Articles
The processes of grain growth in the Ni-base superalloy are reviewed. The powder was produced via argon atomization and plasma rotating electrode process. The changing of grain size during solution treatment with various temperatures directly after hot isostatic pressing (HIP) and also after isothermal forging of the compacted material are analyzed. It is shown that grains of the material from argon atomization powder grow slower in comparison with the material from PREP-powder. More intensive grain growth during the increase of solutioning temperature is observed in the case of additional plastic deformation of the compacted material.
2. Kablov E.N. Aviacionnoe materialovedenie v XXI veke. Perspektivy i zadachi [Aviation materials science in the XXI century. Perspectives and tasks] // Aviacionnye materialy. Izbrannye trudy VIAM 1932–2002: yubil. nauch.-tehnich. sb. M.: MISIS–VIAM, 2002. S. 23–47.
3. Kablov E.N., Ospennikova O.G., Lomberg B.S. Kompleksnaya innovacionnaya tehnologiya izotermicheskoj shtampovki na vozduhe v rezhime sverhplastichnosti diskov iz superzharoprochnyh splavov [Complex innovative technology of isothermal punching on air in mode of superplasticity of disks from superhot strength alloys] // Aviacionnye materialy i tehnologii. 2012. №S. S. 129–141.
4. Ponomarenko D.A., Moiseev N.V., Skugorev A.V. Shtampovka diskov GTD iz zharoprochnykh splavov na izotermicheskikh pressakh [Punching of disks GTD from hot strength alloys on isothermal presses] // Aviacionnye materialy i tekhnologii. 2013. №1. S. 13–16.
5. Bubnov M.V., Sidorov S.A., Bazhenov A.R., Chebotareva E.S. Razvitie teorii i praktiki proizvodstva shtampovok diskov GTD iz geterofaznyh zharoprochnyh nikelevyh splavov [Development of the theory and practice of production of punchings of disks of from gas turbine engines of heterophase nickel-based superalloys] // Novosti materialovedeniya. Nauka i tehnika: elektron. nauch.-tehnich. zhurn. 2017. №2 (26). St. 02. Available at: http://materialsnews.ru (February 02, 2018).
6. Garibov G.S., Vostrikov A.V., Gric N.M., Fedorenko E.A. Razrabotka novyh granulirovannyh zharoprochnyh nikelevyh splavov dlya proizvodstva diskov i valov aviacionnyh dvigatelej [Development of new granulated heat-resistant nickel alloys for the production of disks and shafts of aircraft engines] // Tehnologiya legkih splavov. 2010. №2. S. 34–43.
7. Garibov G.S. Perspektivy razvitiya otechestvennyh diskovyh granuliruemyh zharoprochnyh nikelevyh splavov dlya novyh obrazcov aviacionnoj tehniki [Problems of application of the granulated alloy in advanced gas turbine engines] // Tehnologiya legkih splavov. 2017. № 1. S. 7–28.
8. Nozhnickij Yu.A. Problemy primeneniya granuliruemyh splavov v perspektivnyh GTD [Problems of application of the granulated alloy in advanced GTE] // Tehnologiya legkih splavov. 2007. №4. S. 13–20.
9. Furrer D., Fecht H. Ni-Based Superalloys for Turbine Discs // Journal of Metals. 1999. Vol. 51. P. 14–17.
10. Pollock T., Tin S. Nickel-Based Superalloys for Advanced Turbine Engines: Chemistry, Microstructure and Properties // Journal of Propulsion and Power. 2006. Vol. 22. No 2. P. 361–374.
11. Fatkullin O.H., Eremenko V.I., Kolesnikov Yu.N. Osobennosti formirovaniya struktury v processe deformacii i termicheskoj obrabotki granuliruemogo splava EP741NP [Features of structure formation during deformation and heat treatment of granulated alloy EP741NP] // Tehnologiya legkih splavov. 1991. № 12. S. 71.
12. Fatkullin O.H., Eremenko V.I., Vlasova O.N., Sklyarenko V.G. Povyshenie plastichnosti (vplot do sverhplastichnosti) granuliruemyh zharoprochnyh nikelevyh splavov [Increase of plasticity (up to superplasticity) of granulated heat-resistant nickel alloys] // Tehnologiya legkih splavov. 2002. №4. S. 105–118.
13. Beresnev A.G., Logunov A.V., Logacheva A.I. Problemy povysheniya kachestva zharoprochnyh splavov, poluchaemyh metodom metallurgii granul [Problems of improving the quality of heat-resistant alloys produced by the method of metallurgy granules] // Vestnik MAI. 2008. T. 15. S. 83–89.
14. Razuvaev E.I., Bubnov M.V., Bakradze M.M., Sidorov S.A. GIP i deformatsiia granulirovannykh zharoprochnykh nikelevykh splavov [HIP and deformation of the granulated heat resisting nickel alloys] // Aviatsionnye materialy i tekhnologii. 2016. №S1. S. 80–86. DOI: 10.18577/2071-9140-2016-0-S1-80-86.
15. Evgenov A.G., Nerush S.V., Vasilenko S.A. Poluchenie i oprobovanie melkodispersnogo metallicheskogo poroshka vysokohromistogo splava na nikelevoj osnove primenitelno k lazernoj LMD-naplavke [The obtaining and testing of the fine-dispersed metal powder of the high-chromium alloy on nickel-base for laser metal deposition] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №5. St. 04. Available at: http://www.viam-works.ru (accessed: February 02, 2018). DOI: 10.18577/2307-6046-2014-0-5-4-4.
16. Davydov A.K., Kononov S.A., Baturin A.I., Fatkullin O.X. Proizvodstvo turbinnyh diskov po tehnologii metallurgii granul [Production of turbine disks on technology of metallurgy of granules] // Kuznechno-shtampovochnoe proizvodstvo. Obrabotka materialov davleniem. 2008. №5.S. 21–22.
17. Ospennikova O.G., Lomberg B.S., Moiseev N.V., Kapitanenko D.V. Izotermicheskaya deformaciya zharoprochnyh splavov [Isothermal deformation of heat-resistant alloys] // Metallurg. 2013. №10. S. 88–92.
18. Volkov A.M., Vostrikov A.V. Obrazovanie i rost zeren v diskovyh granuliruemyh zharoprochnyh nikelevyh splavah [Nucleation and growth of grains in P/M Ni-base superalloys for disks application] // Novosti materialovedeniya. nauka i tehnika: elektron. nauch.-tehnich. zhurn. 2017. №2. (26). St. 01. Available at: http://materialsnews.ru (February 02, 2018).
19. Wegmann G., Gerling R., Schimansky F. Temperature induced porosity in hot isostatically pressed gamma titanium aluminide alloy powders // Acta Materialia. 2003. Vol. 51. Issue 3. P. 741–752.
The technique provides ultra-low oxygen content in the process of smelting complex alloyed heat-resistant nickel alloys with special oxygen probes. This technique allows rapid and efficiently manage the processes of regulating the concentration of oxygen in the melt. Tested the developed method for installing in the melting of nickel-based superalloys. The technique of determining the oxygen content in the melt at can also be used for other, including newly developed alloys.
2. Kablov E.N., Sidorov V.V., Rigin V.E. Metallurgiya litejnyh zharoprochnyh splavov [Metallurgy of cast heat-resistant alloys] // 75 let. Aviacionnye materialy. Izbrannye trudy «VIAM» 1932–2007: yubil. nauch.-tehnich. sb. M.: VIAM, 2007. S. 125–132.
3. Petrushin N.V., Ospennikova O.G., Svetlov I.L. Monokristallicheskie zharoprochnye nikelevye splavy dlya turbinnyh lopatok perspektivnyh GTD [Single-crystal Ni-based superalloys for turbine blades of advanced gas turbine engines] // Aviacionnye materialy i tehnologii. 2017. №S. S. 72−103. DOI: 10.18577/2071-9140-2017-0-S-72-103.
4. Bazyleva O.A., Arginbaeva E.G., Turenko E.Yu. Vysokotemperaturnye intermetallidnye splavy dlya detaley GTD [The high-temperature intermetallic alloys for parts of gas-turbine engines] // Aviacionnye materialy i tehnologii. 2013. №3. S. 26–31.
5. Petrushin N.V., Ospennikova O.G., Visik E.M., Rassohina L.I., Timofeeva O.B. Zharoprochnye nikelevye splavy nizkoj plotnosti [High-temperature nickel alloys of low density] // Litejnoe proizvodstvo. 2012. №6. S. 5-11.
6. Kablov E.N., Petrushin N.V., Svetlov I.L., Demonis I.M. Litejnye zharoprochnye splavy novogo pokoleniya [Foundry hot strength alloys of new generation] // 75 let. Aviacionnye materialy. Izbrannye trudy «VIAM» 1932–2007: yubil. nauch.-tehnich. sb. M.: VIAM, 2007. S. 27–44.
7. Orehov N.G., Starostina I.V. Analiz kachestva litoj prutkovoj (shihtovoj) zagotovki iz zharoprochnyh splavov proizvodstva FGUP «VIAM» [Quality analysis of the charge bar castings made from superalloys by FSUE «VIAM»] // Aviacionnye materialy i tehnologii. 2014. №S5. S. 23–30. DOI: 10.18577/2071-9140-2014-0-s5-23-30.
8. Litye lopatki gazoturbinnyh dvigatelej: splavy, tehnologii, pokrytiya / pod obshh. red. E.N. Kablova. 2-e izd. [The analysis of quality of cast bar (blend) preparation from hot strength alloys of production of VIAM Federal State Unitary Enterprise]. M.: Nauka, 2006. 632 s.
9. Luzgin V.P., Yavojskij V.I. Gazy v stali i kachestvo metalla [Gases in steel and quality of metal]. M.: Metallurgiya, 1983. 232 s.
10. Grigoryan V.A., Belyanchikov L.N., Stomahin A.Ya. Teoreticheskie osnovy staleplavilnyh processov [Theoretical bases of steel-smelting processes]. M.: Metallurgiya, 1987. 272 s.
11. Paderin S.N., Serov G.V., Shilnikov E.V., Alpatov A.V. Elektrohimicheskij kontrol i raschjoty staleplavilnyh processov [Electrochemical control and calculations of steel-smelting processes]. M.: Izd. Dom MISiS, 2011. 284 s.
12. Zhuhovickij A.A., Shvarcman L.A. Fizicheskaya himiya [Physical chemistry]. M.: Gos. nauch.-tehn. izd-vo lit-ry po chern. i cvetn. metallurgii, 1963. 676 s.
13. Luzgin V.P., Zinkovskij I.V., Pokidyshev V.V., Ivanov A.A. Kislorodnye zondy v staleplavilnom proizvodstve [Oxygen probes in steel-smelting production]. M.: Metallurgiya, 1989. 144 s.
14. Rigin V.E., Sidorov V.V., Burcev V.T. Issledovanie aktivnosti kisloroda v rasplavah nikelya, soderzhashhih renij, pri vakuumnoj indukcionnoj plavke [Research of activity of oxygen in melt the nickel, containing rhenium, at vacuum induction melting] // Elektrometallurgiya. 2012. №11. S. 21–26.
15. Zubarev K.A. Issledovanie processov rafinirovaniya splavov na osnove zheleza i nikelya v vakuume s celyu sovershenstvovaniya tehnologii plavki v vakuumnoj indukcionnoj pechi: dis. … kand. tehn. nauk [Research of refining processes of ferrous alloys and nickel in vacuum for the purpose of improvement of technology of melting in the vacuum induction furnace: thesis, Cand. Sci. (Tech.)]. M.: MISiS, 2016. 166 s.
In the article some peculiar structure features and properties of the amorphous tape solder on the basis of the nickel alloy (VPr51) are provided. The solder engineered for the thin-walled structural component brazing made from stainless steels and nickel-based alloys. Some data related to the solder alloy composition, its brazing conditions (i. e. temperature and delay time), technological properties (flowing and wetting), erosive activity to the stainless steels and strength characteristics of soldered joints are brought here in the article as well.
2. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
3. Stolyankov Yu.V., Lukin V.I., Rylnikov V.S. Amorfnye metallicheskie pripoi [Amorphous metal solders] // Tez. dokl. mezhotr. nauch.-praktich. konf. «Problemy sozdaniya novyh materialov dlya aviakosmicheskoj otrasli v XXI veke». M.: VIAM, 2002. S. 48–49.
4. Lukin V.I., Stolyankov Yu.V., Rylnikov V.S., Shherbakov A.I. Pajka amorfnymi pripoyami [Soldering amorphous solders] // Aviacionnye materialy i tehnologii. 2002. №4. S. 96–102.
5. Lukin V.I., Rylnikov V.S., Stolyankov Yu.V., Shherbakov A.I. Bystrozakalennye zharoprochnye pripoi na osnove titana i nikelya [The fast-tempered heat resisting solders on the basis of titanium and nickel] // Tez. dokl. Mezhdunar. nauch.-tehnich. konf. «Aktualnye voprosy aviacionnogo materialovedeniya» M.: VIAM, 2007. S. 25–26.
6. Fizikohimiya amorfnyh (stekloobraznyh) metallicheskih materialov / pod red. Yu.K. Kovneristogo [Physics chemistry amorphous (glass figurative) metal materials / ed. by Yu.K. Konevristiy]. M.: Metallurgiya, 1987. 328 s.
7. Amorfnye metallicheskie materialy [Amorphous metal materials]. M.: Nauka, 1984. 158 s.
8. Sudzuki K., Fudzimori H., Hasimoto K. Amorfnye metally [Amorphous metals]. M.: Metallurgiya, 1987. 328 s.
9. Kovneristyj Yu.K., Osipov E.K., Trofimova E.A. Fiziko-himicheskie osnovy sozdaniya amorfnyh metallicheskih splavov [Physical and chemical bases of creation of amorphous metal alloys]. M.: Nauka, 1983. 145 s.
10. Amorfnye metallicheskie splavy. Per. s angl. / pod red. F.E. Lyuborskogo [Amorphous metal alloys. Trans. for Engl. / ed. by F.E. Lyuborskiy]. M.: Metallurgiya, 1987. 584 s.
11. Polk D.E., Gissen B.K. Metallicheskie stekla. Per. s angl. [Metal glasses. Trans from Engl.]. M.: Metallurgiya, 1984. S. 12–39.
12. Stolyankov Yu.V., Aleksashin V.M., Antyufeeva N.V. K voprosu ob ocenke sklonnosti metallicheskih sistem k stekloobrazovaniyu (obzor) [On the question of glass-forming ability tendency evaluation (review)] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №7. St. 08. Available at: http://www.viam-works.ru (accessed: December 20, 2017). DOI: 10.18577/2307-6046-2015-0-7-8-8.
13. Stolyankov Yu.V., Aleksashin V.M., Antyufeeva N.V., Shheglova T.M. Ocenka stekloobrazuyushhej sposobnosti metallicheskoj sistemy na osnove nikelya tipa «metall–metalloid» [Glass-forming ability evaluation of the nickel-based «metall–metalloid» system] // Aviacionnye materialy i tehnologii. 2016. №1 (40). S. 66–71. DOI: 10.185.77/2071-9140-2016-0-1-66-71.
14. Afanasev-Hodykin A.N., Lukin V.I., Rylnikov V.S. Vysokotehnologichnye polufabrikaty zharoprochnyh pripoev (lenty i pasty na organicheskom svyazuyushhem) [High-tech semi-finished high-temperature solders (tape and paste on an organic binder] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №9. St. 02. Available at: http://www.viam-works.ru (accessed: December 20, 2017).
15. Kablov E.N., Lukin V.I., Ospennikova O.G. Svarka i pajka v aviakosmicheskoj promyshlennosti [Welding and the soldering in the aerospace industry] // Tr. Vseros. nauch.-praktich. konf. «Svarka i bezopasnost». Yakutsk: IFTPS SO RAN, 2012. S. 21–30.
16. Rylnikov V.S., Lukin V.I. Pripoi, primenyaemye dlya pajki materialov aviacionnogo naznacheniya [Solders used for soldering materials aviation applications] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №8. St. 02. Available at: http://viam-works.ru (accessed: December 20, 2017).
17. Stolyankov Yu.V., Antyufeeva N.V., Raskutin A.E., Karimova S.A. Issledovanie vozmozhnosti sozdaniya sloistyh metallopolimernyh kompozicionnyh materialov s ispolzovaniem tonkolistovyh amorfnyh splavov [Research of possibility of creation of layered metalpolymeric composite materials with usage thin sheet amorphous alloys] // Kompozity i nanostruktury. 2014. T. 6. №1. S. 25–31.
18. Stolyankov Yu.V., Gulyaev I.N., Aleksashin V.M., Antyufeeva N.V. Amorfnye metallicheskie materialy v sostave pezoelektricheskih sloistyh elementov-aktyuatorov [Amorphous metal materials in piezoelectric laminated actuators components] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №4. St. 03. Available at: http://viam-works.ru (accessed: December 20, 2017). DOI: 10.18577/2307-6046-2015-0-4-3-3.
Methods of spectral analysis are widely used on the production of aluminum alloys to determine the chemical composition of the melted material. For calibration of spectrometres are used certified reference materials (CRMs) of alloy composition. Uncertainty of certified values of CRM significantly affect on the accuracy of quantitative analysis. FSUE «VIAM» develops and produces certified reference materials. The wide use of aluminum alloys in various industries determines the demand for aluminum alloy CRM and the relevance of the work on the development and production of CRM aluminum alloys. In this work we present the results of a study of the material composition of the alloy blanks CRM D1, D16 and attestation results. The characteristic of calibration dependences obtained on spectrometers of two types is given.
2. Kablov E.N. Kontrol kachestva materialov – garantiya bezopasnosti ekspluatacii aviacionnoj tehniki [Quality control of materials – security accreditation of operation of aviation engineering] // Aviacionnye materialy i tehnologii. 2001. №1. S. 3–8.
3. Kablov E.N., Lukin V.I., Ospennikova O.G. Perspektivnye alyuminievye splavy i tehnologii ih soedineniya dlya izdelij aviakosmicheskoj tehniki [Perspective aluminum alloys and technologies of their connection for products of aerospace equipment] // Tez. dokl. 2-j Mezhdunar. konf. i vyst. «Alyuminij-21. Svarka i pajka». M., 2012. St. 8.
4. Antipov V.V. Perspektivy razvitiya alyuminievyh, magnievyh i titanovyh splavov dlya izdelij aviacionno-kosmicheskoj tehniki [Prospects for development of aluminium, magnesium and titanium alloys for aerospace engineering] // Aviacionnye materialy i tehnologii. 2017. №S. S. 186–194. DOI: 10.18577/2107-9140-2017-0-S-186-194.
5. Kablov E.N. Stanovlenie otechestvennogo kosmicheskogo materialovedeniya [Formation of domestic space materials science] // Vestnik Rossijskogo fonda fundamentalnyh issledovanij. 2017. №3 (95). S. 97–105.
6. Kolobnev N.I. Zharoprochnost alyuminievyh deformiruemyh splavov [Heat resistance of wrought aluminum alloys] // Aviacionnye materialy i tehnologii. 2016. №1 (40). S. 32–36. DOI: 10.18577/2107-9140-2016-0-1-32-36.
7. Vahromov R.O., Tkachenko E.A., Popova O.I., Milevskaya T.V. Obobshhenie opyta primeneniya i optimizaciya tehnologii izgotovleniya polufabrikatov iz vysokoprochnogo alyuminievogo splava 1933 dlya silovyh konstrukcij sovremennoj aviacionnoj tehniki [Summarizing of the experience of usage and optimization of manufacturing technology semi-fished product of high strength aluminum alloy 1933 for the primary structures of modern aircraft] // Aviacionnye materialy i tehnologii. 2014. № 2. S. 34–39. DOI: 10.18577/2107-9140-2014-0-2-34-39.
8. Kvasov F.I., Fridlyander I.N. Alyuminievye splavy tipa duralyumin [Aluminum alloys of type duralumin]. M.: Metallurgiya, 1984. 240 s.
9. Eroshkin S.G., Orlov G.V. Issledovanie odnorodnosti materiala standartnyh obrazcov deformiruemogo nikelevogo splava VZh175-ID [Research of material inhomogeneity of reference samples made of wrought Ni-based superalloy VZH175-ID] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №8. St. 11. Available at: http://viam-works.ru (accessed: January 09, 2018). DOI: 10.18577/2307-6046-2015-0-8-11-11.
10. Alyuminievye splavy [Aluminum alloys] // Aviaciya: Enciklopediya. M.: Bol'shaya rossijskaya enciklopediya, CAGI, 1994. 736 c.
11. Erhardt H. Rentgenofluorescentnyj analiz. Primenenie v zavodskih laboratoriyah [X-ray fluorescent analysis. Application in factory laboratories]. M.: Metallurgiya, 1985. 256 s.
12. Yuing G.V. Instrumentalnye metody himicheskogo analiza [Tool methods of chemical analysis]. M.: Mir, 1989. 608 s.
13. Oreshnikova E.G. Spektralnyj analiz [Spectrum analysis]. M.: Vysshaya shkola, 1982. 375 s.
14. Otto M. Sovremennye metody analiticheskoj himii. 3-e izd. [Modern methods of analytical chemistry. 3rd prod.]. M.: Tehnosfera, 2008. 543 s.
15. Eroshkin S.G., Dynin N.V., Orlov G.V., Petrov P.S. Opyt razrabotki i proizvodstva standartnyh obrazcov sostava alyuminievogo splava D16 [Experience in the development and production of reference materials of composition of aluminum alloy D16] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2017. №5 (53). St. 06. Available at: http://viam-works.ru (accessed: January 09, 2018). DOI: 10.18577/2307-6046-2017-0-5-6-6.
16. Kablov E.N., Morozov G.A., Krutikov V.N., Muravskaya N.P. Attestaciya standartnyh obrazcov sostava slozhnolegirovannyh splavov s primeneniem etalona [Certification of standard samples of structure of complex-alloyed alloys using standard] // Aviacionnye materialy i tehnologii. 2012. №2. S. 9–11.
17. Letov A.F., Karachevtsev F.N., Gundobin N.V., Titov V.I. Razrabotka standartnyh obrazcov sostava splavov aviacionnogo naznacheniya [Development of standard samples of structure of alloys of aviation assignment] // Aviacionnye materialy i tehnologii. 2012. №S. S. 393–398.
18. Kablov E.N., Grushko O.E., Grinevich A.V. «Letayushhij metall» v avtomobilestroenii [«Flying metal» in automotive industry] // Gruzovik. 2005. №10. S. 16–24.
The results of orthorhombic alloy VTI-4 research are given. To clarify the alloy position on the Ti–Al–Nb state diagram, it is suggested to perform a calculation of the β-stabilizing elements contribution relative to the niobium. The microstructure change was studied as a function of quenching temperatures corresponding to different phase regions. The dependence of the material hardness on the structure-phase state was studied. It was found that a decrease in the quenching temperature leads to an increase in the hardness values, which is due to the release of the ordered O-phase and a decrease in the volume fraction of the plastic β-phase.
2. Titanium and Titanium Alloys: Fundamental Applications / ed. by С. Leyens, M. Peters. Wiley-VCH Verlag GmbH&Co. KGaA, Weinheim, 2003. 513 p.
3. Development of Ti2AlNb Alloys: Opportunities and Challenges // Advanced Materials and Processes. 2014. P. 23–27.
4. Antipov V.V. Perspektivy razvitiya alyuminievyh, magnievyh i titanovyh splavov dlya izdelij aviacionno-kosmicheskoj tehniki [Prospects for development of aluminium, magnesium and titanium alloys for aerospace engineering] // Aviacionnye materialy i tehnologii. 2017. №S. S. 186–194. DOI: 10.18577/2107-9140-2017-0-S-186-194.
5. Splav na osnove titana i izdelie, vypolnennoe iz nego: pat. 2210612 Ros. Federaciya. №2001125968/02 [Titanium-based alloy and the product which has been executed of it: pat. 2210612 Rus. Federation. No. 2001125968/02]; zayavl. 24.09.01; opubl. 20.08.03.
6. Intermetallidnyj splav na osnove titana: pat. 2405849 Ros. Federaciya. №2009139791/02 [Intermetallidny titanium-based alloy: pat. 2405849 Rus. Federation. No. 2009139791/02]; zayavl. 28.10.09; opubl. 10.12.10.
7. Rodin E.V., Bykov Yu.G., Kyaramyan K.A. Primenenie novyh materialov v konstrukcii KVD perspektivnogo dvigatelya [Application of new materials in design of high-pressure compressor of the perspective engine] // Perspektivnye napravleniya razvitiya aviadvigatelestroeniya: sb. dokl. nauch.-tehnich. konf. «Klimovskie chteniya–2016». SPb.: Skifiya-print, 2016. S. 301–308.
8. Unikalnye materialy i tehnologii dlya novoj tehniki [Unique materials and technologies for new equipment] // Vertikal. 2017. №2. S. 18–23.
9. «Salyut» prodolzhaet raboty po vnedreniyu v proizvodstvo novejshih intermetallidnyh splavov // Vertikal. 2017. №5. S. 10–11.
10. Nochovnaya N.A., Ivanov V.I., Alekseev E.B., Kochetkov A.S. Puti optimizacii ekspluatacionnyh svojstv splavov na osnove intermetallidov titana [Ways of optimization of operational properties of alloys on the basis of titanium intermetallic compound] // Aviacionnye materialy i tehnologii. 2012. №S. S. 196–206.
11. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
12. Antipov V.V. Strategiya razvitiya titanovyh, magnievyh, berillievyh i alyuminievyh splavov [Strategy of development of titanium, magnesium, beryllium and aluminum alloys] // Aviacionnye materialy i tehnologii. 2012. №S. S. 157–167.
13. Kablov E.N. Bez novyh materialov – net budushhego [Without new materials – there is no future] // Metallurg. 2013. №12. S. 4–8.
14. Sposob izgotovleniya pokovok: a. s. 1499801 SSSR, №4071937/27 [Way of manufacturing of forgings: copyright certificate 1499801 USSR, No. 4071937/27]; zayavl. 25.05.86; opubl. 10.06.99.
15. Sposob izgotovleniya pokovok iz titanovyh splavov: a. s. 1476715 SSSR. №4279766/27 [Way of manufacturing of forgings from titanium alloys: copyright certificate 1476715 USSR. No. 4279766/27]; zayavl. 07.07.87; opubl. 10.06.99.
16. Germann L., Banerjee D., Guedou J.Y., Strudel J.-L. Microstructure – Property Relationships in Newly Developed Multiphase Ti2AlNb-Based Titanium Aluminides // Titanium’2003: Science and Technology: Proc.10th World Conf. on Titanium. Hamburg, 2003. P. 2137–2144.
17. Boehlert C.J., Majumdar B.S., Seetharaman V., Miracle D.B. Part I. The microstructural evolution in Ti-Al-Nb O + Bcc orthorhombic alloys // Metallurgical and Materials Transactions A: Physical Metallurgy and Material Science. 1999. Vol. 30 (9). P. 2305–2323.
18. Rosenberg H.W. Titanium Alloying in Theory and Practice // The Science, Technology and Application of Titanium: Proceedings of an International Conference. Pergamon Press, Oxford, 1970. P. 851–860.
19. Kolachev B.A., Elagin V.I., Livanov V.A. Metallovedenie i termicheskaya obrabotka cvetnyh metallov i splavov. 4-e izd. [Metallurgical science and thermal processing of non-ferrous metals and alloys. 4th ed.]. M.: MISiS, 2005. 432 s.
20. Kolachev B.A., Polkin I.S., Talalaev V.D. Titanovye splavy raznyh stran [Titanium alloys of the different countries]. M.: VILS, 2000. 316 s.
In this article questions of noise abatement of civil air vehicles, being actual in the light of toughening of requirements for environmental noise, are considered. The way of improvement of mass and acoustic characteristics of NDC through application of sound-absorbing material design (instead of glass-fiber-reinforced honeycomb) with a porous insert characterized by the preset thickness and located at a certain height is offered. The manufacturing technology of similar materials as well as characteristics of the produced material are shortly described.
2. Kablov E.N. Iz chego sdelat budushhee? Materialy novogo pokoleniya, tehnologii ih sozdaniya i pererabotki – osnova innovacij [Of what to make the future? Materials of new generation, technology of their creation and processing – basis of innovations] // Krylya Rodiny. 2016. №5. S. 8–18.
3. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
4. Kablov E.N. Materialy novogo pokoleniya [Materials of new generation] // Zashhita i bezopasnost. 2014. №4. S. 28–29.
5. Petrovа A.P., Dementyevа L.A., Lukina N.F., Chursova L.V. [Adhesive binders for polymer composite materials based on carbon- and glass fillers] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №9. St. 11. Available at: http://www.viam-works.ru (accessed: December 11, 2017). DOI: 10.18577/2307-6046-2015-0-9-11-11
6. Lukina N.F., Petrova A.P., Muhametov R.R., Kogtjonkov A.S. Novye razrabotki v oblasti kleyashhih materialov aviacionnogo naznacheniya [New developments in the field of adhesive aviation materials] // Aviacionnye materialy i tehnologii. 2017. №S. S. 452–459. DOI: 10.18577/2071-9140-2017-0-S-452-459.
7. Zhelezina G.F., Shuldeshova P.M. Konstrukcionnye organoplastiki na osnove plenochnyh kleev [Influence of range of high-intensity source of sound on sound-proof properties of facings of resonance type] // Klei. Germetiki. Tehnologii. 2014. №2. S. 9–14.
8. Nefedov N.I., Haskov M.A., Petrova A.P., Buznik V.M. Issledovanie termicheskih svojstv ftorparafinov i gidrofobnyh pokrytij na ih osnove [Study of the thermal properties of fluorinated paraffins and hydrophobic coatings on their base] // Trudy VIAM: elektron. nauch.-tehnich. zhurnal. 2017. №2. St. 11. Available at: http://www.viam-works.ru (accessed: December 11, 2017). DOI: 10.18577/2307-6046-2017-0-2-11-11.
9. Kucherovskij A.I., Shul'deshova P.M., Zhelezina G.F., Gulyaev I.N. Razrabotka sistemy zashhity setchatoj konstrukcii fyuzelyazha ot negativnyh vozdejstvij vneshnih faktorov [Constructional organoplasty on the basis of film glues] // Vse materialy. Enciklopedicheskij spravochnik. 2016. №9. S. 29–35.
10. Shuldeshova P.M., Zhelezina G.F. Vliyanie atmosfernyh uslovij i zapylennosti sredy na svojstva konstrukcionnyh organoplastikov [An influence of atmospheric condition and dust loading on properties of structural organic plastics] // Aviacionnye materialy i tehnologii. 2014. №1. S. 64–68. DOI: 10.18577/2071-9140-2014-0-1-64-68.
11. Sobolev A.F., Ushakov V.G., Filippova R.D. Zvukopogloshhayushhie konstrukcii gomogennogo tipa dlya kanalov aviacionnyh dvigatelej [Sound-proof designs of homogeneous type for channels of aircraft engines] // Akusticheskij zhurnal. 2009. T. 55. №6. S. 749–759.
12. Platonov M.M., Zhelezina G.F., Nesterova T.A. Poristovoloknistye polimernye materialy dlya izgotovleniya shirokodiapazonnyh ZPK i issledovanie ih akusticheskih svojstv [Porous fibrous polymer materials for wide range sound absorbing structures and investigation of their acoustical properties] // Trudy VIAM: elektron. nauch-tehnih. zhurn. 2014. №6. St. 09. Available at: http://viam-works.ru (accessed: December 11, 2017). DOI: 10.18577/2307-6046-2014-0-6-9-9.
13. Shuldeshova P.M., Zhelezina G.F., Soloveva N.A., Shuldeshov E.M. Aramidnye organoplastiki dlya zvukopogloshhayushhih konstrukcij [Aramide organoplasty for sound-proof designs] // Voprosy materialovedeniya. 2016. №4. S. 42–49.
14. Shashkeev K.A., Shuldeshov E.M., Popkov O.V., Kraev I.D., Yurkov G.Yu. Poristye zvukopogloshhayushhie materialy (obzor) [Porous sound-absorbing materials (review)] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №6. St. 06. Available at: http://www.viam-works.ru (accessed: December 11, 2017). DOI: 10.18577/2307-6046-2016-0-6-6-6.
15. Polimernyj zvukopogloshhayushhij material i sposob izgotovleniya: pat. 2612674 Ros. Federaciya [Polymeric sound-proof material and way of manufacturing: pat. 2612674 Rus. Federation]; opubl. 13.03.17.
16. Obrazcova E.P., Kraev I.D., Shuldeshov E.M., Yurkov G.Yu. Gibridnye funkcionalnye materialy, sochetayushhie v sebe zvukopogloshhayushhie i radiopogloshhayushhie svojstva [The hybrid functional materials combining sound-proof and radio absorbing properties] // Materialovedenie. 2016. №12. S. 19–24.
17. Ipatov M.S., Ostroumov M.N., Sobolev A.F. Vliyanie spektra vysokointensivnogo istochnika zvuka na zvukopogloshhayushhie svojstva oblicovok rezonansnogo tipa [Influence of range of high-intensity source of sound on sound-proof properties of facings of resonance type] // Akusticheskij zhurnal. 2012. T. 58. №4. S. 465–472.
This article discusses the interaction of the model composition and plastic equipment. An experiment was conducted with the participation of three model compositions, different in composition and properties, using the example of a thin-walled shaped casting of «Kronstejn» component, manufactured by investment casting. Differences in the tendency of model compositions to form shrinkage shells were revealed. A comparative analysis of the experimental results was carried out. Based on the results of the experiment, the optimal model composition for the production of «Kronstein» casting model was selected.
2. Truhov A.P., Sorokin A.Yu., Ershov M.Yu. i dr. Tehnologiya litejnogo proizvodstva: Lite v peschanye formy: ucheb. [Technology of foundry production: Sand casting: textbook]. M.: Akademiya, 2005. 528 s.
3. Ivanov V.N. Slovar-spravochnik po litejnomu proizvodstvu [The dictionary reference on foundry production]. M.: Mashinostroenie, 1990. 384 s.
4. Metally i splavy: spravochnik / pod red. Yu.P. Solnceva [Metals and alloys: directory / ed. by Yu.P. Solncev]. SPb.: Professional, Mir i semya, 2003. 1066 s.
5. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
6. Duyunova V.A., Volkova E.F., Uridiya Z.P., Trapeznikov A.V. Dinamika razvitiya magnievyh i litejnyh alyuminievyh splavov [Dynamics of the development of magnesium and cast aluminum alloys] // Aviacionnye materialy i tehnologii. 2017. №S. S. 225–241. DOI: 10.18577/2071-9140-2017-0-S-225-241.
7. Kablov E.N. Aviakosmicheskoe materialovedenie [Aerospace materials science] // Vse materialy. Enciklopedicheskij spravochnik. 2008. №3. S. 2–14.
8. Kablov E.N. Additivnye tehnologii – dominanta nacionalnoj tehnologicheskoj iniciativy [The additive technologies – dominant of national technological initiative] // Intellekt i tehnologii. 2015. №2 (11). S. 52–55.
9. Petrova G.N., Sapego Yu.A., Larionov S.A., Platonov M.M., Laptev A.B. Pozharobezopasnye termoplastichnye materialy dlya 3D-tehnologii [Fireproof thermoplastic materials for 3D-technologies] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2017. №9 (57). St. 07. Available at: http://www.viam-works.ru (accessed: January 29, 2018). DOI: 10.18577/2307-6046-2017-0-9-7-7.
10. Petrova G.N., Larionov S.A., Sapego Yu.A., Platonov M.M. Reologicheskie svojstva termoplastichnoj kompozicii na osnove polikarbonata: zavisimost ot temperatury pererabotki; vliyanie na mehanicheskie harakteristiki i razmernuyu stabilnost obektov, sozdannyh po FDM-tehnologii [Rheological properties of the thermoplastic composition with a reduced fire hazard polycarbonate-based: depending on the temperature processing; effect on mechanical properties and stability dimension objects created software FDM-technology] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2017. №4. St. 09. Available at: http://viam-works.ru (accessed: January 29, 2018). DOI: 10.18577/2307-6046-2017-0-4-9-9.
11. Lakedemonskij A.V., Kvasha F.S., Mendeleev Ya.I. i dr. Litejnye defekty i sposoby ih ustraneniya [Foundry defects and ways of their elimination]. M.: Mashinostroenie, 1972. 152 s.
12. Ozerov V.A., Garanin V.F. Lite povyshennoj tochnosti po razovym modelyam: ucheb. posobie [Enhanced accuracy molding on one-time models: manual]. M.: Vysshaya shkola, 1988. 87 s.
13. Petrova G.N., Larionov S.A., Platonov M.M., Perfilova D.N. Termoplastichnye materialy novogo pokoleniya dlya aviacii [Thermoplastic materials of new generation for aviation] // Aviacionnye materialy i tehnologii 2017. №S. S. 420–436. DOI: 10.18577/2071-9140-2017-0-S-420-436.
14. Kablov E.N. Sovremennye materialy – osnova innovacionnoj modernizacii Rossii [Modern materials – basis of innovative modernization of Russia] // Metally Evrazii. 2012. №3. S. 10–15.
15. Ospennikova O.G. Issledovanie vliyaniya napolnitelej na svojstva i stabilnost modelnyh kompozicij, vybor optimalnyh sostavov [Influence research of fillers on properties and stability of modelling compositions, a choice of optimum structures] // Aviacionnye materialy i tehnologii. 2014. №3. S. 14–17. DOI: 10.18577/2071-9140-2014-0-3-14-17.
16. Ospennikova O.G. Issledovanie i razrabotka parametrov tehnologicheskogo processa izgotovleniya modelej iz modelnyh kompozicij na osnove sinteticheskih voskov [Research and working out of parametres of technological process of manufacturing of models from modelling compositions on the basis of synthetic waxes] // Aviacionnye materialy i tehnologii. 2014. №3. S. 18–21. DOI: 10.18577/2071-9140-2014-0-3-18-21.
The paper reviews the mechanical properties of existing low-filled alumo-matrix composite materials with matrices of aluminum alloys 6XXX (6061, 6063, 6092), 2XXX (2024, 2009), 7XXX (7075, 7050) series and different percentages of silicon carbide hardening particles. The dependence of the change in properties is shown with a change in the percentage content of hardening particles in aluminum-matrix composite materials with different matrix alloys. It is shown that aluminum composites with matrix aluminum alloys 7XXX series have maximal mechanical characteristics. The chemical and phase compositions of matrix alloys are considered. Also, details and constructions, which are made of alumo-matrix composite materials, are considered.
2. Kablov E.N. Osnovnye itogi i napravleniya razvitiya materialov dlya perspektivnoj aviacionnoj tehniki [The main results and the directions of development of materials for perspective aviation engineering] // 75 let. Aviacionnye materialy. Izbrannye trudy «VIAM» 1932–2007. M.: VIAM, 2007. S. 20–26.
3. Alyuminievye splavy v aviakosmicheskoj tehnike / pod obshh. red. E.N. Kablova [Aluminum alloys in aerospace equipment / gen. ed. by E.N. Kablov]. M.: Nauka, 2001. 192 s.
4. Kablov E.N. Materialy novogo pokoleniya [Materials of new generation] // Zashhita i bezopasnost. 2014. №4. S. 28–29.
5. Duyunova V.A., Volkova E.F., Uridiya Z.P., Trapeznikov A.V. Dinamika razvitiya magnievyh i litejnyh alyuminievyh splavov [Dynamics of the development of magnesium and cast aluminum alloys] // Aviacionnye materialy i tehnologii. 2017. №S. S. 225–241. DOI: 10.18577/2071-9140-2017-0-S-225-241.
6. Prusov E.S., Panfilov A.A., Kechin V.A. Perspektivy primeneniya alyumomatrichnyh kompozicionnyh splavov v mashinostroenii [Perspectives of application of alyumomatrichny composition alloys in mechanical engineering] // Litejshhik Rossii. 2012. №9. S. 16–19.
7. Berezovskij V.V., Shavnev A.A., Lomov S.B., Kurganova Yu.A. Poluchenie i analiz struktury dispersno-uprochnennyh kompozicionnyh materialov sistemy Al–SiC s razlichnym soderzhaniem armiruyushhej fazy [Receiving and the analysis of structure of the disperse strengthened composite materials of Al–SiC system with the different maintenance of the reinforcing phase] // Aviacionnye materialy i tehnologii. 2014. №S6. S. 17–23. DOI: 10.185577/2071-9140-2014-0-S6-17-23.
8. Grashhenkov D.V. Strategiya razvitiya nemetallicheskih materialov, metallicheskih kompozicionnyh materialov i teplozashhity [Strategy of development of non-metallic materials, metal composite materials and heat-shielding] // Aviacionnye materialy i tehnologii. 2017. №S. S. 264–271. DOI: 10.18577/2071-9140-2017-0-S-264-271.
9. Kablov E.N., Shchetanov B.V., Grashhenkov D.V., Shavnev A.A., Nyafkin A.N. Metallomatrichnye kompozicionnye materialy na osnove Al–SiC [Metalmatrix composite materials on the basis of Al–SiC] // Aviacionnye materialy i tehnologii. 2012. №S. S. 373–380.
10. Polmear I.J. Light Alloys: Metallurgy of the Light Metals. John Wiley & Sons, Australia, 1995. 235 p.
11. Cottu J.-P., Couderc J.-J., Viguier B., Bernard L. Influence of SiC reinforcement on precipitation and hardening of a metal matrix composite // Journal of Materials Science. 1992. Vol. 27. No. 11. P. 3068–3074.
12. Sidorov D.V., Shherbakova G.I. Vysokotehnologichnye komponenty kompozicionnyh materialov i specialnye volokna dlya shirokogo spektra primeneniya [Hi-tech components of composite materials and special fibers for application broad spectrum] // Himicheskaya tehnologiya. 2016. T. 17. №4. S. 183–192.
13. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
14. Knowles A.J., Jiang X., Galano M., Audebert F. Microstructure and mechanical properties of 6061 Al alloy based composites with SiC nanoparticles // Journal of Alloys and Compounds. 2014. Vol. 615. P. S401–S405.
15. Yao X., Zheng Y.F., Liang J.M. Microstructures and tensile mechanical properties of an ultrafine grained AA6063–5vol% SiC metal matrix nanocomposite synthesized by powder metallurgy // Materials Science and Engineering: A. 2015. Vol. 648. Р. 225–234.
16. Alyuminievye kompozicionnye materialy [Aluminum composite materials]. Available at: http:www.dwa-usa.com (accessed: January 18, 2018).
17. Li P.B., Chen T.J., Qin H. Effects of mold temperature on the microstructure and tensile properties of SiC p/2024 Al-based composites fabricated via powder thixoforming // Materials & Design. 2016. Vol. 112. P. 34–45.
18. Erdemir F., Canakci A., Varol T. Microstructural characterization and mechanical properties of functionally graded Al2024/SiC composites prepared by powder metallurgy techniques // Transactions of Nonferrous Metals Society of China. 2015. Vol. 25. P. 3569–3577.
19. Liu P., Wang A., Xie J., Hao S. Characterization and evaluation of interface in SiCp/2024 Al composite // Transactions of Nonferrous Metals Society of China. 2015. Vol. 25. P. 1410−1418.
20. Majzoobi G.H., Atrian A., Bakhtiari H. Evaluation of mechanical properties of Al7075/SiC Nanocomposite Fabricated by Hot Uniaxial Pressing // Proceeding of the 5th International Conference on Nanostructures (ICNS5). March 2014. Available at: http://www.academia.edu/27325070/Evaluation_of_Mechanical_Properties_of_Al7075_SiC_Nanocomposite_Fabricated_by_Hot_Uniaxial_Pressing (January 23, 2018).
The main approaches and methods for determining the optimal temperature-time regimes for pressing laminated PCM based on prepregs are presented. The main stages of pressing regimes of layered PCM based on prepregs are considered from the point of view of the three main technological parameters of pressing (temperature, pressure, time). The pressing regimes for fiberglass PCM based on a melt epoxy binder fiberglass prepreg has been selected. It was shown that correction of pressing regimes depends on thickness of the molded workpiece. Investigations of the process of curing the prepreg at different heating rates on DSC have been carried out and the kinetic parameters of the binder curing reaction have been calculated. The simultaneous solutions of heattrausfer and chemical problems are carried out to take into account the thickness of the composite.
2. Kablov E.N. Aviacionnoe materialovedenie v XXI veke. Perspektivy i zadachi [Aviation materials science in the XXI century. Perspectives and tasks] // Aviacionnye materialy. Izbrannye trudy VIAM 1932–2002. M.: MISIS–VIAM. 2002. S. 23–47.
3. Kablov E.N. Materialy dlya aviakosmicheskoj tehniki [Materials for aerospace equipment] // Vse materialy. Enciklopedicheskij spravochnik. 2007. №5. S. 7–27.
4. Kurnosov A.O., Vavilova M.I., Melnikov D.A. Tehnologii proizvodstva steklyannyh napolnitelej i issledovanie vliyaniya appretiruyushhego veshhestva na fiziko-mehanicheskie harakteristiki stekloplastikov [Manufacturing technologies of glass fillers and study of effects of finishing material on physical and mechanical properties of fiberglass plastics] // Aviacionnye materialy i tehnologii. 2018. №1. S. 64–70. DOI: 10.18577/2071-9140-2018-0-1-64-70.
5. Kablov E.N. Rol himii v sozdanii materialov novogo pokoleniya dlya slozhnyh tehnicheskih sistem [Chemistry role in creation of materials of new generation for complex technical systems] // Tez. dokl. XX Mendeleevskogo sezda po obshhej i prikladnoj himii v 5 t. Ekaterinburg: UrO RAN, 2016. T. 4. S. 25–26.
6. Dedyuhin V.G., Stavrov V.P. Pressovannye stekloplastiki [The pressed fibreglasses]. M.: Himiya, 1976. 172 s.
7. Shalun G.B., Surzhenko E.M. Sloistye plastiki [Layered plastics]. L.: Himiya, 1978. 232 s.
8. Dmitriev O.S., Mishhenko S.V., Dmitriev A.O. Metod issledovaniya parametrov techeniya svyazuyushhego pri otverzhdenii kompozitov [Method of research of parameters of current binding when curing composites] // Vestnik TGTU. 2005. T. 11. №1A. S. 53–61.
9. Haskov M.A., Melnikov D.A., Kotova E.V. Podbor temperaturno-vremennyh rezhimov otverzhdeniya epoksidnyh svyazuyushhih s uchetom masshtabnogo faktora [Selection of temperature and time modes of curing epoxy binding taking into account large-scale factor] // Klei. Germetiki. Tehnologii. 2017. №10. S. 24–32.
10. Kasatonov I.S. Metod i avtomatizirovannaya sistema kontrolya processa otverzhdeniya polimernyh kompozitov po dielektricheskim harakteristikam: avtoref. dis. … kand. tehn. nauk [Method and the automated monitoring system of process of curing of polymeric composites according to dielectric characteristics: thesis author's abstract, Cand. Sc. (Tech.)]. Tambov: Tambovskij GTU, 2012. S. 16.
11. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
12. Epoksidnoe svyazuyushhee dlya proizvodstva samozatuhayushhih stekloplastikov metodom pultruzii: pat. 2614701 Ros. Federaciya [Epoxy binding for production of self-fading fibreglasses by pultrusion method: pat. 2614701 Rus. Federation]; zayavl. 13.04.16; opubl. 28.03.17, Byul. №10.
13. Mihajlin Yu.A. Voloknistye polimernye kompozicionnye materialy v tehnike [Fibrous polymeric composite materials in equipment]. SPb.: NOT, 2010. 720 s.
14. Dmitriev O.S., Kirillov V.N., Zuev A.V., Cherepahina A.A. Vliyanie tipa napolnitelya na optimalnye rezhimy otverzhdeniya tolstostennyh PKM [Influence of type of filler on optimum modes of curing of thick-walled PKM] // Klei. Germetiki. Tehnologii. 2011. №11. S. 27–36.
15. Kollinz R. Techeniya zhidkostej cherez poristye materialy [Currents of liquids through porous materials]. M.: Mir, 1964. 343 s.
16. Dushin M.I., Hrulkov A.V., Raskutin A.E. K voprosu udaleniya izlishkov svyazuyushchego pri avtpklavnim formovanii izdeliy iz polimernyh kompozitsionnyh materialov [To question of removal of excesses binding at avtoklavny formation of products from polymeric composite materials]// Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №1. St. 03. Available at: http://viam-works.ru (accessed: November 15, 2017).
17. Melnikov D.A., Gromova A.A., Raskutin A.E., Kurnosov A.O. Teoreticheskij raschet i eksperimentalnoe opredelenie modulya uprugosti i prochnosti stekloplastika VPS-53/120 [Theoretical calculation and experimental determination of modulus of elasticity and strength of GRP VPS-53/120] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2017. №1 (49). St. 08. Available at: http://www.viam-works.ru (accessed: November 15, 2017). DOI: 10.18577/2307-6046-2017-0-1-8-8.
18. Haskov M.A. Rasshirenie diagrammy «temperatura–vremya–prevrashhenie» s uchetom teplofizicheskih svojstv komponentov dlya optimizacii rezhimov otverzhdeniya polimernyh kompozicionnyh materialov [Extension of the chart «temperature-time-transformation» taking into account heatphysical properties of components for optimization of modes of curing of polymeric composite materials] // Zhurnal prikladnoj himii. 2016. №4. S. 510–518.
Different compositions and technologies for obtaining heat-shielding coatings for gas turbine engine parts (GTE) are considered in the article. The analysis showed that in order to increase the working temperature of the ceramic layer of heat-shielding coating, the best method is to change the chemical composition of the ceramic by introducing an additional amount of rare-earth alloying elements. This provides the possibility of obtaining a certain level of the thermal coefficient of linear expansion, which leads to an increase in the operating time of the cooled GTE part before the destruction of the ceramic layer of the TBC.
2. Kablov E.N., Petrushin N.V., Svetlov I.L., Demonis I.M. Nikelevye litejnye zharoprochnye splavy novogo pokoleniya [Nickel foundry heat resisting alloys of new generation] // Aviacionnye materialy i tehnologii. 2012. №S. C. 36–52.
3. Chubarov D.A., Matveev P.V. Novye keramicheskie materialy dlya teplozashhitnyh pokrytij rabochih lopatok GTD [New ceramic materials for thermal barrier coating using in GTE turbine blades] // Aviacionnye materialy i tehnologii. 2013. №4. S. 43–46.
4. Muboyadzhyan S.A., Budinovskij S.A., Gayamov A.M., Matveev P.V. Vysokotemperaturnye zharostojkie pokrytiya i zharostojkie sloi dlya teplozashhitnyh pokrytij [High-temperature heat resisting coverings and heat resisting layers for heat-protective coverings] // Aviacionnye materialy i tehnologii. 2013. №1. S. 17–20.
5. Kablov E.N., Muboyadzhyan S.A. Zharostojkie i teplozashhitnye pokrytiya dlya lopatok turbiny vysokogo davleniya perspektivnyh GTD [Heat resisting and heat-protective coverings for turbine blades of high pressure of perspective GTE] // Aviacionnye materialy i tehnologii. 2012. №S. S. 60–70.
6. Chubarov D.A., Budinovskij S.A., Smirnov A.A. Magnetronnyj sposob naneseniya keramicheskih sloev teplozashhitnyh pokrytij [Magnetron sputtering method for applying ceramic layers for thermal barrier coatings] // Aviacionnye materialy i tehnologii. 2016. №4. S. 23–30. DOI: 10.18577/2107-9140-2016-0-4-23-30.
7. Terry S.G., Litty J.R., Levi C.G. Evolution of porosity and texture in thermal barrier coatings grown by EB-PVD /Elevated Temperature Coatings: Science and Technology III edited by J.M. Hampikian and N.B. Dahotre // The Minerals, Metals and Materials Society. 1999. P. 13–26.
8. Kablov E.N. Materialy novogo pokoleniya [Materials of new generation] // Zashhita i bezopasnost. 2014. №4. S. 28–29.
9. Tamarin Yu.A., Kachanov E.B. Elektronno-luchevaya tehnologiya naneseniya teplozashhitnyh pokrytij [Electron beam technology of drawing heat-protective coverings] // Novye tehnologicheskie processy i nadezhnost GTD / CIAM. 2008. №7. C. 144–158.
10. Baranov D.A., Drevnyak V.O., Pashhenko G.T. Osobennosti tehnologii remonta teplozashhitnyh pokrytij [Features of technology of repair of heat-protective coverings] // Nauchnyj vestnik MGTU GA. 2012. №183. C. 59–62.
11. Bychkov N.G., Hamidullin A.Sh., Pershin A.V. Ocenka napryazhennogo sostoyaniya teplozashhitnogo pokrytiya stolbchatoj struktury na soplovyh lopatkah turbin i segmentah zharovyh trub kamer sgoraniya s uchetom sil treniya mezhdu keramicheskim sloem i gazodinamicheskim potokom [Assessment of tension of heat-protective covering of stolbchaty structure on nozzle blades of turbines and segments of spherical pipes of combustion tubes taking into account friction forces between ceramic layer and gas dynamic flow] // Vestnik Samarskogo gosudarstvennogo aerokosmicheskogo universiteta. 2011. №3 (27). C. 253–257.
12. Grechanyuk N.I., Kucherenko P.P., Grechanyuk I.N. i dr. Sovremennye teplozashhitnye pokrytiya dlya lopatok gazoturbinnyh dvigatelej i oborudovanie dlya ih polucheniya [Modern heat-protective coverings for blades of gas turbine engines and the equipment for their receiving] // Naukovі notatki. 2011. №31. S. 92–99.
13. Electron beam vapor deposition apparatus and method of coating: pat. 8419857 US; publ. 16.04.13.
14. Gurrappa I., Sambasiva Rao A. Thermal barrier coatings for enhanced efficiency of gas turbine engines // Surface & Coatings Technology. 2006. №201. P. 3016–3029.
15. Spallation-resistant thermal barrier coating: pat. 9506140 US; publ. 29.11.16.
16. Ceramic thermal barrier coating system with two ceramic layers: pat. 2385155 EP; publ. 24.06.15.
17. Thermal barrier coatings with low thermal conductivity: pat. 6730422 US; publ. 04.05.04.
18. Thermal barrier coating having low thermal conductivity: pat. 6764779 US; publ. 20.07.04.
19. Article métallique ayant une couche formant barriére thermique et procédé pour sa fabrication: pat. 0902104 EP; publ. 27.12.00.
20. High temperature insulative coating (XTR): pat. 2007087210 US; publ. 19.04.07.
21. Thermal barrier coating material, thermal barrier member, and member coated with thermal barrier and method for manufacturing the same: pat. 7859100 US; publ. 28.12.10.
22. Thermal barrier coating system and method of manufacturing the same: pat. 7785671 US; publ. 31.08.10.
23. Method of applying a thermal barrier coating: pat. 8986792 US; publ. 24.03.15.
24. Chubarov D.A., Budinovskij S.A. Vybor keramicheskogo materiala dlya teplozashhitnyh pokrytij lopatok aviacionnyh turbin na rabochie temperatury do 1400°C [Choosing ceramic materials for thermal barrier coating of GTE turbine blades on working temperatures up to 1400°С] // Trudy VIAM : elektron. nauch.-tehnich. zhurn. 2015. №4. St. 07. Available at: http://viam-works.ru (accessed: January 09, 2018). DOI: 10.18577/2307-6046-2015-0-4-7-7.
The process of surface modification in the ion-plasma installation MAP-3 is considered. It is shown that with the chosen parameters of the modification process, the temperature of the samples does not exceed the tempering temperature of the compressor steels EP866 and EI961. Metallographic and microspectral studies of the surface layer of the samples after modification have been carried out. Modified samples were tested for resistance to salt corrosion by the VIAM method at a temperature of 600°C.
2. Kablov E.N. Sovremennye materialy – osnova innovacionnoj modernizacii Rossii [Modern materials – basis of innovative modernization of Russia] // Metally Evrazii. 2012. №3. S. 10–15.
3. Kablov E.N., Petrushin N.V., Svetlov I.L., Demonis I.M. Nikelevye litejnye zharoprochnye splavy novogo pokoleniya [Nickel foundry heat resisting alloys of new generation] // Aviacionnye materialy i tehnologii. 2012. №S. C. 36–52.
4. Salahova R.K. Korrozionnaja stojkost stali 30HGSA s «trehvalentnym» hromovym pokrytiem v estestvennyh i iskusstvennyh sredah [Corrosion resistance of steel 30ХГСА with «trivalent» chrome plating in natural and artificial environments] //Aviacionnye materialy i tehnologii. 2012. №2. S. 59–66.
5. Anfinogenov A.I. Analiz razvitiya himiko-termicheskoj obrabotki metallov i splavov [Analysis of development of chemical and thermal processing of metals and alloys] // Rasplavy. 2005. №3. S. 40–52.
6. Kashin D.S., Stehov P.A. Razrabotka kompleksnyh zharostojkih pokrytij dlya detalej iz estestvenno-kompozicionnogo materiala na osnove niobiya [Development of combined heat-resistant coatings for parts made of natural-composite material based on niobium] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2017. №6 (54). St. 4. Available at: http://www.viam-works.ru (accessed: December 11, 2017). DOI: 10.18577/2307-6046-2017-0-6-4-4.
7. Kablov E.N., Muboyadzhyan S.A. Heat-resistant coatings for the high-pressure turbine blades of promising GTES // Russian metallurgy (Metally). 2012. No. 1. P. 1–7.
8. Sposob obrabotki poverhnosti metallicheskogo izdeliya: pat. 2368701 Ros. Federaciya [Way of surface treatment of metal product: pat. 2368701 Rus. Federation]; opubl. 27.09.2009.
9. Sposob naneseniya kombinirovannogo zharostojkogo pokrytiya: pat. 2402633 Ros. Federaciya [Way of drawing the combined heat resisting covering: pat. 2402633 Rus. Federation]; opubl. 27.10.2010.
10. Aleksandrov D.A., Artemenko N.I. Iznosostojkie pokrytiya dlya zashhity detalej treniya sovremennyh GTD [Wear-resistant coatings to protect friction parts of modern gas turbine engines] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №10. St. 06. Available at: http://www.viam-works.ru (accessed: November 02, 2017). DOI: 10.18577/2307-6046-2016-0-10-6-6.
11. Artemenko N.I., Simonov V.N. Matematicheskoe modelirovanie processa osazhdeniya titana na ustanovke ionno-plazmennogo napyleniya MAP-3 [Mathematical modeling of the titanium deposition process at the MAP-3 ion-plasma deposition unit] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2017. №6. St. 03. URL: http://www.viam-works.ru (accessed: December 08, 2017). DOI: 10.18577/2307-6046-2017-0-6-3-3.
12. Muboyadzhyan S.A. Modificirovanie metallicheskoj poverhnosti v plazme vakuumno-dugovogo razryada metodom termostimulirovannoj ionnoj diffuzii [Modifying of metallic surface in vacuum arc discharge plasma method thermo stimulation of ionic diffusion] // Metally. 2008. №6. S. 1–13.
13. Kablov E.N., Muboyadzhyan S.A. Ionnoe travlenie i modificirovanie poverhnosti otvetstvennyh detalej mashin v vakuumno-dugovoj plazme [Ion etching and modifying of surface of responsible details of machines in vacuum and arc plasma] // Vestnik MGTU im. N.E. Baumana. Ser. «Mashinostroenie». 2011. №SP2. S. 149–163.
14. Muboyadzhyan S.A., Azarovskij E.N. Issledovanie novogo processa ionnogo modificirovaniya poverhnosti obrazcov kompressornyh stalej v vakuumno-dugovoj plazme titana [Research of new process of ionic modifying of surface of samples compressor steels in vacuum and arc plasma of titanium] // Metally. 2013. №6. S. 63–73.
15. Muboyadzhyan S.A., Azarovskij E.N. Modificirovanie poverhnosti obrazcov iz kompressornyh stalej metodom termostimulirovannoj ionnoj diffuzii v titanovoj plazme vakuumno-dugovogo razryada [Modifying of surface of samples from compressor steels method of thermo stimulation ionic diffusion in titanic plasma of the vacuum arc discharge] // Metally. 2015. №6. S. 11–19.
16. Lygdenov B.D. Intensifikaciya processov himiko-termicheskoj obrabotki pri diffuzionnom titanirovanii [Intensification of processes of chemical and thermal processing at diffusion titanizing]. Barnaul: Izd-vo AltGTU, 2006. 135 s.
17. Modificirovanie i legirovanie poverhnosti lazernymi, ionnymi i elektronnymi puchkami / pod red. D.M. Pouta i dr. [Modifying and surface alloying laser, ionic and electronic bunches / ed. by D.M. Pout et al.]. M.: Mashinostroenie, 1987. 424 s.
18. Shulaev V.M., Taran V.S., Timoshenko A.I., Gasilin V.V. Issledovanie effektov modifikacii poverhnosti metallicheskih podlozhek, podvergnutyh ionno-plazmennoj obrabotke [Research of effects of updating of surface of the metal substrates subjected to ion-plasma processing] // Voprosy atomnoj nauki i tehniki. 2011. №6 (76). Ser.: Vakuum, chistye materialy, sverhprovodniki. (19). S. 184–192.
19. Andreev A.A. Vakuumno-dugovoe modificirovanie poverhnosti stalnyh izdelij [Vacuum and arc modifying of surface of steel products] // FIP. 2007. T. 5. №3–4. S. 140–148.
20. Kablov E.N. Materialy novogo pokoleniya – osnova innovacij, tehnologicheskogo liderstva i nacionalnoj bezopasnosti Rossii [Materials of new generation – basis of innovations, technological leadership and national security of Russia] // Intellekt i tehnologii. 2016. №2 (14). S. 16–21.
Models of formation of new surfaces in a firm body at stages of elastic and plastic deformations, the beginning and development of fragile destruction, destruction with existence of plastic deformation are presented. The assessment of the power expenses necessary for formation of unit of a new surface, and as influences on these expenses of plastic deformation is carried out. The method of determination of superficial energy of a material for fragile bodies is presented.
2. Kablov E.N. Materialy novogo pokoleniya [Materials of new generation] // Zashhita i bezopasnost. 2014. №4. S. 28–29.
3. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
4. Erasov V.S., Oreshko E.I. Deformaciya i razrushenie kak processy izmeneniya obema, ploshhadi poverhnosti i linejnyh razmerov v nagruzhaemyh telah [Deformation and destruction as processes of change of volume, the areas of a surface and the linear sizes in loaded bodies] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №8. St. 11. Available at: http://www.viam-works.ru (accessed: January 25, 2018). DOI: 10.18577/2307-6046-2016-0-8-11-11.
5. Erasov V.S., Oreshko E.I., Lucenko A.N. Ploshhad svobodnoj poverhnosti kak kriterij hrupkogo razrusheniya [Area of a free surface as criterion of brittle fracture] // Aviacionnye materialy i tehnologii. 2017. № 2 (47). S. 69–79. DOI: 10.18577/2071-9140-2017-0-2-69-79.
6. Shibkov A.A., Zolotov A.E., Zheltov M.A., Shuklinov A.V., Denisov A.A. Dinamika deformacionnyh polos i razrushenie alyuminij-magnievogo splava AMg6 // Fizika tverdogo tela. 2011. T. 53. №10. S. 1873–1878.
7. Shibkov A.A., Zolotov A.E., Zheltov M.A., Denisov A.A. Deformacionnyj haos i samoorganizaciya na stadii predrazrusheniya splava AMg6 [Deformation chaos and self-organization at stage of predestruction of alloy AMg 6] // Fizika tverdogo tela. 2011. T. 53. №10. S. 1879–1884.
8. Erasov V.S., Oreshko E.I. Silovoj, deformacionnyj i energeticheskij kriterii razrusheniya [Force, deformation and energy criteria of destruction] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2017. №10 (58). St. 11. Available at: http://viam-works.ru (accessed: January 25, 2018). DOI: 10.18577/2307-6046-2017-0-10-11-11.
9. GOST 25.506–85. Raschety i ispytaniya na prochnost. Metody mehanicheskih ispytanij metallov. Opredelenie harakteristik treshhinostojkosti (vyazkosti razrusheniya) pri staticheskom nagruzhenii [State Standart 25.506-85. Calculations and strength tests. Methods of mechanical tests of metals. Definition of characteristics crack resistance (fracture toughness) at static loading]. M.: Izd-vo standartov, 1985. 61 s.
10. Zhu X.-K., Joyce, J.A. Review of fracture toughness (G, K, J, CTOD, CTOA) testing and stan-dardization // U.S. Navy Research. 2012. Paper 49.
11. Shtremel M.A. Razrushenie [Destruction]. M.: MISiS, 2014. Kn.1: Razrushenie materiala. S. 66–113.
12. OST1 90356–84. Metally. Metod opredelenie staticheskoj treshhinostojkosti (vyazkosti razrusheniya) obshivochnyh materialov pri ploskom napryazhennom sostoyanii [Industry Standard 90356–84. Metals. Method of definition of static treshchinostoykost (fracture toughness) of sheathing materials at flat tension]. M., 1984. 31 s.
13. OST1 92122–88. Metally. Metod opredelenie krivoj soprotivleniya rasprostraneniyu treshhiny pri staticheskom nagruzhenii (R-krivoj) obshivochnyh materialov pri ploskom napryazhennom sostoyanii [Industry Standard 1 92122-88. Metals. Method of definition of curve of resistance to crack distribution at static loading (R-curve) of sheathing materials at flat tension]. M., 1988. 32 s.
14. ASTM E 561-10. Standard Test Method for K-R Curve Determination. American Society for Testing and Materials, 2010.
15. Terentev V.F. Ustalost metallicheskih materialov [Fatigue of metal materials]. M.: Nauka, 2003. S. 37–44.
16. Vildeman V.E., Tretyakov V.P. Ispytaniya materialov s postroeniem polnyh diagramm deformirovaniya [Tests of materials with creation of full charts of deformation] // Problemy mashinostroeniya i nadezhnosti mashin. 2013. №2. S. 93–98.
17. Mahutov N.A., Moskvitin G.V. Vliyanie uslovij nagruzheniya na nakoplenie povrezhdenij i razrushenie [Influence of conditions of loading on accumulation of damages and destruction] // Mashinostroenie: enciklopediya. M.: Mashinostroenie, 2010. T. II-I: Fiziko-mehanicheskie svojstva. Ispytaniya metallicheskih materialov. S. 220–221.
18. Shanyavskij A.A. Sinergetika evolyucii metallov ot chastichno zamknutoj k otkrytoj dinamicheskoj sisteme pri ciklicheskom nagruzhenii [Synergetrics of evolution of metals from partially closed to open dynamic system at cyclic loading] // Dinamika slozhnyh sistem. 2007. T. 1. №1. S. 90–104.
19. Terentev V.F., Korableva S.A. Ustalost metallov [Fatigue of metals]. M.: Nauka, 2015. S. 73–77.