Articles
High strength corrosion-resistant steel VNS65-Sh is the steel of transitional class with tensile strength more than 1670 MPa.
This steel is used for manufacturing of the high-loaded power details and nodes for aviation engineering (working temperature range from-70 to +200°С). Steel can be used in all-climatic conditions.
The parts from the large forging of VNS65-Sh steel were observed in this article. The forgings of VNS65-Sh used for manufacturing the responsible airframe details. The cutting samples were processed by different kind of heat treatment.
The results of diffusion mobility hydrogen (DMH) influence on steel plasticity (generally, reduction of area (ψ %)) characteristics, microstructure and surface condition after tension tests are shown in this article.
The negative influence of surface cold working on removal of DMH during heat treatment is shown. The plastic strain creating on surface the raised level of defects, complicates hydrogen movement in metal and its removing from samples.
The samples fracture of VNS65-Sh steel with low values of plasticity observe the brittle crystal sites («flakes at stretching»). The cracks on surface and cross section of samples (parallel of the sample fracture) are shown.
The different modes of heat treatment providing the minimum content of DMH in samples and recovery of steel plasticity are investigated.
Positive influence of heat treatment in vacuum furnace on recovery of steel plasticity is shown. The best results of reduction of area values and the low content of DMH
(0,10–0,13 cm3/100g of Me) are received after heat treatment reducing the hydrogen and quen
2. Kablov E.N., Ospennikova O.G., Lomberg B.S., Sidorov V.V. Prioritetnyye napravleniya razvitiya tekhnologiy proizvodstva zharoprochnykh materialov dlya aviatsionnogo dvigatelestroyeniya [Priority directions of development of technologies for the production of heat-resistant materials for aircraft engine industry] // Problemy chernoy metallurgii i materialovedeniya. 2013. №3. S. 47–54.
3. Gromov V.I., Voznesenskaya N.M., Pokrovskaya N.G., Tonysheva O.A. Vysokoprochnye konstrukcionnye i korrozionnostojkie stali FGUP «VIAM» dlya izdelij aviacionnoj tehniki [High-strength constructional and corrosion-resistant steels developed by VIAM for aviation engineering] // Aviacionnye materialy i tehnologii. 2017. №S. S. 159–174. DOI: 10.18577/2071-9140-2017-0-S-159-174.
4. Tonysheva O.A., Voznesenskaya N.M. Perspektivnyye vysokoprochnyye korrozionnostoykiye stali, legirovannyye azotom (sravnitel'nyy analiz) // Aviatsionnyye materialy i tekhnologii. 2014. №3. S. 27–32. DOI: 10.18577/2071-9140-2014-0-3-27-32.
5. Kablov E.N., Startsev O.V. Fundamentalnye i prikladnye issledovaniya korrozii i stareniya materialov v klimaticheskih usloviyah (obzor) [The basic and applied research in the field of corrosion and ageing of materials in natural environments (review)] // Aviacionnye materialy i tehnologii. 2015. №4 (37). S. 38–52. DOI: 10.18577/2071-9140-2015-0-4-38-52.
6. Kablov E.N., Sidorov V.V., Kablov D.E., Min P.G., Rigin V.E. Resursosberegayushchiye tekhnologii vyplavki perspektivnykh liteynykh i deformiruyemykh superzharoprochnykh splavov s uchetom pererabotki vsekh vidov otkhodov [Resource-saving technologies for smelting promising casting and wrought superhigh-strength alloys with regard to processing all types of waste] // Elektrometallurgiya. 2016. №9. S. 30–41.
7. Voznesenskaya N.M., Potak Ya.M., Kachanov E.B., Shalin R.E., Grashchenkov P.M., Zhabina V.A., Shvedova L.V. Vliyaniye vodoroda na kachestvo vysokoprochnykh korrozionnostoykikh staley [The influence of hydrogen on the quality of high-strength corrosion-resistant steels] // Novoye v metallurgii staley i splavov. Ser.: Aviacionnyye materialy. 1979. Vyp. 2. S. 120–129.
8. Krivonogov G.S., Kablov E.N. Staticheskaya treshchinostoykost' navodorozhennykh vysokoprochnykh staley [Static crack resistance of hydrogen-reinforced high-strength steels] // Aviacionnyye materialy i tehnologii. 2000. Vyp. 2. S. 25–32.
9. Geld P.V., Ryabov R.A. Vodorod v metallakh i splavakh [Hydrogen in metals and alloys]. M.: Metallurgiya, 1974. 271 s.
10. Moroz L.S., Chechulin B.B. Vodorodnaya khrupkost metallov [Hydrogen brittleness of metals]. M.: Metallurgiya, 1967. 256 s.
11. Sklyuyev P.V. Vodorod i flokeny v krupnykh pokovkakh [Hydrogen and flocs in large forgings]. M.: Mashgiz, 1963. 188 s.
12. Kotrell A.F. Struktura metallov i svoystva [Metal structure and properties]. M.: Metallurgizdat, 1957. 134 s.
13. Kablov E.N., Krivonogov G.S. Rabotosposobnost korrozionnostoykikh staley pri vozdeystvii vodoroda [The efficiency of corrosion-resistant steels under the influence of hydroge] // Metally. 2002. №1. S. 42–51.
14. Bratukhin A.G., Demchenko O.F., Dolzhenkov N.N., Krivonogov G.S. Vysokoprochnyye korrozionnostoykiye stali sovremennoy aviatsii [High-strength corrosion-resistant steel of modern aviation]. M.: MAI, 2006. 654 s.
15. Mak-Magon K., Braynt K., Benerdzhi S. Vliyaniye vodoroda i primesey na khrupkoye razrusheniye stali [Effect of hydrogen and impurities on steel brittle fracture] // Mekhanika razrusheniya, razrusheniye materialov. 1979. №17. S. 109–133.
The most loaded place of a gas turbine is a joint between blades and disk that works in adverse conditions. A traditional type of mechanical connection characterized in a place of contact with nonuniform loadings resulting from a high temperature deformation between a disk and blades. In an alternative design it replaced on an unreleasable connection that can be manufactured in a various ways. Moreover, the most perspective type of connection is bimetallic type of blisk which allows to use a different alloys for the disk (deformable super alloys) and blades (monocrystal super alloys). These methods are: a high temperature isostatic pressing of a powder disk with blades, a linear friction welding, a diffusion welding and a diffusion brazing. Each method has its own advantages and disadvantages, however a realization of diffusion brazing will demand minimum changes in current technological process. Grooves are cutting in a disk to provide a precise positioning for blades when the method of diffusion brazing is used. Also, the method of diffusion brazing allows to repair a blades after the long gas turbine engine operation time.
Russian Scientific Research Institute of Aviation Materials and JSC “UEC – Klimov” developed the new place of contact design, new brazing alloy, technology of brazing EP975 and VKNA-25 nickel based super alloys, manufactured and tested the full-size demonstrator of blisk.
2. Boguslayev V.A., Muravchenko F.M., Zhemanyuk P.D., Kolesnikov V.I. Tekhnologicheskoye obespecheniye ekspluatatsionnykh kharakteristik detaley GTD [Technological support of operational characteristics of parts of the GTE]. Zaporozhe: Motor Sich, 2003. Ch. II. 396 s.
3. Falaleyev S.V. Sovremennyye problemy sozdaniya dvigateley letatelnykh apparatov: elektron. ucheb. posobiye. Samara: 2012. S. 91 [Elektronnyy resurs]. Available at: https://rucont.ru/efd/230195 (accessed: September 25, 2018).
4. Magerramova L.A. Primeneniye bimetallicheskikh bliskov, izgotavlivayemykh metodom GIP iz granuliruyemykh i liteynykh nikelevykh supersplavov, dlya uvelicheniya nadezhnosti i resursa gazovykh turbin [Application of bimetallic blisks manufactured by the ISU method from granulated and foundry nickel superalloys to increase the reliability and service life of gas turbines] // Vestnik UGATU. 2011. №4 (44). S. 33–38.
5. Magerramova L.A., Vasilyev B.E. Bimetallicheskiye bliski turbin s bandazhirovannymi lopatkami dlya gazoturbinnykh dvigateley [Bimetallic bliski turbines with shrouded blades for gas turbine engines] // Nauka i obrazovaniye: nauchnoye izdaniye MGTU im. N.E. Baumana, 2015. №6.S. 143–156.
6. Kablov E.N., Petrushin N.V., Elyutin E.S. Monokristallicheskiye zharoprochnyye splavy dlya gazoturbinnykh dvigateley [Monocrystalline superalloys for gas turbine engines] // Vestnik MGTU im. N.E. Baumana. Spets. vyp.: Perspektivnyye konstruktsionnyye materialy i tekhnologii, 2011. S. 38–52.
7. Lomberg B.S., Ovsepyan S.V., Bakradze M.M., Mazalov I.S. Vysokotemperaturnye zharo-prochnye nikelevye splavy dlya detalej gazoturbinnyh dvigatelej [High-temperature heat resisting nickel alloys for details of gas turbine engines] // Aviacionnye materialy i tehnologii. 2012. №S. S. 52–57.
8. Povarova K.B., Valitov V.A., Ovsepyan S.V., Drozdov A.A., Bzyleva O.A., Valitova E.V. Izucheniye svoystv i vybor splavov dlya diskov s lopatkami («bliskov») i sposoba ikh soyedineniya [Valitova, E.V. Studying the properties and the choice of alloys for disks with blades («blisks») and the method of their combination] // Metally. 2014. №5. S. 61–70.
9. Magerramova L., Zakharova T., Gromov M., Samarov V. Turbiny: s «blisk»om i bez [Elektronnyy resurs]. Available at: http://engine.aviaport.ru/02page32.html (accessed: September 25, 2018).
10. Kablov E.N., Petrushin N.V., Svetlov I.L., Demonis I.M. Nikelevye litejnye zharoprochnye splavy novogo pokoleniya [Nickel foundry heat resisting alloys of new generation] // Aviacionnye materialy i tehnologii. 2012. №S. C. 36–52.
11. Kablov E.N., Petrushin N.V., Svetlov I.L., Demonis I.M. Liteynyye zharoprochnyye splavy novogo pokoleniya [Foundry superalloys of new generation] // 75 let. Aviatsionnyye materialy: yubil. nauch.-tekhnich. sb. M.: VIAM, 2007. S. 27–44.
12. Lomberg B.S., Ovsepjan S.V., Bakradze M.M., Letnikov M.N., Mazalov I.S. Primenenie novyh deformiruemyh nikelevyh splavov dlja perspektivnyh gazoturbinnyh dvigatelej [The application of new wrought nickel alloys for advanced gas turbine engines] // Aviacionnye materialy i tehnologii. 2017. №S. S. 116–129. DOI: 10.18577/2071-9140-2017-0-S-116-129.
13. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period to 2030] // Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
14. Lukin V.I., Kovalchuk V.G., Ioda E.N. Svarka plavleniyem – osnova svarochnogo proizvodstva [Fusion welding is a core of welding manufacturing] // Aviacionnyye materialy i tehnologii. 2017. №S. S. 130–143. DOI: 10.18577/2071-9140-2017-0-S-130-143.
15. Magerramova L.A. Achievement of bimetallic blisks integrated dissimilar alloys for promising high temperature aviation gas turbine engines. 28th International congress of the aeronautical sciences. 2012 [Elektronnyy resurs]. Available at: http://www.icas.org/ICAS_ARCHIVE/ICAS2012/PAPERS/224.PDF (accessed: September 25, 2018).
16. Lyushinskiy A.V. Diffuzionnaya svarka raznorodnykh materialov: ucheb. Posobie [Diffusion welding of dissimilar materials: tutorial]. M.: Akademiya, 2006. 208 s.
17. Lukin V.I., Samorukov M.L. Osobennosti formirovaniya struktury svarnykh soyedineniy zharoprochnogo deformiruyemogo splava VZH175, poluchennykh rotatsionnoy svarkoy treniyem [Features of the formation of the structure of welded joints of the heat-resistant wrought alloy VZh175, obtained by rotational friction welding] // Svarochnoye proizvodstvo. 2017. №6. S. 12–18.
18. Lashko N.F., Lashko S.V. Voprosy teorii i tekhnologii payki [Questions of the theory and technology of soldering]. Saratov: Izd-vo Sarat. un-ta, 1974. 248 s.
19. Lashko N.F., Lashko S.V. Payka metallov [Soldering metals]. M.: Mashinostroyeniye, 1967. 368 s.
20. Petrunin I.E., Bereznikov Yu.I., Bunkina R.R. i dr. Spravochnik po payke. 3-e izd. pererab. i dop. [Handbook of soldering. 3rd ed. rev. and add.]. M.: Mashinostroyeniye-1, 2003. 480 s.
21. Petrunin I.E., Markova I.Yu., Ekatova A.S. Metallovedeniye payki [Metal science soldering]. M.: Metallurgiya, 1976. 264 s.
22. Lukin V.I., Rylnikov V.S., Afanasyev-Khodykin A.N. Pripoi na nikelevoy osnove dlya payki zharoprochnykh splavov i staley [Nickel-based solders for brazing high-temperature alloys and steels] // Svarochnoye proizvodstvo. 2014. №7. S. 36–42.
23. Ospennikova O.G., Lukin V.I., Afanasyev-Khodykin A.N., Galushka I.A., Shevchenko O.V. Perspektivnyye razrabotki v oblasti vysokotemperaturnoy payki zharoprochnykh splavov [Advanced developments in the field of the high-temperature soldering of heat resisting alloys] // Aviacionnyye materialy i tehnologii. 2017. №S. S. 144–158. DOI: 10.18577/2071-9140-2017-0-S-144-158.
Technological characteristics of Al-Li 1441 alloy sheet details manufacturing by means of instrumental forming are described. Processes of forming details in annealed, quenched, naturally aged condition with a following T1 heat treatment are shown. Al–Li 1441T1 alloy details have a high modulus, low density, good strength properties, have high crack resistance and low-cycle fatigue.
A possibility of contact welding in 1441 alloy sheet details manufacture is shown. Microstructure of welded 1,0 mm thin sheet joint is shown. Shear tests shown that shear strength is about 340–370 MPa.
Phase content and structure of samples made of 1441T1 details are shown for comparison of material structure after deformation and T1 heat treatment. Sheets microstructure is mostly recrystallized, grain size is about 15-25μm. Main hardening phases of the 1441 alloy are δ'-phase (Al3Li) and S'-phases (Al2CuMg).
Method of autoclave molding of sheet or plate and hybrid material of 1441 details combined with T1 heat treatment is shown. In this work experimental structures of hybrid material with 1441 sheets and polymeric layers in respect to fuselage and wing panels are shown.
Usage of semiproducts of Al-Li 1441 alloy and alumopolymeric materials of GLARE class for aviation construction details manufacture instead of D16 and 1163 alloys can lower construction weight because of low density, high specific tenacity and stiffness.
2. Fridlyander I.N., Kolobnev N.I., Sandler V.S. Alyuminiyevo-litiyevyye splavy. Mashinostroyeniye: entsiklopediya v 40 t. [Aluminum-lithium alloys. Mechanical engineering: encyclopedia in 40 vol.]. M.: Mashinostroyeniye, 2001. T. II-3: Tsvetnyye metally i splavy. Kompozitsionnyye metallicheskiye materialy / pod red. I.N. Fridlyandera, E.N. Kablova, O.G. Senatorovoy, R.E. Shalina. S. 156–184.
3. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
4. Fridlyander I.N., Senatorova O.G., Tkachenko Ye.A. Vysokoprochnyye splavy. Mashinostroyeniye: entsiklopediya v 40 t. [Aluminum-lithium alloys. Mechanical engineering: encyclopedia in 40 vol.]. M.: Mashinostroyeniye, 2001. T. II-3: Tsvetnyye metally i splavy. Kompozitsionnyye metallicheskiye materialy / pod red. I.N. Fridlyandera, E.N. Kablova, O.G. Senatorovoy, R.E. Shalina. S. 94–128.
5. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period to 2030] // Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
6. Senatorova O.G. Alyuminiy poka sokhranyayet liderstvo // Industriya. Inzhenernaya gazeta. 2005. №29. S. 2.
7. Kablov E.N., Antipov V.V., Klochkova Yu.Yu. Alyuminiy-litiyevyye splavy novogo pokoleniya i sloistyye alyumostekloplastiki na ikh osnove [Aluminum-lithium alloys of a new generation and layered aluminum-glass plastics on their basis] // Tsvetnyye metally. 2016. №8 (884). S. 86–91.
8. International Alloy Designations and Chemical Compositions Limits for Wrought Aluminum Alloys. Aluminum Associations, USA. 2015. 32 p.
9. Lukin V.I., Ospennikova O.G., Ioda E.N., Panteleyev M.D. Svarka alyuminiyevykh splavov v aviakosmicheskoy promyshlennosti [Welding of aluminum alloys in the aerospace industry] // Svarka i diagnostika. 2013. №2. S. 47–52.
10. Leshchiner L.N., Kishkina S.I., Starova E.N., Fedorenko T.P., Bulgakova E.N. Svoystva neplakirovannykh i plakirovannykh listov iz splava 1441 [Properties of unclad and clad alloy 1441 sheets] // Tsvetnyye metally. 1994. №4. S. 56–59.
11. Fridlyander I.N., Grushko O.E., Shamray V.F., Klochkov G.G. Vysokoprochnyy konstruktsionnyy Al–Cu–Li–Mg splav ponizhennoy plotnosti, legirovannyy serebrom [High strength structural Al–Cu–Li–Mg alloy of low density doped with silver] // MiTOM. 2007. №6 (624). S. 3–7.
12. Leshchiner L.N., Latushkina L.V., Fedorenko T.P. Splav 1441 sistemy Al–Cu–Mg–Li [Alloy 1441 of the Al–Cu–Mg–Li system] // Tez. dokl. Vsesoyuz. nauch. konf. «Metallovedeniye splavov alyuminiya s litiyem». M.: VILS, 1991. S. 76–77.
13. Antipov V.V. Tekhnologichnyy alyuminiy-litiyevyy splav 1441 i sloistyye gibridnyye kompozity na yego osnove [Technological aluminum-lithium alloy 1441 and layered hybrid composites based on it] // Metallurgiya. 2012. №5. S. 36–39.
14. Fridlyander I.N., Senatorova O.G., Anikhovskaya L.I. Struktura i svoystva konstruktsionnykh alyumostekloplastikov marki SIAL [The structure and properties of structural aluminum glass plastics brand SIAL] // Sb. tr. Mezhdunar. konf. «Sloistyye kompozitsionnyye materialy–98». Volgograd, 1998. S. 131–133.
15. Lukina E.A., Alekseyev A.A., Khokhlatova L.B. i dr. Fazovyye prevrashcheniya v protsesse dlitelnykh temperaturnykh nagrevov dlya promyshlennykh splavov 1224, V-1469 i 1441 [Phase transformations in the process of prolonged temperature heating for industrial alloys 1224, B-1469 and 1441] // Fizika metallov i metallovedeniye. 2011. №3. S 253–261.
16. Lukina E.A., Alekseev A.A., Zaitsev D.V. еt al. Application of the Diagrams of Phase Transformations during Aging for Optimizing the Aging Conditions for V-1469 and 1441 Al–Li Alloys // The 12-th International Conference of Aluminium Alloys: Proceedings of the Conference. Yokohama, 2010. P. 1984–1989.
17. Alekseev A.A., Lukina E.A., Khokhlatova L.B. еt al. Phase Transformations in Alloy 1424 (Al–Li–Mg) and 1441 (Al–Li–Cu–Mg) // During Long Term Low-Temperature Exposur (LLTE): Proceedings of ICAA-11. 2008. Р. 1001–1005.
18. Lukina E.A. Fazovyye prevrashcheniya v Al–Li splavakh pri starenii i v protsesse dlitelnykh nizkotemperaturnykh nagrevov: avtoref. dis. … kand. tekhn. nauk [Phase transformations in Al – Li alloys during aging and in the process of prolonged low-temperature heatings: abstract of thesis, Cand. Sc. (Tech.)]. M.: VIAM, 2011. 23 s.
19. Klochkova Yu.Yu. Formirovaniye struktury i svoystv kholodnokatanykh listov iz vysokoprochnogo alyuminiy-litiyevogo splava V-1469: dis. … kand. tekhn. nauk [Formation of the structure and properties of cold-rolled sheets of high-strength aluminum-lithium alloy V-1469: thesis, Cand. Sc. (Tech.)]. M.: VIAM, 2014. 148 s.
20. Podzhivotov N.Yu., Kablov E.N., Antipov V.V., Erasov V.S., Serebrennikova N.Yu. i dr. Sloistyye metallopolimernyye materialy v elementakh konstruktsii vozdushnykh sudov [Laminated metal-polymer materials in the structural elements of aircraft] // Perspektivnyye materialy. 2016. №10. S. 5–19.
21. Serebrennikova N.Yu., Antipov V.V., Senatorova O.G., Erasov V.S., Kashirin V.V. Gibridnye sloistye materialy na baze alyuminij-litievyh splavov primenitelno k panelyam kryla samoleta [Hybrid multilayer materials based on aluminum-lithium alloys applied to panels of plane wing] // Aviacionnye materialy i tehnologii. 2016. №3 (42). S. 3–8. DOI: 10.18577/2071-9140-2016-0-3-3-8.
22. Sloistyy alyumostekloplastik i izdeliye, vypolnennoye iz nego: pat. 2600765 Ros. Federatsiya [Layered alyumoscleoplastic and products made from it: pat. 2600765 Ros. Federation]; opubl. 10.06.15.
23. Antipov V.V., Serebrennikova N.Yu., Shestov V.V., Sidelnikov V.V. Sloistyye gibridnyye materialy na osnove listov iz alyuminiy-litiyevykh splavov [Laminated hybrid materials on basis of Al–Li alloy sheets] // Aviacionnyye materialy i tehnologii. 2017. №S. S. 212–224. DOI: 10.18577/2071-9140-2017-0-S-212-224.
The aim of this work was to study the effect of heat treatment parameters (homogenization and hardening) on the structure and properties of the roll rings (R≤1500 mm) made of high-strength alloy V95ochT2 providing the required level of properties (sв≥470 МPа, s0,2≥ 380 МPа, δ≥6%).
After the manufacturing parameters influence investigations on the structure and properties of the roll rings made of high-strength alloy V95ochT2:
• a homogenization mode was stated;
• hardening modes for rolled rings were specified;
• quenching in both cold and hot water provides the required properties level .
The mechanical properties of the roll rings after all heat treatment modes are equal toV95ochT2 alloy plates (sв≥470 МPа, s0,2≥380 МPа, δ≥6%), which the frames are currently made of, also the mechanical properties are equal to the strength characteristics of similar semi products made of foreign counterpart 7475 T7351 alloy (USA) (80 mm thick plates: sв≥455 MPa, s0,2≥370 MPa, δ≥10%). At the same time, all modes of manufacturingand heat treatment provide a more uniform dispersion of the properties in the cross section of the roll rings in comparison to plates, where the uneven structure adversely affects the properties. Also, the manufacture of frames of the fuselage from rolled rings will increase the utilization rate of the material from 10 to 50% and will reduce the labor intensity and energy intensity of manufacturing up to 15% receiving the frames in the metallurgical industry.
The mode with homogenization at the temperature of 450–470°C within 24 hours, with a 150 minutes quench soak t
2. Illarionov E.I., Kolobnev N.I., Gorbunov P.Z., Kablov E.N. Alyuminiyevyye splavy v aviakosmicheskoy tekhnike [Aluminum alloys in aerospace]. M.: Nauka, 2001. 192 s.
3. Antipov V.V., Blinova N.E., Senatorova O.G. et al. Investigations of properties and structure of V95och and V96Zr-3pch. alloys during stress ageing // Proceedings of ICAA-11. 2008. P. 1864–1868.
4. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
5. Kablov E.N. Klyuchevaya problema – materialy [Tendencies and Guidelines for the Innovative Development of Russia] // Tendentsii i oriyentiry innovatsionnogo razvitiya Rossii. M.: VIAM, 2015. S. 458–464.
6. Fridlyander I.N. Alyuminiyevyye splavy v letatelnykh apparatakh v period 1970–2015 gg. [Aluminum alloys in aircraft in the period 1970–2015] // Tekhnologiya legkikh splavov. 2002. №4. S. 12–17.
7. Kablov E.N., Grinevich A.V., Lutsenko A.N., Erasov V.S., Nuzhnyy G.A., Gulina I.V. Issledovaniye kinetiki razrusheniya konstruktsionnykh alyuminiyevykh splavov pri dlitelnom vozdeystvii staticheskoy nagruzki i korrozionnoy sredy s ispolzovaniyem obraztsa novogo tipa [Investigation of the kinetics of destruction of structural aluminum alloys with prolonged exposure to static load and a corrosive environment using a new type of sample] // Deformatsiya i razrusheniye materialov. 2016. №10. S. 42–48.
8. Antipov V.V., Senatorova O.G., Tkachenko E.A., Vahromov R.O. Alyuminievye deformiruemye splavy [Aluminum deformable alloys] // Aviacionnye materialy i tehnologii. 2012. №S. S. 167–182.
9. Antipov V.V. Perspektivy razvitiya alyuminievyh, magnievyh i titanovyh splavov dlya izdelij aviacionno-kosmicheskoj tehniki [Prospects for development of aluminium, magnesium and titanium alloys for aerospace engineering] // Aviacionnye materialy i tehnologii. 2017. №S. S. 186–194. DOI: 10.18577/2107-9140-2017-0-S-186-194.
10. Fridlyander I.N., Senatorova O.G., Ryazanova N.A., Nikiforov A.O. Grain structure and superplasticity of strength Al–Zn–Mg–Cu alloys with different minor additions // Proceedings оf 1994 International Conference on Superplasticity in Advanced Materials (ICSAM-94). 1994. P. 345–349.
11. Senatorova O.G., Sukhikh A.YU., Sidelnikov V.V. i dr. Razvitiye i perspektivy primeneniya vysokoprochnykh alyuminiyevykh splavov dlya katanykh polufabrikatov [Development and prospects for the use of high-strength aluminum alloys for rolled semi-finished products] // Tekhnologiya legkikh splavov. 2002. №4. S. 28–33.
12. Milevskaya T.V., Ruschits S.V., Tkachenko E.A., Antonov S.M. Deformacionnoe povedenie vysokoprochnyh alyuminievyh splavov v usloviyah goryachej deformacii [Deformation behavior of high-strength aluminum alloys in conditions of hot deformation] // Aviacionnye materialy i tehnologii. 2015. №2 (35). S. 3–9. DOI: 10.18577/2071-9140-2015-0-2-3-9.
13. OST1 90113–86. Profili pressovannyye iz alyuminiyevykh splavov. Tekhnicheskiye usloviya [Industry Standard 1 90113–86. Pressed profiles from aluminum alloys. Technical conditions]. M., 1987. 46 s.
14. Kurs M.G. Prognozirovaniye prochnostnykh svoystv obshivki LA iz deformiruyemogo alyuminiyevogo splava V95o.ch.-T2 s primeneniyem integralnogo koeffitsiyenta korrozionnogo razrusheniya [Forecasting the strength properties of the skin cover of a deformable aluminum alloy В95о.ч.-Т2 with the use of the integrated corrosion reduction coefficient] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2018. №5. St. 11Available at: http://www.viam-works.ru (accessed: October 04, 2018). DOI: 10.18577/2307-6046-2018-0-5-101-109.
15. Kablov E.N. Iz chego sdelat budushcheye? Materialy novogo pokoleniya, tekhnologii ikh sozdaniya i pererabotki – osnova innovatsiy [What to make the future from? Materials of the new generation, technologies of their creation and processing – the basis of innovation] // Krylya Rodiny. 2016. №5. S. 8–18.
16. GOST 4784–97. Alyuminiy i splavy alyuminiyevyye deformiruyemyye [State Standard 4784–97. Aluminum and wrought aluminum alloys]. M.: Standartinform, 2009. 15 s.
17. Fridlyander I.N., Senatorova O.G., Novikov I.I. i dr. Sverkhplastichnost vysokoprochnykh splavov sistemy Al–Zn–Mg–Cu, legirovannykh skandiyem [Superplasticity of high-strength alloys of the Al–Zn–Mg–Cu system doped with scandium] // Tekhnologiya legkikh splavov. 1993. №7–8. S. 43–46.
18. Fridlyander I.N. Vysokoprochnyye deformiruyemy alyuminiyevyye splavy [High strength wrought aluminum alloys]. M.: Oborongiz, 1960. S. 191–195.
19. Beletskiy V.M., Krivov G.A. Alyuminiyevyye splavy (sostav, svoystva, tekhnologiya, primeneniye): spravochnik [Aluminum alloys (composition, properties, technology, application): handbook]. Kiev: Komintekh, 2005. S. 99.
The production of cast parts with high geometrical accuracy by the method of casting using melted models mainly depends on the quality of model compositions and their components, since the casting completely repeats the configuration of the models. The currently used model compositions are based on synthetic polymeric materials, esters and synthetic resins. On the basis of the studies performed, the requirements for model compositions were noted to ensure consistency in size, configuration and quality of parts. The developed technology of manufacturing model compositions to ensure the stability of physico-mechanical and technological characteristics that provide the necessary level of properties of model compositions. The compulsory living room entrance control methods, the physicomechanical characteristics of model compositions and materials for their manufacture, and other equally informative ways of quality assessment are considered. Comparative physicomechanical properties of imported and domestic brands of model compositions are given. Presents methods for testing the technological functions of manufacturing parts of various nomenclature in terms of current personality (PTR) and viscosity of model compositions. Graphically, the representation of the PTR and the viscosity of different brands of model compositions on the temperature, indicated by the region of the optimal conditions of pressing. Model compositions have been developed that differ not only in more stable physicomechanical and technological characteristics, but also in the absence of a specific smell, a granulated type instead of plates, in a variety of colors. The method of regeneration of the model composition for reuse in production is presented. The economic benefit and increase in profitability of the foundry industry as a whole due to the development of the method of regeneration of model compositions is considered.
 
2. Kablov E.N., Bondarenko Yu.A., Echin A.B. Razvitiye tekhnologii napravlennoy kristallizatsii liteynykh vysokozharoprochnykh splavov s peremennym upravlyayemym temperaturnym gradiyentom [Development of technology of cast superalloys directional solidification with variable controlled temperature gradient] // Aviacionnyye materialy i tehnologii. 2017. №S. S. 24–38. DOI: 10.18577/2071-9140-2017-0-S-24-38.
3. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
4. Kablov E.N. Osnovnyye napravleniya razvitiya litya lopatok gazovykh turbin [The main directions of development of the casting of gas turbine blades] // Lityye lopatki gazoturbinnykh dvigateley: splavy, tekhnologii, pokrytiya. M.: Nauka, 2006. S. 609–623.
5. Kablov E.N., Svetlov I.L., Demonis I.M., Folomeykin Yu.I. Monokristallicheskiye lopatki s transpiratsionnym okhlazhdeniyem dlya vysokotemperaturnykh gazoturbinnykh dvigateley [Single-crystal blades with transpiration cooling for high-temperature gas turbine engines] // Aviacionnyye materialy i tehnologii. 2003. №1. S. 24–33.
6. Kablov E.N., Bondarenko Yu.A., Yechin A.B., Surova V.A., Kablov D.E. Razvitiye protsessa napravlennoy kristallizatsii lopatok GTD iz zharoprochnykh i intermetallidnykh splavov s monokristallicheskoy strukturoy [Development of the process of directed crystallization of GTE blades from heat-resistant and intermetallic alloys with a single-crystal structure] // Vestnik MGTU im. N.E. Baumana. Ser.: Mashinostroyeniye. 2011. №SP2. S. 20–25.
7. Kablov E.N., Tolorajya V.N. VIAM – osnovopolozhnik otechestvennoj tehnologii litya monokristallicheskih turbinnyh lopatok GTD i GTU [VIAM – the founder of domestic casting technology of single-crystal turbine blades of GTE and GTU] // Aviacionnye materialy i tehnologii. 2012. №S. S. 105–117.
8. Kablov E.N., Bondarenko Yu.A., Echin A.B., Surova V.A. Razvitie processa napravlennoj kristallizacii lopatok GTD iz zharoprochnyh splavov s monokristallicheskoj i kompozicionnoj strukturoj [Development of process of the directed crystallization of blades of GTE from hot strength alloys with single-crystal and composition structure] // Aviacionnye materialy i tehnologii. 2012. №1. S. 3–8.
9. Kablov E.N., Bondarenko Yu.A. Novoye v tekhnologii proizvodstva lopatok GTD [New in the technology of production of GTE blades] // Aerokosmicheskiy kuryer. 1999. №2. S. 60–62.
10. Kablov E.N., Kishkin S.T. Perspektivy primeneniya liteynykh zharoprochnykh splavov dlya proizvodstva turbinnykh lopatok GTD [Prospects for the use of foundry heat-resistant alloys for the production of turbine blades GTE] // Gazoturbinnyye tekhnologii. 2002. №1. S. 34–37.
11. Kablov E.N., Petrushin N.V., Svetlov I.L., Demonis I.M. Liteynyye zharoprochnyye splavy novogo pokoleniya [Foundry superalloys of new generation] // 75 let. Aviacionnyye materialy. M.: VIAM, 2007. S. 27–44.
12. Kablov E.N. Materialy novogo pokoleniya – osnova innovatsiy, tekhnologicheskogo liderstva i natsionalnoy bezopasnosti Rossii [Materials of the new generation - the basis of innovation, technological leadership and national security of Russia] // Intellekt i tekhnologii. 2016. №2 (14). S. 16–21.
13. Ospennikova O.G. Modelnyye kompozitsii na osnove sinteticheskikh materialov dlya lit'ya po vyplavlyayemym modelyam detaley GTD: avtoref. dis. … kand. tekhn. nauk [Model compositions based on synthetic materials for investment casting of GTE parts: abstract of a thesis, Cand. Sc. (Tech.)]. M.: Salyut, 2000. 32 s.
14. Ospennikova O.G., Khayutin S.G. Struktura model'nykh kompozitsiy dlya lit'ya po vyplavlyayemym modelyam [The structure of model compositions for investment casting] // Materialovedeniye. 2009. №10. S. 46–51.
15. Ospennikova O.G., Shutov A.N., Pikulina L.V., Dushkin A.M. Pattern compounds based on synthetic materials for casting gas-turbine engine blades [Casting gas-turbine engine blades] // Liteynoye proizvodstvo. 2003. №1. S. 21–29.
16. Ospennikova O.G. Issledovanie i razrabotka parametrov tehnologicheskogo processa izgotovleniya modelej iz modelnyh kompozicij na osnove sinteticheskih voskov [Research and working out of parametres of technological process of manufacturing of models from modelling compositions on the basis of synthetic waxes] // Aviacionnye materialy i tehnologii. 2014. №3. S. 18–21. DOI: 10.18577/2071-9140-2014-0-3-18-21.
17. Ospennikova O.G. Issledovanie vliyaniya napolnitelej na svojstva i stabilnost modelnyh kompozicij, vybor optimalnyh sostavov [Influence research of fillers on properties and stability of modelling compositions, a choice of optimum structures] // Aviacionnye materialy i tehnologii. 2014. №3. S. 14–17. DOI: 10.18577/2071-9140-2014-0-3-14-17.
18. Kompozitsiya dlya izgotovleniya vyplavlyayemykh modeley: pat. 2447968 Ros. Federatsiya [Composition for the manufacture of melted models: pat. 2447968 Ros. Federation]; zayavl. 14.12.10, opubl. 20.04.12.
19. Kompozitsiya dlya izgotovleniya vyplavlyayemykh modeley: pat. 2447969 Ros. Federatsiya [Composition for the manufacture of melted models: pat. 2447969 Ros. Federation]; zayavl. 14.12.10; opubl. 20.04.12.
20. Kompozitsiya dlya izgotovleniya vyplavlyayemykh modeley: pat. 2182057 Ros. Federatsiya [Composition for the manufacture of melted models: pat. 2182057 Ros. Federation]; zayavl. 31.05.00; opubl. 10.05.02.
21. Kompozitsiya dlya izgotovleniya vyplavlyayemykh modeley: pat. 2162386 Ros. Federatsiya [Composition for the manufacture of melted models: Pat. 2162386 Ros. Federation]; zayavl. 17.03.10; opubl. 27.01.01.
22. Kompozitsiya dlya izgotovleniya vyplavlyayemykh modeley: pat. 2177387 Ros. Federatsiya [Composition for the manufacture of melted models: Pat. 2177387 Ros. Federation]; zayavl. 31.05.00; opubl. 27.12.01.
23. Repyakh S.I. Tekhnologicheskiye osnovy lit'ya po vyplavlyayemym modelyam [Technological basis of investment casting]. Dnepropetrovsk: Lira, 2006. 1056 s.
24. Kablov E.N., Deyev V.V., Narskiy A.R., Bondarenko Yu.A. Tekhnologiya udaleniya modelnykh mass iz keramicheskikh form dlya litya po vyplavlyayemym modelyam [Technology for removing model masses from ceramic molds for investment casting] // Liteynoye proizvodstvo. 2005. №3. S. 20–22.
From the very first years of creation of VIAM in its work attention was paid to solving problems of materials and technologies of aviation glazing. The main ones were Plexiglas based on acrylic polymers.
To solve the problem of removing defects on the surface of plexiglass in the details of aviation glazing in the FSUE "VIAM" polishing and grinding pastes and technologies for their application have been developed. The polishing ability of VIAM-3 paste is determined by polishing glasses of ^0-120, A0-120A, and SO- 120A grades. Polishing paste eliminates defects less than 0.1 mm deep. To eliminate more significant defects, polishing requires materials and technologies for polishing organic glass.
Designed and produced by FSUE "VIAM" "Grinding paste for organic glass" is used to remove defects with a depth >0.1 mm. After checking the grinding ability of the paste, the surface of the organic glass should be smooth, free of defects and scratches. The surface is considered prepared for polishing with paste "VIAM-3".
A positive result of the influence of grinding and polishing was obtained when testing curvilinear glass details from organic glass AO-120 with surface operational defects - scratches and "silver". After surface treatment of samples, the translucency in the samples was 92.0%, "silver resistance"> 3 min. After an open exhibition for 12 months in Moscow and Gelendzhik, the indicators of translucence and "silver resistance" are preserved.
At present, in our country, the highest quality oriented glasses AO-120 and A0-120A, which provide practically promising characteristics of aircraft glazing in the manufacture and operation, are manufactured by ООО Roshibus in accordance with the license agreement with VIAM. High quality of manufactured plexiglass is associated with the use in th
2. Kablov E.N. Materialy i khimicheskie tekhnologii dlya aviatsionnoy tekhniki [Materials and chemical technologies for aviation engineering] // Vestnik Rossiyskoy akademii nauk. 2012. T. 82. №6. S. 520–530.
3. Istoriya aviacionnogo materialovedeniya: VIAM – 75 let poiska, tvorchestva, otkrytij / pod obshh. red. E.N. Kablova[History of aviation materials science: VIAM – 75 years of search, creativity, opening / gen. ed. by E.N. Kablov]. M.: Nauka, 2007. 343 s.
4. Sentyurin E.G., Mekalina I.V., Ajzatulina M.K., Isaenkova Yu.A. Istoriya sozdaniya materialov samoletnogo ostekleniya i polimernyh materialov so spetsialnymi svojstvami (k 75-letiyu laboratorii polimernyh materialov so spetsialnymi svojstvami) [The history of aircraft materials of glass and polymer materials with special properties (To the 75th anniversary Laboratory of polymer materials with special properties)] // Aviacionnye materialy i tehnologii. 2017. №3 (48). S. 81–86. DOI: 10.18577/2071-9140-2017-0-3-81-86.
5. Sposob formovaniya izdelij iz organicheskogo stekla: pat. 203804 Ros. Federatsiya [Way of formation of products from organic glass: pat. 203804 Rus. Federation]; zayavl. 19.12.00; opubl. 10.05.03.
6. Gudimov M.M. Treshchiny serebra na organicheskom stekle [Silver cracks on organic glass]. M.: TSIPKKAP, 1997. 260 s.
7. Pavlyuk B.F. Osnovnye napravleniya v oblasti razrabotki polimernyh funktsionalnyh materialov [The main directions in the field of development of polymeric functional materials] // Aviacionnye materialy i tehnologii. 2017. №S. S. 388–392. DOI: 10.18577/2071-9140-2017-0-S-388-392.
8. Sentyurin E.G., Bogatov V.A. Aviatsionnye organicheskie stekla. Problemy i perspektiva [Aviation organic glasses. Problems and perspective] // Aviacionnye materialy i tehnologii. M.: VIAM, 2004. Vyp. 3. S. 3–6.
9. Raskutin A.E. Rossiiskie polimernye kompozitsionnye materialy novogo pokoleniia, ikh osvoenie i vnedrenie v perspektivnykh razrabatyvaemykh konstruktsiiakh [Russian polymer composite materials of new generation, their exploitation and implementation in advanced developed constructions] // Aviacionnye materialy i tehnologii. 2017. №S. S. 349–367. DOI: 10.18577/2071-9140-2017-0-S-349-367.
10. Lutsenko A.N., Odintsev I.N., Grinevich A.V. i dr. Issledovanie protsessa deformatsii materiala optiko-korrelyatsionnymi metodami [Study of material deformation by optical-correlation methods] // Aviacionnye materialy i tehnologii. 2014. №S4. S. 70–86. DOI: 10.18577/2071-9140-2014-0-s4-70-86.
11. Marek D., Tomka M. Akrilovye polimery [Acrylic polymers]. M.: Himiya. 1966. 320 s.
12. Polirovalnaya pasta: pat. 2200179 Ros. Federatsiya [Polymeric paste: pat. 2200179 Rus. Federation]. zayavl. 19.01.01; opubl. 10.03.03.
13. Yakovlev N.O. Issledovanie i opisanie relaksacionnogo povedeniya polimernyh materialov (obzor) [Study and description of relaxation behavior of polymers (review)] // Aviacionnye materialy i tehnologii. 2014. №S4. S. 50–54. DOI: 10.18577/2071-9140-2014-0-s4-50-54.
14. Akolzin S.V., Frolkov A.I. Vosstanovlenie rabotosposobnosti teplostojkogo aviatsionnogo ostekleniya pri remonte i v ekspluatatsii [Recovery of operability of heatresistant aviation glazing at repair and in operation] // Aviatsionnaya promyshlennost. 2014. №1. S. 41–44.
15. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the develop-ment of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
The article presents a review of foreign and domestic methods of mechanical processing of composite materials. The article consists of four parts.
The introduction refers to the development of composite materials and the need to introduce new methods of their processing. As part of the implementation of the complex scientific problem №12 «Metal matrix and polymatric composite materials» («Strategic directions of development of materials and technologies of their processing for the period up to 2030»), a review of scientific and technical literature in the field of research aimed at increasing the efficiency of mechanical processing of composite materials.
The paper gives an overview of the currently basic methods of machining of composite materials, their machinability is displayed, the advantages and disadvantages of various processing methods are indicated. The analysis of blade machining, including the features of wear and coating variations of the cutting tool. Also two approaches of ultrasonic processing are revealed, possibilities of laser processing are displayed and the essence of water jet cutting of materials is explained. In conclusion, the conclusion and prospects of mechanical processing of composite materials.
At the beginning of the article the analysis of blade machining, which includes features of wear and variations of the coating of the cutting tool, their machinability is displayed, the advantages and disadvantages of various methods of machining are indicated.
In the main part of the article the principles of two approaches of ultrasonic processing of composites are briefly stated, possibilities of laser processing are displayed and the essence of waterjet cutting of materials is explained.
In conclusion, the
2. Kablov E.N. Osnovnyye itogi i napravleniya razvitiya materialov dlya perspektivnoy aviatsionnoy tekhniki [The main results and directions of development of materials for advanced aviation equipment] // 75 let. Aviacionnye materialy. M.: VIAM, 2007. S. 20–26.
3. Kablov E.N. Materialy novogo pokoleniya [New generation materials] // Zashchita i bezopasnost. 2014. №4. S. 28–29.
4. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
5. Ospennikova O.G. Itogi realizacii strategicheskih napravlenij po sozdaniyu novogo pokoleniya zharoprochnyh litejnyh i deformiruemyh splavov i stalej za 2012–2016 gg. [Implementation results of the strategic directions on creation of new generation of heat-resisting cast and wrought alloys and steels for 2012–2016] // Aviacionnye materialy i tehnologii. 2017. №S. S. 17–23. DOI: 10.18577/2071-9140-2017-0-S-17-23.
6. Antipov V.V. Perspektivy razvitiya alyuminievyh, magnievyh i titanovyh splavov dlya izdelij aviacionno-kosmicheskoj tehniki [Prospects for development of aluminium, magnesium and titanium alloys for aerospace engineering] // Aviacionnye materialy i tehnologii. 2017. №S. S. 186–194. DOI: 10.18577/2107-9140-2017-0-S-186-194.
7. Grashchenkov D.V. Strategiya razvitiya nemetallicheskih materialov, metallicheskih kompozicionnyh materialov i teplozashhity [Strategy of development of non-metallic materials, metal composite materials and heat-shielding] // Aviacionnye materialy i tehnologii. 2017. №S. S. 264–271. DOI: 10.18577/2071-9140-2017-0-S-264-271.
8. Chandramohan D., Murali B. Machining of composites – a review // Academic Journal of Manufacturing Engineering. Available at: http://www.auif.utcluj.ro/images/VOLUME12_3/10_Chandramohan_Murali_67_71 (accessed: September 09, 2018).
9. Kartashov A.B. Mekhanicheskaya obrabotka kompozitov [Mechanical processing of composites]. Available at: www.bmstu.ru/ps/~kartashov/fileman/download/PKM2017/PKM_VKM_11.pdf (accessed: September 09, 2018).
10. Raskutin A.E., Khrulkov A.V., Girsh R.I. Tekhnologicheskie osobennosti mekhanoobrabotki kompozitsionnykh materialov pri izgotovlenii detaley konstruktsiy (obzor) [Technological features of machining of composite materials when manufacturing details of designs (review)] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №9. St. 12. Available at: http://www.viam-works.ru (accessed: September 09, 2018). DOI: 10.18577/2307-6046-2016-0-9-12-12.
11. Meshkas A.E., Makarov V.F., Shirinkin V.V. Tekhnologii, pozvolyayushchiye povysit effektivnost obrabotki kompozitsionnykh materialov metodom frezerovaniya [Technologies allowing to increase the processing efficiency of composite materials by milling method] // Izvestiya TulGU. Ser.: Tekhnicheskiye nauki. 2016. Vyp. 8. Ch. 2. S. 292.
12. Yushchenko D.A., Lobanov D.V. Metody lezviynoy obrabotki izdeliy iz kompozitsionnykh materialov ikh spetsifika i perspektivy [Methods of blade processing of products from composite materials, their specificity and prospects] // Tekhnologii i materialy. 2015. №3. S. 30–35.
13. Ravi Sekhar T.P. Singh Mechanisms in turning of metal matrix composites: a review // Journal of Materials Research and Technology. 2015. No. 4 (2). P. 197–207. Available at: http://www.jmrt.com.br (accessed: September 09, 2018). DOI: 10.1016/j.jmrt.2014.10.013.
14. El-Gallab M., Sklad M. Machining of Al/SiC particulate metal-matrix composites: Part I: Tool performance // Journal of Materials Processing Technology. 1998. No. 83. P. 151–158. Available at: https://www.sciencedirect.com/science/article/pii/S0924013698000545 (September 09, 2018). DOI: 10.1016/S0924-0136(98)00054-5.
15. Hooper R.M., Henshall J.L., Klopfer A. The wear of polycrystalline diamond tools used in the cutting of metal matrix composites // International Journal of Refractory Metals and Hard Materials. Available at: https://www.sciencedirect.com/science/article/pii/S0263436898000407 (September 09, 2018). DOI: 10.1016/S0263-4368(98)00040-7.
16. Weinert K., Biermann D. Turning of fiber and particle reinforced aluminium // Proceedings of the International Conference on Machining Of Advanced Materials. 1993. P. 437–453.
17. Morgunov Yu.A., Opalnitskiy A.I., Perepechkin A.A. Sovremennoye sostoyaniye i perspektivy primeneniya v mashinostroyenii ultrazvukovoy razmernoy obrabotki izdeliy [The current state and prospects for application in mechanical engineering of ultrasonic dimensional processing of products] // Izvestiya MGTU «MAMI». 2012. №2 (14). T. 2. S. 140–144.
18. Yan Chen, Yuhong Liang, Jiuhua Xu, Andong Hu. Ultrasonic vibration assisted grinding of CFRP composites: Effect of fiber orientation and vibration velocity on grinding forces and surface quality // International Journal of Lightweight Materials and Manufacture. September. 2018. P. 189–196. Available at: https://www.sciencedirect.com/science/article/pii/S2588840418300386 (September 09, 2018). DOI: 10.1016/j.ijlmm.2018.08.003.
19. Vashukov Yu.A. Tekhnologiya raketnykh i aerokosmicheskikh konstruktsiy iz kompozitnykh materialov [Technology of rocket and aerospace structures made of composite materials] // Multimediynyy obrazovatelnyy modul. Samara: Izd-vo SGAU, 2012. S. 101. Available at: https://www.twirpx.com/file/1771851/ (September 09, 2018).
20. Astapchik S.A., Golubev V.S., Maslakov A.G. Lazernyye tekhnologii v mashinostroyenii i metalloobrabotke [Laser technology in mechanical engineering and metalworking]. Minsk: Belorusskaya nauka. 2008. C. 232–242.
21. Xie J. Dual beam laser welding // Welding Journal. 2002. Vol. 81. No. 10. P. 223–230
22. Bayeva L.S., Marinin A.A. Sovremennyye tekhnologii additivnogo izgotovleniya obyektov [Modern technologies of additive manufacturing of objects] // Vestnik Murmanskogo gosudarstvennogo tekhnicheskogo universiteta. 2014. T. 17. №1. S. 7–12.
23. Shanmugam D.K., Chen F.L., Siores E., Brandt M. Comparative study of jetting machining technologies over laser machining technology for cutting composite materials // Composite Structures. 2012. No. 57. P. 289–296. URL: https://www.sciencedirect.com/science/article/pii/S026382230200096X (accessed: September 10, 2018). DOI: 10.1016/S0263-8223(02)00096-X.
24. Grishchenko T.A., Melyukhov N.I., Lyubushkin V.O. Primeneniye gidroabrazivnoy rezki pri obrabotke detaley iz polimernykh kompozitsionnykh materialov [The use of waterjet cutting in the processing of parts from polymer composite materials] // Vestnik inzhenernoy shkoly DVFU. 2017. №2 (31). S. 49–55. URL: https://www.dvfu.ru/vestnikis/archive-editions/2-31/6/ (accessed: September 10, 2018). DOI: 10.5281/zenodo.808901.
In this article, we investigated the influence of methods for preparing the sample surface before coating on the resistance to erosive wear of an ion-plasma coating of zirconium nitride. The effect on the structure of the surface layer and erosion resistance of the compositions of alloy-coating assisted deposition, as well as the direction of rotation of the cathode spots of the vacuum arc along the annular trajectory on the surface of the cylindrical cathode is shown compared to the direction of rotation of the processed products on the planetary drive of the MAP-3 for ion-plasma coatings. The phase composition of the coatings were studied, the lattice periods and the size of coherent scattering regions, the magnitude of residual stresses were determined, and the erosion-wear resistance of alloy-coating compositions was tested. The spread of compressive residual stresses obtained on samples with ZrN coating in this work was from 910 to 1470 MPa, which is not high for a monolayer nitride coating. It is shown that with assisted deposition, zirconium nitride is formed predominantly with texture <311> and the substrate (substrate texture) does not have an orienting effect on the formation of the texture of the coatings. It is shown that the direction of rotation of the cathode spots in a clockwise direction, which coincides with the direction of rotation of the drive with the parts, is most desirable for obtaining high results of erosion resistance of the coating. This effect of the direction of rotation of the cathode spots of the vacuum arc relative to the planetary drive with the details can be explained by different angles of incidence of the evaporating material ions onto the substrate surface. The positive effect of vibrating the surface of the sample on the ZrN coating is established, which is an effective preparation of the surface of the GTE compressor blades before applying an erosion-resistant coating, since it does not
2. Kablov E.N. Marketing materialovedeniya, aviastroeniya i promyshlennosti: nastoyashchee i budushchee [Marketing of materials science, aircraft industry and industry: present and future] // Direktor po marketingu i sbytu. 2017. №5–6. S. 40–44.
3. Aleksandrov D.A., Muboyadzhyan S.A., Gorlov D.S. Povyshenie svojstv uprochnjajushhih ionno-plazmennyh pokrytij pri pomoshhi assistirovannogo osazhdeniya [Increasing reinforcing properties of ion-plasma coatings using plasma assisted deposition] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №7. St. 07. Available at: http://www.viam-works.ru (accessed: October 09, 2018). DOI: 10.18577/2307-6046-2015-0-7-7-7.
4. Aleksandrov D.A., Muboyadzhyan S.A., Lutsenko A.N., Zhuravleva P.L. Uprochnenie poverkhnosti titanovykh splavov metodom ionnoj implantatsii i ionnogo modifitsirovaniya [Hardening of the surface of titanium alloys by ion implantation method and ionic modification] // Aviacionnye materialy i tehnologii. 2018. №2 (51). S. 33–39. DOI: 10.18577/2071-9140-2018-0-2-33-39.
5. Valesa S., Brito P. Influence of substrate pre-treatments by Xe+ ion bombardment and plasma nitriding on the behavior of TiN coatings deposited by plasma reactive sputtering on 100Cr6 steel // Materials Chemistry and Physics. 2016. Vol. 177. P. 156–163.
6. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the develop-ment of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
7. Putyrskij S.V., Arislanov A.A., Artemenko N.I., Yakovlev A.L. Razlichnye metody povysheniya iznosostojkosti titanovyh splavov i sravnitelnyj analiz ih effektivnosti primenitelno k titanovomu splavu VT23M [Different methods of wear resistance increase of titanium alloys and comparative analysis of their efficiency for VT23M titanium alloy] // Aviacionnye materialy i tehnologii. 2018. №1. S. 19–24. DOI: 10.18577/2071-9240-2018-0-1-19-24.
8. Smyslov A.M., Dyblenko Yu.M., Smyslova M.K. i dr. Novaya vakuumnaya ustanovka i tekhnologiya kombinirovannoj uprochnyayushchej obrabotki, naneseniya pokrytij na detali GTD i energeticheskih ustanovok [The new vacuum unit and technology of the combined strengthening processing, drawing coverings on detail of GTU and energy units] // Vestnik Ufimskogo gosudarstvennogo aviatsionnogo tekhnicheskogo universiteta. 2013. T. 17. №1 (54). S. 108–113.
9. Zhuravleva P.L., Treninkov I.A., Sbitneva S.V., Alekseev A.A., Gorlov D.S. Issledovanie struktury odnoslojnyh pokrytij TiN i mnogoslojnyh pokrytij TiN/ZrN [Research of structure of single layer coatings of TiN and multilayer coatings of TiN/ZrN] // Rossijskie nanotekhnologii. 2010. T. 5. №9–10. S. 112–116.
10. Vasyliev V.V., Kalinichenko A.I., Reshetnyak E.N. Experimental and modeling study on the role of Ar addition to the working gas on the development of intrinsic stress in TiN coatings produced by filtered vacuum-arc plasma // Thin Solid Films. 2017. Vol. 642. P. 207–213.
11. Latushkina S.D., Zhizhchenko A.G., Posylkina O.I. Vakuumno-dugovye karbonitridtitanovye pokrytiya, osazhdennye iz separirovannyh plazmennyh potokov [The vacuum and arc karbonitridtitanic coverings besieged from separated plasma flows] // Elektronnaya obrabotka materialov. 2015. №4. S. 22–27.
12. Lojko V.A., Semin E.V. Otsenka napryazhennogo sostoyaniya diskretnyh struktur uprochnyayushchih pokrytij, nanesennyh vakuumno-plazmennym napyleniem [Assessment of tension of discrete structures of the strengthening coverings put with vacuum and plasma dusting] // Vestnik Polotskogo gosudarstvennogo universiteta. Ser. V: Promyshlennost. Prikladnye nauki. 2014. №3.S. 29–34.
13. Shekhtman S.R., Sukhova N.A. Producing multilayer composites based on metal-carbon by vacuum ion-plasma method // Journal of Physics: Conference Series. 2016. Vol. 729. P. 1–4.
14. Vasyliev V.V., Luchaninov A.A., Reshetniak E. et al. Structure and properties of Ti–Al–Y–N coatings deposited from filtered cathodic-arc plasma in gas Ar and N2 mixture // 2017 IEEE 7th International Conference Nanomaterials: Application & Properties (NAP). 2017. DOI: 10.1109/NAP.2017.8190206.
15. Vereschaka A.A.,Volosova M.A., Batako A.D., Vereshchaka A.S., Mokritskii B.Y. Development of wear-resistant coatings compounds for high-speed steel tool using a combined cathodic vacuum arc deposition // International Journal of Advanced Manufacturing Technology. 2016. Vol. 84. Issue 5–8. P. 1471–1482.
16. Ovcharenko V.D., Kuprin A.S., Tolmachova G.N., Kolodiy I.V. Deposition of chromium nitride coatings using vacuum arc plasma in increased negative substrate bias voltage // Vacuum. 2015. Vol. 117. P. 27–34.
17. Pogrebnjak A.D., Yakushchenko I.V., Bagdasaryan A.A., Bondar O.V. Microstructure, physical and chemical properties of nanostructured (Ti–Hf–Zr–V–Nb)N coatings under different deposition conditions // Materials Chemistry and Physics. 2014. Vol. 147. Issue 3. P. 1079–1091.
18. Kosmin A.A., Budinovskij S.A., Gayamov A.M., Smirnov A.A. Zharostojkoe pokrytie dlya novogo perspektivnogo intermetallidnogo splava VIN3 [Heat-resistant coating for new intermetallic nickel-based superalloy VIN3] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2014. №4. St. 01. Available at: http://www.viam-works.ru (accessed: October 09, 2018). DOI: 10.18577/2307-6046-2014-0-4-1-1.
19. Chubarov D.A., Budinovskij S.A., Smirnov A.A. Magnetronnyj sposob naneseniya keramicheskih sloev teplozashhitnyh pokrytij [Magnetron sputtering method for applying ceramic layers for thermal barrier coatings] // Aviacionnye materialy i tehnologii. 2016. №4. S. 23–30. DOI: 10.18577/2107-9140-2016-0-4-23-30.
20. Kablov E.N., Sidorov V.V., Kablov D.E., Min P.G., Rigin V.E. Resursosberegayushchie tekhnologii vyplavki perspektivnyh litejnyh i deformiruemyh superzharoprochnyh splavov s uchetom pererabotki vsekh vidov othodov [Resource-saving smelting technologies of perspective cast and deformable superhot strength alloys taking into account processing of all types of waste] // Elektrometallurgiya. 2016. №9. S. 30–41.
Climate testing of materials to determine resistance to corrosion and aging to substantiate the possibility and feasibility of using them in advanced technology products, justifying service life, taking into account areas of operation in different climatic zones, products is one of the leading directions for the development of environmental testing to ensure reliable operation of aircraft products.
At present, the qualification assessment of the persistence of the properties of composite materials is carried out according to the results of individual aging tests in climatic chambers (the lifetime of the material in the structure at operating and maximum operating temperatures), cyclic (fatigue) mechanical tests, climatic factors in natural conditions.
Testing in laboratories provides the information necessary to assess the behavior of materials when exposed to climatic factors. But, as has been shown in numerous domestic and foreign studies, the results obtained under laboratory conditions often have a weak correlation with the results obtained under natural conditions, and can only be of an evaluative nature. At the same time, one of the most important factors that have a fundamental impact on the acceleration of the aging process of PCM is the effect of static and mechanical stresses.
The PCM tests for resistance to the combined effect of mechanical loads and climatic factors are currently not receiving enough attention due to the lack of an appropriate regulatory SD. There are also practically no tests and there is no information on the effect of dynamic mechanical (cyclic) and other operational loads (thermal, corrosive, etc.) on the properties of PCM during aging in natural environments.
In this paper, we consider the effect of the combined effect of mechanical loads and climate impac
2. Kablov E.N., Startsev O.V., Krotov A.S., Kirillov V.N. Klimaticheskoye stareniye kompozitsionnykh materialov aviatsionnogo naznacheniya. I. Mekhanizmy stareniya [Climatic aging of composite materials for aviation purposes. I. Mechanisms of aging] // Deformatsiya i razrusheniye materialov. 2010. №11. S. 19–27.
3. Kablov E.N. Vserossiyskomu institutu aviatsionnykh materialov – 80 let [All-Russian Institute of Aviation Materials – 80 years] // Deformatsiya i razrusheniye materialov. 2012. №6. S. 17–19.
4. Kablov E.N., Startsev O.V., Krotov A.S., Kirillov V.N. Klimaticheskoye stareniye kompozitsionnykh materialov aviatsionnogo naznacheniya. III. Znachimyye faktory stareniya // Deformatsiya i razrusheniye materialov. 2011. №1. S. 34–40.
5. Startsev O.V., Vapirov Yu.M., Deyev I.S. i dr. Vliyaniye dlitelnogo atmosfernogo stareniya na svoystva i strukturu ugleplastika // Mekhanika kompozitnykh materialov. 1986. №4. S. 637–642.
6. Kablov E.N., Startsev V.O. Sistemnyj analiz vliyaniya klimata na mekhanicheskie svojstva polimernykh kompozitsionnykh materialov po dannym otechestvennykh i zarubezhnykh istochnikov (obzor) [Systematical analysis of the climatics influence on mechanical properties of the polymer composite materials based on domestic and foreign sources (review)] // Aviacionnye materialy i tehnologii. 2018. №2 (51). S. 47–58. DOI: 10.18577/2071-9140-2018-0-2-47-58.
7. Vapirov Yu.M., Krivonos V.V., Startsev O.V. Interpretatsiya anomalnogo izmeneniya svoystv ugleplastika KMU-1y pri starenii v raznykh klimaticheskikh zonakh [Interpretation of the anomalous change in the properties of CFRP CMU-1y during aging in different climatic zones] // Mekhanika kompozitnykh materialov. 1994. №2. S. 266–273.
8. Startsev O.V., Krotov A.S., Golub P.D. Effect of Climatic and Radiation Ageing on Properties of Glass Fibre Reinforced Epoxy Laminates // Polymers and Polymer Composites. 1998. Vol. 6. No. 7. P. 481–488.
9. Kablov E.N., Startsev O.V., Krotov A.S., Kirillov V.N. Klimaticheskoye stareniye kompozitsionnykh materialov aviatsionnogo naznacheniya. II. Relaksatsiya iskhodnoy strukturnoy neravnovesnosti i gradiyent svoystv po tolshchine [Climatic aging of composite materials for aviation purposes. Ii. Relaxation of the initial structural nonequilibrium and gradient of thickness properties] // Deformatsiya i razrusheniye materialov. 2010. №12. S. 40–46.
10. Kablov E.N., Startsev O.V., Medvedev I.M. Obzor zarubezhnogo opyta issledovanij korrozii i sredstv zashhity ot korrozii [Review of international experience on corrosion and corrosion protection] // Aviacionnye materialy i tehnologii. 2015. №2 (35). S. 76–87. DOI: 10.18577/2071-9140-2015-0-2-76-87.
11. Morskaya korroziya: spravochnoye izdaniye. Per. s angl. / pod red. A.I. Stepanova [Marine corrosion: reference book. Trans. from Engl. / ed. By A.I. Stepanov]. M.: Metallurgiya, 1983. 512 s.
12. Aviatsionnyye materialy: spravochnik v 13 t. 7-ye izd., pererab. i dop. / pod obshch. red. E.N. Kablova [Aviation materials: a reference book in 13 t. 7th ed., rev. and add. / gen. ed. by E.N. Kablov]. T. 13: Klimaticheskaya i mikrobiologicheskaya stoykost nemetallicheskikh materialov. M.: VIAM, 2015. 270 s.
13. Efimov V.A., Shvedkova A.K., Korenkova T.G., Kirillov V.N. Issledovanie polimernyh konstrukcionnyh materialov pri vozdejstvii klimaticheskih faktorov i nagruzok v laboratornyh i naturnyh usloviyah [Research of polymeric constructional materials at influence of climatic factors and loadings in laboratory and natural conditions] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №1. St. 05. Available at: http://viam-works.ru (accessed: June 18, 2018).
14. Kuleznev V.N., Ushakova O.B. Struktura i mekhanicheskiye svoystva polimerov: konspekt kursa lektsiy [Structure and mechanical properties of polymers: lecture course outline]. M.: MITKhT, 2006. Ch. 3. C. 28–31.
15. Stepanov R.D., Shlenskiy O.F. Raschet na prochnost konstruktsiy iz plastmass, rabotayushchikh v zhidkikh sredakh [Calculation of the strength of structures made of plastic, working in liquid media]. M.: Mashinostroyeniye, 1981. 270 s.
16. Ivanova I.V., Semenycheva I.V., Startsev O.V. i dr. Klimaticheskiye ispytaniya tormoznykh shchitkov izdeliya An-72 [Climatic Testing of An-72 Brake Shields] // Voprosy aviatsionnoy nauki i tekhniki // Klimaticheskoye stareniye polimernykh kompozitsionnykh materialov. M.: VIAM, 1990. S. 6–13.
17. Kirillov V.N., Yefimov V.A., Matveyenkova T.E., Korenkova T.G. Vliyaniye posledovatelnogo vozdeystviya klimaticheskikh i ekspluatatsionnykh faktorov na svoystva stekloplastikov [The influence of the successive effects of climatic and operational factors on the properties of fiberglass] // Aviatsionnaya promyshlennost. 2004. №1. S. 45–48.
18. Tkachenko V.N., Gunyaev G.M. Klimaticheskaya stoykost ugleplastikov pod nagruzkoy [Climatic resistance of carbon fiber plastic under load] // Aviacionnyye materialy. Korroziya i stareniye materialov v morskikh subtropikakh / pod red. B.V. Perova, V.A. Zasypkina. M.: VIAM, 1983. S. 18–31.
19. Panferov K.V., Romanenkov I.G., Abashidze G.S. i dr. Atmosferostoykost stekloplastikov, nakhodyashchikhsya pod nagruzkoy [Atmosphere-resistance of glass plastics under load] // Plasticheskiye massy. 1968. №6. S. 32–33.
20. Bulmanis V.N., Yartsev V.A, Krivonos V.V. Rabotosposobnost konstruktsiy iz polimernykh kompozitov pri vozdeystvii staticheskikh nagruzok i klimaticheskikh faktorov [Efficiency of structures made of polymer composites under the influence of static loads and climatic factors] // Mekhanika kompozitsionnykh materialov. 1987. №5. S. 915–920.
21. Voprosy aviatsionnoy nauki i tekhniki. Ser.: Aviacionnyye materialy. Vyp.: Klimaticheskoye stareniye PKM / pod red. B.V. Perova, O.V. Startseva [Questions of aviation science and technology. Ser.: Aviation materials. Issue: Climatic aging of the RMB / ed. by B.V. Perov, O.V. Startsev]. M.: ONTI VIAM, 1990. 100 s.
22. Ispytaniya uprugikh sterzhney metodom prodolnogo izgiba / pod red. V.F. Savina, A.N. Blaznova [Tests of elastic rods by the method of buckling / ed. by V.F. Savin, A.N. Blaznov.]. Barnaul: Izd-vo Alt. gos. un-ta, 2009. 221 s.
23. Rudolf A.Ya., Savin V.F., Startsev O.V. i dr. Prodolnyy izgib dlya opredeleniya prochnosti plit aviatsionnykh ugleplastikov [Longitudinal bend for determining the strength of aircraft carbon fiber plates] // Tekhnika i tekhnologiya proizvodstva teploizolyatsionnykh materialov iz mineralnogo syrya: doklady IX Vseros. nauch.-praktich. konf. 17–19 iyunya 2009 g. Biysk: Izd-vo BTI AltGTU, 2009. S. 148–153.
24. Kablov E.N., Kirillov V.N., Zhirnov A.D., Startsev O.V., Vapirov Yu.M. Tsentry dlya klimaticheskikh ispytaniy aviatsionnykh PKM [Climate Test Centers for Aviation PCM] // Aviatsionnaya promyshlennost. 2009. №4. S. 36–46.
In work the influence of defects like violation of continuity of the foam filler of the composite blade on spectral characteristics of elastic oscillations of surface of tested object, raised by tap impulses is investigated at control. Also in work the influence of defects in zones of the connection between heating pad and composite blade at spectral characteristics of elastic oscillations of the pad’s surface, raised is investigated at control.
It is shown that at zones of cracks in foam plastic and at zones of violation of connection between heating pad and composite blade the received oscillations’ spectrum that is sign of availability of defect significantly changes and allows revealing defects with high reliability.
The choice of non-destructive testing parameters was important point at working off of control technique. Amplitude, duration and form of the impulses raised by mechanical vibrators, significantly depend on test object. Reduction of elastic modulus of outside layer and mechanical impedance of product (for example, owing to reduction of thickness of product or defect availability in it) increases duration, reduces amplitude and narrows pulse spectrum. For this reason of product before monitoring procedure it is recommended to mark from both sides by means of templates on two zones: on «spar zone» (thickness CFRP from 8 to 12 mm) and on «cover zone» (CFRP thickness from 2 to 3 mm).
The samples of the composite blade technology of control is fulfilled that allows to apply the approach stated in article to non-destructive testing of air screws’ blades by polymer composites at experimental and serial plants of aerospace and other industries which manufacture polymer composites air screws’ blades with the internal foam filler and heating elements.
Read in Russian
2. Kablov E.N. Iz chego sdelat budushcheye? Materialy novogo pokoleniya, tekhnologii ikh sozdaniya i pererabotki – osnova innovatsiy [What to make the future from? Materials of the new generation, technologies of their creation and processing - the basis of innovation] // Krylya Rodiny. 2016. №5. S. 8–18.
3. Kablov E.N. Materialy novogo pokoleniya – osnova innovatsiy, tekhnologicheskogo liderstva i natsionalnoy bezopasnosti Rossii [Materials of the new generation - the basis of innovation, technological leadership and national security of Russia] // Intellekt i tekhnologii. 2016. №2 (14). S. 16–21.
4. Murashov V.V. Kontrol i diagnostika mnogosloynykh konstruktsiy iz polimernykh kompozitsionnykh materialov akusticheskimi metodami [Monitoring and diagnostics of multilayer structures made of polymer composite materials by acoustic methods]. M.: Spektr, 2016. 244 s.
5. Lukina N.F., Dementeva L.A., Petrova A.P., Serezhenkov A.A. Konstrukcionnye i termostojkie klei [Constructional and heat-resistant glues] // Aviacionnye materialy i tehnologii. 2012. №S. S. 328–335.
6. Truell R., Elbaum Ch., Chik B. Ultrazvukovyye metody v fizike tverdogo tela. Per. s angl. [Ultrasonic methods in solid state physics. Trans. from Engl.]. M.: Mir, 1978. 544 s.
7. Gunasekera A.M. Monitoring of impact damage products from PCM // Materials Evaluation. 2010. Vol. 68. No. 8. P. 880–887.
8. Gunyaev G.M., Chursova L.V., Komarova O.A., Gunyaeva A.G. Konstrukcionnye ugleplastiki, modificirovannye nanochasticami [Constructional carbon the plastics modified by nanoparticles] // Aviacionnye materialy i tehnologii. 2012. №S. S. 277–286.
9. Petrova A.P. Kleyashchiye materialy: spravochnik / pod red. E.N. Kablova, S.V. Reznichenko [Adhesives: Handbook / ed. by E.N. Kablov, S.V. Reznichenko]. M.: Redaktsiya zhurnala «Kauchuk i rezina», 2002. 196 c.
10. Murashov V.V., Trifonova S.I. Kontrol kleyevykh soyedineniy v konstruktsiyakh i izdeliyakh iz PKM ultrazvukovym tenevym metodom [Control of adhesive joints in structures and products from PCM by the ultrasonic shadow method] // Klei. Germetiki. Tekhnologii. 2015. №5. S. 15–23.
11. Rose J.L., Soley L.E. Ultrasonic guided waves for anomaly detection in aircraft components // Materials Evaluation, September 2000. P. 1080–1086.
12. Ashkenazi E.K. Anizotropiya mashinostroitel'nykh materialov [Anisotropy of engineering materials]. L.: Mashinostroyeniye, 1969. S. 37–39.
13. Generazio E.R. Assessment of the probability of detection of the defect // Materials Evaluation. 2009. Vol. 67. No. 6. P. 730–738.
14. Barynin V.A., Budadin O.N., Kulkov A.A. Sovremennyye tekhnologii nerazrushayushchego kontrolya konstruktsiy iz polimernykh kompozitsionnykh materialov [Modern technologies of non-destructive testing of structures made of polymer composite materials]. M.: Spektr, 2013. 243 s.
15. Gryzagoridis J., Findeis D. Comparison of two control facilities of products from composites // Insight. 2014. Vol. 56. No. 1. P. 35–38.
16. Baryshev S.Ye. Spektralnaya plotnost posledovatelnosti ekho-signalov [The spectral density of the sequence of echo signals] // Defektoskopiya. 1974. №2. S. 19–25.
17. Merkulov L.G., Tokarev V.A. Fizicheskiye osnovy spektralnogo metoda izmereniya zatukhaniya ultrazvukovykh voln v materialakh [Physical basis of the spectral method of measuring the attenuation of ultrasonic waves in materials] // Defektoskopiya. 1970. №4. S. 3–11.
18. Murashov V.V. Primeneniye variantov akusticheskogo impedansnogo metoda dlya kontrolya detaley iz PKM i mnogosloynykh kleyenykh konstruktsiy [Application of options of the acoustic impedance method for control of parts from PCM and multilayer glued structures] // Aviacionnyye materialy i tehnologii. 2017. №S. S. 469–482. DOI: 10.18577/2071-9140-2017-0-S-469-482.
19. Murashov V.V. Kontrol kachestva izdeliy iz polimernykh kompozitsionnykh materialov akusticheskimi metodami [Quality control of products from polymer composite materials by acoustic methods] // Kontrol. Diagnostika. 2016. №12. S. 16–29.
20. Lange Yu.V. Nizkochastotnyye akusticheskiye metody i sredstva nerazrushayushchego kontrolya mnogosloynykh konstruktsiy [Low-frequency acoustic methods and means of non-destructive testing of multilayer structures] // Kontrol. Diagnostika. 2004. №2. S. 39–41.
21. Lange Yu.V., Teumin I.I. O dinamicheskoy gibkosti sukhogo tochechnogo kontakta [On the dynamic flexibility of dry point contact] // Defektoskopiya. 1971. №2. S. 49–60.
22. Nerazrushayushchiy kontrol: spravochnik / pod obshch. red. V.V. Klyuyeva [Non-destructive testing: a handbook / gen. ed. By V.V. Klyuev]. M.: Mashinostroyeniye, 2006. T. 3: Ultrazvukovoy kontrol / I.N. Yermolov, YU.V. Lange. 864 s.
23. Lange Yu.V. Elektricheskoye modelirovaniye pyezopreobrazovateley nizkochastotnykh akusticheskikh defektoskopov [Electrical modeling of piezoelectric transducers for low-frequency acoustic flaw detectors] // Defektoskopiya. 1979. №11. S. 20–26.
24. Murashov V.V., Trifonova S.I. Kontrol kachestva polimernyh kompozicionnyh materialov ultrazvukovym vremennym sposobom velosimetricheskogo metoda [Quality control of polymer composite materials using ultrasonic time-of-flight velocimetric technique] // Aviacionnye materialy i tehnologii. 2015. №4 (37). S. 86–90. DOI: 10.18577/2071-9140-2015-0-4-86-90.
25. Skuchik E. Osnovy akustiki [Fundamentals of Acoustics]. M.: Mir, 1976. T. 1. 520 s.
26. Viktorov I.A. Fizicheskiye osnovy primeneniya ultrazvukovykh voln Releya i Lemba v tekhnike [The physical basis for the application of ultrasonic Rayleigh and Lamb waves in engineering]. M.: Nauka, 1966. S. 84–87.
27. Lange Yu.V. Akusticheskiye nizkochastotnyye metody i sredstva nerazrushayushchego kontrolya mnogosloynykh konstruktsiy [Acoustic low-frequency methods and means of non-destructive testing of multilayer structures]. M.: Mashinostroyeniye, 1991. 272 s.
28. Murashov V.V. Issledovaniye kharakteristik akusticheskogo metoda svobodnykh kolebaniy [Study of the characteristics of the acoustic method of free vibrations] // Kontrol. Diagnostika, 2017. №3. S. 4–11.
29. Murashov V.V., Yakovleva S.I. Primeneniye akusticheskogo metoda svobodnykh kolebaniy dlya kontrolya konstruktsiy, soderzhashchikh sloi iz nemetallicheskikh materialov [Application of the acoustic method of free oscillations to control structures containing layers of non-metallic materials] // Kontrol. Diagnostika. 2017. №10. S. 28–35.
30. Skuchik E. Prostyye i slozhnyye kolebatelnyye sistemy [Simple and complex oscillatory systems]. M.: Mir, 1971. S. 309.
31. Lange Yu.V. O rabote pyezopriyemnika akusticheskogo spektralnogo defektoskopa [On the work of a piezopath receiver of the acoustic spectral flaw detector] // Defektoskopiya. 1978. №7. S. 67–77.
32. Lange Yu.V. Akusticheskiy spektralnyy metod nerazrushayushchego kontrolya [Acoustic spectral method of non-destructive testing] // Defektoskopiya. 1978. №3. S. 7–14.
33. Lange Yu.V., Ustinov E.G. Akusticheskiye impulsy udarnogo vozbuzhdeniya izdeliy [Acoustic impulses of shock excitation of products] // Defektoskopiya. 1982. №10. S. 81–87.
34. Vaynberg D.V. Spravochnik po prochnosti, ustoychivosti i kolebaniyam plastin [Handbook of strength, stability and vibrations of the plates]. Kiyev: Budivel'nik, 1973. S. 260.
35. Iofe V.K., Yanpolskiy A.A. Raschetnyye grafiki i tablitsy po elektroakustike [Calculated graphs and tables on electroacoustics]. M.–L.: Gosenergoizdat, 1954. S. 98.
36. Ermolov I.N., Vopilkin A.Kh., Badalyan V.G. Raschety v ultrazvukovoy defektoskopii (kratkiy spravochnik) [Calculations in ultrasonic flaw detection (quick reference)]. M.: Ekho+, 2000. 108 s.
37. Kharkevich A.A. Spektry i analiz [Spectra and analysis]. M.: Fizmatgiz, 1962. 216 s.
38. Boychuk A.S., Generalov A.S., Dikov I.A. Kontrol detaley i konstruktsiy iz polimernykh kompozitsionnykh materialov s primeneniyem tekhnologii ultrazvukovykh fazirovannykh reshetok [FRP parts and structures testing by phased array technique] // Aviacionnyye materialy i tehnologii. 2017. №1 (46). S. 45–50. DOI: 10.18577/2071-9140-2017-0-1-45-50.
The purpose of this work is development of model which will allow to define tension in a material from layers with the different module of elasticity. For this purpose in work the final and element program ANSYS Mechanical APDL complex, allowing to carry out different types of the strength analysis of final and element model from composite materials is used.
Physicomechanical tests of a layered sample for loss of stability were carried out and comparisons of the tension of loss of stability of a sample received at experiment with settlement data are carried out.
At calculation for Euler's formula it was supposed that the material is homogeneous. More exact calculation was carried out by FEM at which elastic characteristics both a metal alloy, and a composite material were considered.
At deformation of a layered plate it was supposed that in a material layers with the various module of elasticity are shortened on the same size as the top and bottom planes of both parts coincide (a condition of compatibility of deformations).
At creation of model of a three-layer test piece on loss of stability used the multilayered final elements SHELL181.
At creation of model of layered samples for determination of the maximum tension in layers with the various module of elasticity the volume final elements SOLID185 were used.
The calculations which have been carried out in the final and element program ANSYS complex showed that tension which arise in layered samples at loading do not depend on quantity of layers if the total thickness of materials with the various module of elasticity does not change.
The model for calculation of tension in each layer of a layered plate is offered. The sche
2. Buznik V.M., Kablov E.N., Koshurina A.A. Materialy dlya slozhnykh tekhnicheskikh ustroystv arkticheskogo primeneniya [Materials for complex technical devices of arctic use] // Nauchno-tekhnicheskiye problemy osvoyeniya Arktiki. M.: Nauka, 2015. S. 275–285.
3. Bokhoyeva L.A. Osobennosti rascheta na prochnost elementov konstruktsiy iz izotropnykh i kompozitsionnykh materialov s dopustimymi defektami [Features of strength analysis of structural elements of isotropic and composite materials with permissible defects]. Ulan-Ude: Izd-vo VSGTU, 2007. S. 5–6.
4. Bert Ch.U., Martindeyl D.L. Tochnyy uproshchennyy metod issledovaniya povedeniya tonkikh plastin pri bol'shikh progibakh [The exact simplified method for studying the behavior of thin plates at large deflections] // Aerokosmicheskaya tekhnika. 1988. №11. S. 131–138.
5. Bokhoyeva L.A. Ustoychivost i rost kruglykh rassloyeniy v sloistykh elementakh konstruktsiy [Stability and growth of round bundles in layered structural elements] // Izvestiya vuzov. Mashinostroyeniye. 1989. №8. S. 12–15.
6. Bokhoyeva L.A. Vliyaniye defektov tipa otsloyeniy v sloistykh plastinakh na velichinu kriticheskoy nagruzki [The effect of flaws of the type of delaminations in layered plates on the critical load] // Vestnik BGU. 2005. Vyp. 5. S. 243–264.
7. Damdinov T.A., Aseyev A.V., Belyakov A.V., Bokhoyeva L.A. Opredeleniye kriticheskikh nagruzok s pomoshchyu energeticheskogo kriteriya ustoychivosti [Definition of critical loads with the help of the energy stability criterion] // XII Tupolevskiye chteniya: mezhdunar. molodezh. nauch. konf.: materialy konf. Kazan: Izd-vo Kazan. gos. tekhn. un-ta, 2004. S. 53.
8. Sborovskiy A.K., Savelyev N.F. Mekhanizmy razrusheniya oriyentirovannykh stekloplastikov pri szhatii [Mechanisms of destruction of oriented glass plastics under compression] // Voprosy sudostroyeniya. Tekhnologiya sudostroyeniya. 1976. Vyp. 12. S. 12–18.
9. Serensen S.V., Zaytsev G.P. Nesushchaya sposobnost tonkostennykh konstruktsiy iz armirovannykh plastikov s defektami [Bearing capacity of thin-walled structures made of reinforced plastics with defects]. Kiev: Naukova dumka, 1982. 295 s.
10. Siratori M., Miyesi T., Matsusita Kh. Vychislitelnaya mekhanika razrusheniya [Computational Fracture Mechanics]. M.: Mir, 1986. 336 s.
11. Chen H.P., Doong J.L. Postbuckling Behavior of a Thick Plate // AIAA Journal. 1983. Vol. 21. No. 8. P. 1157–1161.
12. Evams A.G., Hutchinson J.W. On the mechanics of delamination and spelling on compressed felms // International Journal of Lolids and structures. 1984. Vol. 20. No. 5. P. 455–466.
13. Fei Z., Yin W.L. Post Buckling growth of a circular delamination in a laminate under compression and bending // Proceedings of the Twelfth South-eastern Conference on Theoretical and Applied Mechanics. Georgia Institute of Technology (May 10–11, 1984). Auburn. 1984. Vol. 2. P. 130–134.
14. Grishchenko S.V. Raschet i proyektirovaniye izdeliy konstruktsiy samoleta iz sloistykh kompozitov s uchetom mezhsloyevykh effektov [Calculation and design of products of aircraft structures made of laminated composites, taking into account interlayer effects] // Trudy MAI. 2015. №84. S. 1–19.
15. Huang H., Kardomateas G. Buckling and initial postbuckling behavior of sandwich beams including transverse shear // AIAA Journal. 2002. Vol. 40. No. 11. P. 2331–2335.
16. Kim H.J. Postbuckling analysis of composite laminates // Computers and Structures. 1997. Vol. 62. No. 6. P. 975–983.
17. Grigolyuk E.I., Kogan E.A., Mamay V.I. Problemy deformirovaniya tonkostennykh sloistykh konstruktsiy s rassloyeniyami [Problems of deformation of thin-walled laminated structures with bundles] // Izvestiya Rossiyskoy akademii nauk. Mekhanika tverdogo tela. 1994. №2. S. 6–32.
18. Ihibaoko J. On the buckling of an Eliptic plate with Champed Edge // Journal of the Physical Society of Japan. 1957. Vol. 12. No. 5. P. 529–532.
19. Williams J.G. On the calculation of energy release rates for cracked laminates // International Journal of Fracture. 1988. Vol. 36. P. 101–119.
20. Storakers B., Andersson B. Nonlinear plate theory applied to delamination in composites // Journal of Mechanics and Physics solids. 1988. Vol. 36. No. 6. P. 689–718.
21. Well N.A. Large Deflections of Elliptical Plates // Journal of applied Mechanics. 1956. Vol. 23. No. 1. P. 21–26.
22. Kiseleva R.Z., Gureyeva N.A., Kiselev A.P. Raschet mnogosloynoy obolochki s ispolzovaniyem obemnogo konechnogo elementa [Calculation of a multilayer shell using a bulk finite element] Izvestiya VolgGTU. 2010. №4. S. 125–128.
23. Yin W.-L., Fei Z. Delamination buckling and growth in a champed circular plate // AIAA Journal. 1988. Vol. 26. No. 4. P. 438–445.
24. Yin W.-L., Wang J.T.S. The Energy-Release Rate in the Growth of a One-Dimensional Delamination // Journal of applied Mechanics. 1984. Vol. 51. P. 939–941.
25. Sendetski D. Mekhanika kompozitsionnykh materialov [Mechanics of composite materials]. M.: Mir, 1978. T. 2. 564 s.
26. Bottega W.J. Peeling of a cylindrical layer // International Journal of Fracture. 1988. Vol. 38. No. 1. P. 3–14.
27. Buchanan G.R., Hung Y.K., Chin H.J. Nonlinear analysis for a champed bar // Transactions of the American society of Mechanical Engineers. 1969. Vol. 36. No. 2. P. 355–357.
28. Chai H., Babcock C.D. Two-dimensional modeling of Compressive Failure in Delaminated laminates // Journal of Composite materials. 1985. Vol. 19. No. 1. P. 67–91.
29. Chan W.S., Wang A.S.D. A study on the effects of the 900 ply on matrix cracks in composite laminates // AIAA/ASME/ASCE/AHC structures, structural: Dynamics and Materials Conference 27: Collection of Technical Papers. 1986. Vol. 1. P. 689–694.
30. Shivacumar K.N., Whitcomb J.D. Buckling of Sublaminate in a Quasi-Isotropic Composite Laminate // Journal of Composite materials. 1985. Vol. 19. No. 1. P. 2–18.
31. Dimitriyenko Yu.I., Gubareva E.A., Kolzhanova D.Yu. Modelirovaniye sloistykh kompozitov s konechnymi deformatsiyami metodom asimptoticheskoy gomogenizatsii [Simulation of layered composites with finite deformations by the method of asymptotic homogenization] // Inzhenernyy zhurnal: nauka i innovatsii. Available at: http://engjournal.ru/catalog/msm/pmcm/1405.html (accessed: October 25, 2018).
32. Alfutov N.A., Zinovyev P.A., Popov B.G. Raschet mnogosloynykh plastin i obolochek iz kompozitsionnykh materialov [Calculation of multilayer plates and shells of composite materials]. M.: Mashinostroyeniye, 1984. 263 s.
33. Antokhonov V.B., Bokhoyeva L.A. Obrazovaniye tekhnologicheskikh napryazheniy v koroblenii v pressovannykh kompozitnykh plastinakh [Formation of technological stresses in warping in pressed composite plates] // Mezhvuzovskiy sbornik. Irkutsk, 2000. S. 56–60.
34. Bolotin V.V. Defekty tipa rassloyeniy v konstruktsiyakh iz kompozitsionnykh materialov [Defects of the type of bundles in structures made of composite materials] // Mekhanika kompozitsionnykh materialov. 1984. №2. S. 239–256.
35. Si D. Mekhanika razrusheniya kompozitnykh materialov [Mechanics of destruction of composite material] // Mekhanika kompozitnykh materialov. 1979. №3. S. 434–446.
36. Timoshenko S.P., Voykovskiy-Kriger S. Plastinki i obolochki [Sheets and shells]. M.: Fizmatgiz, 1963. 635 s.
37. Troshin V.P. Vliyaniye prodolnogo rassloyeniya v sloistoy tsilindricheskoy obolochke na velichinu kriticheskogo vneshnego davleniya [The effect of longitudinal delamination in a layered cylindrical shell on the critical external pressure] // Mekhanika kompozitnykh materialov. 1982. №5. C. 838–842.
38. Feodosyev V.I. Izbrannyye zadachi i voprosy po soprotivleniyu materialov [Selected problems and questions on the resistance of materials]. M.: Nauka, 1973. 399 s.
39. Fudzii T., Dzako M. Mekhanika razrusheniya kompozitsionnykh materialov [Mechanics of Fracture of Composite Materials]. M.: Mir, 1982. 232 s.
40. Khellan K. Vvedeniye v mekhaniku razrusheniya [Introduction to Fracture Mechanics]. M.: Mir, 1988. 364 s.
41. Tsigler G. Osnovy teorii ustoychivosti konstruktsii [Basics of the theory of stability of a structure]. M.: Mir, 1971. 192 s.
42. Bolotin V.V., Zebelyan Z.Kh., Kurzin L.A. Ustoychivost szhatykh elementov s defektami tipa rassloyeniy [Stability of compressed elements with defects such as delaminations] // Problemy prochnosti. 1980. №7. S. 3–8.
43. Cherepanov G.P. Mekhanika razrusheniya kompozitsionnykh materialov [Fracture mechanics of composite materials]. M.: Nauka, 1983. 264 s.
44. Cherepanov G.P. Mekhanika razrusheniya mnogosloynykh obolochek. Teoriya treshchin rasslaivaniya [Mechanics of destruction of multilayer shells. Theory of delamination cracks] // Prikladnaya matematika i mekhanika. 1983. T. 47. Vyp. 5. S. 832–845.
45. Budiaushy B. Theory of buckling and post buckling of elastic structures // Advances in Applied Mechanics. 1974. Vol. 14. P. 1–65.
46. Chen H.P., Doong J.L. Postbuckling Behavior of a Thick Plate // AIAA Journal. 1983. Vol. 21. No. 8. P. 1157–1161.
47. Dharen C.K.H. Fracture mechanics of Composite materials // Journal of Materials and Technology. 1978. Vol. 100. No. 3. P. 233–247.
48. Kulkarni S.V., Frederick D. Buckling of Partially Debonded Layered Cylingrical Shells // AJAA Report. 1973. No. 73. P. 9.
49. Alfutov N.A. Osnovy rascheta na ustoychivost uprugikh system [Fundamentals of calculation on the stability of elastic systems]. M.: Mashinostroyeniye, 1991. 336 s.
50. Antipov V.V., Oreshko E.I., Erasov V.S., Serebrennikova N.Y. Hybrid laminates for application in north conditions // Mechanics of Composite Materials. 2016. Vol. 52. Nо. 5. P. 973–990.
51. Bokhoyeva L.A., Antokhonov V.B., Zangeyev B.I. Teoreticheskaya otsenka maksimalnykh razmerov bezopasnykh defektov tipa otsloyeniy [Theoretical estimation of the maximum sizes of safe defects such as delaminations] // Problemy mekhaniki sovremennykh mashin: materialy Mezhdunar. nauch. konf. Ulan-Ude, 2000. S. 14–15.
52. Bokhoyeva L.A., Damdinov T.A. Opredeleniye kriticheskikh nagruzok energeticheskim metodom s uchetom deformatsiy sdviga [Determination of critical loads by the energy method taking into account shear deformations] // Vestnik KGTU im. A.N. Tupoleva. 2006. №1. S. 3–8.
53. Oreshko E.I., Erasov V.S., Podzhivotov N.Yu. Vybor shemy raspolozheniya vysokomodulnyh sloev v mnogoslojnoj gibridnoj plastine dlya ee naibolshego soprotivleniya potere ustojchivosti [Arrangement of high-modular layers in a multilayer hybrid plate for its greatest resistance to stability loss] // Aviacionnye materialy i tehnologii. 2014. №S4. S. 109–117. DOI: 10.18577/2071-9140-2014-0-S4-109-117.
54. Viktorov E.G. Podrastaniye i izlom otsloyeniy v kompozitakh pri szhatii [Growth and fracture of delaminations in composites during compression] // Mekhanika materialov i konstruktsiy. M.: Izd-vo MEI, 1982. S. 36–40.
55. Tarnopolskiy Yu.M. Rassloyeniye szhimayushchikh sterzhney iz kompozitov [Lamination of compressive rods of composites] // Razrusheniye kompozitnykh materialov. Riga, 1979. S. 160–166.
56. Tarnopolskiy Yu.M., Khitrov V.V., Shemshurin M.V., Vasilevskiy V.M. Opasnost rassloyeniya korotkikh metallokompozitnykh sterzhney pri osevom szhatii [Danger of stratification of short metal-composite rods under axial compression] // Mekhanika polimerov. 1978. №1. S. 2–33.
57. Troshin V.P. K ustoychivosti tsilindricheskikh obolochek s rassloyeniyami [To the stability of cylindrical shells with bundles] // Mekhanika kompozitnykh materialov. 1981. №4. C. 729–731.
58. Bottega W.J., Maewal A. Delamination buckling and growth in lamination // Journal Applied Mechanics. 1983. Vol. 50. No. 1. P. 184–189.
59. Chai H., Babcock C.D., Knous W.G. One dimensional modeling of failure in laminated plates by delamination buckling // International Journal of Solids and Structures. 1981. Vol. 14. No. 11. P. 1069–1083.
60. Chen H.P. Shear deformation theory for compressive delamination buckling and growth // AIAA Journal. 1991. Vol. 29. No. 5. P. 813–819.
61. Kim S., Cho M. Efficient higher-order shell theory for laminated composites with multiple delaminations // AIAA Journal. 2003. Vol. 41. No. 5. P. 941–950.
62. Kulkarni S.V., Frederick D. Propagation of delamination in a laiered cylindrical shell // International Journal of Fracture. 1973. Vol. 9. No. 1. P. 113–115.
63. Mysyk D.A., Shakimov L.A. Eksperimentalno-teoreticheskoye issledovaniye ustoychivosti trekhsloynykh stekloplastikovykh tsilindricheskikh obolochek [Experimental and theoretical study of the stability of three-layer fiberglass cylindrical shells] // Mekhanika konstruktsiy iz kompozitsionnykh materialov. Kiev: Naukova dumka, 1977. S. 110–118.
64. Oreshko E.I., Erasov V.S., Podzhivotov N.Yu., Lutsenko A.N. Raschet na prochnost gibridnoj paneli kryla na baze listov i profilej iz vysokoprochnogo alyuminijlitievogo splava i sloistogo alyumostekloplastika [Strength calculation of hybrid wing panel on the basis of sheets and profiles from high-strength aluminum lithium alloy and laminated aluminum fiberglass] // Aviacionnye materialy i tehnologii. 2016. №1 (40). S. 53–61. DOI: 10.18577/2071-9140-2016-0-1-53-61.
65. Wang S.S., Zahlan N.M. Sicemasu H. Compressive stability of delamination random short-fiber composite // Journal of Composite materials. 1985. Vol. 19. No. 4. P. 317–333.
66. Way S. Bending of Circular Plates with Large Deflection // Transactions of the American Society of Mechanical Engineers. 1934. Vol. 23. No. 56. P. 627–636.
67. Whitcomb J.D. Finite element analysis of instability related delamination growth // Journal of Composite Materials. 1981. Vol. 15. P. 403–426.
68. Yin Wo-L., Sallam S.N., Simitsees C.J. Ultimate axial load capacity of a delaminates bam-plate // AIAA Journal. 1986. Vol. 24. No. 1. P. 123–128.
69. Kollerov M.Yu., Usikov V.D., Kuftov V.S., Gusev D.E., Oreshko E.I. Mediko-tekhnicheskoye obosnovaniye ispolzovaniya titanovykh splavov v implantiruyemykh konstruktsiyakh dlya stabilizatsii pozvonochnika [Medico-technical rationale for the use of titanium alloys in implantable structures to stabilize the spine] // Titan. 2013. №1 (40). S. 39–45.
70. Gusev D.E., Kollerov M.Yu., Rudakov S.S., Korolev P.A., Oreshko E.I. Otsenka biomekhanicheskoy sovmestimosti implantiruyemykh opornykh plastin iz splavov na osnove titana i nikelida titana metodom kompyuternogo modelirovaniya [Assessment of the biomechanical compatibility of implantable base plates of alloys based on titanium and titanium nickelide using computer simulation] // Titan. 2011. №3 (33). S. 39–44.
71. Basov K.A. Graficheskiy interfeys kompleksa ANSYS [Graphic interface of the ANSYS comple]. M.: DMK Press, 2006. 248 s.
72. Oreshko E.I., Erasov V.S., Lutsenko A.N. Matematicheskoe modelirovanie deformirovaniya konstrukcionnogo ugleplastika pri izgibe [Mathematical modeling of deformation constructional carbon fiber at a bend] // Aviacionnye materialy i tehnologii. 2016. №2 (41). S. 50–59. DOI: 10.18577/2071-9140-2016-2-50-59.
73. Borovkov A.I. Vozmozhnosti sistemy konechno-elementnogo modelirovaniya ANSYS/LS–DYNA [Possibilities of the system of finite element modeling ANSYS / LS – DYNA] // Sb. mater. I Mezhdunar. konf. polzovateley programmnogo obespecheniya ANSYS E. M.: EMT–ANSYS-tsentr, 2003. S. 128–136.
74. Oreshko E.I., Erasov V.S., Lucenko A.N., Terentev V.F., Slizov A.K. Postroenie diagramm deformirovaniya v trehmernom prostranstve σ–ε–t [Creation of the 3D stress-strain diagrams σ–ε–t] // Aviacionnye materialy i tehnologii. 2017. №1 (46). S. 61–68. DOI: 10.18577/2071-9140-2017-0-1-61-68.
75. Chigarev A.V., Kravchuk A.S., Smalyuk A.F. ANSYS dlya inzhenerov: sprav. posob. [ANSYS for engineers: ref. benefit]. M: Mashinostroyeniye-1, 2004. 512 s.
76. Kotov A.G. Osnovy modelirovaniya v srede ANSYS: ucheb. posobiye [Basics of modeling in the ANSYS environment: study guide]. Perm: Perm. gos. tekhn. un-t, 2008. 200 s.
77. Kravchuk A.S., Smalyuk A.F., Kravchuk A.I. Elektronnaya biblioteka mekhaniki i fiziki: lektsii po ANSYS s primerami resheniya zadach v pyati chastyakh [Electronic library of mechanics and physics: lectures on ANSYS with examples of solving problems in five parts]. Minsk: BGU, 2013. CH. 5. S. 105.
78. Oreshko E.I., Erasov V.S., Krylov V.D. Construction of 3D stress-strain diagram for the analysis of mechanical behavior of the material tested at various loading rates // Aviacionnye materialy i tehnologii. 2018. №2 (51). S. 59–66. DOI: 10.18577/2071-9140-2018-0-2-47-58.
79. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
80. Grishin V.I., Dzyuba A.S., Dudarkov Yu.I. Prochnost i ustoychivost elementov i soyedineniy aviatsionnykh konstruktsiy iz kompozitov [Strength and stability of elements and compounds of aircraft structures made of composites]. M.: Fizmatlit, 2013. S. 81–84.
81. Oreshko E.I., Erasov V.S., Lutsenko A.N. Osobennosti raschetov ustojchivosti sterzhnej i plastin [Calculation features of cores and plates stability] // Aviacionnye materialy i tehnologii. 2016. №4 (45). S. 74–79. DOI: 10.18577/2071-9140-2016-0-4-74-79.
82. Kollerov M.Yu., Gusev D.E., Oreshko E.I. Eksperimentalno-teoreticheskoye obosnovaniye vybora metoda i implantatov dlya ustraneniya voronkoobraznoy deformatsii grudnoy kletki [Experimental and theoretical substantiation of the choice of the method and implants for eliminating funnel chest deformation] // Nauchnyye trudy (Vestnik MATI). 2012. №19 (91). S. 331–336.
83. Kollerov M.Yu., Yegorova M.V., Oreshko E.I. i dr. Eksperimentalno-teoreticheskoye obosnovaniye algoritma rannego ortodonticheskogo lecheniya detey s odnostoronney rasshchelinoy guby i neba neyemnymi apparatami [Experimental and theoretical substantiation of the algorithm of early orthodontic treatment of children with unilateral cleft lip and palate with non-removable devices] // Stomatologiya detskogo vozrasta i profilaktika. 2011. T. KH. №1 (36). S. 23–27.
84. Timoshenko S.P. Ustoychivost sterzhney, plastin i obolochek [Stability of rods, plates and shells]. M.: Nauka, 1971. S. 34–41.
85. Volmir A.S. Ustoychivost deformiruyemykh system [Stability of deformable systems]. M.: Nauka, 1967. S. 20–27.
86. Oreshko E.I., Erasov V.S., Lutsenko A.N. Kriticheskiye napryazheniya poteri ustoychivosti v gibridnykh sloistykh plastinakh [Critical voltages of buckling in hybrid layered plates] // Materialovedeniye. 2016. №11. S. 17–21.
87. Ponomarev S.D., Biderman V.L., Likhachev K.K. i dr. Raschety na prochnost v mashinostroyenii [Strength calculations in mechanical engineering]. M.: Gos. nauch.-tekhn. izd-vo mashinostroitelnoy lit., 1959. T. 3. S. 764–768.
88. Oreshko E.I., Erasov V.S. Chislennyye issledovaniya ustoychivosti plastin s sharnirno zakreplennymi poperechnymi kromkami [Numerical studies of the stability of plates with hinged transverse edges] // Deformatsiya i razrusheniye materialov. 2018. №6. S. 7–11.
89. Oreshko E.I., Erasov V.S., Kachan D.V., Lashov O.A. Researches of stability of cores and plates at compression with the jammed cross-section edges // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2018. №9 (69). St. 07. Available at: http://www.viam-works.ru (accessed: October 19, 2018). DOI: 10.18577/2307-6046-2018-0-9-61-70.
90. Belyaev N.M. Soprotivleniye materialov [Strength of materials]. M.: Gos. izd-vo tekhn.-teor. lit., 1953. S. 83–85.
Expanding the application of polymer materials in aviation technology sets the task of improving the fire safety of the materials used. . Since it is possible to use materials of different thickness in various structural elements, it is necessary to understand the regularities of changing the fire hazard characteristics of materials from their thickness. In accordance with the requirements of aviation norms, all samples which will be tested must completely correspond to the characteristics of the material used in the product. But these formal requirements for determining the fire hazard characteristics of materials for all possible thicknesses are not feasible in practice, since the actual use of materials is possible in the ranges from 0.2–0.3 mm (1 monolayer) to 20 mm and more. In this case, the step of changing the thickness can be as much as one thickness of one monolayer, i.e. 0.2–0.3 mm. Thus, the range of all possible thicknesses can be some tens options. The actual carrying out of such a number of fire experiments has a very high labour intensity and material consumption, is completely unjustified from the economic point of view. Therefore, often in the qualification of materials are limited to carrying out tests of 1-3 thicknesses, which are chosen arbitrarily. In this regard, the problem of establishing the regularities of the change in fire hazard characteristics depending on the thickness of the sample and the construction of mathematical models describing these regularities is very relevant.
In this work the analysis of changes in one characteristic of fire hazard – the duration of self-residual combustion – depending on the thickness of the sample is carried out. . It is shown that the regularity of the change in the duration of the remaining combustion from the thickness of the sample has the form of a curve with an extremum (maximum) at some "critical" thickn
2. Barbotko S.L., Volnyy O.S., Kiriyenko O.A., Shurkova E.N. Sopostavleniye opisannykh v otechestvennykh gosudarstvennykh standartakh metodov otsenki goryuchesti tekstilnykh materialov [Comparison of methods for assessing the flammability of textile materials described in domestic state standards] // Vse materialy. Entsiklopedicheskiy spravochnik. 2018. №5. S. 30–41.
3. Barbotko S.L. Trebovaniya aviatsionnykh norm i metody otsenki pozharnoy bezopasnosti aviatsionnykh materialov: istoriya, sovremennoye sostoyaniye i perspektivy razvitiya [Requirements of aviation standards and methods for assessing fire safety of aviation materials: history, current state and development prospects] // Vestnik Voronezhskogo instituta GPS MCHS Rossii. 2014. №3. S. 23–33.
4. Barbotko S.L. Razvitie metodov ocenki pozharobezopasnosti materialov aviacionnogo naznacheniya [Development of the fire safety test methods for aviation materials] // Aviacionnye materialy i tehnologii. 2017. №S. S. 516–526. DOI: 10.18577/2071-9140-2017-0-S-516-526.
5. Normy letnoy godnosti samoletov transportnoy kategorii: AP-25 [Airworthiness standards for airplanes of the transport category: AP-25]: utv. Postanovleniyem 35-y sessii Soveta po aviatsii i ispolzovaniyu vozdushnogo prostranstva 23.10.2015. 5-ye izd. s popravkami 1–8. M.: Aviaizdat, 2015. 290 s.
6. Aircraft Materials Fire Test Handbook. Available at: http://www.fire.tc.faa.gov/handbook.stm (accessed: September 29, 2018).
7. Certification Specifications and Acceptable Means of Compliance for Large Aeroplanes. CS 25. Amendment 15. July 21, 2014. 921 p.
8. Petrova A.P., Lukina N.F., Kotova Ye.V., Mel'nikov D.A. Kleyevyye svyazuyushchiye dlya polimernykh i sloistykh alyumopolimernykh kompozitsionnykh materialov [Glue binders for polymeric and layered alumopolymer composite materials] // Novosti materialovedeniya. Nauka i tekhnika: elektron. nauch.-tekhnich. zhurn. 2018. №1–2. St. 07. Available at: http://www.materialsnews.ru (September 29, 2018).
9. Sokolov I.I., Raskutin A.E. Ugleplastiki i stekloplastiki novogo pokoleniya [Coalplastics and fibreglasses of new generation] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №4. St. 09. Available at: http://www.viam-works.ru (accessed: September 29, 2018).
10. Zhelezina G.F., Solovyeva N.A., Makrushin K.V., Rysin L.S. Polimernyye kompozitsionnyye materialy dlya izgotovleniya pylezashchitnogo ustroystva perspektivnogo vertoletnogo dvigatelya [Polymer composite materials for manufacturing engine air particle separation of advanced helicopter engine] // Aviacionnyye materialy i tehnologii. 2018. №1 (50). S. 58–63. DOI: 10.18577/2071-9140-2018-0-1-58-63.
11. Raskutin A.E. Rossiiskie polimernye kompozitsionnye materialy novogo pokoleniia, ikh osvoenie i vnedrenie v perspektivnykh razrabatyvaemykh konstruktsiiakh [Russian polymer composite materials of new generation, their exploitation and implementation in advanced developed constructions] // Aviacionnye materialy i tehnologii. 2017. №S. S. 349–367. DOI: 10.18577/2071-9140-2017-0-S-349-367.
12. Veshkin E.A., Postnov V.I., Abramov P.A. Puti povysheniya kachestva detaley iz PKM pri vakuumnom formovanii [Ways to improve the quality of parts from PCM in vacuum molding] // Izvestiya Samarskogo nauchnogo tsentra Rossiyskoy akademii nauk. 2012. T. 14. №4 (3). S. 834–839.
13. Lukina N.F., Dementeva L.A., Kutsevich K.E. Kleevye prepregi na osnove tkanej Porcher – perspektivnye materialy dlya detalej i agregatov iz PKM [Adhesive prepregs based on tissue Porsher – perspective materials for parts and units out of polymeric composite materials] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №6. St. 10. Available at: http://www.viam-works.ru (accessed: September 29, 2018). DOI: 10.18577/2307-6046-2014-0-6-10-10.
14. Eliseev O.A., Naumov I.S., Smirnov D.N., Bryk Ya.A. Reziny, germetiki i ogne-teplozashhitnye materialy [Rubbers, sealants, fireproof and heat-shielding materials] // Aviacionnye materialy i tehnologii. 2017. №S. S. 437–451. DOI: 10.18577/2071-9140-2017-0-S-437-451.
15. Sinyakov S.D., Zastrogina O.B., Pavlyuk B.Ph. Kompozitsii na osnove fenolformaldegidnykh smol, modifitsirovannykh polivinilatsetalyami (obzor) // Novosti materialovedeniya. Nauka i tekhnika. 2018. №1–2. St. 08. Available at: http://www.materialsnews.ru (September 29, 2018).
16. Campbell S., Jensen M. Flammability standardization task group // The Sixth Triennial International Fire & Cabin Safety Research Conference (October 25–28 2010, Atlantic City, NJ). Available at: http://www.fire.tc.faa.gov (September 29, 2018).
17. Campbell S. Approved Materials List // International Aircraft Materials Fire Test Working Group Meeting (March 7, 2017, Mobile, Alabama, USA). Available at: http://www.fire.tc.faa.gov (September 29, 2018).
18. Gardlin J. FAA Aircraft Certification Service (AIR) Transformation // International Aircraft Systems Fire Protection Working Group Meeting (November 2, 2017, Atlantic City). Available at: http://www.fire.tc.faa.gov (September 29, 2018).
19. Cambell S., Jensen M., Sattayatam P. Flammability Standardization Task Group – Final Reports: Federal Aviation Administration Draft Policy Memo, August 20, 2009. Available at: https://www.fire.tc.faa.gov/pdf/tc12-10.pdf (September 29, 2018).
20. Flammability Testing of Interior Materials: PS-ANM-25.853-01-R2. U.S. Department of Transportation. Federal Aviation Administration. Available at: https://www.fire.tc.faa.gov/pdf/flammabilitytestingofinteriormaterialsfinal.pdf (September 29, 2018).
21. Clarifications and Additions for Future Advisory Circular: PS-ANM-25.853-01-R2 // 8th Triennial Fire & Cabin Safety Research Conference (October 24–27, 2016). Available at: https://www.fire.tc.faa.gov (September 29, 2018).
22. Clarifications and Additions for Future Advisory Circular: PS-ANM-25.853-01-R2 // FAA International Aircraft Materials Fire Test Working Group Meeting (October 30, 2017, Atlantic City, New Jersey). Available at: https://www.fire.tc.faa.gov (accessed: September 29, 2018).
23. Barbotko S.L., Volnyj O.S., Kirienko O.A., Shurkova E.N. Osobennosti ispytanij aviacionnykh materialov na pozharoopacnost. Chast I. Ispytaniya na goruchest. Vliyanie tolshchiny obraztsa na registriruemye kharakteristiki [Features of tests of aviation materials on fire danger. Part 1. Tests for combustibility. Influence of thickness of sample on registered characteristics] // Pozharovzryvobezopasnost. 2015. Т. 24. №1. S. 40–48.
24. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period to 2030] // Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
25. Kablov E.N. Materialy dlya aviakosmicheskoj tekhniki [Materials for aerospace equipment] // Vse materialy. Entsikolopedicheskij spravochnik. 2007. №5. S. 7–27.
26. Kablov E.N. Kontrol kachestva materialov – garantiya bezopasnosti ekspluatatsii aviacionnoj tekhniki [Quality control of materials – security accreditation of operation of aviation engineering] // Aviacionnye materialy i tehnologii. 2001. №1. S. 3–8.