Articles
The article presents the calculation of the chemical composition of the intermetallic composition based on the Ni3Al compound using the doping balance formula, while the average electron concentration is the number of valence electrons per unit atomic mass of the composition; studies of structural and phase transformations in an intermetallic alloy based on Ni3Al depending on high-temperature treatment and during long-term tests at temperatures of 1150, 1200 and 1250 °С. The constructability of the structural alloy was experimentally established when testing the casting of blanks of the nozzle blades of the compressor turbine of a promising helicopter engine.
2. Sims Ch., Hagel V. Superalloys II. Heat-resistant materials for aerospace and industrial power plants: in 2 books. Moscow: Metallurgiya, 1995, book 2, pp. 288–298.
3. Zelenkov Yu.P., Shmotin Yu.N., Chupin P.V. Current state and prospects of supercomputer computing in the design of gas turbine engines. Vestnik Ufimskogo gosudarstvennogo aviatsionnogo universiteta, 2012, vol. 16, no. 3 (48), pp. 91–98.
4. Shmotin Yu.N., Burov M.N. Increasing reliability and developing the power range of gas turbine units based on the GTD-110M produced by PJSC NPO Saturn. Gazoturbinnyye tekhnologii, 2017, no. 1 (144), pp. 2–4.
5. Inozemtsev A.A. The PD-14 engine is the future of the Russian aviation industry. Innovatsii, 2019, no. 12 (182), pp. 77–80.
6. Inozemtsev A.A. The use of promising technologies of aviation gas turbine engines for the creation of high-power power gas turbine units. Elektricheskiye stantsii, 2020, no. 1 (1062), pp. 29–35.
7. Gladky I.L., Inozemtsev A.A., Morozova M.V. Integration of the PD-14 engine with the MS-21-310 aircraft to ensure the absence of dangerous consequences when the fan blade comes off. Aviation and Cosmonautics: abstracts 21st Int. conf. Moscow: MAI (NIU), 2022, pp. 107–108.
8. Inozemtsev A.A., Sulimov D.D. Experience and prospects of JSC «UEC-Aviadvigatel» in the creation and operation of aircraft industrial gas turbine plants and power units. Gazoturbinnye tekhnologii, 2022, no. 5 (188), pp. 2–7.
9. Belikov A.V., Visik E.M., Gerasimov V.V. Modernization of equipment for directional crystallization of monocrystalline castings. Liteynoe proizvodstvo, 2014, no. 4, pp. 34–36.
10. Visik E.M., Gerasimov V.V., Kolyadov E.V., Kuzmina N.A. Influence of technological casting modes on the structural parameters of single crystals of new heat-resistant alloys. Metallurgiya mashinostroeniya, 2016, no. 5, pp. 27–31.
11. Visik E.M., Kolyadov E.V., Chabina E.B., Kuzmina N.A. Technological possibilities for controlling the structure of castings made of heat-resistant alloys during directional crystallization. Tekhnologiya metallov, 2022, no. 1, pp. 47–56.
12. Bondarenko Yu.A., Echin A.B. A look at the history of development and modern research into the process of directed crystallization of cast heat-resistant alloys with a controlled gradient at the growth front. Elektrometallurgiya, 2018, no. 7, pp. 33–40.
13. Visik E.M., Rassokhina L.I., Echin A.B., Gamazina M.V. On some aspects of improving the quality of cast turbine blades of gas turbine engines made of heat-resistant nickel alloys. Voprosy materialovedeniya, 2021, no. 4 (108), pp. 89–98.
14. Izotov V.A., Grishikhin S.A., Shatulsky A.A. Methodology for calculating the resistance coefficient of a gating system with changing pressure. Liteyshchik Rossii, 2009, no. 3, p. 39.
15. Grishikhin S.A., Izotov V.A., Shatulsky A.A. Calculation of the flow coefficient of the gating system for various parameters of the metallostatic pressure. Vestnik RGATA im. P.A. Solovyeva, 2009, no. 1 (15), pp. 115–119.
16. Rassokhina L.I., Parfenovich P.I., Narsky A.R. Problems of creating new generation model compositions based on domestic materials for the manufacture of gas turbine engine blades. Novosti materialovedeniya. Nauka i tekhnika, 2015, no 3 (15), paper no. 07. Available at: http://www.materialsnews.ru (accessed: December 14, 2023).
17. Yakovlev E.I. Production of castings from heat-resistant nickel alloys with a fine-grained equiaxed structure and reduced porosity. Liteynoe proizvodstvo, 2022, no. 6, pp. 3–6.
18. Li P., Li S.S., Han Y.F. Influence of solution heat treatment on microstructure and stress rupture properties of NI3Al base single crystal superalloy IC6SX. Intermetallics, 2011, vol. 19, is. 2, pp. 182–186.
19. He X., Zhang J., Peng Y. et al. Microstructure evolution of primary γʹ phase in NI3Al-base superalloy. Acta metallurgica sinica, 2020, vol. 33, pp. 1709–1726.
20. Liwu J., Xuezheng D., Meiling W. Effect of stress on creep behavior of single crystal alloy IC6SX at 980еC. International Journal of Photoenergy, 2020, vol. 3, pp. 1–5.
21. Liwu J., Meiling W., Yafang H., Yanna C. Creep behavior and dislocation mechanism of NI3Al base single crystal alloy IC6SX at 760еC. Progress in Natural Science, 2021, vol. 9, p. 239.
22. An alloy based on the Ni3Al intermetallic compound and a product made from it: pat. 2588949 Rus. Federation; appl. 01.04.15; publ. 10.07.16.
23. Kablov E.N., Sidorov V.V., Kablov D.E., Min P.G., Rigin V.E. Resource-saving technologies for smelting promising cast and wrought super-heat-resistant alloys, taking into account the processing of all types of waste. Elektrometallurgiya, 2016, no. 9, pp. 30–41.
24. Buntushkin V.P., Kablov E.N., Bazyleva O.A., Morozova G.I. Basic principles of alloying the Ni3Al intermetallic compound when creating high-temperature alloys. Materialovedenie, 1998, no. 7, pp. 13–15.
25. Morozova G.I. Compensation for the imbalance of alloying of heat-resistant nickel alloys. Metallovedenie i termicheskaya obrabotka metallov, 2012, no. 12, pp. 52–58.
26. Visik E.M., Gerasimov V.V., Kolyadov E.V., Filonova E.V. Features of the single-crystal structure of turbine blades made of carbon-free and carbon-containing heat-resistant nickel alloys. Zavodskaya laboratoriya. Diagnostika materialov, 2018, vol. 84, no. 6, pp. 38–43.
27. Visik E.M., Koljadov E.V., Kuzmina N.A. Influence of directional crystallization parameters on the structure of the intermetallic nickel alloy VIN4M-VI when casting single-crystal blanks of nozzle blades. Trudy VIAM, 2023, no. 9 (127), paper no. 01. Available at: http://www.viam-works.ru (accessed: November 20, 2023). DOI: 10.18577/2307-6046-2023-0-9-3-15.
28. Toloraya V.N., Ostroukhova G.A. Preparation of single-crystal [001] seeds from alloys of the Ni–W system by directional crystallization. Voprosy materialovedeniya, 2021, no. 2 (106), pp. 55–65.
29. Kuzmina N.A., Pyankova L.A. Control of crystallographic orientation of monocrystalline nickel castings heat-resistant alloys by x-ray diffractometry. Trudy VIAM, 2019, no. 12 (84), paper no. 02. Available at: http://www.viam-works.ru (accessed: November 24, 2023). DOI: 10.18577/2307-6046-2019-0-12-11-19.
30. Bazyleva O.A., Arginbaeva E.G., Shestakov A.V., Fesenko T.V. Structure and properties of an intermetallic alloy based on nickel aluminide microalloyed with rare earth metals. Voprosy materialovedeniya, 2018, no. 1 (93), pp. 35–49.
31. Bazyleva O.A., Karashaev M.M., Shestakov A.V., Arginbaeva E.G. Effect of annealing temperature on the homogeneity of intermetallic alloy based on Ni3Al compound. Trudy VIAM, 2020, no. 8 (90), paper no. 01. Available at: http://www.viam-works.ru (accessed: November 24, 2023). DOI: 10.18577/2307-6046-2020-0-8-3-10.
32. Bazyleva O.A., Arginbaeva E.G., Chabina E.B., Raevskikh A.N. Study of structural-phase transformations in a cast structural alloy based on the Ni3Al intermetallic compound after high-temperature holding and during the process of operating the alloy as a nozzle blade. Voprosy materialovedeniya, 2023, vol. 114, no. 2, pp. 60–70.
33. Artemenko N.I. Features of the surface condition of gas-thermal coatings obtained by atmospheric plasma spraying. Elektrometallurgiya, 2020, no. 2, pp. 25–31.
34. Artemenko N.I., Barinov D.Ya., Akopyan A.G. Study of the thermophysical properties of the ceramic material ZrO2–7%Y2O3, obtained by various methods, used for applying a heat-protective coating. Elektrometallurgiya, 2022, no. 5, pp. 24–29.
35. Artemenko N.I., Tatarnikov S.V., Doronin O.N. Investigation of the influence of the parameters of applying the ceramic layer of the ZrO2–7%Y2O3 heat-shielding coating by plasma spraying on the productivity of the technological process. Trudy VIAM, 2023, no. 4 (122), paper no. 07. Available at: http://www.viam-works.ru (accessed: November 24, 2023). DOI: 10.18577/2307-6046-2023-0-4-69-80.
36. Chabina E.B., Alekseev A.A., Filonova E.V., Lukinа E.A. The use of methods of analytical microscopy and x-ray diffraction analysis for the study of the structural phase state materials. Trudy VIAM, 2013, no. 5, paper no. 06. Available at: http://www.viam-works.ru (accessed: November 27, 2023).
37. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-3.
Technological plasticity, deformation mechanisms and dependence between mechanical properties and the conditions of deformation of titanium alloy VT30 were studied in present work. Samples in cast and forged states were examined. The samples were deformed on a pile driver and press at different temperatures, also forging and stamping were carried out. The results showed that the VT30 alloy has better properties in the forged state. In addition, optimal conditions for pressure treatment of titanium alloy VT30 were obtained.
2. Kablov E.N., Bakradze M.M., Gromov V.I., Voznesenskaya N.M., Yakusheva N.A. New high strength structural and corrosion-resistant steels for aerospace equipment developed by FSUE «VIAM» (review). Aviacionnye materialy i tehnologii, 2020, no. 1 (58), pp. 3–11. DOI: 10.18577/2071-9140-2020-0-1-3-11.
3. Ospennikova O.G. Implementation results of the strategic directions on creation of new generation of heat-resisting cast and wrought alloys and steels for 2012–2016. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 17–23. DOI: 10.18577/2071-9140-2017-0-S-17-23.
4. Nochovnaya N.A., Shiryaev A.A., Sharapkin D.S. Complex of mechanical and operational properties of rolled blanks from metastable-β-titanium alloy VT47. Aviation materials and technologies, 2022, no. 3 (68), paper no. 05. Available at: http://www.journal.viam.ru (accessed: May 16, 2023). DOI: 10.18577/2713-0193-2022-0-3-50-59.
5. Moiseev V.N. Beta-titanium alloys and prospects for their development. Metallovedeniye i termicheskaya obrabotka metallov, 1998, no. 12, pp. 11–14.
6. Brun M.Ya., Belov S.P., Glazunov S.G. et al. Metallurgy of titanium alloys. Moscow: Metallurgiya, 1994, 351 p.
7. Kablov E.N., Putyrsky S.V., Yakovlev A.L., Krokhina V.A., Naprienko S.A. Study of resistance to fatigue fracture of forgings made of high-strength titanium alloy VT22M, manufactured with final deformation in the (α + β)- and β-regions. Titan, 2021, vol. 70, no. 1, pp. 26–33.
8. Zaripova R.G., Shundalov V.A., Sharafutdinov A.V. et al. The influence of intense plastic deformation and processing modes on the structure and mechanical properties of titanium alloy VT6. Vestnik Ufimskogo gosudarstvennogo aviatsionnogo tekhnicheskogo universiteta, 2012, no. 7 (52), pp. 17–24.
9. Skugorev A.V., Kapitanenko D.V., Shishkov S.Yu., Melnikova D.A. Formation of the structure and mechanical properties of high-alloy titanium alloys during isothermal stamping in air. Titan, 2021, vol. 72, no. 3, pp. 34–40.
10. Burgonova O.Yu., Pantyukhova K.N., Belozerova E.P. Determination of a rational mode of heat treatment of the VT3-1 alloy to increase ductility before pressure treatment. Omskiy nauchnyy vestnik, 2017, no. 3 (153), pp. 44–48.
11. Razyvaev E.I., Moiseev N.V., Kapitanenko D.V., Bubnov M.V. Modern technologies of plastic working of metals. Trudy VIAM, 2015, no. 2, paper no. 03. Available at: http://www.viam-works.ru (accessed: May 12, 2023). DOI: 10.18577/2307-6046-2015-0-2-3-3.
12. Egorova Yu.B., Davydenko L.V., Belova S.B., Chibisova E.V. Prediction of mechanical properties of forgings from titanium alloys VT6 and VT3-1 depending on the chemical composition and structure. Izvestiya vuzov. Tsvetnaya metallurgiya, 2018, no. 1, pp. 12–21.
13. Putyrskiy S.V., Yakovlev A.L., Nochovnaya N.A., Krokhina V.A. Research of different heat treatment modes influence on properties of semi-finished products and welded joints from titanium alloy ВТ22М. Aviacionnye materialy i tehnologii, 2019, no. 1 (54), pp. 3–10. DOI: 10.18577/2071-9140-2019-0-1-3-10.
14. Dzunovich D.A., Lukina E.A., Yakovlev A.L. Influence of heat treatment parameters on producibility and mechanical properties of sheets made from high-strength titanium alloy VT23. Aviacionnye materialy i tehnologii, 2018, no. 3 (52), pp. 3–10. DOI: 10.18577/2071-9140-2018-0-3-3-10.
15. Duyunova V.A., Oglodkov M.S., Putyrskiy S.V., Kochetkov A.S., Zueva O.V. Modern technologies for melting titanium alloy ingots (review). Aviation materials and technologies, 2022, no. 1 (66), paper no. 03. Available at: http://www.journal.viam.ru (accessed: December 22, 2023). DOI: 10.18577/2713-0193-2022-0-1-30-40.
16. Aleksandrov V.K., Belov A.F., Bondarev B.I. et al. Metallurgy and processing of titanium and heat-resistant alloys. Moscow: VILS, 1991, 389 p.
17. Krokhina V.A., Arislanov А.A., Putyrskiy S.V., Anisimova A.Yu. Investigation of the regularities of the formation of the structure of rods made of titanium alloy VT6 depending on various technological schemes of manufacture. Aviation materials and technologies, 2023, no. 4 (73), paper no. 04. Available at: http://www.journal.viam.ru (accessed: December 22, 2023). DOI: 10.18577/2713-0193-2023-0-4-36-44.
In this work static and fatigue characteristics of welded joints of heat-resistant aluminum alloys V-1213 and 1151 were studied. Mechanical and service-life tests of flat welded structurally similar samples of fuselage elements made of heat-resistant aluminum alloys V-1213 and 1151 welded by laser-beam welding and friction stir welding were carried out. The assessment of the survivability of welded joints was evaluated with introduced stress concentrators. Comparative assessment of cyclic durability to failure was made on structurally similar welded samples.
2. Kablov E.N., Kutyrev A.E., Vdovin A.I., Kozlov I.A., Afanasyev-Khodykin A.N. The research of possibility of galvanic corrosion in brazed connections used in aviation engine construction. Aviation materials and technologies, 2021, no. 4 (65), paper no. 01. Available at: http://www.journal.viam.ru (accessed: October 31, 2023). DOI: 10.18577/2713-0193-2021-0-4-3-13.
3. Congqing L., Guohong L. Development of friction stir welding technology for aircraft structures in China. 10th International Symposium on Friction Stir Welding: in 2 vol. Beijing, 2014, vol. 2, pp. 892–899.
4. Kablov E.N., Belov E.V., Trapeznikov A.V., Leonov A.A., Zaitsev D.V. Strengthening features and aging kinetics of high-strength cast aluminum alloy Al4MS based on Al–Si–Cu–Mg system. Aviation materials and technologies, 2021, no. 2 (63), paper no. 03. Available at: http://www.journal.viam.ru (accessed: October 31, 2023). DOI: 10.18577/2713-0193-2021-0-2-24-34.
5. Giummarra С., Yocum L. New Developments in Extruded Integrally Stiffened Panels. Proceedings of 17th AeroMat Conference & Exposition. Seattle, 2006, 298 р.
6. Kablov E.N., Lukin V.I., Ospennikova O.G. Promising aluminum alloys and technologies for their connection for aerospace products. Report 2nd Int. conf. and the exhibition «Aluminium–21. Welding and soldering». St. Petersburg: Alusil-MViT, 2012, p. 8.
7. Denisov B.S., Meilakh A.I. Welding in aircraft construction. Welded structures of MiGs. Moscow: Rusavia, 2007, 358 p.
8. Kuritsyna V.V., Kuritsyn D.N., Kosov D.E. Automated system for processing expert assessments when making technological decisions. Elektrotekhnicheskiye i informatsionnyye kompleksy i sistemy, 2012, vol. 8, no. 4, pp. 44–55.
9. Panteleev M.D., Sviridov A.V., Skupov A.A., Odintsov N.S. Perspective welding technologies of aluminum-lithium alloy V-1469 applied to fuselage panels. Trudy VIAM, 2020, no. 12 (94), paper no. 04. Available at: http://www.viam-works.ru (accessed: November 05, 2023). DOI: 10.18577/2307-6046-2020-0-12-35-46.
10. Antipov V.V., Klochkova Yu.Yu., Romanenko V.A. Modern aluminum and aluminum-lithium alloys. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 195–211. DOI: 10.18577/2071-9140-2017-0-S-195-211.
11. Kablov E.N. The role of fundamental research in the creation of new generation materials. Report XXI Mendeleev Congress on General and Applied Chemistry: in 6 vols. St. Petersburg, 2019, vol. 4, p. 24.
12. Boytsov A.G., Lyushinsky A.V., Baranov A.A. Friction stir welding of body parts made of high-strength aluminum alloys. Aviakosmicheskoe priborostroyenie, 2015, no. 7. pp. 3–11.
13. Boytsov A.G., Kachko V.V., Kuritsyn D.N. Friction stir welding. RITM: Remont. Innovatsii. Tekhnologii. Modernizatsiya, 2013, no. 10 (88), pp. 40–44.
14. Mishra R.S., Ma Z.Y. Friction stir welding and processing. Journal Material Science Engineering, 2005, vol. 50, pp. 1–78.
15. Poklyatsky A.G., Knysh V.V., Klochkov I.N., Motruchin S.I. Features and advantages of the process of friction stir welding of butt joints of thin-sheet aluminum-lithium alloys. Avtomaticheskaya svarka, 2016, no. 5, pp. 93–98. DOI: 10.15407/as2016.06.15.
16. Kachko V.V., Kuritsyn D.N., Boytsov A.G. Influence of technological factors of high-speed stir friction welding on the quality of the resulting joints. Vestnik MATI, 2012, is. 19 (91), pp. 156–162.
17. Popovich A.A., Panchenko O.V., Naumov A.A., Sviridov A.V., Skupov A.A., Sbitneva S.V. Friction stir welding of aluminum-lithium alloy V-1469-T. Aviacionnye materialy i tehnologii, 2019, no. 4 (57), pp. 11–17. DOI: 10.18577/2071-9140-2019-0-4-11-17.
18. Honeycombe R. Plastic deformation of metals. Moscow: Mir, 1972, 408 p.
19. Heywood R.B. Design for fatigue. Moscow: Mashinostroyenie, 1969, 503 p.
20. Chang B., Allen C., Blackburn J., Hilton P. Thermal and fluid flow characteristics and their relationships with porosity in laser welding of AA5083. Physics Procedia, 2013, vol. 41, pp. 478–487.
21. Method of laser friction stir welding: pat. RU2271908; appl. 19.07.01; publ. 20.03.03.
22. Bliznyuk V., Vasilyev L., Vul V. et al. The truth about supersonic passenger aircraft. Moscow: Moskovsky Rabochiy, 2000, 335 p.
23. Antipov V.V., Panteleev M.D., Sviridov A.V., Skupov A.A., Odintsov N.S. Heat-resistant aluminum alloys 1151 and B-1213 welded fuselage panels fabrication and testing. Trudy VIAM, 2023, no. 5 (123), paper no. 03. Available at: http://www.viam-works.ru (accessed: November 19, 2023). DOI: 10.18577/2307-6046-2023-0-5-33-42.
24. Terentyev V.F., Korableva S.A. Metal fatigue. Moscow: Nauka, 2015, 484 p.
25. Duyunova V.A., Volkova E.F., Uridiya Z.P., Trapeznikov A.V. Dynamics of the development of magnesium and cast aluminum alloys. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 225–241. DOI: 10.18577/2071-9140-2017-0-S-225-241.
26. Lukin V.I., Ioda E.N., Baseskin A.V., Lavrenchuk V.P., Kotelnikova L.V., Oglodkov M.S. Increasing the reliability of welded joints made of high-strength aluminum-lithium alloy V-1461. Svarochnoe proizvodstvo, 2010, no. 11, pp. 14–17.
27. Prasad N.E., Gokhale A.A., Wanhill R.J.H. Aluminum-Lithium Alloys. Processing, Properties, and Applications. Elsevier Inc., 2014, 571 p.
28. Skupov A.A., Panteleev M.D., Ioda E.N. Microstructure and mechanical properties of V-1579 and V-1481 laser welds. Trudy VIAM, 2017, no. 7 (55), paper no. 07. Available at: http://www.viam-works.ru (accessed: November 21, 2023). DOI: 10.18577/2307-6046-2017-0-7-7-7.
New type of the energy carrier include magnesium-ion batteries, which represents potentially more effective and ecologically safe alternative to existing storage technologies. The main types of anode, cathode and electrolyte materials for magnesium-ion batteries, ensuring efficient transfer of Mg2+ cations and possible cyclic durability, are considered. In the article advantages and disadvantages of this technology, its potential for application in different areas also are analyzed.
2. Emmanouil K. Reliability in the era of electrification in aviation: A systems approach. Microelectronics Reliability, 2020, vol. 114, pp. 77–82.
3. Kablov E.N. Aviation materials science in the 21st century. Prospects and objectives. Aviation materials. Selected works of VIAM 1932–2002. Moscow: MISIS – VIAM, 2002, pp. 23–47.
4. Kablov E.N. Modern materials – the basis of innovative modernization of Russia. Metally Evrazii, 2012, no. 3, pp. 10–15.
5. Salem K.A., Polaia G., Quarta A.A. Review of hybrid-electric aircraft technologies and designs: Critical analysis and novel solutions. Progress in Aerospace Sciences, 2023, vol. 141, pp. 89–113.
6. Liu Yu., Song Yu., Gao Z., Li L. Analysis of the immersion cooling of electric motors for hybrid aircraft. Progress Safety and Environmental Protection, 2023, vol. 178, pp. 404–416.
7. Gimenez F.R., Keutenedjian Mady C.E., Henriques I.B. Assessment of different more-electric and hybrid-electric configurations for long-range multi-engine aircraft. Journal of Cleaner Production, 2023, vol. 392, pp. 321–338.
8. Sziroczak D., Jankovics I., Gal I., Rohacs D. Conceptual design of small aircraft with hybrid-electric propulsion system. Energy, 2020, vol. 204, pp. 289–329.
9. Park J., Lee D., Lim D., Yee K. A refined sizing method of fuel cell-battery hybrid system for eVTOL aircraft. Applied Energy, 2022, vol. 328, pp. 232–249.
10. Xu R., Gao X., Chen Ya et al. Research advances of the electrolytes for rechargeable magnesium ion batteries. Materials Today Physics, 2023, no. 36, pp. 116–133.
11. Li R., Zhang R., Liu Q. et al. Bifunctional non-nucleophilic electrolyte enables long-life magnesium batteries via elimination of passive film on Mg anode. Chemical Engineering Journal, 2023, no. 462, pp. 67–81.
12. Moselhy M.A., Farrag M., Zhu Y., Sheha E. Probing the effect of ethylene carbonate on optimizing the halogen-free electrolyte performance for Mg sulfur batteries. Royal Society of Chemistry, 2023, no. 13, pp. 228–232.
13. Rashad M., Asif M., Ahmed I. et al. Quest for carbon and vanadium oxide based rechargeable magnesium-ion batteries. Journal of Magnesium and Alloys, 2020, vol. 8, pp. 364–373.
14. Dominko R., Bitenc J., Berthelot R. et al. Magnesium batteries: Current picture and missing pieces of the puzzle. Journal of Power Sources, 2020, no. 478, pp. 321–339.
15. Kablov E.N. Chemistry in aviation materials science. Rossiyskiy khimicheskiy zhurnal, 2010, vol. LIV, no. 1, pp. 3–4.
16. Bagotsky V.S. Basics of electrochemistry. Moscow: Khimiya, 1988, 400 p.
17. Fomina M.A., Volkov I.A., Vdovin A.I., Yamshchikov E.I. Study of protective capacity anodic oxide coating with environmental friendly improved filling technology. Aviation materials and technologies, 2023, no. 4 (73), paper no. 10. Available at: http://www.journal.viam.ru (accessed: January 16, 2024). DOI: 10.18577/2713-0193-2023-0-4-101-110.
18. Shi M., Li T., Shang H. et al. A critical review of inorganic cathode materials for rechargeable magnesium ion batteries. Journal of Energy Storage, 2023, no. 68, pp. 216–228.
19. Deivanayagam R., Ingram B.J., Shahbazian-Yassar R. Progress in development of electrolytes for magnesium batteries. Energy Storage Materials, 2019, no. 21, pp. 136–153.
20. Ma B., Ouyang L., Zheng J. Magnesium-rare earth intermetallic compounds for high performance high power aqueous Magnesium-Air batteries. Journal of Magnesium and Alloys, 2023, no. 4, рр. 76–90. DOI: 10.1016/j.jma.2023.06.010.
21. Lia Q., Xiong W., Yu M. et al. Effect of Ce content on performance of AZ31 magnesium alloy anode in air battery. Journal of Alloys and Compounds, 2021, vol. 891 (4), pp. 132–141. DOI:10.1016/j.jallcom.2021.161914.
22. Kablov E.N., Akinina M.V., Volkova E.F., Mostyaev I.V., Leonov A.A. The research of aspects of phase composition and fine structure of magnesium alloy ML9 in the as-cast and heat-treated conditions. Aviacionnye materialy i tehnologii, 2020, no. 2 (59), pp. 17–24. DOI: 10.18577/2071-9140-2020-0-2-17-24.
23. Miao X., Yang J., Pan W. et al. Graphite fluoride as a cathode material for primary magnesium batteries with high energy density. Electrochimica Acta, 2016, vol. 210, pp. 704–711.
24. Giraudet J., Claves D., Guerin K. et al. Magnesium batteries: towards a first use of graphite fluorides. Journal of Power Sources, 2007, vol. 173, is. 8, pp. 595–598.
25. Lee M., Jeong M., Nam Y.S. et al. Nitrogen-doped graphitic mesoporous carbon materials as effective sulfur imbibition hosts for magnesium-sulfur batteries. Journal of Power Sources, 2022, vol. 535, pp. 444–462.
26. Mana Y., Jaumaux P., Xu Y. et al. Research development on electrolytes for magnesium-ion batteries. Science Bulletin, 2023, no. 68, pp. 1819–1842.
27. Das A., Balakrishnan N.T.M., Sreeram P. et al. Prospects for magnesium ion batteries: A compreshensive materials review. Coordination Chemistry Reviews, 2024, vol. 502, pp. 118–129.
28. Higashi S., Miwa K., Aoki M., Takechi K. A novel inorganic solid-state ion conductor for rechargeable Mg batteries. ChemCommun, 2014, no. 50, pp. 1320–1322. DOI: 10.1039/c3cc47097k.
29. Yamanaka T., Hayashi A., Yamauchi A., Tatsumisago M. Preparation of magnesium ion conducting MgS–P2S5–MgI2 glasses by a mechanochemical technique. Solid State Ionics, 2014, no. 262, pp. 601–603. DOI: 10.1016/j.ssi.2013.10.037.
30. Halim Z.A., Adnan S.B.R.S., Mohamed N.S. Effect of sintering temperature on the structural, electrical and electrochemical properties of novel Mg0,5Si2(PO4)3 ceramic electrolytes. Ceramics International, 2016, no. 42, pp. 4452–4461.
31. Ikeda S., Takahashi M., Ishikawa J., Ito K. Solid electrolytes with multivalent cation conduction: 1. Conducting species in Mg–Zr–PO4 system. Solid State Ionics, 1987, no. 23, pp. 125–129.
32. Canepa P., Bo S.H., Sai Gautam G. et al. High magnesium mobility in ternary spinel chalcogenides. Nature Communications, 2017, no. 8, pp. 1759. DOI: 10.1038/s41467-017-01772-1.
33. Kotobuki M., Yan B., Lu L. Recent progress on cathode materials for rechargeable magnesium batteries. Energy Storage Materials, 2023, vol. 54, pp. 227–253.
34. Voronov V.A., Chaynikova A.S., Tkalenko D.M. Aspects of usage of organic or aqueous binders based on III or IV group elements oxides in the production of ceramic molds for chemically active alloys casting (review). Aviation materials and technologies, 2021, no. 2 (63), paper no. 08. Available at: http://www.journal.viam.ru (accessed: January 22, 2024). DOI: 10.18577/2713-0193-2021-0-2-73-84.
35. Zhang X., Li D., Ruan Q. et al. Vanadium-based cathode materials for rechargeable magnesium batteries. Materials Today Energy, 2023, no. 32, pp. 169–199.
36. Kozlov I.A., Vinogradov S.S., Tarasova K.G., Kulyushina N.V., Manchenko V.A. Plasma electrolytic oxidation of magnesium alloys (review). Aviacionnye materialy i tehnologii, 2019, no. 1 (54), pp. 23–36. DOI: 10.18577/2071-9140-2019-0-1-23-36.
37. Chen S., Fan S., Li H. et al. Recent advances in kinetic optimizations of cathode materials for rechargeable magnesium batteries. Coordination Chemistry Reviews, 2022, no. 466, pp. 4–15.
Polymer binders with an energy-efficient curing mode are compositions containing hardeners and curing accelerators that are capable of curing the polymer system at low temperatures (120–150 °C), with minimal time, while maintaining the increased strength and thermomechanical characteristics of PCM, derived from it. This paper presents a technology for the development of a polymer binder with selection of a curing system to obtain an epoxy composition with an energy-efficient curing mode as part of import substitution issues.
2. Veshkin E.A., Postnov V.I., Abramov P.A. Ways to improve the quality of PCM parts during vacuum forming. Izvestiya Samarskogo nauchnogo tsentra Rossiyskoy akademii nauk, 2012, vol. 14, no. 4 (3), pp. 831–838.
3. Postnova M.V., Postnov V.I. Development experience out-of-autoclave methods of formation PCM. Trudy VIAM, 2014, no. 4, paper no. 06. Available at: http://viam-works.ru (accessed: January 10, 2024). DOI: 10.18577/2307-6046-2014-0-4-6-6.
4. Khrulkov A.V., Grigoriev M.M. Prospects for the market for non-autoclave technologies in the aircraft industry. Reports conf. «Non-autoclave technologies for processing new generation polymer composite materials». Moscow: VIAM, 2015, paper no. 09.
5. Veshkin E.A. Technologies for non-autoclave molding of low-porosity polymer composite materials and large-sized structures made from them: thesis, Cand. Sc. (Tech.). Moscow, 2016, 146 p.
6 Trostyanskaya E.B., Mikhailin Yu.A., Kulik S.G., Stepanova M.A. Binders based on epoxy resins: textbook. Moscow, 1990, p. 27.
7. Kogan D.I., Chursova L.V., Panina N.N. et al. Promising polymer materials for structural composite products with energy-efficient molding mode. Plasticheskie massy, 2020, no. 3–4, pp. 52–54.
8. Ivanov N.V., Gurevich Ya.M., Khaskov M.A., Akmeev A.R. Studying of cure mode of VSE-34 binding and its influences on mechanical properties. Aviacionnye materialy i tehnologii, 2017, no. 2 (47), pp. 50–55. DOI: 10.18577/2071-9140-2017-0-2-50-55.
9. Mukhametov R.R., Petrova A.P. Thermosetting binders for polymer composite materials: textbook. Ed. E.N. Kablov. Moscow: NRC «Kurchatov Institute» – VIAM, 2021, p. 363.
10. Kablov E.N. Strategical Areas of Developing Materials and Their Processing Technologies for the Period up to 2030. Aviacionnye materialy i tehnologii, 2012, no. S, pp. 7–17.
11. Kablov E.N., Kondrashov S.V., Melnikov A.A., Schur P.A. Application of functional and adaptive materials obtained by 3D printing (review). Trudy VIAM, 2022, no. 2 (108), paper no. 03. Available at: http://www.viam-works.ru (accessed: November 20, 2023). DOI: 10.18577/2307-6046-2022-0-2-3-3.
12. Mishkin S.I., Malakhovskiy S.S. Fast curing resins and prepregs: receiving, properties and areas of application (review). Trudy VIAM, 2019, no. 5 (77), paper no. 04. Available at: http://viam-works.ru (accessed: November 10, 2023). DOI: 10.18577/2307-6046-2019-0-5-32-40.
13. Donetskiy K.I., Khrulkov A.V. Principles of «green chemistry» in perspective manufacturing technologies of PCM articles. Aviacionnye materialy i tehnologii, 2014, no. S2, pp. 24–28. DOI: 10.18577/2071-9140-2014-0-S2-24-28.
14. Bolshakov V.A., Antyufeeva N.V. Evaluation of the curing process model of the adhesive binder in prepreg. Aviation materials and technologies, 2023, no. 4 (73), paper no. 07. Available at: http://www.journal.viam.ru (accessed: November 25, 2023). DOI: 10.18577/2713-0193-2023-0-4-66-77.
15. Startsev V.O., Antipov V.V., Slavin A.V., Gorbovets M.A. Modern domestic polymer composite materials for aviation industry (review). Aviation materials and technologies, 2023, no. 2 (71), paper no. 10. Available at: http://www.journal.viam.ru (accessed: November 15, 2023). DOI: 10.18577/2713-0193-2023-0-2-122-144.
The review presents the features of fatigue crack propagation in composite materials (CM) based on aluminum alloys reinforced with silicon carbide (SiC) particles with different volume content under cyclic loading conditions. The influence of the volume content and size of SiC particles on the growth rate of a fatigue crack in CM under the action of cyclic loads is considered. The results of studying the influence of the CM structure on the growth rate and development of cracks during cyclic tests are presented.
2. Kablov E.N. Composites: today and tomorrow. Metally Evrazii, 2015, no. 1, pp. 36–39.
3. Kablov E.N. The key problem is materials. Trends and guidelines for innovative development of Russia. Moscow: VIAM, 2015, pp. 458–464.
4. Grashchenkov D.V. Strategy of development of non-metallic materials, metal composite materials and heat-shielding. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 264–271. DOI: 10.18577/2071-9140-2017-0-S-264-271.
5. Antipov V.V. Prospects for development of aluminium, magnesium and titanium alloys for aerospace engineering. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 186–194. DOI: 10.18577/2071-9140-2017-0-S-186-194.
6. Kosolapov D.V., Shavnev A.A., Kurbatkina E.I., Nyafkin A.N., Gololobov A.V. Study on structure and properties of dispersion hardened mmc based on aluminium alloy of Al–Mg–Si system. Trudy VIAM, 2020, no. 1 (85), paper no. 06. Available at: http://www.viam-works.ru (accessed: December 12, 2022). DOI: 10.18577/2307-6046-2020-0-1-58-67.
7. Shavnev A.A., Kurbatkina E.I., Nyafkin A.N., Kosolapov D.V. Technologies for manufacturing dispersion-strengthened metal composite material based on aluminum alloy (review). Materialovedenie, 2022, no. 4, pp. 42–48. DOI: 10.31044/1684-579X-2022-0-4-42-48.
8. Певчев Д.И., Горбовец М.А., Рыжков П.В., Курбаткина Е.И. Исследование характеристик прочности дисперсноупрочненного металлического композиционного материала марки ВКМ22. Trudy VIAM, 2021, no. 2 (96), paper no. 04. Available at: http://www.viam-works.ru (accessed: December 12, 2022). DOI: 10.18577/2307-6046-2021-0-2-30-38.
9. Milan M.T., Bowen P. Fatigue сrack growth resistance of SiCp reinforced Al alloys: effects of particle size, particle volume fraction, and matrix strength. Journal of Materials Engineering and Performance, 2004, vol. 13, pp. 612–618. DOI: 10.1361/10599490420638.
10. Mason J.J., Ritchie R.O. Fatigue crack growth resistance in SiC particulate and whisker reinforced P/M 2124 aluminum matrix composites. Materials Science and Engineering A, 1997, vol. 231, pp. 170–182. DOI: 10.1016/S0921-5093(97)00086-5.
11. Lia W., Liang H., Chen J. et al. Effect of SiC particles on fatigue crack growth behavior of SiC particulate-reinforced Al‒Si alloy composites produced by spray forming. Procedia Materials Science, 2014, vol. 3, pp. 1694–1699. DOI: 10.1016/j.mspro.2014.06.273.
12. Xu F.M., Zhu S.J., Zhao J.L. et al. Fatigue crack growth in SiC particulates reinforced Al matrix graded composite. Materials Science and Engineering A, 2003, vol. 360, pp. 191–196. DOI: 10.1016/S0921-5093(03)00397-6.
13. Uzun H., Lindley T.C., McShane H.B., Rawlings R.D. Fatigue crack growth behavior of 2124/SiC/10p functionally graded materials. Metallurgical and Materials Transactions A, 2001, vol. 32A, pp. 1831–1839. DOI: 10.1007/s11661-001-0159-x.
14. Chena Z.Z., Tokaji K. Effects of particle size on fatigue crack initiation and small crack growth in SiC particulate-reinforced aluminium alloy composites. Materials Letters, 2004, vol. 58, pp. 2314–2321. DOI: 10.1016/j.matlet.2004.02.034.
15. Li K., Jin X.D., Yan B.D., Li P.X. Effect of SiC particles on fatigue crack propagation in SiC/Al composites. Composites, 1992, vol. 23, no. 1, pp. 54–58. DOI: 10.1016/0010-4361(92)90286-4.
16. Bruzzi M.S., McHugh P.E. Micromechanical investigation of the fatigue crack growth behaviour of Al–SiC MMCs. International Journal of Fatigue, 2004, vol. 26, pp. 795–804. DOI: 10.1016/j.ijfatigue.2004.01.007.
17. Nyafkin A.N., Loshinin U.V., Kurbatkina E.I., Kosolapov D.V. Investigation of influence of silicon carbide fractional composition on thermal conductivity of composite material based on aluminium alloy. Trudy VIAM, 2019, no. 11 (83), paper no. 06. Available at: http://www.viam-works.ru (accessed: December 20, 2022). DOI: 10.18577/2307-6046-2019-0-11-53-59.
18. Erasov V.S., Oreshko E.I. Fatigue tests of metal materials (review). Part 1. Main definitions, loading parameters, representation of results of tests. Aviacionnye materialy i tehnologii, 2020, no. 4 (61), pp. 59–70. DOI: 10.18577/2071-9140-2020-0-4-59-70.
19. Andrew O.N., Joel O.O., Murray A.O., Eruke U.J. Effect of Compaction on Thermal Conductivity of Aluminium Powder. International Journal of Emerging Engineering Research and Technology, 2018, vol. 6, is. 2, pp. 1–5.
20. Verma R.K., Mahesh N.S., Anwar M.I. Numerical Analysis of Powder Compaction to Obtain High Relative Density in ‘601AB' Aluminum Powder. SasTech Journal, 2012, vol. 11, is. 1, pp. 79–84.
21. Sevostianov I., Kachanov M. Nanoparticle reinforced materials: Effect of interphase layers on the overall properties. International Journal of Solids and Structures, 2007, vol. 44, is. 3–4, pp. 1304–1315. DOI: 10.1016/j.ijsolstr.2006.06.020.
Information on the foreign hydroliquids applied in the territory of the Russian Federation in civil aviation is provided. Properties of foreign hydroliquids are given: Skydrol LD-4, Skydrol 500B-4, Nyjet-IV-Aplus, AeroShell Fluid 41, Mobil Aero HF, Hydraunycoil FH 51, ROYCO 756, Nycolube 934. Data on the Russian analogs are provided: working fluids 7-50C-3 and NGZh-5U, oils AMG-10 and MGE-10A. Characteristics of domestic hydroliquids in comparison with import analogs are provided. Information on available foreign patent researches is specified.
2. Kablov E.N. Strategical areas of developing materials and their processing technologies for the period up to 2030. Aviacionnye materialy i tehnologii, 2012, no. S, pp. 7–17.
3. Kablov E.N. Modern materials – the basis of innovative modernization of Russia. Metally Evrazii, 2012, no. 3, pp. 10–15.
4. Buznik V.M., Kablov E.N. State and prospects of Arctic materials science. Vestnik RAN, 2017, vol. 87, no. 9, pp. 827–839.
5. Kablov E.N. The role of chemistry in the creation of new generation materials for complex technical systems. Reports of XX Mendeleev Congress on General and Applied Chemistry. Ekaterinburg: UB of the RAS, 2016, pp. 25–26.
6. Buznik V.M., Kablov E.N. Technologies for obtaining and adapting materials for use in the Arctic. Reports of satellite conference «V International Conference-School on Chemical Technology» of the XX Mendeleev Congress on General and Applied Chemistry. Volgograd: VolgSTU, 2016, pp. 9–10.
7. Sukhotin A.M., Zotikov V.S., Kazankina A.F. et al. Non-flammable coolants and hydraulic fluids: guide. Leningrad: Khimiya, 1979, 235 p.
8. Konyaev E.A., Nemchikov M.L. Aviation fuels and lubricants: textbook. Moscow: MSTU GA, 2013, pp. 75–79.
9. Kablov E.N., Kutyrev A.E., Vdovin A.I., Kozlov I.A., Afanasyev-Khodykin A.N. The research of possibility of galvanic corrosion in brazed connections used in aviation engine construction. Aviation materials and technologies, 2021, no. 4 (65), paper no. 01. Available at: http://www.journal.viam.ru (accessed: September 25, 2023). DOI: 10.18577/2713-0193-2021-0-4-3-13.
10. Tarasova P.N., Sleptsova S.A., Laukkanen S., Dyakonov A.A. Sealing materials based on polytetrafluoroethylene for aviation products. Aviation materials and technologies, 2022, no. 1 (66), paper no. 05. Available at: http://www.journal.viam.ru (accessed: September 27, 2023). DOI: 10.18577/2713-0193-2022-0-1-51-64.
11. Kablov E.N., Bakradze M.M., Gromov V.I., Voznesenskaya N.M., Yakusheva N.A. New high strength structural and corrosion-resistant steels for aerospace equipment developed by FSUE «VIAM» (review). Aviacionnye materialy i tehnologii, 2020, no. (58), pp. 3–11. DOI: 10.18577/2071-9140-2020-0-1-3-11.
12. Vetrova E.Yu., Shchekin V.K., Kurs M.G. Comparative evaluation of methods for the determination of corrosion aggressivity of the atmosphere. Aviacionnye materialy i tehnologii, 2019, no. 1 (54), pp. 74–81. DOI: 10.18577/2071-9140-2019-0-1-74-81.
13. Laptev A.B., Barbotko S.L., Nikolaev E.V. The main research areas of the persistence properties of materials under the influence of climatic and operational factors. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 547–561. DOI: 10.18577/2071-9140-2017-0-S-547-561.
14. Vinogradov S.S., Nikiforov A.A., Dyomin S.A., Chesnokov D.V. Protection against corrosion of carbon steel. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 242–263. DOI: 10.18577/2071-9140-2017-0-S-242-263.
15. MIL-PRF-87257B (SENSYN 87257). Available at: https://sentinelcanada.com/hydraulic-fluid/mil-prf-87257b/ (accessed: November 20, 2023).
16. Aviation reference book AeroShell. Ed. 18. The AeroShell Book. Shell Aviation, 2003, pp. 194–200.
17. What Types of Hydraulic Fluids are Used in Aircraft? Available at: https://blog.brennaninc.com/what-types-of-hydraulic-fluids-might-you-find-in-an-aircraft (accessed: August 30, 2023).
18. Hydraulic fluid X/C 5606J Aviation. Available at: https://us-packaging.ru/phillips66-aviation/catalog/gidravlicheskie-masla/gidravlicheskaya-zhidkost-x-c-5606j-aviation/?ysclid=lpay
68fcj5586863736 (accessed: November 21, 2023).
19. Eastman Aviation Solutions. Available at: https://www.eastman.com/Literature_Center/
A/AFRUS009.pdf (accessed: November 21, 2023).
20. Fire-resistant aviation hydraulic fluid HyJet™ V. Available at: https://www.exxonmobil.com/ru-ru/aviation/pds/gl-xx-hyjet-v (accessed: November 21, 2023).
21. Sedova L.S., Dolgova E.V. Production of hydroliquids for aviation engineering in Russia (review) // Trudy VIAM, 2022, no. 8 (114), paper no. 05. Available at: http://www.journal.viam.ru (accessed: September 04, 2023). DOI: 10.18577/2307-6046-2022-0-8-65-76.
22. State Standard 20734–75. Working fluid 7-50С-3. Technical conditions. Moscow: Standards Publishing House, 1975, 4 p.
23. MOP-1313500-01–2021. Interindustry restrictive list of fuels, oils, lubricants, special liquids, conservation materials and additives permitted for use in weapons, military and special equipment. Moscow: 25 GosNII Khimmotologii of the Ministry of Defense of Russia, 2021, pp. 46–50. Available at: https://ens.mil.ru/files/MOP-2021.pdf (accessed: September 25, 2023).
24. State Standard 6794–2017. AMG-10 oil. Technical conditions. Moscow: Standartinform, 2019, 14 p.
25. Aviation lubricants, greases, fluids, oils & fuels. Available at: https://www.exxonmobil.com/en/aviation/products-and-services/products/hyjet-iv-a-plus (accessed: November 21, 2023).
26. Mobil Aero HF aviation hydraulic fluid: properties and characteristics. Available at: https://www.mobil.com/en-us/aviation/pds/gl-xx-mobil-aero-hf-series?ad=semD&an=msn_s&am=modifiedbroad&q=mil+h+5606+hydraulic+fluid&o=29593&qsrc=999&l=sem&askid=22e4232a-71aa-4021-bc7d-7a040b240feb-0-ab_msm (accessed: November 21, 2023).
27. Technical data sheet for hydraulic fluid Hydraunycoil FH 51. Available at: https://www.nyco-group.com/wp-content/uploads/TDS_Hydraunycoil_FH51RU_1E4.pdf (accessed: November 21, 2023).
28. Technical data sheet for mineral oil ROYCO® 756. Available at: https://www.aircraftspruce.com/catalog/pdf/Royco756.pdf (accessed: November 21, 2023).
29. Technical data sheet for hydraulic fluid Nycolube 934. Available at: https://www.nyco-group.com/wp-content/uploads/TDS_Nycolube_NL934_1E2.pdf (accessed: November 21, 2023).
30. Hydraulic fluid composition: pat. US 11053448B2; appl. 21.12.17; publ. 06.07.21.
31. Hydraulic fluids from renewable isoparaffins: pat. WO 2015/192072 A1; appl. 12.06.15; publ. 17.12.15.
32. Hydraulic fluid and fuel resistant sealants: pat. US 20190010370 A1; appl. 07.07.17; publ. 10.01.19.
33. Aviation synthetic hydraulic oil ASGIM. Available at: http://snp-gsm.ru/products/asgim/ (accessed: September 11, 2023).
A comprehensive assessment of the retention of strength properties of carbon fiber plastic of the VKU-59 brand under tension, compression, bending, interlayer shear at test temperatures of –60, +20, +80 and +105 °C was carried out in the initial state and after climatic influences in a tropical climate chamber for 1 and 3 months, heat and humidity aging for 1 and 3 months, thermal aging for 500 and 1000 hours. The influence of the mycological environment and process fluids on the tensile strength of carbon fiber reinforced plastic in bending and compression was studied. To confirm the viability, samples of VKU-59 carbon fiber plastic were tested in tension and compression after 3 months of storage.
2. Kablov E.N. New generation materials and digital technologies for their processing. Vestnik Rossiyskoy akademii nauk, 2020, vol. 90, no. 4, pp. 331–334.
3. Aviation materials: reference book in 13 vols. Ed. E.N. Kablov. 7th ed., proc. and add. Moscow: VIAM, 2019, vol. 10: Adhesives, sealants, rubbers, hydraulic fluids, part 1: Adhesives, adhesive prepregs. 276 p.
4. Kablov E.N., Startsev V.O. Systematical analysis of the climatics influence on mechanical properties of the polymer composite materials based on domestic and foreign sources (review). Aviacionnye materialy i tehnologii, 2018, no. 2 (51), pp. 47–58. DOI: 10.18577/2071-9140-2018-0-2-47-58.
5. Satdinov R.A., Veshkin E.A, Postnov V.I. Assessment of the impact of climatic factors on the performance properties of fiberglass VPS-42P/T-64. Trudy VIAM, 2020, no. 10 (92), paper no. 03. Available at: http://www.viam-works.ru (accessed: October 20, 2023). DOI: 10.18577/2307-6046-2020-0-10-21-29.
6. Gulyaev I.N., Zelenina I.V., Valevin E.O., Khaskov M.A. Influence of climatic ageing on the properties of high-temperature carbon fiber reinforced plastics. Trudy VIAM, 2021, no. 2 (96), paper no. 05. Available at: http://www.viam-works.ru (accessed: August 20, 2023). DOI: 10.18577/2307-6046-2021-0-2-39-51.
7. Borshchev A.V., Gusev Yu.A. Polymer composite materials in automotive industry. Aviacionnye materialy i tehnologii, 2014, no. S2, pp. 34–38. DOI: 10.18577/2071-9140-2014-0-s2-34-38.
8. Dementeva L.A., Serezhenkov A.A., Lukina N.F., Kutsevich K.E. Adhesive prepregs and layered materials on their basis. Aviacionnye materialy i tehnologii, 2013, no. 2, pp. 19–21.
9. Mishkin S.I. Application of carbon fiber plastics in constructions of pilotless devices (review). Trudy VIAM, 2022, no. 5 (111), paper no. 08. Available at: http://www.viam-works.ru (accessed: October 20, 2023). DOI: 10.18577/2307-6046-2022-0-5-87-95.
10. Mishkin S.I., Zhakova L.S., Klimenko O.N., Vasilchuk E.A. Research of influence of the contents resin in CFRP on their mechanical properties. Trudy VIAM, 2023, no. 2 (120), paper no. 07. Available at: http://www.viam-works.ru (accessed: October 20, 2023). DOI: 10.18577/2307-6046-2023-0-2-77-86.
11. Malakhovsky S.S., Panafidnikova A.N., Kostromina N.V., Osipchik V.S. Carbon plastics in the modern world: their properties and applications. Uspekhi v khimii i khimicheskoy tekhnologii, vol. XXXIII, 2019, no. 6, pp. 62–64.
12. Gulyaev A.I., Medvedev P.N., Sbitneva S.V., Petrov A.A. Experimental research of «fiber–matrix» adhesion strength in carbon fiber epoxy/polysulphone composite. Aviacionnye materialy i tehnologii, 2019, no. 4 (57), pp. 80–86. DOI: 10.18577/2071-9140-2019-0-4-80-86.
13. Veshkin E.A., Startsev V.O., Postnov V.I., Barannikov A.A. The climate impacts as the assessment of maintainability of products from carbon fiber. Trudy VIAM, 2019, no. 8 (80), paper no. 11. Available at: http://www.viam-works.ru (accessed: October 20, 2023). DOI: 10.18577/2307-6046-2019-0-8-98-108.
14. Starkov A.I., Kutsevich K.E., Petrova A.P., Antyufeeva N.V. Development of temperature and time curing regime for prepregs based on adhesive binder with reduced flammability. Trudy VIAM, 2023, no. 3 (121), paper no. 03. Available at: http://www.viam-works.ru (accessed: October 20, 2023). DOI: 10.18577/2307-6046-2023-0-3-29-38.
15. Dementyeva L.A., Lukina N.F., Serezhenkov A.A., Kutsevich K.E. Basic properties and purpose of PCM based on adhesive prepregs. Reports XIX Int. sci.-tech. conf. «Designs and technology for producing products from non-metallic materials». Obninsk: ONPP «Technology», 2010, pp. 11–12.
16. Petrova A.P., Malysheva G.V. Adhesives, adhesive binders and adhesive prepregs: textbook. Ed. E.N. Kablov. Moscow: VIAM, 2017, 472 p.
17. Perov N.S. Design of polymeric materials on the molecular principles. II. The molecular mobility in the cross-linked complex systems. Aviacionnye materialy i tehnologii, 2017, no. 4 (49), pp. 30–36. DOI: 10.18577/2071-9140-2017-0-4-30-36.
18. Laptev A.B., Barbotko S.L., Nikolaev E.V. The main research areas of the persistence properties of materials under the influence of climatic and operational factors. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 547–561. DOI: 10.18577/2071-9140-2017-0-S-547-561.
19. Kutsevich K.E., Tyumeneva T.Yu., Petrova A.P. Influence of fillers on properties of adhesive prepregs and PCM on their basis. Aviacionnye materialy i tehnologii, 2017, no. 4 (49), pp. 51–55. DOI: 10.18577/2071-9140-2017-0-4-51-55.
20. Isaev A.Yu., Rubtsova E.V., Kotova E.V., Sutyagin M.N. Research of properties of glues and glue binding, made with use of modern domestic component base. Trudy VIAM, 2021, no. 3 (97), paper no. 05. Available at: http://www.viam-works.ru (accessed: October 18, 2023). DOI: 10.18577/2307-6046-2021-0-3-58-67.
21. Lukina N.F., Petrova A.P., Muhametov R.R., Kogtyonkov A.S. New developments in the field of adhesive aviation materials. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 452–459. DOI: 10.18577/2071-9140-2017-0-s-452-459.
22. Malysheva G.V., Grashchenkov D.V., Guzeva T.A. Evaluation of technological use efficiency of adhesives and glue prepregs in the manufacture of three-layer panels. Aviacionnye materialy i tehnologii, 2018, no. 4 (53), pp. 26–30. DOI: 10.18577/2071-9140-2018-0-4-26-30.
The comparative characteristics of modern semiconductor materials, the basic electrophysical properties of the applied silicon carbide polytypes, and the possibilities of using silicon carbide semiconductors in microelectronic devices are presented. The most common methods for producing silicon carbide crystals are considered, which are growing crystals from a melt, sublimation and chemical vapor deposition.
2. Kablov E.N., Semenova S.N., Suleymanov R.R., Chaykun A.М. Prospects for the use of ethylene-propylene-diene rubber as part of cold resistant rubber. Trudy VIAM, 2019, no. 12 (84), paper no. 04. Available at: http://www.viam-works.ru (accessed: December 18, 2023). DOI: 10.18577/2307-6046-2019-0-12-29-36.
3. Kablov E.N., Valueva M.I., Zelenina I.V., Khmelnitskiy V.V., Aleksashin V.M. Carbon plastics based on benzoxazine oligomers – perspective materials. Trudy VIAM, 2020, no. 1 (85), paper no. 07. Available at: http://www.viam-works.ru (accessed: December 18, 2023). DOI: 10.18577/2307-6046-2020-0-1-68-77.
4. She X., Huang A., Lucia O. et al. Review of silicon carbide power devices and their applications. IEEE Transactions on Industrial Electronics, 2017, vol. 64, pp. 8193–8205.
5. Maddi H., Yu S., Zhu S. et al. The road to a robust and affordable SiC power MOSFET technology. Energies, 2021, vol. 14, p. 8283.
6. Harris G. Properties of silicon carbide. INSPEC. Institution of Electrical Engineers, 1995, p. 118.
7. Davis R., Kelner G., Shur M. et al. Thin film deposition and microelectronic and optoelectronic device fabrication and characterization in monocrystalline alpha and beta silicon carbide. Proceedings of the IEEE, 1991, vol. 79, pp. 677–701.
8. Kimoto T. Material science and device physics in SiC technology for high-voltage power devices. Japanese Journal of Applied Physics, 2015, vol. 54, p. 040103.
9. Cooper J., Agarwal A. SiC Power-Switching Devices – The Second Electronics Revolution? Proceedings of the IEEE, 2002, vol. 90, pp. 956–968.
10. Pensl G., Clobanu F., Frank T. et al. SiC material properties. International Journal of High Speed Electronics and Systems, 2005, vol. 4, pp. 705–745.
11. Bechstedt F., Käckell P., Zywietz A. et al. Polytypism and Properties of Silicon Carbide. Physica Status Solidi, 1997, vol. 202, pp. 35–62.
12. Powell A., Rowland L. SiC Materials – progress, status, and potential roadblocks. Proceedings of the IEEE, 2002, vol. 90, pp. 942–955.
13. Elasser A., Chow T. Silicon carbide benefits and advantages for power electronics circuits and systems. Proceedings of the IEEE, 2002, vol. 90, pp. 969–986.
14. Friedrichs P. Silicon carbide power-device products – Status and upcoming challenges with a special attention to traditional, nonmilitary industrial applications. Physica Status Solidi, 2008, vol. 245, pp. 1232–1238.
15. Liu L., Wu J., Ren N. 1200-V 4H–SiC merged p-i-n Schottky diodes with high avalanche capability. IEEE Transactions on Electron, 2020, vol. 67, pp. 3679–3684.
16. Li P., Guo J., Lin Z. A Power MOSFET with P-base Schottky diode and built-in channel diode for fast reverse recovery. IEEE Journal of the Electron Devices Society, 2021, vol. 9, pp. 300–305.
17. Rodriguez G.A., Gill L., Mueller J.A. Cascaded SiC JFET topology for high-voltage solid-state circuit breaker applications. IEEE Transactions on Industry Applications, 2022, vol. 59, pp. 2326–2339.
18. Agamy M., Tao F., Elasser A. High speed medium voltage SiC thyristors for pulse power applications. IEEE Transactions on Industry Applications, 2021, vol. 57, pp. 3812–3821.
19. Hofmann D., Muller M. Prospects of the use of liquid phase techniques for the growth of bulk silicon carbide crystals. Materials Science and Engineering, 1999, vol. 61, рр. 29–39.
20. Syväyärvi M., Yakimova R., Radamson H.H. et al. Liquid phase epitaxial growth of SiC. Journal of Crystal Growth, 1999, vol. 197, pp. 147–154.
21. Kamei K., Kusunoki K., Yashiro N. et al. Solution growth of single crystalline 6H, 4H–SiC using Si–Ti–C melt. Journal of Crystal Growth, 2009, vol. 311, pp. 855–858.
22. Yamamoto Y., Harada S., Seki K. et al. High-efficiency conversion of threading screw dislocations in 4H–SiC by solution growth. Applied Physics Express, 2012, vol. 5, pp. 5501–5504.
23. Danno K., Shirai T., Seki A. et al. Solution growth on 4H–SiC (1100) for lowering density of threading dislocations. Presented at 15th International Conference on Defects Recognition, Imaging and Physics in Semiconductors. Warsaw, 2013, p. 235.
24. Lely J. Darstellung voneinkristallen von silicium carbide und beherrschung von art und menge der eingebauten verunreinigungen. Berichte der deuchen keramischen gesellschaft, 1955, vol. 32, pp. 229–236.
25. Tairov Y., Tsvetkov V. General principles of growing large-size single crystals of various silicon carbide polytypes. Journal of Crystal Growth, 1981, vol. 52, pp. 146–150.
26. Jokubavicius V., Sun J., Liu X. et al. Growth optimization and applicability of thick on-axis SiC layers using sublimation epitaxy in vacuum. Journal of Crystal Growth, 2016, vol. 478, pp. 159–162.
27. Burk A., Rowland L. Homoepitaxial VPE growth of SiC active layers. Physica Status Solidi, 1997, vol. 202, pp. 263–279.
28. Kimoto T., Itoh A., Matsunami H. Step-controlled epitaxial growth of high-quality SiC layers. Physica Status Solidi, 1997, vol. 202, pp. 247–262.
29. Rupp R., Makarov Y., Behner H., Wiedenhofer A. Silicon carbide epitaxy in a vertical CVD reactor: experimental results and numerical process simulation. Physica Status Solidi, 2005, vol. 202, pp. 281–304.
30. Landini B.E., Brandes G.R. Characteristics of homoepitaxial 4H–SiC films grown on c-axis substrates offcut towards <1100> or <1120>. Applied Physics Letters, 1999, vol. 74, pp. 2632–2634.
31. Kordina O., Hallin C., Henry A. et al. Growth of SiC by «Hot-Wall» CVD and HTCVD. Physica Status Solidi, 1997, vol. 202, pp. 321–334.
32. Henry A., Hassan J., Bergman J.P. et al. Thick silicon carbide homoepitaxial layers grown by CVD techniques. Chemical Vapor Deposition, 2006, vol. 12, pp. 475–482.
33. La Via F., Izzo G., Mauceri M. et al. 4H–SiC epitaxial layer growth by trichlorosilane (TCS). Journal of Crystal Growth, 2008, vol. 311, pp. 107–113.
34. Hagasawa H., Yagi K., Kawahara T. et al. Hetero- and homo-epitaxial growth of 3C–SiC for MOS-FETs. Microelectronic Engineering, 2006, vol. 83, pp. 185–188.
35. Ellison A., Zhang J., Henry A., Janzén E. Epitaxial growth of SiC in a chimney CVD reactor. Journal of Crystal Growth, 2002, vol. 236, pp. 225–238.
36. Latha H., Udayakumar A., Prasad V. Microstructure and electrical properties of nitrogen doped 3C–SiC thin films deposited using methyltrichlorosilane. Materials Science in Semiconductor Processing, 2015, vol. 29, pp. 117–123.
37. Ellison A., Zhang J., Peterson J. et al. High temperature CVD growth of SiC. Materials Science and Engineering, 1999, vol. 62, pp. 113–120.
38. Kito Y., Makino E., Ikeda K. et al. SiC HTCVD simulation modified by sublimation etching. Materials Science Forum, 2006, vol. 527–529, pp. 107–110.
39. Fanton M., Snyder D., Weiland B. et al. Growth of nitrogen-doped SiC boules by halide chemical vapor deposition. Journal of Crystal Growth, 2006, vol. 287, pp. 359–362.
40. Sidorov D.V., Shavnev A.A., Melentev A.A. Formation of silicon carbide coatings by chemical vapor deposition (review). Part 2. Trudy VIAM, 2022, no. 2 (108), paper no. 07. Available at: http://www.viam-works.ru (accessed: December 18, 2023). DOI: 10.18577/2307-6046-2022-0-2-88-89.
The effectiveness of using organic silicon enamels of various grades for anticorrosive protection of welded connections steels VNS-2 and VNS-5 working at high temperatures has been studied. The assessment of properties of coatings on the basis of organic silicon enamels after exposure to salt spraying, humidity, sign-variable temperatures is carried out. By results of the study the most effective enamels providing reliable protection of steels in difficult operating conditions are chosen.
2. Kablov E.N., Bakradze M.M., Gromov V.I., Voznesenskaya N.M., Yakusheva N.A. New high strength structural and corrosion-resistant steels for aerospace equipment developed by FSUE «VIAM» (review). Aviacionnye materialy i tehnologii, 2020, no. 1 (58), pp. 3–11. DOI: 10.18577/2071-9140-2020-0-1-3-11.
3. Kablov E.N. The key problem is materials. Trends and guidelines for innovative development of Russia. Moscow: VIAM, 2015, pp. 458–464.
4. Oglodkov M.S., Romanenko V.A., Benarieb I., Rudchenko A.S., Grigoryev M.V. Study of industrial semi-finished products from advanced aluminum-lithium alloys for aircraft products. Aviation materials and technologies, 2023, no. 3 (72), paper no. 05. Available at: http://www.journal.viam.ru (accessed: December 11, 2023). DOI: 10.18577/2713-0193-2023-0-3-62-77.
5. Kolobkov A.S., Malakhovskiy S.S. Self-healing composite materials (review). Trudy VIAM, 2019, no. 1 (73), paper no. 06. Available at: http://www.viam-works.ru (accessed: December 15, 2023). DOI: 10.18577/2307-6046-2019-0-1-47-54.
6. Benarieb I., Antipov V.V., Khasikov D.V., Oglodkov M.S., Savichev I.D., Kuznetsova P.E. Study of structure and properties of sparinly alloyed aluminum alloy of Al–Mg–Sc–Zr system produced by selective laser melting. Aviation materials and technologies, 2023, no. 4 (73), paper no. 03. Available at: http://www.journal.viam.ru (accessed: December 11, 2023). DOI: 10.18577/2713-0193-2023-0-4-23-35.
7. Popova L.S., Potak Ya.M., Voznesenskaya N.M., Trantsevich Ya.V. High-strength steel VNS-5 for critical parts. Aviatsionnaya promyshlennost, 1968, no. 4, pp. 57–58.
8. Voznesenskaya N.M., Kablov E.N., Petrakov A.F., Shalkevich A.B. High-strength corrosion-resistant steels of the austenitic-martensitic class. Metallovedenie i termicheskaya obrabotka metallov, 2002, no. 7, pp. 34–37.
9. Gromov V.I., Voznesenskaya N.M., Pokrovskaya N.G., Tonysheva O.A. High-strength constructional and corrosion-resistant steels developed by VIAM for aviation engineering. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 159–174. DOI: 10.18577/2071-9140-2017-0-S-159-174.
10. Kondrashov E.K., Malova N.E., Vereninova N.P. Anti-corrosion welding compounds for the protection of lap welded joints of aluminum alloys and steels. Korroziya: materialy, zashchita, 2015, no. 6, pp. 6–12.
11. Kondrashov E.K. Paints and varnishes and coatings based on them in mechanical engineering. Moscow: Paint-Media, 2021, 256 p.
12. Molotova V.A. Industrial application of organosilicon paint and varnish coatings. Moscow: Khimiya, 1978, 112 p.
13. Kablov E.N. Armor for Buran. VIAM materials and technologies for the ISS «Energia – Buran». Moscow: VIAM, 2013, 128 p.
14. Kablov E.N. Formation of domestic space materials science. Vestnik Rossiyskogo fonda fundamentalnykh issledovaniy, 2017, no. 3 (95), pp. 97–105.
15. Kablov E.N. Without new materials there is no future. Metallurg, 2013, no. 12, pp. 4–8.
16. Gofin M.Ya. Heat-resistant and heat-protective structures of reusable aerospace vehicles. St. Petersburg: TF «Mir», 2003, 671 p.
Heat-resistant alloys and steels
Bazyleva O.A., Rimsha E.G., Chabina E.B., Raevskikh A.N.Some aspects of creation and research of structural casting intermetallide alloys for promising helicopter engines
Light-metal alloys
Yashin M.S., Bazhenov A.R.Investigation of thermomechanical parameters of deformation and mechanical properties depending on conditions of deformation of titanium alloy VT30
Panteleev M.D., Sviridov A.V., Odintsov N.S., Bondarenko S.V.Survivability of welded fuselage elements made of heat-resistant aluminum alloys V-1213 and 1151
Leonov A.A., Trofimov N.V.Magnesium ion batteries: prospects and challenges in the field of energy
Polymer materials
Guseva M.A., Ibragimov Z.D.Selection of curing system when developing epoxy compositions with energy-efficient curing mode
Composite materials
Nyafkin A.N., Zhabin A.N., Avtaev V.V.Сracks рropagation in composite materials of the Al–SiC system under cyclic loads
Sedova L.S., Shestakov A.M.Foreign hydroliquids, applied in civil aviation of the Russian Federation
Starkov A.I., Isaev A.Yu., Kutsevich K.E.Comprehensive assessment of the impact of operational and climatic tests on the change of strength properties of polymer composite materials based on adhesive prepregs. Рart 1. Сarbon fiber-reinforced plastic VKU-59
Protective and functional
coatings
Sidorov D.V., Grunin A.A., Schavnev A.A.Implementation of technology for chemical vapor deposition of silicon carbide in electronics. Part 1
Kondrashov E.K., Kozlova A.A. Efficiency of anticorrosive protection by organic silicon enamels of welded connections of VNS-2 and VNS-5 steels