Articles
The presented article is the continuation of the range of works on the investigation of Ni-base superalloy VZh175-ID which are designed for jet-engine disk billets obtained via cast-and-method. The investigation of the possible changes of nano-particles of γ'-phase with size below 100 nm at the application of various strains and temperatures enters into the objectives of the work.
The specimens after tensile testing at room temperature, after rupture strength testing at certification regimes at 650 and 750°C and also after rupture strength testing at regimes, which are distinctive for exploitation conditions of the disks of high pressure turbine (HPT) of civil aircraft jet-engine were chosen as the objects of the investigation.
The investigation of nano-sized particles of the reinforced γ'-phase was carried out via scanning electron microscopy method at the magnifications up to 50000. The areas of the specimens near the fracture zone as well as at the distance from it were analyzed.
As a result of the investigation it was shown that the application of gap tension stress at room temperature practically does not introduce any changes in the phase composition of VZh175-ID alloy. The analogous result was carried on the specimens after rupture stress testing at 650°C. The nano-phase particles are presented in the alloy microstructure at these conditions. The microstructure degradation was found in the investigated specimens after rupture strength testing at 750°C. The specific hollows form near the fracture zone and the destruction of the specimen takes place on it. It should be notes that the stress was chosen for 100-hour time base but actually time to failure of the specimen has been 244 hour. The microstructure investigations of the specimens after the imitation of the exploitation have shown the stabil
2. Kablov E.N. Materialy novogo pokoleniya [Generation Materials] // Zashchita i bezopasnost. 2014. №4. S. 28–29.
3. Zhang G.Q. Research and Development of High Temperature Structural Materials for Aero-Engine Application // Acta Metallurgica sinica. 2005. Vol. 18. No. 4. P. 443–452.
4. Kablov E.N. VIAM: materialy novogo pokoleniya dlya PD-14 [VIAM: new generation materials for PD-14] // Krylya Rodiny. 2019. №7–8. S. 54–58.
5. Inozemtsev A.A., Sandarskiy V.L. Gazoturbinnyye dvigateli [Gas turbine engines]. Perm: Aviadvigatel, 2006. 1204 s.
6. Kablov E.N. Materialy novogo pokoleniya – osnova innovatsiy, tekhnologicheskogo liderstva i natsionalnoy bezopasnosti Rossii [Materials of a new generation - the basis of innovation, technological leadership and national security of Russia] // Intellekt i tekhnologii. 2016. №2 (14). S. 16–21.
7. Reed R.C. The Superalloys. Fundamentals and Applications. Cambridge: Cambridge University Press, 2006. 372 p.
8. Chabina E.B. An influence of operational factors on the state of interfaces in high heat-resistant Ni-based alloys intended for GTE discs // Trudy VIAM : elektron. nauch.-tehnich. zhurn. 2015. №8. St. 02. Available at: http://viam-works.ru (accessed: October 04, 2019). DOI: 10.18577/2307-6046-2015-0-8-2-2.
9. Arzamasov B.N., Sidorin I.I., Kosolapov G.F. i dr. Materialovedeniye: ucheb. dlya vysshikh tekhnicheskikh uchebnykh zavedeniy. 8-ye izd. [Material science: textbook. for higher technical educational institutions. 8th ed.]. M.: Izd-vo MGTU im. N.E. Baumana, 2008. 648 s.
10. Nazarkin R.M., Kolodochkina V.G., Ospennikova O.G., Orlov M.R. Neobratimyye izmeneniya tonkoy struktury monokristallov zharoprochnykh nikelevykh splavov v protsesse dlitelnoy ekspluatatsii turbinnykh lopatok [The irreversible structural modification of single crystals fine structure of Ni-based superalloys at enduring operation of turbine blades] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2015. №12. St. 03. Available at: http://www.viam-works.ru (accessed: October 04, 2019). DOI: 10.18577/2307-6046-2015-0-12-3-3.
11. Lomberg B.S., Shestakova A.A., Bakradze M.M., Karachevtsev F.N. Issledovaniye stabilnosti gʹ-fazy razmerom meneye 100 nm v zharoprochnom nikelevom splave VZh175-ID [The investigation of the stability of γ-phase with size below 100 nm in Ni-base superalloy VZh175-ID] // Aviacionnye materialy i tehnologii. 2018. №4 (53). S. 3–10. DOI: 10.18577/2071-9140-2018-0-4-3-10.
12. Sims Ch.T., Stoloff N.S., Khagel U.K. Supersplavy II: Zharoprochnyye materialy dlya aerokosmicheskikh i promyshlennykh energoustanovok v 2 kn. [Superalloys II: Heat-resistant materials for aerospace and industrial power plants in 2 kn.]. M.: Metallurgiya, 1995. Kn. 2. 369 s.
13. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
14. Ovsepyan S.V., Lomberg B.S., Bakradze M.M., Letnikov M.N. Termicheskaya obrabotka deformiruyemykh zharoprochnykh nikelevykh splavov dlya diskov GTD [Heat treatment of deformable heat-resistant nickel alloys for GTE disks] // Vestnik MGTU im. N.E. Baumana. Ser.: Mashinostroyeniye. 2011. №SP2. S. 122–130.
15. Logunov A.V., Shmotin Yu.N. Sovremennyye zharoprochnyye nikelevyye splavy dlya diskov gazovykh turbin (materialy i tekhnologii) [Modern heat-resistant nickel alloys for gas turbine disks (materials and technologies)]. M.: Nauka i tekhnologiya, 2013. 264 s.
16. Boittin G., Locq D., Rafray A., Caron P., Kanouté P., Gallerneau F., Cailletaud G. Influence of γʹ precipitate size and distribution on LCF behavior of a PM disk superalloy // Superalloys-2012. USA: TMS, 2012. P. 167–176.
17. Yiqiang C., Prasath R., Slater T.J.A. et al. An investigation of diffusion-mediated cyclic coarsening and reversal coarsening in an advanced Ni-based superalloy // Acta Materialia. 2016. Vol. 110. P. 295–305.
18. Na puti k 3-y strategii upravleniya resursom [On the way to the 3rd resource management strategy]. Available at: http://www.pmz.ru/pr/other/aviadv/IB-16/IB-16_26/ (accessed: October 04, 2019).
19. Bakradze M.M., Lomberg B.S., Filonova Ye.V., Chabina Ye.B. Otsenka strukturno-fazovoy stabilnosti zharoprochnogo splava VZh175 posle termicheskoy obrabotki i imitatsiy narabotok pri rabochey temperature [Superalloy VJ175 structural and phase stability assessment after heat treatment and exposure at working temperature] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2017. №7 (55). St. 05. Available at: http://www.viam-works.ru (accessed: October 04, 2019). DOI: 10.18577/2307-6046-2017-0-7-5-5.
20. Powell A., Bain K., Wessman A. et al. Advanced supersolvus nickel powder disk alloy DoE: chemistry, properties, phase transformations and thermal stability // Superalloys-2016. USA: TMS, 2016. P. 189–197.
The article analyzes the methods of х-ray diffraction used to assess the quality of the structure of single-crystal castings of heat-resistant nickel alloys. The results of determining the deviation from the crystallographic orientation of single crystals of nickel heat-resistant alloys obtained on an х-ray diffractometer equipped with a curved position-sensitive detector are presented. The data of optimal shooting conditions for obtaining a swing curve in order to control the crystallographic orientation of single-crystal castings of heat-resistant nickel alloys are presented.
It is revealed that the most optimal conditions are shooting samples with a scanning step of 0,5 degrees and exposure at a point of 20 seconds, corresponding to the full rotation in the plane perpendicular to the normal surface. Since the diffractometer used in this study is a desktop device with a low-power х-ray source, this imposes certain restrictions on obtaining swing curves completely identical to those obtained on high-resolution diffractometers with a point scintillation detector. So the minimum shooting time on the diffractometer Difrey-401, sufficient to obtain a quality swing curve is 4-6 minutes, which is 1,5–2 times more than on high-power diffractometers.
The measurement results obtained on a diffractometer with a curved position-sensitive detector are comparable to those obtained on a diffractometer with a point scintillation detector. Based on the study, we can talk about the possibility of using a diffractometer with a curved position-sensitive detector to control the quality of the structure of single crystals of nickel heat-resistant alloys.
The accuracy of measurements in determining the deviation from the crystallographic orientation on any of the diffractometers is limited by the accuracy of the casting cut, usually not exc
2. Kablov E.N., Sidorov V.V., Kablov D.E., Min P.G. Metallurgicheskie osnovy obespecheniya vysokogo kachestva monokristallicheskih zharoprochnyh nikelevykh splavov [The metallurgical fundamentals for high quality maintenance of single crystal heat-resistant nickel alloys] // Aviacionnye materialy i tehnologii. 2017. №S. S. 55–71. DOI: 10.18577/2071-9140-2017-0-S-55-71.
3. Tolorayya V.N., Kablov E.N., Demonis I.M. Tekhnologiya polucheniya monokristallicheskikh otlivok turbinnykh lopatok GTD zadannoy kristallograficheskoy oriyentatsii iz reniysoderzhashchikh zharoprochnykh splavov [The technology for producing single-crystal castings of turbine engine turbine blades of a given crystallographic orientation from rhenium-containing heat-resistant alloys] // Liteynyye zharoprochnyye splavy. Effekt S.T. Kishkina. M.: Nauka, 2006. S. 206–219.
4. Kablov E.N., Bondarenko Yu.A., Kablov D.E. Osobennosti struktury i zharoprochnyh svojstv monokristallov <001> vysokorenievogo nikelevogo zharoprochnogo splava, poluchennogo v usloviyah vysokogradientnoj napravlennoj kristallizacii [Features of structure and heat resisting properties of monocrystals of <001> high-rhenium nickel hot strength alloys received in the conditions of high-gradient directed crystallization] // Aviacionnye materialy i tehnologii. 2011. №4. S. 25–31.
5. Kablov E.N., Bondarenko Yu.A., Echin A.B. Issledovaniye vliyaniya peremennogo upravlyayemogo temperaturnogo gradiyenta na osobennosti struktury, fazovyy sostav, svoystva vysokotemperaturnykh zharoprochnykh splavov pri ikh napravlennoy kristallizatsii [Investigation of the influence of a variable controlled temperature gradient on structural features, phase composition, and properties of high-temperature heat-resistant alloys during their directed crystallization] // Vestnik MGTU im. N.E. Baumana. Ser.: Mashinostroyeniye. 2016. №6 (111). S. 43–61.
6. Tolorayya V.N., Kablov E.N., Svetlov I.L., Orekhov N.G., Golubovskiy E.R. Anizotropiya prochnostnykh kharakteristik v monokristallakh nikelevykh zharoprochnykh splavov [Anisotropy of strength characteristics in single crystals of nickel heat-resistant alloys] // Gornyy informatsionno-analiticheskiy byulleten. 2005. Spetsvypusk. S. 225–236.
7. Toloraya V.N., Kablov E.N., Orekhov N.G., Ostroukhova G.A. Struktura i rostovyye defekty monokristallov nikelevykh zharoprochnykh splavov [Structure and growth defects of single crystals of heat-resistant nickel alloys] // Gornyy informatsionno-analiticheskiy byulleten. 2005. Spetsvypusk. S. 190–202.
8. Nazarkin R.M., Kolodochkina V.G., Ospennikova O.G., Orlov. M.R. Izmeneniya mikrostruktury monokristallov zharoprochnyh nikelevyh splavov v processe dlitelnoj ekspluatacii turbinnyh lopatok [The microstructure modifications of single crystals of Ni-based superalloys in time-tested turbine blades] // Aviacionnye materialy i tehnologii. 2016. №4 (45). S. 9–17. DOI: 10.18577/2071-9140-2016-0-4-9-17.
9. Nazarkin R.M. Rentgenodifrakcionnye metodiki precizionnogo opredeleniya parametrov kristallicheskih reshetok nikelevyh zharoprochnyh splavov (kratkij obzor) [X-ray diffraction techniques for precise determination of lattice constants in Ni-based superalloys: a brief review] //Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 41–48. DOI: 10.18577/2071-9140-2015-0-1-41-48.
10. Sidokhin E.F., Sidokhin F.A., Khayutin S.G. O substrukture monokristallicheskikh lopatok GTD [About the substructure of single-crystal GTE blades] // Aviatsionnaya promyshlennost. 2009. №1. S. 34–36.
11. Sidokhin F.A., Sidokhin A.F., Sidokhin E.F. Ob opredelenii kristallograficheskoy oriyentatsii monokristallov metodom Laue [On the determination of the crystallographic orientation of single crystals by the Laue method] // Zavodskaya laboratoriya. Diagnostika materialov. 2009. T. 75. №1. S. 35–37.
12. Potrakhov N.N., Khayutin S.G., Lifshits V.A., Oses R. Ustanovka PRDU-KROS dlya ekspressnogo opredeleniya kristallograficheskoy oriyentatsii kubicheskikh monokristallov po obratnym lauegrammam [Installation of PRDU-CROS for the express determination of the crystallographic orientation of cubic single crystals by inverse lauegrams] // Zavodskaya laboratoriya. Diagnostika materialov. 2015. T. 81. №8. S. 27–30.
13. Kuzmina N.A., Lifshits V.A., Potrakhov E.N., Potrakhov N.N. Sravnitelnyj kontrol struktury monokristallicheskikh otlivok nikelevykh zharoprochnykh splavov rentgenovskimi difraktsionnymi metodami «kachaniya» i Laue [Comparative structure control of single-crystal castings of nickel superalloys x-ray diffraction methods of oscillation and Laue] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2019. №9 (81). St. 02. Available at: http://www.viam-works.ru (accessed: October 12, 2019). DOI: 10.18577/2307-6046-2019-0-9-15-25.
14. Lisoyvan V.I., Zadneprovskiy G.M. K metodike opredeleniya oriyentatsii kristallograficheskoy ploskosti v monokristalle na difraktometre [On the methodology for determining the orientation of the crystallographic plane in a single crystal on a diffractometer] // Apparatura i metody rentgenovskogo analiza. 1969. Vyp. 4. S. 64–70.
15. Kheyker D.M. Rentgenovskaya difraktometriya monokristallov [X-ray diffractometry of single crystals]. L.: Mashinostroyeniye, 1973. 256 s.
16. Pyankova L.A., Elokhin V.A., Arkhipov S.N. i dr. Kontrol funktsionalnykh sloyev VTSP-2 s pomoshchyu teksturnoy pristavki rentgenovskogo difraktometra «Difrey-401» [Control of the functional layers of HTSC-2 using the texture attachment of the X-ray diffractometer «Difrey-401»] // Zavodskaya laboratoriya. Diagnostika materialov. 2016. №82 (10). S. 44–46.
17. Goganov D.A., Kazanskiy B.V., Klimenskaya D.A. i dr. Pozitsionno-chuvstvitelnye detektory myagkogo rentgenovskogo izlucheniya i ikh primeneniye [Position-sensitive soft x-ray detectors and their application] // Pribory i tekhnika eksperimenta. 2015. №1. S. 109–116.
18. Makro- i mikrostruktura nikelevykh zharoprochnykh splavov, prednaznachennykh dlya monokristalnogo litya lopatok [Macro and microstructure of heat-resistant nickel alloys intended for single-crystal casting of blades]. Available at: https://studme.org/151298/tehnika/ makro_mikrostruktura_nikelevyh_zharoprochnyh_splavov_prednaznachennyh_monokristalnogo_litya_lopatok (accessed: October 14, 2019).
In FSUE «VIAM» was developed high-tech structurally stable deformable alloy VZh159 with an operating temperature of up to 1000°C, superior to the properties of the alloy EP648. VZh159 has high characteristics of weldability in the deformed state, which ensures maintainability of parts and welded assemblies from it. The use of the alloy in the aviation industry has long been limited due to the lack of casting options required to obtain complex parts from castings due to the impossibility of their manufacture from a deformed workpiece or sheet.
According to the technological recommendations of FSUE «VIAM» in the conditions of machine-building enterprise JSC «MMP. V.V. Chernysheva» the development of technology of manufacture of castings parts made from superalloy VZh159 «diffuser»: the developed optimal design of Gating-feeding system, which made the model blocks and ceramic molds, worked out the technological parameters of the casting parts at the installation of WIPE-3 has been control the quality of the castings, visual and radiographic method was developed according to TT, the results of which showed that the castings are dense, they do not exist slivers, cracks, kinglets, through rips and sinks, as well as identified acceptable and eliminated defects.
The results of this work identified that developed at FSUE «VIAM» and worked in production conditions the technological process of production of GTE parts «diffuser» superalloy VZh 159 provided getting a usable casting. The level of mechanical properties and long-term strength at a temperature close to the operating conditions, shows the possibility of using the superalloy VZh159 as a promising structural material for parts of the stator of an aircraft engine operating at temperatures up to 900°C inclusive.
<p style="text-
2. Lomberg B.S., Ovsepyan S.V., Bakradze M.M., Mazalov I.S. Vysokozharoprochnyye deformiruyemyye nikelevyye splavy dlya perspektivnykh gazoturbinnykh dvigateley i gazoturbinnykh ustanovok [High-temperature wrought wrought nickel alloys for promising gas turbine engines and gas turbine units] // Vestnik MGTU im. N.E. Baumana. Ser.: Mashinostroyeniye, 2011. №SP2. S. 98–103.
3. Moiseev S.A., Latyshev V.B. Zharoprochnyye svarivayemyye splavy dlya uzlov statora sovremennykh i perspektivnykh aviatsionnykh GTD [Heat resisting welded alloys for nodes of stator of modern and perspective aviation GTD] // Aviacionnye materialy i tehnologii. 2003. №1. S. 152–157.
4. Kablov E.N. Tendentsii i oriyentiry innovatsionnogo razvitiya Rossii: sb. nauch.-inform. materialov. 3-e izd. [Tendencies and guidelines for innovative development of Russia: collection of scientific and information materials. 3rd ed.]. M.: VIAM, 2015. 720 s.
5. Kablov E.N., Ospennikova O.G., Lomberg B.S., Sidorov V.V. Prioritetnye napravleniya razvitiya tekhnologiy proizvodstva zharoprochnykh materialov dlya aviatsionnogo dvigatelestroyeniya [Priority areas for the development of technologies for the production of heat-resistant materials for aircraft engine manufacturing] // Problemy chernoy metallurgii i materialovedeniya. 2013. №3. S. 47–54.
6. Kablov E.N., Petrushin N.V., Svetlov I.L., Demonis I.M. Liteynyye zharoprochnyye nikelevyye splavy dlya perspektivnykh aviatsionnykh GTD [Heat-resistant nickel alloys for advanced aviation gas turbine engines] // Tekhnologiya legkikh splavov. 2007. №2. S. 6–16.
7. Evgenov A.G., Rogalev A.M., Nerush S.V., Mazalov I.S. Issledovanie svojstv splava EP648, poluchennogo metodom selektivnogo lazernogo splavleniya metallicheskih poroshkov [A study of properties of EP648 alloy manufactured by the selective laser sintering of metal powders] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №2. St. 02. Available at: http://www.viam-works.ru (accessed: October 24, 2019). DOI: 10.18577/2307-6046-2015-0-2-2-2.
8. Evgenov A.G., Gorbovec M.A., Prager S.M. Struktura i mehanicheskie svojstva zharoprochnyh splavov VZh159 i EP648, poluchennyh metodom selektivnogo lazernogo splavleniya [Structure and mechanical properties of heat resistant alloys VZh159 and EP648, prepared by selective laser fusing] // Aviacionnye materialy i tehnologii. 2016. №S1. S. 8–15. DOI: 10.18577/2071-9140-2016-0-S1-8-15.
9. Kablov E.N., Evgenov A.G., Ospennikova O.G., Semenov B.I., Semenov A.B., Korolev V.A. Metalloporoshkovyye kompozitsii zharoprochnogo splava EP648 proizvodstva FGUP «VIAM» GNTS RF v tekhnologiyakh selektivnogo lazernogo splavleniya, lazernoy gazoporoshkovoy naplavki i vysokotochnogo lit'ya polimerov, napolnennykh metallicheskimi poroshkami [Metal powder compositions of the heat-resistant alloy EP648 manufactured by FSUE «VIAM» SSC RF in technologies of selective laser fusion, laser gas-powder surfacing and high-precision casting of polymers filled with metal powders] // Izvestiya vysshikh uchebnykh zavedeniy. Ser: Mashinostroyeniye. 2016. №9 (678). S. 62–80.
10. Mazalov I.S., Evgenov A.G., Prager S.M. Perspektivy primeneniya zharoprochnogo strukturnostabilnogo splava VZh159 dlya additivnogo proizvodstva vysokotemperaturnyh detalej GTD [Perspectives of heat resistant structurally stable alloy VZh159 application for additive production of high-temperature parts of GTE] // Aviacionnye materialy i tehnologii. 2016. №S1. S. 3–7. DOI: 10.18577/2071-9140-2016-0-S1-3-7.
11. Evgenov A.G., Rogalev A.M., Karachevtsev F.N., Mazalov I.S. Vliyaniye goryachego izostaticheskogo pressovaniya i termicheskoy obrabotki na svoystva splava EP648, sintezirovannogo metodom selektivnogo lazernogo splavleniya [The effect of hot isostatic pressing and heat treatment on the properties of the EP648 alloy synthesized by selective laser fusion] // Tekhnologiya mashinostroyeniya. 2015. №9. S. 11–16.
12. Lomberg B.S., Moiseyev S.A. Zharoprochnyye i deformiruyemyye splavy dlya sovremennykh i perspektivnykh GTD [Heat-resistant and deformable alloys for modern and promising gas-turbine engines] // Vse materialy. Entsiklopedicheskiy spravochnik. 2007. №6. S. 2–5.
13. Lomberg B.S., Kapitanenko D.V., Mazalov I.S., Bubnov M.V. Tekhnologicheskie parametry polucheniya detaley kholodnoy shtampovkoy iz listovykh zagotovok zharoprochnykh splavov VZH159, VZh171 i vysokoprochnogo splava VZh172 [Technological parameters for producing parts by cold stamping from sheet blanks of heat-resistant alloys VZh159, VZh171 and high-strength alloy VZh172] // Kuznechno-shtampovochnoye proizvodstvo. Obrabotka materialov davleniyem. 2015. №8. S. 14–19.
14. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
15. Kablov E.N., Petrushin N.V., Svetlov I.L. Sovremennyye litye nikelevye zharoprochnye splavy [Modern Cast Nickel Heat Resistant Alloys] // Tr. Mezhdunar. nauch.-tekhnich. konf. «Nauchnyye idei S.T. Kishkina i sovremennoye materialovedeniye». M.: VIAM, 2006. S. 39–55.
In the framework of improving the operational characteristics of polymer compositions, ethylene propylene diene rubber was investigated as the main component in the composition of cold-resistant rubber.
Ethylene propylene diene rubber has excellent resistance to oxidation by ozone and oxygen, to light, good physical and mechanical properties, a fairly wide range of operating temperatures, which can be expanded by the introduction of plasticizers or a combination with other thermally and cold-resistant rubbers.
Modern ethylene propylene diene rubbers with a low glass transition temperature ensure the performance of rubbers based on them to a temperature of -60°C.
Domestic rubbers were used in the work: SKEPT-40, SKD-N, SKTFV-803. A comparison of the technical characteristics of the obtained vulcanizates was carried out with the properties of cold-resistant sealing rubber of the IRP 1375 grade containing ethylene-propylene rubber.
For vulcanization of the rubber compound based on SKEPT-40, the optimal vulcanizing system was developed: a mixture of organic peroxide and sulfur in the presence of a sulfenamide accelerator.
It was shown that the finished rubbers had almost twice the elastic strength characteristics compared to IRP 1375, and the addition of a paraffin plasticizer to the rubber composition improved cold resistance of vulcanizate by 5°C compared to the specified rubber.
A method for mixing ethylene propylene diene and siloxane rubbers in the presence of two types of reinforcing fillers: carbon black (P324) and silicon oxide (Aerosil A-300) is proposed.
It is concluded that combinations&
2. Kablov E.N. Materialy novogo pokoleniya – osnova innovatsiy, tekhnologicheskogo liderstva i natsionalnoy bezopasnosti Rossii [Materials of a new generation – the basis of innovation, technological leadership and national security of Russia] // Intellekt i tekhnologiya. 2016. №2 (14). S. 16–21.
3. Kablov E.N., Startsev V.O. Sistemnyj analiz vliyaniya klimata na mekhanicheskie svojstva polimernykh kompozitsionnykh materialov po dannym otechestvennykh i zarubezhnykh istochnikov (obzor) [Systematical analysis of the climatics influence on mechanical properties of the polymer composite materials based on domestic and foreign sources (review)] // Aviacionnye materialy i tehnologii. 2018. №2 (51). S. 47–58. DOI: 10.18577/2071-9140-2018-0-2-47-58.
4. Kablov E.N. Materialy i khimicheskiye tekhnologii dlya aviatsionnoy tekhniki [Materials and chemical technologies for aviation technology] // Vestnik Rossiyskoy akademii nauk. 2012. T. 82. №6. S. 520–530.
5. Kablov E.N. Rol khimii v sozdanii materialov novogo pokoleniya dlya slozhnykh tekhnicheskikh sistem [The role of chemistry in the creation of new generation materials for complex technical systems] // Tez. dokl. XX Mendeleyevskogo syezda po obshchey i prikladnoy khimii. Ekaterinburg: UrO RAN, 2016. S. 25–26.
6. Laptev A.B., Barbotko S.L., Nikolaev E.V. Osnovnye napravleniya issledovanij sokhranyaemosti svojstv materialov pod vozdejstviem klimaticheskikh i ekspluatatsionnykh faktorov [The main research areas of the persistence properties of materials under the influence of climatic and operational factors] // Aviacionnye materialy i tehnologii. 2017. №S. S. 547–561. DOI: 10.18577/2071-9140-2017-0-S-547-561.
7. Gryaznov V.I., Petrova G.N., Yurkov G.Yu., Buznik V.M. Smesevye termojelastoplasty so specialnymi svojstvami [Thermoplastic mixtures with special properties] // Aviacionnye materialy i tehnologii. 2014. №1. S. 25–29. DOI: 10.18577/2071-9140-2014-0-1-25-29.
8. Eliseev O.A., Krasnov L.L., Zajceva E.I., Savenkova A.V. Razrabotka i modificirovanie elastomernyh materialov dlya primeneniya vo vseklimaticheskih usloviyah [Development and modifying of elastomeric materials for application in all weather conditions] // Aviacionnye materialy i tehnologii. 2012. №S. S. 309–314.
9. Efimov V.A., Shvedkova A.K., Korenkova T.G., Kirillov V.N. Issledovanie polimernyh konstrukcionnyh materialov pri vozdejstvii klimaticheskih faktorov i nagruzok v laboratornyh i naturnyh usloviyah [Research of polymeric constructional materials at influence of climatic factors and loadings in laboratory and natural conditions] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №1. St. 05. Available at: http://viam-works.ru (accessed: April 04, 2019).
10. Man der Aar N. Introduction Lanxess. Available at: http://www.vizl.eu/ cms/uploads/files/d9570e623d578b72267b0f6d29810d6f.pdf (accessed: April 08, 2019).
11. Monosulfidnye svyazi [Monosulfide bonds] // Spravochnik khimika 21. Khimiya i khimicheskaya tekhnologiya. Available at: https://chem21.info/info/749977/ (accessed: August 02, 2019).
12. Abou-Helal M.O., El-Sabbagh S.H. A Study on the Compatibility of NR-EPDM Blends Using Electrical and Mechanical Techniques // Journal of Elastomer and Plastics. 2005. Vol. 37 (10). P. 319–346.
13. Jalbert R.L. Modern Plastics Encyclopedia. New-York: McGraw-Hill, 1984. 841 p.
14. Semenova S.N., Suleymanov R.R., Chaykun A.M. Sovmestnoye ispolzovaniye etilenpropilendiyenovogo i metilfenilsiloksanovogo kauchuka v retsepture morozostoykoy i ozonostoykoy reziny [Mixing ethylene-propylene-diene and methylphenylsiloxane rubbers in the formulation of cold and ozone resistant rubber] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2019. №9 (81). St. 07. Available at: http://www.viam-works.ru (accessed: September 24, 2019). DOI: 10.18577/2307-6046-2019-0-9-64-72.
15. Bolshoy spravochnik rezinshchika v 2 ch. [the big reference book for specialist in rubbers in 2 parts]. M.: Tekhinform, 2012. 1385 s.
The requirements shown to heatsound-proof materials of aviation assignment are described. The description of method of determination of sound-proof properties of materials is provided. Two types of porous materials are described: fibrous and cellular. Are designated strong and weaknesses of each type. Are provided on two representatives of each type – domestic and foreign. Comparison of density, heat conductivity, working temperature, hygroscopicity, and also combustibility is provided. It is established that materials of fibrous and cellular types are close according to the main characteristics, however fibrous materials considerably concede on hygroscopicity indicators. Sound-proof properties of heatsound-proof materials without design are provided. The conclusion is drawn on superiority of cellular materials in all the studied range of frequencies. It is noted that according to the received data probably two options of increase of sound-proof properties of heatsound-proof materials: change of structure of material, or addition of layer of bigger density and smaller porosity. Materials of the brands VTI-25 and VTI-25U in which the concept of the second layer is implemented are given. It is shown that application of similar approach allows to increase sound-proof properties to the levels close to materials of cellular type, however density of fibrous material thus raises. It is noted that the way of fastening of layers by means of glued joint is more preferable in comparison with piercing option. The assumption is made that increase of acoustic characteristics is reached at the expense of continuous glue layer which after polymerization are raised by reflection of acoustic waves in material. In case of underrunning through openings on all material thickness that leads to decrease in its sound-proof characteristics are formed.
2. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
3. GOST 20296–2014 «Samolety i vertolety grazhdanskoy aviatsii. Dopustimyye urovni shuma v salonakh i kabinakh ekipazha i metody izmereniya shuma» [State Standard 20296–2014 Airplanes and helicopters of civil aviation. Permissible noise levels in salons and crew cabins and noise measurement methods]. M.: Standartinform, 2014. 10 s.
4. Sytyj Yu.V., Sagomonova V.A., Maksimov V.G., Babashov V.T. Zvukoteploizoliruyushhij material gradientnoj struktury VTI-22 [VTI-22 sound and thermal insulation material of gradient structure] // Aviacionnye materialy i tehnologii. 2013. №2. S. 47–49.
5. Kablov E.N., Bejder E.Ya., Petrova G.N., Stolyankov Yu.V., Rumyanceva T.V. Penopoliimidy [Foamed polyimides] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №4. St. 09. Available at: http://viam-works.ru (accessed: October 07, 2019). DOI: 10.18577/2307-6046-2015-0-4-9-9.
6. Istomin A.V., Bespalov A.S., Babashov V.G. Pridaniye povyshennoy ognestoykosti teplozvukoizolyatsionnomu materialu na osnove smesi neorganicheskikh i rastitelnykh volokon [Adding increased resistance to heat and sound insulation of material based on mixture of inorganic and plant fibers] // Aviacionnye materialy i tehnologii. 2018. №4 (53). S. 74–78. DOI: 10.18577/2071-9140-2018-0-4-74-78.
7. Shuldeshov E.M., Lepeshkin V.V., Platonov M.M., Romanov A.M. Metod opredeleniya akusticheskih harakteristik zvukopogloshhayushhih materialov v rasshirennom do 15 kGc diapazone chastot [Method of definition of acoustic characteristics of sound-proof materials in the range of frequencies expanded to 15 kHz] // Aviacionnye materialy i tehnologii. 2016. №2 (41). S. 45–49. DOI: 10.18577/2071-9140-2016-0-2-45-49.
8. Varrik N.M. Termostojkie volokna i teplozvukoizolyacionnye ognezashhitnye materialy [Heat-resistant fibers and heat and sound insulating fireproof materials] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №6. St. 07. Available at: http://viam-works.ru (accessed: October 07, 2019). DOI: 10.18577/2307-6046-2014-0-6-7-7.
9. Gorlov Yu.P. Tekhnologiya teploizolyatsionnykh i akusticheskikh materialov i izdeliy [Technology of heat-insulating and acoustic materials and products]. M.: Vysshaya shkola, 1989. 384 s.
10. Sudareva N.G., Smyslova L.A. Otechestvennye teploizolyatsionnye materialy dlya sudostroyeniya [Domestic heat-insulating materials for shipbuilding] // Rossiyskiy khimicheskiy zhurnal. 2009. T. 53. №4. S. 54–61.
11. Rumyantsev B.M., Zhukov A.D. Eksperiment i modelirovaniye pri sozdanii novykh izolyatsionnykh i otdelochnykh materialov [Experiment and modeling when creating new insulating and finishing materials]. M.: MISI–MGSU, 2013. 156 s.
12. Nikonova E.V. O zvukoizolyatsionnykh svoystvakh zvukopogloshchayushchikh materialov, ispolzuyemykh v mnogosloynykh ograzhdayushchikh konstruktsiyakh [On the soundproofing properties of sound-absorbing materials used in multilayer walling] // Nauchnoye obozreniye. 2017. №12. S. 68–72.
13. Microlite AA Standard // Johns Manville: a Berkshire Hathaway Company. Available at: https://www.jm.com/content/jm/global/en/index/oem/aerospace/microlite-aa-standard/ (accessed: October 07, 2019).
14. Yudin E.Ya. Zvukopogloshchayushchiye i zvukoizolyatsionnyye materialy [Sound absorbing and soundproof materials]. M.: Stroyizdat, 1966. 248 s.
15. Solimide foams // Boyd Corporation. Available at: https://www.boydcorp.com/ protection/insulation-shielding/solimide-foams.html (accessed: October 07, 2019).
The finite difference and finite elements methods are regarded for mathematic simulation of thermoset curing processes on the example of epoxy resin and amine hardener. The finite difference method was used to simulation of flat layer curing and simultaneous solution of heat transfer and chemical interaction problem. The finite element method was used for simultaneous three-dimensional numerical solution of heat transfer, chemical interaction and stress-strain problems during curing of complex-shape samples. The verified kinetics model obtained from differential scanning calorimetry was used. The literature data of the parameters of heat transfer, chemical shrinkage and thermal expansion were used for calculations.
2. Kablov E.N., Semenova L.V., Petrova G.N., Larionov S.A., Perfilova D.N. Polimernyye kompozitsionnyye materialy na termoplastichnoy matritse [Polymer composite materials on a thermoplastic matrix] // Izvestiya vysshikh uchebnykh zavedeniy. Ser.: Khimiya i khimicheskaya tekhnologiya. 2016. T. 59. №10. S. 61–71.
3. Kovalenko A.V. Issledovanie svojstv svyazujushhego dlya formovaniya izdelij metodom propitki pod davleniem [Study of resin properties for forming of articles by resin transfer molding] // Trudy VIAM: electron. nauch.-tehnich. zhurn. 2015. №1. St. 06. Available at: http://viam-works.ru (accessed: September, 30 2019).
4. Kablov E.N. Kompozity: segodnya i zavtra [Composites: today and tomorrow] // Metally Evrazii. 2015. №1. S. 36–39.
5. Chawla K.K. Composite Materials: Science and Engineering. Springer, 2012. 565 p.
6. Pascault J.P., Sautereau H., Verdu J., Williams R.J.J. Thermosetting polymers. N.Y.: Marcel Dekker AG, 2002. 477 p.
7. Satdinov R.A., Istyagin S.E., Veshkin E.A. Analiz temperaturno-vremennyh parametrov rezhimov otverzhdeniya PKM s zadannymi harakteristikami [Analysis of the temperature-time parameters mode curing PCM with specified characteristics] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2017. №3. St. 09. Available at: http://www.viam-works.ru (accessed: September, 30 2019). DOI: 10.18577/2307-6046-2017-0-3-9-9.
8. Khaskov M.A. Rasshireniye diagrammy «temperatura–vremya–prevrashcheniye» s uchetom teplofizicheskikh svoystv komponentov dlya optimizatsii rezhimov otverzhdeniya polimernykh kompozitsionnykh materialov [Extension of the temperature – time – transformation diagram taking into account the thermophysical properties of components to optimize the curing modes of polymer composite materials] // Zhurnal prikladnoy khimii. 2016. T. 89. №4. S. 93–101.
9. Henry A. Thermal transport in polymers // Annual Review of Heat Transfer. 2014. Vol. 17. P. 485–520.
10. Timoshkov P.N., Khrulkov A.V., Usacheva M.N., Purvin K.E. Tekhnologicheskiye osobennosti izgotovleniya tolstostennykh detaley iz PKM (obzor) [Technological features of the manufacture of thick-walled parts of the PCM (review)] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2019. №3 (75). St. 07. Available at: http://viam-works.ru (accessed: September, 30 2019). DOI: 10.18577/2307-6046-2019-0-3-61-67.
11. Cheverev V.G., Safronov E.V. Modelirovaniye promerzaniya gruntov pri peremennykh usloviyakh teplomassoobmena [Modeling soil freezing under variable conditions of heat-mass transfer] // Tez. dokl. konf. «Lomonosovskiye chteniya-2012». Available at http://geo.web.ru/pubd//2012/06/01/0001186421/pdf/cheverev_safronov_2012.pdf (accessed: October 15, 2019).
12. Chena J.-Y., Jin Z., Yang K.-D. Three-dimensional Numerical Simulation of Viscoelastic Phase Separation under Shear: the Roles of Bulk and Shear Relaxation Moduli // Chinese Journal of Polymer Science. 2015. Vol. 33. No. 11. P. 1562–1573.
13. Khoun L., Hubert P. Cure shrinkage characterization of an epoxy resin system by two in situ measurement methods // Polymer composites. 2010. Vol. 31. No. 9. P. 1603–1610.
14. Chern B.-C., Moon T.J., Howell J.R., Tan W. New Experimental Data for Enthalpy of Reaction and Temperature- and Degree-of-Cure-Dependent Specific Heat and Thermal Conductivity of the Hercules 3501-6 Epoxy System // Journal of Composite Materials. 2002. Vol. 36. No. 17. P. 2061–2072.
15. Khaskov M.A., Melnikov D.A., Kotova E.V. Podbor temperaturno-vremennykh rezhimov otverzhdeniya epoksidnykh svyazuyushchikh s uchetom masshtabnogo faktora [Selection of temperature-time regimes for curing epoxy binders taking into account the scale factor] // Klei. Germetiki. Tekhnologii. 2017. T. 10. S. 24–32.
16. Herman M.F. Encyclopedia of Polymer Science and Technology. John Wiley & Sons Inc., 2005. Vol. 2. 743 p.
17. Flammersheim H.-J., Opfermann J.R. Investigation of epoxide curing reactions by differential scanning calorimetry – Formal kinetic evaluation // Macromolecular Materials and Engineering. 2001. Vol. 286. No. 3. P. 143–150.
18. Verhoeff J. Experimental study of the thermal explosion of liquids. Rijswijk: Prins Maurits Laboratorium TNO, 1983. 202 p.
19. Ciecierska E., Boczkowska A., Jan K., Kurzydlowski I., Rosca D., Hoa S.V. The effect of carbon nanotubes on epoxy matrix nanocomposites // Journal of Thermal Analysis and Calorimetry. 2013. Vol. 111. No. 2. Р. 1019–1024.
20. Menczel J.D., Prime R.B. Thermal Analysis of Polymers, Fundamentals and Applications. John Wiley & Sons Inc., 2009. 420 p.
The article discusses the main technological features of the formation of natural and artificial composite structures based on NiAl compounds. It is shown that this kind of materials can be obtained by directional crystallization methods and by technology, including thermomechanical processing, as well as using mechanical activation methods followed by controlled reaction synthesis, forced and reaction impregnation with a matrix-forming melt, and deformation-diffusion solid-phase combination. Some experimental and theoretical calculations based on multicomponent state diagrams that allow the creation of such materials using the above methods are presented and generalized. Based on the data obtained, conclusions are drawn about further paths in the development and creation of materials based on nickel monoaluminide NiAl.
As a result of a review of the works, it was found that, with respect to the processes of directed crystallization and the traditional preparation of a given chemical composition of natural compositional structures based on β-phase NiAl by smelting of ingots, it is necessary to use state diagrams in order to form an optimal alloying system that provides the required final material structure and , respectively, the necessary mechanical properties, taking into account the thermal and thermomechanical processing. All this determines the need for a set of theoretical and practical work to create a reserve for the development of structural materials based on systems with a NiAl matrix that operate at elevated temperatures both as turbine disks and as GTE blades.
A significant advantage of artificially created composite materials is their versatility, in particular, allowing the formation of the necessary artificial structures with a matrix on the basis of various intermetallic compounds, including NiAl, with predetermined properties capable of wo
2. Petrushin N.V., Ospennikova O.G., Elyutin E.S. Renij v monokristallicheskih zharoprochnyh nikelevyh splavah dlya lopatok gazoturbinnyh dvigatelej [Rhenium in single crystal nickel-based superalloys for gas turbine engine blades] // Aviacionnye materialy i tehnologii. 2014. №S5. S. 5–16. DOI: 10.18577/2071-9140-2014-0-s5-5-16.
3. Ospennikova O.G. Tendencii sozdaniya zharoprochnyh nikelevyh splavov nizkoj plotnosti s polikristallicheskoj i monokristallicheskoj strukturoj (obzor) [Tendencies of development of heat-resistant nickel alloys of low density with polycrystalline and single-crystal structures (review)] // Aviacionnye materialy i tehnologii. 2016. №1 (40). S. 3–19. DOI: 10.18577/2071-9140-2016-0-1-3-19.
4. Bondarenko Yu.A., Bazyleva O.A., Rayevskikh A.N., Narskiy A.R. Issledovaniya po sozdaniyu novoy vysokotemperaturnoy zharostoykoy matritsy na osnove intermetallidov NiAl–Ni3Al [Research on the creation of a new high-temperature heat-resistant matrix based on intermetallic compounds NiAl–Ni3Al] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2018. №11 (71). St. 01. Available at: http://www.viam-works.ru (accessed: November 06, 2019). DOI: 10.18577/2307-6046-2018-0-11-3-11.
5. Povarova K.B., Lomberg B.S., Filin S.A. i dr. Struktura i svoystva (b+γ)-splavov sistemy Ni–Al–Co [Structure and properties of (β+γ) alloys of the Ni–Al–Co system] // Metally. 1994. №3. S. 1–14.
6. Noebe R.D., Misra A., Gibala R. Plastic flow and fracture of NiAl-based alloys containing a ductile second phase // Iron and Steel Institute of Japan. 1991. Vol. 31. No. 10. P. 1172–1185.
7. Petrushin N.V., Bronfin M.B., Chabina E.B., Dyachkova L.A. Fazovyye prevrashcheniya i struktura napravlenno zakristallizovannykh intermetallidnykh splavov Ni–Al–Re [Phase transformations and the structure of directionally crystallized Ni–Al–Re intermetallic alloys] // Metally. 1994. №3. S. 30–47.
8. Bazyleva O.A., Turenko Ye.YU., Shestakov A.V. Vliyaniye termicheskoy obrabotki na mikrostrukturu i mekhanicheskiye svoystva splava na osnove intermetallida NiAl // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2014. №9. St. 02. URL: http://www.viam-works.ru (data obrashcheniya: 06.11.2019). DOI: 10.18577/2307-6046-2014-0-9-2-2.
9. Hubert-Protopopescu M., Hubert H. Aluminium-cobalt-nickel // Ternary alloys: a comprehensive compendium of evaluated constitutional data and phase diagrams. Weinheim–N.Y.: VCH Cop., 1991. P. 234–244.
10. Kornilov I.I. Fiziko-khimicheskiye osnovy zharoprochnosti splavov [Physicochemical fundamentals of heat resistance of alloys]. M.: Izd-vo AN SSSR, 1961. 516 s.
11. Kornilov I.I., Mints R.S. Issledovaniye sistemy Ni–Cr–NiAl [Investigation of the Ni–Cr–NiAl system] // Neorganicheskaya khimiya. 1958. T. III. Vyp. 5. S. 699–707.
12. Kablov E.N., Bondarenko Yu.A., Echin A.B. Razvitiye tekhnologii napravlennoy kristallizatsii liteynykh vysokozharoprochnykh splavov s peremennym upravlyayemym temperaturnym gradiyentom [Development of technology of cast superalloys directional solidification with variable controlled temperature gradient] // Aviacionnyye materialy i tehnologii. 2017. №S. S. 24–38. DOI: 10.18577/2071-9140-2017-0-S-24-38.
13. Povarova K.B., Kazanskaya N.K., Lomberg B.S. i dr. Fazovyy sostav i struktura splavov na osnove NiAl sistem Ni–Al–Co–M, gde M–Ti, Zr, Hf, V, Nb, Ta, Cr, Mo [Phase composition and structure of alloys based on NiAl Ni–Al–Co–M systems, where M is Ti, Zr, Hf, V, Nb, Ta, Cr, Mo] // Metally. 1996. №3. S. 1–19.
14. Povarova K.B., Kazanskaya N.K., Lomberg B.S., Bondarenko Yu.A., Shkolnikov D.Yu. Konstruktsionnyye zharoprochnyye (b+γ)-splavy na osnove NiAl s povyshennoy nizkotemperaturnoy plastichnostyu [Heat-resistant structural (β+γ)-alloys based on NiAl with increased low-temperature ductility] // Metallurg. 1996. №5. S. 1–9.
15. Povarova K.B., Filin S.A., Maslenkov S.B. Fazovyye ravnovesiya s uchastiyem b-fazy v sistemakh Ni–Al–Me (Me–Co, Fe, Mn, Cu) pri 900 i 1100°C [Phase equilibria involving the β phase in Ni–Al–Me systems (Me–Co, Fe, Mn, Cu) at 900 and 1100°С] // Metally. 1993. №1. S. 191–205.
16. Letnikov M.N., Lomberg B.S., Ovsepyan S.V. Issledovanie kompozicij sistemy Ni–Al–Co pri razrabotke novogo zharoprochnogo deformiruemogo intermetallidnogo splava [Investigation experimental alloys based on Ni–Al–Co ternary system for development a new high-temperature intermetallic alloy for disk application] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. № 10. St. 01. Available at: http://www.viam-works.ru (accessed: November 06, 2019).
17. Kablov E.N., Ospennikova O.G., Kucheryaev V.V., Rozenenkova V.A. i dr. Termomekhanicheskoye povedeniye intermetallidnykh splavov sistemy Ni–Al–Co i Ti–Al–Nb pri izotermicheskoy deformatsii [Thermomechanical behavior of intermetallic alloys of the Ni–Al–Co and Ti–Al–Nb systems under isothermal deformation] // Pisma o materialakh. 2016. T. 6. №3 (23). S. 189–194.
18. Kablov E.N., Abuzin Yu.A., Shavnev A.A., Efimochkin I.Yu. Tekhnologicheskaya baza dlya issledovaniya, razrabotki i proizvodstva metallicheskikh kompozitsionnykh materialov [Technological base for research, development and production of metal composite materials] // 75 let. Aviacionnye materialy. Izbrannyye trudy «VIAM» 1932–2007. M.: VIAM, 2007. S. 249–255.
19. Shahzad A., Abuzin Yu., Karashaev M. In situ fabrication of NixAlx intermetallic reinforcement particles and of Al-matrix composite reinforced with those particles // Nanoscience and Technology: An International Journal. 2017. Vol. 8 (3). P. 211–222.
20. Abuzin Yu.A., Karashayev M.M., Sokolov R.A. Samorazogrev mekhanicheski aktivirovannykh elementarnykh metallicheskikh poroshkov [Self-heating of mechanically activated elementary metal powders] // Uspekhi sovremennoy nauki. 2016. T. 3. S. 123–128.
21. Abuzin Yu.A., Karashayev M.M. Issledovaniye alyumotermicheskikh reaktsiy v poroshkovykh sistemakh Nb2O5 (WO3; MoO3; Fe2O3; NiO)-Al posle mekhanicheskoy aktivatsii [Investigation of aluminothermic reactions in powder systems Nb2O5 (WO3; MoO3; Fe2O3; NiO)-Al after mechanical activation] // Mezhdunarodnyy nauchno-issledovatelskiy zhurnal. 2016. №7 (49). S. 6–9. DOI: 10.18454/IRJ.2016.49.036.
22. Abuzin Yu., Karashaev M.M., Sokolov R.A. Evaluation of Energy Efficiency of the Alumothermic Process of Producing Metal Composite Materials by the Criteria of the Maximum Self-Heating Temperature and the Aggregate State of Oxygen Exchange Reaction Products // Nanomechanics Science and Technology: An International Journal. 2015. Vol. 6 (4). P. 299–304.
23. Lurie S., Abuzin Yu., Sokolov R., Karashaev M., Belov P. Experimental and Theoretical Study of Mass Transport during Annealing of Mechanically Activated Composite Granules of Ni–Al System // International Journal of Engineering and Innovative Technology. 2014. Vol. 4. Iss. 5. P. 194–200.
24. Sposob polucheniya izdeliya iz metallicheskogo kompozitsionnogo materiala: pat. 2283726 S1 Ros. Federatsiya [A method of obtaining a product from a metal composite material: pat. 2283726 C1 Rus. Federation]; zayavl: 17.02.05; opubl. 20.09.06.
25. Sposob polucheniya izdeliya iz metallicheskogo kompozitsionnogo materiala: pat. 2283727 S1 Ros. Federatsiya [A method of obtaining a product from a metal composite material: pat. 2283727 C1 Rus. Federation]; zayavl: 17.02.05; opubl. 20.09.06.
26. Krasnov E.I., Shtejnberg A.S., Shavnev A.A., Berezovskij V.V. Issledovanie sloistogo metallicheskogo kompozicionnogo materiala sistemy Ti–TiAl3 [Study of Ti–TiAl3 laminate metal composite material ] // Aviacionnye materialy i tehnologii. 2013. №3. S. 16–19.
27. Sposob polucheniya kompozitsionnogo materiala: pat. 2394665 S1 Ros. Federatsiya [A method of obtaining a composite material: pat. 2394665 C1 Rus. Federation]; zayavl. 31.03.09; publ. 20.07.10.
28. Zhabin A.N., Serpova V.M., Grishina O.I., Shavnev A.A. Issledovaniye formirovaniya fazovogo sostava matritseobrazuyushchego alyuminidnogo splava dlya vysokotemperaturnykh metallicheskikh kompozitsionnykh materialov [Research of phase composition formation of the matrix forming aluminide alloy for high temperature metallic composite materials] // Aviacionnye materialy i tehnologii. 2016. №2 (41). S. 18–21. DOI: 10.18577/2071-9140-2016-0-2-18-21.
29. Sposob polucheniya izdeliya iz zharoprochnogo kompozitsionnogo materiala: pat. 2346997 S2 Ros. Federatsiya [A method of obtaining a product from a heat-resistant composite material: pat. 2346997 C2 Rus. Federation]; zayavl. 15.11.06; opubl. 20.02.09.
In addition to high-strength carbon plastics at a working temperature of up to 150 °C, for highly loaded parts of aircraft, when creating a new generation of equipment, it is necessary to use polymer composites in heat-loaded structural elements at temperatures up to 250-300 °C. Based on an analysis of literature, a review of information on the world market of high-temperature carbon plastics based on thermosetting binders with imide cycles is presented.
It presents economic trends, information about the participants in the global market for high-temperature carbon plastics, as well as the high-temperature auxiliary materials necessary for their production. The supply chain of the market for high-temperature polymer composites includes suppliers of raw materials, manufacturers of high-temperature resins, manufacturers of prepregs and compounds, manufacturers of structures and aircraft (final product).
For the period until 2023, a stable growth rate of the market of high-temperature polymer composites is forecasted. The large market for high-temperature polymer composites is the Asia-Pacific region, the main growth factors of the market in North America are the intensive development of the aerospace industry in the region, while the automotive industry is the main driver in Western Europe.
A description of the materials of the companies Cytec Solvay Group (USA), Hexcel (USA), Teijin (Japan), Evonik (Germany), Renegade Materials Corporation (Maverick Corporation) (USA), UBE Industries Ltd (Japan), TenCate Advanced Composites (Toray), Nexam Chemical (Sweden), presents information about Russian developments.
In connection with the increasing requirements for materials intended for use in the latest aircraft products, there is a need for a qualitative improvement of materials, increasin
2. Kablov E.N. Materialy novogo pokoleniya – osnova innovatsiy, tekhnologicheskogo liderstva i natsionalnoy bezopasnosti Rossii [Materials of a new generation – the basis of innovation, technological leadership and national security of Russia] // Intellekt i tekhnologii. 2016. №2 (14). S. 16–21.
3. Kablov E.N. Rol khimii v sozdanii materialov novogo pokoleniya dlya slozhnykh tekhnicheskikh sistem [The role of chemistry in the creation of new generation materials for complex technical systems] // Tez. dokl. XX Mendeleyevskogo syezda po obshchey i prikladnoy khimii. UrO RAN, 2016. S. 25–26.
4. Kablov E.N. Kompozity: segodnya i zavtra [Composites: today and tomorrow] // Metally Evrazii. 2015. №1. S. 36–39.
5. Grashchenkov D.V. Strategiya razvitiya nemetallicheskih materialov, metallicheskih kompozicionnyh materialov i teplozashhity [Strategy of development of non-metallic materials, metal composite materials and heat-shielding] // Aviacionnye materialy i tehnologii. 2017. №S. S. 264–271. DOI: 10.18577/2071-9140-2017-0-S-264-271.
6. Raskutin A.E. Strategiia razvitiia polimernykh kompozitsionnykh materialov [Development strategy of polymer composite materials] // Aviaсionnye materialy i tehnologii. 2017. №S. S. 344–348. DOI: 10.18577/2071-9140-2017-0-S-344-348.
7. Kablov E.N., Startsev V.O. Sistemnyj analiz vliyaniya klimata na mekhanicheskie svojstva polimernykh kompozitsionnykh materialov po dannym otechestvennykh i zarubezhnykh istochnikov (obzor) [Systematical analysis of the climatics influence on mechanical properties of the polymer composite materials based on domestic and foreign sources (review)] // Aviacionnye materialy i tehnologii. 2018. №2 (51). S. 47–58. DOI: 10.18577/2071-9140-2018-0-2-47-58.
8. Valuyeva M.I., Gulyayev I.N. Uglerodnyye volokna i ugleplastiki: istoriya, sovremennost i perspektivy razvitiya. Obzor [Carbon fibers and carbon plastics: history, modernity and development prospects. Overview] // Vse materialy. Entsiklopedicheskiy spravochnik. 2016. №11. S. 2–8.
9. Gunyayeva A.G., Sidorina A.I., Kurnosov A.O., Klimenko O.N. Polimernyye kompozitsionnyye materialy novogo pokoleniya na osnove svyazuyushchego VSE-1212 i napolniteley, alternativnykh napolnitelyam firm Porcher Ind. i Toho Tenax [Polymeric composite materials of new generation on the basis of binder VSE-1212 and the filling agents alternative to ones of Porcher Ind. AND Toho Tenax] // Aviacionnye materialy i tehnologii. 2018. №3 (52). S. 18–26. DOI: 10.18577/2071-9140-2018-0-3-18-26.
10. Kutsevich K.E., Dementeva L.A., Lukina N.F., Tyumeneva T.Yu. Kleyevyye prepregi – perspektivnyye materialy dlya detaley i agregatov iz PKM [Adhesive prepregs as promising materials for parts and assemblies from polymeric composite materials] // Aviacionnye materialy i tehnologii. 2017. №S. S. 379–387. DOI: 10.18577/2071-9140-2017-0-S-379-387.
11. Mikhaylin Yu.A. Teplo-, termo- i ognestoykost polimernykh materialov [Heat, heat and fire resistance of polymeric materials]. SPb.: Nauchnyye osnovy i tekhnologii, 2011. 416 s.
12. Valuyeva M.I., Zelenina I.V., Akhmadieva K.R., Zharinov M.A., Khaskov M.A. Razrabotki FGUP «VIAM» v oblasti vysokotemperaturnykh ugleplastikov: napravleniya i perspektivy [Developments of FSUE VIAM in the field of high-temperature carbon plastics: directions and prospects] // Materialy IV Vseros. konf. «Rol fundamentalnykh issledovaniy pri realizatsii «Strategicheskikh napravleniy razvitiya materialov i tekhnologiy ikh pererabotki na period do 2030 goda» (g. Moskva, 28 iyunya 2018 g.). M.: VIAM, 2018. S. 71–76. 1 elektron. opt. disk (CD-ROM).
13. Mikhaylin Yu.A. Termoustoychivyye polimery i polimernyye materialy [Heat-resistant polymers and polymeric materials]. SPb.: Professiya, 2006. 624 s.
14. High temperature plastics market by type (polysulfones, polyimides, polyphenylene sulfide, fluoropolymers, and others), by end-use industries (electrical & electronic, transportation, industrial, medical, and others) – Global trends & forecast to 2019 // MarketsandMarketsTM. Available at: https://www.marketsandmarkets.com/Market-Reports/high-temperature-plastics-market-1192.html (accessed: November 17, 2019).
15. Shama Rao N., Simha T.G.A., Rao K.P., Ravi Kumar G.V.V. Sarbon composites are becoming competetive and cost effective // Infosys Limited. Available at: https://www.infosys.com/ engineering-services/white-papers/documents/carbon-composites-cost-effective.pdf (accessed: November 17, 2019).
16. High temperature resins market by resin type (BMI, cyanate ester, polyimide, thermoplastics, and others), by end-use industry type (aerospace & defense, transportation, and others), by manufacturing process type (prepreg layup, RTM, and orhers), and by region (North America, Europe, Asia-Pacific, and Rest the World), trend, forecast, competitive analysis, and growth opportunity: 2018–2023 // MarketResearch. Available at: https://www.marketresearch.com/Stratview-Research-v4143/High-Temperature-Composite-Resins-Resin-11797958/ (accessed: November 17, 2019).
17. Kurnosov A.O., Raskutin A.E., Mukhametov R.R., Melnikov D.A. Polimernyye kompozitsionnyye materialy na osnove termoreaktivnykh poliimidnykh svyazuyushchikh [Polymer composite materials based on thermosetting polyimide binders] // Voprosy materialovedeniya. 2016. №4. S. 50–62.
18. Kuznetsov A.A., Semenova G.K. Perspektivnyye vysokotemperaturnyye termoreaktivnye cvyazuyushchiye dlya polimernykh kompozitsionnykh materialov [Promising high-temperature thermosetting binders for polymer composite materials] // Rossiyskiy khimicheskiy zhurnal. 2010. T. 53. №4. S. 86–96.
19. Other resins // NetComposites. Available at: https://netcomposites.com/guide/resin-systems/other-resins/ (accessed: November 17, 2019).
20. Mikhaylin Yu.A. Termoustoychivyye polimery i polimernyye materialy na ikh osnove [Heat-resistant polymers and polymer materials based on them] // Polimernyye materialy. 2005. №8. S. 23–26.
21. Fisher G. High temperature and toughened bismaleimide composite materials for aeronautics. Materials. Université de Lyon, 2015 // HAL archives-ouvertes. Available at: https://hal.archives-ouvertes.fr/tel-01299359 (accessed: November 17, 2019).
22. Prepregi i smoly [Prepregs and resins] // Hexcel Corporation. Available at: http://www.hexcel.com/ (accessed: November 17, 2019).
23. Prepregi Tenax® [Prepregs Tenax®] // Teijin Carbon Europe GmbH. Available at: https://www.teijincarbon.com/ru/produkcija/kompozity-tenaxr/tenaxr-prepreg (accessed: November 17, 2019).
24. Teijin developes hightly heat- and impact-resistant prepreg as carbon fiber intermediate material for aerospace applications // Teijin Limited. Available at: https://www.teijin.com/news/2019/20190304_3521.html (accessed: November 17, 2019).
25. Evonik for composites // Evonik Industries AG. Available at: https://www.rohacell.com/
sites/lists/RE/DocumentsHP/Evonik-for-composites-EN.pdf (accessed: November 17, 2019).
26. Global polyimides market // Market Litmus. Available at : https://marketlitmus.com/report-store/chemicals-and-materials/resins-and-polymers/global-polyimides-market/ (accessed: November 17, 2019).
27. Yang S.-Y. Advance polyimide materials: synthesis, characterization, and applications. 1st ed. Elsevier, 2018. 498 p.
28. Products // Solvay. Available at: https://www.solvay.com/en (accessed: November 17, 2019).
29. Products // Maverick Corp. Available at: http://www.maverickcorp.com/ (accessed: November 17, 2019).
30. Products // Ube Industries, Ltd. Available at: http://www.upilex.jp/ (accessed: November 17, 2019).
31. Products // Nexam Chemical AB. Available at: http://www.nexamchemical.com/products/ (accessed: November 17, 2019).
32. Tsampas S., Fernberg P., Joffe R. Development of novel high Tg polyimide-based composites. Part II: Mechanical characterization // Journal of Composite Materials. 2018. Vol. 52. No. 2. Р. 261–274.
33. Fernberg P., Gong G., Mannberg P. Processing and properties of new polyimide composites with high temperature ability // ECCM16 – 16th European Conference on Composite Materials (Seville, Spain. June 22–26, 2014). Available at: http://www.escm.eu.org/eccm16/assets/0600.pdf (accessed: November 17, 2019).
34. Publications // Swerea AB. URL: https://www.swerea.se/ (accessed: November 17, 2019).
35. TenCate Corporate // Koninklijke Ten Cate bv. Available at: https://www.tencate.com/en/ (accessed: November 17, 2019).
36. Product TC890 // Toray Advanced Composites. Available at: https://www.toraytac.com/product-explorer/products/mhdR/TC890 (accessed: November 17, 2019).
37. Whitley K.S., Collins T.J. Mechanical Properties of T650-35/AFR-PE-4 at Elevated Temperatures for Lightweight Aeroshell Designs // NASA Langley Research Center. Available at: https://ntrs.nasa.gov/
search.jsp?R=20060013437 2018-02-25T20:16:46+00:00Z (accessed: November 17, 2019).
38. Ruslantsev A.N., Dumanskiy A.M., Portnova Ya.M. Modul polzuchesti ugleplastika BMI-3/3692 na osnove ravnoprochnoy tkani [Creep modulus of carbon fiber reinforced plastic BMI-3/3692 based on equally strong fabric] // Tez. dokl. XXI Mezhdunar. nauch.-tekhn. konf. «Konstruktsii i tekhnologii polucheniya izdeliy iz nemetallicheskikh materialov» (Obninsk, 5–7 okt. 2016 g.). Obninsk: ONPP «Tekhnologiya», 2017. S. 128–130.
39. Volkov D.A., Popov A.G., Osaulenko A.V., Petrova O.L., Lititskaya V.A., Khandorina E.A. Issledovaniye vliyaniya tekhnologicheskikh faktorov i konfiguratsii obraztsov na znacheniye predela prochnosti pri szhatii ugleplastika na osnove preprega BMI-3/3692 [Investigation of the influence of technological factors and sample configuration on the value of compressive strength of carbon fiber based on the prepreg BMI-3/3692] // Tez. dokl. XXI Mezhdunar. nauch.-tekhn. konf. «Konstruktsii i tekhnologii polucheniya izdeliy iz nemetallicheskikh materialov» (Obninsk, 5–7 okt. 2016 g.). Obninsk: ONPP «Tekhnologiya», 2017. S. 168–170.
40. Vorvul S.V., Mosiyuk V.N., Tomchani O.V. Podbor rezhimov dopolnitelnoy termoobrabotki svyazuyushchego BMI-3 metodom DMA [Selection of modes for additional heat treatment of a binder BMI-3 by the DMA method] // Tez. dokl. XXI Mezhdunar. nauch.-tekhn. konf. «Konstruktsii i tekhnologii polucheniya izdeliy iz nemetallicheskikh materialov» (Obninsk, 5–7 okt. 2016 g.). Obninsk: ONPP «Tekhnologiya», 2017. S. 178–181.
41. Produktsiya [Products] // Institut plastmass. Available at: https://www.instplast.ru/ (accessed: November 17, 2019).
42. Poliimidnoye svyazuyushcheye PRIS [Polyimide binder PRIS] // Superplast. Available at: http://superplast.ru/pris (accessed: November 17, 2019).
43. Polimernyye svyazuyushchiye dlya kompozitsionnykh materialov kompanii proizvodstva OOO «Superplast» [Polymer binders for composite materials manufactured by Superplast LLC] // Superplast. Available at: http://dubna-oez.ru/images/data/gallery/299_3057_06_Sal_nikov_A.A._Polimernie_svyazuyuschie_
dlya_kompozitsionnih_materialov_proizvodstva_OOO_%ABSuperplast%BB.pdf (accessed: November 17, 2019).
44. Svyazuyushchiye dlya PKM [Binders for PCM] // ONPP «Tekhnologiya». Available at: https://technologiya.ru/files/1154/%D0%A1%D0%B2%D1%8F%D0%B7%D1%83%D1%8E%D1%89%D0%B8%D0%B5%20%D0%B4%D0%BB%D1%8F%20%D0%9F%D0%9A%D0%9C.pdf (accessed: November 17, 2019).
45. Bismaleimidnyye svyazuyushchiye [Bismaleimide binders] // AO «INUMiT». Available at: https://inumit.ru/rus/produkciya-i-uslugi/ugleplastiki/Resins/bismaleimides/ (accessed: November 17, 2019).
46. Produktsiya [Products] // Itecma. Available at: https://itecma.ru/products/ (accessed: November 17, 2019).
47. Vaganov G.V., Yudin V.E., Elokhovskiy V.Yu. Ugleplastiki na osnove poroshkovykh poliimidnykh svyazuyushchikh, modifitsirovannykh uglerodnymi nanokonusami [CFRPs based on powder polyimide binders modified with carbon nanocones] // Polimernyye materialy i tekhnologii. 2015. T. 1. №1. S. 38–44.
48. Mukhametov R.R., Akhmadiyeva K.R., Soloveva N.A., Gulyayev A.I. Povysheniye vodostoykosti bismaleimidnogo svyazuyushchego [Increase in water resistance of bismaleimide binder] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2017. №5 (53). St. 08. Available at: http://www.viam-works.ru (accessed: November 17, 2019). DOI: 10.18577/2307-6046-2017-0-5-8-8.
49. Muhametov R.R., Dolgova E.V., Merkulova Yu.I., Dushin M.I. Razrabotka bismaleimidnogo termostoikogo svyazuiushchego dlya kompozitsionnyh materialov aviacionnogo naznacheniya [Development of heat-resistant bismaleimide binder for composites for aeronautical application] // Aviacionnye materialy i tehnologii. 2014. №4 (33). S. 53–57. DOI: 10.18577/2071-9140-2014-0-4-53-57.
50. Sposob polucheniya rasplavnykh poliimidnykh svyazuyushchikh polimerizatsionnogo tipa: pat. 2666734 Ros Federatsiya. №2017135540 [A method of producing melt polyimide binders of the polymerization type: US Pat. 2666734 Rus. Federation. No. 2017135540]; zayavl. 05.10.17; opubl. 12.09.18.
51. Zharinov M.A., Shimkin A.A., Akhmadiyeva K.R., Zelenina I.V. Osobennosti i svoystva rasplavnogo poliimidnogo svyazuyushchego polimerizatsionnogo tipa [Features and properties of solvent-free PMR-type polyimide resin] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2018. №12 (72). St. 05. Available at: http://www.viam-works.ru (accessed: November 17, 2019). DOI: 10.18577/2307-6046-2018-0-12-46-53.
The article presents a brief overview of the state of the issue in the field of electrochemical treatment of titanium alloys, in particular in the restoration repair of the geometric dimensions of worn parts. The advantages of the proposed method of repair over the traditionally used chrome plating repair technology are considered.
Alkaline pyrophosphate copper plating electrolytes were selected for deposition of copper coatings on samples of titanium alloy VT6, as the most technologically advanced and environmentally friendly.
A method of surface preparation of titanium alloy VT6 through the operation of preliminary Nickel plating, providing the adhesion strength of the copper coating with a titanium substrate and eliminating the hydride etching of titanium in a mixture of concentrated acids. The technological modes of thick-layer copper plating of VT6 titanium alloy (coating thickness of at least 100 μm) were tested and the deposition rate of the copper coating in pyrophosphate electrolytes at the limiting current was determined. The thickness was determined by a metallographic method and the microhardness and roughness of a copper coating obtained in a copper plating electrolyte based on potassium pyrophosphate were studied.
The method of temperature change in accordance with GOST 9.302 and the method of impact using a vertical copra «Constant U-2M» assessed the adhesive strength of the combined coating «copper-chrome», for comparison in the same way tested the adhesion strength of chrome coating thickness of over 100 microns, as a coating analogue. The adhesion strength of the coatings measured by the heating method meets the requirements of GOST 9.302, copper-chrome and chrome coatings withstand the impact energy up to 9.8 J. Metallographic examination of the impact zone revealed microcracks in
2. Kablov E.N. Rossii nuzhny materialy novogo pokoleniya [Russia needs new generation materials] // Redkiye zemli. 2014. №3. S. 8–13.
3. Dospekhi dlya «Burana». Materialy i tekhnologii VIAM dlya MKS «Energiya–Buran» / pod obshch. red. E.N. Kablova [Armor for the «Buran». VIAM materials and technologies for the ISS «Energiya–Buran» / gen. ed. E.N. Kablov]. M.: Nauka i zhizn, 2013. 128 s.
4. Vinogradov S.S. Sozdaniye ekologicheski bezopasnogo galvanoproizvodstva na osnove ratsionalizatsii vodootvedeniya i reagentnogo metoda ochistki stokov [Creating environmentally friendly galvanic production based on the rationalization of wastewater and a reagent method of wastewater treatment] // Galvanotekhnika i obrabotka poverkhnosti. 2009. T. 17. №3. S. 24–29.
5. Vinogradov S.S., Nikiforov A.A., Balahonov S.V. Zamena kadmiya. Etap 1. Povyshenie zashhitnoj sposobnosti cinkovyh pokrytij: termoimmersionnoe i modificirovannoe pokrytiya [Cadmium replacement. Part 1. Improving of protective property of zinc coatings: thermo-immersed and modified coatings] // Aviacionnye materialy i tehnologii. 2015. №4 (37). S. 53–60. DOI: 10.18577/2071-9140-2015-0-4-53-60.
6. Salahova R.K., Tihoobrazov A.B. Fiziko-himicheskie svojstva oksalatno-sulfatnogo elektrolita hromirovaniya, soderzhashhego nanorazmernye chasticy oksidov metallov [Physical and chemical properties of oxalate-sulfate chromium plating electrolyte, containing metal oxide nanoparticles] // Aviacionnye materialy i tehnologii. 2016. №4 (45). S. 31–39. DOI: 10.18577/2071-9140-2016-0-4-31-39.
7. Belov A.F., Benediktova G.P., Viskov A.S. i dr. Stroyeniye i svoystva aviatsionnykh materialov [The structure and properties of aviation material]. M.: Metallurgiya, 1989. 366 s.
8. Pavlova T.V., Kashapov O.S., Nochovnaya N.A. Titanovye splavy dlya gazoturbinnykh dvigateley [Titanium alloys for gas turbine engines] // Vse materialy. Entsiklopedicheskiy spravochnik. 2012. №5. S. 8–14.
9. Antashov V.G., Nochovnaya N.A., Ivanov V.I. Tendentsii razvitiya zharoprochnykh titanovykh splavov dlya aviadvigatelestroyeniya [Trends in the development of heat-resistant titanium alloys for aircraft engine manufacturing] // Tekhnologiya legkikh splavov. 2002. №4. S. 72–76.
10. Kashapov O.S., Novak A.V., Nochovnaya N.A., Pavlova T.V. Sostoyanie, problemy i perspektivy sozdaniya zharoprochnyh titanovyh splavov dlya detalej GTD [Condition, problems and perspectives of creation of heat resisting titanium alloys for GTE details] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №3. St. 02. Available at: http://www.viam-works.ru (accessed: October 07, 2019).
11. Azhogin F.F., Andreyev I.N., Kazakov V.A. i dr. Galvanicheskiye pokrytiya v mashinostroyenii: spravochnik [Galvanic coatings in mechanical engineering: a reference book]. M.: Mashinostroyeniye, 1985. 246 s.
12. Yurkevich S.N., Polyakova T.L., Vashchenko I.M. i dr. Tekhnologiya naneseniya khromovogo pokrytiya na detali iz titanovykh splavov [The technology of applying a chrome coating to parts made of titanium alloys] // Galvanotekhnika i obrabotka poverkhnosti. 2017. T. 25. №3. S. 48–53.
13. Salakhova R.K., Tikhoobrazov A.B., Smirnova T.B. Ob effektivnosti primeneniya penoobrazovatelya SHROM P-1 pri elektroliticheskom khromirovanii [On the effectiveness of CHROM P-1 foaming agent in electrolytic chromium plating] // Uprochnyayushchiye tekhnologii i pokrytiya. 2018. T. 14. №6 (162). S. 264–268.
14. Morgunov Yu.A., Saushkin B.P. Additivnyye tekhnologii dlya aviakosmicheskoy tekhniki [Additive technologies for aerospace engineerin] // Additivnye tekhnologii. 2016. №1. S. 30–38.
15. Sokolova I.A. Osobennosti tekhnologiy galvanicheskikh protsessov pri vosstanovlenii detaley mashin [Features of technologies of galvanic processes in the restoration of machine parts] // Izvestiya KGTU. 2010. №17. S. 94–98.
16. Yampolskiy A.M. Medneniye i nikelirovanie [Copper plating and nickel plating]. L.: Mashinostroyenie, 1977. 112 s.
17. Melnikov P.S. Spravochnik po galvanopokrytiyam v mashinostroyenii [Handbook of Electroplating in Mechanical Engineering]. M.: Mashinostroyeniye, 1991. 384 s.
18. Kapustin Yu.I., Averina Yu.M., Nyrkov N.P. i dr. Issledovaniye protsessov skorostnogo medneniya iz sulfatnykh elektrolitov [Research of processes of speed copper plating from sulfate electrolytes] // Uspekhi v khimii i khimicheskoy tekhnologii. 2018. T. XXXII. №14. S. 26–29.
19. Shluger M.A., Tok L.D. Galvanicheskiye pokrytiya v mashinostroyenii [Electroplated coatings in mechanical engineering]. M.: Mashinostroyeniye, 1985. T. 2. 248 s.
20. Salakhova R.K., Tikhoobrazov A.B. Termostoykost elektroliticheskikh khromovykh pokrytiy [Thermal resistance of electrolytic chromium coatings] // Aviacionnye materialy i tehnologii. 2019. №2 (55). S. 60–67. DOI: 10.18577/2071-9140-2019-0-2-60-67.
21. Klots M.U. Opyt khimicheskoy i elektrokhimicheskoy obrabotki detaley iz titanovykh splavov [Experience in chemical and electrochemical processing of parts made of titanium alloys]. L.: LDNTP. 1982. 24 s.
22. Mikitchik A.V., Rudoy Yu.E., Grushetskiy I.V. i dr. Vliyaniye mnogosloynykh kondensatsionnykh pokrytiy na kharakteristiki dempfirovaniya titanovogo splava VT-6 [The effect of multilayer condensation coatings on the damping characteristics of VT-6 titanium alloy] // Sovremennaya elektrometallurgiya. 2016. №1 (122). S. 26–31.
The growing demand for magnesium alloys is determined by their low density and at the same time quite high strength. Complex alloying of magnesium alloys of Al, Mn, Zn, In, Cd, Li, Bi, Zr, Nb and REM allows to achieve a significant increase in corrosion resistance and improve mechanical and heat-resistant properties. Spectral analysis methods are used for analytical control of complexly alloyed metallurgical objects. The advantages of inductively coupled plasma atomic emission spectrometry (ICP AES) are, among others, graduation using standard solutions of pure elements and the ability to verify correctness using model solutions, which is especially important in the case of analysis of new alloys by reason of the lack of necessary reference materials. To ensure high accuracy and efficiency when using this method, it is necessary to develop measurement technique. In this paper, we propose ICP AES technique for determining alloying elements in magnesium alloys. Analytical lines of elements free from significant spectral overlays were selected. The limits of detection and determination of elements are estimated. The efficiency of using the spectral lines of scandium, rhodium, and barium as elements for internal standardization under conditions of changing plasma power, argon spray flow, and solution feed rate into the spray chamber is studied. Barium is selected as the preferred internal standard. Studies of the metrological characteristics of the method using model solutions were carried out: for element contents above 0.005% by mass. the repeatability does not exceed 3% relative, and the precision does not exceed 5% rel. The correctness of the developed method was verified using certified reference materials of magnesium alloys and the «entered-found» method. The developed ICP AES technique for determining Al, Mn, Zn, In, Cd, Li, Bi, Zr, Nb can be used to determine the composition of modern magnesium alloys such as VML and&
2. Xu T., Yang Y., Peng X., Song J., Pan F. Overview of advancement and development trend on magnesium alloy // Journal of Magnesium and Alloys. 2019. No. 7. P. 536–544. DOI: https://doi.org/10.1016/j.jma.2019.08.001.
3. Gnedenkov A.S., Sinebryukhov S.L., Mashtalyar D.V., Gnedenkov S.V., Sergiyenko V.I. Osobennosti razvitiya korrozionnogo protsessa na poverkhnosti splavov magniya [Features of the development of the corrosion process on the surface of magnesium alloys] // Vestnik Dalnevostochnogo otdeleniya Rossiyskoy akademii nauk. 2012. №5 (165). S. 3–13.
4. Kozlov I.A., Karimova S.A. Korrozija magnievyh splavov i sovremennye metody ih zashhity [Corrosion of magnesium alloys and modern methods of their protection] // Aviacionnye materialy i tehnologii. 2014. №2. S. 15–20. DOI: 10.18577/2071-9140-2014-0-2-15-20.
5. Mukhina I.Yu. Issledovaniye metallicheskikh sistem na osnove magniya i razrabotka printsipov sozdaniya korrozionnostoykikh magniyevykh splavov [The study of metal systems based on magnesium and the development of principles for creating corrosion-resistant magnesium alloys] // Metallovedeniye i termicheskaya obrabotka metallov. 2014. №7 (709). S. 46–53.
6. Mukhina I.Yu., Uridiya Z.P., Trofimov N.V. Korrozionnostoykiye liteynyye magniyevyye splavy [Сorrosion-resistant casting magnesium alloys] // Aviacionnye materialy i tehnologii. 2017. №2 (47). S. 15–23. DOI: 10.18577/2071-9140-2017-0-2-15-23.
7. Mukhina I.Yu. Teoreticheskiye predposylki i prakticheskiye aspekty povysheniya korrozionnoy stoykosti magniyevykh splavov [Theoretical background and practical aspects of increasing the corrosion resistance of magnesium alloys] // Vse materialy. Entsiklopedicheskiy spravochnik. 2014. №2. S. 12–15.
8. Volkova E.F., Akinina M.V., Mostyaev I.V. Puti povysheniya osnovnyh mehanicheskih harakteristik magnievyh deformiruemyh splavov [The ways of rising of wrought magnesium alloys main mechanical characteristics] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2017. №10 (58). St. 02. Available at: http://www.viam-works.ru (accessed: October 17, 2019). DOI: 10.18577/2307-6046-2017-0-10-2-2.
9. Zhang X., Dai J., Zhang R., Ba Z., Birbilis N. Corrosion behavior of Mg–3Gd–1Zn–0.4Zr alloy with and without stacking faults // Journal of Magnesium and Alloys. 2019. No. 7. P. 240–248. DOI: https://doi.org/10.1016/j.jma.2019.02.009.
10. Karpov Yu.A., Baranovskaya V.B. Analiticheskiy kontrol – neotemlemaya chast diagnostiki materialov [Analytical control is an integral part of material diagnostics] // Zavodskaya laboratoriya. Diagnostika materialov. 2017. T. 83. №1-I. S. 5–12.
11. Karpov Yu.A., Baranovskaya V.B. Problemy standartizatsii metodov khimicheskogo analiza v metallurgii [Problems of standardization of chemical analysis methods in metallurgy] // Zavodskaya laboratoriya. Diagnostika materialov. 2019. T. 85. №1–2. S. 5–14.
12. Garanin V.G. Primeneniye spektrometra «Grand-ekspert» dlya opredeleniya sostava metallov i splavov na osnove magniya, titana i alyuminiya [The use of the «Grand-ekspert» spectrometer to determine the composition of metals and alloys based on magnesium, titanium and aluminum] // Zavodskaya laboratoriya. Diagnostika materialov. 2015. T. 81. №1. Ch. 2. S. 79–88.
13. Kablov E.N., Volkova E.F., Filonova E.V. Vliyaniye RZE na fazovyy sostav i svoystva novogo zharoprochnogo magniyevogo splava sistemy Mg–Zn–Zr–RZE [The effect of REE on the phase composition and properties of a new heat-resistant magnesium alloy of the Mg–Zn–Zr–REE system] // Metallovedeniye i termicheskaya obrabotka metallov. 2017. №7 (745). S. 19–26.
14. Volkova E.F., Antipov V.V., Morozova G.I. Osobennosti formirovanija struktury i fazovogo sostava deformirovannyh polufabrikatov serijnogo splava MA14 [Features of forming of structure and phase structure of the deformed semi-finished products of serial alloy МА14] // Aviacionnye materialy i tehnologii. 2011. №3. S. 8–15.
15. Duyunova V.A., Volkova E.F., Uridiya Z.P., Trapeznikov A.V. Dinamika razvitiya magnievyh i litejnyh alyuminievyh splavov [Dynamics of the development of magnesium and cast aluminum alloys] // Aviacionnye materialy i tehnologii. 2017. №S. S. 225–241. DOI: 10.18577/2071-9140-2017-0-S-225-241.
16. Karpov Yu.A. Analiticheskiy kontrol metallurgicheskogo proizvodstva [Analytical control of metallurgical production]. M.: Metallurgiya, 1995. S. 97–107.
17. Otto M. Sovremennyye metody analiticheskoy khimii v 2 t. [Modern methods of analytical chemistry in 2 vol.]. M.: Tekhnosfera, 2003. T. I. 416 s.
18. Fariñas J.C., Rucandio I., Pomares-Alfonso M.S. et al. Determination of rare earth and concomitant elements in magnesium alloys by inductively coupled plasma optical emission spectrometry // Talanta. 2016. No. 154. P. 53–62. DOI: 10.1016/j.talanta.2016.03.047.
19. Dvoretskov R.M., Baranovskaya V.B., Karachevtsev F.N., Letov A.F. Opredeleniye redkozemelnykh metallov v magniyevykh splavakh metodom atomno-emissionnoy spektrometrii s induktivno-svyazannoy plazmoy [Determination of rare-earth metals in magnesium alloys by inductively coupled plasma atomic emission spectrometry] // Izmeritelnaya tekhnika. 2019. №4. S. 62–66.
20. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
Particular attention has been paid to the issues of damage accumulation and fracture of polymer composites in recent decades. One of the critical characteristics of polymer laminates is the resistance to the initiation and propagation of interlayer cracks. An urgent task is to identify fractographic signs of interlayer crack growth under regulated loading conditions in order to use the identified characteristic elements of fracture microrelief as diagnostic signs of operational fracture of PCM structures. The object of the study in this work was unidirectional carbon fiber based on high strength fibers and an epoxy binder modified with polysulfone. The interlayer crack resistance characteristics were experimentally determined under conditions of normal opening (mode I), forward shear (mode II), and combined loading (at various opening and shear ratios) of unidirectional epoxy polysulfone carbon fiber reinforced plastic. Based on the results of fractographic analysis, the characteristic fracture microrelief elements are identified and their transformation is presented when the interlayer crack growth conditions change: from opening through combined loading to forward shear. The fracture microrelief in the zone of the epoxy thermoset continuous phase and in the zone of the thermoplastic continuous phase with spherical epoxy domains varies significantly. The separation plateau in the interfiber space passes into the zones with a creep topography with a 70% opening contribution, then into the cusps with a tufted feet at the 40% opening contribution, and finally become the pure shear cusps. In the thermoplastic continuous phase zone, with an increase in the contribution of the shear to the conditions of crack opening, the increasing effect of smearing the plastic phase of polysulfone on relatively rigid epoxy domains is manifested. On the compressed side of the fracture, the direction of smearing coincides with the direction of growth of t
2. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
3. Kablov E.N. Kompozity: segodnya i zavtra [Composite materials: today and tomorrow] // Metally Evrazii. 2015. №1. S. 36–39.
4. Raskutin A.E. Strategiia razvitiia polimernykh kompozitsionnykh materialov [Development strategy of polymer composite materials] // Aviaсionnye materialy i tehnologii. 2017. №S. S. 344–348. DOI: 10.18577/2071-9140-2017-0-S-344-348.
5. Mukhametov R.R., Petrova A.P. Termoreaktivnyye svyazuyushchiye dlya polimernykh kompozitsionnykh materialov (obzor) [Thermosetting binders for polymer composites (review)] // Aviaсionnye materialy i tehnologii. 2019. №3 (56). S. 48–58. DOI: 10.18577/2071-9140-2019-0-3-48-58.
6. Kablov E.N., Chursova L.V., Babin A.N., Mukhametov R.R., Panina N.N. Razrabotki FGUP «VIAM» v oblasti rasplavnykh svyazuyushchikh dlya polimernykh kompozitsionnykh materialov [Developments of FSUE VIAM in the field of melt binders for polymer composite materials] // Polimernye materialy i tekhnologii. 2016. №2. S. 37–42.
7. Ushakov A.E. Obshchaya postanovka i skhema resheniya zadachi obespecheniya bezopasnosti aviakonstruktsiy iz PKM s uchetom ikh povrezhdayemosti [General statement and scheme for solving the problem of ensuring the safety of aircraft structures from PCM, taking into account their damageability] // Izvestiya Samarskogo nauchnogo tsentra Rossiyskoy akademii nauk. 2012. №4. S. 339–347.
8. Babayevskiy P.G., Kulik S.G. Treshchinostoykost otverzhdennykh polimernykh kompozitsiy [Crack resistance of cured polymer compositions]. M.: Khimiya, 1991. 336 s.
9. Greenhalgh E.S. Characterisation of mixed-mode delamination growth in carbon-fibre composites: thesis, PhD. London: Imperial College, 1998. 306 p.
10. Charalambous G., Allegri G., Hallett S.R. Temperature effects on mixed mode I/II delamination under quasi-static and fatigue loading of a carbon/epoxy composite // Composites: Part A. 2015. Vol. 77. P. 75–86.
11. Panina N.N., Chursova L.V., Babin A.N., Grebeneva T.A., Gurevich YA.M. Osnovnyye sposoby modifikatsii epoksidnykh polimernykh materialov v Rossii [The main methods of modifying epoxy polymeric materials in Russia] // Vse materialy. Entsiklopedicheskiy spravochnik. 2014. №9. S. 10–17.
2. Mouritz A.P., Chang P., Cox B.N. Flexural properties of z-pinned laminates // Composites Part A. 2007. Vol. 38. P. 244–251.
13. Platonov A.A. Polimernye kompozicionnye materialy na osnove proshitogo napolnitelya s povyshennoj udarostojkostyu [Polymer composite materials on a base of stitched preforms with high impact resistance] // Aviacionnye materialy i tehnologii. 2014. №4. S. 43–47. DOI: 10.18577/2071-9140-2014-0-4-43-47.
14. Lin S., Cai Q., Ji J. et. al. Electrospun nanofiber reinforced and toughened composites through in situ nano-interface formation // Composite Science and Technology. 2008. Vol. 68. P. 3322–3329.
15. Lobanov M.V., Gulyayev A.I., Babin A.N. Povysheniye udaro- i treshchinostoykosti epoksidnykh reaktoplastov i kompozitov na ikh osnove s pomoshch'yu dobavok termoplastov kak modifikatorov [Polymer composite materials based on stitched filler with increased impact resistance] // Vysokomolekulyarnyye soyedineniya. Ser. B. 2016. №1. S. 3–15.
16. Mimura K., Ito H., Fujioka H. Improvement of thermal and mechanical properties by control of morphologies in PES-modified epoxy resins // Polymer. 2000. Vol. 41. P. 4451–4459.
17. Pearson R.A., Yee A.F. Toughening mechanisms in thermoplastic-modified epoxies: 1. Modification using poly(phenylene oxide) // Polymer. 1993. Vol. 34. No. 17. P. 3658–3670.
18. Greenhalgh E.S. Failure analysis and fractography of polymer composites. Cambridge: Woodhead Publishing Limited, 2009. 528 p.
19. Tamuzh V.P., Kuksenko V.S. Mikromekhanika razrusheniya polimernykh materialov [Micromechanics of the destruction of polymeric materials]. Riga: Zinatne, 1978. 294 s.
20. Gulyaev A.I., Yakovlev N.O., Krylov V.D., Lashov O.A. Primeneniye fraktograficheskogo analiza pri issledovanii mezhsloyevogo razrusheniya PKM [Application of fractographic analysis in the study of interlayer fracture of PCM] // Aviaсionnye materialy i tehnologii. 2017. №3 (48). S. 65–73. DOI: 10.18577/2071-9140-2017-0-3-65-73.
21. Chalykh A.E., Gerasimov V.K., Bukhteyev A.E. i dr. Sovmestimost i evolyutsiya fazovoy struktury smesey polisul'fon–otverzhdayushchiyesya epoksidnyye oligomery [Compatibility and evolution of the phase structure of polysulfone – curable epoxy oligomers mixtures] // Vysokomolekulyarnyye soyedineniya. Ser. A. 2003. №7. S. 1148–1159.
22. Gorbatkina Yu.A., Ivanova-Mumzhiyeva V.G., Kuperman A.M. Adgeziya modifitsirovannykh epoksidnykh matrits k armiruyushchim voloknam [Adhesion of modified epoxy matrices to reinforcing fibers] // Vysokomolekulyarnyye soyedineniya. Ser. A. 2016. №5. S. 439–447.
23. Gulyaev A.I., Yakovlev N.O., Shurtakov S.V., Lashov O.A. Vliyaniye temperatury i klimaticheskogo vozdeystviya na mekhanizm mezhsloyevogo razrusheniya ugleplastika po mode I [The influence of temperature and climatic effects on the mechanism of interlayer destruction of carbon fiber according to mode I] // Vse materialy. Entsiklopedicheskiy spravochnik. 2017. №10. S. 23–30.
The main advantage of thermal conductivity calculation using structure models is its application for solving materials science problems. This approach allows us to obtain the dependence of the characteristics of the structure on the parameters of the technological process, on the processes of interaction of components and phase transformations, and to determine their relationship with the main operational characteristic of thermal insulation materials-thermal conductivity.
The results of measurement and calculation of thermal conductivity of anisotropic highly porous material on Al2O3·SiO2 fibers in the temperature range from 20 to 1700ºC are presented in the proposed work. Anisotropy of structure and properties formed as a result of forming tiles from semi-finished fibrous material with non-fixed contacts. The measurement results were obtained by stationary method on cylindrical samples and pulse method provided that the sample is in an opaque container. To process the measurement results obtained by the stationary method on cylindrical samples, the axial heat flows in the sample and the heater were taken into account, to process the measurement results by the pulse method, a mathematical model was developed, the inverse problem of radiation -conductive heat exchange was solved. The calculation assumes no convection.
2. Dulnev G.N., Novikov V.V. Protsessy perenosa v neodnorodnykh sredakh [Transfer processes in heterogeneous environments]. L.: Energoatomizdat, 1991. 248 s.
3. Alifanov O.M., Cherepanov V.V. Matematicheskoye modelirovaniye vysokoporistykh voloknistykh materialov i opredeleniye ikh fizicheskikh svoystv [Mathematical modeling of highly porous fibrous materials and determination of their physical properties] // Teplofizika vysokikh temperatur. 2009. T. 47. №3. S. 463–472.
4. Zuev A.V., Prosuntsov P.V., Mayorova I.A. Raschetno-eksperimentalnoe issledovaniye protsessov teploperenosa v vysokoporistykh voloknistykh teploizolyatsionnykh materialakh [Calculation and experimental study of heat transfer processes in highly porous fibrous heat-insulating materials] // Teplovyye protsessy v tekhnike. 2014. T. 6. №9. S. 410–419.
5. Zuyev A.V., Prosuntsov P.V. Model struktury voloknistykh teploizolyatsionnykh materialov dlya analiza protsessov kombinirovannogo teploperenosa [The structure model of fibrous heat-insulating materials for the analysis of combined heat transfer processes] // Inzhenerno-fizicheskiy zhurnal. 2014. T. 87. №6. S. 1319–1330.
6. Lukashevich V.P., Afanasev I.B. Kosmicheskiye krylya [Cosmic wings]. M.: Lenta stranstviy, 2009. 496 s.
7. Semenov Yu.P., Lozino-Lozinskiy G.E., Lapygin V.L. i dr. Mnogorazovyy orbitalnyj korabl «Buran» [Reusable orbiter «Buran»]. M.: Mashinostroyeniye, 1995. 468 s.
8. Mordovin S.G., Davydov I.Z., Kulikov V.I., Gofin M.Ya. Teplozashchitnaya konstruktsiya mnogorazovogo orbitalnogo korablya [Heat shield design of a reusable orbital ship] // Tr. Pervoy mezhdunar. aviakosmicheskoy konf. «Chelovek–Zemlya–Kosmos» (Moskva, 28 sentyabrya–2 oktyabrya, 1992). M., 1995. T. 5: Materialy i tekhnologiya proizvodstva aviakosmicheskikh sistem. S. 315–327.
9. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
10. Dospekhi dlya «Burana». Materialy i tekhnologii VIAM dlya MKS «Energiya–Buran» / pod obshch. red. E.N. Kablova [Armor for the «Buran». VIAM materials and technologies for the ISS «Energiya–Buran» / gen. ed. E.N. Kablov]. M.: Nauka i zhizn, 2013. 128 s.
11. Kablov E.N. Stanovleniye otechestvennogo kosmicheskogo materialovedeniya [Formation of domestic space materials science] // Vestnik RFFI. 2017. №3. S. 97–105.
12. Majorova I.A. Matematicheskoe modelirovanie processa teploperenosa i optimizaciya konstrukcii mnogoslojnogo teplozashhitnogo pokrytiya [Mathematical modeling of heat transfer and optimization of multilayer thermal protective system] // Aviacionnye materialy i tehnologii. 2013. №2. S. 16–18.
13. Ivakhnenko Yu.A., Baruzdin B.V., Varrik N.M., Maksimov V.G. Vysokotemperaturnye voloknistye uplotnitelnye materialy [High-temperature fibrous sealing materials] // Aviacionnye materialy i tehnologii. 2017. №S. S. 272–289. DOI: 10.18577/2071-9140-2017-0-S-272-289.
14. Istomin A.V., Kolyshev S.G. Elektrostaticheskiy metod formovaniya ultratonkikh volokon tugoplavkikh oksidov [Electrostatic method of forming ultrathin fibers of refractory oxides] // Aviacionnye materialy i tehnologii. 2019. №2 (55). S. 40–46. DOI: 10.18577/2071-9140-2019-0-2-40-46.
15. Kostylev V.M. Makroskopicheskaya kinetika fotonnogo gaza. Radiatsionnyy teploobmen v dispersnykh sredakh [Macroscopic kinetics of photon gas. Radiation heat transfer in dispersed media]. M.: Mashinostroyeniye, 2000. 240 s.
16. Alifanov O.M., Bojkov N.A. Les Methodes des Previsions In Formatiquers des Materaux Composities de Haute Porosite et de L΄analise des Systems de la Protection Thermique a leur Basc // Proceedings of Conference on Spacecraft Structures, Materials and Mechanical Testing (Noordwijk, Netherlands, March 27–29, 1996). Noordwijk, 1996. P. 73.
17. Barinov D.Ya., Ospennikova O.G., Marakhovskiy P.S., Zuyev A.V. Izucheniye dinamiki progreva destruktiruyushchego teplozashchitnogo materiala metodom matematicheskogo modelirovaniya temperaturnykh poley [Study of heating dynamics of destructive heat protective material by the method of mathematical modeling of temperature fields] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2019. №8 (80). St. 12. Available at: http//www.viam-works.ru (accessed: September 01, 2019). DOI: 10.18577/2307-6046-2019-0-8-109-118.
18. Dozhdikov V.S., Petrov V.A., Stepanov S.V. Izluchatelnaya sposobnost i koeffitsiyenty zatukhaniya i pogloshcheniya voloknistoy kvartsevoy teploizolyatsii [Emissivity and attenuation and absorption coefficients of fibrous quartz thermal insulation] // Nauchnyye trudy ITES OIVT RAN. 2006. Vyp. 7-2004. S. 65–70.
19. Prosuntsov P.V., Mayorova I.A., Zuyev A.V. Ispolzovanie modeley kombinirovannogo teploperenosa dlya analiza temperaturnogo sostoyaniya elementov teplovoy zashchity mnogorazovykh kosmicheskikh apparatov [The use of combined heat transfer models for analyzing the temperature state of the thermal protection elements of reusable spacecraft] // Teplovye protsessy v tekhnike. 2014. T. 6. №7. S. 317–323.
20. Shalin R.E., Solntsev S.S., Bersenev A.Yu. Issledovaniye svoystv pokrytiy plitochnoy teplozashchity dlya vozdushno-kosmicheskogo letatelnogo apparata [Investigation of the properties of tiled thermal protection coatings for an aerospace aircraft] // Tr. Pervoy mezhdunar. aviakosmicheskoy konf. «Chelovek–Zemlya–Kosmos» (Moskva, 28 sentyabrya–2 oktyabrya, 1992). M., 1995. T. 5: Materialy i tekhnologiya proizvodstva aviakosmicheskikh sistem. S. 240–249.
21. Bersenev A.Yu., Ryakhovskaya Z.I., Semenov E.V., Solntsev S.S., Tyurin V.M. Vysokoeffektivnye erozionnostoykiye pokrytiya dlya teplozashchitnykh materialov aviatsionno-kosmicheskoy tekhniki [Highly effective erosion-resistant coatings for heat-protective materials of aerospace engineering] // Tr. Pervoy mezhdunar. aviakosmicheskoy konf. «Chelovek–Zemlya–Kosmos» (Moskva, 28 sentyabrya–2 oktyabrya, 1992). M., 1995. T. 5: Materialy i tekhnologiya proizvodstva aviakosmicheskikh sistem. S. 235–240.
22. Dozhdikov V.S., Petrov V.A. Izluchatelnye kharakteristiki teplozashchitnykh materialov orbitalnogo korablya «Buran» [Radiative characteristics of heat-shielding materials of the Buran orbital ship] // Inzhenerno-fizicheskiy zhurnal. 2000. T. 73. №1. S. 26–30.
23. Prosuntsov P.V., Reznik S.V. Issledovaniye obemnykh opticheskikh svoystv chastichno prozrachnykh rasseivayushchikh materialov na osnove resheniya obratnoy zadachi perenosa izlucheniya [Investigation of the bulk optical properties of partially transparent scattering materials based on the solution of the inverse radiation transfer problem] // Identifikatsiya dinamicheskikh sistem i obratnyye zadachi: materialy 2-y Mezhdunar. konf. SPb., 1994. T. 2. S. D–12–1–9.
24. Petrov V.A. Model diffuzii izlucheniya dlya radiatsionno-konduktivnogo teploperenosa v vysokotemperaturnykh poluprozrachnykh rasseivayushchikh teploizolyatsionnykh materialakh [Radiation diffusion model for radiation-conductive heat transfer in high-temperature translucent scattering heat-insulating materials]. M.: Mosk. gos. tekhn. un-t radiotekhniki, elektroniki i avtomatiki, 2012. 140 s.
25. Gribkov V.N., Mizyurina G.T., Shchetanov B.V., Lyapin V.V. Vozmozhnosti voloknistoy teplovoy zashchity [Possibilities of fibrous thermal protection] // Tr. Pervoy mezhdunar. aviakosmicheskoy konf. «Chelovek–Zemlya–Kosmos» (Moskva, 28 sentyabrya–2 oktyabrya, 1992). M., 1995. T. 5: Materialy i tekhnologiya proizvodstva aviakosmicheskikh sistem. S. 223–231.
26. Litovskiy E.Ya., Bondarenko S.L., Polonskiy Yu.A., Ganichev N.I. O vliyanii diametra volokna na effektivnuyu teploprovodnost [On the effect of fiber diameter on effective thermal conductivity /] // Teplofizika vysokikh temperatur. 1979. T. 17. №5. S. 997–1000.
27. Kats S.M. Vysokotemperaturnyye teploizolyatsionnyye materialy [High temperature insulation materials]. M.: Metallurgiya, 1981. 232 s.
28. Alifanov O.M., Budnik S.A., Nenarokomov A.V., Cherepanov V.V. Eksperimentalno-teoreticheskoye issledovaniye protsessov teploobmena v vysokoporistykh materialakh [Experimental and theoretical study of heat transfer processes in highly porous materials] // Teplovyye protsessy v tekhnike. 2011. T. 3. №2. S. 53–65.
29. Volarovich M.P., Demkin N.V., Berkovich I.I. Eksperimentalnoe issledovanie treniya i uplotneniya voloknistykh materialov [An experimental study of friction and compaction of fibrous materials] // Problemy fiziko-khimicheskoy mekhaniki voloknistykh i poristykh dispersnykh struktur i materialov. Riga: Zinatne, 1967. 620 s.
30. Zhdanovich G.M. Nekotorye voprosy teorii protsessa pressovaniya metallicheskikh poroshkov [Some questions of the theory of the process of pressing metal powders]. Minsk: Izd-vo Belorus. politekh. in-ta, 1960. 98 s.