Articles
The article presents the results of VIAM efforts aimed at creating an effective sound-absorbing material made of metal fibers for high-temperature sound-absorbing structures of aviation gas turbine engines (SAS). Porous fibrous metal material (PFMM) is one of the most challenging materials for SAS. Their high level of the absorption properties, which are almost self-contained under stream sound pressure, can provide noise reduction within a wide frequency range of the sound vibrations. In addition to high acoustic efficiency of the sound absorbing materials for aircraft gas turbine engines they have to possess high heat and corrosion resistance, high strength with low specific weight. The results of VIAM studies show that with the help of the metal fibers it is possible to create the sound-absorbing material with the characteristics named above. Research is executed within implementation of the complex scientific direction 15.7. «Metal porous-fibrous materials for sound-proof struct
2. Migunov V.P., Lomberg B.S. Poristovoloknistye metallicheskie materialy dlya zvukopogloshhayushhih i uplotnitelnyh konstrukcij [Poristovoloknistye metal materials for sound-proof and sealing designs] / V kn.: 75 let. Aviacionnye materialy. Izbrannye trudy «VIAM» 1932–2007: yubilejnyj nauch.-tehnich. sb. M.: VIAM, 2007. S. 270–275.
3. Migunov V.P., Farafonov D.P., Degovets M.L. Poristovoloknistyj material sverhnizkoj plotnosti na osnove metallicheskih volokon [Porous fibrous material of ultralow density on the basis of metal fibers] // Aviacionnye materialy i tehnologii. 2012. №4. S. 38–41.
4. Farafonov D.P., Migunov V.P. Izgotovlenie poristovoloknistogo materiala sverhnizkoj plotnosti dlya zvukopogloshhajushhih konstrukcij aviacionnyh dvigatelej [Manufacturing of porous fibrous material of ultralow density for sound-proof designs of aircraft engines] // Aviacionnye materialy i tehnologii. 2013. №4. S. 26–30.
5. Sobolev A.F., Ushakov V.G., Filippova R.D. Zvukopogloshhayushhie konstrukcii gomogennogo tipa dlya kanalov aviacionnyh dvigatelej [Sound-proof designs of homogeneous type for channels of aircraft engines] // Akusticheskij zhurnal. 2009. T. 55. №6. S. 749–759.
6. Haleckij Yu.D. Effektivnost kombinirovannyh glushitelej shuma aviacionnyh dvigatelej [Efficiency of the combined silencers of noise of aircraft engines] //Akusticheskij zhurnal. 2012. T. 58. №4. S. 556–562.
7. Kablov E.N., Ospennikova O.G., Bazyleva O.A. Litejnye konstrukcionnye splavy na osnove alyuminida nikelya [Cast structural alloys on the basis of nickel aluminide] // Dvigatel. 2010. №4. S. 24–25.
8. Kablov E.N., Buntushkin V.P., Povarova K.B., Bazyleva O.A., Morozova G.I., Kazanskaya N.K. Malolegirovannye legkie zharoprochnye vysokotemperaturnye materialy na osnove intermetallida Ni3Al [The low-alloyed easy heat resisting high-temperature materials on the basis of Ni3Al intermetallic compound] // Metally. 1999. №1. S. 58–65.
9. Kablov E.N., Solntsev S.S., Rozenenkova V.A., Mironova N.A. Sovremennye polifunkcionalnye vysokotemperaturnye pokrytiya dlya nikelevyh splavov, uplotnitelnyh metallicheskih voloknistyh materialov i berillievyh splavov [Modern multifunctional high temperature coatings for nickel alloys, sealing metal fibrous materials and beryllium alloys] // Novosti materialovedeniya. Nauka i tehnika: elektron. nauch.-tehnich. zhurn. 2013. №1. St. 05. Available at: http://www.viam-works.ru (accessed: July 30, 2015).
10. Farafonov D.P., Degovets M.L., Serov M.M. Issledovanie svojstv i tehnologicheskih parametrov polucheniya metallicheskih volokon dlya istiraemyh uplotnitelnyh materialov aviacionnyh GTD [The investigation of the properties and technological parameters producing metallic fibers for abradable sealing materials of aircraft GTE] // Trudy VIAM : elektron. nauch.-tehnich. zhurn. 2014. №7. St. 02 Available at: http://viam-works.ru (accessed: July 30, 2015). DOI: 10.18577/2307-6046-2014-0-7-2-2.
11. Fei W., Kuiry S.C., Seal S. Inhibition of Metastable Alumina Formation on Fe–Cr–Al–Y Alloy Fibers at High Temperature Using Titania Coating // Oxidation of Metals. 2004. V. 62. №1–2.
P. 29–44.
12. Leprince G., Alperine S., Vandenbulke L., Walder A. New high temperature-resistant NiCrAl and NiCrAl+Hf felt materials // Materials Science and Engineering: A. 1989. V. 120–121. part 2.
P. 419–425.
13. Solntsev S.S., Rozenenkova V.A., Mironova N.A., Gavrilov S.V. SiC–Si3N4–SiO2 high temperature coatings for metal fibers sealing materials // Glass and ceramics. 2011. V. 68. №5–6. P. 194–196.
14. Solntsev S.S., Rozenenkova V.A., Mironova N.A., Gavrilov S.V. Vysokotemperaturnye tonkoplenochnye pokrytiya dlya uplotnitelnyh materialov iz metallicheskih volokon [High-temperature thin-film coverings for sealing materials from metal fibers] // Aviacionnye materialy i tehnologii. 2012. №1. S. 30–36.
15. Migunov V.P., Farafonov D.P., Degovets M.L., Stupina T.I. Uplotnitelnye materialy dlya protochnogo trakta GTD [Sealing materials for flowing path of GTE] // Aviacionnye materialy i tehnologii. 2012. №S. S. 94–97.
16. Migunov V.P., Farafonov D.P. Issledovanie osnovnyh ekspluatacionnyh svojstv novogo klassa uplotnitelnyh materialov dlya protochnogo trakta GTD [Research of the main operational properties of new class of sealing materials for flowing path of GTE] // Aviacionnye materialy i tehnologii. 2011. №3. S. 15–20.
Fatigue crack growth rate (FCGR) is a necessary component in the complex of mechanical properties characterizing reliability of materials for aviation engineering. Research of FCGR of heat-resistant titanium alloys VT8-1, VT41, VIT1 is conducted at room and working temperatures, two cycle ratios (0,1 and 0,5). It is established that parameters of Paris equation (C and n) for the studied heat-resistant titanium alloys are not independent and are approximated by the general direct line in «lgC–lgn» coordinates. Investigation is executed within implementation of the complex scientific direction 2.2. «Qualification and researches of materials» («The strategic directions of development of materials and technologies of their processing for the period till 2030»)
2. Kablov E.N. Sovremennye materialy – osnova innovacionnoj modernizacii Rossii [Modern materials – basis of innovative modernization of Russia] // Metally Evrazii. 2012. №3. S. 10–15
3. Antashev V.G., Nochovnaya N.A., Pavlova T.V., Ivanov V.I. Zharoprochnye titanovye splavy [Heat resisting titanium alloys] // Vse materialy. Enciklopedicheskij spravochnik. 2007. №3. S. 7–8.
4. Birger I.A., Balashov B.F., Dulnev R.A. i dr. Konstrukcionnaya prochnost materialov i detalej gazoturbinnyh dvigatelej [Constructional durability of materials and details of gas turbine engines]. M.: Mashinostroenie, 1981. 222 s.
5. Serensen S.V., Kogaev V.P., Shnejderovich R.M. Nesushhaya sposobnost i raschet detalej mashin na prochnost: rukovodstvo i spravochnoe posobie [Bearing capacity and calculation of details of machines on durability: management and handbook]. M.: Mashinostroenie, 1975. 488 s.
6. Nochovnaya N.A. Perspektivy i problemy primeneniya titanovyh splavov [Perspectives and problems of application of titanium alloys] / V sb. Aviacionnye materialy i tehnologii. M.: VIAM, 2007. Vyp. «Perspektivy razvitiya i primeneniya titanovyh splavov dlya samoletov, raket, dvigatelej i sudov». S. 4–8.
7. Horev A.I., Belov S.P., Glazunov S.G. Metallovedenie titana i ego splavov [Metallurgical science of titanium and its alloys]. M.: Mashinostroenie, 1992. 351 s.
8. Antashev V.G., Nochovnaya N.A. Sovremennoe sostoyanie i tendencii razvitiya issledovanij v oblasti titanovyh splavov [Current state and tendencies of development of researches in the field of titanium alloys] // Vse materialy. Enciklopedicheskij spravochnik. 2008. №3. S. 24–27.
9. Nochovnaya N.A., Ivanov V.I., Alekseev E.B., Kochetkov A.S. Puti optimizacii ekspluatacionnyh svojstv splavov na osnove intermetallidov titana [Ways of optimization of operational properties of alloys on the basis of titanium intermetallic compound] //Aviacionnye materialy i tehnologii. 2012. №S. S. 196–206.
10. Kashapov O.S., Novak A.V., Nochovnaya N.A., Pavlova T.V. Sostoyanie, problemy i perspektivy sozdaniya zharoprochnyh titanovyh splavov dlya detalej GTD [Condition, problems and perspectives of creation of heat resisting titanium alloys for GTE details] // Trudy VIAM: elektron. nauch. tehnich. zhurn. 2013. №3. St. 02. Available at: http://www.viam-works.ru (accessed: January 11, 2016).
11. Kablov E.N. Rossii nuzhny materialy novogo pokoleniya [Materials of new generation are necessary to Russia] // Redkie zemli. 2014. №3. S. 813.
12. Horev A.I. Fundamentalnye i prikladnye raboty po konstrukcionnym titanovym splavam i perspektivnye napravleniya ih razvitiya [Fundamental and applied works on structural titanium alloys and perspective directions of their development] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №2. St. 04. Available at: http://www.viam-works.ru (accessed: January 11, 2016).
13. Prohodtseva L.V., Erasov V.S., Lavrova O.Yu., Lavrov A.V. Vliyanie formy cikla na ustalostnye svojstva i mikrostroenie izlomov titanovogo splava VT3-1 [Influence of form of cycle on fatigue properties and microstructure of breaks of VT3-1 titanium alloy] //Aviacionnye materialy i tehnologii. 2012. №2. S. 54–58.
14. Gorbovets M.A., Belyaev M.S., Hodinev I.A. Vliyanie ekspluatacionnoj temperatury na skorost rosta treshhiny ustalosti v intermetallidnom titanovom splave [An influence of operating temperature on fatigue crack growth rate for intermetallic titanium alloy] // Aviacionnye materialy i tehnologii. 2013. №3. S. 13–15.
15. Prohodtseva L.V., Filonova E.V., Naprienko S.A., Moiseeva N.S. Issledovanie zakonomernostej razvitiya processov razrusheniya pri ciklicheskom nagruzhenii splava VT41 [Research of patterns of development of processes of destruction at cyclic loading of alloy VТ41] // Aviacionnye materialy i tehnologii. 2012. №S. S. 407–412.
16. Belyaev M.S., Gorbovets M.A., Kashapov O.S., Hodinev I.A. Skorost rosta treshhiny ustalosti v zharoprochnom titanovom splave VT41 [Growth rate of crack of fatigue in heat resisting BT41 titanium alloy] // Problemy bezopasnosti poletov. 2013. №8. S. 36–45.
17. Gorbovets M.A., Belyaev M.S., Hodinev I.A. Metodika ispytanij na skorost rosta treshhiny ustalosti novogo zharoprochnogo intermetallidnogo titanovogo splava [Technique of tests for the growth rate of crack of fatigue of new heat resisting intermetallidny titanium alloy] / V sb. materialov konf. «TestMat–2012». M.: VIAM, 2012 (CD-disk).
18. Potapov S.D., Perepelitsa D.D. Sposob obrabotki rezultatov ispytanij obrazcov na skorost rosta treshhiny pri postoyannoj amplitude nagruzheniya [Way of processing of test results of samples on crack growth rate with constant amplitude of loading] // Vestnik Moskovskogo aviacionnogo instituta. 2012. T. 19. №.6. S. 94–100.
19. Terentev V.F. Ciklicheskaya prochnost metallicheskih materialov: ucheb. posobie [Cyclic durability of metal materials: studies. grant]. Novosibirsk: NGTU, 2001. 61 s.
20. Paris P., Erdogan F. A critical analysis of crack propagation laws // Journal of Basic Engineering (Trans. ASME). 1963. №12. P. 528–534.
21. Golubovskij E.R., Volkov M.E., Emausskij N.M. Ocenka skorosti razvitiya treshhiny ustalosti v nikelevyh splavah dlya diskov GTD [Assessment of speed of development of crack of fatigue in nickel alloys for disks GTE] // Vestnik dvigatelestroeniya. 2013. №2. S. 229–235.
22. Korsunsky A.V., Dini D.D., Walsh M.J. Fatigue crack growth rate analysis in a titanium alloy // Key Engineering Materials Vols. 2008. V. 385–387. Р. 5–8.
23. Niccolls E.H. A correlation for fatigue crack growth rate // Scripta Metallurgica. 1976. V. 10. №4. P. 295–298.
24. Tanaka K., Matsuoka S. A tentative explanation for two parameters, C and m, in Paris equation of fatigue crack growth // Int. Journal of Fracture. 1977. V. 13. №5. P. 563–584.
25. Tumanov N.V. Kineticheskoe uravnenie ustojchivogo rosta treshhin malociklovoj ustalosti [Kinetic equation of strong growth of cracks of low-cyclic fatigue] // Vestnik SGAU. 2014. №5 (47). Ch. 1. S. 18–26.
26. Potapov S.D., Perepelica D.D. Issledovanie ciklicheskoj skorosti rosta treshhin v materialah osnovnyh detalej aviacionnyh GTD [Research of cyclic growth rate of cracks in materials of the main details of aviation GTE] // Tehnologiya legkih splavov. 2013. №2. S. 5–19.
27. Kumar V., Nagalaxmi G. Fatigue Crack Growth Behavior of a near α IMI-834 Titanium Alloy at Elevated Temperature // Engineering Fracture Mechanics. 2001. №68. Р. 129–147.
28. Boyce B.L., Ritchie R.O. Effect of load ratio and maximum stress intensity on the fatigue threshold in Ti–6Al–4V // Engineering Fracture Mechanics. 2001. V. 68. №.2. P. 129–147.
29. Oberwinkler B. Modeling the fatigue crack growth behavior of Ti–6Al–4V by considering grain size and stress ratio // Materials Science and Engineering A. 2011. V. 528. P. 5983–5992.
30. Sansoz F., Ghonem H. Effects of loading frequency on fatigue crack growth mechanisms in α/β Ti microstructure with large colony size // Materials Science and Engineering: A. 2003. V. 356. №1–2. P. 81–92
31. Bache M.R. A review of dwell sensitive fatigue in titanium alloys: the role of microstructure, texture and operating conditions // International Journal of Fatigue. 2003. №25 (9). P. 1079–1087.
Research of influence of structure and phase composition on the fatigue crack growth rate (FCGR) is conducted at room and working temperature for heat-resisting titanium alloys VIT1 with globular and lamellar-globular structure and alloy VТ41 with lamellar and globular-lamellar structure. Influence of phase composition and morphology of structural components on FCGR is established. Investigation is executed within implementation of the complex scientific direction 2.2. «Qualification and researches of materials» («The strategic directions of development of materials and technologies of their processing for the period till 2030»)
2. Kablov E.N. Sovremennye materialy – osnova innovacionnoj modernizacii Rossii [Modern materials – basis of innovative modernization of Russia] // Metally Evrazii. 2012. №3. S. 10–15
3. Kablov E.N. Aviakosmicheskoe materialovedenie [Aerospace materials science] // Vse materialy. Enciklopedicheskij spravochnik. 2008. №3. S. 2–14.
4. Prohodtseva L.V., Erasov V.S., Lavrova O.Yu., Lavrov A.V. Vliyanie formy cikla na ustalostnye svojstva i mikrostroenie izlomov titanovogo splava VT3-1 [Influence of form of cycle on fatigue properties and microstructure of breaks of VT3-1 titanium alloy] //Aviacionnye materialy i tehnologii. 2012. №2. S. 54–58.
5. Tumanov N.V., Porter A.M., Lavrenteva M.A., Cherkasova S.A. i dr. Mnogomasshtabnaya kompleksnaya fraktodiagnostika razrusheniya diskov kompressora aviadvigatelej [Multilarge-scale complex fraktodiagnostika destructions of disks of the compressor of aircraft engines] // Vestnik SGAU. 2010. №4. S. 98–111.
6. Sklyarov N.M. Rabotosposobnost kak kriterij kachestva konstrukcionnyh aviacionnyh materialov [Working capacity as criterion of quality of constructional aviation materials] / V sb. Aviacionnye materialy na rubezhe HH–HHI vekov: nauch.-tehnich. sb. M.: VIAM, 1994. S. 576–583.
7. Terentev V.F. Ustalost metallicheskih materialov [Fatigue of metal materials]. M.: Nauka, 2003. S. 141–149.
8. Oberwinkler B. Modeling the fatigue crack growth behavior of Ti–6Al–4V by considering grain size and stress ratio // Materials Science and Engineering A. 2011. V. 528. P. 5983–5992.
9. Robinson J.L., Beevers C.J. The effects of load ratio, interstitial content, and grain size on low-stress fatigue-crack propagation in α-titanium // Metal Sience Journal. 1973. V. 7. P. 153–159.
10. Kumpfert J. Intermetallic alloys based on orthorhombic titanium aluminide // Advanced Engineering Materials. 2001. V. 3. №11. Р. 851–864.
11. Nochovnaya N.A., Ivanov V.I., Alekseev E.B., Kochetkov A.S. Puti optimizacii ekspluatacionnyh svojstv splavov na osnove intermetallidov titana [Ways of optimization of operational properties of alloys on the basis of titanium intermetallic compound] //Aviacionnye materialy i tehnologii. 2012. №S. S. 196–206.
12. Lutjering S. Effect microstructure on the tensile and fatigue behavior of Ti–22Al–25Nb in air and vacuum. OH, USA, University of Daiton, 1998. 185 p.
13. Singh V., Singh N., Sai Srinadh K. Role of Ti3Al silicides on tensile properties of Timetal 834 at various temperatures // Bull. Mater. Sci. 2007. V. 30. №6. Р. 596–600.
14. Kashapov O.S., Pavlova T.V. Issledovanie vliyaniya parametrov struktury polufabrikatov iz splava VT41 na mehanicheskie svojstva [Research of influence of parameters of structure of semi-finished products from alloy ВТ41 on mechanical properties] // Vestnik MGTU im. N.Je. Baumana. Ser. «Mashinostroenie». 2015. №2. S. 138–145
15. Nochovnaya N.A., Ivanov V.I. Intermetallidy na osnove titana (analiz sostoyaniya voprosa) [Nochovny N.A., Ivanov V. I. Intermetallic compound on the basis of titanium (the analysis of condition of question)] // Titan. 2007. №1. S. 44–48.
16. Gorbovets M.A., Belyaev M.S., Hodinev I.A. Vliyanie ekspluatacionnoj temperatury na skorost rosta treshhiny ustalosti v intermetallidnom titanovom splave [An influence of operating temperature on fatigue crack growth rate for intermetallic titanium alloy] // Aviacionnye materialy i tehnologii. 2013. №3. S. 13–15.
17. Gorbovec M.A., Belyaev M.S., Ivanov V.I., Hodinev I.A. Skorost rosta treshhiny ustalosti v zharoprochnom intermetallidnom titanovom splave VIT1 v zavisimosti ot struktury [Growth rate of crack of fatigue in heat resisting intermetallidny VIT1 titanium alloy depending on structure] // Oboronnyj kompleks – nauchno-tehnicheskomu progressu Rossii. 2014. №4 (124). S. 52–57.
18. Kashapov O.S., Pavlova T.V., Istrakova A.R., Kalashnikov V.S. Povyshenie prochnostnyh harakteristik zharoprochnyh psevdo-α-titanovyh splavov [Strengthening of high-temperature near-α-titanium alloys] // Aviacionnye materialy i tehnologii. 2014. №S5. S. 73–80.
19. Popov A.A., Rossina N.G., Popova M.A., Volkov A.V. Processy uporyadocheniya v zharoprochnyh titanovyh splavah [Streamlining processes in heat resisting titanium alloys] // Titan. 2011. №1. S. 36–42.
The article deals with the principle of directional solidification, the main parameters of the process having decisive influence on the morphological features of the structure of the emerging casting. The installations of directional solidification used in aircraft factories are considered. The reasons of the necessity of complete automation of the technological process in foundry are explained. The principle of automation of the technological process of single-crystal casting on units UVNK-type simplifying work of operator and ensuring the reproducibility of the process, in which the «human factor» in the foundry industry would be minimized is shown. Work is executed within implementation of the complex scientific direction 9.5. «The directional solidification (with variable controlled gradient) of superalloys» («The strategic directions of development of materials and technologies of their processing for the period till 2030»)
2. Kablov E.N., Tolorajya V.N., Demonis I.M., Orehov N.G. Napravlennaya kristallizaciya zharoprochnyh nikelevyh splavov [The directed crystallization of heat resisting nickel alloys] // Tehnologiya legkih splavov. 2007. №2. S. 60–70.
3. Kablov E.N., Bondarenko Yu.A., Echin A.B., Surova V.A. Razvitie processa napravlennoj kristallizacii lopatok GTD iz zharoprochnyh splavov s monokristallicheskoj i kompozicionnoj strukturoj [Development of process of the directed crystallization of blades of GTE from hot strength alloys with single-crystal and composition structure] // Aviacionnye materialy i tehnologii. 2012. №1. S. 3–8.
4. Kablov E.N., Tolorajya V.N. VIAM – osnovopolozhnik otechestvennoj tehnologii litya monokristallicheskih turbinnyh lopatok GTD i GTU [VIAM – the founder of domestic casting technology of single-crystal turbine blades of GTE and GTU] // Aviacionnye materialy i tehnologii. 2012. №S. S. 105–117.
5. Kablov E.N., Gerasimov V.V., Visik E.M., Demonis I.M. Rol napravlennoj kristallizatsii v resursosberegayushchej tehnologii proizvodstva detalej GTD [Role of the directed crystallization in the resource-saving production technology of details of GTE] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №3. St. 01. Available at: http://www.viam-works.ru (accessed: July 06, 2015).
6. Gerasimov V.V., Visik E.M., Nikitin V.A., Zernova M.G. Opyt osvoeniya tehnologii litya sektorov soplovyh lopatok s monokristallicheskoj strukturoj iz splava VKNA-4U [Experience of development of casting technology of sectors of nozzle blades with single-crystal structure from alloy VKNA-4U] // Aviacionnye materialy i tehnologii. 2012. №4. S. 13–18.
7. Gerasimov V.V., Kolyadov E.V. Tehnicheskie harakteristiki i tehnologicheskie vozmozhnosti ustanovok UVNK-9A i VIP-NK dlya polucheniya monokristallicheskih otlivok iz zharoprochnyh splavov [Technical characteristics and technological capabilities of the UVNK-9A installations and VIP-Oil Company for receiving single-crystal otlivka from hot strength alloys] // Litejshhik Rossii. 2012. №11. S. 33–38.
8. Gerasimov V.V., Visik E.M. Tehnologicheskij aspekty lit'ya detalej goryachego trakta GTD iz intermetallidnyh nikelevyh splavov tipa VKNA s monokristallicheskoj strukturoj [Technological aspects of molding of details of hot path of GTD from intermetallidny nickel alloys of VKNA type with single-crystal structure] // Litejshhik Rossii. 2012. №2. S. 19–23.
9. Bondarenko Yu.A., Echin A.B., Surova V.A., Narskij A.R. Vliyanie uslovij napravlennoj kristallizacii na strukturu detalej tipa lopatki GTD [Influence of conditions of the directed crystallization on structure of details like GTD blade] // Litejnoe proizvodstvo. 2012. №7. S. 14–16.
10. Bondarenko Yu.A., Bazyleva O.A., Echin A.B., Surova V.A., Narskij A.R. Vysokogradientnaya napravlennaya kristallizaciya detalej iz splava VKNA-1V [Высокоградиентная направленная кристаллизация деталей из сплава ВКНА-1В] // Litejnoe proizvodstvo. 2012. №6. S. 12–16.
11. Bondarenko Yu.A., Echin A.B., Surova V.A., Narskij A.R. O napravlennoj kristallizacii zharoprochnyh splavov s ispolzovaniem ohladitelya [About the directed crystallization of hot strength alloys with cooler use] // Litejnoe proizvodstvo. 2011. №5. S. 36–39.
12. Kolyadov E.V., Gerasimov V.V. Vliyanie privedennogo razmera otlivki na osevoj gradient temperatury i makrostrukturu otlivok pri napravlennoj kristallizacii na ustanovke UVNK-15 [The influence of the reduced size of the casting on the axial temperature gradient and the macrostructure of casting for directional solidification at the facility UVNK-15] // Aviacionnye materialy i tehnologii. 2014. №3. S. 3–9.
13. Kolyadov E.V., Gerasimov V.V., Visik E.M. O specificheskih defektah otlivok posle napravlennoj kristallizacii [About specific defects of otlivka after the directed crystallization] // Litejnoe proizvodstvo. 2015. №7. S. 11–13.
14. Kolyadov E.V., Gerasimov V.V., Visik E.M. Vliyanie osevogo i radialnogo gradientov temperatury na fronte kristallizacii na makro- i mikrostrukturu splava ZhS32 [Influence of axial and radial temperature gradients at the front crystallization on macro- and microstructure of alloy ZhS32] // Litejnoe proizvodstvo. 2014. №6. S. 28–31.
15. Bondarenko Yu.A., Kablov E.N. Napravlennaya kristallizaciya zharoprochnyh splavov s povyshennym temperaturnym gradientom [The directed crystallization of hot strength alloys with the raised temperature gradient] // MiTOM. 2002. №7. S. 20–23.
16. Kablov E.N., Spivakov D.D., Gric V.V., Demonis I.M., Gerasimov V.V. Kompyuternaya sistema upravleniya tehnologicheskimi processami vyplavki splavov i litya monokristallicheskih lopatok GTD [Computer control system for technological smelting processes of alloys and molding of single-crystal blades of GTD] / V sb. Aviacionnye materialy i tehnologii. M.: VIAM, 2004. Vyp. «Vysokorenievye zharoprochnye splavy, tehnologiya i oborudovanie dlya proizvodstva splavov i lit'ya monokristallicheskih turbinnyh lopatok». S. 132–137.
Research on selection of sample preparation conditions for various beryllium-bearing aviation materials and selection of analytical lines for different ranges of Be content in these materials was carried out. The measurement technique of the mass fraction of beryllium in aviation materials by atomic emission spectrometry with inductively coupled plasma (ICP-AES) in combination with microwave sample preparation was developed. The technique allows determining both high (more than 2,5% wt.) and low (0,0001% wt.) concentrations of beryllium. It has been shown that ICP-AES technique is less long and labour-intensive and safer as compared with gravimetry technique. Work is executed within implementation of the complex scientific direction 8.6. «Elinvar, wear-resistant alloys and high-strength beryllium-bearing steels for devices and units» («The strategic directions of development of materials and technologies of their processing for the period till 2030»)
2. Kablov E.N. Materialy dlya izdeliya «Buran» – innovacionnye resheniya formirovaniya shestogo tehnologicheskogo uklada [Materials for «Buran» spaceship – innovative solutions of formation of the sixth technological mode] //Aviacionnye materialy i tehnologii. 2013. №S1. S. 3–9.
3. Fridlyander I.N., Yatsenko K.P. Berillievye splavy – perspektivnoe napravlenie aerokosmicheskogo materialovedeniya [Beryllium alloys – the perspective direction of space materials science] // Aviacionnye materialy i tehnologii. 2000. №4. S. 6–13.
4. Kaskov V.S. Berillij i materialy na ego osnove [Beryllium and materials on its basis] // Aviacionnye materialy i tehnologii. 2012. №S. S. 222–226.
5. Kablov E.N., Solncev S.S., Rozenenkova V.A., Mironova N.A. Kompozicionnye steklometallicheskie pokrytiya dlya zashhity berilliya pri vysokih temperaturah [Composition steklometallichesky coverings for protection of beryllium at high temperatures] // Steklo i keramika. 2012. №4. S. 12–15.
6. Rozenenkova V.A., Solntsev St.S., Mironova N.A. Kompleksnaya zashhita berillievyh splavov ot okisleniya i sublimacii toksichnyh parov berilliya [Complex protection of beryllium alloys against oxidation and sublimation of toxic vapors of beryllium] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №5. St. 03. Available at: http://www.viam-works.ru (accessed: June 19, 2015).
7. Tuzov Yu.V., Markushkin Yu.E. Berillij – sostoyanie, vozmozhnosti i perspektivy primeneniya v termoyadernoj tehnike [Beryllium – condition, opportunities and application perspectives in thermonuclear equipment] // Voprosy atomnoj nauki i tehniki. Ser.: Termoyadernyj sintez. 2011. №2. S. 21–27.
8. Papirov I.I., Tihinskij G.F. Fizicheskoe metallovedenie berilliya [Physical metallurgical science of beryllium]. M.: Atomizdat, 1968. 452 s.
9. Papirov I.I. Berillij v splavah: spravochnik [Beryllium in alloys: directory]. M.: Energoatomizdat, 1986. S. 3–4.
10. Kaskov V.S. Berillij – konstrukcionnyj material dlya mnogorazovoj kosmicheskoj sistemy [Beryllium – constructional material for reusable space system] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №3. St. 03. Available at: http://www.viam-works.ru (accessed: June 19, 2015).
11. Fokanov A.N., Podurazhnaya V.F., Tebyakin A.V., Kaskov V.S. Izgotovlenie folgi iz tehnicheskogo spechennogo berilliya povyshennoj chistoty [Foil manufacturing from the technical sintered beryllium of higher purity] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №6. St. 03. Available at: http://www.viam-works.ru (accessed: June 19, 2015). DOI: 10.18577/2307-6046-2015-0-6-3-3.
12. Fokanov A.N., Kaskov V.S., Podurazhnaya V.F. Pajka berilliya so splavom monel pri izgotovlenii rentgenovskih okon [Beryllium brazing with monel alloy in production x-ray windows] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №8. St. 02. Available at: http://www.viam-works.ru (accessed: June 19, 2015). DOI: 10.18577/2307-6046-2014-0-8-2-2.
13. GOST 10994–74 «Splavy precizionnye. Marki» [State standard 10994–74 «Alloys precision. Brands»]. Kaluga: Kaluzhskaya tipografiya standartov, 2004. 18 s.
14. Shcherbakov A.I., Mosolov A.N., Kalitsev V.A. Vosstanovlenie tehnologii polucheniya berillijsoderzhashhej stali VNS-32-VI [Recovery of technology for the beryllium-containing steel VNS-32-VI obtaining] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №5. St. 01. Available at: http://www.viam-works.ru (accessed: June 19, 2015). DOI: 10.18577/2307-6046-2014-0-5-1-1.
15. Fridlyander I.N., Bratuhin A.G., Gorbunov P.Z., Gal V.V., Yatsenko K.P., Fokanov A.N. Al-Be-splavy – metallicheskie kompozicionnye materialy shirokogo naznacheniya [Al-Be-alloys – multipurpose metal composite materials] // MiTOM. 1996. №9. S. 23–26.
16. GOST 11739.3–82 «Splavy alyuminievye litejnye i deformiruemye. Metody opredeleniya berilliya» [State standard 11739.3–82 «Alloys aluminum foundry and deformable. Methods of definition of beryllium»]. M.: Izdatelstvo standartov, 1989. 10 s.
17. GOST 15027.13–77 «Bronzy bezolovyannye. Metody opredeleniya berilliya» [State standard 11739.3–82 «Bronze without the tin. Methods of definition of beryllium»]. M.: Izdatelstvo standartov, 2002. 4 s.
18. GOST 23687.1–79 «Ligatura medno-berillievaya. Metody opredeleniya berilliya» [State standard 11739.3–82 «Ligature copper-beryllium. Methods of definition of beryllium»]. M.: Izdatelstvo standartov, 1979. 7 s.
19. Sanitarnye pravila pri rabote s berilliem i ego soedineniyami: Sanitarnye pravila №393–72: utv. glavnym sanitarnym vrachom SSSR P.N. Burgasovym 16.11.1972 [Health regulations at work with beryllium and its connections: Health regulations No. 393-72: approved by Chief Health Officer of the USSR P.N. Burgasov 11/16/1972]. M., 1973. 5 s.
20. Pupyshev A.A., Danilova D.A. Ispolzovanie atomno-emissionnoj spektrometrii s induktivno-svyazannoj plazmoj dlya analiza materialov i produktov chernoj metallurgii [Use of nuclear and emission spectrometry with the inductive and connected plasma for the analysis of materials and products of ferrous metallurgy] // Analitika i kontrol. 2007. T. 11. №2–3. S. 131–181.
21. Evdokimova O.V., Majorova A.V., Pechishheva N.V., Karachevcev F.N., Shunyaev K.Yu. Teoreticheskij vybor vnutrennego standarta pri ISP-AES opredelenii legiruyushhih komponentov zharoprochnyh nikelevyh splavov [Theoretical choice of internal standard at the ISP-nuclear power plant definition of alloying components of heat resisting nickel alloys ] // Novosti materialovedeniya. Nauka i tehnika: elektron. nauch.-tehnich. zhurn. 2014. №2. St. 05. Available at: http://www.materialsnews.ru (accessed: June 19, 2015).
22. Adryshev A.K., Sokolov V.M., Samojlov V.I. Ohrana truda pri proizvodstve i ispolzovanii berilliya i ego soedinenij [Labor protection by production and use of beryllium and its connections] // Vestnik Rossijskogo universiteta druzhby narodov. Ser. «Inzhenernye issledovaniya». 2007. №3. S. 104–110.
23. Tyutyunnik O.A., Gecina M.L., Toropchenova E.S., Kubrakova I.V. Mikrovolnovaya probopodgotovka prirodnyh obektov k atomno-absorbcionnomu opredeleniyu rtuti i drugih toksichnyh elementov [Microwave preparation of tests of natural objects for nuclear absorbing definition of mercury and other toxic elements] // Zhurnal analiticheskoj himii. 2013. T. 68. №5. S. 420.
24. Novoselova A.V., Batsanova L.R. Analiticheskaya himiya berilliya [Analytical chemistry of beryllium]. M.: Nauka, 1966. S. 50–59.
25. Berillijsoderzhashhie produkty. Metody opredeleniya soderzhaniya berilliya: OST 95.442–76: utv. zamestitelem rukovoditelya organizacii p/ya V-2688 [Beryllium containing products. Methods of definition of the content of beryllium: OST 95.442–76: approved by Deputy Head of the organization of p.ya. V-2688]. M., 1976.
26. Vasilev V. P. Analiticheskaya himiya. V 2-h ch. [Analytical chemistry. In 2 parts]. M.: Vysshaya shkola, 1989. Ch. 1. Gravimetricheskij i titrimetricheskij metody analiza. 320 s.
27. Vernidub O.D., Lomakina G.E. Analiz materialov chernoj metallurgii atomno-jemissionnym s ISP metodom s primeneniem MAES [The analysis of materials of ferrous metallurgy by nuclear and emission method with ISP using MAES] // Zavodskaya laboratoriya. Diagnostika materialov. 2007. T. 73. №S. S. 54–57.
28. Pupyshev A.A., Danilova D.A. Ispolzovanie atomno-emissionnoj spektrometrii s induktivno-svyazannoj plazmoj dlya analiza materialov i produktov chernoj metallurgii [Use of nuclear and emission spectrometry with the inductive and connected plasma for the analysis of materials and products of ferrous metallurgy] // Analitika i kontrol. 2007. T. 11. №2–3. S. 131–181.
29. Letov A.F., Karachevtsev F.N., Gundobin N.V., Titov V.I. Razrabotka standartnyh obrazcov sostava splavov aviacionnogo naznacheniya [Development of standard samples of structure of alloys of aviation assignment] // Aviacionnye materialy i tehnologii. 2012. №S. S. 393–398.
A set of experimental samples of fibrous composite material (CM) was fabricated by hot pressing of niobium powder and continuous single-crystal fibers α-Al2O3 with TiN or Mo coatings and without them. The investigation of interactions on phase-to-phase borders in the CM has shown, that molybdenum diffusion-barrier coating, in comparison with TiN coating, is more effective as corrosion protection of single-crystal fibers α-Al2O3 at higher (>1300°С) temperatures and more use time. It has been found that the high-temperature bending strength at 1300°C of the initial CM reinforced by fibers without coating 2,2 times higher than for the pure (Nb) matrix; for the CM reinforced by fibers with TiN coating this value is 1,8 times higher. The strength of the material reinforced by TiN-coated fibers increases after heat aging and exceeds the strength of matrix 2,4 times. High-temperature strength of the initial CM with Mo-coated fibers and after heat aging are about similar and exceeds the stren
2. Kablov E.N. Tendencii i orientiry innovacionnogo razvitiya Rossii: sb. nauch.-informacionnyh materialov [Tendencies and reference points of innovative development of Russia: Saturday. nauch. - information materials]. M.: VIAM, 2015. 720 s.
3. Kablov E.N., Svetlov I.L., Efimochkin I.Yu. Vysokotemperaturnye Nb–Si-kompozity [High-temperature Nb-Si-composites] // Vestnik MGTU im. N.E. Baumana. Ser. «Mashinostroenie». 2011. №SP2. S. 164–173.
4. Kablov E.N., Shhetanov B.V., Ivahnenko Yu.A., Balinova Yu.A. Perspektivnye armiruyushhie vysokotemperaturnye volokna dlya metallicheskih i keramicheskih kompozicionnyh materialov [Perspective reinforcing high-temperature fibers for metal and ceramic composite materials] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №2. St. 05. Available at: http://www.viam-works.ru (accessed: September 07, 2015).
5. Kablov E.N., Muboyadzhyan S.A. Zharostojkie i teplozashhitnye pokrytiya dlya lopatok turbiny vysokogo davleniya perspektivnyh GTD [Heat resisting and heat-protective coverings for turbine blades of high pressure of perspective GTE] //Aviacionnye materialy i tehnologii. 2012. №S. S. 60–70.
6. Menon E.S.K., Mendiratta M.G., Dimiduk D.M. Oxidation of complex niobium based alloys / In: International Symposium Niobium; Science & technology. Orlando. December 2–5. 2001. P. 121–146.
7. Weiping Hu, Hao Chen, Yonlong Zhong, Jia Song, Gottstein G. Investigations оn NiAl composites fabricated by matrix coated single crystalline Al2O3-fibers with and without hBN interlayer // Mater. Sci. China. 2008. №2 (2). P. 182–193.
8. Shhetanov B.V., Stryukov D.O., Kolyshev S.G., Murasheva V.V. Monokristallicheskie volokna oksida alyuminiya: poluchenie, struktura, svojstva [Single-crystal fibers of aluminum oxide: receiving, structure, properties] // Vse materialy. Enciklopedicheskij spravochnik. 2014. №4. S. 14–18.
9. Shhetanov B.V., Efimochkin I.Yu., Kuptsov R.S., Svistunov V.I. Issledovanie kompozicionnogo materiala na osnove Nb, armirovannogo monokristallicheskimi voloknami α-Al2O3 s barernym pokrytiem TiN i bez nego [Research of composite material on the basis of Nb reinforced by single-crystal fibers α-Al2O3 with barrier coating of TiN and without it] // Tehnologiya mashinostroeniya (v pechati).
10. Shhetanov B.V., Grashhenkov D.V., Efimochkin I.Yu., Shheglova T.M. Monokristallicheskie volokna oksida alyuminiya dlya vysokotemperaturnyh (do 1400°C) kompozicionnyh materialov [Single-crystal fibers of aluminum oxide for high-temperature (to 1400°С) composite materials] // Tehnologiya mashinostroeniya. 2014. №10 (148). S. 5–9.
11. Shchetanov B.V., Efimochkin I.Yu., Paegle S.V., Karachevcev F.N. Issledovanie vysokotemperaturnoj prochnosti «in-situ»-kompozitov na osnove Nb, armirovannyh monokristallicheskimi voloknami α-Al2O3 [Research of high-temperature durability of "in-situ" - composites on the basis of Nb reinforced by single-crystal fibers α-Al2O3] // Aviacionnye materialy i tehnologii. 2016 (v pechati).
12. Grashhenkov D.V., Shhetanov B.V., Efimochkin I.Yu. Razvitie poroshkovoj metallurgii zharoprochnyh materialov. Ch. 1 [Development of powder metallurgy of heat resisting materials. Part1] // Vse materialy. Enciklopedicheskij spravochnik. 2011. №5. S. 13–26.
13. Grashhenkov D.V., Shhetanov B.V., Efimochkin I.Yu. Razvitie poroshkovoj metallurgii zharoprochnyh materialov. Ch. 2 [Development of powder metallurgy of heat resisting materials. Part 2] // Vse materialy. Enciklopedicheskij spravochnik. 2011. №6. S. 10–22.
14. Basargin O.V., Kolyshev S.G., Shchetanov B.V., Shcheglova T.M. Osobennosti vysokotemperaturnyh ispytanij pri izgibe obrazcov kompozicionnogo materiala s matricej na osnove Nb [Some features of high-temperature bend tests of Nb-based CM specimens] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №5. St. 11. Available at: http://www.viam-works.ru (accessed: September 07, 2015). DOI: 10.18577/2307-6046-2015-0-5-11-11.
15. Samsonov G.V., Vinickij I.M. Tugoplavkie soedineniya: spravochnik. 2-e izd [High-melting connections: directory. 2nd ed.]. M.: Metallurgiya, 1976. 516 s.
16. Marmer E.N., Gurvich O.S., Maltseva L.F. Vysokotemperaturnye materialy [High-temperature materials]. M.: Metallurgiya, 1967. 215 s.
17. Bowman R.R., Misra A.K., Arnold S.M. Processing and Mechanical Properties of Al2O3 Fibwe-Reinforced NiAl Composites // Metallurgical and Materials Transactions. 1995. V. 26A. P. 615–628.
Stationary potentials of pyrolytic chromecarbide coating (PCCC), deposited on samples of various structural materials, like steel 30HGSA, titanium alloy VT6 and aluminum alloy D16ch.-T have been measured in 3% aqueous NaCl solution. Thickness of chromecarbide coatings ranged from 6 to 30 μm. In order to eliminate the influence of substrate on formation of stationary potential the PCCC was deposited on glass samples. The potential steady-stated in 72 hours was taken as stationary. Additionally to coated samples the initial samples of selected structural alloys were studied. Research has shown that PCCC is a cathode coating and the value of its stationary potential is +285 mV. Stationary potentials of the used structural materials have negative values, which range from -110 to -730 mV. Analysis of experimental data showed that the decrease in thickness of coating leads to a shift of the value of stationary potential to negative range, i. e. at small coating thicknesses substrate through
2. Kablov E.N. Aviacionnoe materialovedenie v XXI veke. Perspektivy i zadachi [Aviation materials science in the XXI century. Perspectives and tasks] / V kn. Aviacionnye materialy. Izbrannye trudy «VIAM» 1932–2002: yubilejnyj nauch.-tehnich. sb. M.: MISIS–VIAM, 2002. S. 23–47.
3. Kablov E.N., Startsev O.V., Medvedev I.M. Obzor zarubezhnogo opyta issledovanij korrozii i sredstv zashhity ot korrozii [Review of international experience on corrosion and corrosion protection] // Aviacionnye materialy i tehnologii. 2015. №2 (35). S. 76–87.
4. Kablov E.N. Himiya v aviacionnom materialovedenii [Chemistry in aviation materials science] // Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 3–4.
5. Gribov B.G., Domrachev G.A., Zhuk B.V. Osazhdenie plenok i pokrytij razlozheniem metalloorganicheskih soedinenij [Sedimentation of films and coverings decomposition of organometallic compounds]. M.: Nauka, 1981. 324 c.
6. Kostenkov V.A., Krasheninnikov V.N., Shhennikov V.I. i dr. Vliyanie mehanicheskih svojstv metalla podlozhki na formirovanie piroliticheskih hromovyh pokrytij [Influence of mechanical properties of metal of substrate on forming of pyrolitic chrome platings] // Fizika i himiya obrabotki materialov. 1979. Vyp. 2. S. 109–113.
7. Panarin A.V. Piroliticheskie karbidohromovye pokrytiya. Tehnologiya polucheniya i svojstva [Pyrolitic carbide chrome platings. Technology of receiving and property] // Aviacionnye materialy i tehnologii. 2011. №4. S. 14–18.
8. Koshelev V.N., Semenychev V.V., Panarin A.V. Ekologicheski bezopasnyj tehnologicheskij process naneseniya zashhitnyh piroliticheskih alyuminievyh pokrytij bez navodorozhivaniya stalnoj podlozhki [Ecologically safe technological process of drawing protective pyrolitic aluminum coverings without hydrogen saturation of steel substrate] // Izvestiya Samarskogo nauchnogo centra RAN. 2008. T. 1. Specialnyj vypusk. S. 18–23.
9. Sokolov V.F., Yurchenko A.D., Arzhannikova E.V., Shipigina L.S. Zashhitnoe piroliticheskoe hromovoe pokrytie. Tehnologiya, svojstva, primenenie: Obzor [Protective pyrolitic chrome plating. Technology, properties, application: review]. M.: CNIIatominform, 1989. 72 c.
10. Gafurov I.I., Panarin A.V. Piroliticheskoe hromirovanie kak sposob uprochnyayushhej obrabotki litejnyh alyuminievyh splavov s vysokim soderzhaniem kremniya [Pyrolitic chromizing as way of strengthening processing of cast aluminum alloys with the high silicon content] // Izvestiya Samarskogo nauchnogo centra RAN. 2015. T. 16. №6 (2). S. 412–415.
11. Semenychev V.V., Salahova R.K., Smirnova T.B. Ocenka tokov korrozii razlichnyh par materialov metodom pryamogo izmereniya [Assessment of currents of corrosion of different couples of materials method of direct measurement] // Praktika protivokorrozionnoj zashhity. 2015. №2 (76). S. 44–50.
12. Vulf B.K., Romadin K.P. Aviacionnoe materialovedenie [Aviation materials science]. M.: Mashinostroenie, 1967. 394 c.
13. Tupicyn G.I., Mhitaryan L.S. Issledovanie zashhitnyh svojstv metallicheskih pokrytij [Research of protective properties of metallic coatings]. M.: Oborongiz, 1957. S. 145–183.
14. Kostrzhickij A.I., Karpov V.F., Kabanchenko M.P. i dr. Spravochnik operatora ustanovok po naneseniyu pokrytij v vakuume [The directory of the operator of installations on drawing coverings in vacuum]. M.: Mashinostroenie, 1991. 176 c.
15. Semenychev V.V., Smirnova T.B. O vozmozhnosti ocenki poristosti pokrytij potenciostaticheskimi metodami [About possibility of assessment of porosity of coverings potentsiostatichesky methods] // Aviacionnye materialy i tehnologii. 2009. №2. S. 7–10.
The overview on application of different substances for decrease in combustibility of polymeric materials is provided. Results of researches on development of binding, not sustaining combustion of CFRP are provided. Results of researches on development and optimization of manufacture modes of CFRP samples of different thickness are provided. Researches of electrophysical, thermo - and physicomechanical characteristics of samples of CFRP are conducted. Work is executed within implementation of the complex scientific direction 13.1. «Binding for polymeric and composite materials of structural and special purpose» («The strategic directions of development of materials and technologies of their processing for the period till 2030»)
2. Gunyaev G.M., Kablov E.N. Konstrukcionnye ugleplastiki na rubezhe vekov [Constructional plastics coal at turn of centuries] / V kn. Aviacionnye materialy. Izbrannye trudy «VIAM» 1932–2002: yubilejnyj nauch.-tehnich. sb. M.: MISIS–VIAM, 2002. S. 242–247.
3. Kablov E.N. Rossii nuzhny materialy novogo pokoleniya [Materials of new generation are necessary to Russia] // Redkie zemli. 2014. №3. S. 8–13.
4. Plyudeman E. Poverhnosti razdela v polimernyh kompozitah [Interfaces in polymeric composites]. M.: Mir. Kompozicionnye materialy, 1978. T. 6. 296 s.
5. Bobylev V.A. Otverditeli jepoksidnyh smol [Hardeners of epoxies] // Kompozitnyj mir. 2006. №4. S. 20–24.
6. Gunyaev G.M., Kablov E.N., Aleksashin V.M. Modificirovanie konstrukcionnyh ugleplastikov uglerodnymi nanochasticami [Modifying constructional coal of plastics carbon nanoparticles] // Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 5–11.
7. Barbotko S.L. Pozharobezopasnost aviacionnyh materialov [Fire safety of aviation materials] // Aviacionnye materialy i tehnologii. 2012. №S. S. 431–439.
8. Kopylov V.V., Novikov S.N. Polimernye materialy ponizhennoj goryuchesti [Polymeric materials of the lowered combustibility]. M.: Himiya, 1986. 224 s.
9. Kodolov V.I. Goryuchest i ognestojkost polimernyh materialov [Combustibility and fire resistance of polymeric materials]. M.: Himiya, 1976. 160 s.
10. Mihajlin Yu.A. Teplo-, termo- i ognestojkost polimernyh materialov [Warm, thermo- and fire resistance of polymeric materials]. SPb.: NOT, 2011. 416 s.
11. Sposob polucheniya ognestojkogo svyazuyushhego dlya sozdavaemyh v pultruzionnom tehnologicheskom processe kompozicionnyh materialov, ognestojkoe svyazuyushhee i izdelie: pat. 2420542 Ros. Federaciya [Way of receiving fire-resistant binding for composite materials created in pultruzics technological process, fire-resistant binding and product: pat. 2420542 Rus. Federation]; opubl. 10.11.10.
12. Kodolov V.I. Zamedliteli goreniya polimernyh materialov [Decelerators of burning of polymeric materials]. M.: Himiya, 1980. 274 s.
13. Zheleznyak V.G., Chursova L.V. Modifikaciya svyazujushhih i matric na ih osnove s celyu povysheniya vyazkosti razrusheniya [Modification of binders and matrixes based on them to increase fracture toughness] // Aviacionnye materialy i tehnologii. 2014. №1. S. 47–50.
14. Fedoseev M.S., Devyaterikov D.M., Sheludyakov V.D. Sintez i svojstva polimerov, poluchennyh pri otverzhdenii epoksidnyh oligomerov razlichnoj funkcionalnosti metilendikovym angidridom [Synthesis and properties of the polymers received at curing of epoxy oligomers of different functionality marked endikov anhydride] // Himicheskaya tehnologiya. 2013. T. 14. №12. S. 739–744.
15. Muhametov R.R., Ahmadieva K.R., Chursova L.V., Kogan D.I. Novye polimernye svyazujushhie dlya perspektivnyh metodov izgotovleniya konstrukcionnyh voloknistyh PKM [New polymeric binding for perspective methods of manufacturing of constructional fibrous PCM] //Aviacionnye materialy i tehnologii. 2011. №2. S. 38–42.
16. Moshinskij L.M. Epoksidnye smoly i otverditeli [Epoxies and hardeners]. Tel-Aviv: Arkadiya press LTD, 1995. 370 s.
17. Aleksashin V.M., Antyufeeva N.V. Razvitie metodov termicheskogo analiza v issledovaniyah polimernyh kompozicionnyh materialov [Development of methods of the thermal analysis in researches of polymeric composite materials] / V kn. 75 let. Aviacionnye materialy. Izbrannye trudy «VIAM» 1932–2007: yubilejnyj nauch.-tehnich. sb. M.: VIAM, 2007. S. 245–249.
18. Dushin M.I., Hrulkov A.V., Raskutin A.E. K voprosu udaleniya izlishkov svyazuyushchego pri avtpklavnim formovanii izdeliy iz polimernyh kompozitsionnyh materialov [To question of removal of excesses binding at avtoklavny formation of products from polymeric composite materials] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №1. St. 03. Available at: http://viam-works.ru (accessed: September 03, 2015).
19. Chursova L.V., Kim M.A., Panina N.N., Shvetsov E.P. Nanomodificirovannoe epoksidnoe svyazuyushhee dlya stroitelnoj industrii [Nanomodified epoxy binder for the construction industry] // Aviacionnye materialy i tehnologii. 2013. №1. S. 40–47.
20. Alyamovskij A.A. Inzhenernye raschety v SolidWorks Simulation [Engineering calculations in SolidWorks Simulation]. M.: DKM-press, 2013. 464 s.
21. Birger I.A., Iosilevich G.B. Rezbovye i flancevye soedineniya [Threaded and flanged couplings]. M.: Mashinostroenie, 1990. 368 s.
22. Paharenko V.A., Paharenko V.V., Yakovleva R.A. Plastmassy v stroitelstve [Plastic in construction]. SPb.: Nauchnye osnovy i tehnologii, 2010. 350 s.
Article is devoted to the questions of the application and description of characteristics of new polymeric materials with acoustic properties developed at «The All-Russian Scientific-Research Institute of Aviation Materials» in recent years. The sound-proof porous-fibrous polymeric materials VTI-7 and VTI-12 as well as cellular acoustic structure VZMK-1 on their basis are considered. Properties of sound-proof materials of VTP-1V-type intended for reduction of negative vibration impact and structural noise on passengers, pilots and microelectronics are described. Properties of the heat-sound-proof material VPP-1 on the basis of the polyimide being today material, exceeding at properties the earlier widely used material ATM-1 are considered. Work is executed within implementation of the complex scientific direction 15.3. «Materials and coatings for protection against EMЕ, impact, vibrating, acoustic and electric influences» («The strategic directions of development of materials and tech
2. Sytyj Yu.V., Sagomonova V.A., Maksimov V.G., Babashov V.T. Zvukoteploizoliruyushhij material gradientnoj struktury VTI-22 [VTI-22 sound and thermal insulation material of gradient structure] // Aviacionnye materialy i tehnologii. 2013. №2. S. 47–49.
3. Kablov E.N. Materialy dlya izdeliya «Buran» – innovacionnye resheniya formirovaniya shestogo tehnologicheskogo uklada [Materials for «Buran» spaceship – innovative solutions of formation of the sixth technological mode] //Aviacionnye materialy i tehnologii. 2013. №S1. S. 3–9.
4. Kondrashov E.K., Kuzmin V.V., Minakov V.T., Ponomareva E.A. Netkanye materialy na osnove termostojkih polimernyh volokon i mezhplitochnye uplotneniya [Nonwoven materials based on heat-resistant polymer fibers and intertiled sealants] // Aviacionnye materialy i tehnologii. 2013. № S1. S. 51–55.
5. Sytyj Yu.V., Kislyakova V.I., Sagomonova V.A., Antyufeeva N.V. Perspektivnyj vibropogloshhayushhij material VTP-3V [Perspective vibropogloshchayushchy material VTP-3B] // Aviacionnye materialy i tehnologii. 2012. №3. S. 47–49.
6. Kablov E.N. Himiya v aviacionnom materialovedenii [Chemistry in aviation materials science ] // Rossijskij himicheskij zhurnal. 2010. T. LIV. № 1. S. 3–4.
7. Farafonov D.P., Migunov V.P. Izgotovlenie poristovoloknistogo materiala sverhnizkoj plotnosti dlya zvukopogloshhajushhih konstrukcij aviacionnyh dvigatelej [Manufacturing of porous fibrous material of ultralow density for sound-proof designs of aircraft engines] // Aviacionnye materialy i tehnologii. 2013. №4. S. 26–30.
8. Sun F.G., Chen H.L., Wu J.H., Feng K. Sound absorbing characteristics of fibrous metal materials at high temperatures // Appl. Acoust. 2010. V. 711. Р. 221–235.
9. Migunov V.P., Farafonov D.P. Issledovanie osnovnyh ekspluatacionnyh svojstv novogo klassa uplotnitelnyh materialov dlya protochnogo trakta GTD [Research of the main operational properties of new class of sealing materials for flowing path of GTE] // Aviacionnye materialy i tehnologii. 2011. №3. S. 15–20.
10. Migunov V.P., Lomberg B.S. Poristovoloknistye metallicheskie materialy dlya zvukopogloshhayushhih i uplotnitelnyh konstrukcij [Poristovoloknistye metal materials for sound-proof and sealing designs] / V sb.: 75 let. Aviacionnye materialy. Izbrannye trudy «VIAM» 1932–2007: yubilejnyj nauch.-tehnich. sb. M.: VIAM, 2007. S. 270–275.
11. Serov M.M., Borisov B.V. Poluchenie metallicheskih volokon i poristyh materialov iz nih metodom jekstrakcii visyashhej kapli rasplava [Receiving metal fibers and porous materials from them method of extraction of hanging drop melt] // Tehnologiya legkih splavov. 2007. №3.
S. 62–65.
12. Borisov B.V. Razrabotka tehnologii polucheniya volokon i poristyh materialov iz zharostojkih splavov metodom ekstrakcii visyashhej kapli rasplava: avtoref. dis. … kand. tehn. nauk [Development of technology of receiving fibers and porous materials from heat resisting alloys method of extraction of hanging drop melt: thesis … cand. of tech. sci.]. M.: MATI–RGTU im. K.E. Ciolkovskogo, 2011. 19 s.
13. Migunov V.P., Farafonov D.P., Degovets M.L. Poristovoloknistyj material sverhnizkoj plotnosti na osnove metallicheskih volokon [Porous fibrous material of ultralow density on the basis of metal fibers] // Aviacionnye materialy i tehnologii. 2012. №4. S. 38–41.
14. Zhengping X., Jilei Z., Huiping T., Qingbo A., Hao Z., Jianyong W., Cheng L. Progress of application researches of porous fiber metals // Materials. 2011. №4. Р. 816–824.
15. Platonov M.M., Zhelezina G.F., Nesterova T.A. Poristovoloknistye polimernye materialy dlya izgotovleniya shirokodiapazonnyh ZPK i issledovanie ih akusticheskih svojstv [Porous fibrous polymer materials for wide range sound absorbing structures and investigation of their acoustical properties] // Trudy VIAM : elektron. nauch-tehnih. zhurn. 2014. №6. St. 09. Available at: http://viam-works.ru (accessed: July 07, 2015). DOI: 10.18577/2307-6046-2014-0-6-9-9.
16. Bejder E.Ya., Gureeva E.V., Petrova G.N. Penopoliimidy [Foam polyimide] // Vse materialy. Enciklopedicheskij spravochnik. 2012. №6. S. 2–8.
17. Beider E.Ya., Petrova G.N., Izotova T.F., Gureeva E.V. Kompozicionnye termoplastichnye materialy i penopoliimidy [Thermoplastic composite materials and foam polyimides] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №11. St. 01. Available at: http://viam-works.ru (accessed: July 07, 2015).
18. Cherkasov V.D., Yurkin Yu.V., Nadkin E.A. Vibropogloshhayushhie materialy ekstra-klassa [Vibropogloshchayushchiye extra-class materials]. Saransk: Izd-vo Mordovskogo un-ta, 2007. S. 17–19.
19. Myasnikova M.P., Pozamontir A.G., Gromov V.V. Metody regulirovaniya vibropogloshhayushhih svojstv polimernyh materialov [Methods of regulation of vibropogloshchayushchy properties of polymeric materials] / V sb. materialov seminara «Vibropogloshhayushhie materialy i pokrytiya i ih primenenie». 1974. S. 41–45.
20. Smotrova S.A. Analiz vibropogloshhayushhih svojstv polimernyh materialov s celyu ocenki vozmozhnogo ih primeneniya v konstrukciyah dempferov i dinamicheski podobnyh modelej [The analysis of vibropogloshchayushchy properties of polymeric materials for the purpose of assessment of their possible application in designs of dampers and dynamically similar models] // Plasticheskie massy. 2002. №3. S. 39–45.
21. Ionov A.V. Sredstva snizheniya vibracii i shuma na sudah [Means of decrease in vibration and noise on vessels]. S-Pb.: GNC RF CNII im. A.N. Krylova, 2000. 123 s.
22. Sytyj Yu.V., Sagomonova V.A., Kislyakova V.I., Bolshakov V.A. Vibropogloshhayushhie materialy na osnove termojelastoplastov [Vibro absorbing materials on the basis of thermoelastoplastics] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №3. St. 06. Available at: http://viam-works.ru (accessed: July 07, 2015).
Growth of production volume of parts from polymeric composite materials (PCM) causes development of the industry of supporting materials for their manufacturing. Lubricants for creation of anti-adhesive coatings are among the most important of them. Anti-adhesive coatings of different types using for protection of molding surface of tooling when manufacturing parts from polymeric composition materials are studied in this article. Work is conducted on estimations of anti-adhesive coatings for stability and transferring ability on manufactured parts as well as efforts of the removal of parts and binding residue from tooling. Coating is chosen for manufacturing parts with a gel-coat layer. Work is conducted on measuring interfacial angle on the surface of anti-adhesive coatings. Influence of the anti-adhesive coatings on basic properties of polymeric composition materials is investigated Work is executed within implementation of the complex scientific direction 13.2 «Structural PCM» («T
2. Prognozy razvitiya mirovogo rynka grazhdanskoj aviacii [Forecasts of development of the world market of civil aviation ] // TI CAGI. 2003. №3–4. S. 6.
3. Available at: http://www.airbus.com (accessed: August 12, 2015).
4. Kablov E.N., Kirillov V.N., Zhirnov A.D., Starcev O.V., Vapirov Yu.M. Centry dlya klimaticheskih ispytanij aviacionnyh PKM [The centers for climatic tests of aviation PCM] // Aviacionnaya promyshlennost. 2009. №4. S. 36–46.
5. Kablov E.N., Grashhenkov D.V., Erasov V.S., Anchevskij I.Je., Il'in V.V., Valter R.S. Stend dlya ispytaniya na klimaticheskoj stancii GCKI krupnogabaritnyh konstrukcij iz PKM [The stand for testing for the GTsKI climatic stations of large-size designs from PCM] / V sb. dokl. IX Mezhdunarod. nauch. konf. po gidroaviacii «Gidroaviasalon–2012». 2012. S. 122–123.
6. Spravochnik po kompozicionnym materialam [Directory on composite materials ] / pod red. Dzh. Lyubina. M.: Mashinostroenie, 1988. 446 s.
7. Polimernye kompozicionnye materialy: struktura, svojstva, tehnologiya [Polymeric composite materials: structure, properties, technology] / pod red. A.A. Berlina. SPb.: Professiya, 2009. 556 s.
8. Praktikum po kolloidnoj himii i jelektronnoj mikroskopii [Workshop on colloid chemistry and electron microscopy ] / pod red. S.S. Voyuckogo, R.M. Panich. M.: Himiya, 1974. 224 s.
9. Lipatov Yu.S. Kolloidnaya himiya polimerov [Colloid chemistry of polymers]. Kiev: Naukova dumka, 1984. 844 s.
10. Postnova M.V., Postnov V.I. Opyt razvitija bezavtoklavnyh metodov formovanija PKM [Development experience out-of-autoclave methods of formation PCM] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №4. St. 06. Available at: http://www.viam-works.ru (accessed: August 12, 2015). DOI: 10.18577/2307-6046-2014-0-4-6-6.
11. Solncev St.S., Rozenenkova V.A., Mironova N.A., Soloveva G.A. Vysokotemperaturnye pokrytiya na osnove zol-gel tehnologii [High-temperature coatings on basis of sol-gel technology] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №1. St. 03. Available at: http://www.viam-works.ru (accessed: September 01, 2015). DOI: 10.18577/2307-6046-2014-0-1-3-3.
12. Postnov V.I., Petuhov V.I., Makrushin K.V., Yudin A.A. Issledovanie antiadgezionnyh pokrytij pri formovanii panelej inter'era s gelkoutnym sloem [Research of anti-adhesive coverings at formation of panels of interior with gelkoutny layer] // Aviacionnye materialy i tehnologii. 2009. №3. S. 23–25.
13. Panshin Yu.A., Malkevich L.G., Dunaevskaya D.S. Ftoroplasty [Fluorine layers]. M.: Himiya, 1978. 232 s.
14. Kuznetsova V.A., Kuznetsov G.V., Shapovalov G.G. Issledovanie vliyaniya molekulyarnoj massy jepoksidnoj smoly na adgezionnye, fiziko-mehanicheskie svojstva i jerozionnuyu stojkost pokrytij [[Investigation of epoxy resin molecular mass influence by physiomechanical property and erosive resistant of coatings] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №8. St. 08. Available at: http://www.viam-works.ru (accessed: August 26, 2015). DOI: 10.18577/2307-6046-2014-0-8-8-8.
15. Veshkin E.A., Postnov V.I., Strelnikov S.V., Abramov P.A., Satdinov R.A. Opyt primeneniya tehnologicheskogo kontrolya polufabrikatov PKM [Experience of application of technological control of semi-finished products of PCM] // Izvestiya Samarskogo nauchnogo centra RAN. T. 16. №6 (2). 2014. S. 393–398
16. Savelev I.V. Kurs obshhij fiziki [Course the general physics]. M.: Fizika, 1970. T. 1. S. 263–265.
17. Adamson A. Fizicheskaya himiya poverhnostej [Physical chemistry of surfaces]. M.: Mir, 1979. 568 s.
18. Summ B.D. Gisterezis smachivaniya [Wetting hysteresis]. M.: Akademiya, 2006. 239 s.
19. Fridrihsberg D.A. Kurs kolloidnoj himii [Course of colloid chemistry]. L.: Himiya, 1974. 352 s.
20. Zimon A.D. Adgeziya plenok i pokrytij [Adhesion of films and coverings]. M.: Himiya, 1977. 352 s.
Biodeterioration attacks practically all materials and products especially under conditions of warm and humid climate. In addition to microbiological resistance tests in laboratory such tests under natural conditions are extremely recommended. These tests allow isolating microorganisms and revealing active strains of microorganisms-biodestructors, which can be used for microbiological resistance tests in laboratory and for study of protective properties of antiseptics and biocides. Work is executed within implementation of the complex scientific direction 18.4 «Development of protection methods against biological damage of materials operating in the conditions of different climatic zones» («The strategic directions of development of materials and technologies of their processing for the period till 2030»)
2. Kablov E.N., Kirillov V.N., Zhirnov A.D., Startsev O.V., Vapirov Yu.M. Centry dlya klimaticheskih ispytanij aviacionnyh PKM [The centers for climatic tests of aviation PCM] // Aviacionnaya promyshlennost. 2009. №4. S. 36–46.
3. Kirillov V.N., Startsev O.V., Efimov V.A. Klimaticheskaya stojkost i povrezhdaemost polimernyh kompozicionnyh materialov, problemy i puti resheniya [Climatic firmness and damageability of polymeric composite materials, problems and solutions] //Aviacionnye materialy i tehnologii. 2012. №S. S. 412–423.
4. Efimov V.A., Kirillov V.N., Dobryanskaya O.A., Nikolaev E.V., Shvedkova A.K. Metodicheskie voprosy provedeniya naturnyh klimaticheskih ispytanij polimernyh kompozicionnyh materialov [Methodical questions of carrying out natural climatic tests of polymeric composite materials] // Aviacionnye materialy i tehnologii. 2010. №4. S. 25–31.
5. Kablov E.N., Polyakova A.V., Vasileva A.A., Goryashnik Yu.S., Kirillov V.N. Mikrobiologicheskie ispytaniya aviacionnyh materialov [Microbiological tests of aviation materials] // Aviacionnaya promyshlennost. 2011. №1. S. 35–40.
6. Polyakova A.V., Vasileva A.A., Linnik M.A., Goryashnik Yu.S. Mikrobiologicheskie povrezhdeniya aviacionnyh materialov [Microbiological damages of aviation materials] / V sb. dokladov VIII nauch. konf. po gidroaviacii «Gidroaviasalon–2010». Chast II. M.: CAGI, 2010. S. 215–216.
7. Polyakova A. V., Vasileva A. A, Goryashnik Yu. S., Linnik M. A. Biozashhita aviacionnyh materialov [Bioprotection of aviation materials] // Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 117–120.
8. Bocharova B.V., Gerasimenko A.A., Korovina I.A. Biostojkost materialov. Stojkost k vozdejstviyu gribov [Biofirmness of materials. Resistance to influence of fungus]. M.: Nauka, 1986. 210 s.
9. Polyakova A.V., Vasileva A.A., Goryashnik Yu.S., Kirillov V.N. Ispytaniya na mikrobiolog-icheskuyu stojkost v usloviyah teplogo vlazhnogo klimata [Tests for microbiological firmness in the conditions of warm humid climate] / V sb. materialov konf. «Socialno-ekonomicheskoe i innovacionnoe razvitie Yuga Rossii». Sochi: RIO SNIC RAN. 2009. S. 172–176.
10. Polyakova A.V., Krivushina A.A., Goryashnik Yu.S., Yakovenko T.V. Ispytaniya na mikrobiologicheskuyu stojkost v usloviyah teplogo i vlazhnogo klimata [Microbiological resistance tests under conditions of warm and damp climate] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №7. St. 06. Available at: http://www.viam-works.ru (accessed: July 20, 2015).
11. Atlas R.M. Effects of Temperature and Crude Oil Composition on Petroleum Biodegradation // Applied microbiology. 1975. 30 (3). Р. 396–403.
12. Kopylov G.A., Kovalev V.D., Balandina N.V. Biopovrezhdeniya v aviacionnoj tehnike [Biodamages to aviation engineering] // Remont, vosstanovlenie, modernizaciya. 2010. №1. S. 42–47.
13. Kanevskaya, I.G. Biopovrezhdeniya promyshlennyh materialov [Biodamages of industrial materials]. M.: Nauka, 1984. 268 s.
14. Kirillov V.N., Vapirov Yu.M., Drozd E.A. Issledovanie atmosfernoj stojkosti polimernyh kompozicionnyh materialov v usloviyah atmosfery teplogo vlazhnogo i umerenno teplogo klimata [Research of atmospheric firmness of polymeric composite materials in the conditions of the atmosphere of warm wet and moderately warm climate] // Aviacionnye materialy i tehnologii. 2012. №4. S. 31–38.
15. Polyakova A. V., Vasil'eva A.A., Goryashnik Yu.S., Gunina T. V. Naturnye i uskorennye ispytaniya materialov i topliv na mikrobiologicheskuyu stojkost' // Vse materialy. Jenciklope-dicheskij spravochnik. 2012. №3. S. 20–23.
2. Kablov E.N. Materialy i himicheskie tehnologii dlya aviacionnoj tehniki [Materials and chemical technologies for aviation engineering] // Vestnik Rossijskoj akademii nauk. 2012. T. 82. №6.
S. 520–530.
3. Erasov V.S., Yakovlev N.O., Nuzhnyj G.A. Kvalifikatsionnye ispytaniya i issledovaniya prochnosti aviatsionnyh materialov [Qualification tests and researches of durability of aviation materials] //Aviacionnye materialy i tehnologii. 2012. №S. S. 440–448.
4. Dimitrienko Yu.I., Gubareva E.A., Sborshhikov S.V., Erasov V.S., Yakovlev N.O. Chislennoe modelirovanie i jeksperimentalnoe issledovanie deformirovaniya uprugoplasticheskih plastin pri smyatii [Numerical modeling and pilot study of deformation of elasto-plastic plates when crushing] // Matematicheskoe modelirovanie i chislennye metody. 2015. №1 (5). S. 67–82.
5. Yakovlev N.O., Erasov V.S., Popov Yu.O., Kolokoltseva T.V. Razdir po mode III tonkolistovyh polimernyh kompozicionnyh materialov dlya izdelij aviacionnoj tehniki [Tearing on mode of the III tonkolistovy polymeric composite materials for products of aviation engineering] // Novosti materialovedeniya. Nauka i tehnika: elektron. nauch.-tehnich. zhurn. 2014. №1. St. 08. Available at: http://www.materialsnews.ru (accessed: September, 03 2015).
6. Kablov E.N., Grashhenkov D.V., Erasov V.S., Anchevskij I.Je., Ilin V.V., Valter R.S. Stend dlya ispytaniya na klimaticheskoj stancii GCKI krupnogabaritnyh konstrukcij iz PKM [The stand for testing for the GTsKI climatic stations of large-size designs from PKM] / V sb. dokl. IX Mezhdunarodnoj nauch. konf. po gidroaviacii «Gidroaviasalon–2012». M. 2012. S. 122–123.
7. Erasov V.S., Yakovlev N.O., Gladkih A.V., Goncharov A.A., Skiba O.V., Boyarskih A.V., Podzhivotov N.Yu. Ispytaniya krupnogabaritnyh konstrukcij [Tests of large-size designs ] // Kompozitnyj mir. 2014. №1. S. 72–78.
8. Erasov V.S., Yakovlev N.O., Podzhivotov N.Yu., Gladkih A.V., Goncharov A.A., Skiba O.V., Boyarskih A.V. Ispytaniya krupnogabaritnyh konstrukcij iz polimernyh kompozicionnyh materialov na silovom polu GCKI «VIAM» im. G.V. Akimova [Tests of large-size designs from polymeric composite materials on power floor of SCCT «VIAM» of G. V. Akimov] / V sb. dokladov konf. «Fundamental'nye issledovaniya v oblasti zashhity ot korrozii, stareniya, biopovrezhdenij materialov i konstrukcij v razlichnyh klimaticheskih usloviyah i prirodnyh sredah, s cel'yu obespecheniya bezopasnoj jekspluatacii slozhnyh tehnicheskih sistem. M.: VIAM, 2013 (CD-disk).
9. Vlasenko F.S., Raskutin A.E. Primenenie polimernyh kompozicionnyh materialov v stroitelnyh konstrukciyah [Applying FRP in building structures] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №8. St. 03. Available at: http://www.viam-works.ru (accessed: September, 03 2015).
10. Dimitrienko Yu.I., Sborshhikov S.V., Prozorovskij A.A., Gubareva E.A., Yakovlev N.O., Erasov V.S., Krylov V.D., Grigorev M.M., Fedonyuk N.N. Razrabotka mnogoslojnogo polimernogo kompozicionnogo materiala s diskretnym konstruktivno-ortotropnym zapolnitelem [Development of multi-layer polymeric composite material with discrete constructive and orthotropic filler] // Kompozity i nanostruktury. 2014. T. 6. №1. S. 32–48.
11. Yakovlev N.O., Erasov V.S., Popov Yu.O., Kolokoltseva T.V. Razdir po mode III tonkolistovyh polimernyh kompozicionnyh materialov dlya izdelij aviacionnoj tehniki [Tear (mode III) of thin laminate polymer composite materials for aircraft] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №6. St. 12. Available at: http://www.viam-works.ru (accessed: September, 03 2015). DOI: 10.18577/2307-6046-2014-0-6-12-12.
12. Dimitrienko Yu.I., Fedonyuk N.N., Gubareva E.A., Sborshhikov S.V., Prozorovskij A.A., Erasov V.S., Yakovlev N.O. Modelirovanie i razrabotka trehslojnyh kompozicionnyh materialov s sotovym zapolnitelem [Modeling and development of three-layered composite materials with cellular filler] // Vestnik MGTU im. N.E. Baumana. Ser. «Estestvennye nauki». 2014. №5 (56). S. 66–81.
13. Borshchev A.V., Gusev Yu.A. Polimernye kompozicionnye materialy v avtomobilnoj promyshlennosti [Polymer composite materials in automotive industry] // Aviacionnye materialy i tehnologii. 2014. №S2. S. 34–38.
14. Yakovlev N.O., Erasov V.S., Krylov V.D., Popov Yu.A. Metody opredeleniya sdvigovyh harakteristik polimernyh kompozicionnyh materialov [Methods of definition of shift characteristics of polymeric composite materials] // Aviacionnaya promyshlennost. 2014. №1. S. 20–23.
15. Yakovlev N.O., Erasov V.S., Kolokoltseva T.V. Osobennosti opredeleniya harakteristik sdviga v ploskosti lista polimernyh kompozicionnyh materialov v razlichnyh standartah [Features of definition of characteristics of shift in the plane of leaf of polymeric composite materials in different standards] // Vse materialy. Enciklopedicheskij spravochnik. 2014. №5. S. 12–16.
16. Gulyaev A.I., Tenchurin T.H. Perspektivy primeneniya voloknistyh struktur, poluchennyh sposobom jelektroformovaniya, dlya povysheniya udaro- i treshhinostojkosti polimernyh kompozicionnyh materialov [Perspectives of application of the fibrous structures received in the way of electro formation, for increase udaro-and treshchinostoykost of polymeric composite materials] // Konstrukcii iz kompozicionnyh materialov. 2013. №3. C. 22–26.
17. Kablov E.N., Kondrashov S.V., Yurkov G.Yu. Perspektivy ispolzovaniya uglerodsoderzhashhih nanochastic v svyazuyushhih dlya polimernyh kompozicionnyh materialov [Perspectives of use of carbon-containing nanoparticles in binding for polymeric composite materials] // Rossijskie nanotehnologii. 2013. T. 8. №3–4. S. 24–42.
18. Yakovlev N.O., Akolzin S.V., Shvec S.M. Opredelenie treshhinostojkosti polimernyh materialov [Definition of crack firmness of polymeric materials] // Novosti materialovedeniya. Nauka i tehnika: elektron. nauch.-tehnich. zhurn. 2014. №4. St. 03. Available at: http://www.materialsnews.ru (accessed: September, 03 2015).
19. Gulyaev A.I., Zhuravleva P.L., Filonova E.V., Antyufeeva N.V. Vliyanie otverditelya kataliticheskogo dejstviya na morfologiyu mikrostruktury jepoksidnyh ugleplastikov [Influence of hardener of catalytic action on morphology of microstructure epoxy coal of plastics] // Materialovedenie. 2015. № 5. S. 41–46.
20. Ustrojstvo dlya opredeleniya prochnosti kompozicionnogo materiala: pat. 150187 Ros. Federaciya [The device for determination of durability of composite material: pat. 150187 Rus. Federation]; opubl. 18.09.14.
21. Yakovlev N.O., Lutsenko A.N., Artemeva I.V. Metody opredeleniya mezhsloevoj treshhinostojkosti sloistyh materialov [Methods of definition of crack firmness between layers in layered materials] // Vse materialy. Enciklopedicheskij spravochnik. 2015. №10. S. 57–62.
22. Finogenov G.N., Erasov V.S. Treshhinostojkost polimernyh kompozitov pri mezhslojnyh otryve i sdvige [Crack firmness of polymeric composites at inter laminar separation and shift] // Aviacionnye materialy i tehnologii. 2003. №3. S. 62–67.
23. Yakovlev N.O., Erasov V.S., Petrova A.P. Sravnenie normativnyh baz razlichnyh stran po ispytaniyu kleevyh soedinenij materialov [Comparison of regulatory bases of the different countries on testing of glued joints of materials] // Vse materialy. Enciklopedicheskij spravochnik. 2014. №7. S. 2–8.
24. Benzeggagh M.L., Kenane M. Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus // Composites Science and Technology. 1996. V. 56. P. 439–449.
25. Finogenov G.N. Metody ispytaniya kleevyh soedinenij metallov na treshhinostojkost [Test methods of glued joints of metals on crack firmness] // Klei. Germetiki. Tehnologii. 2007. №5. S. 24–26.
26. Krylov V.D., Yakovlev N.O., Kurganova Yu.A., Lashov O.A. Mezhsloevaya treshhinostojkost' konstrukcionnyh polimernyh kompozicionnyh materialov [Interlayer fracture toughness of structural polymer composites] // Aviacionnye materialy i tehnologii. 2016. №1 (40). S. 79–85.
27. Sokolov I.I., Raskutin A.E. Ugleplastiki i stekloplastiki novogo pokoleniya [Coalplastics and fiber lasses of new generation] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №4. St. 09. Available at: http://www.viam-works.ru (accessed: September, 03 2015).
28. Babin A. N. Svyazujushhie dlya polimernyh kompozicionnyh materialov novogo pokoleniya [Binding for polymeric composite materials of new generation] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №4. St. 11. Available at: http://www.viam-works.ru (accessed: September, 03 2015).
29. Panina N.N., Chursova L.V., Babin A.N., Grebeneva T.A., Gurevich Ya.M. Osnovnye sposoby modifikacii epoksidnyh polimernyh materialov v Rossii [The main ways of updating of epoxy polymeric materials in Russia] // Vse materialy. Enciklopedicheskij spravochnik. 2014. №9. S. 10–17.
30. Muhametov R.R., Shimkin A.A., Gulyaev A.I., Kucherovskij A.I. Ftalonitrilnoe svyazuyushhee dlya termostojkih kompozitov [Ftalo the nitrile binding for heat-resistant composites] // Materialovedenie. 2015 (v pechati).
31. Gulyaev A.I., Zhuravleva P.L. Metodologicheskie voprosy analiza fazovoj morfologii materialov na osnove sinteticheskih smol, modificirovannyh termoplastami (obzor) [Methodological aspects of the phase morphology analysis in materials based on synthetic resins modified by thermoplastics] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №6. St. 09. Available at: http://www.viam-works.ru (accessed: September, 03 2015). DOI: 10/18577-2307-6046-2015-0-6-9-9.
32. Deev I.S., Kablov E.N., Kobets L.P., Chursova L.V. Issledovanie metodom skaniruyushhej elektronnoj mikroskopii deformacii mikrofazovoj struktury polimernyh matric pri mehanicheskom nagruzhenii [Research of the scanning electron microscopy method deformation of microphase structure of polymeric matrix at mechanical loading] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №7. St. 06. Available at: http://www.viam-works.ru (accessed: September, 03 2015). DOI: 10/18577-2307-6046-2014-0-7-6-6.
33. Gulyaev A.I., Yakovlev N.O., Krylov V.D., Shurtakov S.V. Mikromehanika razrusheniya stekloplastikov pri rassloenii po modam I i II [Microfracture mechanics of fiber glasses at stratification on modes of I and II] // Materialovedenie. 2016. №2. S. 13–22.
34. Sham Prasad M.S., Venkatesha C.S., Jayaraju T. Experimental Methods of Determining Fracture Toughness of Fiber Reinforced Polymer Composites under Various Loading Conditions // Journal of Minerals & Materials Characterization & Engineering. 2011. V. 10. №13. P. 1263–1275.