Articles
However, despite the problems arising at synthesis of nickel hot strength alloys, the most perspective alternative of SLS is the heat resisting cobalt alloys which have already found application abroad. To VIAM Federal State Unitary Enterprise there is development of domestic cobalt-based alloy, whose high complex of properties will be provided at the expense of its receiving by SLS method.
In the article materials and methods of preparation and research of the received samples are described. Type of test pieces on long durability the subsequent their tests were made according to GOST, as well as. The scheme of creation of model of preparation is for descriptive reasons provided.
In the main part of article results of the carried-out tests are described. Photos of breaks are provided. It is shown that for all samples viscous nature of destruction is observed, however, the quantity of time depends on growth orientation. The theory of the mechanism of destruction is provided. Also it is described researches of microstructure of samples near break for more detailed studying of nature of destruction.
In the conclusion conclusions about nature of destruction depending on growth orientation are collected. Comparison of models of multidirectional growth has shown that in the samples synthesized in the vertical direction, there are considerable pulling stresses. This phenomenon speaks level-by-level nature of cultivation of samples. The shrinkable phenomena cause formation of tension on growing axis in each subsequent coat, causing tension, comparable with small loading.
2. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
3. Kablov E.N., Ospennikova O.G., Sidorov V.V., Rigin V.Ye., Kablov D.Ye. Osobennosti tekhnologii vyplavki i razlivki sovremennykh liteynykh vysokozharoprochnykh nikelevykh splavov [Features of the technology of smelting and casting of modern foundry high-heat resistant nickel alloys] // Vestnik MGTU im. N.E. Baumana. Ser.: Mashinostroyeniye. 2011. №SP2. S. 68–78.
4. Kablov E.N., Tolorajya V.N. VIAM – osnovopolozhnik otechestvennoj tehnologii litya monokristallicheskih turbinnyh lopatok GTD i GTU [VIAM – the founder of domestic casting technology of single-crystal turbine blades of GTE and GTU] // Aviacionnye materialy i tehnologii. 2012. №S. S. 105–117.
5. Kablov E.N. Razrabotki VIAM dlya gazoturbinnykh dvigateley i ustanovok [Development of VIAM for gas turbine engines and installations] // Krylya Rodiny. 2010. №4. S. 31–33.
6. Kablov E.N., Sidorov V.V., Rigin V.E. Metallurgiya liteynykh zharoprochnykh splavov [Metallurgy of casting superalloys] // 75 let. Aviacionnye materialy. Izbrannyye trudy «VIAM» 1932–2007. M.: VIAM, 2007. S. 125–132.
7. Kishkin S.T., Kablov E.N. Liteynyye zharoprochnyye splavy dlya turbinnykh lopatok [Foundry superalloys for turbine blades] // Aviacionnye materialy. Izbrannyye trudy «VIAM» 1932–2002. M.: VIAM, 2002. S. 48–58.
8. Kablov E.N., Petrushin N.V., Svetlov I.L., Demonis I.M. Liteynyye zharoprochnyye splavy novogo pokoleniya [Foundry superalloys of a new generation] // 75 let. Aviacionnye materialy. Izbrannyye trudy «VIAM» 1932–2007. M.: VIAM, 2007. S. 27–44.
9. Kablov E.N. Materialy novogo pokoleniya [New generation materials] // Zashchita i bezopasnost. 2014. №4. S. 28–29.
10. Kablov E.N. Iz chego sdelat budushcheye? Materialy novogo pokoleniya, tekhnologii ikh sozdaniya i pererabotki – osnova innovatsiy [What to make the future from? Materials of the new generation, technologies of their creation and processing – the basis of innovation] // Krylya Rodiny. 2016. №5. S. 8–18.
11. Hagedorn Y.-C., Risse T., Meiners W. et al. Processing of Nickel Based Superalloy MAR M-247 by means of High Temperature – Selective Laser Melting (HT-SLM) // High Value Manufacturing. 2014. P. 291–295. DOI: 10.1201/b15961-54.
12. Marchese G., Basila G., Bassini E. et al. Study of the Microstructure and Cracking Mechanism of Hastelloy X Produced by Laser Powder Bed Fusion // Materials. 2018. Vol. 11. P. 106–118. DOI: 10.3390/ma11010106.
13. Petrushin N.V., Evgenov A.G., Zavodov A.V., Treninkov I.A. Struktura i prochnost' zharoprochnogo nikelevogo splava ZhS32-VI, poluchennogo metodom selektivnogo lazernogo splavleniya na monokristallicheskoy podlozhke [The structure and strength of the ZS32-VI heat-resistant nickel alloy obtained by the method of selective laser alloying on a single-crystal substrate] // Materialovedeniye. 2017. №11. S. 19–26.
14. 3D Printing Industry. Available at: http://3dprintingindustry.com/news/general-electrics-ge9x-engine-undergoes-testing-3d-printed-components-104180/ (accessed: February 27, 2019).
15. Evgenov A.G., Lukina E.A., Aslanyan I.R. Struktura i svoystva splavov na osnove nikelya, poluchennykh metodom SLS [Structure and properties of nickel-based alloys obtained by the SLS method] // Additivnyye tekhnologii: nastoyashcheye i budushcheye: mater. II Mezhdunar. konf. M.: VIAM, 2016. St. 1 (CD).
16. Ovsepyan S.V., Akhmedzyanov M.V., Mazalov I.S., Rastorguyeva O.I. Legirovaniye uglerodom splava sistemy Ni–Co–Cr–W–Ti, uprochnyayemogo khimiko-termicheskoy obrabotkoy [Alloying by carbon of superalloy of the Ni–Co–Cr–W–Ti system strengthened by thermo-chemical treatment] // Aviaconnye materialy i tehnologii. 2015. №4 (37). S. 21–24. DOI: 10.18577/2071-9140-2015-0-4-21-24.
17. Karpov I.D., Em V.T., Mazalov P.B., Sulyanova E.A. Characterisation of residual stresses by neutron diffraction at the research reactor IR-8 of NRC «Kurchatov Institute» // Journal of Phisics Conference Series. November, 2018. 1109: SP012046. DOI: 10.1088/1742-6596/1109/1/012046.
18. Wei H.L., Mazumder J., DebRoy T. Evolution of solidification texture during additive manufacturing // Scientific Reports. 2015. Vol. 5. Art. No. 16446. DOI: 10.1038/srep16446.
19. Treninkov I.A., Filonova E.V., Medvedev P.N., Lukina E.A. Zakonomernosti formirovaniya tekstury i mikrotekstury v zharoprochnom nikelevom splave v protsesse selektivnogo lazernogo splavleniya [Texture and microstructure formation in the nickel-base superalloy during selective laser melting] // Novosti materialovedeniya. Nauka i tekhnika: elektron. nauch.-tekhnich. zhurn. 2018. №1–2. St. 02. Available at: http://viam-works.ru (accessed: February 27, 2019).
In order to optimize the mechanical characteristics of weld joints of high-strength aluminum-lithium alloys V-1461 and V-1469, performed by friction stir welding (FSW), the experiment was planned.
The main parameters of the FSW are the tool rotation speed (ω, rpm), tool linear motion speed (welding speed ν, mm/min). The listed parameters determine the conditions of welding zone friction heating and affect on the structural and phase state of the weld and heat-affected zone, which determines the level of mechanical properties of the joints.
Mathematical (regression) models have been developed by the use of modern computing systems for the dependences of the joints strength and surface roughness in the case of the main technological FSW parameters. The target functions were constructed on the basis of regression analysis by processing the results of a full-factorial experiment. The regression coefficients were calculated from the conditions for ensuring the minimum of the squares sum of the response functions deviations predicted by the model for different points of the studied FSW parameters area to their actual values at these points. Each model was tested for adequacy: the variance of the adequacy and variance of errors were calculated.
The obtained dependences analysis showed that the welding speed has the greatest impact on the roughness of the front surface of welded joints, while the models are less sensitive to changes in the tool rotation speed.
The corresponding function surfaces were constructed and their extremes were determined for the V-1461 and V-1469 alloys, which allow to redict the roughness and strength of the weld joint, with the given mode parameters. The areas of the FSW modes for each of the studied alloys were determined, providing the surface roughness of th
2. Kablov E.N., Antipov V.V., Klochkova Yu.Yu. Alyuminiy-litiyevyye splavy novogo pokoleniya i sloistyye alyumostekloplastiki na ikh osnove [Aluminum-lithium alloys of a new generation and layered aluminum-glass plastics on their basis] // Tsvetnyye metally. 2016. №8 (884). S. 86–91. DOI: 10.17580/tsm.2016.08.13.
3. Panteleev M.D., Bakradze M.M., Skupov A.A., Scherbakov A.V., Belozor V.E. Tekhnologicheskie osobennosti svarki plavleniem alyuminievogo splava V-1579 [Technological features of fusion welding of aluminum alloy V-1579] // Aviacionnye materialy i tehnologii. 2018. №3 (52). S. 11–17. DOI: 10.18577/2071-9140-2018-0-3-11-17.
4. Antipov V.V., Serebrennikova N.Yu., Nefedova Yu.N., Kozlova O.Yu., Panteleev M.D., Osipov N.N., Klychеv A.V. Tekhnologicheskie osobennosti Izgotovleniya detalej iz alyuminiy-litievogo splava 1441 [Manufacturing capability of Al–Li 1441 alloy details] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2018. №10 (70). St. 03 Available at: http://www.viam-works.ru (accessed: Вусуьиук 03, 2018). DOI: 10.18577/2307-6046- 2018-0-10-17-26.
5. Kablov E.N. Sovremennyye materialy – osnova innovatsionnoy modernizatsii Rossii [Modern materials - the basis of innovative modernization of Russia] // Metally Evrazii. 2012. №3. S. 10–15.
6. Kablov E.N. Materialy dlya aviakosmicheskoy tekhniki [Materials for aerospace] // Vse materialy. Entsiklopedicheskiy spravochnik. 2007. №5. S. 7–27.
7. Kablov E.N., Ospennikova O.G., Vershkov A.V. Redkie metally i redkozemelnye elementy – materialy sovremennyh i budushhih vysokih tehnologij [Rare metals and rare-earth elements are materials for modern and future high technologies] // Aviacionnye materialy i tehnologii. 2013. №S2. S. 3–10.
8. Antipov V.V., Klochkova Yu.Yu., Romanenko V.A. Sovremennye alyuminievye i alyuminij-litievye splavy [Modern aluminum and aluminum-lithium alloys] // Aviacionnye materialy i tehnologii. 2017. №S. S. 195–211.
9. Klochkova Yu.Yu., Grushko O.E., Lantsova L.P., Burlyaeva I.P., Ovsyannikov B.V. Osvoenie v promyshlennom proizvodstve polufabrikatov iz perspektivnogo alyuminijlitievogo splava V-1469 [Development in industrial production of semi-finished products from perspective aluminum lithium alloy V-1469] // Aviacionnye materialy i tehnologii. 2011. №1. S. 8–12.
10. Shalin R.E., Eefremov I.S., Yarovinskiy Yu.L., Lukin V.I. Opyt proyektirovaniya i izgotovleniya krupnogabaritnykh konstruktsiy iz alyuminiyevo-litiyevykh splavov izdeliy raketno-kosmicheskoy tekhniki [Experience in the design and manufacture of large-sized structures of aluminum-lithium alloys products of rocket and space technology] //Svarochnoye proizvodstvo. 1996. №11. S. 14–18.
11. Lukin V.I., Ioda Ye.N., Bazeskin A.V., Lavrenchuk V.P., Kotelnikova L.V., Oglodkov M.S. Povysheniye nadezhnosti svarnykh soyedineniy iz vysokoprochnogo alyuminiyevo-litiyevogo splava V-1461 []Improving the reliability of welded joints of high-strength aluminum-lithium alloy V-1461 // Svarochnoye proizvodstvo. 2010. №11. S. 14–17.
12. Fomin V.M., Malikov A.G., Orishich A.M., Antipov V.V., Klochkov G.G., Skupov A.A. Vliyanie termicheskoj obrabotki na structure svarnykh soedinenij listov is splava V-1469 sistemy Al–Cu–Li, poluchennykh lazernij svarkoj [Heat treatment effect on structure of joint weld sheets from V-1469 alloy of Al–Cu–Li system manufactured by laser welding] // Aviacionnye materialy i tehnologii. 2018. №1 (50). S. 9–18. DOI: 10.18577/2071-9140-2018-0-1-9-18.
13. Petrovic M., Veljic D., Rakin M. et al. Friction-stir welding of high-strength aluminium alloys and a numerical simulation of plunge stage // Materials in technology. 2012. Vol. 46. No. 3. P. 215–221.
14. Sposob svarki metallov treniyem: avtorskoye svidetelstvo 195846 SSSR [Method of welding metals by friction: USSR author's certificate]; opubl. 04.05.67
15. Mishra R.S., Ma Z.Y. Friction stir welding and processing // Journal Material Science Engineering. 2005. Vol. 50. P. 1–78.
16. Shtrikman M.M. Sostoyaniye i razvitiye protsessa svarki treniyem lineynykh soyedineniy [The state and development of the process of friction welding of linear joints] // Svarochnoye proizvodstvo. 2007. №9. S. 35–40.
17. Betsofen S.Ya., Sbitneva S.V., Panteleyev M.D., Bakradze M.M., Dolgova M.I., Kabanova Yu.V. Issledovaniye formirovaniya fazovogo sostava splava sistemy Al–Cu–Li V-1469 v protsesse svarki treniyem s peremeshivaniyem [Study of the formation of the phase composition of the Al – Cu – Li B-1469 system alloy during friction stir welding process] // Metally. 2018. №6. S. 54–63.
18. Silis M.I., Eliseyev A.A., Silis V.E. i dr. Osobennosti struktury svarnykh soyedineniy alyuminiyevykh splavov, poluchennykh friktsionnoy svarkoy [Structural features of welded joints of aluminum alloys obtained by friction welding] // Metallovedeniye i termicheskaya obrabotka. 2009. №4. S. 34–39.
19. Oglodkov M.S., Khokhlatova L.B., Kolobnev N.I., Alixeev A.A., Lukina E.A. Vliyanie termomekhanicheskoj obrabotki na svojstva i structuru splava sistemy Al–Cu–Mg–Li–Zn [Effect of the thermomecanical treatment on Al (Al–Cu–Mg–Li–Zn) alloy properties and structure] // Aviacionnye materialy i tehnologii. 2010. №4. S. 15–19.
20. Yanfeng D., Zhijie T., Peitao G., Yanhua Z. Effect of process parameters on weld quality by friction stir welding of 2219 aluminum alloy // China Welding. 2011. Vol. 20. No. 2. P. 12–16.
21. Lukin V.I., Samorukov M.L., Kovalchuk V.G. Modelirovaniye rotatsionnoy svarki treniyem vysokozharoprochnogo nikelevogo splava VZh175 [Simulation of rotational friction welding of high-temperature nickel alloy VZh175] // Svarochnoye proizvodstvo. 2016. №11. S. 12–18.
22. Samorukov M.L. Analiticheskij podhod k matematicheskomu modelirovaniyu temperaturnoj sostavlyayushhej rotacionnoj svarki treniem [Analytical approach to mathematical modeling of temperature component of direct drive friction welding] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №9. St. 03. Available at: http://www.viam-works.ru (accessed: October 31, 2018).
23. Dolzhanskiy Yu.M., Novik F.S., Chemleva T.A. Planirovaniye eksperimenta pri issledovanii i optimizatsii svoystv splavov: metodich. posobiye [Planning an experiment in the study and optimization of properties of alloys: Toolkit]. M.: VIAM, 1974. 132 s.
24. Lukin V.I., Ioda E.N., Skupov A.A., Panteleev M.D., Ovchinnikov V.V., Malov D.V. Effect of the surface roughness of friction stir welded joints on the fatigue characteristics of welded joints in V-1461 and V-1469 aluminium-lithium alloys // Welding International. 2017. Vol. 31:12. P. 974–978. DOI: 10.1080/09507116.2017.1369062.
25. Kheyvud R.B. Proyektirovaniye s uchetom ustalosti [Design taking into account fatigue]. M.: Mashinostroyeniye, 1969. 503 s.
At the modern level of development of the aviation industry perspective innovative technologies which potential allows to increase at the same time operational properties of materials and to increase their processibility are of particular importance. Its environmental friendliness and wastelessness become also important aspects of production.
Such technologies, as a rule, are based on wide use of the information technologies, the systems of automation and an artificial intelligence allowing to carry out quickly fine tuning of technological process under requirements of the concrete moment and property of new materials.
Article is devoted to development of materials for the 3D press by methods of the selection laser baking (SLS) and layer-by-layer fusing (FDM) on the basis of polyetheretherketones of foreign production.
3D-technologies of the press allow to make aviation details and designs of the difficult geometry for a uniform production cycle with minimum labor costs at the minimum quantity of a wastage.
Results of a research of properties of compositions for processing by SLS and FDM methods on the basis of poliefiefirketon of production of Zypeek (China) of brands 550PF and 330UPF and also production of the Victrex company (England) of brands 90G, 150G, 380G are given in article.
It is established that the studied PEEK production brands of import production can't be efficiently processed by method of the selection laser baking without pre-treatment because of their insufficient flowability. These materials demand a pre-treatment to processing. The semi-finished products received for processing by method of the layer-by-layer direction possess the considerable raznotolshchinnost that speaks about need of perfecting of technology of their manufacture
2. Kablov E.N. Tendentsii i oriyentiry innovatsionnogo razvitiya Rossii [Trends and benchmarks of innovative development of Russia] // Sb. nauch.-inform. materialov. 3-e izd. M.: VIAM. 2015. 720 s.
3. Kablov E.N. Additivnyye tekhnologii – dominanta natsional'noy tekhnologicheskoy initsiativy [Additive technologies - the dominant of the national technology initiative] // Intellekt i tekhnologii. 2015. №2 (11). S. 52–55.
4. Kablov E.N. Iz chego sdelat budushcheye? Materialy novogo pokoleniya, tekhnologii ikh sozdaniya i pererabotki – osnova innovatsiy [What to make the future from? Materials of the new generation, technologies of their creation and processing - the basis of innovation] // Krylya Rodiny. 2016. №5. S. 8–18.
5. Bikas H., Stavropoulos P., Chryssolouris G. Additive manufacturing methods and modeling approaches: a critical review // International Journal of Advanced Manufacturing Technology. 2016. Vol. 83. P. 389–405. DOI: 10.1007/s00170-015-7576-2.
6. Petrova G.N., Larionov S.A., Sorokin A.E., Sapego Yu.A. Sovremennyye sposoby pererabotki termoplastov [Modern ways of processing of thermoplastics] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2017. №11 (59). St. 07. Available at: http://www.viam-works.ru (accessed: May 14, 2018). DOI: 10.18577/2307-6046-2017-0-11-7-7.
7. Grashchenkov D.V. Strategiya razvitiya nemetallicheskih materialov, metallicheskih kompozicionnyh materialov i teplozashhity [Strategy of development of non-metallic materials, metal composite materials and heat-shielding] // Aviacionnye materialy i tehnologii. 2017. №S. S. 264–271. DOI: 10.18577/2071-9140-2017-0-S-264-271.
8. Nikolayev A.F. Termostoykiye polimery [Heat-resistant polymers]. L.: LTI im. Lensoveta, 1988. S. 3–11.
9. Mikhaylin Yu.A. Konstruktsionnyye polimernyye kompozitsionnyye materialy [Structural polymer composites]. SPb.: Nauchnyye osnovy i tekhnologii, 2008. 822 s.
10. Golovkin G.S. Tekhnologicheskiye svoystva termoplastichnykh svyazuyushchikh dlya armirovannykh plastikov [Technological properties of thermoplastic binders for reinforced plastics] // Plasticheskiye massy. 2005. №1. S. 35–40.
11. Petrova G.N., Beyder E.Ya., Starostina I.V. Lityevyye termoplasty dlya izdeliy aviatsionnoy tekhniki [Molding thermoplastics for aviation equipment products] // Vse materialy. Entsiklopedicheskiy spravochnik. 2016. №6. S. 10–15.
12. Mikhaylin Yu.A. Termoustoychivyye polimery i polimernyye materialy na ikh osnove [Heat-resistant polymers and polymeric materials based on them]. SPb.: Professiya, 2006. S. 33–346.
13. Sorokin A.E., Afonicheva O.V., Krasnov A.P. i dr. Vliyaniye molekulyarnoy massy i metodov pererabotki na svoystva poliarilata DV [Influence of molecular weight and processing methods on the properties of DV polyarylate] // Sb. tez. IX simpoziuma «Sovremennaya khimicheskaya fizika». Tuapse, 2011. S. 156–157.
14. Petrova G.N., Starostina I.V., Rumyanceva T.V., Sapego Yu.A. Effektivnost povysheniya kachestva izdelij iz polikarbonata termoobrabotkoj [Efficiency of improvement of quality of products from polycarbonate heat treatment] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2017. №9 (57). St. 06. Available at: http://www.viam-works.ru (accessed: March 28, 2018). DOI: 10.18577/2307-6046-2017-0-9-6-6.
15. Trostyanskaya E.B., Stepanova M.I., Rassokhin G.I. Teplostoykiye lineynyye polimery [Heat resistant linear polymers]. RGASKHM: Rostov n/D, 2002. S. 3–22.
16. Kirin B.S., Mishkin S.I., Tikhonov N.N., Osipchik V.S. Razrabotka materialov na osnove polimolochnoy kisloty s uluchshennymi tekhnologicheskimi svoystvami [Development of materials based on polylactic acid with improved technological properties] // Plasticheskiye massy. 2013. №9. S. 61–64.
17. PEEK™ – polymer für hohe Beanspruchungen // Galvanotechnik. 2004. Vol. 95. No. 3. P. 779.
18. Mazhirin P.Yu. Polifenilensulfid v aviastroyenii [Polyphenylene sulfide in aircraft industry] // Polimernyye materialy. 2003. №2. S. 22–24.
19. Un polymère pour applications «haute température» // Matériaux et Techniques. 2003. Vol. 91. No. 3–4. P. 52–53.
20. Kerber M.L., Vinogradov V.M., Golovkin G.S. i dr. Polimernyye kompozitsionnyye materialy: struktura, svoystva, tekhnologiya [Polymeric composite materials: structure, properties, technology]. SPb.: Professiya, 2008. 199 s.
21. Kablov E.N. Rossii nuzhny materialy novogo pokoleniya [Russia needs new generation materials] // Redkiye zemli. 2014. №3. S. 8–13.
22. Buznik V.M., Kablov E.N. Arctic materials science: current state and prospects [Arctic materials science: current state and prospects] // Herald of the Russian Academy of Sciences. 2017. T. 87. No. 5. P. 397–408.
23. Lazareva T.K., Ermakin S.N., Kostyagina V.A. Problemy sozdaniya kompozitsionnykh materialov na osnove konstruktsionnykh termoplastov [Problems of creating composite materials based on structural thermoplastics] // Uspekhi v khimii khimicheskoy tekhnologii. 2010. T. 24. №4. S. 58–63.
For sealing materials, including those based on organosilicon and polysulfide low-molecular rubbers obtained by cold vulcanization, it is possible to modify the compositions with fillers, including those obtained from natural minerals. The aim of the work is to conduct complex tests of sealing materials based on silicone and polysulfide (thiokol) rubbers containing functional fillers obtained from natural minerals, as well as to establish the possibility of modifying sealants with these types of fillers.
As a promising filler for sealing materials, specially prepared fillers of natural origin should be noted. As such a material, diatomite is of particular interest, which is used in various industries, including the chemical one.
In the present work, compositions similar in composition to serial siloxane compounds and sealants of the type «VIKSINT» and polysulfide sealants were studied, where the filler in the composition of compounds and sealants was completely replaced by diatomite.
As a result of the work performed, it was established that the time of viability of the experimental compositions of siloxane sealants filled with diatomite meets the requirements for working with compounds and sealants; However, it should be noted that serial materials have a greater variation in viability time, which is important when applying these materials on surfaces with a large area.
The mechanical properties of the vulcanizates of prototypes filled with diatomite in the initial state are at a high level and meet the requirements for the level of conditional strength, relative elongation, hardness and density imposed on compounds and sealants of the type «VIKSINT».
A decrease in the density of vulcanizates of prototypes filled with&
2. Kablov E.N. Khimiya v aviatsionnom materialovedenii [Chemistry in Aviation Materials Science] // Rossiyskiy khimicheskiy zhurnal. 2010. T. LIV. №1. S. 3–4.
3. Kablov E.N. Materialy novogo pokoleniya – osnova innovatsiy, tekhnologicheskogo liderstva i natsionalnoy bezopasnosti Rossii [Materials of the new generation - the basis of innovation, technological leadership and national security of Russia] // Intellekt i tekhnologii. 2016. №2 (14). S. 16–21.
4. Kablov E.N. Materialy dlya izdeliya «Buran» – innovacionnye resheniya formirovaniya shestogo tehnologicheskogo uklada [Materials for «Buran» spaceship – innovative solutions of formation of the sixth technological mode] // Aviacionnye materialy i tehnologii. 2013. №S1. S. 3–9.
5. Sharova I.A., Petrova A.P. Obzor po materialam mezhdunarodnoj konferencii po kleyam i germetikam (WAC-2012, Franciya) [Review of world adhesive and sealant conference (WAC-2012, France] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №8. St. 06. Available at: http://www.viam-works.ru (accessed: November 25, 2018).
6. Nizkovyazkaya siloksanovaya kompozitsiya: patent 2356117 Ros. Federatsiya [Low viscosity siloxane composition: patent 2356117 Rus. Federation]; zayav. 20.06.07; opubl. 20.05.09.
7. Kablov E.N., Startsev O.V., Deyev I.S., Nikishin E.F. Svoystva polimernykh kompozitsionnykh materialov posle vozdeystviya otkrytogo kosmosa na okolozemnykh orbitakh [Properties of polymer composites after exposure to open space in near-earth orbits] // Vse materialy. Entsiklopedicheskiy spravochnik. 2012. №11. S. 2–16.
8. Efimov V.A., Shvedkova A.K., Korenkova T.G., Kirillov V.N. Issledovanie polimernyh konstrukcionnyh materialov pri vozdejstvii klimaticheskih faktorov i nagruzok v laboratornyh i naturnyh usloviyah [Research of polymeric constructional materials at influence of climatic factors and loadings in laboratory and natural conditions] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №1. St. 05. Available at: http://viam-works.ru (accessed: November 25, 2018).
9. Kablov E.N. Materialy i khimicheskiye tekhnologii dlya aviatsionnoy tekhniki [Materials and chemical technologies for aviation technology] // Vestnik Rossiyskoy akademii nauk. 2012. №6. T. 82. S. 520–530.
10. Gladkov S.A. Sostoyaniye syryevoy bazy i vozmozhnoye budushcheye otrasli proizvodstva germetikov i kleyev [The state of the raw material base and the possible future of the sealants and adhesives industry] // Tez. dokl. Mezhdunar. nauch.-tekhnich. konf. «Sovremennyye dostizheniya v oblasti kleyev i germetikov. Materialy, syr'ye, tekhnologii». 2013. Dzerzhinsk. S. 6.
11. Veliyev M.G., Shatirova M.I., Ibragimova A.I. Polucheniye termostoykikh i adgezionnykh kompozitsionnykh materialov na osnove kremniyorganicheskikh oksiranov [Preparation of heat-resistant and adhesive composite materials based on silicone oxiranes] // Tez. dokl. Mezhdunar. nauch.-tekhnich. konf. «Sovremennyye dostizheniya v oblasti kleyev i germetikov. Materialy, syr'ye, tekhnologii». 2013. Dzerzhinsk. S. 14.
12. Loganina V.I. Teploizolyatsionnyye sukhiye stroitelnyye smesi s primeneniyem modifitsirovannogo diatomite [Thermal insulating dry building mixtures with the use of modified diatomite] // Sovremennyye nauchnyye issledovaniya i innovatsii. 2014. №10. S. 2.
13. Mitroshin I.A. Teploizolyatsionnyye materialy na osnove diatomita: avtoref. … kand. tekhn. nauk [Thermal insulation materials based on diatomite: thesis abstract. ... Cand. Sci. (Tech.)]. Saransk, 2007. S. 2–4.
14. Kravchenko I.N., Myasnikov A.V., Klimenko A.A. i dr. Obosnovaniye vybora germetikov dlya izolyatsii nepodvizhnykh flantsevykh soyedineniy [Justification of the choice of sealants for insulation of fixed flange connections] // Klei. Germetiki. Tekhnologii. 2013. №8. S. 7–12.
15. Nefyodov N.I., Semyonova L.V. Tendencii razvitiya v oblasti konformnyh pokrytij dlya vlagozashhity i elektroizolyacii plat pechatnogo montazha i jelementov radiojelektronnoj apparatury [Development tendencies in the field on conformal coating for the moisture protection and electrical insulation of printed-circuit boards and electronic elements] // Aviacionnye materialy i tehnologii. 2013. №1. S. 50–52.
16. Chajkun A.M., Naumov I.S., Eliseeev O.A. Ftorsiloksanovye reziny: nekotorye aspekty primeneniya [Fluoro-silicone rubbers: some aspects of application] // Aviatsionnye materialy i tekhnologii. 2013. №2. S. 35–36.
17. Eliseev O.A., Naumov I.S., Smirnov D.N., Bryk Ya.A. Reziny, germetiki i ogne-teplozashhitnye materialy [Rubbers, sealants, fireproof and heat-shielding materials] // Aviacionnye materialy i tehnologii. 2017. №S. S. 437–451. DOI: 10.18577/2071-9140-2017-0-S-437-451.
18. Dumanskiy A.M., Nepovinnykh V.I., Rusin M.Yu., Terekhin A.V. Otsenka predel'nogo sostoyaniya germetikov v konstruktsiyakh letatelnykh apparatov [Estimation of the limit state of sealants in aircraft structures] // Klei. Germetiki. Tekhnologii. 2014. №2. S. 31–38.
19. Dementeva L.A., Serezhenkov A.A., Lukina N.F., Kutsevich K.E. Svoistva i naznachenie kompozitsionnyh maerialov na osnove kleevyh prepregov [Properties and appointment of composite materials based on adhesive prepregs] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №8. St. 06. Available at: http://www.viam-works.ru (accessed: November 25, 2018). DOI: 10.18577/2307-6046-2014-0-8-6-6.
20. Romanov S.V., Panov K.A., Timakova K.A. Polimocheviny – novyy perspektivnyy klass svyazuyushchikh dlya kleyev, germetikov, pokrytiy [Polyurea - a new promising class of binders for adhesives, sealants, coatings] // Klei. Germetiki. Tekhnologii. 2013. №1. S. 2–8.
Existing modern non-autoclave technologies allow to obtain PCM with high physico-mechanical characteristics. The use of these relatively inexpensive vacuum PCM molding methods for the production of various structural components was made possible through the development of new fibrous fillers, preforms based on them and the creation of binders with the required technological characteristics. To reduce costs in the manufacture of products from PCM, it is necessary to increase the degree of integrity of the design to be created, that is, to replace the assembly unit manufactured from several separate parts with a single structure that is made of composite materials in one molding. The use of volume-reinforced preforms as a filler contributes to the solution of this problem.
The article discusses carbon-fiber plastic based on the volume-reinforced preform and high-temperature powder phthalonitrile binder brand VSN-31, intended for the manufacture of blade elements of the impeller of a centrifugal compressor (RCCC) with an operating temperature of up to 300 ° C for a promising high-speed helicopter engine. The dependence of the physicomechanical properties of carbon plastic on the type of weaving of fibers in the preform is considered. The preforms used for the manufacture of carbon plastic have an orthogonal and satin weaving structure. On the basis of the studied micrographs of samples of carbon plastic and carbon monofilament, conclusions have been made regarding the most probable causes of defects in carbon plastic.
Knowledge of the properties of such materials in the design of samples of parts and assemblies from PCM allows you to optimize the production of products and assemblies with the required parameters, as well as reduce the weight of parts and assemblies by up to 30% compared to the metal structures used and the labor intensity of manufacturing by 1.
2. Kablov E.N. Kompozity: segodnya i zavtra [Composites: today and tomorrow] // Metally Evrazii. 2015. №1. S. 36–39.
3. Kablov E.N. Materialy novogo pokoleniya [New generation materials] // Zashchita i bezopasnost. 2014. №4. S. 28–29.
4. Mohamed M.H., Bogdanovich А.Е. Comparetive analysis of different 3D weaving processes, machines and products // In: ICCM 17, 3D Textiles & Composites. Edinburgh, 2009.
5. McClain M., Goering J. Overview of Recent Developments in 3D Structures // ICCM 17, 3D Textiles & Composites. Edinburgh, 2009.
6. Lomov S.V., Ivanov D.S., Perie G., Verpoest I. Modelling 3D-fabrics and 3D-reinforced Composites // Challenges and Solutions: World Conference on 3D-fabrics. Manchester, 2008.
7. Donetski K.I., Raskutin A.E., Khilov P.A., Lukyanenko Yu.V., Belinis P.G., Korotigin A.A. [Volumetric braided and woven textile preforms used for manufacturing of fiber reinforced polymer composite materials (review)] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №9. St. 10. Available at: http://www.viam-works.ru (accessed: December 18, 2018). DOI: 10.18577/2307-6046-2015-0-9-10-10
8. Vlasenko F.S., Raskutin A.E., Doneckij K.I. Primenenie pletenyh preform dlya polimernyh kompozicionnyh materialov v grazhdanskih otraslyah promyshlennosti (obzor) [Application of braided preforms for polymer composite materials in civil industries (review)] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №1. St. 05. Available at: http://www.viam-works.ru (accessed: December 18, 2018). DOI: 10.18577/2307-6046-2015-0-1-5-5.
9. Donetskij K.I., Hrulkov A.V., Kogan D.I., Belinis P.G., Lukyanenko Yu.V. Primenenie obemno-armiruyushhih preform pri izgotovlenii izdelij iz PKM [Use of three-dimensional reinforcing preforms during the production of polymer composite products] // Aviacionnye materialy i tehnologii. 2013. №1. S. 35–39.
10. Kompozitnaya lopatka ventilyatora s mnogosloynym armiruyushchim materialom: pat. 2384749 Ros. Federatsiya. №2008144475/06 [Composite fan blade with multi-layer reinforcing material: Pat. 2384749 Rus. Federation. No. 2008144475/06]; zayavl. 11.11.08; opubl. 20.03.10.
11. Karimbayev T.D., Luppov A.A., Afanasyev D.V. Rabochiye lopatki ventilyatorov dlya perspektivnykh dvigateley [Blades for advanced engines] // Dvigatel. 2011. №6. S. 2–10.
12. Zelenina I.V., Gulyayev I.N., Kucherovskiy A.I., Mukhametov R.R. Termostoykiye ugleplastiki dlya rabochego kolesa tsentrobezhnogo kompressora [Heat-resistant CFRP for the impulse wheel of the centrifugal compressor] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №2 (38). St. 08. Available at: http://www.viam-works.ru (accessed: December 18, 2018). DOI: 10.18577/2307-6046-2016-0-2-8-8.
13. Zheleznyak V.G., Muhametov R.R., Chursova L.V. Issledovanie vozmozhnosti sozdaniya termoreaktivnogo svyazujushhego na rabochuju temperaturu do 400°C [Study of possibility of thermoset binder creation for operating temperature up to 400°C] // Aviacionnye materialy i tehnologii. 2013. №S2. S. 58–61.
14. Shimkin A.A., Ponomarenko S.A., Mukhametov R.R. Issledovaniye protsessa otverzhdeniya diftalonitrilnogo svyazuyushchego [nvestigation of the process of curing diphthalonitrile binder] // Zhurnal prikladnoy khimii. 2016. T. 89. №2. S. 256–264.
15. Guseva M.A. Cianovye efiry – perspektivnye termoreaktivnye svyazujushhie (obzor) [Cyanic esters are prospective thermosetting binders (review)] // Aviacionnye materialy i tehnologii. 2015. №2 (35). S. 45–50.
16. Valevin E.O., Zelenina I.V., Marakhovskiy P.S., Gulyayev A.I., Bukharov S.V. Issledovaniye vliyaniya teplovlazhnostnogo vozdeystviya na ftalonitrilnuyu matritsu [Investigation of the influence of heat and humidity effects on the phthalonitrile matrix] // Materialovedeniye. 2015. №9. S.15–19.
17. Raskutin A.E. Rossiiskie polimernye kompozitsionnye materialy novogo pokoleniia, ikh osvoenie i vnedrenie v perspektivnykh razrabatyvaemykh konstruktsiiakh [Russian polymer composite materials of new generation, their exploitation and implementation in advanced developed constructions] // Aviacionnye materialy i tehnologii. 2017. №S. S. 349–367. DOI: 10.18577/2071-9140-2017-0-S-349-367.
18. Grashchenkov D.V. Strategiya razvitiya nemetallicheskih materialov, metallicheskih kompozicionnyh materialov i teplozashhity [Strategy of development of non-metallic materials, metal composite materials and heat-shielding] // Aviacionnye materialy i tehnologii. 2017. №S. S. 264–271. DOI: 10.18577/2071-9140-2017-0-S-264-271.
To carry out the process of forming items from PCM on the heated tooling in UNTC VIAM were developed automated control systems that include specially designed software.
The purpose of forming components from PCM under a vacuum bag on the heated equipment is to obtain large components of complex shape without the use of expensive autoclave and reduce energy costs.
One of the most important components of such systems is software. The purpose of this article is to present the experience of creating control programs and highlight some key points of development.
At the initial stage of development of the control program it is necessary to form requirements for the program. All requirements can be divided into two large groups: technological requirements and hardware support requirements.
One of the features of PCM forming process control systems is that it is required to connect different sensors to control process parameters and PCM components.
We consider the types of sensors that are connected to the system and some interesting features of the use of information from sensors to control and regulate the forming process. For example, having the ability to measure and adjust the value of the vacuum pressure during the forming process, it is possible to implement technological methods to improve the properties of PCM at the curing stage, including pulsed vacuum mode. Capacitive sensors allow you to determine the value of the dielectric constant, which is used to control the degree of curing of components from PCM. Ultrasonic sensors can be integrated into technological forms, allowing to directly determine with the help of known ratios viscoelastic characteristics.
The use of the developed systems for the process of formin
2. Kablov E.N. Stanovleniye otechestvennogo kosmicheskogo materialovedeniya [Formation of domestic space materials science] // Vestnik RFFI. 2017. №3. S. 97–105.
3. Timoshkov P.N., Khrulkov A.V., Yazvenko L.N. Kompozitsionnye materialy v avtomobilnoy promyshlennosti (obzor) [Composite materials in automotive industry (review)] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2017. №6 (54). St. 07. Available at: http://www.viam-works.ru (accessed: December 27, 2018). DOI: 10.18577/2307-6046-2017-0-6-7-7.
4. Grashhenkov D.V., Chursova L.V. Strategiya razvitiya kompozicionnyh i funkcionalnyh materialov [Strategy of development of composite and functional materials] // Aviacionnye materialy i tehnologii. 2012. №S. S. 231–242.
5. Donetskij K.I., Kogan D.I., Hrulkov A.V. Svojstva polimernyh kompozicionnyh materialov, izgotovlennyh na osnove pletenyh preform [Properties of the polymeric composite materials made on the basis of braided preforms] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №3. St. 05. Available at: http://www.viam-works.ru (accessed: December 25, 2018). DOI: 10.18577/2307-6046-2014-0-3-5-5.
6. Hrulkov A.V., Dushin M.I., Popov Yu.O., Kogan D.I. Issledovaniya i razrabotka avtoklavnyh i bezavtoklavnyh tehnologij formovaniya PKM [Researches and development autoclave and out-of-autoclave technologies of formation of PCM] // Aviacionnye materialy i tehnologii. 2012. №S. S. 292–301.
7. Panina N.N., Kim M.A., Gurevich Ya.M. i dr. Svyazuyushchiye dlya bezavtoklavnogo formovaniya izdeliy iz polimernykh kompozitsionnykh materialov [Binders for non-autoclaving molding products from polymer composite materials] // Klei. Germetiki. Tekhnologii. 2013. №10. S. 27–35.
8. Veshkin E.A. Osobennosti bezavtoklavnogo formovaniya nizkoporistykh PKM [Features of out-of-autoclave forming of poor-porous PCM] // Trudy VIAM elektron. nauch.-tehnich. zhurn. 2016. №2. St. 07. Available at: http://www.viam-works.ru (accessed: December 27, 2018). DOI 10.1857/2307-6046-2016-0-2-7-7/
9. Postnova M.V., Postnov V.I. Opyt razvitiya bezavtoklavnyh metodov formovaniya PKM [Development experience out-of-autoclave methods of formation PCM]// Trudy VIAM: ehlektron. nauch.-tekhnich. zhurn. 2014. №4. St. 06. Available at: http://www.viam-works.ru (accessed: December 27, 2018). DOI: 10.18577/2307-6046-2014-0-4-6-6.
10. Dushin M.I., Muhametov R.R., Platonov A.A., Merkulova Yu.I. Issledovanie filtracionnyh harakteristik armiruyushhih napolnitelej i svyazuyushhih pri razrabotke tehnologii bezavtoklavnogo formovaniya polimernyh kompozicionnyh materialov [Study of filtration characteristics of reinforcing fillers and binders in the development of non-out-autoclave technology for polymer composite material] // Aviacionnye materialy i tehnologii. 2013. №2. S. 22–25.
11. Grigorev M.M., Kogan D.I., Gusev Yu.A., Gurevich Ya.M. Osobennosti izgotovleniya PKM metodom vakuumnogo formovaniya preprega [Features of producing composites by vacuum molding of prepreg] // Aviacionnye materialy i tehnologii. 2014. №3. S. 67–71.
12. Kablov E.N. Materialy novogo pokoleniya – osnova innovatsiy, tekhnologicheskogo liderstva i natsionalnoy bezopasnosti Rossii [Materials of the new generation – the basis of innovation, technological leadership and national security of Russia] // Intellekt i tekhnologii. 2016. №2 (14). S. 16–21.
13. Veshkin E.A., Postnov V.I., Abramov P.A. Puti povysheniya kachestva detaley iz PKM pri vakuumnom formovanii [Ways to improve the quality of parts from PCM in vacuum molding] // Izvestiya Samarskogo nauchnogo tsentra Rossiyskoy akademii nauk. 2012. T. 14. №4 (3). S. 834–839.
14. Mosiyuk V.N., Vorvul S.V., Tomchani O.V. Differentsialnoye vakuumnoye formovaniye kak usovershenstvovannaya tekhnologiya vakuumnogo formovaniya [Differential vacuum molding as an advanced technology of vacuum molding] // Aviacionnye materialy i tehnologii. 2017. №4 (49). S. 37–41. DOI: 10.18577/2071-9140-2017-0-4-37-41.
15. Kachura S.M., Burkhan O.L., Rakhmatullin A.E., Nikitin E.K. Osobennosti mikroprotsessornogo upravleniya tekhnologicheskimi parametrami protsessa vakuumnogo formovaniya izdeliy iz PKM [Features of microprocessor control of technological parameters of the process of vacuum molding products from PCM] // Izvestiya Samarskogo nauchnogo tsentra Rossiyskoy akademii nauk. 2013. T. 15. №4-4. S. 815–818.
16. Antyufeeva N.V., Aleksashin V.M., Stolyankov Yu.V. Opredelenie stepeni otverzhdeniya PKM metodami termicheskogo analiza [Polymer composite curing degree evaluation by thermal analysis test methods] // Aviacionnye materialy i tehnologii. 2015. №3 (36). S. 79–83.
17. Nikitin K.E. Novyye mikroprotsessornyye sredstva dlya nerazrushayushchego kontrolya struktury, sostava i svoystv polimernykh kompozitov na razlichnykh stadiyakh ikh proizvodstva [New microprocessor tools for non-destructive testing of the structure, composition and properties of polymer composites at various stages of their production] // Zavodskaya laboratoriya. 1993. T. 59. №3. S. 31–34.
Researches on development of coated textile material for manufacturing of flexible air conditioning ducts of flight vehicles within which the main requirements to developed coated textile material are defined are conducted, textile of basis and components of polymer coating are chosen, technological modes of manufacturing of coated textile material are fulfilled. The conducted researches have shown that the best complex of properties has the coated textile material made on the basis of E1-100 fiber glass textile with bilateral filled fluoropolymer covering. Experimental batches of coated textile material on production equipment are made, the VRT-12 brand is appropriated to material. Research of the main properties of experimental batches of the material VRT-12 has shown compliance to qualifying standards on the weight of 1 m2, durability, flammability, to tightness and moisture absorption: tensile strength and elongation at gap on basis/weft of 1506/1030 N and 4,0/4,5% according to, on flammability corresponds to requirements AP-25, the appendix F, p.1, maintains excess pressure of 0,02 MPa, has low moisture absorption of 0,3% in 24 hours. Testing of strength properties, at direct influence of temperatures of-60, +20, +80°C has shown that though to temperature increase of testing there is decrease in durability of material, however it is at high level and corresponds to qualifying standards. Research of ability of material of the VRT-12 brand to a heat sealing is conducted. Research has shown that the mechanism of stratification of samples is adhesive, and durability of welded seam on shift at size throw seam from 10 mm of high strength of material. Therefore the polymer coating of material has provided possibility of heat sealing of material. On the basis of the received results the material is recommended for approbation in design of flexible air conditioning ducts of flight vehicles that will allow to reduc
2. Kablov E.N. Materialy dlya izdeliya «Buran» – innovacionnye resheniya formirovaniya shestogo tehnologicheskogo uklada [Materials for «Buran» spaceship – innovative solutions of formation of the sixth technological mode] // Aviacionnye materialy i tehnologii. 2013. №S1. S. 3–9.
3. Kablov E.N. Kompozity: segodnya i zavtra [Composites: today and tomorrow] // Metally Evrazii. 2015. №1. S. 36–39.
4. Kablov E.N. Materialy i khimicheskiye tekhnologii dlya aviatsionnoy tekhniki [Materials and chemical technologies for aviation technology] // Vestnik Rossiyskoy akademii nauk. 2012. T. 82. №6. S. 520–530.
5. Kablov E.N. Aviakosmicheskoye materialovedeniye [Aerospace Materials] // Vse materialy. Entsiklopedicheskiy spravochnik. 2008. №3. S. 2–14.
6. Veshkin E.A., Satdinov R.A., Postnov V.I., Strelnikov S.V. Sovremennyye polimernyye materialy dlya izgotovleniya elementov sistemy konditsionirovaniya vozdukha v letatel'nykh apparatakh [Modern polymeric materials for the manufacture of elements of the air conditioning system in aircraft] // Polimernyye kompozitsionnyye materialy i proizvodstvennyye tekhnologii novogo pokoleniya: sb. dokl. konf. M.: VIAM, 2017. S. 16.
7. Vetrova L.E., Ionova V.F., Taskayeva P.V., Titarenko A.T., Shpakov V.P. Tkani s elastomernym pokrytiyem dlya myagkikh obolochnykh konstruktsiy [Elastomeric coated fabrics for soft shell structures]. M.: Ves Sergiyev Posad, 2012. 304 s.
8. Ultra-lightweight air distribution & insulation systems. Available at: http://www.senioraerospacebwt.co.uk (accessed: February 15, 2019).
9. Aeroduct. Available at: http://www.hbdthermoid.com (accessed: February 15, 2019).
10. Herber Aircraft – a Flexfab Distributor. Available at: http://www.herberaircraft.com (accessed: February 15, 2019).
11. High performance foam solutions for specialist markets worldwide. Available at: http://www.zotefoams.com (accessed: February 15, 2019).
12. Prorezinennyye tkani [Rubberized fabric]. Available at: http://www.niirp.com (accessed: February 15, 2019).
13. Steklotkani s silikonovym pokrytiyem [Fiberglass fabrics with silicone coating]. Available at: http://www.chemproduct.ru (accessed: February 15, 2019).
14. Nesterova T.A., Barbotko S.L., Nikolaeva M.F., Gerter Yu.A. Mnogoslojnyj zashhitno-dekorativnyj material dlya dekorirovaniya detalej v salonah samoletov i vertoletov [Multi-layer protective and decorative material for decorating details in the cabin of aircraft and helicopters] // Trudy VIAM: elektron. nauch.-tehni. zhurn. 2013. №8. St. 04. Available at: http://www.viam-works.ru (accessed: February 15, 2019).
15. Barbotko S.L. Razvitie metodov ocenki pozharobezopasnosti materialov aviacionnogo naznacheniya [Development of the fire safety test methods for aviation materials] // Aviacionnye materialy i tehnologii. 2017. №S. S. 516–526. DOI: 10.18577/2071-9140-2017-0-S-516-526.
16. Kablov E.N., Startsev V.O., Inozemtsev A.A. Vlagonasyshhenie konstruktivno-podobnyh elementov iz polimernyh kompozicionnyh materialov v otkrytyh klimaticheskih usloviyah s nalozheniem termociklov [The moisture absorption of structurally similar samples from polymer composite materials in open climatic conditions with application of thermal spikes] // Aviacionnye materialy i tehnologii. 2017. №2 (47). S. 56–68. DOI: 10.18577/2071-9140-2017-0-2-56-68.
17. Ivanov M.S., Veshkin E.A., Satdinov R.A., Donskikh I.N. Tkaneplenochnyy material dlya izgotovleniya gibkikh elementov sistemy konditsionirovaniya vozdukha v letatel'nykh apparatakh [Tissue film material for the manufacture of flexible elements of the air conditioning system in aircraft] // Polimernyye kompozitsionnyye materialy i proizvodstvennyye tekhnologii novogo pokoleniya: sb. dokl. konf. VIAM: Moskva, 2018. S. 147.
18. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
19. Platonov M.M., Nesterova T.A., Nazarov I.A., Bejder E.Ya. Pozharobezopasnyj material na tekstilnoj osnove s poliuretanovym pokrytiem dlya naduvnoj obolochki spasatelnogo trapa [Fabric-based fireproof material with polyurethane coating for inflatable shell of rescue ladder] // Aviacionnye materialy i tehnologii. 2013. №2. S. 50–54.
20. Venediktova M.A., Naumov I.S., Chajkun A.M., Eliseev O.A. Sovremennye tendencii v oblasti ftorsiloksanovyh i siloksanovyh kauchukov i rezin na ih osnove (obzor) [Current trends in fluorosiloxane and siloxane rubbers and rubber compounds based thereon (rеview)] // Aviacionnye materialy i tehnologii. 2014. №S3. S. 17–24. DOI: 10.18577/2071-9140-2014-0-S3-17-24.
21. Nesterova T.A., Platonov M.M., Nazarov I.A., Barbotko S.L. Issledovaniya po razrabotke novogo materiala dlya balloneta pnevmaticheskogo trapa dlya avariynogo pokidaniya kabiny vertoleta [Researches on development new material for ballonet of pneumatic emergency slide of helicopter] // Trudy VIAM: elektron. nauch.-tekhnich. zhurnal. 2016. №12 (48). St. 07. Available at: http://www.viam-works.ru (accessed: February 15, 2019) DOI: 10.18577/2307-6046-2016-0-12-7-7.
One of important and considerable characteristic for flight vehicles is aerodynamic. To reduce possible losses of speed at the expense of product friction in air space, undertake different measures for improvement of characteristics of surface of the flight vehicle which depend on complexity of its design, and also way of connection of constructional elements. One of materials applied to these purposes are putty materials – the high-filled polymeric systems. Surface irregularities, in metal of product can become concentrators of tension and accumulate the corrosion environment that can lead to deterioration of strength properties of design and finally to product destruction.
Now for elimination of similar defects and prevention of possible destructions by the most perspective material are metal-polymeric compositions. As polymeric basis low-molecular epoxy or epoxy-organic-silicon copolymers are applied. As filler-aluminum powder of spherical form.
In this work authors have conducted research of influence of the sizes of powder and extent of filling on different properties of putty composition.
From the results received during experiments follows that the specific surface of aluminum powder does not make impact on strength and deformation characteristics of free films of metal-polymeric compositions. With increase in the maintenance of aluminum powder in polymeric matrix with 150 to 300 mass parts, irrespective of its specific surface, durability at gap increases, thus discontinuous lengthening’s decrease. On the basis of these results value of the maintenance of aluminum powder at which the most significant increase in durability and insignificant decrease in elasticity is implemented has been chosen.
Other tests carried out for compositions with diffe
2. Kablov E.N., Lukin V.I., Ospennikova O.G. Perspektivnyye alyuminiyevyye splavy i tekhnologii ikh soyedineniya dlya izdeliy aviakosmicheskoy tekhniki [Perspective aluminum alloys and technologies of their connection for aerospace products] // Tez. dokl. 2-y Mezhdunar. konf. «Alyuminiy-21. Svarka i payka». SPb., 2012. St. 8 (CD).
3. Kablov E.N. Materialy novogo pokoleniya – osnova innovatsiy, tekhnologicheskogo liderstva i natsionalnoy bezopasnosti Rossii [Materials of the new generation - the basis of innovation, technological leadership and national security of Russia] // Intellekt i tekhnologii. 2016. №2 (14). S. 16–21.
4. Kablov E.N. Iz chego sdelat budushcheye? Materialy novogo pokoleniya, tekhnologii ikh sozdaniya i pererabotki – osnova innovatsiy [What to make the future from? Materials of the new generation, technologies of their creation and processing - the basis of innovation] // Krylya Rodiny. 2016. №5. S. 8–18.
5. Shavnev A.A., Kurbatkina E.I., Kosolapov D.V. Metody soyedineniya alyuminiyevykh kompozitsionnykh materialov (obzor) [Methods for joining of aluminum composite materials (review)] // Aviacionnye materialy i tehnologii. 2017. №3 (48). S. 35–42. DOI: 10.18577/2071-9140-2017-0-3-35-42.
6. Zhilikov V.P., Karimova S.A., Leshko S.S., Chesnokov D.V. Issledovanie dinamiki korrozii alyuminievyh splavov pri ispytanii v kamere solevogo tumana (KST) [Research of dynamics of corrosion of aluminum alloys when testing in the salt spray chamber (SSC)] // Aviacionnye materialy i tehnologii. 2012. №4. S. 18–22.
7. Kablov E.N., Startsev O.V., Medvedev I.M. Obzor zarubezhnogo opyta issledovanij korrozii i sredstv zashhity ot korrozii [Review of international experience on corrosion and corrosion protection] // Aviacionnye materialy i tehnologii. 2015. №2 (35). S. 76–87. DOI: 10.18577/2071-9140-2015-0-2-76-87.
8. Kondrashov E.K., Kuznetsova V.A., Semenova L.V., Lebedeva T.A. Osnovnyye napravleniya povysheniya ekspluatatsionnykh, tekhnologicheskikh i ekologicheskikh kharakteristik lakokrasochnykh pokrytiy dlya aviatsionnoy tekhniki [The main directions of improving the operational, technological and environmental performance of paint coatings for aircraft] // Rossiyskiy khimicheskiy zhurnal. 2010. T. LIV. №1. S. 96–102.
9. Eskov A.A., Lebedeva T.A., Belova M.V. Lakokrasochnye materialy s ponizhennym soderzhaniem letuchih veshhestv (obzor) [Paint-and-lacquer materials with lowered content of volatile organic compounds (review)] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №6. St. 08. Available at: http://www.viam-works.ru (accessed: February 01, 2019). DOI: 10.18577/2307-6046-2015-0-6-8-8.
10. Gerasimova L.G., Skorokhodova O.N. Napolniteli dlya lakokrasochnoy promyshlennosti [Fillers for paint and varnish industr]. M.: LKM-press, 2010. 224 s.
11. Kuznetsova V.A., Kuznetsov G.V., Shapovalov G.G. Issledovanie vliyaniya molekulyarnoj massy epoksidnoj smoly na adgezionnye, fiziko-mehanicheskie svojstva i erozionnuyu stojkost pokrytij [Investigation of epoxy resin molecular mass influence by physiomechanical property and erosive resistant of coatings] // Trudy VIAM: elektron. nauchn.-tehnich. zhurn. 2014. №8. St. 08. Available at: http://www.viam-works.ru (accessed: February 01, 2019). DOI: 10.18577/2307-6046-2014-0-8-8-8.
12. Pavlyuk B.F. Osnovnye napravleniya v oblasti razrabotki polimernyh funktsionalnyh materialov [The main directions in the field of development of polymeric functional materials] // Aviatsionnye materialy i tekhnologii. 2017. №S. S. 388–392. DOI: 10.18577/2071-9140-2017-0-S-388-392.
13. Narisava I. Prochnost polimernykh materialov. Per. s yaponskogo [Strength of polymeric materials. Trans. from Jap.]. M.: Khimiya, 1987. 364 s.
14. Lutsenko A.N., Slavin A.V., Erasov V.S., Khvackij K.K. Prochnostnye ispytaniya i issledovaniya aviacionnyh materialov [Strength tests and researches of aviation materials] // Aviacionnye materialy i tehnologii. 2017. №S. S. 527–546. DOI: 10.18577/2071-9140-2017-0-S-527-546.
15. Metallopolimernaya kompozitsiya: pat. 2618031C1 Ros. Federatsiya [Metal-polymer composition: pat. 2618031C1 Rus. Federation]; zayavl 02.06.16; opubl. 02.05.17.
16. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
Currently the modern materials such as heat-resistant nickel alloys based on Ni–Cr, Ni–Co–Cr systems are being created and introduced into the design of new generation aircraft engines. In order to obtain a stable hardened structure, chemical and thermal treatment processes, including nitriding or combined methods, are used. Currently used heat-resistant enamel cannot be used to protect the new alloys, as workable at temperatures not exceeding 1000°C.
For solving the problem of materials science for the creation of more heat-resistant coatings it is necessary to apply the experience of scientific and technical research in the field of creating erosion-resistant thermal control coatings such as EVCh for tile thermal protection of the «Buran». One of the main advantages of these coatings is the firing temperature, almost equal to the operating temperature. To ensure the reduction of the firing temperature (the formation) allows the introduction of additives tetraboride silicon is sufficiently refractory compounds oxidized during heat treatment with the formation of low-melting borosilicate glass. The work investigated the influence of tetraboride of silicon on formation of structure of coatings based on barium-aluminium-silica glasses. The purpose of the work is to identify patterns of formation of the structure of these coatings. The results of the study of the structure formation of reactive coatings indicate the presence of several stages of coating formation: the formation of a macrostructure, accompanied first by the oxidation of tetraboride and the formation of the liquid phase of borosilicate glass, then softening of the matrix glass; the formation of a microstructure containing the phase of the matrix glass, particles of modifying glass and silicon tetraboride with visible at significant increases in the interface. The resulting coatings are composite, and th
2. Kablov E.N., Solntsev S.S., Rozenenkova V.A., Mironova N.A. Sovremennyye polifunktsionalnyye vysokotemperaturnyye pokrytiya dlya nikelevykh splavov, uplotnitelnykh metallicheskikh materialov i berilliyevykh splavov [Modern polyfunctional high-temperature coatings for nickel alloys, sealing metal materials and beryllium alloys] // Novosti materialovedeniya. Nauka i tekhnika: elektron. nauch.-tekhnich. zhurn. 2013. №1. St. 5. Available at: http://www.materialsnews.ru (accessed: February 03, 2019).
3. Grashchenkov D.V. Strategiya razvitiya nemetallicheskih materialov, metallicheskih kompozicionnyh materialov i teplozashhity [Strategy of development of non-metallic materials, metal composite materials and heat-shielding] // Aviacionnye materialy i tehnologii. 2017. №S. S. 264–271. DOI: 10.18577/2071-9140-2017-0-S-264-271.
4. Kablov E.N. Iz chego sdelat budushcheye? Materialy novogo pokoleniya, tekhnologii ikh sozdaniya i pererabotki – osnova innovatsiy [What to make the future from? Materials of the new generation, technologies of their creation and processing – the basis of innovation] // Krylya Rodiny. 2016. №5. S. 8–18.
5. Denisova V.S., Soloveva G.A. Zharostojkoe steklokeramicheskoe pokrytie zhdya zashchity detalej kamer sgoraniya gazoturbinnykh dvigatelej [Heat-resistant glass-ceramic coating for protection of gas turbines’ combustion chambers parts] // Aviacionnye materialy i tehnologii. 2016. №4 (45). S. 18–22. DOI: 10.18577/2071-9140-2016-0-4-18-22.
6. Ovsepyan S.V., Lukina E.A., Filonova E.V., Mazalov I.S. Formirovanie uprochnyayushhej fazy v processe vysokotemperaturnogo azotirovaniya svarivaemogo zharoprochnogo deformiruemogo splava na osnove sistemy Ni–Co–Cr [Formation of the Strengthening Phase during the High-Temperature Nitriding of Ni–Co–Cr Weldable Wrought Superalloy] // Aviacionnye materialy i tehnologii. 2013. №1. S. 3–8.
7. Kozlova O.Yu., Ovsepyan S.V., Pomelnikova A.S., Akhmedzyanov M.V. Vliyaniye vysokotemperaturnogo azotirovaniya na strukturu i svoystva svarivayemykh zharoprochnykh nikelevykh splavov [The effect of high-temperature nitriding on the structure and properties of heat-resistant nickel alloys to be welded] // Vestnik MGTU im. N.E. Baumana. Ser.: Mashinostroyeniye. 2016. №6 (111). S. 33–42.
8. Lukina E.A., Ovsepyan S.V., Davydova E.A., Akhmedzyanov M.V. Strukturnyye osobennosti zharoprochnogo splava na osnove sistemy Ni–Co–Cr, uprochnyayemogo obyemnym azotirovaniyem [Structural features of a heat-resistant alloy based on the Ni – Co – Cr system strengthened by volumetric nitriding] // Tsvetnyye metally. 2016. №7 (883). S. 76–82.
9. Kablov E.N. Materialy dlya izdeliya «Buran» – innovacionnye resheniya formirovaniya shestogo tehnologicheskogo uklada [Materials for «Buran» spaceship – innovative solutions of formation of the sixth technological mode] // Aviacionnye materialy i tehnologii. 2013. №S1. S. 3–9.
10. Kablov E.N., Solntsev S.S. Oksitermosintez – novyy shag k materialam dlya perspektivnoy aviakosmicheskoy tekhniki [Oxytermosynthesis – a new step towards materials for advanced aerospace technology] // Aviacionnyye materialy. Izbrannyye trudy «VIAM» 1932–2002. M.: VIAM, 2002. S. 131–137.
11. Solncev S.S., Denisova V.S., Rozenenkova V.A. Reakcionnoe otverzhdenie – novoe napravlenie v tehnologii vysokotemperaturnyh kompozicionnyh pokrytij i materialov [Reaction cure – the new direction in technology ofhigh-temperature composite coatings and materials] // Aviacionnye materialy i tehnologii. 2017. №S. S. 329–343. DOI: 10.18577/2071-9140-2017-0-S-329-343.
12. Solntsev St.S. Erozionnostoykiye vlagozashchitnyye termoreguliruyushchiye pokrytiya mnogorazovoy teplozashchity orbitalnogo korablya «Buran» [Erosionand moisture resistant thermoregulating coating for thermal protection system of «Buran» reusable spaceship] // Aviacionnye materialy i tehnologii. 2013. №S1. S. 94–124.
13. Solntsev S.S. Nekotorye osobennosti pokrytij dlya plitok mnogorazovoj teplozashhity orbitalnyh kosmicheskih korablej [Some features of coatings for tiles reusable heat-protection orbiting spacecraft] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №2. St. 01. Available at: http://www.viam-works.ru (accessed: February 09, 2019). DOI: 10.18577/2307-6046-2014-0-2-1-1.
14. Dospekhi dlya «Burana». Materialy i tekhnologii VIAM dlya MKS «Energiya–Buran» / pod obshch. red. E.N. Kablova. M.: Nauka i zhizn, 2013. 128 s.
15. Solntsev S.S., Denisova V.S., Agarkov A.B., Gavrilov S.V. Vliyaniye dobavok stekol sistemy BaO–Al2O3–SiO2 na svoystva reaktsionnootverzhdayemykh pokrytiy dlya zashchity nikelevykh splavov [The influence of BaO–Al2O3–SiO2-glasses addition on reaction-cured coatings properties for nickel alloys protection] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2018. №1 (61). St. 11. Available at: http://www.viam-works.ru (accessed: November 09, 2018). DOI: 10.18577/2307-6046-2018-0-1-11-11.
This article analyzes the current methods for determining the impact damage of structural elements made of a polymer composite material based on acoustic non-destructive testing using fiber-optic Bragg gratings. The principles of interaction of Lamb-waves, generated by PZT, with the resonant FBG-wavelength (FBG was integrated into CFRP) are described. Using the shift of the resonant wavelength was shown, it is possible to determine the position and size of the cracks (operation defects) in the composite material.
Continuous assessment of the state of the structural element of the CFRP is an actual and important task, which is solved by developing an embedded control system. Timely detection of defects (cracks) of the design can improve the safety of aviation products. Fiber optic sensors (such as FBGs) are easily integrated into the material, do not require electrical power supply to the measurement point, are interference-free and have low weight and cost.
Verification of the conformity of the design from CFRP with the established requirements is currently being carried out by non-destructive testing. Special mention should be made of the acoustic control method. It was noted that controlled acoustic waves (Lamb-waves) with propagation vectors parallel to the surface of material with a defect have a smaller amplitude than in material without a defect (reflection waves pulled out by cracks reduce the amplitude of the original waves).
2. Doriomedov M.S., Daskovskij M.I., Skripachev S.Yu., Shein E.A. Polimernye kompozicionnye materialy v zheleznodorozhnom transporte Rossii (obzor) [Polymer composite materials in the Russian railways (review)] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №7. St. 12. Available at: http://www.viam-works.ru (accessed: October 19, 2018). DOI: 10.18577/2307-6046-2016-0-7-12-12.
3. Kablov E.N. Osnovnyye itogi i napravleniya razvitiya materialov dlya perspektivnoy aviatsionnoy tekhniki [The main results and directions of development of materials for advanced aviation equipment] // 75 let. Aviatsionnyye materialy. M.: VIAM, 2007. S. 20–26.
4. Timoshkov P.N., Khrulkov A.V., Yazvenko L.N. Kompozitsionnye materialy v avtomobilnoy promyshlennosti (obzor) [Composite materials in automotive industry (review)] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2017. №6 (54). St. 07. Available at: http://www.viam-works.ru (accessed: July 19, 2018). DOI: 10.18577/2307-6046-2017-0-6-7-7.
5. Erasov V.S., Yakovlev N.O., Nuzhnyj G.A. Kvalifikatsionnye ispytaniya i issledovaniya prochnosti aviatsionnyh materialov [Qualification tests and researches of durability of aviation materials] // Aviacionnye materialy i tehnologii. 2012. №S. S. 440–448.
6. Kablov E.N., Startsev O.V., Medvedev I.M., Shelemba I.S. Volokonno-opticheskiye datchiki dlya monitoringa korrozionnykh protsessov v uzlakh aviatsionnoy tekhniki (obzor) [Fiber optic sensors for monitoring corrosion processes in units of aviation engineering (review)] // Aviacionnye materialy i tehnologii. 2017. №3 (48). S. 26–34. DOI: 10.18577/2071-9140-2017-0-3-26-34.
7. Ilichev A.V., Raskutin A.E. Issledovanie vliyaniya koncentratora napryazhenij na napryazhenno-deformacionnoe sostoyanie ugleplastika metodom korrelyacii cifrovyh izobrazhenij [Research of stress concentrator influence on stress-strain state of carbon by digital images correlation method] // Aviacionnye materialy i tehnologii. 2014. №3. S. 62–66. DOI: 10.18577/2071-9140-2014-0-3-61-62.
8. Startsev V.O., Mahonkov A.Yu., Kotova E.A. Mehanicheskie svojstva i vlagostojkost' PKM s povrezhdeniyami [Mechanical properties and moisture resistance of PCM with damages] // Aviacionnye materialy i tehnologii. 2015. №S1 (38). S. 49–55. DOI: 10.18577/2071-9140-2015-0-S1-49-55.
9. Latishenko V.A., Matiss J.G., Sandalov A.V. Diagnostics of load carrying capacity of composite structures // 10th World Conference on Non-Destructive Testing. Moscow. 1982. Rep. 5–3.
10. Murashov V.V., Gunyayev G.M., Rumyantsev A.F. Ispol'zovaniye informativnykh parametrov priborov nerazrushayushchego kontrolya pri diagnostike fiziko-mekhanicheskikh kharakteristik ugleplastikov [Use of informative parameters of devices of non-destructive testing at diagnostics of physicomechanical characteristics carbonplastics] // Aviacionnye materialy i tehnologii. M.: VIAM, 2002. Vyp.: Polimernyye kompozitsionnyye materialy. S. 70–77.
11. Murashov V.V., Rumyantsev A.F. Diagnosis of physical and mechanical properties of constructional carbon fiber reinforced plastics (CFRP) // 10th European Conference on Non-Destructive Testing (Moscow, June 7–11, 2010). 2010. Disc 1: Reports.
12. Ermolov I.N., Lange Yu.V. Nerazrushayushchiy kontrol: spravochnik v 7 t. [Non-destructive testing: reference book in 7 vol.] M.: Mashinostroenie, 2006. T. 3: Ultrazvukovoy kontrol. 864 s.
13. Murashov V.V., Rumyantsev A.F. Defekty monolitnykh detaley i mnogosloynykh konstruktsiy iz polimernykh kompozitsionnykh materialov i metody ikh vyyavleniya. Chast 1. Defekty monolitnykh detaley i mnogosloynykh konstruktsiy iz polimernykh kompozitsionnykh materialov [Defects of monolithic parts and multilayer structures made of polymer composite materials and methods for their detection. Part 1. Defects of monolithic parts and multilayer structures made of polymer composite materials] // Kontrol. Diagnostika. 2007. №4. S. 23–31.
14. Murashov V.V., Rumyantsev A.F. Defekty monolitnykh detaley i mnogosloynykh konstruktsiy iz polimernykh kompozitsionnykh materialov i metody ikh vyyavleniya. Chast 2. Metody vyyavleniya defektov monolitnykh detaley i mnogosloynykh konstruktsiy iz polimernykh kompozitsionnykh materialov [Defects of monolithic parts and multilayer structures made of polymer composite materials and methods for their detection. Part 2. Methods for detection of defects in monolithic parts and multilayer structures made of polymer composite materials] // Kontrol. Diagnostika. 2007. №5. S. 31–42.
15. Brand C., Boller C. Identification of life cycle cost reduction in structures with self-diagnostic devices // Proceedings of NATO RTO Symposium on Design for Low Cost Operation and Support (Ottawa, October 21–22, 1999). Raper 17.
16. Aldridge N., Foote P.D., Read I. Operational load monitoring for aircraft and maritime applications // Strain. 2000. Vol. 36. P. 123–126.
17. Measures R.M. Structural Monitoring with Fiber Optic Technology. 1st ed. London: Academic Press, 2004. P. 1609–1610.
18. Chandler K., Ferguson S., Graver T. et al. On-line structural health and fire monitoring of a composite personal aircraft using an FBG sensing system // Proceedings SPIE. 2008. Vol. 6933. P. 125–131.
19. Takeda N., Okabe Y., Kuwahara J. et al. Development of smart composite structures with small-diameter fiber Bragg grating sensors for damage detection: Quantitative evaluation of delamination length in CFRP laminates using Lamb wave sensing // Composites Science and Technology. 2005. Vol. 65. No. 15. P. 2575–2587.
20. Coppola G. Analysis of feasibility on the use of fiber Bragg grating sensors as ultrasound detectors // Proceedings SPIE. 2001. 8th Annual Symposium on smart structures and Materials. Р. 224–232.
21. Minakuchi S., Umehara T., Takagaki K. et al. Life cycle monitoring and advanced quality assurance of L-shaped composite corner part using embedded fiber-optic sensor // Composites Part A: Applied Science and Manufacturing. 2013. Vol. 48. P. 153–161.
22. Takeda N., Minakuchi S., Umehara T. et al. Life cycle monitoring of curved composite parts using embedded fiber Bragg grating sensors // Advanced Materials Research. 2012. Vol. 410. P. 18–21.
23. Guo H., Dai Y., Xiao G., Mrad N., Yao J. Interrogation of a long-period grating using a mechanically scannable arrayed waveguide grating and a sampled chirped fiber Bragg grating // Optical Letter. 2008. No. 33. P. 1635–1637.
24. Kablov E.N., Sivakov D.V., Gulyayev I.N. i dr. Primeneniye opticheskogo volokna v kachestve datchikov deformatsii v polimernykh kompozitsionnykh materialakh [The use of optical fiber as strain sensors in polymer composite materials] // Vse materialy. Entsiklopedicheskiy spravochnik. 2010. №3. S. 10–15.
25. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
26. Wang S.S. Delamination Crack Growth in Unidirectional Fiber-Reinforced Laminates under Static and Cyclic Loading // Composite Material: Testing and Design, ASTM STP. 1979. Vol. 674. P. 642–663.
27. Kessler S. Piezoelectric-based in situ damage detection of composite materials for structural health monitoring systems: PhD Thesis Department of Aeronautics and Astronautics. Massachusetts: Massachusetts Institute of Technology, 2002. P. 100–112.
28. Valdes S. Structural integrity monitoring of CFRP laminates using piezoelectric devices: PhD Thesis Department of Aeronautics. Imperial College London, 2000. P. 44–49.
29. Chang F. Structural Health Monitoring: A Summary Report // Proceedings of the 2nd International Workshop on Structural Health Monitoring (Stanford, September 8–10, 1999). 1999. P. 244–276.
30. Giurgiutiu V., Bao J., Zhao W. Active Sensor Wave Propagation Health Monitoring of Beam and Plate Structures // Proceedings of the 8th International SPIE Symposium on Smart Structures and Materials (Newport Beach, 2001). 2001. Vol. 4327. P. 184–213.
31. Bar-Cohen Y. NDE of Fiber Reinforced Composite Materials // Materials Evaluation. 1986. Vol. 44. P. 446–454.
32. Saravanos D.A., Heyliger P.R. Coupled Layerwise Analysis of Composite Beans with Embedded Piezoelectric Sensors and Actuators // Journal of Intelligent Material Systems and Structures. 1995. No. 6. P. 350–362.
33. Saravanos D.A., Birman V., Hopkins D.A. Detection of Delaminations in Composite Beams using Piezoelectric Sensors // Proceedings of the 35th Structures, Structural Dynamics and Materials Conference of the AIAA. 1994. P. 218–223.
34. Monnier T. Lamb waves-based impact damage monitoring of a stiffened aircraft panel using piezoelectric transducers // Journal of Intelligent Material Systems and Structures. 2006. P. 411–421.
35. Lee B.C., Manson G., Staszewski W.J. Environmental effects on Lamb wave responses from piezoceramic sensors // Materials Science Forum. 2003. P. 195–202.
36. Tsuda H., Lee J.R., Guan Y.S., Takatsubo J.J. Investigation of fatigue crack in stainless steel using a mobile fiber Bragg grating ultrasonic sensor // Optical Fiber Technology. 2007. No. 13. P. 209–214.
37. Betz D.C., Thursby G., Culshaw B., Staszewski W.J. Identification of structural damage using multifunctional Bragg grating sensors: I. Theory and implementation // Smart Material and Structure. 2006. No. 15. P. 1305–1312.
38. Perez I., Cui H.L., Udd E. Acoustic emission detection using fiber Bragg gratings // Proceedings SPIE. 2001. Vol. 4328. P. 209–215.
39. Wu Q., Yu F., Okabe Y., Saito K., Kobayashi S. Acoustic emission detection and position identification of transverse cracks in carbon fiber–reinforced plastic laminates by using a novel optical fiber ultrasonic sensing system // Structural Health Monitoring. 2014. No. 14. P. 205–213.
40. Kablov E.N., Startsev V.O., Inozemtsev A.A. Vlagonasyshhenie konstruktivno-podobnyh elementov iz polimernyh kompozicionnyh materialov v otkrytyh klimaticheskih usloviyah s nalozheniem termociklov [The moisture absorption of structurally similar samples from polymer composite materials in open climatic conditions with application of thermal spikes] // Aviacionnye materialy i tehnologii. 2017. №2 (47). S. 56–68. DOI: 10.18577/2071-9140-2017-0-2-56-68.
Polymeric composite materials (PCM) have found broad application in the different industries of mechanical engineering as their use allows to improve significantly characteristics of machines and different designs. Into structure of PKM enter fibrous filler and binding which connects among themselves separate elements of filler in uniform material.
Often in a short form composite materials with thermoflexible matrix designate KTM. Application thermoflexible binding as a part of KTM has demanded carrying out their strict control. In this regard in article control methods of thermoflexible matrixes for KTM are provided.
The thermoflexible binding have the linear or branched-out structure unlike thermosetting, having only the three-dimensional sewed structure. Thermoflexible materials when heating are capable to pass reversibly in high-elastic or to plastic condition. Therefore, some methods used for control of their properties, can differ from control of the thermosetting binding.
The main test methods of thermoflexible materials are given in this article, including used as binding for PCM.
Methods definitions of density, softening temperature, flowability rasplava, impact strength on the Sharpie, durability are given at stretching, the adhesive durability of communication between fiber and the thermoflexible binding. Device examples with the heating bath filled with liquid, for determination of softening temperature on Vick in the liquid environment, the extrusion plastometer are shown.
In recent years the volume of use of polymeric materials has increased in interior of flight vehicles. In this regard have entered more rigid requirements to characteristics of fire safety of these materials which include such indicators as combustibility, dymoobrazovaniy
2. Petrova A.P., Mukhametov R.R., Shishimirov M.V., Pavlyuk B.Ph., Starostina I.V. Metody ispytaniy i issledovaniy termoreaktivnykh svyazuyushchikh dlya polimernykh kompozitsionnykh materialov (obzor) [Test methods and researches thermosetting binding for polymeric composite materials (review)] // Trudy VIAM: elektron. nauch.-tekhnich. zhurnal. 2018. №12 (72). St. 07. Available at: http://viam-works.ru (accessed: December 17, 2018). DOI: 10.18577/2307-6046-2018-0-12-62-70.
3. Petrova G.N., Larionov S.A., Platonov M.M., Perfilova D.N. Termoplastichnye materialy novogo pokoleniya dlya aviacii [Thermoplastic materials of new generation for aviation] // Aviacionnye materialy i tehnologii 2017. №S. S. 420–436. DOI: 10.18577/2071-9140-2017-0-S-420-436.
4. Kondrashov S.V., Shashkeev K.A., Petrova G.N., Mekalina I.V. Polimernye kompozicionnye materialy konstrukcionnogo naznacheniya s funkcionalnymi svojstvami [Constructional polymer composites with functional properties] // Aviacionnye materialy i tehnologii. 2017. №S. S. 405–419. DOI: 10.18577/2071-9140-2017-0-S-405-419.
5. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
6. Kablov E.N. Materialy novogo pokoleniya [New generation materials] // Zashchita i bezopasnost. 2014. №4. S. 28–29.
7. Kablov E.N. Iz chego sdelat budushcheye? Materialy novogo pokoleniya, tekhnologii ikh sozdaniya i pererabotki – osnova innovatsiy [What to make the future from? Materials of the new generation, technologies of their creation and processing – the basis of innovation] // Krylya Rodiny. 2016. №5. S. 8–18.
8. Sorokin A.E., Petrova G.N., Beyder E.Ya., Perfilova D.N. Sloistyye ugleplastiki na termoplastichnoy matritse novogo pokoleniya [Layered carbon plastic on a thermoplastic matrix of a new generation] // Vse materialy. Entsiklopedicheskiy spravochnik. 2017. №9. S. 10–17.
9. Babin A.N., Petrova A.P. Metody ispytaniy i issledovaniy osnovnykh svoystv polimernykh svyazuyushchikh dlya konstruktsionnykh PKM [Test methods and studies of the basic properties of polymeric binders for structural PCM] // Vse materialy. Entsiklopedicheskiy spravochnik. 2016. №3. S. 52–59.
10. Grelmann V., Zaydler S. Ispytaniya plastmass [Tests of plastics]. SPb.: Professiya, 2010. 720 s.
11. Nikolayev E.V., Lutsenko A.N., Barbotko S.L., Pavlov M.R., Abramov D.V. Kompleksnyy metodicheskiy podkhod k opredeleniyu sokhranyayemosti svoystv polimernogo svyazuyushchego i polimernykh kompozitsionnykh materialov na ego osnove pri vozdeystvii klimaticheskikh i ekspluatatsionnykh faktorov [Comprehensive methodical approach to determining the persistence properties of polymer binder and polymer composites based on it under the influence of climatic and operational factors] // Fundamentalnyye issledovaniya i posledniye dostizheniya v oblasti zashchity ot korrozii, stareniya i biopovrezhdeniy materialov i slozhnykh tekhnicheskikh sistem v razlichnykh klimaticheskikh usloviyakh. M.: VIAM, 2016. S. 13.
12. Barbotko S.L. Razvitie metodov ocenki pozharobezopasnosti materialov aviacionnogo naznacheniya [Development of the fire safety test methods for aviation materials] // Aviacionnye materialy i tehnologii. 2017. №S. S. 516–526. DOI: 10.18577/2071-9140-2017-0-S-516-526.
13. Petrova A.P., Donskoy A.A. Kleyashchiye materialy. Germetiki [Adhesive materials]. SPb.: Professional, 2008. 589 s.
14. Deyev I.S., Kobets L.P. Issledovaniye mikrostruktury i osobennostey razrusheniya epoksidnykh matrits [Study of the microstructure and features of the destruction of epoxy matrices] // Klei. Germetiki. Tekhnologii. 2013. №5. S. 19–27.
15. Barbotko S.L., Volnyy O.S., Kiriyenko O.A., Shurkova E.N. Osobennosti ispytaniy aviatsionnykh materialov na pozharoopasnost. Chast 1. Ispytaniye na goryuchest. Vliyaniye tolshchiny obraztsa na registriruyemyye kharakteristiki [Peculiarities of fire hazard testing of aviation materials. Part 1. Flammability test. The influence of the sample thickness on the recorded characteristics] // Pozharovzryvobezopasnost'. 2015. T. 24. №1. S. 40–48.
16. Petrova G.N., Beyder E.Ya., Starostina I.V. Lityevyye termoplasty dlya izdeliy aviakosmicheskoy tekhniki [Molded thermoplastics for aerospace products] // Vse materialy. Entsiklopedicheskiy spravochnik. 2016. №7. S. 21–28.
17. Kotomin S.V., Barankova T.I., Gorbunova I.Yu., Filippova T.N. Polucheniye i svoystva mikroplastikov s polisulfonom i montmorillonitom. II. Prochnost i adgeziya mikroplastikov s polisulfonovoy i kompozitnoy matritsey [Preparation and properties of microplastics with polysulfone and montmorillonite. II. Strength and adhesion of microplastics with polysulfone and composite matrix] // Vse materialy. Entsiklopedicheskiy spravochnik. 2016. №3. S. 6–12.
Studies have been carried out on the effect of the woven filler laying pattern (equal fiberglass fabric T‑64) on the fire hazard characteristics of fiberglass on the phenol formaldehyde binder. The effect of unidirectional [0], orthotropic [0/90] or [±45] and quasi-isotropic [0/-45/90/+45] reinforcement structures on the combustibility characteristics (burning length and residual burning duration), smoke generation (optical density of smoke for 2, 4 minutes and maximum) and heat generation during combustion (maximum intensity of heat release, time to reach maximum intensity and total amount of heat released in the first 2 minutes), determined in accordance with the requirements of aviation standards. Studies have been carried out for fiberglass in the thickness range from 0.65 to 2.5 mm.
The characteristic of smoke generation was not established unambiguous influence of the structure of the reinforcement on the recorded values of smoke optical density.
According to the characteristics of flammability for this material, no influence of the structure of the reinforcement on the length of burning was revealed. The duration of the residual burning of thin samples (up to 1.2 mm) practically does not differ from the layout, for unidirectional samples with a thickness of about 2 mm, compared with other reinforcement structures; a slightly longer duration of residual burning was recorded.
For this material, no effect of the reinforcement structure on the time of occurrence of the maximum intensity of heat release was revealed. Similar to the characteristics of combustibility, the characteristics of heat generation (maximum intensity of heat release and the total amount of heat released during the first two minutes of testing) of thin samples of this material do not differ when the laying pattern is varied, and with a greater t
2. Raskutin A.E. Strategiia razvitiia polimernykh kompozitsionnykh materialov [Development strategy of polymer composite materials] // Aviaсionnye materialy i tehnologii. 2017. №S. S. 344–348. DOI: 10.18577/2071-9140-2017-0-S-344-348.
3. Raskutin A.E. Rossiiskie polimernye kompozitsionnye materialy novogo pokoleniia, ikh osvoenie i vnedrenie v perspektivnykh razrabatyvaemykh konstruktsiiakh [Russian polymer composite materials of new generation, their exploitation and implementation in advanced developed constructions] // Aviacionnye materialy i tehnologii. 2017. №S. S. 349–367. DOI: 10.18577/2071-9140-2017-0-S-349-367.
4. Kutsevich K.E., Dementyeva L.A., Lukina N.F., Tyumeneva T.Yu. Kleyevyye prepregi – perspektivnyye materialy dlya detaley i agregatov iz PKM // Aviatsionnyye materialy i tekhnologii. 2017. №S. S. 379–387. DOI: 10.18577/2071-9140-2017-0-S-379-387.
5. Kondrashov S.V., Shashkeyev K.A., Petrova G.N., Mekalina I.V. Polimernyye kompozitsionnyye materialy konstruktsionnogo naznacheniya s funktsional'nymi svoystvami // Aviatsionnyye materialy i tekhnologii. 2017. №S. S. 405–419. DOI: 10.18577/2071-9140-2017-0-S-405-419.
6. Mouritz A.P. Fire Safety of Advanced Composites for Aircraft // ATSB Research and Analysis Report. Aviation Safety Research Grant – B2004/0046. 2006. 39 p. Available at: http: www.atsb.gov.au/grant_20040046 (accessed: November 08, 2018).
7. Mouritz A.P., Gibson A.G. Fire Properties of Polymer Composite Materials. Springer, 2006. 398 p.
8. Shurkova E.N., Volny O.S., Izotova T.F., Barbotko S.L. Issledovanie vozmozhnosti snizheniya teplovydeleniya pri gorenii kompozicionnogo materiala putem izmeneniya ego struktury [Research of possibility of decrease in heat release when burning composite material by change of its structure] // Aviacionnye materialy i tehnologii. 2012. №1. S. 27–30.
9. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
10. Kablov E.N. Materialy dlya aviakosmicheskoy tekhniki [Materials for aerospace] // Vse materialy. Entsiklopedicheskiy spravochnik. 2007. №5. S. 7–27.
11. Kablov E.N. Kontrol kachestva materialov – garantiya bezopasnosti ekspluatatsii aviatsionnoy tekhniki [Quality control of materials - a guarantee of safety of operation of aviation equipment] // Aviacionnye materialy i tehnologii. 2001. №1. S. 3–8.
12. Staggs J.E.J. Modeling the Endothermicc Decomposition of Hydrated Solids / In: Polymer Green Flame Retardants. Elsevier, 2014. P. 323–365.
13. Normy letnoy godnosti samoletov transportnoy kategorii [Airworthiness standards for airplanes of the transport category]: AP-25: utv. Postanovleniyem 35-y sessii Soveta po aviatsii i ispolzovaniyu vozdushnogo prostranstva 23.10.2015. 5-ye izd. s popravkami 1–8. M.: Aviaizdat, 2015. 290 s.
14. Certification Specifications and Acceptable Means of Compliance for Large Aeroplanes. CS-25. Amendment 15. July 21, 2014. 921 p.
15. Federal Regulations. Part 25 – Airworthiness Standards: Transport Category Airplanes. Available at: http://www.ecfr.gov/cgi-bin/text-idx?SID=d7f8803c7bd1d50b6d68749e0b42d848&node =14:1.0.1.3.11&rgn=div5 (accessed: November 08, 2018).
16. Aircraft Materials Fire Test Handbook // DOT/FAA/AR-00/12. 2000. 235 p. Available at: http://www.fire.tc.faa.gov/handbook.stm (accessed: November 08, 2018).
17. Barbotko S.L. Prognozirovaniye na osnove matematicheskoy modeli izmeneniya kinetiki teplovydeleniya pri gorenii stekloplastika [Prediction on the basis of a mathematical model of the change in the kinetics of heat generation during burning of glass fiber plastic] // Pozharovzryvobezopasnost. T. 17. 2008. №5. S. 23–28.
18. Cambell S., Jensen M., Sattayatam P. Flammability Standardization Task Group – Final Reports: Federal Aviation Administration Draft Policy Memo. August 20, 2009. FAA Report DOT/FAA/TC-12/10. 2012. 881 p.
19. Flammability Testing of Interior Materials: Policy Statement No: PS-ANM-25.853-01-R2 / U.S. Department of Transportation. Federal Aviation Administration. 2013. 28 p.
20. Barbotko S.L., Volnyy O.S., Shurkova E.N. Postroyeniye fenomenologicheskoy modeli, opisyvayushchey izmeneniye kharakteristiki goryuchesti (prodolzhitelnost ostatochnogo goreniya) v zavisimosti ot tolshchiny polimernogo materiala [Creation of the phenomenological model describing change of the characteristic of combustibility (duration of residual burning) depending on thickness of polymeric material] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2018. №10 (70). St. 12. Available at: http://www.viam-works.ru (accessed: November 08, 2018). DOI: 10.18577/2307-6046-2018-0-10-107-116.
21. Barbotko S.L., Golikov N.I. O kompleksnoy otsenke pozharnoy opasnosti materialov [On the comprehensive assessment of the fire hazard of materials] // Pozharovzryvobezopasnost. 2008. T. 17. №6. S. 16–24.