Articles
Mechanical properties of nickel superalloys for gas-turbine engine disks depends on the size, morphology and character of the distribution γʹ-phase in the γ-solid solution, after complete heat treatment.
During the heat treatment of large-sized disk forgings, the cooling conditions during quenching in thin and massive sections of forgings can differ greatly, which will lead to an inhomogeneous distribution of the γʹ strengthening particles through volume of the workpiece and reduce the mechanical properties. This paper is presented the features of the formation of γ strengthening particles in VZh175-ID heat-resistant wrought nickel superalloy during aging, depending on the cooling rate during quenching.
Quantitative analysis of secondary and tertiary γʹ-phase in VZh175-ID superalloy after quenching with cooling rates of 340 and 58°C/min and subsequent aging for 10 hours at various temperatures is carried out. For each state, microstructures and histograms of the distribution of secondary γʹ-phase are given. The changes in the average size of the secondary g¢-phase for each cooling rate during quenching and the aging temperature are shown. The dependence of the yield strength at 20°C with the size of the tertiary phase is shown. The results of stress to rupture tests at temperature of 650°C of the samples after quenching with cooling rate of 340°C/min and aging at different temperatures are presented.
The results of this study are shown that the excellent strengthening effect in the VZh175-ID nickel superalloy is achieved in the case of rapid cooling from the quenching temperature and subsequent aging at temperatures below or near the γʹ-phase dissolution start temperature.
2. Kablov E.N. Materialy novogo pokoleniya [Generation Materials] // Zashchita i bezopasnost. 2014. №4. S. 28–29.
3. Kablov E.N., Alekseyev A.A. Fizika zharoprochnosti geterofaznykh splavov [Physics of heat resistance of heterophase alloys] // Liteynyye zharoprochnyye splavy. Effekt S.T. Kishkina. M.: Nauka, 2006. S. 44–55.
4. Reed R.C. The Superalloys fundamentals and applications // Cambridge university press. 2006. P. 73–81.
5. Kozar R.W., Suzuki A., Milligan W.W. et al. Strengthening Mechanisms in Polycrystalline Multimodal Nickel-Base Superalloys // Metallurgical and materials transactions A. 2009. Vol. 40. Issue 7. P. 1588–1603.
6. Gabb T.P., Backman D.G., Wei D.Y. et al. yʹ formation in nickel-base disk superalloy // Superalloys-2000. The Minerals, Metals & Materials Society, 2000. P. 405–414.
7. Jackson M.P., Reed R.C. Heat treatment of UDIMET 720Li: the effect of microstructure on properties // Materials Science and Engineering A. 1999. Vol. 259. P. 85–97.
8. Groh J.R. Effect of cooling rate from solution heat treatment on Waspaloy microstructure and properties // Superalloys-1996. The Minerals, Metals & Materials Society, 1996. P. 621–626.
9. Mao J., Chang K.M., Yang W. et al. Cooling precipitation and strengthening study in powder metallurgy superalloy Rene 88DT // Materials Science and Engineering. 2002. Vol. A332. P. 318–329.
10. Bhowal P.R., Wright E.F., Raymond E.L. Effects of Cooling Rate and Morphology on Creep and Stress-Rupture Properties of a Powder Metallurgy Superalloy // Metallurgical Transactions A. 1990. Vol. 21A. Issue 6. P. 1709–1717.
11. Mao J., Chang K.M., Yang W. et al. Cooling precipitation and strengthening study in powder metallurgy superalloy U720LI // Metallurgical and materials transaction A. 2001.Vol. 32. Issue 10. P. 2441–2452.
12. Perrut M., Locq D. ʹ precipitation kinetics in the powder metallurgy superalloy N19 and influence of the precipitation latent heat // MATEC Web of Congerences. 2014. Available at: https://www.matec-conferences.org/ (accessed: August 25, 2019). DOI: 10.1051/matecconf/20141409004.
13. Letnikov M.N., Lomberg B.S., Ospennikova O.G., Bakradze M.M. Vliyaniye skorosti okhlazhdeniya pri zakalke na mikrostrukturu i svoystva zharoprochnogo deformiruyemogo nikelevogo splava VZH175-ID [influence of quench rate on microstructure and mechanical properties of nickel-based wrought superalloy VZh175-ID] // Aviacionnye materialy i tehnologii. 2019. №2 (55). S. 21–30. DOI: 10.18577/2071-9140-2019-0-2-21-30.
14. Baillif P., Lamesle P., Delagnes D. et al. Influence of the quenching rate and step-wise cooling temperatures on microstructural and tensile properties of PER72 Ni-based superalloy. Available at: https://www.matec-conferences.org (accessed: August 25, 2019). DOI: 10.1051/matecconf/20141421002.
15. Xu C., Liu F., Huang L., Jiang. L. Dependance of creep performance and microstructure evolution on solution cooling rate in a polycrcystalline superalloy // Metals. 2018. Vol. 8. Issue 1. Available at: www.mdpi.com/jornal/metals (accessed: August 25, 2019). DOI: 10.3390/met8010004.
16. Gabb T.P., Garg A., Ellis D.L., OʹConnor K.M. Detailed microstructural characterization of the disk alloy ME3. Available at: https://ntrs.nasa.gov (accessed: August 25, 2019).
17. Mitchell R.J., Hardy M., Preuss M., Tin S. Development of ʹ morfology in P/M rotor disc alloys during heat treatment // Superalloys 2004. The Minerals, Metals & Materials Society, 2004. P. 361–370.
18. Mitchell R.J., Preuss M. Inter-Relationships between Composition, ʹ Morphology, Hardness, and -ʹ Mismatch in Advanced Polycrystalline Nickel-Base Superalloys during Aging at 800°C // Metallurgical and Materials Transactions A. 2007. Vol. 38A. P. 615–627.
19. Mitchell R.J., Preuss M., Tin S., Hardy M. The influence of cooling rate from temperatures above yʹ solvus on morphology, mismatch and hardness in advanced polycrystalline nickel-base superalloys // Materials Science and Engineering A. 2008. Vol. 473. Issues 1–2. P. 158–165.
20. Lomberg B.S., Ovsepyan S.V., Bakradze M.M. Novyy zharoprochnyy nikelevyy splav dlya diskov gazoturbinnykh dvigateley (GTD) i gazoturbinnykh ustanovok (GTU) [New heat-resistant nickel alloy for disks of gas turbine engines (GTE) and gas turbine units (GTU)] // Materialovedeniye. 2010. №7. S. 24–28.
21. Lomberg B.S., Ovsepyan S.V., Bakradze M.M., Mazalov I.S. Vysokotemperaturnye zharo-prochnye nikelevye splavy dlya detalej gazoturbinnyh dvigatelej [High-temperature heat resisting nickel alloys for details of gas turbine engines] // Aviacionnye materialy i tehnologii. 2012. №S. S. 52–57.
22. Kablov E.N. VIAM: materialy novogo pokoleniya dlya PD-14 [VIAM: new generation materials for PD-14] // Krylya Rodiny. 2019. №7–8. S. 54–58.
23. Belyaev M.S., Terentev V.F., Gorbovec M.A., Bakradze M.M., Goldberg M.A. Malociklovaya ustalost pri zadannoj deformacii i parametry uprugoplasticheskogo deformirovaniya zharoprochnogo splava VZh175 [Low-cycle fatigue for a given deformation and parameters of elastic-plastic deformation of superalloy VZh175] // Aviacionnye materialy i tehnologii. 2014. №S4. S. 87–92. DOI: 10.18577/2071-9140-2014-0-s4-87-92.
24. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
25. Chen Y., Prasath R., Slater T.J.A. et al. An investigation of diffusion – mediated cyclic coarsening and reversal coarsening in an advanced Ni-based superalloy // Acta Materialia. 2016. Vol. 110. P. 295–305.
26. Goodfellow A.J., Galindo-Nava E.I., Christofidou K.A. et al. Gamma Prime Precipitate Evolution During Aging of a Model Nickel-Based Superalloy // Metallurgical and materials transaction A. 2018. Vol. 49A. P. 718–728. Available at: http://www.link.springer.com (accessed: August 25, 2019). DOI: 10.1007/s11661-017-4336-y.
Single-crystal turbine blades made of Nickel heat-resistant alloys are very sensitive to the degree of structural perfection. The quality of the structure of the single crystal has an impact on the strength and plastic characteristics of the products from the nickel-base superalloy and is the most important technological criterion that determines the yield of usable products and its cost. The article compares the possibilities of two x-ray methods of mass control – the method of swing on the DRON-4 diffractometer and the method of Laue on the installation of PRDU in relation to assessing the quality of the structure of single-crystal castings.
The standard slit of the diffractometer DRON-4. allow the production of turbine engine blades to test the priming, growth cones and samples for mechanical testing of different geometric sizes. In the absence of blocks (subgrains), both x-ray methods give almost the same result of the measurement of the axial component of the crystallographic orientation, i.e., the deviation of the given crystallographic direction from the optical axis of the device combined with the investigated direction in the sample; shooting of one sample takes approximately the same time. Therefore, both methods can be used for mass control of the size of the crystallographic orientation of the seed needed to obtain a single-crystal structure of the blades, growth cones and samples of nickel-base superalloy.
When a block substructure is detected at the stage of visual inspection of growth cones, it is necessary to determine the axial component of the block misdirection by the "swing" method on an x-ray diffractometer of the DRON- type. Provided that the axial component of the disorientation does not exceed the required technical conditions, the casting can be further tested by Laue. This will allow us to determine the azimuthal orientation
2. Kablov E.N., Sidorov V.V., Kablov D.E., Min P.G. Metallurgicheskie osnovy obespecheniya vysokogo kachestva monokristallicheskih zharoprochnyh nikelevykh splavov [The metallurgical fundamentals for high quality maintenance of single crystal heat-resistant nickel alloys] // Aviacionnye materialy i tehnologii. 2017. №S. S. 55–71. DOI: 10.18577/2071-9140-2017-0-S-55-71.
3. Tolorayya V.N., Kablov E.N., Demonis I.M. Tekhnologiya polucheniya monokristallicheskikh otlivok turbinnykh lopatok GTD zadannoy kristallograficheskoy oriyentatsii iz reniysoderzhashchikh zharoprochnykh splavov [The technology for producing single-crystal castings of turbine engine turbine blades of a given crystallographic orientation from rhenium-containing heat-resistant alloys] // Liteynye zharoprochnyye splavy. Effekt S.T. Kishkina. M.: Nauka, 2006. S. 206–219.
4. Kablov E.N., Bondarenko Yu.A., Kablov D.E. Osobennosti struktury i zharoprochnyh svojstv monokristallov <001> vysokorenievogo nikelevogo zharoprochnogo splava, poluchennogo v usloviyah vysokogradientnoj napravlennoj kristallizacii [Features of structure and heat resisting properties of monocrystals of <001> high-rhenium nickel hot strength alloys received in the conditions of high-gradient directed crystallization] // Aviacionnye materialy i tehnologii. 2011. №4. S 25–31.
5. Kablov E.N., Bondarenko Yu.A., Echin A.B. Issledovaniye vliyaniya peremennogo upravlyayemogo temperaturnogo gradiyenta na osobennosti struktury, fazovyy sostav, svoystva vysokotemperaturnykh zharoprochnykh splavov pri ikh napravlennoy kristallizatsii [Investigation of the influence of a variable controlled temperature gradient on structural features, phase composition, and properties of high-temperature heat-resistant alloys during their directed crystallization] // Vestnik MGTU im. N.E. Baumana. Ser.: Mashinostroyeniye. 2016. №6 (111). S. 43–61.
6. Toloraya V.N., Kablov E.N., Svetlov I.L., Orekhov N.G., Golubovskiy E.R. Anizotropiya prochnostnykh kharakteristik monokristallov nikelevykh zharoprochnykh splavov [Anisotropy of the strength characteristics of single crystals of nickel heat-resistant alloys] // Gornyy informatsionno-analiticheskiy byulleten. 2005. Spetsvypusk. S. 225–236.
7. Toloraya V.N., Kablov E.N., Orekhov N.G., Ostroukhova G.A. Struktura i rostovyye defekty monokristallov nikelevykh zharoprochnykh splavov [Structure and growth defects of single crystals of heat-resistant nickel alloys] // Gornyy informatsionno-analiticheskiy byulleten. 2005. Spetsvypusk. S. 190–202.
8. Nazarkin R.M., Kolodochkina V.G., Ospennikova O.G., Orlov. M.R. Izmeneniya mikrostruktury monokristallov zharoprochnyh nikelevyh splavov v processe dlitelnoj ekspluatacii turbinnyh lopatok [The microstructure modifications of single crystals of Ni-based superalloys in time-tested turbine blades] // Aviacionnye materialy i tehnologii. 2016. №4 (45). S. 9–17. DOI: 10.18577/2071-9140-2016-0-4-9-17.
9. Nazarkin R.M. Rentgenodifrakcionnye metodiki precizionnogo opredeleniya parametrov kristallicheskih reshetok nikelevyh zharoprochnyh splavov (kratkij obzor) [X-ray diffraction techniques for precise determination of lattice constants in Ni-based superalloys: a brief review] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 41–48. DOI: 10.18577/2071-9140-2015-0-1-41-48
10. Khayutin S.G. O razoriyentatsii zeren pri napravlennoy kristallizatsii [On the disorientation of grains in directed crystallization] // Metallovedeniye i termicheskaya obrabotka metallov. 2007. №6. S. 42–43.
11. Sidokhin E.F., Sidokhin F.A., Khayutin S.G. O substrukture monokristallicheskikh lopatok GTD [About the substructure of single-crystal GTE blades] // Aviatsionnaya promyshlennost. 2009. №1. S. 34–36.
12. Sidokhin F.A., Sidokhin A.F., Sidokhin E.F. Ob opredelenii kristallograficheskoy oriyentatsii monokristallov metodom Laue [On the determination of the crystallographic orientation of single crystals by the Laue method] // Zavodskaya laboratoriya. Diagnostika materialov. 2009. T. 75. №1. S. 35–37.
13. Lisoyvan V.I., Zadneprovskiy G.M. K metodike opredeleniya oriyentatsii kristallograficheskoy ploskosti v monokristalle na difraktometre [On the methodology for determining the orientation of the crystallographic plane in a single crystal on a diffractometer] // Apparatura i metody rentgenovskogo analiza. 1969. Vyp. 4. S. 64–70.
14. Kheyker D.M. Rentgenovskaya difraktometriya monokristallov [X-ray diffractometry of single crystals]. L.: Mashinostroyeniye, 1973. 256 s.
15. Potrakhov N.N., Khayutin S.G., Lifshits V.A., Oses R. Ustanovka PRDU-KROS dlya ekspressnogo opredeleniya kristallograficheskoy oriyentatsii kubicheskikh monokristallov po obratnym lauegrammam [Installation of PRDU-CROS for the express determination of the crystallographic orientation of cubic single crystals by inverse lauegrams] // Zavodskaya laboratoriya. Diagnostika materialov. 2015. T. 81. №8. S. 27–30.
16. Oses R., Lifshits V.A., Potrakhov E.N., Potrakhov N.N. Programma rasshifrovki obratnykh lauegramm GTSK-monokristallov dlya opredeleniya kristallograficheskoy oriyentatsii obraztsov (KGO-analiz): svid. o gos. reg. Programmy dlya EVM. №201164448 [The decoding program for the inverse lauagrams of fcc single crystals to determine the crystallographic orientation of the samples (KGO analysis): certificate. about state reg. Computer Programs. No. 2011164448]. 2011.
The article presents the work on developing manufacturing technology for the «blisk» design made of bimetallic nickel-based superalloys (the disk from deformable EP975 and blades from single-crystal VKNA-25), with the high-temperature diffusion brazing. During the work temperatures of brazing and heat treatment of the product, that considers it technological features during the work and selected combination of materials has been selected. Designed brazing alloy at selected brazing temperature, has an optimal set of technological characteristics.
Studies of EP975 and VKNA-25 brazing joints, with brazing alloy VPr56 showed that the microstructure in brazing joint has a complex multi-component structure that consists of grains g solid solution and a complex eutectic layer in the center of the solder seam that consists of a solid solution.
The study of the effect of homogenizing heat treatment on the microstructure of brazing joint showed the result of diffusion exchange between the structural component of brazing joint and joined materials showed, as a result, it formed an aligned between them. An increase of exposure of homogenization treatment showed a smooth gradient between concentrations of alloying elements of materials that were joined without forming excessive and non-equilibrium phases.
The strength determining of brazing joint of EP975 and VKNA-25 in bimetallic combination with optimal homogenization thermal treatment showed the long-term strength of solder joints at a temperature of 975°C on the level of 313–352 MPa, which corresponds to a strength of 0,8–0,9 from the strength of the material EP975.
The obtained research results were applied in the manufacture of a bimetallic specimen of a «blisk&am
2. Inozemtsev A.A., Nikhamkin M.A., Sandratskiy V.L. Gazoturbinnyye dvigateli. Osnovy konstruirovaniya aviatsionnykh dvigateley i energeticheskikh ustanovok [Gas turbine engines. Fundamentals of designing aircraft engines and power plants]. M.: Mashinostroyeniye, 2007. T. 1: Obshchiye svedeniya. Osnovnyye parametry i trebovaniya. Konstruktivnyye i silovyye skhemy. S. 7–17.
3. Babkin V.I., Tskhovrebov M.M., Solonin V.I., Lanshin A.I. Razvitiye aviatsionnykh GTD i sozdaniye unikal'nykh tekhnologiy [The development of aviation gas turbine engines and the creation of unique technologies] // Dvigatel. 2013. №2 (86). S. 2–7.
4. Kablov E.N. Materialy novogo pokoleniya – osnova innovatsiy, tekhnologicheskogo liderstva i natsionalnoy bezopasnosti Rossii [Materials of a new generation – the basis of innovation, technological leadership and national security of Russia] // Intellekt i tekhnologii. 2016. №2 (14). S. 16–21.
5. Inozemtsev A.A., Nikhamkin M.A., Sandratskiy V.L. Gazoturbinnyye dvigateli. Osnovy konstruirovaniya aviatsionnykh dvigateley i energeticheskikh ustanovok [Gas turbine engines. Fundamentals of designing aircraft engines and power plants]. M.: Mashinostroyeniye, 2007. T. 2: Kompressory. Kamery sgoraniya. Forsazhnyye kamery. Turbiny. Vykhodnyye ustroystva. S. 259–272.
6. Lunev A.N., Kurylev D.V. Obzor progressivnykh metodov izgotovleniya osevykh monokoles aviatsionnykh gazoturbinnykh dvigateley [A review of progressive manufacturing methods for axial monowheels of aircraft gas turbine engines] // Fundamentalnye issledovaniya. 2016. №6–1. S. 78–82. Available at: http://www.fundamental-research.ru/ru/article/view?id=40375 (accessed: June 18, 2019).
7. Magerramova L.A., Vasilev B.E. Bimetallicheskiye bliski turbin s bandazhirovannymi lopatkami dlya gazoturbinnykh dvigateley [Bimetallic glare of turbines with bandaged blades for gas turbine engines] // Nauka i obrazovaniye: nauchnoye izdaniye MGTU im. N.E. Baumana. 2015. №6. S. 143–156.
8. Yuan J., Scarpa F., Titurus B. et al. Efficient computational techniques for mistuning analysis of bladed discs: a review // Mechanical Systems and Signal Processing. 2017. Vol. 87. Part A. P. 71–90.
9. Magerramova L., Zakharova T., Gromov M., Samarov V. Turbiny: s «blisk»om i bez [Turbines: with and without «blisk»]. Available at: http://engine.aviaport.ru/02page32.html (accessed: Septamber 05, 2019).
10. Kablov E.N., Petrushin N.V., Elyutin E.S. Monokristallicheskiye zharoprochnyye splavy dlya gazoturbinnykh dvigateley [Monocrystalline heat-resistant alloys for gas turbine engines] // Vestnik MGTU im. N.E. Baumana. 2011. Spetsvypusk: Perspektivnyye konstruktsionnyye materialy i tekhnologii. S. 38–52.
11. Povarova K.B., Valitov V.A., Ovsepyan S.V., Drozdov A.A., Bazyleva O.A., Valitova E.V. Izucheniye svoystv i vybor splavov dlya diskov s lopatkami («bliskov») i sposoba ikh soyedineniya [Studying the properties and selection of alloys for blades with blades («blisk») and the method of their connection] // Metally. 2014. №35. S. 61–70.
12. Kablov E.N., Petrushin N.V., Svetlov I.L., Demonis I.M. Nikelevye litejnye zharoprochnye splavy novogo pokoleniya [Nickel foundry heat resisting alloys of new generation] // Aviacionnye materialy i tehnologii. 2012. №S. C. 36–52.
13. Nochovnaya N.A., Bazyleva O.A., Kablov D.E., Panin P.V. Intermetallidnyye splavy na osnove titana i nikelya / pod obshch. red. E.N. Kablova [Intermetallic alloys based on titanium and nickel / gen. ed. E.N. Kablov]. M.: VIAM, 2018. 308 s.
14. Kablov E.N., Petrushin N.V., Svetlov I.L., Demonis I.M. Liteynyye zharoprochnyye splavy novogo pokoleniya [Heat-resistant foundry alloys of a new generation] // 75 let. Aviatsionnyye materialy. M.: VIAM, 2007. S. 27–44.
15. Lomberg B.S., Ovsepjan S.V., Bakradze M.M., Letnikov M.N., Mazalov I.S. Primenenie novyh deformiruemyh nikelevyh splavov dlja perspektivnyh gazoturbinnyh dvigatelej [The application of new wrought nickel alloys for advanced gas turbine engines] // Aviacionnye materialy i tehnologii. 2017. №S. S. 116–129. DOI: 10.18577/2071-9140-2017-0-S-116-129.
16. Lukin V.I., Kovalchuk V.G., Ioda E.N. Svarka plavleniyem – osnova svarochnogo proizvodstva [Fusion welding is a core of welding manufacturing] // Aviacionnyye materialy i tehnologii. 2017. №S. S. 130–143. DOI: 10.18577/2071-9140-2017-0-S-130-143.
17. Ospennikova O.G., Lukin V.I., Afanasev-Khodykin A.N., Galushka I.A. Izgotovleniye konstruktsii tipa «blisk» iz raznoimennogo sochetaniya materialov (obzor) [Manufacturing of design of the «blisk» type from ranoimenny combingtion of materials (review)] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2018. №10 (70). St. 02. Available at: http://www.viam-works.ru (accessed: July 16, 2019). DOI: 10.18577/2307-6046-2018-0-10-10-16.
18. Magerramova L.A. The advantages of bimetallic blisks manufactured by HIP from powder and cast Ni-base super alloys application to gas turbine with high speed // Proceedings of International Conference on Hot Isostatic Pressing, (HIP02). International Academic Publishers, 2002. P. 59–67.
19. Ospennikova O.G., Lukin V.I., Afanasyev-Khodykin A.N., Galushka I.A., Shevchenko O.V. Perspektivnyye razrabotki v oblasti vysokotemperaturnoy payki zharoprochnykh splavov [Advanced developments in the field of the high-temperature soldering of heat resisting alloys] // Aviacionnyye materialy i tehnologii. 2017. №S. S. 144–158. DOI: 10.18577/2071-9140-2017-0-S-144-158.
20. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period to 2030] // Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
21. Kishkin S.T., Kachanov E.B., Bulygin I.P. Aviacionnye materialy: spravochnik v 9 t. / pod red. R.E. Shalina. 6-e izd., pererab. i dop. [Aviation Materials: a handbook of 9 vol. / ed. R.E. Shalin. 6th ed., rev. and add.]. M.: VIAM, 1989. T. 3: Zharoprochnyye stali i splavy. Splavy na osnove tugoplavkikh metallov. Ch. 1 Deformiruyemyye zharoprochnyye stali i splavy. S. 448–452.
22. Petrunin I.E., Bereznikov Yu.I., Bunkina R.R. i dr. Spravochnik po payke. 3-ye izd. pererab. i dop. [Soldering reference. 3rd ed. rev. and add.]. M.: Mashinostroyeniye-1, 2003. 480 s.
23. Petrunin I.E., Markova I.Yu., Ekatova A.S. Metallovedeniye payki [Metallurgy soldering]. M.: Metallurgiya, 1976. 264 s.
24. Khorunov V.F., Maksimova S.V. Payka zharoprochnykh splavov na sovremennom etape [Brazing of heat-resistant alloys at the present stage] // Svarochnoye proizvodstvo. 2010. №10. S. 24–27.
The phenomenon of solid-metal embrittlement of titanium alloy VT20 in contact with silver, cadmium and zinc was considered. The influence of such factors as the contact density of the titanium surface with the metal, the temperature and duration of the tests, as well as the application of external tensile stresses were investigated.
It was established that the temperature cracking threshold of titanium alloy VT20 in contact with the silver is about 270°C, and under the influence of the zinc coating is not more than 150°C. However when titanium alloy VT20 contact with galvanized titanium foil temperature cracking threshold is 250°C and can be detected in the result of long test for 500 hours at a stress σ=0,9σ0,2. When the applied stress level or the duration of the test at 250°C are reduced, no cracking in contact with the galvanized foil is detected. Since in real conditions the influence on titanium parts is possible only from the contacting galvanized steel parts, the contact of titanium and galvanized steel parts can be considered acceptable at operating temperatures not higher than 250°C.
It was found that close contact with cadmium can cause solid-metal embrittlement of titanium even at 20°C and in the absence of external tensile stresses. Under the influence of the contact pressure in the absence of external tensile stresses the incubation period of crack nucleation in contact with cadmium is very small and decreases with test temperature increase: at 20°C – not more than 25 h, at 60°C – less than 10 h, at 100°C – no more than 2 hours. It was established that the application of external tensile stresses intensifies cracking and reduces the incubation period.
The specific structure of the focal zone of cracking in the fractures of the samp
2. Kablov E.N. Kompozity: segodnya i zavtra [Composites: today and tomorrow] // Metally Evrazii. 2015. №1. S. 36–39.
3. Podzhivotov N.Yu., Kablov E.N., Antipov V.V., Erasov V.S., Serebrennikova N.Yu., Abdullin M.R., Limonin M.V. Sloistyye metallopolimernyye materialy v elementakh konstruktsii vozdushnykh sudov [Layered metal-polymer materials in aircraft structural elements] // Perspektivnyye materialy. 2016. №10. S. 5–19.
4. Raskutin A.E. Rossiiskie polimernye kompozitsionnye materialy novogo pokoleniia, ikh osvoenie i vnedrenie v perspektivnykh razrabatyvaemykh konstruktsiiakh [Russian polymer composite materials of new generation, their exploitation and implementation in advanced developed constructions] // Aviacionnye materialy i tehnologii. 2017. №S. S. 349–367. DOI: 10.18577/2071-9140-2017-0-S-349-367.
5. Lomberg B.S., Ovsepjan S.V., Bakradze M.M., Letnikov M.N., Mazalov I.S. Primenenie novyh deformiruemyh nikelevyh splavov dlja perspektivnyh gazoturbinnyh dvigatelej [The application of new wrought nickel alloys for advanced gas turbine engines] // Aviacionnye materialy i tehnologii. 2017. №S. S. 116–129. DOI: 10.18577/2071-9140-2017-0-S-116-129.
6. Gromov V.I., Voznesenskaya N.M., Pokrovskaya N.G., Tonysheva O.A. Vysokoprochnye konstrukcionnye i korrozionnostojkie stali FGUP «VIAM» dlya izdelij aviacionnoj tehniki [High-strength constructional and corrosion-resistant steels developed by VIAM for aviation engineering] // Aviacionnye materialy i tehnologii. 2017. №S. S. 159–174. DOI: 10.18577/2071-9140-2017-0-S-159-174.
7. Antipov V.V. Perspektivy razvitiya alyuminievyh, magnievyh i titanovyh splavov dlya izdelij aviacionno-kosmicheskoj tehniki [Prospects for development of aluminium, magnesium and titanium alloys for aerospace engineering] // Aviacionnye materialy i tehnologii. 2017. №S. S. 186–194. DOI: 10.18577/2107-9140-2017-0-S-186-194.
8. Duyunova V.A., Volkova E.F., Uridiya Z.P., Trapeznikov A.V. Dinamika razvitiya magnievyh i litejnyh alyuminievyh splavov [Dynamics of the development of magnesium and cast aluminum alloys] // Aviacionnye materialy i tehnologii. 2017. №S. S. 225–241. DOI: 10.18577/2071-9140-2017-0-S-225-241.
9. Sibileva S.V., Karimova S.A. Obrabotka poverhnosti titanovyh splavov s celyu obespecheniya adgezionnyh svojstv [Surface treatment of titanium alloys to provide adhesion properties] // Aviacionnye materialy i tehnologii. 2013. №S2. S. 25–35.
10. Zakharova L., Botanogov A. Podgotovka poverkhnosti titanovykh splavov VT6ch, VT20 i OT4 dlya povysheniya adgezii lakokrasochnykh pokrytiy [Surface preparation of titanium alloys VT6ch, VT20 and OT4 to increase the adhesion of coatings] // Promyshlennaya okraska. 2013. №4. S. 15–19.
11. Zakharova L.V., Karimova S.A. Khimicheskaya obrabotka poverkhnosti titanovykh splavov dlya povysheniya ikh adgezionnoy sposobnosti k lakokrasochnym pokrytiyam [Chemical surface treatment of titanium alloys to increase their adhesion to paint coatings] // Fizika i khimiya obrabotki materialov. 2014. №2. S. 33–37.
12. Molitor P., Barron V., Young T. Surface treatment of titanium for adhesive bonding to polymer composites: a review // International Journal of Adhesion & Adhesives. 2001. Vol. 21. P. 129−136.
13. Venables J.D. Review: adhesion and durability of metal–polymer bonds // Journal of Materials Science. 1984. Vol. 19. P. 2431–2453.
14. Mertens T., Gammel F.J., Kolb M. et al. Investigation of surface pre-treatments for the structural bonding of titanium // International Journal of Adhesion & Adhesives. 2012. Vol. 34. P. 46–54.
15. Sibileva S.V., Knyazev A.V., Leshko S.S., Chesnokov D.V. Plazmennoye elektroliticheskoye oksidirovaniye titanovykh splavov s tselyu zashchity ot kontaktnoy korrozii sopryazhennykh elementov iz alyuminiyevykh splavov [Plasma electrolytic oxidation of titanium alloys to protect contact corrosion of conjugated elements from aluminum alloys] // Korroziya: materialy, zashchita. 2019. №6. S. 1–6. DOI: 10.31044/1813-7016-2019-0-6-1-6.
16. Chechulin B.B., Khesin Yu.D. Tsiklicheskaya i korrozionnaya prochnost titanovykh splavov [Cyclic and corrosion resistance of titanium alloys]. M.: Metallurgiya, 1987. 208 s.
17. Kolachev B.A., Livanov V.A., Bukhanova A.A. Mekhanicheskiye svoystva titana i yego splavov [Mechanical properties of titanium and its alloys]. M.: Metallurgiya, 1974. 544 s.
18. Zakharova L.V. Vliyanie kisloroda vozdukha i tolshchiny solevykh otlozheniy na korrozionnoe rastreskivanie titanovykh splavov pri vysokikh temperaturakh v kontakte s NaCl [Influence of oxygen of air and thickness of salt deposits on corrosion cracking of titanium alloys at high temperatures in contact with NaCl] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №10. St. 12. Available at: http://www.viam-works.ru (accessed: August 13, 2019). DOI: 10.18577/2307-6046-2014-0-10-12-12.
19. Zakharova L.V. Vliyanie khimicheskogo sostava, termicheskoj obrabotki i struktury na stojkost' titanovykh splavov k rastreskivaniyu ot goryachesolevoj korrozii [Influence of chemical composition, thermal treatment and structure on cracking sensitivity of titanium alloys to hot-salt stress corrosion] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №9 (45). St. 11. Available at: http://www.viam-works.ru (accessed: August 13, 2019). DOI: 10.18577/2307-6046-2016-0-9-11-11.
20. Zakharova L.V. Anodno-oksidnoe pokrytie – zashhita titanovyh splavov ot goryachesolevoj korrozii [Anodic oxide coating – protection of titanium alloys against hot salt corrosion] //Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №10. St. 02. Available at: http://www.viam-works.ru (accessed: August 13, 2019). DOI: 10.18577/2307-6046-2015-0-10-2-2.
21. Moroz L.S., Chechulin B.B. Vodorodnaya khrupkost metallov [Hydrogen fragility of metals]. M.: Metallurgiya, 1967. 256 s.
22. Kolachev B.A. Vodorodnaya khrupkost tsvetnykh metallov [Hydrogen fragility of non-ferrous metals]. M.: Metallurgiya, 1966. 256 s.
23. Gordon P. Metal-induced embrittlement of metals – an evaluation of embrittler transport mechanisms // Metallurgical Transactions A. 1978. Vol. 9A. P. 267–273. DOI: 10.1007/BF02646710.
24. Lynch S.P. Metal-induced embrittlement of materials // Materials Characterization. 1992. Vol. 28. No. 3. P. 279–289. DOI: 10.1016/1044-5803(92)90017-c.
25. Fager D.N., Spurr W.F. Solid cadmium embrittlement: titanium alloys // Corrosion. 1970. Vol. 26. No. 10. P. 409–419.
26. Stoltz R.E., Stulen R.H. Solid metal embrittlement of Ti–6Al–6V–2Sn by cadmium, silver and gold // Corrosion. 1979. Vol. 35. No. 4. P. 165–169. DOI: 10.5006/0010-9312-35.4.165.
The influence of the type of reinforcing filler in the composition of the film adhesive VK-51 on the properties of adhesive joints based on it. To compare the properties of adhesive joints made with application of glue VK-51 without fibrous filler.
The use of the adhesive composition VK-51 of the reinforcing filler leads to a decrease in the strength of adhesive joints during shift, this increases the strength at peeling, which is important to the health of glued laminates when exposed udiraya loads.
Comparing the properties of the adhesive joints obtained with the use of adhesives VK-51A containing, as reinforcement two types of reinforcing fillers, it is determined that when used in the adhesive composition of the canvas only on the basis of Mylar fibers, one can obtain the higher shear strength of the adhesive joints at elevated temperatures, and resistance to water and tripicolinate compared to the glue, obtained using the canvas only on the basis of Mylar fibers.
The presence of a reinforcing fibrous filler for glue VK-51A viscose fibres leads to a decrease of the strength characteristics of the adhesive joints. When used in the adhesive composition VK-51A reinforcing filler cloth on the basis of Mylar fibers provides increased durability of the adhesive joints under shear at an elevated temperature, as well as improving their water resistance and tripicolinate.
With the aim of increasing the duration of the gap between the operations of anodizing and bonding directly after anodization, the prepared surface is applied to adhesive soils, through the application of which increases the gap between the process until at least 30 days.
The application of primer EP-0234 as a sublayer under the high-strength film adhesive VK-51 and MC-51A does not reduce t
2. Kablov E.N. Rossiya na rynke intellektualnykh resursov [Russia in the market of intellectual resources] // Ekspert. 2015. №28 (951). S. 48–51.
3. Kablov E.N. Iz chego sdelat budushchee? Materialy novogo pokoleniya, tekhnologii ikh sozdaniya i pererabotki – osnova innovatsiy [What to make the future of? Materials of a new generation, technologies for their creation and processing - the basis of innovation] // Krylya Rodiny. 2016. №5. S. 8–18.
4. Dementeva L.A., Bocharova L.I., Lukina N.F., Petrova A.P. Vysokoprochnye plenochnye klei VK-51 i VK-51A [High-strength film adhesives VK-51 and VK-51A] // Klei. Germetiki. Tekhnologii. 2015. №4. S. 17–19.
5. Zhadova N.S., Tyumeneva T.Yu., Sharova I.A., Lukina N.F. Perspektivnye tehnologii dlya vremennogo operativnogo remonta aviacionnoj tehniki [Perspective technologies for field repair if aviation engineering] // Aviacionnye materialy i tehnologii. 2013. №2. S. 67–70.
6. Laptev A.B., Barbotko S.L., Nikolaev E.V. Osnovnye napravleniya issledovanij sokhranyaemosti svojstv materialov pod vozdejstviem klimaticheskikh i ekspluatatsionnykh faktorov [The main research areas of the persistence properties of materials under the influence of climatic and operational factors] // Aviacionnye materialy i tehnologii. 2017. №S. S. 547–561. DOI: 10.18577/2071-9140-2017-0-S-547-561.
7. Lukina N.F., Petrova A.P., Muhametov R.R., Kogtjonkov A.S. Novye razrabotki v oblasti kleyashhih materialov aviacionnogo naznacheniya [New developments in the field of adhesive aviation materials] // Aviacionnye materialy i tehnologii. 2017. №S. S. 452–459. DOI: 10.18577/2071-9140-2017-0-S-452-459.
8. Petrova A.P., Lukina N.F., Pavlyuk B.F., Isaev A.Yu., Besednov K.L. Napolniteli dlya tokoprovodyashchikh kleEv (obzor literatury) [Fillers for conducting glues (literature review)] // Novosti materialovedeniya. Nauka i tekhnika: elektron. nauch.-tekhnich. zhurn. 2017. №5–6 (28). St. 06. Available at: http://www.materialsnews.ru (accessed: August 09, 2019).
9. Petrova A.P., Nikolaev E.V., Lukina N.F., Isaev A.Yu. Klimaticheskaya stoykost kleevykh soedineniy, vypolnennykh epoksidnymi kleyami, v razlichnykh klimaticheskikh zonakh [Climatic resistance of adhesive joints made with epoxy adhesives in various climatic zones] // Klei. Germetiki. Tekhnologii. 2019. №4. S. 16–22.
10. Sorokin A.E., Beyder E.Ya., Perfilova D.N. Vliyanie klimaticheskikh faktorov na svoystva ugleplastika na polifenilensulfidnom svyazuyushchem // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2015. №1. St. 10. URL: http://viam-works.ru (data obrashcheniya: 09.08.2019). DOI: 10.18577/2307-6046-2015-0-1-10-10.
11. Sorokin A.E., Bejder E.Ya., Izotova T.F., Nikolaev E.V., Shvedkova A.K. Issledovanie svojstv ugleplastika na polifenilensulfidnom svyazuyushhem posle uskorennyh i naturnyh klimaticheskih ispytanij [Investigation of carbon fiber reinforced plastic on polyphenylenesulfide resin after accelerated and natural climatic test] // Aviacionnye materialy i tehnologii. 2016. №3 (42). S. 66–72. DOI: 10.18577/2071-9140-2016-0-3-66-72.
12. Sytov V.A., Verstakov A.E., Voronin A.E., Sytov V.V. Sovremennye sinteticheskie klei na osnove epoksikauchukovykh kompozitsiy [Modern synthetic adhesives based on epoxy rubber compositions] // Klei. Germetiki. Tekhnologii. 2012. №9. S. 6–9.
13. Sytov V.A., Sytov V.V., Vettegren V.I. Temperaturnaya zavisimost prochnosti kleevykh soedineniy stali na osnove epoksikauchukovykh kleev [Temperature dependence of the strength of adhesive joints of steel based on epoxy rubber adhesives] // Tez. dokl. Mezhdunar. nauch.-tekhnich. konf. «SovremennyE dostizheniya v oblasti kleev i germetikov. Materialy, syre, tekhnologii» (Dzerzhinsk, 17–19 sent., 2013 g.), 2013. S. 50–52.
14. Tkachuk A.I., Terekhov I.V., Kudryavtseva A.N., Grigoreva K.N. Ispolzovanie reologicheskikh metodov issledovaniya pri otverzhdenii epoksidnykh svyazuyushchikh [The use of rheological research methods in the curing of epoxy binders] // Klei. Germetiki. Tekhnologii. 2018. №2. S. 15–20.
15. Tsverava V.G., Rusin M.Yu., Nepovinnykh V.I., Khimitsaev A.S. Analiz vliyaniya uskorennogo klimaticheskogo stareniya na prochnost kleevykh soedineniy [Analysis of the effect of accelerated climatic aging on the strength of adhesive joints] // Klei. Germetiki. Tekhnologii. 2018. №8. S. 28–31.
16. Kochergin Yu.S., Grigorenko T.I. Dinamicheskie mekhanicheskie svoystva epoksidnykh kleevykh kompozitsiy, napolnennykh molotym karbonatom kaltsiya [Dynamic mechanical properties of epoxy adhesive compositions filled with ground calcium carbonate] // Klei. Germetiki. Tekhnologii. 2018. №2. S. 35–44.
17. Petrova A.P., Anikhovskaya L.I. Vliyanie adgezionnogo grunta EP-0234 na svoystva kleevykh soedineniy, vypolnennykh fenolno-kauchukovym kleem VK-50 [Effect of adhesive primer EP-0234 on the properties of adhesive joints made with phenolic-rubber adhesive VK-50] // Klei. Germetiki. Tekhnologii. 2016. №1. S. 19–24.
18. Lukina N.F., Dementeva L.A., Petrova A.P., Anihovskaya L.I. Kleyashhie materialy v konstrukcii lopastej vertoletov [Gluing materials in the design of blades of helicopters] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №7. St. 07. Available at: http://www.viam-works.ru (accessed: August 12, 2019). DOI: 10.18577/2307-6046-2016-0-7-7-7.
19. Khrychev Yu.I., Shkodinova E.P., Magin N.A., Dementeva L.A., Khayretdinov R.Kh., Kutsevich K.E. Razrabotka tekhnologicheskogo protsessa izgotovleniya radioprozrachnogo obtekatelya iz kleevykh prepregov tipa KMKS-2M.120 [Development of a technological process for manufacturing a radiolucent fairing from adhesive prepregs of the KMKS-2M.120 type] // Klei. Germetiki. Tekhnologii. 2013. №2. S. 27–30.
20. Startsev V.O., Kutsevich K.E., Khrulev K.A., Molokov M.V. Prognozirovanie temperatury poverkhnosti obraztsov kompozitsionnykh materialov na osnove kleevykh prepregov pri eksponirovanii v klimaticheskikh usloviyakh [Prediction of surface temperature of samples of composite materials based on adhesive prepregs when exposed to climatic conditions] // Klei. Germetiki. Tekhnologii. 2017. №9. S. 24–31.
Test results of glued joints of the D19-AT aluminum alloy executed using epoxy film adhesives VK-31, VK-41M and VK-51, after exposure within 5 years in the conditions of subtropical climate of the coast of Black Sea in free and loaded condition are provided. The adhesives joints made using VK-31 glue, have high climatic firmness: after endurance without loading within 5 years, both on open atmospheric area and in warehouse their durability has decreased ~ for 6%. The glued joints executed using VK-41M adhesive, in initial condition have durability ~ for 4,5% below, than adhesived joints on VK-31 glue. After influence of weather conditions of open atmospheric area without loading within three years their durability has decreased ~ for 20% in comparison with 4,5% for VK-31 glue, at simultaneous influence of loadings and climatic factors: at level of loading 0,2 from initial durability decrease makes in 2 years for 17%, and in 3 years for 19%. In the conditions of warehouse decrease in durability of adhesived joints is lower, than on open atmospheric area.
VK-51 adhesive is strongest of three considered glues, thus its mode of curing similar to VK-41M glue. After endurance of adhesived joints on open climatic area within 3 years decrease in durability of glued joints at the room temperature has made 12 %, at temperature 80°C – 28%. At tests of adhesived joints under loading 0,2 from initial durability decrease in durability makes 24,6% at temperature of testing of 20°C and 32 % at 80°C. Putting EP-0234 soil under VK-51 glue promotes durability preservation at the room temperature in initial condition, to increase of durability of characteristics at testing temperature 80°С, and also to saving of higher strength characteristics at simultaneous influence of weather conditions and loadings.
2. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period to 2030] // Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
3. Kablov E.N. Kontrol' kachestva materialov – garantiya bezopasnosti ekspluatatsii aviatsionnoy tekhniki [Quality control of materials - a guarantee of the safety of the operation of aircraft] // Aviacionnyye materialy i tehnologii. 2001. №1. S. 3–8.
4. Sorokin A.E., Bejder E.Ya., Perfilova D.N. Vliyanie klimaticheskih faktorov na svojstva ugleplastika na polifenilensulfidnom svyazuyushhem [Effect of climatic factors on properties of carbon fiber reinforced plastic based on polyphenylenesulfide resin] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №1. St. 10. Available at: http://www.viam-works.ru (accessed: Augusta 12, 2019). DOI: 10.18577/2307-6046-2015-0-1-10-10.
5. Laptev A.B., Barbotko S.L., Nikolaev E.V. Osnovnye napravleniya issledovanij sokhranyaemosti svojstv materialov pod vozdejstviem klimaticheskikh i ekspluatatsionnykh faktorov [The main research areas of the persistence properties of materials under the influence of climatic and operational factors] // Aviacionnye materialy i tehnologii. 2017. №S. S. 547–561. DOI: 10.18577/2071-9140-2017-0-S-547-561.
6. Petrova A.P., Lukina N.F., Sharova I.A. Otsenka prochnosti kleyevykh soyedineniy, vypolnennykh epoksidnymi kleyami, pri vozdeystvii razlichnykh faktorov [Strength assessment of adhesive joints made with epoxy adhesives under the influence of various factors] // Vse materialy. Entsiklopedicheskiy spravochnik. 2013. №8. S. 28–34.
7. Sorokin A.E., Bejder E.Ya., Izotova T.F., Nikolaev E.V., Shvedkova A.K. Issledovanie svojstv ugleplastika na polifenilensulfidnom svyazuyushhem posle uskorennyh i naturnyh klimaticheskih ispytanij [Investigation of carbon fiber reinforced plastic on polyphenylenesulfide resin after accelerated and natural climatic test] // Aviacionnye materialy i tehnologii. 2016. №3 (42). S. 66–72. DOI: 10.18577/2071-9140-2016-0-3-66-72.
8. Kochergin Yu.S., Grigorenko T.I. Dinamicheskiye mekhanicheskiye svoystva epoksidnykh kleyevykh kompozitsiy, napolnennykh molotym karbonatom kaltsiya [Dynamic mechanical properties of epoxy adhesive compositions filled with ground calcium carbonate] // Klei. Germetiki. Tekhnologii. 2018. №2. S. 35–44.
9. Lukina N.F., Petrova A.P., Muhametov R.R., Kogtjonkov A.S. Novye razrabotki v oblasti kleyashhih materialov aviacionnogo naznacheniya [New developments in the field of adhesive aviation materials] // Aviacionnye materialy i tehnologii. 2017. №S. S. 452–459. DOI: 10.18577/2071-9140-2017-0-S-452-459.
10. Dementyeva L.A., Petrova A.P., Lukina N.F. Primeneniye i naznacheniye epoksidnogo plenochnogo kleya VK-31 [Application and purpose of epoxy film adhesive VK-31] // Vse materialy. Entsiklopedicheskiy spravochnik. 2015. №1. S. 25–29.
11. Dementeva L.A., Bocharova L.I., Lukina N.F., Petrova A.P. Vysokoprochnyye plenochnyye klei VK-51 i VK-51A [High-strength film adhesives VK-51 and VK-51A] // Klei. Germetiki. Tekhnologii. 2015. №4. S. 17–19.
12. Lukina N.F., Dementeva L.A., Petrova A.P., Serezhenkov A.A. Konstrukcionnye i termostojkie klei [Constructional and heat-resistant glues] // Aviacionnye materialy i tehnologii. 2012. №S. S. 328–335.
13. Kablov E.N., Chursova L.V., Lukina N.F., Kutsevich K.E., Rubtsova E.V., Petrova A.P. Issledovaniye epoksidno-polisulfonovykh polimernykh sistem kak osnovy vysokoprochnykh kleyev aviatsionnogo naznacheniya [The study of epoxy-polysulfone polymer systems as the basis of high-strength adhesives for aviation purposes] // Klei. Germetiki. Tekhnologii. 2017. №3. S. 7–12.
14. Sharova I.A. Epoksidnyye klei kholodnogo otverzhdeniya dlya skleivaniya i remonta detaley aviatsionnoy tekhniki: avtoref. diss. … kand. tekhn. nauk [Cold cured epoxy adhesives for gluing and repairing aircraft parts: thesis abstract, Cand. Sc. (Tech.)]. M.: VIAM, 2015. 26 s.
15. Tyumeneva T.Yu., Lukina N.F. Razrabotki v oblasti elastomernykh kleyev aviatsionnogo naznacheniya [Development in the field of elastomeric adhesives for aviation] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №8 (44). St. 9. Available at: http://viam-works.ru (accessed: August 12, 2019). DOI: 10.18577/2307-6046-2016-0-8-9-9.
16. Sytov V.A., Verstakov A.E., Voronin A.E., Sytov V.V. Sovremennyye sinteticheskiye klei na osnove epoksikauchukovykh kompozitsiy [Modern synthetic adhesives based on epoxy rubber compositions] // Klei. Germetiki. Tekhnologii. 2012. №9. S. 6–9.
17. Sytov V.A., Sytov V.V., Vettegren V.I. Temperaturnaya zavisimost prochnosti kleyevykh soyedineniy stali na osnove epoksikauchukovykh kleyev [Temperature dependence of the strength of adhesive joints of steel based on epoxy rubber adhesives] // Tez. dokl. Mezhdunar. nauch.-tekhnich. konf. «Sovremennyye dostizheniya v oblasti kleyev i germetikov. Materialy, syre, tekhnologii» (Dzerzhinsk, 17–19 sent. 2013 g.). Dzerzhinsk, 2013. S. 50–52.
18. Lukina N.F., Dementeva L.A., Petrova A.P., Anihovskaya L.I. Kleyashhie materialy v konstrukcii lopastej vertoletov [Gluing materials in the design of blades of helicopters] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №7. St. 07. Available at: http://www.viam-works.ru (accessed: : August 12, 2019). DOI: 10.18577/2307-6046-2016-0-7-7-7.
19. Konoplin A.Yu., Nelyub V.A. Prochnost kleyevykh soyedineniy, izgotovlennykh pri otritsatelnykh znacheniyakh temperatur [Strength of adhesive joints made at negative temperatures] // Klei. Germetiki. Tekhnologii. 2018. №9. S. 20–23.
20. Tkachuk A.I., Gurevich YA.M., Guseva M.A., Mishurov K.S. Tekhnologicheskiye i ekspluatatsionnyye kharakteristiki i oblasti primeneniya epoksidnogo svyazuyushchego VSE-1212, pererabatyvayemogo po prepregovoy tekhnologii [Technological and operational characteristics and applications of the epoxy binder VSE-1212, processed by prepreg technology] // Klei. Germetiki. Tekhnologii. 2018. №4. S. 29–34.
21. Nelyub V.A. Otsenka adgezionnoy prochnosti metodom pull-out v sisteme svyazuyushcheye–elementarnaya nit v zavisimosti ot tipa obrabotki niti [Evaluation of adhesive strength by the pull-out method in a binder – filament system depending on the type of processing of the thread] // Klei. Germetiki. Tekhnologii. 2018. №3. S. 28–32.
22. Tkachuk A.I., Terekhov I.V., Kudryavtseva A.N., Grigoreva K.N. Ispolzovaniye reologicheskikh metodov issledovaniya pri otverzhdenii epoksidnykh svyazuyushchikh [The use of rheological research methods in the curing of epoxy binders] // Klei. Germetiki. Tekhnologii. 2018. №2. S. 15–20.
23. Tsverava V.G., Rusin M.Yu., Nepovinnykh V.I., Khimitsayev A.S. Analiz vliyaniya uskorennogo klimaticheskogo stareniya na prochnost kleyevykh soyedineniy [Analysis of the effect of accelerated climatic aging on the strength of adhesive joints] // Klei. Germetiki. Tekhnologii. 2018. №8. S. 28–31.
Improving the performance of special polymer compositions is an important work direction of FSUE "VIAM". It is actual to create cold-resistant materials resistant to climatic factors: temperature extremes, ozone and air oxygen.
In the present work we investigated the possibility of obtaining ozone-resistant and cold-resistant rubber based on ethylene-propylene-diene (SKEPT-40) and methylphenylsiloxane (SKTFV-803) rubbers.
The choice of rubbers is associated with high mechanical characteristics and good low-temperature properties of SKEPT, a wide range of operating temperatures and excellent indicators of residual deformation under compression of SKTFV, as well as their high ozone resistance.
It is known that ethylene polypropylen diene and siloxane rubbers, having different chemical nature, are poorly compatible in the mixture. In literature the ways of effective mixing in the presence of binding agents, such as polydiorganosiloxane resins, silanes are described. To improve compatibility nanoclay was used. Also joint curing of two layers of material was carried out, in one of which silicone rubber, and in other – ethylene polypropylen diene rubber were prevailed.
This work was carried out in a mixture of EPDM and SKTFV in the presence of two types of reinforcing fillers. On the basis of the dispersion analysis of vulcanizates it is concluded that the quality of mixing is satisfactory.
As a result of measurements of elastic strength and heat-cold-resistant characteristics, the optimal ratios of rubbers in the rubber mixture and the vulcanizing system are proposed.
It is shown that the investigated rubber based on EPDM and SKTFV has improved physicomechanical and&
2. Kablov E.N. Materialy novogo pokoleniya – osnova innovatsiy, tekhnologicheskogo liderstva i natsionalnoy bezopasnosti Rossii [Materials of a new generation – the basis of innovation, technological leadership and national security of Russia] // Intellekt i tekhnologiya. 2016. №2 (14). S. 16–21.
3. Kablov E.N., Startsev V.O. Sistemnyj analiz vliyaniya klimata na mekhanicheskie svojstva polimernykh kompozitsionnykh materialov po dannym otechestvennykh i zarubezhnykh istochnikov (obzor) [Systematical analysis of the climatics influence on mechanical properties of the polymer composite materials based on domestic and foreign sources (review)] // Aviacionnye materialy i tehnologii. 2018. №2 (51). S. 47–58. DOI: 10.18577/2071-9140-2018-0-2-47-58.
4. Kablov E.N. Materialy i khimicheskiye tekhnologii dlya aviatsionnoy tekhniki [Materials and chemical technologies for aviation technology] // Vestnik Rossiyskoy akademii nauk. 2012. T. 82. №6. S. 520–530.
5. Kablov E.N. Rol khimii v sozdanii materialov novogo pokoleniya dlya slozhnykh tekhnicheskikh sistem [The role of chemistry in the creation of new generation materials for complex technical systems] // Tez. dokl. XX Mendeleyevskogo syezda po obshchey i prikladnoy khimii. Ekaterinburg: UrO RAN, 2016. S. 25–26.
6. Laptev A.B., Barbotko S.L., Nikolaev E.V. Osnovnye napravleniya issledovanij sokhranyaemosti svojstv materialov pod vozdejstviem klimaticheskikh i ekspluatatsionnykh faktorov [The main research areas of the persistence properties of materials under the influence of climatic and operational factors] // Aviacionnye materialy i tehnologii. 2017. №S. S. 547–561. DOI: 10.18577/2071-9140-2017-0-S-547-561.
7. Gryaznov V.I., Petrova G.N., Yurkov G.Yu., Buznik V.M. Smesevye termojelastoplasty so specialnymi svojstvami [Thermoplastic mixtures with special properties] // Aviacionnye materialy i tehnologii. 2014. №1. S. 25–29. DOI: 10.18577/2071-9140-2014-0-1-25-29.
8. Eliseev O.A., Krasnov L.L., Zajceva E.I., Savenkova A.V. Razrabotka i modificirovanie elastomernyh materialov dlya primeneniya vo vseklimaticheskih usloviyah [Development and modifying of elastomeric materials for application in all weather conditions] // Aviacionnye materialy i tehnologii. 2012. №S. S. 309–314.
9. Efimov V.A., Shvedkova A.K., Korenkova T.G., Kirillov V.N. Issledovanie polimernyh konstrukcionnyh materialov pri vozdejstvii klimaticheskih faktorov i nagruzok v laboratornyh i naturnyh usloviyah [Research of polymeric constructional materials at influence of climatic factors and loadings in laboratory and natural conditions] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №1. St. 05. Available at: http://viam-works.ru (accessed: April 04, 2019).
10. Rubber compositions containing ethylene-propylene-diene terpolymers or ethylene-propylene copolymers and silicones: pat. US4341675A; filed 08.04.80; publ. 30.03.01.
11. Epdm and/or ethylene propylene and silicon rubber compositions: pat. CA1301982C; filed 30.03.87; publ. 26.05.09.
12. Silicon rubber/conductive ethylene propylene terpolymer rubber and its preparing method: pat. CN1186381C; filed 20.06.03; publ. 26.01.05.
13. Silicone rubber and terpolymer EP rubber blend and preparation method thereof: pat. CN103602067A; filed 20.10.13; publ. 26.10.14.
14. Silicone rubber/EPDM/LDPE ternary blending foaming material and preparation method thereof: pat. CN106867118A; filed 01.03.17; publ. 20.06.17.
15. Composite material from silicon rubber and ethylene-propylene-copolymer or terpolymer rubber: pat. EP0484245A1; filed 31.10.90; publ. 18.03.19.
16. Silicone rubber modified polymer compositions, to their preparation, and this material comprehensive wiper method: pat. DE102008001007A1; filed 04.04.08; publ. 18.03.19.
Currently, taking into account the active use of polymer composite materials (PCM) in virtually all sectors of the industry of the Russian Federation (construction industry, transport engineering, transport infrastructure, energy, utilities, etc.), the question of their safe disposal is becoming acute. Carbon fibers, contained in PCM, is an expensive raw material that must be removed from the out-of-service products and reused.
The paper discusses the main methods of recycling carbon fiber-reinforced PCM: physical, chemical and thermal. The basic methods of PCM processing are described, both positive and negative sides of each method are noted. A domestic PCM recycling method is also provided. From the literature data it has been shown that solvolysis and pyrolysis remain the most promising ways of recycling composite materials.
The main way to solve the problem of PCM utilization is their recycling. The article provides foreign firms engaged in the processing of products and materials, the source of raw materials of which are defective parts, products with expired shelf life, trimming, unused prepregs. Showing intermediary firms that produce specific products from recycled fiber: the bottom of the car body, interior, composite vessels and much more.
Analysis of foreign scientific and technical literature and existing methods of using secondary carbon filler showed the relevance of work in this area of materials science. More and more countries are interested in reducing the consumption of oil resources and the transition to energy-intensive and resource-saving technologies. Many companies in the EU, the USA and the UK are engaged in the processing of PCM and the extraction of expensive carbon-reinforced filler.
2. Kablov E.N., Chursova L.V., Babin A.N. Razrabotki FGUP «VIAM» v oblasti rasplavnykh svyazuyushchikh dlya polimernykh kompozitsionnykh materialov [Developments of FSUE VIAM in the field of melt binders for polymer composite materials] // Polimernyye materialy i tekhnologii. 2016. T. 2. №2. S. 37–42.
3. Kablov E.N. Rossiya na rynke intellektualnykh resursov [Russia in the market of intellectual resources] // Ekspert. 2015. №28 (951). S. 48–51.
4. Kablov E.N. Kompozity: segodnya i zavtra [Composites: today and tomorrow] // Metally Evrazii. 2015. №1. S. 36–39.
5. Gunyayeva A.G., Sidorina A.I., Kurnosov A.O., Klimenko O.N. Polimernyye kompozitsionnyye materialy novogo pokoleniya na osnove svyazuyushchego VSE-1212 i napolniteley, alternativnykh napolnitelyam firm Porcher Ind. i Toho Tenax [Polymeric composite materials of new generation on the basis of binder VSE-1212 and the filling agents alternative to ones of Porcher Ind. AND Toho Tenax] // Aviacionnye materialy i tehnologii. 2018. №3 (52). S. 18–26. DOI: 10.18577/2071-9140-2018-0-3-18-26.
6. Raskutin A.E. Rossiiskie polimernye kompozitsionnye materialy novogo pokoleniia, ikh osvoenie i vnedrenie v perspektivnykh razrabatyvaemykh konstruktsiiakh [Russian polymer composite materials of new generation, their exploitation and implementation in advanced developed constructions] // Aviacionnye materialy i tehnologii. 2017. №S. S. 349–367. DOI: 10.18577/2071-9140-2017-0-S-349-367.
7. Daskovskij M.I., Doriomedov M.S., Skripachev S.Yu. Sistematizaciya bazisnyh faktorov, prepyatstvuyushhih vnedreniyu polimernyh kompozicionnyh materialov v Rossii (obzor) [Underlying factors preventing the introduction of polymer composite materials in Russia (review)] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №5 St. 06. Available at: http://www.viam-works.ru (accessed: July 09, 2019). DOI: 10.18577/2307-6046-2016-0-5-6-6.
8. Mishkin S.I., Malakhovskiy S.S. Bystrootverzhdayemyye svyazuyushchiye i prepregi: polucheniye, svoystva i oblasti primeneniya (obzor) [Fast curing resins and prepregs: receiving, properties and areas of application (review)] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2019. №5 (77). St. 04. Available at: http://viam-works.ru (accessed: July 10, 2019). DOI: 10.18577/2307-6046-2019-0-5-32-40.
9. Sokolov I.I., Raskutin A.E. Ugleplastiki i stekloplastiki novogo pokoleniya [Coalplastics and fibreglasses of new generation] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №4. St. 09. Available at: http://www.viam-works.ru (accessed: July 10, 2019).
10. Raskutin A.E. Strategiia razvitiia polimernykh kompozitsionnykh materialov [Development strategy of polymer composite materials] // Aviaсionnye materialy i tehnologii. 2017. №S. S. 344–348. DOI: 10.18577/2071-9140-2017-0-S-344-348.
11. Pimenta S., Pinho S.T. Recycling carbon fibre reinforced polymers for structural applications: technology review and market outlook // Waste Management. 2011. Vol. 31. No. 2. P. 378–392.
12. Petrov A.V., Doriomedov M.S., Skripachev S.Yu. Tehnologii utilizacii polimernyh kompozicionnyh materialov (obzor) [Recycling technologies of polymer composite materials (review)] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №8. St. 09. Available at: http://viam-works.ru (accessed: July 11, 2019). DOI: 10.18577/2307-6046-2015-0-8-9-9.
13. Chursova L.V., Tsybin A.I., Grebeneva T.A., Panina N.N. Retsikling epoksidnykh svyazuyushchikh i polimernykh kompozitsionnykh materialov na ikh osnove (obzor) [Recycling of epoxy resins and polymer composite materials on their bases (review)] // Novosti materialovedeniya. Nauka i tekhnika: elektron. nauch.-tekhnich. zhurn. 2018. №5–6 (31). St. 06. Available at: http://materialsnews.ru (accessed: July 12, 2019).
14. Kulikova Yu.V., Tukacheva K.O. Analiz tekhnologiĭ utilizatsii polimernykh kompozitsionnykh materialov [Analysis of the utilization of polymer composite materials] // Transport. Transportnyye sooruzheniya. Ekologiya. 2017. №4. S. 103–122.
15. Conroy A., Halliwell S., Reynolds T. Composite recycling in the construction industry // Composites. Part A. 2006. Vol. 37. P. 1216–1222.
16. Products: Application and Properties // Vartega. Available at: https://www.vartega.com (accessed: July 12, 2019).
17. Steelhead composites winds first recycled COPV with Vartega fiber // Vartega. Available at: https://www.vartega.com/news-and-media/2017/5/24/steelhead-composites-winds-first-recycled-copv-with-vartega-fiber (accessed: July 13, 2019).
18. Smalley M. Boeing, ELG Carbon Fibre to recycle aerospace materials // Recycling today. Available at: https://www.recyclingtoday.com/article/boeing-carbon-fibre-recycle-aerospace-materials/ (accessed: July 15, 2019).
19. Po materialam www.recyclingtoday.com, www.compositesworld.com. Pererabotka kompozitov nabirayet silu // Kompozitnyy mir. 2017. №3. S. 48–53.
20. Katalog materialov dizaynerskoy mebeli [Catalog of materials for designer furniture] // Kickstater. Available at: https://www.kickstarter.com/projects/1868198703/the-recycled-carbon-chair (accessed: July 14, 2019).
21. UAM Says It’s First To Recycle Aircraft Carbon Fiber // The ProfitChain. Available at: https://www.theprofitchain.com/recycle-aircraft-carbon-fiber/ (accessed: July 16, 2019).
22. Maty i tekstil iz pererabotannogo uglerodnogo volokna // Carbon Conversations: ofits. sayt. Available at: http://www.carbonconversations.co.uk/2017/01/new-website.html (accessed: July 17, 2019).
23. Job S. Summary of recent research and development // Composite Recycling – Materials KTN Report. 2010. P. 5–7.
24. Shaydurova G.I., Shevyakov Ya.S., Vasilev I.L. Otsenka vozmozhnosti utilizatsii ugleplastikov khimicheskim metodom [Assessment of the possibility of utilizing carbon plastics by the chemical method] // Prikladnaya ekologiya. 2018. №3. T. 8. S. 135–140. DOI: 10.21285/2227-2925-2018-8-3-135-140.
25. Pavlyuchenkova M.A., Kulikova Yu.V. Analiz napravleniy ispolzovaniya vtorichnogo uglevolokna [Analysis of the directions of the use of secondary carbon fiber] // Khimiya. Ekologiya. Urbanistika. 2018. T. 1. S. 470–473.
Modern production of junctions and structures made of polymeric composite materials (PCM) for aviation equipment is majority based on prepreg technology of manufacturing products. Prepregs are semifinished PCM. During storage properties of prepreg tend to change under the influence of various factors (chemical, physical, biological).
The article considers the influence of storage conditions, including condensation moisture, on its reactivity and properties of the rejected PCM based on the example of prepreg PU-4E-2m used in the mass production of aircraft products. Prepreg PU-4E-2m is made on the basis of a carbon tape ELUR-P and a solution epoxy binder ENFB-2M. Designed for the manufacture of parts and assemblies for structural purposes, operating in the temperature range from minus 60 to plus 150 °C. The methods of thermal analysis were choosen as the main method for the analysis
For research a batch of ENFB-2M binder and a batch of prepreg PU-4E-2m based on it were made, their properties were investigated.
To assess the effect of condensed moisture, which can be formed on the prepreg during storage, its effect on the reactivity of the prepreg PU-4E-2m by differential scanning calorimetry (DSC) after its multiple freezing was made, which takes place in the conditions of mass manufacture of products from PCM.
The influence of the storage time (1 and 3 months) of prepreg PU-4E-2m at a temperature of not more than minus 18°C on the properties of the resulting carbon fiber CMU-4E-2m, including after accelerated climatic tests (boiling), was done.
The case of violation of storage conditions of prepreg in the process of its thermostating – defrosting (exposure) at room temperature before the beginning of the technological process of laying out
2. Mikhaylin Yu.A. Voloknistyye polimernyye kompozitsionnyye materialy v tekhnike [Fibrous polymer composite materials in engineering]. SPb.: Nauchnyye osnovy i tekhnologii, 2015. 720 s.
3. Bobovich B.B. Polimernyye konstruktsionnyye materialy (struktura, svoystva, primeneniye) [Polymeric structural materials (structure, properties, application)]. M.: Forum: Infra-M, 2014. 400 s.
4. Kablov E.N., Startsev O.V., Krotov A.S., Kirillov V.N. Klimaticheskoye stareniye kompozitsionnykh materialov aviatsionnogo naznacheniya. I. Mekhanizmy stareniya [Climatic aging of composite materials for aviation purposes. I. Aging mechanisms] // Deformatsiya i razrusheniye materialov. 2010. №11. S. 19–27.
5. Timoshkov P.N. Oborudovanie i materialy dlya tekhnologii avtomatizirovannoj vykladki prepregov [Equipment and materials for the technology of automated calculations prepregs] // Aviacionnye materialy i tehnologii. 2016. №2 (41). S. 35–39. DOI: 10.18577/2071-9140-2016-0-2-35-39.
6. Raskutin A.E. Rossiiskie polimernye kompozitsionnye materialy novogo pokoleniia, ikh osvoenie i vnedrenie v perspektivnykh razrabatyvaemykh konstruktsiiakh [Russian polymer composite materials of new generation, their exploitation and implementation in advanced developed constructions] // Aviacionnye materialy i tehnologii. 2017. №S. S. 349–367. DOI: 10.18577/2071-9140-2017-0-S-349-367.
7. Bazhenov S.L. Polimernyye kompozitsionnyye materialy. Prochnost i tekhnologiya [Polymer composite materials. Strength and technology]. Dolgoprudnyy: Intellekt, 2010. 352 s.
8. Tyunina A.V. Kompozitnyye materialy: proizvodstvo, primeneniye, tendentsii rynka [Composite materials: production, application, market trends] // Polimernyye materialy. 2018. №2. S. 27–29.
9. Mishurov K.S., Pavlovskiy K.A., Imametdinov E.SH. Vliyaniye vneshney sredy na svoystva ugleplastika VKU-27L [Environmental effects on properties of CFRP (carbon fiber reinforced plastic) VKU-27L] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2018. №3 (63). St. 07. Available at: http://www.viam-works.ru (accessed: June 24, 2019). DOI: 10.18577/2307-6046-2018-0-3-60-67.
10. Cherfas L.V., Gunyaeva A.G., Komarova O.A., Antyufeeva N.V. Analiz sroka godnosti nanomodificirovannogo preprega pri hranenii po ego reakcionnoj sposobnosti [The analysis of nanomodified prepreg shelf life by its reactivity at storage] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №1 (37). St. 12. Available at: http://www.viam-works.ru (accessed: June 24, 2019). DOI: 10.18577/2307-6046-2016-0-1-99-106.
11. Kablov E.N. K 80-letiyu VIAM [On the occasion of the 80th anniversary of VIAM] // Zavodskaya laboratoriya. Diagnostika materialov. 2012. T. 78. №5. S. 79–82.
12. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
13. Kochnova Z.A. Epoksidnyye smoly i otverditeli: promyshlennyye produkty [Epoxy resins and hardeners: industrial products]. M.: Peynt-Media, 2006. 200 s.
14. Antyufeeva N.V., Aleksashin V.M., Stolyankov Yu.V. Opredelenie stepeni otverzhdeniya PKM metodami termicheskogo analiza [Polymer composite curing degree evaluation by thermal analysis test methods] // Aviacionnye materialy i tehnologii. 2015. №3 (36). S. 79–83.
15. Aleksashin V.M., Aleksandrova L.B., Matveyeva N.V., Mashinskaya G.P. Primeneniye termicheskogo analiza dlya kontrolya tekhnologicheskikh svoystv termoreaktivnykh prepregov konstruktsionnykh kompozitsionnykh materialov [The use of thermal analysis to control the technological properties of thermoset prepregs of structural composite materials] // Aviatsionnaya promyshlennost. 1997. №5–6. S. 38–43.
The high-priority problem for material physics at the present time is the investigation of dependency of physical and mechanical properties from crystal structure and phase composition. The research methods of materials structure are divided into two main groups: the diffraction methods and the microscopical methods. The diffraction methods of analysis, such as X-ray diffraction analysis, make possible the determination of the crystal lattice parameters to a high-precision and, also, the qualitative and quantitative phase analysis of materials.
Also, by use of the diffraction methods of analysis, the texture of polycrystalline materials and the crystallographic orientation of single crystals are determined. There are principal for the investigation of anisotropy of the physical and mechanical properties.
The determination of stress condition is required for predicting behavior of materials and facilities under service conditions. The macroscopic stresses in the material – environment interface of the polycrystalline materials may be determinate by non-destructive technique – the X-ray diffractometry.
There are all the above problems requested the use of special scientific instruments i.e. the X-ray diffractometers. The X-ray diffractometer be capable of automatized record of X-ray diffraction patterns as a diagram «X-ray radiation intensity» – «2θ diffraction angle». The X- ray diffractometer be made up of X-ray tube, X-ray goniometer and X-ray detector.
The small-sized X-ray diffractometers with various designs were developed for improved equipment of industrial, research and educational laboratories by domestic and foreign manufacturing companies, which produced scientific instruments. The small-sized X-ray diffractometers are designed to b
2. Kablov E.N., Sidorov V.V., Kablov D.E., Min P.G. Metallurgicheskie osnovy obespecheniya vysokogo kachestva monokristallicheskih zharoprochnyh nikelevykh splavov [The metallurgical fundamentals for high quality maintenance of single crystal heat-resistant nickel alloys] // Aviacionnye materialy i tehnologii. 2017. №S. S. 55–71. DOI: 10.18577/2071-9140-2017-0-S-55-71.
3. Kablov E.N. VIAM: materialy novogo pokoleniya dlya PD-14 [VIAM: new generation materials for PD-14] // Krylya Rodiny. 2019. №7–8. S. 54–58.
4. Shishkareva L.M., Kuzmina N.A. Obzor metodik opredeleniya kachestva struktury monokristallicheskih otlivok zharoprochnyh splavov [Review of methods for determining the quality of the structure of single-crystal superalloy castings] // Trudy VIAM: elektron. nauch.-tehni. zhurn. 2014. №1. St. 06. Available at: http://www.viam-works.ru (accessed: July 29, 2019). DOI: 10.18577/2307-6046-2014-0-1-6-6.
5. Moiseeva N.S., Nazarkin R.M. Mezhfaznye napryazheniya v monokristallicheskih litejnyh nikelevyh zharoprochnyh splavah [Interphase stresses in сast single-crystal Ni-based superalloys] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №11. St. 01. Available at: http://www.viam-works.ru (accessed: July 29, 2019). DOI: 10.18577/2307-6046-2014-0-11-1-1.
6. Gorelik S.S., Skakov Yu.A., Rastorguyev L.N. Rentgenograficheskiy i elektronno-opticheskiy analiz: ucheb. posobiye dlya vuzov. 4-ye izd. dop. i pererab. [X-ray and electron-optical analysis: tutorial for universities. 4th ed. add. and reslave]. M.: MISIS, 2002. 360 s.
7. Rusakov A.A. Rentgenografiya metallov: ucheb. dlya vuzov [Radiography of metals: textbook for universities]. M.: Atomizdat, 1977. 480 s.
8. Isayenkova M.G., Perlovich Yu.A., Skrytnyy V.I., Sokolov N.A., Yaltsev V.N. Rentgenovskaya difraktometriya: ucheb. posobie [X-ray diffractometry: tutorial]. M.: MIFI, 2007. 60 s.
9. Abyzov A.M. Rentgenodifraktsionnyy analiz polikristallicheskikh veshchestv na minidifraktometre «Difrey»: ucheb. posobie [X-ray diffraction analysis of polycrystalline substances on a diffractometer «Difrey»: tutorial]. SPb.: SPbGTI (TU), 2008. 95 s.
10. Trushin V.N., Andreyev P.V., Fadeyev M.A. Rentgenovskiy fazovyy analiz polikristallicheskikh materialov: elektronnoye ucheb.-metodich. posobie. [X-ray phase analysis of polycrystalline materials: electronic tutorial]. N. Novgorod: NNGU, 2012. 89 s.
11. Gine A. Rentgenografiya kristallov. Teoriya i praktika. Per. s fr. [Radiography of crystals. Theory and practice. Line from Fr.]. M.: Nauka, 1961. 604 s.
12. Ivanov A.N., Rastorguyev L.N., Skakov Yu.A., Umanskiy Ya.S. Kristallografiya, rentgenografiya i elektronnaya mikroskopiya [Crystallography, radiography and electron microscopy]. M.: Metallurgiya, 1982. 632 s.
13. Shamray V.F., Lifshits V.A., Serebryanyy V.N. i dr. Opyt ispolzovaniya difraktometra DRON-7 s pristavkoy PGTM dlya issledovaniya tekstur [Experience in using a DRON-7 diffractometer with a PGTM attachment for texture research] // Zavodskaya laboratoriya. Diagnostika materialov. 2009. T. 75. №1. S. 32–35.
14. Suvorov E.V. Difraktsionnyy strukturnyy analiz: uch. posobiye dlya akademicheskogo bakalavriata [Diffraction structural analysis: studies. manual for academic undergraduate]. M.: Yurayt, 2019. 272 s.
15. Podzey A.V., Summa A.N., Evstigneyev M.I. Tekhnologicheskiye ostatochnyye napryazheniya [Technological residual stresses]. M.: Mashinostroyeniye, 1973. 216 s.
16. Raschety i ispytaniya na prochnost. Eksperimentalnye metody opredeleniya napryazhenno-deformirovannogo sostoyaniya elementov mashin i konstruktsiy. Opredeleniye makronapryazheniy rentgenovskim metodom: MR 103–83 [alculations and strength tests. Experimental methods for determining the stress-strain state of machine elements and structures. Determination of macrostress by the X-ray method: MP 103–83]. M.: VNIINMASH, 1983. 63 s.
17. Korenev G.D. Tekhnologicheskiy kontrol v elektronnom proizvodstve: ucheb. posobiye [Technological control in electronic production]. M.: MIEM, 1988. 74 s.
18. Murzin S.P., Tregub V.I. Otsenka urovnya vnutrennikh napryazheniy v pripoverkhnostnom sloye nanoporistykh metallicheskikh materialov [Estimation of the level of internal stresses in the surface layer of nanoporous metallic materials] // Izvestiya Samarskogo nauchnogo tsentra RAN. 2011. T. 13. №4. S. 91–95.
19. Golovina E.I., Ivanova I.A., Ivkov S.A. Otsenka rentgenofazovogo analiza pyli ot drobestruynykh ustanovok liteynogo proizvodstva [Evaluation of X-ray phase analysis of dust from shot blasting plants of foundry] // Naukovedeniye: Internet-zhurnal. 2017. T. 9. №2. S. 62. Available at: http://naukovedenie.ru/PDF/42TVN217.pdf (accessed: July 29, 2019).
20. Parilov I.V., Sirotinkin V.P., Sidokhin A.F., Sidokhin E.F. Rentgenovskiy difraktometr s koordinatnym detektorom [X-ray diffractometer with a coordinate detector] // Zavodskaya laboratoriya. Diagnostika materialov. 2006. T. 72. №7. S. 32–36.
21. Sidokhin F.A., Sidokhin A.F., Sidokhin E.F. Rentgenograficheskiy kontrol metallokorda na difraktometre s koordinatnym detektorom [X-ray control of steel cord on a diffractometer with a coordinate detector] // Zavodskaya laboratoriya. Diagnostika materialov. 2007. T. 73. №8. S. 45–46.
22. Kulikov N.A., Popova N.A., Lukin E.S. Sintez nanostrukturirovannykh poroshkov sostava ittriy–alyuminiyevyy granat–ligand v tekhnologii polucheniya lazernoy keramiki [Synthesis of nanostructured powders of yttrium – aluminum garnet – ligand composition in laser ceramics technology] // Actualscience. 2016. T. 2. №12. S. 135–136.
23. Orlova L.A., Solntsev S.St., Chaynikova A.S., Popovich N.V., Denisova V.S. Alyumosilikatnyye kompozity s neoksidnymi napolnitelyami [Aluminosilicate composites with non-oxide fillers // News of materials science] // Novosti materialovedeniya. Nauka i tekhnika: elektron. nauch.-tekhnich. zhurn. 2013. №1. St. 03. Available at: http://materialsnews.ru (accessed: July 29, 2019).
24. Jesche A., Fix M., Kreyssig A. et al. X-Ray diffraction on large single crystals using a powder diffractometer // Philosophical magazine. 2016. Vol. 96. Issue 20. P. 2115–2124.
25. Kazantseva L.A., Kurzina I.A., Kosova N.I. i dr. Sintez gidridov titana i polucheniye splavov na ikh osnove [Synthesis of titanium hydrides and production of alloys based on them] // Vestnik Tomskogo gosudarstvennogo universiteta. Ser.: Khimiya. 2015. №2. S. 69–75.
26. Pyankova L.A., Elokhin V.A., Arkhipov S.N. i dr. Kontrol funktsionalnykh sloyev VTSP-2 s pomoshchyu teksturnoy pristavki rentgenovskogo difraktometra «Difrey-401» [Control of the functional layers of HTSC-2 using the texture attachment of the X-ray diffractometer «Difrey-401»] // Zavodskaya laboratoriya. Diagnostika materialov. 2016. T. 82. №10. S. 44–46.
27. Shtukenberg A.G., Maksimova L.N., Arkhipov S.N., Pyankova L.A. Kolichestvennyy rentgenofazovyy analiz elektrolitov metodami kalibrovok i Ritvelda [Quantitative X-ray phase analysis of electrolytes by calibration and Rietveld methods] // Zavodskaya laboratoriya. Diagnostika materialov. 2017. T. 83. №4. S. 37–43.
28. Cherednichenko K.A., Solozhenko V.L. Structure and equation of state of tetragonal boron subnitride B50N2 // Journal of Applied Physics. 2017. Vol. 122. P. 155901. DOI: 10.1063/1.4996854.
29. Rentgenovskiy difraktometr: pat. 2664774 Ros. Federatsiya [X-ray diffractometer: pat. 2664774 Rus. Federation]; zayavl. 21.11.17; opubl. 22.08.18.
30. Kotelkin A.V., Zvonkov A.D., Lyuttsau A.V. i dr. Vliyaniye nanorazmernoy uprochnyayushchey fazy na osobennosti povedeniya alyuminiyevogo splava 1953T1 pri tsiklicheskoy nagruzke [Influence of the nanoscale hardening phase on the behavior of a 1953T1 aluminum alloy under cyclic loading] // Izvestiya vysshikh uchebnykh zavedeniy. Ser.: Tsvetnaya metallurgiya. 2011. №4. S. 44–49.
31. Hosseini S.B., Karlsson B., Vuoristo T., Dalaei K. Determination of Stresses and Retained Austenite in Carbon Steels by X-rays – A Round Robin Study // Experimental Mechanics. 2011. DOI: 10.1007/s11340-010-9338-2.
32. Kumakhov A.M., Teshev R.Sh., Kumakhov A.A. Ispolzovaniye protyazhennoy oblasti fokusa polikapillyarnoy linzy v osnovnykh skhemakh difraktometrii [The use of an extended focus area of a multicapillary lens in the main diffractometry schemes] // Sovremennyye naukoyemkiye tekhnologii. 2016. №4–1. S. 20–24.
33. Montag B.W., Reichenberger M.A., Sunded M. Bulk Crystal Growth and High – Resolution X-ray Diffraction Results of LiZnAs Semiconductor Material // Journal of Electronic Materials. 2017. Vol. 46. No. 8. P. 4875–4882. DOI: 10.1007/s11664-017-5471-3.
In the course of research, the exposition of samples of steel, polystyrene and PET in water of different mineralization and in different climatic zones was carried out. The study of samples allowed to evaluate the stages of biofouling and biodegradation based on the analysis of mechanical properties of deposits on the surface.
It is established that at the first stage under the action of algae the surface of the samples is oxidized by oxygen released during photosynthesis of algae and their curing. At the second stage, after 30-40 days of exposure, the polymer samples are saturated with moisture and the surface is destroyed by bacterial exchange products, which leads to a drop in both strength and plasticity of polystyrene and polyethylene terephthalate samples.
For metal samples in the coastal waters of the Black sea, one of the most aggressive groups of microorganisms are organisms of the invertebrate species — marine sponges of Calcispongiae class, which are the first to attach to the surface. The products of their metabolism cause local acidification of water with carbon dioxide, which causes the destruction of samples and the formation of deposits in the form of calcium salts.
Methods of molecular biology in biological samples taken from samples of materials in Ufa, the most active representatives of the genera Pseudomonas and gammaproteobacteria Aeromonosis, as well as genera betaproteobacteria Acidovorax and Hydrogenophaga; in samples taken from samples in Gelendzhik – general alfaproteobacteria Erythrobacter, Marivita and Alterythrobacter; in samples taken from samples in D. goretovo is a genus of betaproteobacterium aquabacterium. Since it is for the representatives of the genus Pseudomonas, according to the literature, the ability to degrade PET, they, and possibly Acidovorax, can be bacteria-destructors
2. Laptev A.B., Barbotko S.L., Nikolayev E.V., Skirta A.A. Statisticheskaya obrabotka rezultatov klimaticheskikh ispytaniy stekloplastikov [Statistical processing of the results of climatic tests of fiberglass] // Plasticheskiye massy. 2016. №3–4. S. 58–64.
3. Lutsenko A.N., Kurs M.G., Laptev A.B. Obosnovaniye srokov naturnykh klimaticheskikh ispytaniy metallicheskikh materialov v atmosfere chernomorskogo poberezhya. Analiticheskiy obzor [Justification of the terms of full-scale climatic tests of metallic materials in the atmosphere of the Black Sea coast. Analytical review] // Voprosy materialovedeniya. 2016. №3. S. 126–137.
4. Teremova M.I., Vorobeva S.V., Romanchenko A.S. Uglevodorodokislyayushchiye bakterii kak potentsial'nyye destruktory polietilena vysokogo davleniya [Hydrocarbon-oxidizing bacteria as potential destructors of high-pressure polyethylene] // Vestnik Krasnoyarskogo gosudarstvennogo agrarnogo universiteta. 2011. Vyp. 11. S. 133–138.
5. Vorobeva G.A. Korrozionnaya stoykost materialov v agressivnykh sredakh khimicheskikh proizvodstv [Corrosion resistance of materials in aggressive environments of chemical industries]. M.: Khimiya, 1975. 816 s.
6. Kablov E.N., Startsev O.V. Fundamentalnye i prikladnye issledovaniya korrozii i stareniya materialov v klimaticheskih usloviyah (obzor) [The basic and applied research in the field of corrosion and ageing of materials in natural environments (review)] // Aviacionnye materialy i tehnologii. 2015. №4 (37). S. 38–52. DOI: 10.18577/2071-9140-2015-0-4-38-52.
7. Palm G.J., Reisky L., Böttcher D. et al. Structure of the plastic-degrading Ideonella sakaiensis MHETase bound to a substrate // Nature Communications. 2019. Vol. 10 (1). P. 1717–1723.
8. Kablov E.N. Klyuchevaya problema – materialy [The key problem is materials] // Tendentsii i oriyentiry innovatsionnogo razvitiya Rossii. M.: VIAM, 2015. S. 458–464.
9. Kablov E.N., Erofeev V.T., Svetlov D.A., Smirnov V.F., Bogatov A.D. Biopovrezhdeniya v kosmicheskikh apparatakh [Biodeterioration in spacecraft] // Sb. Mezhdunar. nauch.-tekhnich. konf. «Kompozitsionnyye materialy. Teoriya i praktika». Tula, 2015. S. 40–46.
10. Kablov E.N., Startsev V.O. Sistemnyj analiz vliyaniya klimata na mekhanicheskie svojstva polimernykh kompozitsionnykh materialov po dannym otechestvennykh i zarubezhnykh istochnikov (obzor) [Systematical analysis of the climatics influence on mechanical properties of the polymer composite materials based on domestic and foreign sources (review)] // Aviacionnye materialy i tehnologii. 2018. №2 (51). S. 47–58. DOI: 10.18577/2071-9140-2018-0-2-47-58.
11. Krivushina A.A., Goryashnik Yu.S. Sposoby zashchity materialov i izdeliy ot mikrobiologicheskogo porazheniya (obzor) [Ways of protection of materials and products from microbiological damage (review)] // Aviacionnye materialy i tehnologii. 2017. №2 (47). S. 80–86. DOI: 10.18577/2071-9140-2017-0-2-80-86.
12. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
13. Gregory M.R. Environmental implications of plastic debris in marine settings entanglement, ingestion, smothering, hangers-on, hitchhiking and alien invasions // Philosophy Transaction Rich Society London Bay Biology Science. 2002. Vol. 364. P. 2013–2025.
14. Law K.L., Morét-Ferguson S., Maximenko N.A. et al. Plastic accumulation in the North Atlantic Subtropical Gyre // Science. 2010. Vol. 3. P. 1185–1188.
15. Carson H.S., Colbert S.L., Kaylor M.J., McDermid K.J. Small plastic debris changes water movement and heat transfer through beach sediments // Marine Pollution Bulletin. 2011. Vol. 62. P. 1708–1713.
6. Laptev A.B., Nikolayev E.V., Kolpachkov E.D. Termodinamicheskiye kharakteristiki stareniya polimernykh kompozitsionnykh materialov v usloviyakh realnoy ekspluatatsii [Thermodynamic characteristics of aging of polymeric composite materials under conditions of real exploitation] // Aviacionnye materialy i tehnologii. 2018. №3 (52). S. 80–88. DOI: 10.18577/2071-9140-2018-0-3-80-88.
17. Ribitsch D., Heumann S., Trotscha E. et al. Hydrolysis of polyethylene terephthalate by para-nitrobenzylesterase from Bacillus subtilis // Biotechnology Program. 2011. Vol. 27. P. 951–960. DOI: 10.1002/btpr.610.
18. Webb H.K., Arnott J., Crawford R.J., Ivanova E.P. Plastic Degradation and Its Environmental Implications with Special Reference to Poly(ethylene terephthalate) // Polymers. 2013. Vol. 5. P. 1–18. DOI: 10.3390/polym5010001.
19. Williams A., Rangel-Buitrago N. Marine litter: Solutions for a major environmental problem // Journal of Coastal Research. 2019. Vol. 35 (3). P. 648–663.
20. Wei R., Zimmermann W. Microbial enzymes for the recycling of recalcitrant petroleum-based plastics: how far are we? // Microbiol Biotechnology. 2017. Vol. 10. P. 1308–1322.
21. Kawai F., Oda M., Tamashiro T. et al. A novel Ca 2+-activated, thermostabilized polyesterase capable of hydrolyzing polyethylene terephthalate from Saccharomonospora viridis AHK190 // Applied Microbiology and Biotechnology. 2014. Vol. 98. P. 10053–10064.
22. Liu J., Xu G., Dong W. et al. Biodegradation of diethyl terephthalate and polyethylene terephthalate by a novel identified degrader Delftia sp. WL-3 and its proposed metabolic pathway // Letters in Applied Microbiology. 2018. Vol. 67. Issue 3. P. 254–261.
23. Yoshida S., Hiraga K., Takehana T. et al. A bacterium that degrades and assimilates poly(ethylene terephthalate) // Science. 2016. Vol. 351. Issue 6278. P. 1196–1199. DOI: 10.1126/science.aad6359.
24. Rani M., Shim W.J., Jang M. et al. Releasing of hexabromocyclododecanes from expanded polystyrenes in seawater-field and laboratory experiments // Chemosphere. 2017. Vol. 185. P. 798–805.
25. Hadad D., Geresh S., Sivan A. Biodegradation of polyethylene by the thermophilic bacterium Brevibacillus borstelensis // Journal Application Microbiology. 2005. Vol. 98. P. 1093–1100.
26. Maeda Y., Nakayama A., Iyoda J. et al. Synthesis and biodegradation of the copolymers of succinic anhydride with various oxiranes // Kobunshi Ronbunshu. 1993. Vol. 50. P. 723–729.
27. Ronkvist A.M., Xie W., Lu W., Gross R.A. Cutinase-catalyzed hydrolysis of poly(ethyleneterephthalate) // Macromolecules. 2009. Vol. 42. P. 5128–5138.
28. Sharon M., Sharon C. Studies on Biodegradation of Polyethylene terephthalate. A synthetic polyme // Journal Microbiology Biotechnology Research. 2012. Vol. 2 (2). P. 248–257.
29. Kleeberg I., Hetz C., Kroppenstedt R.M. et al. Biodegradation of aliphatic/aromatic copolyesters by thermophilic actinomycetes // Applied Environmental Microbiology. 1998. Vol. 64. P. 1731–1735.
30. Kleeberg I., Welzel K., van den Heuvel J. et al. Characterization of a new extracellular hydrolase from Thermobifida fusca degrading aliphatic-aromatic copolyesters. Biomacromolecules // Microbiology. 2005. Vol. 6. P. 262–270.
31. Sauvageau D. Microbial esterase and the degradation of plasticizers: dissertation. McGill University Montreal. Quebec, 2004. 156 p.
32. Liu C., Shi C., Zhu S. et al. Structural and functional characterization of polyethylene terephthalate hydrolase from Ideonella sakaiensis // Biochemistry Biophysics Research Communication. 2019. Vol. 508 (1). P. 289–294. DOI: 10.1016/j.bbrc.2018.11.148.
33. Miyakawa T., Mizushima H., Ohtsuka J. et al. Structural basis for the Ca2+-enhanced thermostability and activity of PET-degrading cutinase-like enzyme from Saccharomonospora viridis AHK190 // Applied Microbiology and Biotechnology. 2015. Vol. 99 (10). P. 4297–307. DOI: 10.1007/s00253-014-6272-8.
34. Laptev A.B. Metody i agregaty dlya magnitogidrodinamicheskoy obrabotki vodoneftyanykh sred: dis. … dokt. tekhn. Nauk [Methods and aggregates for magnetohydrodynamic processing of oil-water media: thesis, Dr. Sc. (Tech.)]. Ufa, 2008. 350 s.
35. Akhiyarov R.Zh., Bugay D.E., Laptev A.B. Problemy podgotovki oborotnykh i stochnykh vod predpriyatiy neftedobychi [Problems of preparing circulating and wastewater of oil production enterprises] // Neftepromyslovoye delo. 2008. №9. S. 61–65.
36. Akhiyarov R.Zh., Laptev A.B., Ibragimov I.G. Povysheniye promyshlennoy bezopasnosti ekspluatatsii obektov neftedobychi pri biozarazhenii i vypadenii soley metodom kompleksnoy obrabotki plastovykh vod [Improving the industrial safety of the operation of oil production facilities during bio-contamination and salt deposition by the method of integrated treatment of produced water] / Neftepromyslovoye delo. 2009. №3. S. 44–46.
37. Laptev A.B., Barbotko S.L., Nikolaev E.V. Osnovnye napravleniya issledovanij sokhranyaemosti svojstv materialov pod vozdejstviem klimaticheskikh i ekspluatatsionnykh faktorov [The main research areas of the persistence properties of materials under the influence of climatic and operational factors] // Aviacionnye materialy i tehnologii. 2017. №S. S. 547–561. DOI: 10.18577/2071-9140-2017-0-S-547-561.
38. Kogan A.M., Nikolayev E.V., Golubev A.V., Laptev A.B., Movenko D.A. Etapy bioobrastaniya i korrozii stali v chernomorskoy vode [Stages of biofouling and corrosion of steel in the Black sea water] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2019. №6 (78). St. 09. Available at: http://viam-works.ru (accessed: July 08, 2019). DOI: 10.18577/2307-6046-2019-0-6-84-94.
In work the analysis of various criteria of durability for isotropic, orthotropic and anisotropic materials is carried out. Applied approaches are described at calculation of durability of fibrous and layered composite materials. Criteria are considered: Mises, Pisarenko-Lebedev, William-Varnke, Druker–Prager, Bazant, Norris, Kuntts, Goldenblat–Kopnov, Tsai–Hill, Tsai–Wu, Hashin, LaRC, Hoffman, Puck, criteria of durability sandwich of panels, etc. The review of models of durability of the materials used in the ANSYS Mechanical APDL program is presented.
It is noted that to modeling of designs from composite materials apply some main ways: structural, phenomenological and combined. At a structural approach the structure of a material and micromechanical interaction between separate elements of components is considered when loading all design. At a phenomenological method the non-uniform composite material is considered as an averaged continuous material - homogeneous anisotropic. The combination of these two methods will be intermediate. In a structural and phenomenological method idealized describe behavior of a monolayer, but a multilayered composite material describe compound, including separate layers (estimate properties of heterogeneous systems through physicomechanical properties of the separate phases making this system).
In the analysis of durability of multilayered covers according to structural phenomenologically method at first receive averaged physicomechanical characteristics then there is a calculation of the design consisting of covers. By mathematical model define distribution of tension and deformations in a design. Then pass from averaged deformations and tension in composite covers to tension and deformations in each monolayer of a composite material, on the basis of its properties, orientation of fibers, thickness and situation in a package. In the final stage on the basis of the received values the conc
2. Kablov E.N. Kompozity: segodnya i zavtra [Composites: today and tomorrow] // Metally Evrazii. 2015. №1. S. 36–39.
3. Buznik V.M., Kablov E.N., Koshurina A.A. Materialy dlya slozhnykh tekhnicheskikh ustroystv arkticheskogo primeneniya [Materials for complex technical devices of the Arctic application] // Nauchno-tekhnicheskiye problemy osvoyeniya Arktiki. M.: Nauka, 2015. S. 275–285.
4. Erasov V.S., Oreshko E.I. Koeffitsient Puassona i puassonova sila [Poisson ratio and poisson force] // Aviacionnye materialy i tehnologii. 2018. №4 (53). S. 79–86. DOI: 10.18577/2071-9140-2018-0-4-79-86.
5. Erasov V.S., Avtaev V.V., Oreshko E.I., Yakovlev N.O. Preimushchestva «zhestkogo» nagruzheniya pri ispytaniyakh na staticheskoe i povtorno-staticheskoe rastyazhenie [Strain-controlled testing advantages at static tension and repeated-static tension] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2018. №9 (69). St. 10. Available at: http://www.viam-works.ru (accessed: August 25, 2019). DOI: 10.18577/2307-6046-2018-0-9-92-104.
6. Erasov V.S., Oreshko E.I. Deformaciya i razrushenie kak processy izmeneniya obema, ploshhadi poverhnosti i linejnyh razmerov v nagruzhaemyh telah [Deformation and destruction as processes of change of volume, the areas of a surface and the linear sizes in loaded bodies] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №8. St. 11. Available at: http://www.viam-works.ru (accessed: August 25, 2019). DOI: 10.18577/2307-6046-2016-0-8-11-11.
7. Erasov V.S., Oreshko E.I., Lucenko A.N. Ploshhad svobodnoj poverhnosti kak kriterij hrupkogo razrusheniya [Area of a free surface as criterion of brittle fracture] // Aviacionnye materialy i tehnologii. 2017. № 2 (47). S. 69–79. DOI: 10.18577/2071-9140-2017-0-2-69-79.
8. Erasov V.S., Oreshko E.I. Silovoj, deformacionnyj i energeticheskij kriterii razrusheniya [Force, deformation and energy criteria of destruction] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2017. №10 (58). St. 11. Available at: http://viam-works.ru (accessed: August 25, 2019). DOI: 10.18577/2307-6046-2017-0-10-11-11.
9. Erasov V.S., Oreshko E.I., Lutsenko A.N. Obrazovanie novykh poverkhnostey v tverdom tele na stadiyakh uprugoy i plasticheskoy deformatsiy, nachala i razvitiya razrusheniya [Formation of new surfaces in a firm body at stages of elastic and plastic deformations, the beginning and destruction development] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2018. №2 (62). St. 12. Available at: http://www.viam-works.ru (accessed: August 25, 2019). DOI: 10.18577/2307-6046-2018-0-2-12-12.
10. Erasov V.S., Oreshko E.I. Prichiny zavisimosti mekhanicheskikh kharakteristik treshchinostoykosti materiala ot razmerov obraztsa [Reasons for dependence of mechanical characteristics of material fracture resistanceon sample sizes] // Aviacionnyye materialy i tehnologii. 2018. №3. S. 56–64. DOI: 10.18577/2071-9140-2018-0-3-56-64.
11. Stepin P.A. Soprotivleniye materialov: ucheb. [Resistance of materials: textbook]. M.: Vysshaya shkola, 1988. 367 s.
12. Aleksandrov A.V., Potapov V.D., Derzhavin B.P. Soprotivleniye materialov [Resistance of materials]. M.: Vysshaya shkola, 2003. 561 s.
13. Taranukha N.A. Teoriya uprugosti: ucheb. posobiye [Theory of elasticity: tutotial]. Khabarovsk: Khabarovskiy politekh. in-t, 1992. 87 s.
14. Ottozen N.S. A Failure Criterion for Concrete // Journal of the Engineering Mechanics Division ASCE. 1977. Vol. 103. NEM4. P. 527–535.
15. Lebedev A.A., Kovalchuk B.I., Giginyak F.F., Lamashevskiy V.P. Mekhanicheskiye svoystva konstruktsionnykh materialov pri slozhnom napryazhennom sostoyanii [Mechanical properties of structural materials under complex stress state]. Kiyev: In Yure, 2003. 540 s.
16. Westergaard H.M. Plastic state of stress around a deep well // Journal of the Boston Society of Civil Engineers Section,1940. Vol. 27. No. 1. Р. 1–5.
17. Filonenko-Borodich M.M. Ob usloviyakh prochnosti materialov, obladayushchikh razlichnym soprotivleniyem rastyazheniyu i szhatiyu [On the strength conditions of materials with different tensile and compression resistance] // Inzhenernyy sbornik. 1954. Vyp. 19. S. 36–48.
18. Pisarenko G.S., Lebedev A.A. Deformirovaniye i prochnost materialov pri slozhnom napryazhennom sostoyanii Deformation and strength of materials under complex stress state. Kiyev: Naukova dumka, 1976. 416 s.
19. Balan T.A., Spacone E., Kwon M. 3D hypoplastic model for cyclic analysis of concrete structures // Engineering Structures. Elsevier, 2001. No. 23. P. 333–342.
20. Klovanich S.F., Bezushko D.I. Metod konechnykh elementov v raschetakh prostranstvennykh zhelezobetonnykh konstruktsiy [The finite element method in the calculation of spatial reinforced concrete structures]. Odessa: Izd-vo ONMU, 2009. 89 s.
21. Kazarinov Yu.I. Prochnost elementov konstruktsiy s vyrezami i povrezhdeniyami: monografiya [Strength of structural elements with cutouts and damage: a monograph]. Tyumen: TIU, 2017. S. 94–95.
22. Popov A.A., Khatuntsev A.A., Shashkov I.G., Kochetkov A.V. Prostranstvennyy deformatsionnyy nelineynyy raschet zhelezobetonnykh izgibayemykh konstruktsiy metodom konechnykh elementov Spatial deformation nonlinear calculation of reinforced concrete flexible structures using the finite element method // Naukovedeniye: Internet-zhurnal, 2013. №5. Available at: http://cyberleninka.ru/article/n/ prostranstvennyy-deformatsionnyy-nelineynyy-raschet-zhelezobetonnyh-izgibaemyh-konstruktsiy-metodom-konechnyh-elementov (accessed: August 25, 2019).
23. Warnke K.J., Warnke E.P. Constitutive model for the triaxial behavior of concrete // Seminar of concrete structures subjected to triaxial stresses. Dergamo, 1974. Vol. 19. P. 3–11.
24. Drucker D.C., Prager W. Soil mechanics and plastic analysis for limit design // Quarterly of Applied Mathematics. 1952. No. 2. P. 157–165.
25. Bazant Z.P., Cedolin L. Fracture mechanics of reinforced concrete // Journal of the Engineering Mechanics Division ASCE. 1980. Vol. 106. P. 1287–1306.
26. Charles B., Norris C.B. Strength of orthotropic materials subjected to combined stresses. Forest Products Laboratory Report, 1962. P. 41.
27. Tsai S.W., Wu E.M. A General Theory of Strength for Anisotropic Materials // Journal of Composite Materials. 1971. No. 5 (1). P. 58–80. DOI: 10.1177/002199837100500106.
28. Tarnopolskiy Yu.M., Kintsis T.Ya. Metody staticheskikh ispytaniy armirovannykh plastikov. 2-e izd., pererab. i dop. [Methods of static testing of reinforced plastics. 2nd ed., rev. and add.]. M.: Khimiya, 1975. 262 s.
29. Hankinson R.L. Investigation of crushing strength of spruce at varying angles of grain // Air Force Information Circular. 1921. No. 259. P. 130.
30. Tarnopolskiy Yu.M., Skudra A.M. Konstruktsionnaya prochnost' i deformativnost stekloplastikov [Structural strength and deformability of fiberglass]. Riga: Zinatne, 1966. 266 s.
31. Klovanich S.F., Karpenko S.N. O raschete prostranstvennykh zhelezobetonnykh konstruktsiy metodom konechnykh elementov [On the calculation of spatial reinforced concrete structures by the finite element method] // Beton i zhelezobeton v tretem tysyacheletii: sb. tr. Mezhdunarodnoy nauchno-prakticheskoy konferentsii. Rostov-n/D, 2000. S.179–184.
32. Karpenko N.I., Mukhamediyev T.A., Petrov A.N. Iskhodnyye i transformirovannyye diagrammy deformirovaniya betona i armatury [Initial and transformed diagrams of deformation of concrete and reinforcement] // Napryazhenno-deformirovannoye sostoyaniye betonnykh i zhelezobetonnykh konstruktsiy. M.: NIIZhB, 1986. S. 7–25.
33. Karpenko N.I. Obshchiye modeli mekhaniki zhelezobetona. M.: Stroyizdat, 1996. 416 s.
34. Dzyuba V.A., Glushakova YU.S. Primeneniye sostavnoy funktsii diagrammy szhatogo betona dlya deformatsionnoy otsenki konstruktsiy [The use of the composite function of a diagram of compressed concrete for the deformation assessment of structures] // Uchenyye zapiski KnAGTU. Ser.: Nauki o prirode i tekhnike. 2014. T. II. №1 (18). S. 109–114.
35. Taranukha N.A., Vasilev A.S. Chislennoye modelirovaniye povedeniya slozhnykh kompozitnykh konstruktsiy v oblasti ikh predelnykh sostoyaniy [Numerical modeling of the behavior of complex composite structures in the region of their limiting states] // Nauka. Innovatsii. Tekhnika i tekhnologii: problemy, dostizheniya i perspektivy: materialy Mezhdunar. nauchn.-prakt. konf. (Komsomolsk-na-Amure, 12–16 maya 2015 g.). Komsomolsk-na-Amure: KnAGTU, 2015. S. 96–99.
36. Grezin V.M. Issledovaniye prochnosti i deformativnosti stekloplastika AG-4S pri kratkovremennykh i dlitelnykh nagruzkakh [The study of the strength and deformability of fiberglass AG-4C with short-term and long-term loads] // Trudy Voronezhskogo inzhenerno-stroitel'nogo instituta. 1967. №13. Vyp. 2. S. 3–8.
37. Oreshko E.I., Erasov V.S., Yastrebov A.S. Prognozirovaniye prochnostnykh i deformatsionnykh kharakteristik materialov pri ispytaniyakh na rastyazheniye i polzuchest [Prediction of strength and deformation characteristics of materials during tensile and creep tests] // Materialovedeniye. 2019. №1. S. 3–9.
38. Taranukha N.A., Vasilev A.S. Chislennoye issledovaniye predelnoy nesushchey sposobnosti konstruktsiy iz kompozitnykh materialov [Prediction of strength and deformation characteristics of materials during tensile and creep tests] // Morskiye intellektualnye tekhnologii. Ser.: Korablestroyeniye, informatika, vychislitelnaya tekhnika i upravleniye. 2015. T. 2. №3 (29). C. 27–32.
39. Taranukha N.A., Vasilev A.S. Algoritmy i modeli pri chislennom proyektirovanii kompozitnykh sred na zadannyye kharakteristiki dlya morskikh sooruzheniy [Algorithms and models for the numerical design of composite media for specified characteristics for offshore structures] // Uchenyye zapiski KnAGTU. Ser.: Nauki o prirode i tekhnike. 2015. T. I. №1 (21). S. 81–86.
40. Bazant Z.P., Oh B.H. Crack band theory for fracture of concrete // Materials and structures. 1983. Vol. 16. P. 155–176.
41. Lin C.S., Scordelis A.C. Nonlinear analysis of RC shells of general form // Journal of structural division. 1975. Vol. 101. No. ST3. P. 523–538.
42. Vasilyev A.S., Taranukha N.A. Algorithms and numerical model for the research of limit state of structures of composite materials // The 29th Asia-Pacific Technikal Exchange and Advisory Meeting on Marine Structures (TEAM-2015). Vladivostok, 2015. P. 29–34.
43. Laws N. A note on interaction energies associated with cracks in anisotropic solids // Philosophical Magazine. 1977. No. 36 (2). P. 367–372. DOI: 10.1080/14786437708244940.
44. Pinho S., Davila C., Camanho P. et al. Failure models and criteria for FRP under in-plane or three-dimensional stress states including shear non-linearity. NASA, 2005. P. 61.
45. Davila C., Navin J. Failure Criteria for FRP Laminates in Plane-Stress / NASA Langley Research Center. 2003. P. 28.
46. Tyshkevich V.N. Vybor kriteriyev prochnosti dlya trub iz armirovannykh plastikov [The choice of strength criteria for pipes made of reinforced plastics] // Izvestiya VolgGTU. 2011. №5 (78). S. 76–79.
47. Karpov V.V., Semenov A.A. Kriterii prochnosti dlya tonkostennykh ortotropnykh obolochek. Ch. 1: Analiz osnovnykh kriteriyev prochnosti izotropnykh i ortotropnykh materialov [Strength criteria for thin-walled orthotropic shells. Part 1: Analysis of the main criteria for the strength of isotropic and orthotropic materials] // Vestnik grazhdanskikh inzhenerov. 2014. №6 (47). S. 43–51.
48. Aliyev M.M., Bayburova M.M. Kriterii kratkovremennoy prochnosti anizotropnykh materialov i primeneniye ikh dlya resheniya zadach predelnogo ravnovesiya [Criteria for the short-term strength of anisotropic materials and their application for solving problems of ultimate equilibrium] // Vestnik SamGU. Yestestvennonauchnaya seriya. 2007. №6 (56). S. 22–29.
49. Structural Materials Handbook. ESA Publications Division, 1994. Vol. 1. 564 p.
50. Sullins R.T. Manual for Structural Stability Analysis of Sandwich Plates and Shells. CR-145. NASA. 1969. P. 9–15.
51. Sudzuki N., Arakava T., Yamaura T., Kakikhara S., Muroaka R. Primeneniye trub s vysokoy deformatsionnoy sposobnostyu pri izgotovlenii metodom kholodnogo izgiba krivolineynykh otvodov s bolshim uglom [The use of pipes with high deformation ability in the manufacture by cold bending of curved bends with a large angle] // Gazovaya promyshlennost. 2007. Spetsvypusk №4 (762). S. 66–71.
52. Muyzemnek A.Yu., Kartashova E.D. Mekhanika deformirovaniya i razrusheniya polimernykh sloistykh kompozitsionnykh materialov: ucheb. posobiye [The mechanics of deformation and fracture of polymer layered composite materials: tutorial]. Penza: Izd-vo PGU, 2017 S. 39–42.
53. Goldenblat I.I., Kopnov V.A. Kriterii prochnosti i plastichnosti konstruktsionnykh materialov [Strength and ductility criteria for structural materials]. M.: Mashinostroyeniye, 1968. 192 s.
54. Makovenko S.Ya. O vzaimnosti komponent tenzorov prochnosti nekotorykh teoriy prochnosti anizotropnykh materialov [On the reciprocity of the components of the strength tensors of some theories of the strength of anisotropic materials] // Stroitelnaya mekhanika inzhenernykh konstruktsiy i sooruzheniy. 2005. №1. S. 65–70.
55. Vasilev V.V. Mekhanika konstruktsiy iz kompozitsionnykh materialov [Mechanics of structures made of composite materials]. M.: Mashinostroyeniye, 1988. 272 s.
56. Vasilev V.V., Protasov V.D., Bolotin V.V. Kompozitsionnyye materialy: sprav. [Composite materials: references book] M.: Mashinostroyeniye, 1990. 272 s.
57. Grishin V.I., Dzyuba A.S., Dudarkov Yu.I. Prochnost i ustoychivost elementov i soyedineniy aviatsionnykh konstruktsiy iz kompozitov [Strength and stability of elements and joints of aircraft structures made of composites]. M.: Izd-vo fiz.-matem. lit., 2013. 272 s.
58. Abrate S. Criteria for yielding or failure of cellular materials // Journal of Sandwich Structures and Materials. 2008. Vol. 10. P. 5–51.
59. Daniel L.M., Ishai O. Engineering Mechanics of Composite materials. Oxford: Oxford University Press, 1994. 432 p.
60. Basharov E.A., Erkov A.P. Metod rascheta mnogosloynogo paketa iz polimernogo kompozitsionnogo materiala s uchetom vybora kriteriya prochnosti [The method of calculating a multilayer package of polymer composite material, taking into account the choice of strength criterion] // Polet. 2018. №6. S. 39–53.
61. Puck A. Festigkeitsberechnung an Glasfaser/Kunststoff-Laminaten bei zusam-mengesetzter Beanspruchung // Kunststoffe. 1969. Vol. 59. No. 11. P. 780–787.
62. Knops M. Analysis of Failure in Fiber Polymer Laminates. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008. 205 p. DOI:10.1007/978-3-540-75765-8.
63. Gdoutos E.E., Daniel I.M., Wang K.A. Multiaxial characterization and modeling of a PVC cellular foam // Journal of Thermoplastic Composite Materials. 2001. Vol. 14. P. 365–373.
64. Puck A., Kopp J., Knops M. Failure analysis of FRP laminates by means of physically based phenomenological models // Computer Science Technology. 2002. Vol. 62. P. 1633–1662.
65. Puck A., Kopp J., Knops M. Guidelines for the determination of the parameters in Pucks action plane strength criterion // Computer Science Technology. 2002. Vol. 62. P. 371–378.
66. Belov A.V., Neumoina N.G. Ob ispolzovanii obobshchennogo kriteriya prochnosti Pisarenko–Lebedeva v raschetakh na prochnost pri neizotermicheskikh protsessakh nagruzheniya [On the use of the generalized strength criterion Pisarenko–Lebedev in strength calculations for nonisothermal loading processes] // Mezhdunarodnyy zhurnal prikladnykh i fundamental'nykh issledovaniy. 2014. №9–2. S. 8–10.
67. Pisarenko G.S., Lebedev A.A. Deformirovaniye i prochnost' materialov pri slozhnom napryazhennom sostoyanii [Deformation and strength of materials under complex stress state]. Kiyev: Naukova dumka, 1976. 415 s.
68. Lebedev A.A. Razvitiye teoriy prochnosti v mekhanike materialov [The development of theories of strength in the mechanics of materials] // Problemy prochnosti. 2010. №5. S. 127–146.
69. Karpov Ya.S., Stavichenko V.G. Issledovaniye i analiz sposobov udovletvoreniya kriteriyam prochnosti sloistogo kompozitsionnogo materiala [Research and analysis of ways to meet the strength criteria of a layered composite material] // Aviatsionno-kosmicheskaya tekhnika i tekhnologiya. 2004. Vyp. 1. S. 3–10.
70. Karpov Ya.S., Stavichenko V.G. Sravnitelnyy analiz podkhodov k otsenke prochnosti sloistykh kompozitsionnykh materialov [Comparative analysis of approaches to assessing the strength of layered composite materials] // Problemy prochnosti. 2008. №4. S. 36–42.
71. Borovkov A.I. Vozmozhnosti sistemy konechno-elementnogo modelirovaniya ANSYS/LS–DYNA [Possibilities of the finite element modeling system ANSYS/LS–DYNA] // Sb. materialov I Mezhdunar. konf. polzovateley programmnogo obespecheniya ANSYS E. M.: EMT–ANSYS-tsentr, 2003. S. 128–136.
72. Kollerov M.Yu., Gusev D.E., Oreshko E.I. Eksperimentalno-teoreticheskoye obosnovaniye vybora metoda i implantatov dlya ustraneniya voronkoobraznoy deformatsii grudnoy kletki [Experimental and theoretical justification of the choice of method and implants for eliminating the funnel-shaped deformation of the chest] // Nauchnyye trudy (Vestnik MATI). 2012. №19 (91). S. 331–336.
73. Gusev D.E., Kollerov M.Yu., Rudakov S.S., Korolev P.A., Oreshko E.I. Otsenka biomekhanicheskoy sovmestimosti implantiruyemykh opornykh plastin iz splavov na osnove titana i nikelida titana metodom kompyuternogo modelirovaniya [Estimation of the biomechanical compatibility of implantable support plates from alloys based on titanium and titanium nickelide by computer simulation] // Titan. 2011. №3 (33). S. 39–44.
74. Oreshko E.I., Erasov V.S., Lashov O.A., Podzhivotov N.Yu., Kachan D.V. Chislennoye issledovaniye nesushchey sposobnosti sloistogo materiala [Numerical study of the bearing capacity of a layered material] // Vse materialy. Entsiklopedicheskiy spravochnik. 2019. №3. S. 16–21.
75. Dimitrienko Yu.I., Lutsenko A.N., Gubareva E.A., Oreshko E.I., Bazyleva O.A., Sborshhikov S.V. Raschet mekhanicheskikh kharakteristik zharoprochnykh intermetallidnykh splavov na osnove nikelya metodom mnogomasshtabnogo modelirovaniya struktury [Calculating of mechanical characteristics of heat resistant intermetallic alloys on the basis of nickel by method of multi-scale modeling of structure] // Aviacionnye materialy i tehnologii. 2016. №3 (42). S. 33–48. DOI: 10.18577/2071-9140-2016-0-3-33-48.
76. Grinevich D.V., Yakovlev N.O., Slavin A.V. Kriterii razrusheniya kompozitsionnykh materialov (obzor) [The criteria of the failure of polymer matrix composites (review)] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2019. №7 (79). St. 11. Available at: http://viam-works.ru (accessed: August 25, 2019). DOI: 10.18577/2307-6046-2019-0-7-92-111.
77. Kravchuk A.S., Smalyuk A.F., Kravchuk A.I. Elektronnaya biblioteka mekhaniki i fiziki. Lektsii po ANSYS s primerami resheniya zadach: metod. posobiye v 5 ch. [Electronic library of mechanics and physics. Lectures on ANSYS with examples of problem solving: method. allowance in 5 parts]. Minsk, 2013. Ch. 4. 118 s.
78. Oreshko E.I., Erasov V.S., Lutsenko A.N. Kriticheskiye napryazheniya poteri ustoychivosti v gibridnykh sloistykh plastinakh [Critical stresses of loss of stability in hybrid laminated plates] // Materialovedeniye. 2016. №11. S. 17–21.
79. Oreshko E.I., Erasov V.S., Lucenko A.N., Terentev V.F., Slizov A.K. Postroenie diagramm deformirovaniya v trehmernom prostranstve σ–ε–t [Creation of the 3D stress-strain diagrams σ–ε–t] // Aviacionnye materialy i tehnologii. 2017. №1 (46). S. 61–68. DOI: 10.18577/2071-9140-2017-0-1-61-68.
80. Antipov V.V., Oreshko E.I., Erasov V.S., Serebrennikova N.Y. Hybrid laminates for application in north conditions // Mechanics of Composite Materials. 2016. Vol. 24. P. 1–12.
81. Browell R., Lin G. The Power of Nonlinear Materials Capability, Part 1 and 2 on modeling materials with nonlinear characteristics // ANSYS Solutions. 2000. Vol. 2. No. 1. P. 8–10.
82. Oreshko E.I., Erasov V.S., Lashov O.A., Podzhivotov N.Yu., Kachan D.V. Raschet napryazheniy v sloistom material [Calculation of tension in a layered material] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2018. №10 (70). St. 11. Available at: http://viam-works.ru (accessed: August 25, 2019). DOI: 10.18577/2307-6046-2018-0-10-93-106.
83. Kollerov M.Yu., Usikov V.D., Kuftov V.S., Gusev D.E., Oreshko E.I. Mediko-tekhnicheskoye obosnovaniye ispolzovaniya titanovykh splavov v implantiruyemykh konstruktsiyakh dlya stabilizatsii pozvonochnika [Medical and technical substantiation of the use of titanium alloys in implantable structures for stabilization of the spine] // Titan. 2013. №1 (40). S. 39–45.
84. Vasilev A.S. Matematicheskoye modelirovaniye i chislennoye issledovaniye kompozitnykh materialov v oblasti predelnoy prochnosti: dis. … kand. tekhn. Nauk [Mathematical modeling and numerical study of composite materials in the field of ultimate strength: thesis, Cand. Sc. (Tech.)]. Komsomolsk-na-Amure, 2016. 165 s.