Articles
The investigation results of the formation of strengthen phases (secondary carbides and γ'-phase) in new Ni-base superalloy VZh177 developed for jet-engine disk application are presented in the article. The structural and phase composition of the material after solution treatment and the further evolution of the microstructure during ageing were esteemed. The main carbide formation elements in bulk primary carbides were determined via the method of energy-dispersion spectroscopy. The nucleation dynamic of the fine dispersion carbides at grain boundaries was investigated via he method of scanning electron microscopy. The investigation of the strengthen γ'-phase morphology in the temperature range from 850 to 1000°C was presented. The dispersion range of the maximum volume of γ'-phase was established. The changing of mean diameter and morphology of the phase depending to ageing regime was also shown. The authors of the article suggest to investigate microhardness after various ageing tim
2. Ospennikova O.G. Strategiya razvitiya zharoprochnyh splavov i stalej specialnogo naznacheniya, zashhitnyh i teplozashhitnyh pokrytij [Strategy of development of hot strength alloys and steels special purpose, protective and heat-protective coverings] // Aviacionnye materialy i tehnologii. 2012. №S. S. 19–36.
3. Kablov E.N., Ospennikova O.G., Lomberg B.S. Sozdanie sovremennykh zharoprochnykh materialov i tekhnologij ikh proizvodstva dlya aviatsionnogo dvigatelestroeniya [Creation of modern heat resisting materials and technologies of their production for aviation engine building] // Krylya Rodiny. 2012. №3–4 S. 34–38.
4. Kablov E.N., Ospennikova O.G., Lomberg B.S. Strategicheskie napravleniya razvitiya konstruktsionnykh materialov i tekhnologij ikh pererabotki dlya aviatsionnykh dvigatelej nastoyashchego i budushchego [The strategic directions of development of constructional materials and technologies of their processing for aircraft engines of the present and the future] // Avtomaticheskaya svarka. 2013. №10. S. 23–32.
5. Razuvaev E.I., Bubnov M.V., Bakradze M.M., Sidorov S.A. GIP i deformatsiia granulirovannykh zharoprochnykh nikelevykh splavov [HIP and deformation of the granulated heat resisting nickel alloys] // Aviatsionnye materialy i tekhnologii. 2016. №S1 (43). S. 80–86. DOI: 10.18577/2071-9140-2016-0-S1-80-86.
6. Locq D., Caron (Onera) P. On Some Advanced Nickel-Based Superalloys for Disk Applications // High Temperature Materials AL03-01. 2011. Issue 3. P. 1–9.
7. Lomberg B.S., Bakradze M.M., Chabina E.B., Filonova E.V. Vzaimosvyaz struktury i svojstv vysokozharoprochnykh nikelevykh splavov dlya diskov gazoturbinnykh dvigatelej [Interrelation of structure and properties of high-heat resisting nickel alloys for disks of gas turbine engines] // Aviacionnye materialy i tekhnologii. 2011. №2. S. 25–30.
8. Gabb T.P., Gayda J., Johnson D.F. et al. Comparison of γ-γ′ Phase Coarsening Responses of Three Powder Metal Disk Superalloys // NASA/TM–2016-218936. February, 2016.
9. Ovsepyan S.V., Lomberg B.S., Bakradze M.M., Letnikov M.N. Termicheskaya obrabotka deformiruemykh zharoprochnykh nikelevykh splavov dlya diskov GTD [Thermal processing of deformable heat resisting nickel alloys for disks GTE] // Vestnik Moskovskogo gosudarstvennogo tekhnicheskogo universiteta im. N.E. Baumana. Ser.: Mashinostroenie. 2011. № SP2. S. 122–130.
10. Sims Ch.T., Stoloff N.S., Khagel U.K. Supersplavy II: Zharoprochnye materialy dlya aerokosmicheskikh i promyshlennykh energoustanovok v 2 kn. Per. s angl. / pod red. R.E. Shalina [Superalloys of II: Heat resisting materials for space and industrial power installations in 2 books. Trans from Eng. / ed. by R.E. Shalin]. M: Metallurgiya, 1995. Kn. 1. 384 s.
11. Zharoprochnyj deformiruemyj splav na osnove nikelya i izdelie, vypolnennoe iz etogo splava: pat. 2280091 Ros. Federatsiya. № 2004137299/02 [Heat resisting deformable alloy on the basis of nickel and the product executed from this alloy: pat. 2280091 Rus. Federation. No. 2004137299/02]; zayavl. 21.12.04; opubl. 20.07.06.
12. Kablov E.N., Ospennikova O.G., Lomberg B.S. Kompleksnaya innovacionnaya tehnologiya izotermicheskoj shtampovki na vozduhe v rezhime sverhplastichnosti diskov iz superzharoprochnyh splavov [Complex innovative technology of isothermal punching on air in mode of superplasticity of disks from superhot strength alloys] // Aviacionnye materialy i tehnologii. 2012. №S. S. 129–141.
13. Buyakina A.A., Letnikov M.N., Bakradze M.M., Shugaev S.A. Vliyanie termomekhanicheskoj i termicheskoj obrabotki na strukturu i svojstva splava VZH177 [The effect of thermomechanical and heat treatment parameters on structure and mechanical properties of superalloy VZH177] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2016. №10. St. 02. Available at: http://www.viam-works.ru (accessed: April 13, 2018). DOI: 10.18577/2307-6046-2016-0-10-2-2.
14. Filonova E.V., Bakradze M.M., Kochubey A.Ya., Vavilin N.L. Issledovanie izmenenij strukturno-fazovogo sostoyaniya splava VZh175 v processe goryachej deformacii i termicheskoj obrabotki [Structural-phase evolution of VZH175-alloy during hot deformation and heat treatment] // Aviacionnye materialy i tehnologii. 2014. №3. S. 10–13. DOI: 10.18577/2071-9140-2014-0-3-10-13.
15. Gaofeng Tian, Jinwen Zou, Yu Wang, Wuxiang Wang. Hot Deformation Behaviors and Microstructure Evolution in a New PM Nickel-Base Superalloy // Advanced Materials Research. 2011. Vol. 278. P. 411–416.
16. Lomberg B.S., Ovsepjan S.V., Bakradze M.M., Letnikov M.N., Mazalov I.S. Primenenie novyh deformiruemyh nikelevyh splavov dlja perspektivnyh gazoturbinnyh dvigatelej [The application of new wrought nickel alloys for advanced gas turbine engines] // Aviacionnye materialy i tehnologii. 2017. №S. S. 116–129. DOI: 10.18577/2071-9140-2017-0-S-116-129.
Now to low-dimensional gas turbine engines (GTE) widely apply disks made in FSUE «VIAM» from heat resisting deformable alloy EP742-ID. Initial preparations of punchings of disks for low-dimensional GTE are the press bars with a diameter of 140–150 mm made by method of extrusion from ingots with a diameter of 320 mm of double vacuum smelting (VI+VDP). Recrystallization of original compacted round bars made of EP742-ID alloy, used as a blank to the isothermal forging process of small-sized disks for gas-turbine engine, has been researched. Influence of recrystallization annealing in a single-phase area on mechanical properties of forgings material after finish heat treatment has been determine in the article. The conclusion is in summary drawn that carrying out annealing before deformation at temperature on 15–25°C above Тп.рγʹ allows to increase stability of plastic properties (δ, ψ, KCU) punchings from alloy EP742-ID, and also it is essential to reduce number of re-testing and repeat
2. Kablov E.N. Sovremennye materialy – osnova innovacionnoj modernizacii Rossii [Modern materials – basis of innovative modernization of Russia] // Metally Evrazii. 2012. №3. S. 10–15.
3. Kablov E.N. Materialy novogo pokoleniya – osnova innovacij, tekhnologicheskogo liderstva i nacionalnoj bezopasnosti Rossii [Materials of new generation – basis of innovations, technological leadership and national security of Russia] // Intellekt & Tekhnologii. 2016. №2 (14). S. 41–46.
4. Ospennikova O.G. Strategiya razvitiya zharoprochnyh splavov i stalej specialnogo naznacheniya, zashhitnyh i teplozashhitnyh pokrytij [Strategy of development of hot strength alloys and steels special purpose, protective and heat-protective coverings] // Aviacionnye materialy i tehnologii. 2012. №S. S. 19–36.
5. Novikov I.I. Teoriya termicheskoj obrabotki metallov [Theory of thermal processing of metals]. M.: Metallurgiya, 1986. 480 s.
6. Kolachev B.A., Gabidullin R.M. Tekhnologiya termicheskoj obrabotki cvetnykh metallov i splavov. 2-e izd. [Technology of thermal processing of non-ferrous metals and alloys. 2nd ed.]. M.: Metallurgiya, 1992. 272 s.
7. Gorelik S.S. Rekristallizaciya metallov i splavov [Recrystallizing of metals and alloys]. M.: Metallurgiya, 1978. S. 19–45.
8. Supersplavy / pod red. Ch.T. Simsa, N.S. Stoloffa, U.K. Khagelya [Superalloys / ed. by Ch.T. Sims, N.S. Stoloff, U.K. Khagelya]. M.: Metallurgiya, 1995. T. II, kn. 1. 384 s.
9. Ponomarenko D.A., Moiseev N.V., Skugorev A.V. Shtampovka diskov GTD iz zharoprochnykh splavov na izotermicheskikh pressakh [Punching of disks GTD from hot strength alloys on isothermal presses] // Aviacionnye materialy i tekhnologii. 2013. №1. S. 13–16.
10. Ponomarenko D.A., Skugorev A.V., Sidorov S.A., Strokov V.V. Tekhnologicheskie vozmozhnosti specializirovannykh izotermicheskikh pressov siloj 6,3 i 16 MN v proizvodstve detalej aviacionno-kosmicheskogo naznacheniya [Technological capabilities specialized isothermal pressov with a force of 6,3 and 16 MN in production of details of aerospace assignment] // Kuznechno-shtampovochnoe proizvodstvo. Obrabotka metallov davleniem. 2015. №9. S. 36–41.
11. Chabina E.B., Alekseev A.A., Filonova E.V., Lukina E.A. Primenenie metodov analiticheskoj mikroskopii i rentgenostrukturnogo analiza dlya issledovaniya strukturno-fazovogo sostoyaniya materialov [Application of methods of analytical microscopy and X-ray of the structural analysis for research of structural and phase condition of materials] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №5. St. 06. Available at: http://www.viam-works.ru (accessed: March 14, 2018).
12. Kablov E.N., Golubovskij E.R. Zharoprochnost nikelevykh splavov: ucheb. posobie [Thermal stability of nickel alloys: manual]. M.: Mashinostroenie, 1998. 464 s.
13. Chabina E.B., Filonova E.V., Lomberg B.S., Bakradze M.M. Struktura sovremennykh deformiruemykh nikelevykh splavov [Structure of modern deformable nickel alloys] // Vse materialy. Enciklopedicheskij spravochnik. 2012. №6. S. 22–27.
14. Kablov E.N., Grashhenkov D.V., Uvarova N.E. Issledovaniya metodom infrakrasnoj spektroskopii strukturnyh izmenenij gelej v processe termicheskoj obrabotki pri poluchenii vysokotemperaturnyh steklokeramicheskih materialov po zol-gel tehnologii [Researches by method of infrared spectroscopy of structural changes of gels in heat treatment process when receiving high-temperature glassceramic materials on technology sol-gel] // Aviacionnye materialy i tehnologii. 2011. №2. S. 22–25.
15. Bakradze M.M., Ovsepyan S.V., Shugaev S.A., Letnikov M.N. Vliyanie rezhimov zakalki na strukturu i svojstva shtampovok diskov iz zharoprochnogo nikelevogo splava EK151-ID [The influence of quenching on structure and properties nickel-based superalloy EK151-ID forgings] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №9. St. 01. Available at: http://www.viam-works.ru (accessed: March 14, 2018).
The major areas of application of rare earth elements in Russian industry are as follows: catalysts for the petrochemical industry (82%), steel industry (11%), materials for the nuclear energy industry (3%), permanent magnets (2%). Thus, the industrial applications of rare earth elements in high technologies give these minerals an immediate critical and strategic importance. the authors have set itself the goal to assess the regulatory framework in the field of rare earth elements. Comprehensive monitoring of the reference documentation in the field of rare earth elements was carried out. Differences in the Russian and foreign reference documentation were revealed. It was found that the Russian reference documentation consisted of state standards (GOST) developed 35–40 years ago, while foreign documentation included segmental documents. The need for actualization of the national reference documentation in the field of rare earth elements was justified.
2. Sevastyanov D.V., Doriomedov M.S., Sutubalov I.V., Kulagina G.S. Napravleniya razvitiya proizvodstvennykh tekhnologij v oblasti redkozemelnykh metallov [Directions for the development of manufacturing technolo-gies in the field of rare earth metals] // Trudy VIАM: ehlektron. nauch.-tekhnich. zhurn. 2018. №1. St. 4. Available at: http://www.viam-works.ru (accessed: April 16, 2018). DOI: 10.18577/2307-6046-2018-0-1-4-4.
3. «Аkron»: Sekret uspekha [«Acron»: Success secret] // Redkie zemli. 2017. №1 (8). S. 76–81.
4. Demidov I.L. «Rostekh»: Redkozemelnoe napravlenie [«Rostekh»: Rare-earth direction] // Redkie zemli. 2017. №1 (8). S. 82–91.
5. Kablov E.N., Ospennikova O.G., Vershkov A.V. Redkie metally i redkozemelnye elementy – materialy sovremennyh i budushhih vysokih tehnologij [Rare metals and rare-earth elements are materials for modern and future high technologies] // Aviacionnye materialy i tehnologii. 2013. №S2. S. 3–10.
6. Frolov A.V., Muhina I.Yu., Leonov A.A., Uridiya Z.P. Vliyanie legirovaniya redkozemelnymi metallami na svojstva i strukturu litejnogo magnievogo splava eksperimentalnogo sostava sistemy Mg–Zr–Zn–Y–Nd [An influence of rare-earth metals doping on properties and structure of the experimental Mg–Zr–Zn–Y–Nd casting magnesium alloy] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №3. St. 03. Available at: http://www.viam-works.ru (accessed: February12, 2018). DOI: 10.18577/2307-6046-2016-0-3-3-3.
7. Kablov E.N., Piskorskij V.P., Bruk L.А. Postoyannye magnity iz splavov Nd–Fe–B [Constant magnets from Nd–Fe–B alloys] // Аviatsionnye materialy. Izbrannye trudy «VIАM» 1932–2002. M.: MISIS–VIАM, 2002. S. 191–197.
8. Kablov E.N., Ospennikova O.G., Piskorskij V.P., Valeev R.A. i dr. Fazovyj sostav spechennyh materialov sistemy Nd–Dy–Fe–Co–B [Phase composition of Nd–Dy–Fe–Co–B sintered materials] // Aviacionnye materialy i tehnologii. 2014. №S5. S. 95–100. DOI: 10.18577/2071-9140-2014-0-s5-95-100.
9. Petrova E.I., Penzina O.V., Markova N.V., Tarskikh P.M. Аktualizatsiya fonda standartov na predpriyatiyakh [Updating of fund of standards at the enterprises] // Tekhnologii proizvodstva pishhevykh produktov pitaniya i ehkspertiza tovarov: sb. materialov «Mezhdunarodnoj nauchno-prakticheskoj konferentsii». 2015. S. 159–161.
10. Skobelev D.O., Vesnina E.N., Kosorukova I.А., Utkin А.O. Ctandartizatsiya v oblasti biotekhnologij [Standardization in the field of biotechnologies] // Standarty i kachestvo. 2014. №12 (930). S. 37–40.
11. ISO/TC 298 Rare earth // ISO: [ofits. sajt]. Available at: https://www.iso.org/committee/5902483.html (accessed: April 23, 2018).
12. F40.04 on Rare Earth Materials // ASTM International: [ofits. sajt]. Available at: https://www.astm.org/COMMIT/F40/F40-04 (accessed: April 23, 2018).
13. ISO/AWI 22444-1 Rare earth -- Terms and definitions - -- Part 1: Minerals, oxides and other compounds // ISO: [ofits. sajt]. Available at: https://www.iso.org/ru/standard/73229.html (accessed: April 23, 2018).
14. ISO/AWI 22444-2 Rare earth -- Terms and definitions - -- Part 2: Rare earth metals and their alloys // ISO: [ofits. sajt]. Available at: https://www.iso.org/ru/standard/73228.html (accessed: April 23, 2018).
15. ISO/AWI 22450 Rare earth -- Elements Recycling -- Communication formats for providing recycling information on rare earth elements in by-products and industrial wastes // ISO: [ofits. sajt]. Available at: https://www.iso.org/ru/standard/73240.html (accessed: April 23, 2018).
16. ISO/AWI 22451 Rare earth -- Elements recycling -- Measurement method of rare earth elements in by-products and industrial wastes // ISO: [ofits. sajt]. Available at: https://www.iso.org/ru/standard/73241.html (accessed: April 23, 2018).
17. ISO/AWI 22453 Rare earth -- Elements recycling -- Method for the exchange of information of rare earth elements in by-products and industrial wastes // ISO: [ofits. sajt]. Available at: https://www.iso.org/ru/standard/73242.html (accessed: April 23, 2018).
18. Kablov E.N., Shevchenko Yu.N., Kozhevnikov А.N. Otraslevye standarty – osnova kachestva aviatsionnoj tekhniki [Industry standards – basis of quality of aviation engineering] // Stal. 2008. №8. S. 121–122.
In recent years the problem of flight vehicles weight reduction becomes the most actual. At replacement of details from aluminum alloys on detail from high-strength magnesium alloys the weight economy about 20–25% can be reached. One of shortcomings of the deformed semi-finished products of high-strength magnesium alloys is anisotropy of their mechanical properties. It is conditionally possible to consider two types of anisotropy, in view of structural sign: – crystal (homogeneous) anisotropy; – heterogeneous (fibrous) anisotropy. For magnesium alloys both types of anisotropy are inherent. Anisotropy of mechanical properties can be reduced by applying the complicated scheme of deformation of material for receiving better structure and due to alloying magnesium, in particular, by rare earth metals (RE). The comparative analysis of results of microstructure research, phase structure research, mechanical properties and their anisotropy, investigation on example of high strength MA1
2. Volkova E.F., Akinina M.V., Mostyaev I.V. Puti povysheniya osnovnyh mehanicheskih harakteristik magnievyh deformiruemyh splavov [The ways of rising of wrought magnesium alloys main mechanical characteristics] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2017. №10 (58). St. 02. Available at: http://www.viam-works.ru (accessed: February 20, 2018). DOI: 10.18577/2307-6046-2017-0-10-2-2.
3. Velikij V.I., Yaresko K.I., Shalomeev V.A. i dr. Perspektivnye magnievye splavy s povyshennym urovnem svojstv dlya aviadvigatelestroeniya [Perspective magnesium alloys with the raised level of properties for aviaengine building] // Metallovedenie i termicheskaya obrabotka metallov. 2013. №9. C. 32–38.
4. Kablov E.N., Ospennikova O.G., Vershkov A.V. Redkie metally i redkozemelnye elementy – materialy sovremennyh i budushhih vysokih tehnologij [Rare metals and rare-earth elements are materials for modern and future high technologies] // Aviacionnye materialy i tehnologii. 2013. №S2. S. 3–10.
5. Kablov E.N. Nauka kak otrasl ekonomiki [Science as economy industry] // Nauka i zhizn. 2009. №10. S. 7–8.
6. Kablov E.N., Volkova E.F., Filonova E.V. Issledovanie vliyaniya RZE na fazovyj sostav i svojstva novogo zharoprochnogo magnievogo splava sistemy Mg–Zn–Zr–RZE [Research of influence of REE on phase structure and properties of new heat resisting magnesium alloy of Mg–Zn–Zr–REE system] // Metallovedenie i termicheskaya obrabotka metallov. 2017. №7. S. 19–26.
7. Drits M.E., Rokhlin L.L., Padezhnova E.M. i dr. Magnievye splavy s ittriem [Magnesium alloys with yttrium]. M.: Nauka, 1979. 162 s.
8. Rokhlin L.L. Magnievye splavy, soderzhashchie redkozemelnye metally [The magnesium alloys containing rare earth metals]. M.: Nauka, 1980. 192 s.
9. Rokhlin L.L. Struktura i svojstva splavov sistemy Mg–RZM [Structure and properties of alloys of Mg–REM system] // Metallovedenie i termicheskaya obrabotka metallov. 2006. №11. S. 18–22.
10. Landkof B. Magnesium Alloys and Their Application // Proceedings of International Congress (Germany, Sept. 26–28, 2000). Weinheim, 2000. P. 168–172.
11. Kainer Karl Ulrich. Magnesium alloys for structural application // Minerals, Metals and Material Society. 2000. Vol. 52. No. 11. P. 198–199.
12. Volkova E.F. Nekotorye zakonomernosti formirovaniya fazovogo sostava magnievogo splava sistemy Mg–Zn–Zr–Y [Some patterns of forming of phase composition of magnesium alloy of Mg–Zn–Zr–Y system] // Metallovedenie i termicheskaya obrabotka metallov. 2013. №9. C. 22–28.
13. Bohlen J., Yi S.B., Letzig D., Kainer K.U. Effect of rare earths elements on the microstructure and texture development in magnesium-manganese alloys during extrusion // Materials Science Engineering. 2010. Vol. 527. P. 7092–7098.
14. Dobroň P., Chmelík F., Yi S. et. al. Grain size effects on deformation twinning in an extruded magnesium alloy tested in compression // Scripta Metallurgica. 2011. No 65. P. 424–427.
15. Koike I. New Deformation Mechanisms in Fine-Grain Mg Alloys // Proceedings of Conference Magnesium Alloys 2003 // Materials Science Forum. 2003. Vol. 419–422. P. 189–194.
16. Shao X.H., Yang Z.Q., Ma X.L. Strengthening and toughening mechanisim in Mg–Zn–Y alloy with a long period stacking ordered structure // Acta Metallurgica. 2010. Vol. 58. No. 14. P. 4760–4771.
17.Jiang L., Zhang D., Fan X. et al. Influence of 0–2 wt.% Sn addition on the microstructure and mechanical properties of extruded AZ80 alloy // Proceedings of the 10th International Conference on Magnesium Alloys and Their Applications (Mg2015). 2015. P. 128–136.
18. Sasaki T.T., Elsayed F.R., Nakata T. Strong and Ductile Heat-treatable Mg–Sn–Zn–Al Extruded Alloy // Proceedings of the 10th International Conference on Magnesium Alloys and Their Applications (Mg2015). 2015. P. 5–9.
19. Kochubej A.Ya., Serebryanyj V.N. Vliyanie termomekhanicheskikh parametrov na formirovanie tekstury i struktury pri goryachej obrabotke davleniem splava sistemy Mg–Al–Zn [Influence of thermomechanical parameters on structure and structure forming at hot working pressure of alloy of Mg–Al–Zn system] // Tekhnologiya legkikh splavov. 2007. №2. S. 105–109.
20. Razuvaev E.I. Novye tekhnologii proizvodstva deformirovannykh polufabrikatov [New production technologies of the deformed semi-finished products] // Aviatsionnye materialy na rubezhe XX–XXI vekov. M.: VIAM, 1994. S. 171–174.
21. Noda M., Matsumoto R., Kawamura Y. Forging Induces Changes in the Formability and Microstructure of Extruded Mg96Zn2Y2 Alloy with a Long-Period Stacking Order Phase // Materials Science Engineering: A. 2013. Vol. 563. P. 21–27.
22. Quan G., Ren L., Lv J. et al. The Effect of Processing Procedures on Mechanical Properties of High Strength Mg Alloys // Proceedings of the 10th International Conference on Magnesium Alloys and Their Applications (Mg2015). 2015. P. 923–929.
23. Kocks U.F., Tome C.N., Wenk H.R. Texture and Anisotropy. Cambridge University Press. 1998. P. 676–677.
24. Frolov А.V., Mukhina I.Yu., Duyunova V.A., Uridiya Z.P. [An effect of alloying elements and structural factors on heat resistance of magnesium alloys] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №9. St. 07. Available at: http://www.viam-works.ru (accessed: March 22, 2018). DOI: 10.18577/2307-6046-2015-0-9-7-7.
More than 40 years as polymeric matrix of PKM thermosetting materials were used. However complexity thermosetting binding, their limited viability, duration of process of curing and some other shortcomings stimulated use searches alternatively thermoflexible binding in the form of thermoflexible matrixes. Thermoplastics on level of strength and elastic characteristics do not concede to cured polymers, and on chemical resistance, warm and to electric insulation characteristics, tightness in some cases exceed the last. In the last years abroad tendency in development of KTM is use of high-heat-resistant constructional thermoplastics: poliarilsulfony, polyetherimide, polyetherketones, polyimide, etc. In Russia such materials commercially are not issued. Article is devoted to problem of import substitution of high-temperature constructional thermoplastics. The comparative assessment of strength and heatphysical properties of polyetheretherketones (PEEK) domestic (Institute of Plastics
2. Kablov E.N. Tendentsii i orientiry innovatsionnogo razvitiya Rossii: sb. nauch.-inform. materialov. 2-e izd., pererab. i dop. [Tendencies and reference points of innovative development of Russia: collection of scientific information materials. 2nd ed., rev. and add.]. M.: VIAM, 2013. 543 s.
3. Kablov E. N. Rol khimii v sozdanii materialov novogo pokoleniya dlya slozhnykh tekhnicheskikh sistem [Chemistry role in creation of materials of new generation for complex technical systems] // XX Mendeleevskij szd po obshchej i prikladnoj khimii: tez. dokl. v 5 t. UrO RAN, 2016. S. 25–26.
4. Nikolaev A.F. Termostojkie polimery [Heat-resistant polymers]. L.: LTI im. Lensoveta, 1988. S. 3–11.
5. Kerber M.L., Vinogradov V.M., Golovkin G.S. i dr. Polimernye kompozitsionnye materialy: struktura, svojstva, tekhnologiya [Polymeric composite materials: structure, properties, technology]. SPb.: Professiya, 2011. S. 32–33.
6. Gunyaev G.M., Chursova L.V., Komarova O.A., Gunyaeva A.G. Konstrukcionnye ugleplastiki, modificirovannye nanochasticami [Constructional carbon the plastics modified by nanoparticles] // Aviacionnye materialy i tehnologii. 2012. №S. S. 277–286.
7. Mikhajlin Yu.A. Konstruktsionnye polimernye kompozitsionnye materialy [Constructional polymeric composite materials]. SPb.: Nauchnye osnovy i tekhnologii, 2008. 822 s.
8. Multilayer and composition gradient structures with improved damping properties: pat. 8796164 US; publ. 28.06.12.
9. Structural composite material with improved acoustic and vibrational damping properties: pat. 8450225 US; publ. 28.05.13.
10. Polymer composites possessing improved vibration damping: appl. 2012/0313307 US; publ. 13.12.12.
11. Composite components and heat-curing resins and elastomers: appl. 2012/0034833 US; publ. 09.02.12.
12. Carbon-fiber reinforced plastic composite having improved vibration damping ability: appl. 20120023948 KR; publ. 14.03.12.
13. Nagasankar S., Balasivanandha P., Velmurugan R. Influence of the Different Fiber lay-ups on the Damping Characteristics of the Polymer Matrix // Journal of Applied Sciences. 2012. Vol. 12 (10). P. 1071–1074.
14. Rao M.D. Recent applications of viscoelastic damping for noise control in automobiles and commercial airplanes // Journal of Sound and Vibration. 2003. Vol. 262. P. 457–473.
15. Mazumdar S.K. Composites Manufacturing (materials, product and process engineering) N.Y., 2001. 400 p.
16. Petrova G.N., Larionov S.A., Platonov M.M., Perfilova D.N. Termoplastichnye materialy novogo pokoleniya dlya aviacii [Thermoplastic materials of new generation for aviation] // Aviacionnye materialy i tehnologii 2017. №S. S. 420–436. DOI: 10.18577/2071-9140-2017-0-S-420-436.
17. Deev I.S., Kablov E.N., Kobets L.P., Chursova L.V. Issledovanie metodom skaniruyushhej elektronnoj mikroskopii deformacii mikrofazovoj struktury polimernyh matric pri mehanicheskom nagruzhenii [Research of the scanning electron microscopy method deformation of microphase structure of polymeric matrix at mechanical loading] // Trudy VIAM: elektron. nauch-tehnich. zhurn. 2014. №7. St. 06. Available at: http://www.viam-works.ru (accessed: May 14, 2018). DOI: 10.18577/2307-6046-2014-0-7-6-6.
18. Mikhajlin Yu.A. Termoustojchivye polimery i polimernye materialy na ikh osnove [Thermosteady polymers and polymeric materials on their basis]. SPb.: Professiya, 2006. 346 s.
19. Kablov E.N., Semenova L.V., Petrova G.N., Larionov S.A., Perfilova D.N. Polimernye kompozitsionnye materialy na termoplastichnoj matritse [Polymeric composite materials on thermoflexible matrix] // Izvestiya vuzov. Ser.: KHimiya i khimicheskaya tekhnologiya. 2016. T. 59. №10. S. 61–71.
20. Kryzhanovskij V.K., Burlov V.V., Panimatchenko A.D., Kryzhanovskaya YU.V. Tekhnicheskie svojstva polimernykh materialov [Engineering properties of polymeric materials]. SPb.: Professiya, 2005. 240 c.
21. Kondrashov S.V., Shashkeev K.A., Petrova G.N., Mekalina I.V. Polimernye kompozicionnye materialy konstrukcionnogo naznacheniya s funkcionalnymi svojstvami [Constructional polymer composites with functional properties] // Aviacionnye materialy i tehnologii. 2017. №S. S. 405–419. DOI: 10.18577/2071-9140-2017-0-S-405-419.
22. Petrova G.N., Bejder E.Ya., Starostina I.V. Litevye termoplasty dlya izdelij aviatsionnoj tekhniki [Lityevye thermoplastics for products of aviation engineering] // Vse materialy. Entsiklopedicheskij spravochnik. 2016. №6. S. 10–15.
23. Kirin B.S., Tikhonov N.N., Chalykh A.B., Shnipov A.V. Regulirovanie deformatsionno-prochnostnykh i ekspluatatsionnykh svojstv PVKh-materialov produktami modifikatsii nizkomolekulyarnogo oligobutadiena [Regulation of deformation and strength and operational properties of PVC materials by products of updating low-molecular oligobutadiene] // Plasticheskie massy. 2007. №5. S. 7–9.
24. Postnov V.I., Pletin' I.I., Veshkin E.A., Starostina I.V., Strel'nikov S.V. Tekhnologicheskie osobennosti proizvodstva tonkolistovykh obshivok lopastej vertoleta iz konstruktsionnogo stekloplastika VPS-53K [Technological features of production of tonkolistovy coverings of blades of the helicopter from constructional VPS-53K fibreglass] // Izvestiya Samarskogo nauchnogo tsentra Rossijskoj akademii nauk. 2016. T. 18. №4 (3). S. 619–627.
25. Kirin B.S., Tikhonov N.N., Osipchik V.S. Regulirovanie reologicheskikh i abrazivnykh svojstv PVKh-materialov s tselyu snizheniya iznosa formuyushchej osnastki ekstruzionnogo oborudovaniya [Regulation of rheological and abrasive properties of PVC materials for the purpose of decrease in wear of forming equipment of the extrusion equipment] // Entsiklopediya inzhenera-khimika. 2010. №10. S. 33–38.
26. Petrova G.N., Starostina I.V., Rumyanceva T.V., Sapego Yu.A. Effektivnost povysheniya kachestva izdelij iz polikarbonata termoobrabotkoj [Efficiency of improvement of quality of products from polycarbonate heat treatment] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2017. №9 (57). St. 06. Available at: http://www.viam-works.ru (accessed: May 14, 2018). DOI: 10.18577/2307-6046-2017-0-9-6-6.
27. Kirin B.S., Tikhonov N.N., Egorov V.N. Issledovaniya osobennostej modifikatsii polivinilkhlorida produktami maleinizatsii polibutadiena [Researches of features of updating of polyvinylchloride by malleinization products polybutadiene] // Plasticheskie massy. 2010. №10. S. 24–28.
28. Komarov G.A. Sostoyanie, perspektivy i problemy primeneniya PKM v tekhnike [Condition, perspectives and problems of application of PCM in equipment] // Polimernye materialy. 2009. №2. S. 5–9.
29. Li J., Kim J.K., Sham M.L., Marom G. Morphology and properties of UV/ozone treated graphite nanoplatelet/epoxy nanocomposites // Composites Science and Technology. 2007. Vol. 67. Р. 296–305.
30. Croccolo D., De Agostinis M., Olmi G. Experimental characterization and analytical modelling of the mechanical behavior of fused deposition processed parts made of ABS-M30 // Computational Materials Science. 2013. Vol. 79. Р. 506–518. DOI: 10.1016/j.commatsci.2013.06.041.
31. Mazhirin P.YU. Polifenilensulfid v aviastroenii [Polyphenylenesulphide in aircraft industry] // Polimernye materialy. 2003. №2. S. 22–24.
32. Mikhajlin Yu.A. Termoustojchivye polimery i polimernye materialy na ikh osnove [Thermosteady polymers and polymeric materials on their basis] // Polimernye materialy. 2005. №4. S. 29–32.
33. Kuperman A.M., Lebedeva O.V., Puchkov L.V., Zelenskij E.S., Gorbatkina YU.A., Berlin A.A. Armirovannye plastiki na osnove termoplastichnykh svyazuyushchikh [The reinforced plastics on the basis of the thermoflexible binding] // Plasticheskie massy. 1992. №5. S. 9–10.
34. Komarov G.A. Soedinenie detalej iz polimernykh materialov: ucheb. posobie [Connection of details from polymeric materials: manual]. SPb.: Professiya, 2006. S. 337–443.
35. Trostyanskaya E.B., Stepanova M.I., Rassokhin G.I. Teplostojkie linejnye polimery [Heatresistant linear polymers]. Rostov n/D: RGASKHM, 2002. S. 3–22.
36. Golovkin G.S. Tekhnologicheskie svojstva termoplastichnykh svyazuyushchikh dlya armirovannykh plastikov [Technological properties thermoflexible binding for the reinforced plastics] // Plasticheskie massy. 2005. №1. S. 35–40.
37. Lužanin O., Movrin D., Plančak M. Experimental investigation of extrusion speed and temperature effects on arithmetic mean surface roughness in FDM built spectmens // Journal for Technology of Plasticity. 2013. Vol. 38 (2013). No. 2. P. 179–191.
38. Sorokin A.E., Bejder E.Ya., Perfilova D.N. Vliyanie klimaticheskih faktorov na svojstva ugleplastika na polifenilensulfidnom svyazuyushhem [Effect of climatic factors on properties of carbon fiber reinforced plastic based on polyphenylenesulfide resin] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №1. St. 10. Available at: http://www.viam-works.ru (accessed: May 14, 2018). DOI: 10.18577/2307-6046-2015-0-1-10-10.
39. Sorokin A.E., Bejder E.Ya., Izotova T.F., Nikolaev E.V., Shvedkova A.K. Issledovanie svojstv ugleplastika na polifenilensulfidnom svyazuyushhem posle uskorennyh i naturnyh klimaticheskih ispytanij [Investigation of carbon fiber reinforced plastic on polyphenylenesulfide resin after accelerated and natural climatic test] // Aviacionnye materialy i tehnologii. 2016. №3 (42). S. 66–72. DOI: 10.18577/2071-9140-2016-0-3-66-72.
40. Golovkin G.S. Regulirovanie mekhanicheskikh svojstv PKM metodami tselenapravlennogo formirovaniya mezhfaznoj zony [Regulation of the PCM mechanical properties by methods of purposeful forming of interphase zone] // Polimernye materialy. 2009. №11. S. 26–28.
41. Kablov E.N. Rossii nuzhny materialy novogo pokoleniya // Redkie zemli. 2014. №3. S. 8–13.
42. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period to 2030] // Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
43. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
44. Bikas H., Stavropoulos P., Chryssolouris G. Additive manufacturing methods and modeling approaches: a critical review // International Journal of Advanced Manufacturing Technology. 2016. Vol. 83. P. 389–405. DOI: 10.1007/s00170-015-7576-2.
45. Novakova-Marcincinova L., Kuric I. Basic and Advanced Materials for Fused Deposition Modeling Rapid Prototyping Technology // Manufacturing and Industrial Engineering. 2012. Vol. 11 (1). P. 24–27.
46. Hill N., Haghi M. Deposition direction-dependent failure criteria for fused deposition modeling polycarbonate // Rapid Prototyping Journal. 2014. Vol. 20. No. 3. P. 221–227. DOI: 10.1108/RPJ-04-2013-0039.
47. Goodridge R.D., Tuck C.J., Hague R.J.M. Laser sintering of polyamides and other polymers // Progress in Materials Science. 2012. Vol. 57. P. 229–267. DOI: 10.1016/j.pmatsci.2011.04.001.
48. Kruth J.-P., Levy G., Klocke F., Childs T.H.C. Consolidation phenomena in laser and powder-bed based layered manufacturing // Annals of the CIRP. 2007. Vol. 56. No. 2. P. 730–759. DOI: 10.1016/j.cirp.2007.10.004.
Multilayer composite materials of GLARE type with metallic and polymeric layers of GLARE type regarding to sheet constructions for additional weight reduce and resource characteristics increase of aviation parts are shown in this paper. GLARE is a constructive aluminum glassfiber, where a combination of thin aluminum sheets and glue prepregs based on glassfiber provides a unique combination of properties: high strength and crack resistance with low density. It is shown that strength increase in GLARE type materials is provided by new filler material usage. A melt-type VSK-14-2mR glue compound based on a mix of defined structural epoxide olygomers and polyacrylsulfones has a low dynamic viscosity and good viscosity properties and was developed as a glass filler for RVMPN-10-400 roving with increased filament packing density and helps to reach maximum strength of polymeric composite material. Properties of fiberglass with KMKS-1.80.T60.37, KMKS-2.120.T60.37 and KMKS-2mR.120.RVMPN.30 g
2. Anikhovskaya L.I., Minakov V.T. Klei i kleevye prepregi dlya perspektivnykh izdelij aviakosmicheskoj tekhniki [Glues and glue prepregs for perspective products of aerospace equipment] // Aviacionnye materialy. Izbrannye trudy «VIAM» 1932–2002: yubil. nauch.-tekhnich. sb. M.: MISIS–VIAM, 2002. S. 315–326.
3. Khrychev Yu.I., Shkodina E.P., Magin N.A. i dr. Razrabotka tekhnologicheskogo processa izgotovleniya radioprozrachnogo obtekatelya iz kleevykh prepregov tipa KMKS-2m.120 [Development of technological process of manufacturing of radio transparent fairing from glue prepregs of the KMKS-2M.120 type] // Klei. Germetiki. Tekhnologii. 2013. №2. S. 27–30.
4. Krotov A.S., Starcev O.V., Repin A.V. i dr. Sorbciya i diffuziya vlagi v metallopolimernykh sloistykh sistemakh [Sorption and moisture diffusion in metalpolymeric layered systems] // Sb. tr. Mezhdunar. konf. «Sloistye kompozicionnye materialy – 98». Volgograd, 1998. S. 170–171.
5. Kobec L.P., Deev I.S. Strukturoobrazovanie v termoreaktivnykh svyazuyushchikh i matricakh kompozicionnykh materialov na ikh osnove [Structurization in thermosetting binding and matrixes of composite materials on their basis] // Rossijskij khimicheskij zhurnal. 2010. №1. S. 67–78.
6. Dementeva L.A., Serezhenkov A.A., Lukina N.F., Kucevich K.E. Kleevye prepregi i sloistye materialy na ih osnove [Adhesive prepregs and layered materials on their basis] // Aviacionnye materialy i tehnologii. 2013. №2. S. 19–21.
7. Senatorova O.G., Antipov V.V., Lukina N.F., Sidelnikov V.V., Kotova E.V. Vysokoprochnye treshchinostojkie legkie sloistye alyumostekloplastiki klassa SIAL – perspektivnye materialy dlya aviacionnykh konstrukcij [High-strength cracker resistance lungs layered aluminum fiber glasses class SIAL – perspective materials for aviation designs] // Tekhnologiya legkikh splavov. 2010. №1. S. 28–31.
8. Fridlyander I.N., Anikhovskaya L.I., Senatorova O.G., Sidelnikov V.V. i dr. Kleenye metallicheskie i sloistye metallopolimernye kompozity [Glued metal and layered metalpolymeric composites] // Mashinostroenie: enciklopediya v 40 t. M.: Mashinostroenie, 2001. T. II-3: Cvetnye metally i splavy. Kompozicionnye metallicheskie materialy / pod red. I.N. Fridlyandera, E.N. Kablova i dr. S. 814–832.
9. Fridlyander I.N., Senatorova O.G., Anikhovskaya L.I., Sidelnikov V.V., Dementeva L.A. Sloistye metallopolimernye kompozity [Layered metalpolymeric composites] // Mashinostroenie: enciklopediya v 40 t. M.: Mashinostroenie, 2001. T. II-3: Cvetnye metally i splavy. Kompozicionnye metallicheskie materialy / pod red. I.N. Fridlyandera, E.N. Kablova i dr. S. 185–195.
10. Kablov E.N., Antipov V.V., Senatorova O.G., Lukina N.F. Novyj klass sloistykh alyumostekloplastikov na osnove alyuminij-litievogo splava 1441 s ponizhennoj plotnostyu [New class layered aluminum fiber glasses on basis aluminum - lithium alloy 1441 with lowered density] // Vestnik MGTU im. N.E. Baumana. 2011. Special'nyj vypusk: Perspektivnye konstrukcionnye materialy i tekhnologii. S. 174–184.
11. Kablov E.N., Antipov V.V., Senatorova O.G. Sloistye alyumostekloplastiki SIAL-1441 i sotrudnichestvo s Airbus i Tu Delft [Layered aluminum fiber glasses SIAL-1441 and cooperation with Airbus and Tu Delft] // Cvetnye metally. 2013. №9 (849). S. 50–53.
12. Kablov E.N., Minakov V.T., Anikhovskaya L.I. Klei i materialy na ikh osnove dlya remonta konstrukcij aviacionnoj tekhniki [Glues and materials on their basis for repair of designs of aviation engineering] // Aviacionnye materialy i tehnologii. 2002. №1. S. 61–65.
13. Dementeva L.A., Serezhenkov A.A., Lukina N.F., Kutsevich K.E. Svoistva i naznachenie kompozitsionnyh maerialov na osnove kleevyh prepregov [Properties and appointment of composite materials based on adhesive prepregs] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №8. St. 06. Available at: http://www.viam-works.ru (accessed: February 5, 2018). DOI: 10.18577/2307-6046-2014-0-8-6-6.
14. Dementeva L.A., Serezhenkov A.A., Bocharova L.I., Lukina N.F., Kucevich K.E., Petrova A.P. Svojstva kompozicionnykh materialov na osnove kleevykh prepregov [Properties of composite materials on the basis of glue prepregs] // Klei. Germetiki. Tekhnologii. 2012. №6. S. 19–24.
15. Lukina N.F., Dement’eva L.A., Serezhenkov A.A., Kotova E.V. et al. Adhesive prepregs and composite materials on their basis // Russian Journal of General Chemistry. 2011. Vol. 81. No. 5. P. 1022–1024.
16. Serebrennikova N.Yu., Antipov V.V., Senatorova O.G., Erasov V.S., Kashirin V.V. Gibridnye sloistye materialy na baze alyuminij-litievyh splavov primenitelno k panelyam kryla samoleta [Hybrid multilayer materials based on aluminum-lithium alloys applied to panels of plane wing] // Aviacionnye materialy i tehnologii. 2016. №3 (42). S. 3–8. DOI: 10.18577/2071-9140-2016-0-3-3-8.
17. Oreshko E.I., Erasov V.S., Podjivotov N.Yu. Vybor shemy raspolozheniya vysokomodulnyh sloev v mnogoslojnoj gibridnoj plastine dlya ee naibolshego soprotivleniya potere ustojchivosti [Arrangement of high-modular layers in a multilayer hybrid plate for its greatest resistance to stability loss] // Aviacionnye materialy i tehnologii. 2014. №S4. S. 109–117. DOI: 10.18577/2071-9140-2014-0-S4-109-117.
18. Leshchiner L.N., Kishkina S.I., Starova E.N., Fedorenko T.P., Bulgakova E.N. Svojstva neplakirovannykh i plakirovannykh listov iz splava 1441 [Properties of not plated and plated sheets from alloy 1441] // Cvetnye metally. 1994. №4. S. 56–59.
19. Oreshko E.I., Erasov V.S., Podzhivotov N.Yu., Lutsenko A.N. Raschet na prochnost gibridnoj paneli kryla na baze listov i profilej iz vysokoprochnogo alyuminijlitievogo splava i sloistogo alyumostekloplastika [Strength calculation of hybrid wing panel on the basis of sheets and profiles from high-strength aluminum lithium alloy and laminated aluminum fiberglass] // Aviacionnye materialy i tehnologii. 2016. №1 (40). S. 53–61. DOI: 10.18577/2071-9140-2016-0-1-53-61.
The article is a review of foreign studies in the field of the influence of the diameter of reinforcing fibers of silicon carbide in metal matrix composite based on titanium alloys on mechanical behavior. The article consists of four parts. The introduction refers to the need to create composite materials based on high-temperature titanium alloys reinforced with carbide fibers for the creation of new generation aircraft. Within the framework of the implementation of the complex direction 12 Metal-matrix and poly-matrix composite materials reviewed foreign scientific and technical literature in the field of research, materials for the development of metal composite materials based on titanium alloys, fiber-reinforced refractory compounds of various diameters. At the beginning of the article, a detailed description of two types of silicon carbide fibers and methods for their production is given. The features of the structure and composition of the coating of core fibers considered in
2. Kablov E.N. Kompozity: segodnya i zavtra [Composites: today and tomorrow] // Metally Evrazii. 2015. №1. S. 36–39.
3. Kablov E.N. Osnovnye itogi i napravleniya razvitiya materialov dlya perspektivnoj aviatsionnoj tekhniki [The main results and the directions of development of materials for perspective aviation engineering] // 75 let. Aviatsionnye materialy. M.: VIAM, 2007. S. 20–26.
4. Ospennikova O.G. Itogi realizacii strategicheskih napravlenij po sozdaniyu novogo pokoleniya zharoprochnyh litejnyh i deformiruemyh splavov i stalej za 2012–2016 gg. [Implementation results of the strategic directions on creation of new generation of heat-resisting cast and wrought alloys and steels for 2012–2016] // Aviacionnye materialy i tehnologii. 2017. №S. S. 17–23. DOI: 10.18577/2071-9140-2017-0-S-17-23.
5. Antipov V.V. Perspektivy razvitiya alyuminievyh, magnievyh i titanovyh splavov dlya izdelij aviacionno-kosmicheskoj tehniki [Prospects for development of aluminium, magnesium and titanium alloys for aerospace engineering] // Aviacionnye materialy i tehnologii. 2017. №S. S. 186–194. DOI: 10.18577/2107-9140-2017-0-S-186-194.
6. Grashchenkov D.V. Strategiya razvitiya nemetallicheskih materialov, metallicheskih kompozicionnyh materialov i teplozashhity [Strategy of development of non-metallic materials, metal composite materials and heat-shielding] // Aviacionnye materialy i tehnologii. 2017. №S. S. 264–271. DOI: 10.18577/2071-9140-2017-0-S-264-271.
7. Grashchenkov D.V., Efimochkin I.Yu., Bolshakova A.N. Vysokotemperaturnye metallomatrichnye kompozicionnye materialy, armirovannye chasticami i voloknami tugoplavkih soedinenij [High-temperature metal-matrix composite materials reinforced with particles and fibers of refractory compounds] // Aviacionnye materialy i tehnologii. 2017. №S. S. 318–328. DOI: 10.18577/2071-9140-2017-0-S-318-328.
8. Izotova A.YU., Grishina O.I., SHavnev A.A. Kompozitsionnye materialy na osnove titana, armirovannye voloknami (obzor) [Fiber-reinforced titanium based composites (review)] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2017. №5 (53). St. 05. URL: http://www.viam-works.ru (accessed: April 23, 2018). DOI: 10.18577/2307-6046-2017-0-5-5-5.
9. Grishina O.I., Kochetov V.N., Shavnev A.A., Serpova V.M. Aspecty primeneniya vysokoprochnyh i vysokomodulnyh voloknistyh metallicheskih kompozitsionnyh materialov aviatsionnogo naznacheniya (obzor) [Aspects of application of high-strength and high-modulus fiber metal composite materials for aeronautical purpose (review)] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2014. №10. St. 05. URL: http://www.viam-works.ru (accessed: April 23, 2018). DOI: 10.18577/2307-6046-2014-0-10-5-5.
10. Silicon Carbide Filaments and Мethod: pat. US 4127659; filed 26.01.77; publ. 28.11.78.
11. Andreeva A.V. Osnovy fizikokhimii i tekhnologii kompozitov [Bases of the physicchemistry and technology of composites]. M.: Radiotekhnika, 2001. 191 s.
12. Peters P.W.M. Mono filament reinforced metals (MFRM) in MMC-ASSESS // MMC VIII-Metallic Composites and Foams. (London, UK, November 26–27, 2001). URL: https://www.yumpu.com/en/document/view/37676872/kein-folientitel-the-world-of-mmc-assess-metal-matrix-composites.html (accessed: April 23, 2018).
13. Budiansky B., Hutchinson J.W., Evans A.G. Matrix fracture in fiber-reinforced ceramic // Journal of the Mechanics and Physics of Solids. 1986. No. 34. P. 167–189.
14. Curtin W.A. Theory of mechanical properties of ceramic-matrix composite // Journal of the American Ceramic Society. 1991. No. 74. P. 2837–2845.
15. Shuqi Guo. Fiber size effects on mechanical behaviours of SiC fibres-reinforced Ti3AlC2 matrix composites // Journal of the European Ceramic Society. 2017. Vol. 37. No. 15. P. 5099–5104. DOI: 10.1016/j.jeurceramsoc.2017.07.023.
16. Bermejo R., Torres Y., Sanchez-Herencia A.J. et al. Residual stresses, strength and toughness of laminates with different layer thickness ratios // Acta materialia. 2006. No. 54. P. 4745–4757.
17. Juhong Lou, Yanqing Yang, Shenquan Liu. Effect of properties of SiC fibers on longitudinal tensile behavior of SiCf/Ti-6Al-4V composites // Journal of Wuhan University of Technology-Materials Science Edition. 2017. Vol. 32. No. 2. P. 278–283.
18. Guo S.Q., Hu C.F., Gao H. et al. SiC (SCS-6) fibre-reinforced Ti3AlC2 matrix composites: interfacial characterization and mechanical behavior // Journal of the European Ceramic Society. 2015. No. 35. P. 1375–1384.
19. John A. McElman. Continuous silicon carbide fibre MMCs // Engineered Materials Handbook. Ohio: ASM International, Metal Park, 1987. Vol. 1: Composites. P. 858–866.
The slurry method is one of the most simple and economical methods of coating application. Thanks to it it is possible to apply coatings on large-sized products of complex shape. Slurry coatings are used to improve the heat resistance of various metallic, and also non-metallic materials. Slurry-resistant heat-resistant coatings applied to various groups of steels are based on Al, Al–Si, Cr–Al–Si, and also some other metals. It is shown that the aluminide coating at 650°C is operable for more than 40,000 h. Al–Si slurry coatings provide high protective properties at temperatures up to 450°C, as well as in contact with the Pb-Bi melt at 600°C. The Cr–Al–Si system protects steel from corrosion at elevated temperatures in corrosive environments. Coatings of SiO2–Al2O3–BaO and SiO2–Al2O3–B2O3 are used for deposition on iron-nickel alloys, reducing the oxidizability by 25–30 times at temperatures of 700°C. The system SiC–Si3N4–SiO2, is applied to sealing abradable materials of composition
2. Kablov E.N., Muboyadzhyan S.A., Budinovskij S.A., Lutsenko A.N. Ionno-plazmennye zashchitnye pokrytiya dlya lopatok gazoturbinnykh dvigatelej [Ion-plasma protecting covers for blades of gas turbine engines] // Metally. 2007. №5. S.23–34.
3. Kablov E.N., Muboyadzhyan S.A. Zharostojkie i teplozashhitnye pokrytiya dlya lopatok turbiny vysokogo davleniya perspektivnyh GTD [Heat resisting and heat-protective coverings for turbine blades of high pressure of perspective GTE] // Aviacionnye materialy i tehnologii. 2012. №S. S. 60–70.
4. Muboyadzhyan S.A., Budinovskij S.A., Gayamov A.M., Matveev P.V. Vysokotemperaturnye zharostojkie pokrytiya i zharostojkie sloi dlya teplozashhitnyh pokrytij [High-temperature heat resisting coverings and heat resisting layers for heat-protective coverings] // Aviacionnye materialy i tehnologii. 2013. №1. S. 17–20.
5. Muboyadzhyan S.A., Budinovskij S.A. Ionno-plazmennaya tehnologiya: perspektivnye protsessy, pokrytiya, oborudovanie [Ion-plasma technology: prospective processes, coatings, equipment] // Aviacionnye materialy i tehnologii. 2017. №S. S. 39–54. DOI: 10.18577/2071-9140-2017-0-S-39-54.
6. Artemenko N.I., Simonov V.N., Vlasova D.V. Issledovanie protsessa osazhdeniya nitrida titana na ustanovke ionno-plazmennogo napyleniya MAP-3 [Research of the titanium nitride deposition process at the MAP-3 ion-plasma deposition unit] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2017. №12. St. 11. Available at: http://www.viam-works.ru (accessed: May 11, 2018). DOI: 10.18577/2307-6046-2017-0-12-11-11.
7. Grashchenkov D.V., Solntsev S.S., Isaeva N.V. i dr. Emali i keramika [Enamels and ceramics] // Vse materialy. Entsiklopedicheskij spravochnik. 2012. №5. S. 35–42.
8. Sposob vosstanovleniya vysokotemperaturnogo kremnijsoderzhashchego zashchitnogo pokrytiya na zharoprochnykh konstruktsionnykh materialakh: pat. 2437961 Ros. Federatsiya [Way of recovery of high-temperature siliceous protecting cover on heat resisting constructional materials: pat. 2437961 Rus. Federation]; zayavl. 29.07.10; opubl. 27.12.11.
9. Kolovertnov D.V. Protsessy okisleniya steklokeramicheskikh kompozitsij na osnove borida tsirkoniya i kremnijsoderzhashchikh soedinenij: dis. ... kand. khim. nauk [Processes of oxidation of glassceramic compositions on the basis of boride of zirconium and siliceous connections: thesis, PhD (Chem.)]. SPb., 2012. 215 s.
10. Bankovskaya I.B., Vasileva I.A., Kolovertnov D.V. Protsessy okisleniya kompozitsii kremnij-bor-borid tsirkoniya v intervale temperatur 1000–1300 °C [Processes of oxidation of composition zirconium silicon-boron-boride in the range of temperatures of 1000–1300 °C] // Fizika i khimiya stekla. 2012. T. 38. №3. S. 409–416.
11. Plotnikova A.S. Zakonomernosti geterogennykh vzaimodejstvij pri sinteze reaktsionno-svyazannykh zashchitnykh pokrytij dlya uglerodnykh materialov [Patterns of heterogeneous interactions at synthesis of the reactionary and connected protecting covers for carbon materials] // I Mezhdistsiplinarnaya shkola-seminar «Khimiya neorganicheskikh materialov i nanomaterialov»: sb. tez. dokl. M., 2006. S. 28–31.
12. Astapov A.N. Razrabotka vysokotemperaturnykh zashchitnykh pokrytij na uglerodsoderzhashchie kompozitsionnye materialy primenitelno k osoboteplonagruzhennym elementam konstruktsij aviakosmicheskoj i raketnoj tekhniki: dis. ...kand. tekhn. nauk [Development of high-temperature protecting covers on carbon-containing composite materials with reference to especially heat loaded elements of designs aerospace and rocketry: thesis, PhD (Tech.)]. M., 2011. 207 s.
13. Terenteva V.S., Zhestkov B.E. Mnogofunktsionalnye vysokotemperaturnye pokrytiya D5 MAI i M1 MAI [Multifunction high temperature coatings Д5 of MAI and М1 MAI] // Khimicheskaya fizika. 2009. T. 28. №5. S. 64–70.
14. Gildebrandt E.M., Vershinina E.P., Frizorger V.K. Zashchita poverkhnosti anoda alyuminievogo elektrolizera ot okisleniya [Surface protection of the anode of aluminum reduction cell from oxidation] // Journal of Siberian Federal University. Engineering & Technologies. 2010. №3. S. 272–283.
15. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
16. Golubeva O.V., Markov V.G., Yakovlev V.A., Chikiryaka A.V. Metod povysheniya soprotivleniya okisleniyu v teplonositele svinets–vismut [Method of increase of resistance to oxidation in the heat-carrier lead-bismuth] // Voprosy materialovedeniya. 2008. №4 (56). S. 106–115.
17. Galoyan A.G., Muboyadzhyan S.A., Egorova L.P., Bulavinceva E.E. Korrozionnostojkoe pokrytie dlya zashhity detalej GTD iz vysokoprochnyh konstrukcionnyh martensitostareyushhih stalej na rabochie temperatury do 450°C [Corrosion-resistant coating for protection of GTE details made of high-strength maraging constructional steel with operating temperature up to 450°C] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №6. St. 03. Available at: http://www.viam-works.ru (accessed: May 11, 2018). DOI: 10.18577/2307-6046-2014-0-6-3-3.
18. Agüero A., Muelas R., Pastor A., Osgerby S. Long exposure steam oxidation testing and mechanical properties of slurry aluminide coatings for steam turbine components // Surface & Coatings Technology. 2005. No. 200. P. 1219–1224.
19. Agüero A., Muelas R., Gutierrez M., Van Vulpen R., Osgerby S., Banks J.P. Cyclic oxidation and mechanical behaviour of slurry aluminide coatings for steam turbine components // Surface & Coatings Technology. 2007. No. 201. P. 6253–6260.
20. Protective system for high temperature metalalloy products: pat. US 6682780 B2; publ. 27.01.04.
21. Solntsev S.St., Shvagireva V.V., Isaeva N.V., Soloveva G.A. Mnogocelevoe stekloemalevoe pokrytie dlya zashhity lityh fasonnyh detalej gazoturbinnyh dvigatelej [Multipurpose glass-enamel coating for protection of cast parts of gas turbine engines] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №3. St. 04. Available at: http://www.viam-works.ru (accessed: May 11, 2018). DOI: 10.18577/2307-6046-2014-0-3-4-4.
22. Rozenenkova V.A., Solntsev St.S., Mironova N.A. Tonkoplenochnye pokrytiya dlya uplotnitelnykh istiraemykh materialov na osnove diskretnykh volokon dlya protochnogo trakta GTD [Thin-film coatings for discrete fibers based sealing abraded materials of the wheel space gas turbine engine path] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2013. №5. St. 03. Available at: http://www.viam-works.ru (accessed: May 11, 2018).
23. Denisova V. S., Solov'eva G. A., Orlova L.A. Sintez resursnykh zharostojkikh emalevykh pokrytij na osnove stekol barijalyumosilikatnoj sistemy dlya nikelevykh splavov [Synthesis of resource heat resisting enamel coatings on the basis of glasses of barium silica-alumina system for nickel alloys] // Uspekhi v khimii i khimicheskoj tekhnologii. 2014. T. XXVIII. №8. S 39–42.
24. Pugacheva N.B. Sovremennye tendentsii razvitiya zharostojkikh pokrytij na osnove alyuminidov zheleza [Current trends of development of heat resisting coverings on the basis of iron aluminides] // Diagnostics, Resource and Mechanics of materials and structures. 2015. №3. S 51–82.
25. Slurry compositions for diffusion coatings: pat. 6110262 US; publ. 29.08.00.
26. Denisova V.S., Soloveva G.A. Zharostojkoe steklokeramicheskoe pokrytie zhdya zashchity detalej kamer sgoraniya gazoturbinnykh dvigatelej [Heat-resistant glass-ceramic coating for protection of gas turbines’ combustion chambers parts] // Aviacionnye materialy i tehnologii. 2016. №4 (45). S. 18–22. DOI: 10.18577/2071-9140-2016-0-4-18-22.
27. Solntsev S.S. Vysokotemperaturnye kompozitsionnye materialy i pokrytiya na osnove stekla i keramiki dlya aviakosmicheskoj tekhniki [High-temperature composite materials and coverings on the basis of glass and ceramics for aerospace equipment] // Rossijskij khimicheskij zhurnal. 2010. №1. S. 25–33.
28. Achimov A.A., Tolmachev I.M., Udovichenko S.YU. Issledovanie zharostojkogo diffuzionnogo pokrytiya na lopatkakh gazoturbinnykh dvigatelej iz zharoprochnogo nikelevogo splava [Research of heat resisting diffusion coating on blades of gas turbine engines from heat resisting nickel alloy] // Vestnik Tyumenskogo gosudarstvennogo universiteta. 2014. №7. S. 105–111.
29. Sposob naneseniya pokrytiya: pat. 2214475 Ros. Federatsiya [Coating application method: pat. 2214475 Rus. Federation]; zayavl. 27. 11.01; opubl. 20.10.03.
30. Karasik T.L. Vliyanie oksidov shchelochnozemelnykh metallov na svojstva zharostojkikh pokrytij [Influence of oxides of alkaline earth metals on properties of heat resisting coverings] // Zbіrnik naukovikh prats PAT «Ukrndі vognetrivіv іm. A. S. Berezhnogo». 2013. №113. S. 240–245.
In this paper was obtained the analytical dependence of the total and voltage power of the plasma arc on the arc current and the flow rates of argon and nitrogen of the serial plasma-gun Metco F4. It is established that an increase in nitrogen consumption has the greatest effect on the increase in arc voltage. A computational and graphical technique for estimating the average temperature and the velocity of the plasma flow at the cutoff of the nozzle of the serial plasma-gun Metco F4 is proposed.
2. Kablov E.N., Muboyadzhyan S.A. Teplozashchitnye pokrytiya s keramicheskim sloem ponizhennoj teploprovodnosti na osnove oksida tsirkoniya dlya lopatok turbiny vysokogo davleniya perspektivnykh GTD [Heat-protective coverings with ceramic layer of the lowered heat conductivity on the basis of zirconium oxide for turbine blades of high pressure of perspective GTE] // Sb. dokl. konf. «Sovremennye dostizheniya v oblasti sozdaniya perspektivnykh nemetallicheskikh kompozitsionnykh materialov i pokrytij dlya aviatsionnoj i kosmicheskoj tekhniki». M.: VIAM, 2015. S. 3.
3. Kablov E.N. Osnovnye itogi i napravleniya razvitiya materialov dlya perspektivnoj aviatsionnoj tekhniki [The main results and the directions of development of materials for perspective aviation engineering] // 75 let. Aviatsionnye materialy. M.: VIAM, 2007. S. 20–26.
4. Muboyadzhyan S.A., Budinovskij S.A., Gayamov A.M., Matveev P.V. Vysokotemperaturnye zharostojkie pokrytiya i zharostojkie sloi dlya teplozashhitnyh pokrytij [High-temperature heat resisting coverings and heat resisting layers for heat-protective coverings] // Aviacionnye materialy i tehnologii. 2013. №1. S. 17–20.
5. Budinovskij S.A., Chubarov D.A., Matveev P.V. Sovremennye sposoby naneseniya teplozashhitnyh pokrytij na lopatki gazoturbinnyh dvigatelej (obzor) [Modern methods for deposition of thermal barrier coatings on GTE turbine blades] // Aviacionnye materialy i tehnologii. 2014. №S5. S. 38–44. DOI: 10.18577/2071-9140-2014-0-s5-38-44.
6. Matveev P.V., Budinovskij S.A., Muboyadzhyan S.A., Kosmin A.A. Zashhitnye zharostojkie pokrytiya dlya splavov na osnove intermetallidov nikelya [High-temperature coatings for intermetallic nickel-based alloys] // Aviacionnye materialy i tehnologii. 2013. №2. S. 12–15.
7. Matveev P.V., Budinovskij S.A. Issledovanie svojstv zashhitnyh zharostojkih pokrytij dlya intermetallidnyh nikelevyh splavov tipa VKNA dlya rabochih temperatur do 1300°C [Research of the properties of protective heat-resistant coating for intermetallic nickel alloys operating at temperatures up to 1300°C] // Aviacionnye materialy i tehnologii. 2014. №3. S. 22–26 DOI: 10.18577/2071-9140-2014-0-3-22-26.
8. Kashin D.S., Stehov P.A. Zashhitnye pokrytiya dlya zharoprochnyh splavov na osnove niobiya [Protective coatings for high-temperature niobium-based alloys] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №6. St. 01. Available at: http://www.viam-works.ru (accessed: April 16, 2018). DOI: 10.18577/2307-6046-2015-0-6-1-1.
9. Ilyushchenko A.F., Shevtsov A.I., Okovityj V.A., Gromyko G.F. Protsessy formirovaniya gazotermicheskikh pokrytij i ikh modelirovanie [Процессы формирования газотермических покрытий и их моделирование]. Minsk: Belaruskaya navuka, 2011. 357 s.
10. Kibzun A.I., Goryanova E.R., Naumov A.V., Sirotin A.N. Teoriya veroyatnostej i matematicheskaya statistika. Bazovyj kurs s primerami i zadachami [Probability theory and mathematical statistics. Base course with examples and tasks]. M.: Fizmatlit, 2002. 224 s.
11. Khasui A., Morigaki O. Naplavka i napylenie [Welding and dusting]. M.: Mashinostroenie, 1985. 240 s.
12. Khasuj A. Tekhnika napyleniya [Way of dusting]. M.: Mashinostroenie, 1975. 288 s.
13. Kudinov V.V. Plazmennye pokrytiya [Plasma coverings]. M.: Nauka, 1977. 184 s.
14. Gazotermicheskoe napylenie: ucheb. posobie / pod obshch. red. L.Kh. Baldaeva [Gasthermal dusting: the manual / gen. ed. by L.Kh. Baldayev]. M.: Market DS, 2007. 344 s.
15. Kudinov V.V., Bobrov G.V. Nanesenie pokrytij napyleniem. Teoriya, tekhnologiya i oborudovanie: ucheb. dlya vuzov [Drawing coverings by dusting. Theory, technology and equipment: the textbook for higher education institutions]. M.: Metallurgiya, 1992. 432 s.
16. Sidorov A.I. Vosstanovlenie detalej mashin napyleniem i naplavkoj [Recovery of details of machines by dusting and welding]. M.: Mashinostroenie, 1987. 192 s.
To increase the reliability and the service life of gas turbine engine (GTE) blades, heat-resistant coatings are used. The repeated use of the GTE blades after their operation or in violation of the technology of applying protective coatings is possible only in case of removing the defective coating and subsequent preparation of the blade surface for its repeated application. The currently used surface preparation methods for re-applying protective coatings are based on the preliminary cleaning of the GTE blades from the combustion products of the fuel, removal of protective coatings and surface finishing. A comparative analysis of traditional methods of removing spent coatings has shown that the electrolytic-plasma treatment method is distinguished by high productivity, high quality of the treated surface, no need for intermediate preparation stages, and its environmental friendliness. The disadvantages of this method include the inability to process the internal cavities of parts, a
2. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period to 2030] // Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
3. Kablov E.N., Muboyadzhyan S.A. Zharostojkie i teplozashhitnye pokrytiya dlya lopatok turbiny vysokogo davleniya perspektivnyh GTD [Heat resisting and heat-protective coverings for turbine blades of high pressure of perspective GTE] // Aviacionnye materialy i tehnologii. 2012. №S. S. 60–70.
4. Kablov E.N., Startsev O.V., Medvedev I.M. Obzor zarubezhnogo opyta issledovanij korrozii i sredstv zashhity ot korrozii [Review of international experience on corrosion and corrosion protection] // Aviacionnye materialy i tehnologii. 2015. №2 (35). S. 76–87. DOI: 10.18577/2071-9140-2015-0-2-76-87.
5. Kablov E.N., Muboyadzhyan S.A., Budinovskij S.A., Pomelov YA.A. Ionno-plazmennye zashchitnye pokrytiya dlya lopatok gazoturbinnykh dvigatelej [Ion-plasma protecting covers for blades of gas turbine engines] // Konversiya v mashinostroenii. 1999. №2. S.42–47.
6. Muboyadzhyan S.A., Aleksandrov D.A., Gorlov D.S., Egorova L.P., Bulavinceva E.E. Zashhitnye i uprochnyayushhie ionno-plazmennye pokrytiya dlya lopatok i drugih otvetstvennyh detalej kompressora GTD [Protective and strengthening ion-plasma coverings for blades and other responsible details of the GTE compressor] // Aviacionnye materialy i tehnologii. 2012. №S. S. 71–81.
7. Kablov D.E., Belyaev M.S., Sidorov V.V., Min P.G. Vliyanie primesej sery i fosfora na malociklovuyu ustalost monokristallov zharoprochnogo splava ZhS36-VI [The influence of sulfur and phosphorus impurities on low cycle fatigue of single crystals of ZhS36-VI alloy] // Aviacionnye materialy i tehnologii. 2015. №4 (37). S. 25–28. DOI: 10.18577/2071-9140-2015-0-4-25-28.
8. Kablov D.E., Sidorov V.V., Budinovskij S.A., Min P.G. Vliyanie primesi sery na zharostojkost monokristallov zharoprochnogo splava ZhS36-VI s zashhitnym pokrytiem [The influence of sulfur impurity on heat resistance of single crystals of ZhS36-VI alloy with protective coating] // Aviacionnye materialy i tehnologii. 2016. №1 (40). S. 20–23. DOI: 10.18577/2071-9140-2016-0-1-20-23.
9. Kablov E.N., Muboyadzhyan S.A., Budinovskij S.A., YAgodkin YU.D. Perspektivy primeneniya ionno-plazmennoj tekhnologii vysokikh energij dlya mezhresursnogo remonta lopatok turbin [Perspectives of application of ion-plasma technology of high energy for interresource repair of blades of turbines] // Aviacionnye materialy i tehnologii. 2002. №1. S. 6–13.
10. Method for cleaning metal parts with elemental fluorine: pat. US4188237A; publ. 02.02.78.
11. Method of removing a thermal barrier coating: pat. US6238743B1; publ. 20.01.00.
12. Shoe form: pat. US1784661A; publ. 24.10.29.
13. Sposob remonta lopatok turbiny gazoturbinnogo dvigatelya: pat. 2367554 Ros. Federatsiya [Way of repair of turbine blades of the gas turbine engine: pat. 2367554 Rus. Federation]; opubl. 08.08.07.
14. Rastvor dlya udaleniya alyuminijsoderzhashchikh mnogokomponentnykh zharostojkikh pokrytij s nikelevykh splavov: pat. 1324344 Ros. Federatsiya [Solution for removal of aluminum containing multicomponent heat resisting coverings from nickel alloys: pat. 1324344 Rus. Federation]; opubl. 07.09.85.
15. Sposob udaleniya pokrytiya s metallicheskoj podlozhki: pat. 2094546 Ros. Federatsiya [Way of removal of covering from metal substrate: pat. 2094546 Rus. Federation]; opubl. 04.03.95.
16. Process for removing chromide coatings from metal substrates, and related compositions: pat. US6953533B2; publ. 16.06.03.
17. Method for removing aluminide coating from metal substrate and turbine engine part so treated: pat. US7008553B2; publ. 09.01. 03.
18. Method for chemically stripping a cobalt-base substrate: pat. US5944909A; publ. 02.02.98
19. Process of selectively removing layers of a thermal barrier coating system: pat. US6955308B2; publ. 23.06.03.
20. Method of removing a coating from a substrate: pat. US6905396B1; publ. 20.11.03.
21. Chemical stripping composition and method: pat. US8859479B2; publ. 26.09.11.
22. Method of decoating a turbine blade: United States paten US6660102B2; publ. 27.12.00.
23. Process for applying a protective layer: pat. US7736704B2; publ. 15.09.04.
24. Method for removal of surface layers of metallic coatings: pat. US6036995A; publ. 31.01.97.
25. Kulikov I.S., Vashchenko S.V., Kamenev A.YA. Elektrolitno-plazmennaya obrabotka materialov [Electrolit plasma processing of materials]. Minsk: Belоruskaya nauka, 2010. 232 s.
At present, the issue of developing methods for predicting the change in the strength properties of structural aluminum alloys used in the composition of structural elements in conditions of environmental factors for long periods of operation is topical. In this case, the key is to search for the principal approaches to predicting the corrosive behavior of aluminum alloys as materials for which uneven corrosion damage is characteristic, and assessing the complex effect of the most dangerous types of local corrosion on the change in the mechanical properties of aluminum alloys. The calculation of the integral coefficient of corrosion failure based on the predicted values of the main corrosion characteristics of aluminum alloys-loss of weight, depth of pitting and intercrystalline corrosion, as well as the tendency to delaminating corrosion, has been performed. It is shown that the application of the method of calculating the integral corrosion coefficient can be used to obtain the pred
2. Antipov V.V. Strategiya razvitiya titanovyh, magnievyh, berillievyh i alyuminievyh splavov [Strategy of development of titanium, magnesium, beryllium and aluminum alloys] // Aviacionnye materialy i tehnologii. 2012. №S. S. 157–167.
3. Kablov E.N., Startsev O.V., Medvedev I.M. Obzor zarubezhnogo opyta issledovanij korrozii i sredstv zashhity ot korrozii [Review of international experience on corrosion and corrosion protection] // Aviacionnye materialy i tehnologii. 2015. №2 (35). S. 76–87. DOI: 10.18577/2071-9140-2015-0-2-76-87.
4. Samojlov I.A., Stradomskij O.Yu., Shapkin V.S. Sostoyanie grazhdanskoj aviatsionnoj tekhniki Rossii i prognoz ee obnovleniya do 2030 goda [Condition of civil aviation engineering of Russia and the forecast of its updating till 2030] // Nauchnyj vestnik MGTUGA. 2013. Vyp. 187. S. 7–18.
5. Zubarev A.P., Lapaev A.V., Lapaev V.P. Ispolzovanie obobshchennogo parametra korrozionnogo porazheniya dlya otsenki dolgovechnosti elementov konstruktsij s korrozionnymi porazheniyami [Use of the generalized parameter of corrosion defeat for assessment of durability of elements of designs with corrosion defeats] // Nauchnyj vestnik MGTUGA. 2007. Vyp. 119. S. 30–32.
6. Akopyan K.E., Lapaev A.V., Semin A.V. Analiz korrozionnogo sostoyaniya samoletov Tu-154M OAO Aviakompanii «AEROFLOT-RAL». Po dannym materialov tekhnicheskogo obsluzhivaniya v obeme formy «2» [Analysis of corrosion condition of the Tu-154М airplanes of JSC Airline company «AEROFLOT-RAL». According to materials of technical maintenance in form «2»] // Nauchnyj vestnik MGTUGA. 2007. Vyp. 119. S. 24–29.
7. Fomina M.A., Karimova S.A. Analiz korrozionnogo sostoyaniya materialov planera samoletov tipa «Su» posle dlitelnykh srokov ekspluatatsii [The analysis of corrosion condition of materials of glider of airplanes of the SU type after long terms of operation] // Korroziya: materialy, zashchita. 2014. №9. S. 20–24.
8. Bakshaev S.I., Gavrilov I.V. Klimaticheskie ispytaniya materialov i izdelij tekhniki [Climatic tests of materials and equipment products] // Korroziya, starenie i biostojkost materialov v morskom klimate: sb. dokl. II Mezhdunar. nauch.-tekhnich. konf. M.: VIAM, 2016. St. 02 (CD).
9. Lavro N.A., Sukhoivanenko V.V., Dyudin V.B., Budyuk G.Yu. Analiz effektivnosti antikorrozionnoj zashchity samoletov Be-200CHS, ekspluatiruyushchikhsya v MCHS Rossii i PAO «TANTK im. G.M. Berieva» [The analysis of efficiency of anticorrosive protection of the Be-200ChS airplanes which are maintaining in Emercom of Russia and PAO «TANTK of G.M. Beriyev»] // Korroziya, starenie i biostojkost materialov v morskom klimate: sb. dokl. II Mezhdunar. nauch.-tekhnich. konf. M.: VIAM, 2016. St. 09 (CD).
10. GOST 9.040–74 ESZKS. Metally i splavy. Raschetno-eksperimentalnyj metod uskorennogo opredeleniya korrozionnykh poter' v atmosfernykh usloviyakh [State Standard 9.040–74. Metals and alloys. Rated and experimental method of the accelerated definition of corrosion losses in atmospheric conditions]. M.: Izd-vo standartov, 1974. 14 s.
11. Mikhajlov A.A., Panchenko YU.M., Igonin T.N., Kovtanyuk V.V. Atmosfernaya korroziya tsinka: kartografirovanie skorosti korrozii na evropejskoj territorii Rossijskoj Federatsii [Atmospheric corrosion of zinc: corrosion rate mapping in the European territory of the Russian Federation] // Korroziya: materialy, zashchita. 2012. №9. S. 1–5.
12. Mikhajlov A.A., Panchenko Yu.M., Igonin T.N. i dr. Atmosfernaya korroziya uglerodistoj stali: modelirovanie i kartografirovanie territorii Rossijskoj Federatsii [Atmospheric corrosion of carbon steel: modeling and mapping of the territory of the Russian Federation] // Korroziya: materialy, zashchita. 2010. №11. S. 1–10.
13. Lutsenko A.N., Kurs M.G., Laptev A.B. Obosnovanie srokov naturnykh klimaticheskikh ispytanij metallicheskikh materialov v atmosfere chernomorskogo poberezhya. Analiticheskij obzor [Justification of terms of natural climatic tests of metal materials in the atmosphere of the Black Sea coast. Analytical review] // Voprosy materialovedeniya. 2016. №3 (87). S. 126–137.
14. Kurs M.G., Antipov V.V., Lutsenko A.N., Kutyrev A.E. Integralnyj koeffitsient korrozionnogo razrusheniya deformiruemykh alyuminievykh splavov [Integral figure of corrosion damage of deformed aluminum alloys] // Aviacionnye materialy i tehnologii. 2016. №3 (42). S. 24–32. DOI: 10.18577/2071-9140-2016-0-3-24-32.
15. Kurs M.G., Antipov V.V., Kutyrev A.E. Prognozirovanie poter prochnostnykh svojstv listovykh deformiruemykh alyuminievykh splavov s primeneniem integralnogo koeffitsienta korrozionnogo razrusheniya [Forecasting of losses of strength properties of sheet deformable aluminum alloys using integral factor of corrosion destruction] // Fundamentalnye issledovaniya i poslednie dostizheniya v oblasti zashchity ot korrozii, stareniya i biopovrezhdenij materialov i slozhnykh tekhnicheskikh sistem v razlichnykh klimaticheskikh usloviyakh: sb. dokl. III Vseros. nauch.-tekhnich. konf. M.: VIAM, 2016. S. 09 (CD).
16. Kurs M.G., Laptev A.B., Kutyrev A.E., Morozova L.V. Issledovanie korrozionnogo razrusheniya deformiruemykh alyuminievykh splavov pri naturno-uskorennykh ispytaniyakh. Chast 1 [Research of corrosion destruction of deformable aluminum alloys at natural accelerated tests. Part 1] // Voprosy materialovedeniya. 2016. №1 (85). S. 116–126.
17. Aviatsionnye materialy: spravochnik v 13 t. / pod obshch. red. E.N. Kablova. T. 4: Alyuminievye i berillievye splavy, ch. 1: Deformiruemye alyuminievye splavy, kn. 2. [Aviation materials: directory in 13 vol. / gen ed. by E.N.Kablova. Vol. 4: Aluminum and beryllium alloys. P.1: Deformable aluminum alloys, book 2]. M.: VIAM, 2009. C. 49–50.
18. Senatorova O.G., Grushko O.E., Tkachenko E.A., Antipov V.V. i dr. Novye vysokoprochnye alyuminievye splavy i materialy [New high-strength aluminum alloys and materials] // Tekhnologiya legkikh splavov. 2007. №2. S. 17–24.
Mechanical properties of glass and carbon reinforced plastics were investigated after natural weathering in mild warm climate. The seasonal changes in mechanical properties of PCMs were found to be in agreement with moisture content in the samples. The difference in compressive and bending strength of VKU-49 carbon fiber reinforced plastic, measured in winter and summer month reached 10%. It was shown that for evaluation of reversible influence of moisture during the natural weathering measurements of the mechanical properties of PCM should be measured in three states: without conditioning, after drying and after moisture absorption till the steady state.
2. Startsev O.V., Mashinskaya G.P., YArtsev V.A. Molekulyarnaya podvizhnost i relaksatsionnye protsessy v epoksidnoj matritse kompozita. 2. Effekty stareniya vo vlazhnom subtropicheskom klimate [Molecular mobility and relaxation processes in epoxy matrix of composite. 2. Effects of aging in humid subtropical climate] // Mekhanika kompozitnykh materialov. 1984. №4. S. 593–597.
3. Kablov E.N., Kirillov V.N., Startsev O.V., Krotov A.S. Climatic aging of composite aviation materials: III. Significant aging factors // Russian metallurgy (Metally). 2012. No. 4. P. 323–329.
4. Kablov E.N., Startsev O.V. Fundamentalnye i prikladnye issledovaniya korrozii i stareniya materialov v klimaticheskih usloviyah (obzor) [The basic and applied research in the field of corrosion and ageing of materials in natural environments (review)] // Aviacionnye materialy i tehnologii. 2015. №4 (37). S. 38–52. DOI: 10.18577/2071-9140-2015-0-4-38-52.
5. Baker D.J. Ten-year ground exposure of composite materials used on the Bell model 206L helicopter flight service program // NASA Technical Paper 3468. ARL Technival Report 480. Hampton. Virginia, 1994. P. 54.
6. Kablov E.N., Startsev V.O., Inozemtsev A.A. Vlagonasyshhenie konstruktivno-podobnyh elementov iz polimernyh kompozicionnyh materialov v otkrytyh klimaticheskih usloviyah s nalozheniem termociklov [The moisture absorption of structurally similar samples from polymer composite materials in open climatic conditions with application of thermal spikes] // Aviacionnye materialy i tehnologii. 2017. №2 (47). S. 56–68. DOI: 10.18577/2071-9140-2017-0-2-56-68.
7. Startsev O.V., Perepechko I.I., Startseva L.T., Mashinskaya G.P. Strukturnye izmeneniya v plastifitsirovannom setchatom amorfnom polimere [Structural changes in plastify network amorphous polymer] // Vysokomolekulyarnye soedineniya. Ser.: B. 1983. T. 25. №6. S. 457–461.
8. Efimov V.A., Shvedkova A.K., Korenkova T.G., Kirillov V.N. Issledovanie polimernyh konstrukcionnyh materialov pri vozdejstvii klimaticheskih faktorov i nagruzok v laboratornyh i naturnyh usloviyah [Research of polymeric constructional materials at influence of climatic factors and loadings in laboratory and natural conditions] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №1. St. 05. Available at: http://viam-works.ru (accessed: April 5, 2018).
9. Panin S.V., Startsev O.V., Krotov A.S. Diagnostika nachalnoj stadii klimaticheskogo stareniya PKM po izmeneniyu koefficienta diffuzii vlagi [Initial stage environmental degradation of the polymer matrix composites evaluated by Water diffusion coefficient] // Trudy VIAM: electron. nauch.-tehnich. zhurn. 2014. №7. St. 09. Available at: http://viam-works.ru (accessed: April 5, 2018). DOI: 10.18577/2307-6046-2014-0-7-9-9.
10. Startseva L.T., Panin S.V., Startsev O.V., Krotov A.S. Moisture diffusion in glass-fiber-reinforced plastics after their climatic aging // Doklady Physical Chemistry. 2014. Vol. 456. No. 1. P. 77–81.
11. Startsev V.O., Panin S.V., Startsev O.V. Sorption and Diffusion of Moisture in Polymer Composite Materials with Drop-Weight Impact Damage // Mechanics of Composite Materials. 2016. Vol. 51. No. 6. P. 761–770.
12. Vapirov Y.M., Krivonos V.V., Startsev O.V. Interpretation of the anomalous change in the properties of carbon-fiber-reinforced plastic KMU-1u during aging in different climatic regions // Mechanics of Composite Materials. 1994. Vol. 30. No. 2. P. 190–194.
13. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
14. Startsev V.O., Lebedev M.P., Khrulev K.A. et al. Effect of outdoor exposure on the moisture diffusion and mechanical properties of epoxy polymers // Polymer Testing. 2018. Vol. 65. P. 281–296.
15. Harvey J.A. Chemical and physical aging of plastics // Handbook of environmental degradation of materials. Oxford: Elseiver, 2005. P. 153–163.
16. Antyufeeva N.V., Aleksashin V.M., Pavlov M.R., Stolyankov Yu.V. Issledovanie vozmozhnosti ispolzovaniya ugleplastikov v usloviyah arkticheskogo klimata [Research of possibility of use carbon fiber reinforced polymers in the conditions of the Arctic climate] // Aviacionnye materialy i tehnologii. 2016. №4. S. 86–94. DOI: 10.18577/2071-9140-2016-0-4-86-94.