9B2 alloy. Journal of materials science letters, 1990, vol. 9, pp. 940–942.
9. Kablov E.N., Lukina E.A., Zavodov A.V., Efimochkin I.Yu. The formation of structure in ultrafine WC–Cо carbide material in the presence of inhibitory additives. Trudy VIAM, 2020, no. 4–5 (88), paper no. 10. Available at: http://www.viam-works.ru (accessed: April 08, 2023). DOI: 10.18577/2307-6046-2020-0-45-89-99.
10. Mégret A., Vitry V., Delaunois F. The effect of boron-doped cobalt additions on mechanical properties of a recycled WC–Co powder. International Journal of Refractory Metals and Hard Materials, 2023, vol. 111, art. 106098. DOI: 10.1016/j.ijrmhm.2022.106098.
11. Serov M.M., Betsofen S.Ya., Patrushev A.Yu., Ashmarin A.A., Gordeeva M.I. Influence of high-speed solidification of the melt on the structural characteristics of the Co–6TiC alloy. Deforma-tsiya i razrusheniye materialov, 2022, no. 11, art. 01. DOI: 10.31044/1814-4632-2022-11-2-9.
12. Farafonov D.P., Migunov V.P., Degovec M.L., Aleshina R.Sh. Porous-fibrous metallic material for sound-absorbing structures of aircraft GTE. Trudy VIAM, 2016, no. 4 (40), paper no. 01. Available at: http://www.viam-works.ru (accessed: April 08, 2023). DOI: 10.18577/2307-6046-2016-0-4-1-1.
13. Farafonov D.P., Serov M.M., Patrushev A.Yu., Leshchev N.E., Yaroshenko A.S. Metal fibers for new aircraft engine materials. Trudy VIAM, 2020, no. 12 (94), paper no. 03. Available at: http://www.viam-works.ru (accessed: April 08, 2023). DOI: 10.18577/2307-6046-2020-0-12-23-34.
14. Miroshnichenko I.S., Sergeev G.A., Galushko I.M. Metastable diagrams in nickel–carbon and cobalt–carbon systems. Izvestiya vuzov. Chernaya metallurgiya, 1964, no. 1, pp. 164–166.
15. Lyakishev N.P. State diagrams of double metallic systems: reference book in 3 vols: Moscow: Mashinostroenie, 1996, vol. 1, 992 p.
16. Panov V.S., Chuvilin A.M., Technology and properties of sintered hard alloys and products made from them: a textbook for univ. Moscow: MISIS, 2011, 428 p.
17. Isaev B.A., Burkhanov A.R. Study of the structure of U8A steel after electromechanical treatment. Zapiski Gornogo instituta, 2018, vol. 233, pp. 518–524. DOI: 10.31897/PMI.2018.5.518.
18. Druchinina O.A., Vershinin D.S., Smolyakova M.Yu. Using an automatic microhardness analysis system to assess the depth of the nitrided layer on R6M5 steel. Vestnik TSU, 2010, vol. 15, is. 3, pp. 1194–1197.
19. Guryev A.M. Improving the performance characteristics of sintered ceramic W–Co materials by simultaneous diffusion saturation with boron, chromium and titanium. International Journal of Applied and Fundamental Research, 2018, no. 10, pp. 16–21. DOI: 10.17513/mjpfi.12409.
The influence of conditions and duration of storage on the characteristics of a prepreg based on a melted thermosetting polyimide binder grade VS-51 and high-temperature carbon fiber reinforced plastic based on it are studied. In accordance with the data obtained, the guaranteed shelf life of the prepreg was determined in the temperature range from –(18±5) to +(20±5) °С. The binder, reinforcing carbon filler, prepreg and carbon fiber reinforced plastics were manufactured at the technological base of the NRC «Kurchatov Institute» – VIAM.
2. Kablov E.N. Trends and guidelines for innovative development of Russia. 3rd ed. Moscow: VIAM, 2015, 720 p.
3. Onishchenko G.G., Kablov E.N., Ivanov V.V. Scientific and technological development of Russia in the context of achieving national goals: problems and solutions. Innovatsii, 2020, no. 6 (260), pp. 3–16.
4. Startsev V.O., Antipov V.V., Slavin A.V., Gorbovets M.A. Modern domestic polymer composite materials for aviation industry (review). Aviation materials and technologies, 2023, no. 2 (71), paper no. 10. Available at: http://www.journal.viam.ru (accessed: June 21, 2023). DOI: 10.18577/2713-0193-2023-0-2-122-144.
5. Sidorina A.I. Multiaxial carbon fabrics in the products of aviation technology (review). Aviation materials and technologies, 2021, no. 3 (64), paper no. 10. Available at: http://www.journal.viam.ru (accessed: June 21, 2023). DOI: 10.18577/2713-0193-2021-0-3-105-116.
6. Mukhametov R.R., Petrova A.P. Thermosetting binders for polymer composites (review). Aviacionnye materialy i tehnologii, 2019, no. 3 (56), pp. 48–58. DOI: 10.18577/2071-9140-2019-0-3-48-58.
7. Tkachuk A.I., Donetsky K.I., Terekhov I.V., Karavaev R.Yu. The use of thermosetting matrices for the manufacture of polymer composite materials by the non-autoclave molding methods. Aviation materials and technology, 2021, no. 1 (62), paper no. 03. Available at: https://journal.viam.ru (accessed: June 21, 2023). DOI: 10.18577/2713-0193-2021-0-1-22-33.
8. Kerber M.L., Vinogradov V.M., Golovkin G.S. et al. Polymer composite materials: structure, properties, technology: textbook. Ed. A.A. Berlin. St. Petersburg: Profession, 2008, 560 p.
9. Mikhailin Yu.A. Fibrous polymer composite materials in technology. St. Petersburg: Scientific principles and technologies, 2013, 719 p.
10. Raskutin A.E. Russian polymer composite materials of new generation, their exploitation and implementation in advanced developed constructions. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 349–367. DOI: 10.18577/2071-9140-2017-0-S-349-367.
11. Vasilevich Yu.V., Gorely K.A., Sakhonenko V.M., Sakhonenko S.V., Malyutin E.V. Mechanics of prepregs – calculation of products made of reinforced composite materials: in 2 parts. Ed. Yu.V. Vasilevich. Minsk: BNTU, 2016, part 1, 295 p.
12. Vasilevich Yu.V., Gorely K.A., Sakhonenko V.M., Sakhonenko S.V., Malyutin E.V. Mechanics of prepregs - calculation of products made of reinforced composite materials: in 2 parts. Ed. Yu.V. Vasilevich. Minsk: BNTU, 2016, part 2, 283 p.
13. Doumcharieva Zh., Kapan S.S. Automation of the temperature regime of an impregnation installation for producing prepreg. Technical Sciences, ser. 12: Automated control systems in production. Available at: http://www.rusnauka.com/18_NPRT_2017/Tecnic/12_227091.doc.htm (accessed: January 12, 2023).
14. Satdinov R.A., Veshkin E.A., Postnov V.I., Strelnikov S.V. On the technology of prepreg production. Klei. Germetiki. Tekhnologii, 2020, no. 4, pp. 26–31.
15. Polyakova L.Yu. Control of the technological process of manufacturing prepreg for aircraft products: thesis, Cand. Sc. (Tech.). Ufa: Ufimsk. state aviation tech. univ., 2007, 170 p.
16. Gunyaeva A.G., Veshkin E.A., Antyufeeva N.V., Panafidnikova A.N., Efimik V.A. Research of influence of the condensation moisture on carbon fiber plastic prepreg on the basis of solution epoxy binder and PСM on its basis. Trudy VIAM, 2019, no. 9 (81), paper no. 09. Available at: http://www.viam-works.ru (accessed: June 21, 2023). DOI: 10.18577/2307-6046-2019-0-9-80-88.
17. Veshkin Е.А., Satdinov R.A., Postnov V.I., Strelnikov S.V. Evaluation of effect of duration and storage condition on the properties of prepreg and PCM based on it. Trudy VIAM, 2017, no. 8, paper no. 10. Available at: http://www.viam-works.ru (accessed: June 21, 2023). DOI: 10.18577/2307-6046-2017-0-8-10-10.
18. Veshkin E.A., Postnov V.I., Strelnikov S.V., Abramov P.A., Satdinov R.A. Experience in the application of technological control of semi-finished products from polymer composite materials. Izvestiya Samarskogo nauchnogo tsentra RAN, 2014, vol. 16, no. 6 (2), pp. 393–398.
19. Cherfas L.V., Gunyaeva A.G., Komarova O.A., Antyufeeva N.V. The analysis of nanomodified prepreg shelf life by its reactivity at storage. Trudy VIAM, 2016, no. 1 (37), paper no. 12. Available at: http://www.viam-works.ru (accessed: June 21, 2023). DOI: 10.18577/2307-6046-2016-0-1-99-106.
20. Cheremukhina I.V. Technologies with controlled separation of binder components and the influence of energy fields for the creation of reinforced plastics with a complex of improved properties: thesis, Dr. Sc. (Tech.). Saratov: Saratov State Tech. Univ.; Moscow: MIREA – Rus. Tech. Univ., 2022, 348 p.
21. Savitskiy R.S., Galiullin A.R., Mantusova O.Yu., Veshkin E.A. Valuation of the effect of prepreg storage time on warping and PCM properties based on it. Trudy VIAM, 2023, no. 3 (121), paper no. 05. Available at: http://www.viam-works.ru (accessed: June 21, 2023). DOI: 10.18577/2307-6046-2023-0-3-48-57.
22. Valueva M.I., Zelenina I.V., Zharinov M.A., Akhmadieva K.R. World market of high temperature polyimide carbon plastic (review). Trudy VIAM, 2019, no. 12 (84), paper no. 08. Available at: http://www.viam-works.ru (accessed: June 21, 2023). DOI: 10.18577/2307-6046-2019-0-12-67-79.
23. Valueva M.I., Zelenina I.V., Zharinov M.A., Haskov M.A. High-temperature carbon fiber reinforced plastics based on a thermosetting polyimide binder. Voprosy materialovedeniya, 2020, no. 3 (103), pp. 89–102. DOI: 10.22349/1994-6716-2020-103-3-89-102.
24. Mikhailin Yu.A. Heat-resistant polymers and polymer materials. St. Petersburg: Profession, 2006, 624 p.
25. Yang S.-Y. Advance polyimide materials: synthesis, characterization, and applications. 1st ed. Elsevier, 2018, 498 p.
26. Cho D., Drzal L.T. Phenylethynyl-terminated polyimide, exfoliated graphite nanoplatelets, and the composites: an overview. Carbon letters, 2016, vol. 19, pp. 1–11.
27. Tsampas S., Fernberg P., Joffe R. Development of novel high Tg polyimide-based composites. Part II: Mechanical characterization. Journal of Composite Materials, 2018, vol. 52, no. 2, pp. 261–274.
28. Kolpachkov E.D., Vavilova M.I., Kurnosov A.O., Gunyaeva A.G. Fiberglass based on thermosetting polyimide binders. All-Rus. Scientific-technical Conf. “New generation polymer composite materials for civil industries”. Moscow: VIAM, 2020. pp. 31–41.
29. Cavano P.J., Winters W.E. Fiber reinforced PMR polyimide composites. Washington, D.C.: NASA Lewis Researcher Center, 1978, 105 p.
30. Alston W.B. Shelf life of PMR Polyimide monomer solutions and prepregs extended. NASA. Research and Technology, 1999. Available at: https://ntrs.nasa.gov/citations/20050192224 (accessed: January 12, 2023).
31. Avimid®R Polyimide Composite. Available at: https://matweb.com/search/datasheettext.aspx?matguid=3dcb6c37bd39469c8e92b27045a13ea4 (accessed: January 12, 2023).
32. Avimid®RB Polyimide Composite. Available at: https://www.matweb.com/search/datasheettext.aspx?matguid=d3d9f6997a2145d087bfc9342a8ee61b (accessed: January 12, 2023).
33. CYCOM®2237 Polyimide Resin System. Available at: https://www.solvay.com/en/product/cycom-2237 (accessed: July 07, 2023).
34. Aerospace. Advance Composite Materials Selector Guide. Available at: https://www.toraytac.com/media/ca3eea73-6961-4ea8-adc7-5d1b861684f6/Bxgrfg/TAC/Documents/Selector%20Guides/Toray Advanced_Composite_Material_Portfolio_Selector_Guide.pdf (accessed: December 01, 2023).
35. Product TC890. Available at: https://www.toraytac.com/product-explorer/products/mhdR/TC890 (accessed: July 07, 2023).
36. High temperature composite materials. Available at: https://pdf4pro.com/amp/view/high-tempereture-composite-materials-upilex-5a5302.html (accessed: July 07, 2023).
37. Zharinov M.A., Shimkin A.A., Akhmadieva K.R., Zelenina I.V., Valueva M.I. Melt polyimide binder grade VS-51 for heat-resistant PCM. III All-Rus. Scientific-technical Conf. “Polymer composite materials and production technologies of a new generation”. Moscow: VIAM, 2018, pp. 136–146.
38. Valueva M.I., Zelenina I.V., Nacharkina A.V., Ahmadieva K.R. Technological features of obtaining high temperature polyimide carbons. Foreign experience (review). Trudy VIAM, 2022, no. 6 (112), paper no. 08. Available at: http://www.viam-works.ru (accessed: June 21, 2023). DOI: 10.18577/2307-6046-2022-0-6-80-95.
39. Boychuk A.S., Dikov I.A., Chertishchev V.Yu., Generalov A.S. Determination of porosity in monolithic parts and assemblies of an aircraft wing, made of PCM, using the ultrasonic echo-pulse method. Defektoskopiya, 2019, no. 1, pp. 3–9.
40. Dikov I.A., Boychuk A.S., Chertishchev V.Yu., Generalov A.S. Features of determining porosity in PCM parts using ultrasonic echo-pulse testing method. Main trends, directions and prospects for the development of non-destructive testing methods in the aerospace industry: materials X All-Rus. conf. “TestMat”. Moscow: VIAM, 2018, pp. 65–79.
Environmental problems, primarily such as the inability to recycle materials and, consequently, the formation of uncontrolled landfills, are powerful incentives for the development of biodegradable materials. Due to its environmental and economic advantages, as well as its technical characteristics, natural fibers become a likely replacement for synthetic ones for use as fillers in polymer composite materials. Flax fibers, due to their high availability and specific properties, are the most valuable products of the bast type. Physical and chemical processing of fibers allows them to be used for structural materials as well.
2. Kablov E.N. The role of fundamental research in the creation of new generation materials. Reports XXI Mendeleev Congress on General and Applied Chemistry: in 6 vols. St. Petersburg, 2019, vol. 4, pp. 24.
3. Kablov E.N., Erofeev V.T., Dergunova A.V., Deraeva E.V., Svetlov D.A. Influence of environmental factors on the processes of biodegradation of vinylester composites. Journal of Physics: Conference Series. «International Conference on Engineering Systems 2020», 2020, pp. 012029.
4. Donetskij K.I., Khrulkov A.V. Application of naturals fibers for manufacturing of polymer composite materials. Trudy VIAM, 2015, no. 2, paper no. 09. Available at: http://www.viam-works.ru (accessed: July 05, 2023). DOI: 10.18577/2307-6046-2015-0-2-9-9.
5. Popov Yu.O., Koloкoltseva T.V., Gromova A.A., Gusev Yu.A. Influence of operational factors on the main physical and mechanical properties of a fiberglass product VPS-31. Trudy VIAM, 2021, no. 11 (105), paper no. 08. Available at: http://www.viam-works.ru (accessed: January 10, 2023). DOI: 10.18577/2307-6046-2021-0-11-82-90.
6. Tkachuk A.I., Donetsky K.I., Terekhov I.V., Karavaev R.Yu. The use of thermosetting matrices for the manufacture of polymer composite materials by the non-autoclave molding methods. Aviation materials and technology, 2021, no. 1 (62), paper no. 03. Available at: https://journal.viam.ru (accessed: February 01, 2023). DOI: 10.18577/2713-0193-2021-0-1-22-33.
7. Kolobkov A.S. Polymer composite materials for various aircraft structures (review). Trudy VIAM, 2020, no. 6–7 (89), paper no. 05. Available at: http://www.viam-works.ru (accessed: January 10, 2023). DOI: 10.18577/2307-6046-2020-0-67-38-44.
8. Donetskiy K.I., Bystrikova D.V., Karavaev R.Yu., Timoshkov P.N. Application of polymeric composite materials for creation of elements of transmissions of aviation engineering (review). Trudy VIAM, 2020, no. 3 (87), paper no. 09. Available at: http://www.viam-works.ru (accessed: May 19, 2023). DOI: 10.18577/2307-6046-2020-0-3-82-93.
9. Gonzalo M., Fangueiro R. PLA Composites Reinforced with Flax and JuteFibers–A Review of Recent Trends, Processing Parameters and Mechanical Properties. Polymers, 2020, no. 12 (2373), pp. 1–29.
10. Mohamad Midani M., Elseify L.A. Natural Fiber Composites: Practical Guide for Industrial Utilization. International Fiber Journal, 2022, no. 2, pp. 26–29.
11. Shekar H.S., Ramachandra M. Green Composites: A Review. Materials Today Proceedings, 2018, no. 5, pp. 2518–2526.
12. Mulhaupt R. The Use of Renewable Resources–Possibilities and Limitations. Energies, 1996, no. 50, pp. 191–198.
13. Siakeng R., Jawaid M., Ariffin H. et al. Natural fiber reinforced polylactic acid composites: A review. Polymer Composites, 2019, vol. 40, is. 2, pp. 446–463. DOI: 10.1002/pc.24747.
14. McMullen P. Fiber/resin composites for aircraft primary structures: A short history. Composites, 1984, no. 15, pp. 222–230.
15. Bristol Blenheim. Available at: http://www.pilotfriend.com/photo_albums/timeline/ww2/Bristol%20Blenheim.htm (accessed: August 24, 2023).
16. Middleton D.H. Composite Developments in Aircraft Structures – Part 1. Aircraft Engineering and Aerospace Technology, 1992, vol. 64, no. 5, pp. 2–8. DOI: 10.1108/eb037234.
17. Sáez A. Industrial Applications of Natural Gas. InTech Open, 2010, no. 9, pp. 11–28.
18. Bos H.L. The potential of flax fibres as reinforcement for composite materials. Technische Universiteit Eindhoven, 2004. DOI: 10.6100/IR575360.
19. Xie Y., Hill C.A.S., Xiao Z. et al. Silane coupling agents used for natural fiber/polymer composites: A review. Polymer Composites, 2010, no. 41, pp. 806–819.
20. Pacheco-Torgal F., Jalali S. Cementitious building materials reinforced with vegetable fibers: A review. Polymer Composites, 2011, no. 25, pp. 575–581.
21. Sidorina A.I. Natural reinforcing fillers for polymer composite materials (review). Khimicheskie volokna, 2023, no. 1, pp. 56–65.
22. Jawaid M., Khalil H.A. Cellulosic/synthetic fiber reinforced polymer hybrid composites: A review. Polymer Composites, 2011, no. 86, pp. 1–18.
23. Hart A., Summerscales J. Effect of time at temperature for natural fibers. Procedia Engineering, 2017, no. 200, pp. 269–275.
24. Mohanty A.K., Misra M., Dreal L.T. Surface Modifications of Natural Fibers and Performance of the Resulting Biocomposite // Composite Interfaces, 2001, no. 8, pp. 313–343.
25. Cruz J., Fangueiro R. Surface Modification of Natural Fibers: A Review. Procedia Engineering, 2016, no. 155, pp. 285–288.
26. Cho D., Lee H.S., Han S.O. Effect of Fiber Surface Modification on the Interfacial and Mechanical Propertiesof Kenaf Fiber-Reinforced Thermoplastic and Thermosetting Polymer Composites. Composite Interfaces, 2009, no. 16, pp. 711–729.
27. Ferreira D.P., Cruz J., Fangueiro R. Surface Modification of Natural Fibers in Polymer Composites // Composite Interfaces, 2019, no. 6, pp. 30–41.
28. Herrmann A., Nickel J., Riedel U. Construction materials based upon biologically renewable resources–From components to finished parts. Procedia Engineering, 1998, no. 59, pp. 251–261.
29. Pickering K.L., Efendy M.A., Le T.M. A review of recent developments in natural fiber composites and their mechanical performance. Composite Interfaces, 2016, no. 83, pp. 98–112.
30. Netravali A.N. Advanced green composites: New directions. Advanced Composite Materials, 2019, no. 8, pp. 32–38.
31. Netravali A.N., Huang X., Mizuta K. Advanced «Green» Composites. Advanced Composite Materials, 2018, no. 7, pp. 12–24.
32. Chow W.S., Ishak Z.A.M. Smart polymer nanocomposites: A review. Procedia Engineering, 2020, no. 14, pp. 16–35.
33. Zhang N., Khan T., Guo H., Shi S., Zhong W., Zhang W. Functionally Graded Materials: An Overview of Stability, Buckling and Free Vibration Analysis. Advances in Materials Science and Engineering, 2019, no. 5, pp. 1–18.
34. Singh R., Bhavar V., Kattire P., Thakare S., Patil S., Singh R.K.P. A Review on Functionally Gradient Materials (FGMs) and Their Applications. Procedia Engineering, 2017, no. 229, pp. 22–36.
35. Pereira J.F., Ferreira D.P., Pinho E., Fangueiro R. Chemical and Biological Warfare Protection and Self-Decontaminating Flax Fabrics Based on CaO Nanoparticles. Key Engineering Materials, 2019, no. 812, pp. 75–83.
36. Costa S.M., Ferreira D.P., Ferreira A., Vaz F., Fangueiro R. Multifunctional Flax Fibers Based on the Combined Effect of Silver and Zinc Oxide (Ag/ZnO) Nanostructures. Nanomaterials, 2018, no. 8, pp. 10–30.
37. Njuguna J., Nassiopoulos E. Development of flax-reinforced bio-composites for high-load bearing automotive parts. Composite Materials, 2012, no. 4, pp. 17–30.
38. Torterat C. Flax fiber, the material that will replace fiberglass in boat building? Boats news: International Boats magazine. Available at: https://www.boatsnews.com/story/39468/flax-fiber-the-material-that-will-replace-fiberglass-in-boat-building (accessed: July 12, 2023).
39. Gladunova O. Bridge made of flax and bioresin in the Netherlands. Available at: https://compositeworld.ru/articles/app/id627b59b50e5c8f00199ab8d6 (дата обращения: 24.08.2023).
40. Mishkin S.I., Raskutin A.E., Evdokimov A.A., Gulyaev I.N. Technologies and the main stages of construction of the arch bridge first in Russia from composite materials. Trudy VIAM, 2017, no. 6 (54), paper no. 05. Available at: http://www.viam-works.ru (accessed: July 05, 2023). DOI: 10.18577/2307-6046-2017-0-6-5-5.
41. Crosse J. Amplitex, which consists of woven fabric made of flax fibres, could be an alternative to carbon-fibre. Available at: https://www.autocarindia.com/auto-features/fun-flax-an-eco-friendly-alternative-to-carbon-fibre-419419 (accessed: July 13, 2023).
42. Ignatieva A. Tatneft brought to the market composite profiles using eco-material. Available at: https://neftegaz.ru/news/Oborudovanie/726857-tatneft-vyvela-na-rynok-kompozitnye-profili-s-ispolzovaniem-eko-materiala/ (accessed: July 12, 2023).
43. Achieve carbon neutrality: Tatneft began production of flax composites. Available at: https://www.tatar-inform.ru/news/dostic-uglerodnoi-neitralnosti-tatneft-nacala-vypusk-kompozitov-iz-lna-5856880 (accessed: July 12, 2023).
The use of parts made of polymer composite materials in the design of aircraft poses additional challenges to prevent contact corrosion. Polymer composite materials differ significantly in electrochemical properties from metal materials used in airframe construction. The article presents studies of the corrosion behavior of electrically conductive metal coatings in contact with carbon fibers by the method of constructing anodic and cathodic polarization curves, as well as the results of corrosion testing of fasteners with protective coatings in a salt fog chamber.
2. Kablov E.N., Startsev O.V., Medvedev I.M. Review of international experience on corrosion and corrosion protection. Aviacionnye materialy i tehnologii, 2015, no. 2 (35), pp. 76–87. DOI: 10.18577/2071-9140-2015-0-2-76-87.
3. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
4. Kablov E.N., Startsev O.V. The basic and applied research in the field of corrosion and ageing of materials in natural environments (review). Aviacionnye materialy i tehnologii, 2015, no. 4 (37), pp. 38–52. DOI: 10.18577/2071-9140-2015-0-4-38-52.
5. Kablov E.N. Innovative development is the most important priority of the state. Metally Evrazii, 2010, no. 2, pp. 6–11.
6. Kablov E.N. What will the future be made of? New generation materials, technologies for their creation and processing - the basis of innovation. Krylya Rodiny, 2016, no. 5, pp. 8–18.
7. Sadkov V.V., Mirkin I.I. Ensuring corrosion resistance of aluminum structures in TU aircraft. Tsvetnye metally, 2006, no. 11, pp. 73–76.
8. Feigenbaum Yu.M., Dubinsky S.V. The influence of accidental operational damage on the strength and service life of aircraft structures. Nauchnyy vestnik Moskovskogo gosudarstvennogo tekhnicheskogo universiteta grazhdanskoy aviatsii, 2013, no. 187, pp. 83–91.
9. Agarwala V.S. Aircraft corrosion and aging: problems and controls. Proceedings of 15th ICC. Granada, 2002, рр. 3–12.
10. Fundamentals of electrochemical corrosion of metals and alloys: textbook. allowance. Moscow: MADI, 2016, pp. 52–53.
11. Mishkin S.I., Klimenko O.N., Gunyaeva A.G. Materials for the lightnings protection of aviation engineering. Trudy VIAM, 2023, no. 7 (125), paper no. 07. Available at: http://www.viam-works.ru (accessed: August 01, 2023). DOI: 10.18577/2307-6046-2023-0-7-84-92.
12. Kravchenko D.V., Kozlov I.A., Nikiforov A.A., Tolmachev Y.V. The influence of 1163-AT aluminium alloy surface preparation on the adhesion of electroplated coatings. Trudy VIAM, 2022, no. 6 (112), paper no. 07. Available at: http://www.viam-works.ru (accessed: August 29, 2023). DOI: 10.18577/2307-6046-2022-0-7-74-88.
13. Startsev V.O., Nechaev A.A. The influence of natural and accelerated weathering on the nanomodified CFRP’S strength. Aviation materials and technologies, 2023, no. 3 (72), paper no. 11. Available at: http://www.journal.viam.ru (accessed: Augusy 28, 2023 DOI: 10.18577/2713-0193-2023-0-3-134-151.
14. Abramova M.G. Full-scale accelerated tests of aluminum alloys at continental and marine type stations. Aviacionnye materialy i tehnologii, 2020, no. 3 (60), pp. 57–65. DOI: 10.18577/2071-9140-2020-0-3-57-65.
15. Kozlova A.A., Kuznetsova V.A., Kozlov I.A., Naprienko S.A., Silaeva A.A. The effect of prolonged heating on the properties of protective coatings for aluminum alloy system Al–Si–Mg. Aviacionnye materialy i tehnologii, 2019, no. 2 (55), pp. 74–80. DOI: 10.18577/2071-9140-2019-0-2-74-80.
The article presents a review of the scientific and technical literature in the field of methane pyrolysis in the process of chemical vapor deposition of pyrolytic carbon, summarizes the results of studies of the process depending on the parameters of deposition and the substrates used, analyzes the compositions of pyrolysis products, mechanisms and pathways of chemical reactions.
2. Kablov E.N., Semenova S.N., Suleymanov R.R., Chaykun A.M. Prospects for the use of ethylene-propylenediene rubber as part of cold resistant rubber. Trudy VIAM, 2019, no. 12 (84), paper no. 4. Available at: http://www.viam-works.ru (accessed: accessed: May 11, 2023). DOI: 10.18577/2307-6046-2019-0-12-29-36.
3. Kablov E.N., Valueva M.I., I.V. Zelenina, Khmelnitskiy V.V., Aleksashin V.M. Carbon plastics based on benzoxazine oligomers – perspective materials. Trudy VIAM, 2020, no. 1, paper no. 07. Available at: http://www.viam-works.ru (accessed: May 11, 2023). DOI: 10.18577/2307-6046-2020-0-1-68-77.
4. Sidorov D.V., Schavnev A.A., Melentev A.A. Formation of silicon carbide coatings by chemical vapor deposition (review). Part 1. Trudy VIAM, 2021, no. 6 (100), paper no. 10. Available at: http://www.viam-works.ru (accessed: May 11, 2023). DOI: 10.18577/2307-6046-2021-0-6-100-111.
5. Fialkov A.S. Carbon, interlayer compounds and composites based on it. Moscow: Aspect Press, 1997, 718 p.
6. Nikolaev A.I. Preparation of carbon-carbon composite materials based on carbon nanofibers by gas-phase method. Tonkie khimicheskie tekhnologii, 2015, vol. 10, pp. 61–66.
7. Jia K., Zhang J., Zhu Y. et al. Toward the commercialization of chemical vapor deposition graphene films. Applied Physics Reviews, 2021, vol. 8, pp. 400–401.
8. Liu J., Hei L., Chen G. et al. Growth of ultrananocrystalline diamond films in an Ar-rich CH4/H2/Ar atmosphere with varying H2 concentrations. New Carbon Materials, 2013, vol. 28, pp. 134–138.
9. Majewska J., Michalkiewicz B. Carbon nanomaterials produced by the catalytic decomposition of methane over Ni/ZSM-5: Significance of Ni content and temperature. New Carbon Materials, 2014, vol. 29, pp. 102–108.
10. Park S.-S., Lee J.-Y. Nucleation behavior of diamond particles on silicon substrates in a hot-filament chemical vapour deposition. Journal of Materials Science, 1993, vol. 28, pp. 1799–1804.
11. Li X., Magnuson C.W., Venugopal A. et al. Graphene Films with Large Domain Size by a Two-Step Chemical Vapor Deposition Process. Nano Letters, 2010, vol. 10, pp. 4328–4334.
12. Amaral М., Oliveira F.J., Belmonte M. et al. Hot-filament chemical vapour deposition of nanodiamond on silicon nitride substrates. Diamond and Related Materials, 2004, vol. 13, pp. 643–647.
13. Chen C.-J., Back M.H., Back R.A. The thermal decomposition of methane. II. Secondary reactions, autocatalysis and carbon formation; non-Arrhenius behavior in the reaction of CH3 with ethane. Canadian Journal of Chemistry, 1976, vol. 54, pp. 3175–3184.
14. Palmer H.B., Lahaye J., Hou K.C. Kinetics and mechanism of the thermal decomposition of methane in a flow system. The Journal of Physical Chemistry, 1968, vol. 72, pp. 348–353.
15. Knorre V.G., Kozlov G.I. Single-pulse shock tube studies on the kinetics of the thermal decomposition of methane. Combustion and Flame, 1962, vol. 6, pp. 253–263.
16. Kevorkian B.V., Heath C.E., Boudart M. The decomposition of methane in shock waves. The Journal of physical chemistry, 1960, vol. 64, p. 964.
17. Hartig R., Troe J., Wagner H.G.G. Thermal decomposition of methane behind reflected shock waves. Symposium (International) on Combustion, 1971, vol. 13, pp. 147–154.
18. Dors M., Nowakowska H., Jasin´sk J., Mizeraczyk J. Chemical kinetics of methane pyrolysis in microwave plasma at atmospheric pressure. Plasma Chemistry and Plasma Processing, 2013, vol. 34, pp. 313–326.
19. Hu C., Li H., Zhang S., Li W. A molecular-level analysis of gas-phase reactions in chemical vapor deposition of carbon from methane using a detailed kinetic model. Journal of Materials Science, 2016, vol. 51, pp. 3897–3906.
20. Norinaga K., Deutschmann O. Detailed Kinetic Modeling of Gas-Phase Reactions in the Chemical Vapor Deposition of Carbon from Light Hydrocarbons. Industrial & Engineering Chemistry Research, 2007, vol. 46, pp. 3547–3557.
21. Li K., Li H., Yan N. et al. Conversion of methane to benzene in CVI by density functional theory study. Scientific Reports, 2019, vol. 6, p. 19496.
22. Shinde V.M., Pradeep P. Detailed Gas-Phase Kinetics and Reduced Reaction Mechanism for Methane Pyrolysis involved in CVD/CVI Processes. Journal of Analytical and Applied Pyrolysis, 2021, vol. 154, p. 104998.
23. Becker A., Hüttinger K.J. Chemistry and kinetics of chemical vapour deposition of pyrocarbon: IV. Рyrocarbon deposition from methane in the low-temperature regime. Carbon, 1998, vol. 36, pp. 213–224.
24. Brüggert M., Hu Z., Hüttinger K.J. Chemistry and kinetics of chemical vapour deposition of pyrocarbon: VI. Influence of temperature using methane as a carbon source. Carbon, 1999, vol. 37, pp. 2021–2030.
25. Birakayala N., Evans A. A reduced reaction model for carbon CVD/CVI processes. Carbon, 2002, vol. 40, pp. 675–683.
26. Li H., Li A., Bai R., Li K. Numerical simulation of chemical vapour infiltration of propylene into C/C composites with reduced multi-step kinetic models. Carbon, 2005, vol. 43, pp. 2937–2950.
27. Xu W., Zhang Z.-W., Bai R.-C. et al. Kinetic model of gas-phase reactions in the chemical vapor deposition of propane. Carbon, 2014, vol. 71, p. 345.
The adhesion and impact strength of paint coating systems based on the chromate-free primer VG-44 with enamels VE-69, AK-1206, UR-1161 and EP-140 after artificial aging using the LI-14 method (–60÷+80) were studied.)°С during 16 cycles, as well as after thermal aging at temperatures of 80 °C – 1000 hours and 100 °C – 500 hours. The decorative properties of coatings based on the chromate-free primer VG-44 with enamels VE-69, AK-1206, UR-1161 and EP-140 after artificial aging were determined. It has been shown that artificial aging of the above paintwork systems does not have a significant effect on the strength of coatings upon impact, but leads to a decrease in tensile strength, as well as a decrease in the gloss of the coatings.
2. Kablov E.N. Main directions of development of materials for aerospace technology of the 21st century. Perspektivnyye materialy, 2000, no. 3, pp. 27–36.
3. Kablov E.N. Aviation materials science in the 21st century. Prospects and objectives. Aviation materials. Selected works of VIAM 1932–2002. Moscow: MISIS–VIAM, 2002, pp. 23–47.
4. Kablov E.N. New generation materials are the basis of innovation, technological leadership and national security of Russia. Intellekt i tekhnologii, 2016, no. 2 (14), pp. 16–21.
5. Zheleznyak V.G. Modern paint and varnish materials for use in aviation equipment products. Trudy VIAM, 2019, no. 5 (77), paper no. 07. Available at: http://www.viam-works.ru. (accessed: August 17, 2023). DOI: 10.18577/2307-6046-2019-0-5-62-67.
6. Kondrashov E.K., Kuznetsova V.A., Semenova L.V., Lebedeva T.A. Main directions for improving the operational, technological and environmental characteristics of paint and varnish coatings for aircraft. Rossiyskiy khimicheskiy zhurnal, 2010, vol. LIV, no. 1, pp. 96–102.
7. Fomina M.A., Karimova S.A. Analysis of the corrosion state of airframe materials of Su type aircraft after long periods of operation. Korroziya: materialy, zashchita, 2014, no. 9, pp. 20–24.
8. Kablov E.N., Startsev O.V., Medvedev I.M. Review of international experience on corrosion and corrosion protection. Aviacionnye materialy i tehnologii, 2015, no. 2 (35), pp. 76–87. DOI: 10.18577/2071-9140-2015-0-2-76-87.
9. Kozlova A.A., Kondrashov E.K. Systems of paint coatings for anticorrosive protection of magnesium alloys. Aviacionnye materialy i tehnologii, 2014, no. 2, pp. 44–47. DOI: 10.18577/2071-9140-2014-0-2-44-47.
10. Ptitsyn A.S. The thickness of the paint coating as one of the factors of its quality and durability. Alleya nauki, 2018, vol. 5, no. 10, pp. 896–901.
11. Popov A.A., Rapoport N.Ya., Zaikov G.E. Oxidation of oriented and strained polymers. Moscow: Khimiya, 1987, 232 p.
12. Pavlyuk B.Ph. The main directions in the field of development of polymeric functional materials. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 388–392. DOI: 10.18577/2071-9140-2017-0-S-388-392.
13. Zheleznyak V.G., Serdcelyubova A.S., Merkulova Yu.I., Skivko P.V. Paint coating system based on polyurethane enamel for protecting heated frontal surfaces of aviation products. Aviation materials and technologies, 2022, no. 1 (66), paper no. 10. Available at: http://www.journal.viam.ru (ассеssed: August 24, 2023). DOI: 10.18577/2713-0193-2022-0-1-120-128.
14. Serdtselyubova A.S., Merkulova Yu.I., Zagora A.G., Kurshev E.V. Research of film-forming parameters and protective properties of basecoat/clearcoat system. Aviation materials and technologies, 2023, no. 1 (70), paper no. 07. Available at: http://www.journal.viam.ru (accessed: August 17, 2023). DOI: 10.18577/2713-0193-2022-0-1-93-104.
15. Merkulova Yu.I., Kurshev E.V., Vdovin A.I., Andreeva N.P. Microstructural and electrochemical studies of paint coatings under natural climate tests of tropical climate of North America. Aviation materials and technologies, 2022, no. 2 (67), paper no. 11. Available at: http://www.journal.viam.ru (accessed: August 04, 2023). DOI: 10.18577/2713-0193-2022-0-2-120-130.
16. Semenova L.V., Nefedov N.I., Belova M.V., Laptev A.B. Systems of paint coatings for helicopter equipment. Aviacionnye materialy i tehnologii, 2017, no. 4 (49), pp. 56–61. DOI: 10.18577/2071-9140-2017-0-4-56-61.
17. Kuznetsova V.A., Marchenko S.A., Emelyanov V.V., Zheleznyak V.G. Study of the influence of molecular mass of epoxy oligomers and hardeners on the operational properties of paint coatings. Aviation materials and technology, 2021. no. 1 (62), paper no. 07. Available at: http://www.journal.viam.ru (accessed: September 17, 2023). DOI: 10.18577/2713-0193-2021-0-1-71-79.
18. Protasov V.N. Prediction of the duration of preservation of the strength of polymer coatings in operating environments. Lakokrasochnyye materialy i ikh primenenie, 1989, no. 2, pp. 77–80.
19. Grassi N., Scott J. Destruction and stabilization of polymers: trans. from Engl. Moscow: Mir, 1988, 446 p.
20. Lambourn R., Mashlyakovsky L.N., Frost A.M. Paints and varnishes and coatings. Theory and practice. St. Petersburg: Khimiya, 1991, 512 p.
21. Merkulova Yu.I., Kuznetsova V.A., Kodachenko E.N., Zheleznyak V.G. Study of the influence of the primer layer’s chemical nature on the properties of the coating system based on fluoropolyurethane enamel. Aviation materials and technologies, 2022, no. 1 (66), paper no. 09. Available at: http://www.journal.viam.ru (accessed: September 17, 2023). DOI: 10.18577/2713-0193-2022-0-1-110-119.
22. Merkulova Yu.I., Kuznetsova V.A., Novikova T.A. Investigation of properties of coating system based on fluorine polyurethane enamel and primer with low toxical pigment content. Trudy VIAM, 2019, no. 5 (77), paper no. 08. Available at: http://www.viam-works.ru. (accessed: August 06, 2023). DOI: 10.18577/2307-6046-2019-0-5-68-75.
23. Skorokhodova O.N., Kazakova E.E. New developments in the field of protective coatings. Lakokrasochnaya promyshlennost, 2017, no. 5, p. 14.
24. Drinberg A.S., Itsko E.F., Kalinskaya T.V. Anti-corrosion primers. St. Petersburg: NIPROINS LKM i PSOP, 2006, 168 p.
25. Rosenfeld I.L., Rubinshtein F.I. Anti-corrosion primers and inhibited paint and varnish coatings. Moscow: Khimiya, 1980, 200 p.
26. Anti-corrosion pigment: pat. 2330054 Rus. Federation; appl. 04.05.07; publ. 27.07.08.
27. Ashuiko V.A., Ivanova N.P., Salychits O.I. Properties of anti-corrosion phosphate-containing pigments for paint and varnish coatings of metals. Energy- and material-saving environmentally friendly technologies: abstracts of the Xth Int. Conf. Grodno, 2013, pp. 117–118.
28. Emirova I.V., Alekseev A.A. New anti-corrosion pigments. Izvestiya vuzov. Khimiya i khimicheskaya tekhnologiya, 2009, vol. 52, pp. 113–114.
29. Chebotareva E.G., Ogrel L.Yu. Current trends in the modification of epoxy oligomers. Fundamentalnye issledovaniya, 2008, no. 4, pp. 102–104.
30. Kirillov A.N., Sofina S.Yu., Garipov R.M., Deberdeev R.Ya. Modification of epoxyamine compositions with epoxyurethane oligomers. Lakokrasochnyye materialy i ikh primenenie, 2003, no. 4, pp. 25–28.
31. Kirillov A.N., Garipov R.M., Deberdeev R.Ya. The influence of epoxyurethane modifiers on the properties of epoxy varnish coatings. Articles IX All-Rus. conf. “Structure and dynamics of molecular systems”. Yalchik, 2002, pp. 236–239.
32. Parshina M.S., Soldatov M.A., Makarova V.A., Serenko O.A., Muzafarov A.M. The influence of the chemical structure of organofluorine copolymer modifiers on the moisture resistance of amine-curing epoxy resin. Lakokrasochnyye materialy i ikh primenenie, 2018, no. 3, pp. 15–19.
33. Problems of protective coatings: Review of materials of the European conference “Protective coating”. Dusseldorf (Germany). Lakokrasochnyye materialy i ikh primenenie, 2013, no. 9, pp. 33–35.
34. Kuznetsova V.A., Zheleznyak V.G., Silaeva A.A. Influence of mechanical characteristics of priming coverings on stability to cyclic mechanical loads of systems of the erosion resistant disperse reinforced coatings. Trudy VIAM, 2018, no. 6 (66), paper no. 07. (accessed: August 13, 2023). DOI: 10.18577/2307-6046-2018-0-6-59-67.
35. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
The main development trends in the field of creating matte, wear-resistant paint and varnish coatings for painting instrument panels and aircraft cockpit elements are considered. The basic principles that should be followed when creating matte, wear-resistant paint and varnish coatings have been identified. The basic requirements that determine the selection of the main components for obtaining a matte wear-resistant coating are considered. Polymer film-forming agents and fillers have been identified for the development of coating compositions in accordance with the analysis. Leaders in the development of matte wear-resistant coatings have been identified.
2. Kablov E.N. New generation materials – the basis of innovation, technological leadership and national security of Russia. Intellekt i tekhnologii, 2016, no. 2 (14), pp. 16–21.
3. Zheleznyak V.G. Modern paint and varnish materials for use in aviation equipment products. Trudy VIAM, 2019, no. 5 (77), paper no. 07. Available at: http://www.viam-works.ru. (accessed: August 17, 2023). DOI: 10.18577/2307-6046-2019-0-5-62-67.
4. Kondrashov E.K., Kuznetsova V.A., Semenova L.V., Lebedeva T.A. The main directions for increasing the performance properties, technological and environmental characteristics of paint and varnish coatings for aviation equipment. Rossiyskiy khimicheskiy zhurnal, 2010, vol. LIV, no. 1. pp. 96–102.
5. Problems of protective coatings: Review of materials of the European conference “Protective coating”. Dusseldorf (Germany). Lakokrasochnyye materialy i ikh primenenie, 2013, no. 9. pp. 33–35.
6. Kuznetsova V.A., Marchenko S.A., Emelyanov V.V., Zheleznyak V.G. Study of the influence of molecular mass of epoxy oligomers and hardeners on the operational properties of paint coatings. Aviation materials and technology, 2021, no. 1 (62), paper no. 07. Available at: http://www.journal.viam.ru (accessed: August 17, 2023). DOI: 10.18577/2713-0193-2021-0-1-71-79.
7. Pavlyuk B.Ph. The main directions in the field of development of polymeric functional materials. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 388–392. DOI: 10.18577/2071-9140-2017-0-S-388-392.
8. Kuznetsova V.A., Shapovalov G.G., Marchenko S.A., Kovrizhkina N.A., Silaeva A.A. Paint coatings on the basis of epoxy and acrylic diphasic polymeric system for coloring of elements of cabin of pilots and dashboards. Trudy VIAM, 2020, no. 12 (94), paper no. 09. Available at: http://www.viam-works.ru (accessed: June 27, 2023). DOI: 10.18577/2307-6046-2020-0-12-87-95.
9. Evtyukhov N.Z., Dubnova L.N. Mashlyakovsky Matte coatings made of epoxy powder coatings with low-temperature curing. Lakokrasochnyye materialy i ikh primenenie, 2008, no. 10, pp. 20–23.
10. Merkulova Yu.I., Kuznetsova V.A., Kodachenko E.N., Zheleznyak V.G. Study of the influence of the primer layer’s chemical nature on the properties of the coating system based on fluoropolyurethane enamel. Aviation materials and technologies, 2022, no. 1 (66), paper no. 09. Available at: http://www.journal.viam.ru (ассеssed: September 14, 2023). DOI: 10.18577/2713-0193-2022-0-1-110-119.
11. Merkulova Yu.I., Kuznetsova V.A., Novikova T.A. Investigation of properties of coating system based on fluorine polyurethane enamel and primer with low toxical pigment content. Trudy VIAM, 2019, no. 5 (77), paper no. 08. Available at: http://www.viam-works.ru. (accessed: August 06, 2023). DOI: 10.18577/2307-6046-2019-0-5-68-75.
12. Kuznetsova V.A., Yemelyanov V.V., Shapovalov G.G., Kovrizhkina N.A. Use of modifiers for increase of operational properties of paint coatings on the basis of the epoxy film-forming (review). Trudy VIAM, 2021, no. 12 (106), paper no. 08. Available at: http://www.viam-works.ru (accessed: June 27, 2023). DOI: 10.18577/2307-6046-2021-0-12-63-72.
13. Chebotareva E.G., Ogrel L.Yu. Current trends in the modification of epoxy oligomers. Fundamentalnye issledovaniya, 2008, no. 4, pp. 102–104.
14. Kablov E.N. Main directions of development of materials for aerospace technology of the 21st century. Perspektivnyye materialy, 2000, no. 3, pp. 27–36.
15. Kablov E.N. Without new materials – there is no future // Metallurg, 2013, no. 12, pp. 23–47.
16. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
17. Shitova T.A., Evtyukhov N.Z., Yakovlev A.D., Shibalovich V.S. Methods for obtaining matte coatings. Lakokrasochnyye materialy i ikh primenenie, 1982, no. 3, рр. 44–46.
18. Fortunin V.I., Ovchinnikova N.G. Preparation and properties of microporous perchlorovinyl coatings. Lakokrasochnyye materialy i ikh primenenie, 1980, no. 3, pp. 21–22.
19. Fedyakova N.V., Pavlov A.V., Zelenskaya A.D., Shcherbina A.A. Influence of degree of a pigmentirovaniye on shine of alkidno-uretanovy enamels. Lakokrasochnyye materialy i ikh primenenie, 2023, no. 14, pp. 28–32.
20. Osovskaya I.I., Zvereva V.A. Powder polyester paint for polymer coatings. Vestnik Tverskogo gosudarstvennogo universiteta. Ser.: Khimiya, 2018, no. 2, pp. 111–117.
21. Gorbunov D.F. Highly effective matting additives from Degussa. Lakokrasochnyye materialy i ikh primenenie, 2006, no. 2–3, pp. 18–19.
22. Titova I.E. Organic matting agent Deuteron – a new approach to creating coatings with specified properties. Lakokrasochnyye materialy i ikh primenenie, 2008, no. 12, pp. 32–34.
23. Kovrizhkina N.A., Kuznetsova V.A., Silaeva A.A., Marchenko S.A. Ways to improve the properties of paint coatings by adding different fillers (review). Aviacionnye materialy i tehnologii, 2019, no. 4 (57), pp. 41–48. DOI: 10.18577/2071-9140-2019-0-4-41-48.
24. Yoryu Xu, Gibelhas I. Utopia or reality? Higher dosage of matting additive with outstanding viscosity reduction in 100% UV systems. Lakokrasochnyye materialy i ikh primenenie, 2020, no. 10, pp. 18–24.
25. Composition for coatings: pat. 2335521 Rus. Federation; appl. 04.07.07; publ. 10.10.08.
26. Fluoroplastic paint and varnish material for coatings: pat. 2532192 Rus. Federation; appl. 07.05.13; publ. 27.10.14.
27. Composition for barrier coating: pat. 462493 Rus. Federation; appl. 05.04.11; publ. 27.10.14.
28. Paint and varnish composition of alkyd-urethane enamel: pat. 2351625 Rus. Federation; appl. 28.11.07; publ.10.04.09.
29. Method for producing alkyd-urethane enamel: pat. 2346967 Rus. Federation; appl. 28.11.07; publ. 20.02.09.
30. Polyurethane composition for coatings: pat. 2298573 Rus. Federation; appl. 11.05.05; publ. 27.06.05.
31. Epoxy-rubber composition for protective coatings: pat. 2550864 Rus. Federation; appl. 06.08.13; publ. 20.05.15.
32. Kuznetsova V.A., Deev I.S., Zheleznyak V.G., Silaeva A.A. Anti wear coating with quasicrystal filler. Trudy VIAM, 2018, no. 3 (63), paper no. 08. Available at: http://www.viam-works.ru (accessed: August 28, 2023). DOI: 10.18577/2307-6046-2018-0-3-68-76.
33. Kuznetsova V.A., Marchenko S.A., Zheleznyak V.G., Emelyanov V.V. Influence of the spatial structure of reinforcing fillers on the properties of the paint coatings. Trudy VIAM, 2020, no. 9 (91), paper no. 11. Available at: http://www.viam-works.ru (accessed: August 28, 2023). DOI: 10.18577/2307-6046-2020-0-9-96-104.
34. Silaeva A.A., Kuznetsova V.A., Kurshev E.V., Timoshina E.A. Influence of the dimensions of the reinforcing filler on the technological and functional properties of paints and varnishes. Materialovedenie, 2022, no. 2, pp. 32–38.
35. Lygdenov V.Ts., Syzrantsev V.V., Bardakhanov S.P. et al. Study of the influence of silicon dioxide nanoparticles on the properties of paint and varnish coating made of perchlorovinyl enamel. Prikladnaya mekhanika i tekhnicheskaya fizika, 2020, vol. 61, no. 5, pp. 246–254.
36. Nomoev A.V., Lygdenov V.Ts., Bardakhanov S.P. The influence of silicon dioxide nanopowder on the wear resistance of paint and varnish coatings. Nanotekhnologii v stroitelstve: nauchnyy internet-zhurnal, 2010, vol. 2, no. 3, pp. 19–24. URL: http://www.sciup.org (accessed: August 28, 2023).
37. Valko N.G., Globa A.I. Kasperovich A.V., Dukhovich Yu.V. Structure and properties of paint and varnish coatings modified with hollow glass microspheres. Vestnik GGU im. Yanki Kupaly, 2020, vol. 10, no. 2, pp. 95–102.
38. Mzhachikh E.I., Sukhareva L.V., Yakovlev V.S. Factors that determine the durability of polymer coatings. Izvestiya vysshikh uchebnykh zavedeniy. Ser.: Khimiya i khimicheskaya tekhnologiya, 2006, vol. 49, no. 2, pp. 108–109.
39. Nitro-wear resistant matte black paint: pat. CN 102746747; appl. 28.06.12; publ. 05.12.12.
40. Polyurethane transparent matt topcoat, preparation method and use method thereof: pat. CN 101381581; appl. 27.10.08; publ. 11.03.09.
41. Scratch-resistant soft full-matt finishing paint as well as preparation method and application thereof: pat. CN 114702890; appl. 12.04.22; publ. 05.07.22.
42. Polyurethane matte finishing coat for automatically coating wood ware and preparing method thereof: pat. CN 105131824; appl. 01.09.15; publ. 09.12.15.
43. High solid anti-scratching unsaturated polyester matte top-coat for coating wooden products: pat. CN 103173109; appl. 23.12.11; publ. 26.03.13.
44. Ma Hui, Liu Yucun, Guo Jiahu et al. Synthesis of a novel silica modified environmentally friendly waterborne polyurethane matting coating. Progress in Organic Coatings, 2020, vol. 139, pp. 231–242.
45. Tionyou Wang, Zhe Sun, Feifei Liang et al. Poly(methylmethacrylate) microspheres with matting characteristic prepared by dispersion polymerization. International Journal of polymer Analysis and Characterization, 2019, vol. 24, pp. 731–740.
46. Anti wear coatings: pat. US 7268179; appl. 30.09.03; publ. 11.09.07.
47. Abrasion resistant coatings: pat. US 7736745; appl. 24.05.05; publ. 15.01.10.
48. Method of making matte airfoil coatings: pat. US 8124235 B2; appl. 11.01.10; publ. 28.02.12.
49. Scuff resistant and chip resistant architectural compositions: pat. US 11230645; appl. 05.05.17; publ. 25.01.22.
50. Calvez I., Szczepanski C.R., Landry V. Preparation and characterization of low gloss UV-curable coating based on silica surface modification using an acrylate monomer. Progress in Organic Coatings, 2021, vol. 158, pp. 476–483.
51. Fluorinate polyacrylate coating composition, the preparation method therefore and use thereof: pat. EP 3732221; appl. 21.12.18; publ. 23.02.22.
52. Jian Zhang, Wen-Guang Lu, Hui Yan et al. Improvement of wear-resistance and anti-corrosion of waterborne epoxy coating by synergistic modification of glass flake with phytic acid and Zn2+. Ceramics International, 2023, vol. 49, no. 11, pp. 17910–17920.
53. Two-component composition for producing flexible polyurethane gel coats: pat. WO 2005030893; appl. 23.09.03; publ. 16.09.04.
54. Aqueous base paint for producing a coating: pat. WO 2016188655; appl. 22.05.15; publ. 01.12.16.
55. Fluorinate polyacrylate coating composition, the preparation method therefore and use thereof: pat. EP 3732221; appl. 21.12.18; publ. 23.02.22.
56. Scrinzi E., Rossi S., Kamarchik P., Deflorian F. Evaluation of durability of nano-silica containing clear coats for automotive applications. Progress in Organic Coatings, 2011, vol. 71, no. 4, pp. 384–390.
57. Wittmann B., Montmitonnet P., Burr A. et al. BRDF and gloss computation of polyurethane coatings from roughness measurements: Modelling and experimental validation. Progress in Organic Coatings, 2021, vol. 156, pp. 365–373.
58. Uribe-Padilla J., Graells-Sobre M., Salgado-Valle J. A novel contribution to the modeling of the matting efficiency of aqueous polyurethane dipersions. Progress in Organic Coatings, 2017, vol. 109, pp. 179–185.
59. Lopez A.B., Bohуrquez S.J., Meeuwisse M. et al. Self-matting waterborne fluoropolymers. Progress in Organic Сoatings, 2018, vol. 116, pp. 57–69.
Heat-resistant alloys and steels
Skugorev A.V., Melnikova D.A., Tikhomirov E.O., Trishkin Yu.D. An alloy of the Fe–Cr–Al–Y system as a promising material for honeycomb seals in the flow path of gas turbine engines
Sevalnev G.S., Vostrikov A.V., Nefedkin D.Yu., Moiseenkov V.V., Volkov R.B., Ulyanov E.I. Study of the structure, distribution of carbide phase, hardness and tribotechnical characteristics of high-chromium bearing steels of the martensitic class
Light-metal alloys
Makushina M.A., Kochetkov A.S., Vinogradov I.D. The influence of various modes of hot isostatic pressed and heat treatment on structure and properties of castings from the VT40L alloy
Composite materials
Nyafkin A.N., Kosolapov D.V., Zhabin A.N. Investigation of the influence of the direction of the basal planes in a carbon frame and
a metal composite material of the Al–C system on the temperature coefficient of linear expansion
Bobrovskiy A.P., Atkin O.N., Efimochkin I.Yu., Bolshakova A.N. Agglomeration of granules of high-temperature metal-ceramice material based on molybdenum
Serov M.M., Betsofen S.Ya., Patrushev A.Yu., Dvoretskov R.M., Elyutin E.S. Production of microcrystalline alloy particles of the system Cо(Ni, Fe)–Ti–В–С by high-speed solidigication of the melt
Valueva M.I., Zelenina I.V., Nacharkina A.V., Boychuk A.S. Determination of the guaranteed shelf life of high-temperature polyimide carbon fiber reinforced plastic prepreg
Donetskiy K.I., Hrulkov A.V., Gorodilova N.A., Melnikov D.A. Prospects for the use of polymer composite materials based on flax fibers
Protective and functional
coatings
Fomina M.A., Zavarzin S.V., Demin S.A. Study of the corrosion resistance of aluminum specimens from 1163-AT alloy with conductive electroplated coatings in contact with VKU-39/VTkU-2.200 carbon fiber
Sidorov D.V., Grunin A.A., Schavnev A.A. Formation of carbon coatings in the process of methane pyrolysis by the chemical vapor deposition
Kuznetsova V.A., Yemelyanov V.V., Marchenko S.A., Kovrizhkina N.A. The influence of artificial aging on the properties of coating systems based onchromate-free primer VG-44 using epoxy, polyurethane, acrylic urethane and fluoropolyurethane enamels
Kuznetsova V.A., Timoshina E.A., Shapovalov G.G., Zheleznyak V.G. Trends in the development of matte wear-resistant paint coatings