Articles
The resource-saving production technology of wrought superalloy VG175 for gas-turbine disks with use up to 100% scrap, including off-grade scrap, has been developed in VIAM. This technology allows manufacturing metal, which is not worse than the alloy made from pure charge materials in such parameters as the content of alloying elements, impurities and mechanical properties. The cost of the alloy produced with use up to 100% scrap, including off-grade scrap, is 20–30% lower in comparison with the alloy produced in accordance with the industrial technology with utilization up to 50% specification scrap.
2. Kablov E.N., Ospennikova O.G., Sidorov V.V., Rigin V.E., Kablov D.E. Osobennosti tehnologii vyplavki i razlivki sovremennyh litejnyh vysokozharoprochnyh nikelevyh splavov [Features of smelting technology and razlivka of modern cast high-heat resisting nickel alloys] // Vestnik MGTU im. N.E. Baumana. Ser. «Mashinostroenie». 2011. №SP2. S. 68–78.
3. Kablov E.N., Ospennikova O.G., Lomberg B.S., Sidorov V.V. Prioritetnye napravleniya razvitiya tehnologij proizvodstva zharoprochnyh materialov dlya aviacionnogo dvigatelestroeniya [The priority directions of development of production technologies of heat resisting materials for aviation engine building] //Problemy chernoj metallurgii i materialovedeniya. 2013. №3. S. 47–54.
4. Min P.G., Goryunov A.V., Vadeev V.E. Sovremennye zharoprochnye nikelevye splavy i effektivnye resursosberegayushhie tehnologii ih izgotovleniya [Modern heat resisting nickel alloys and effective resource-saving technologies of their manufacturing] // Tehnologiya metallov. 2014. №8. S. 12–23.
5. Min P.G., Sidorov V.V. Opyt pererabotki litejnyh othodov splava ZhS32-VI na nauchno-proizvodstvennom komplekse VIAM po izgotovleniyu lityh prutkovyh (shihtovyh) zagotovok [The experience of GS32-VI alloy scrap recycling at the VIAM scientific and production complex for cast bars production] // Aviacionnye materialy i tehnologii. 2013. №4. S. 20–25.
6. Min P.G., Sidorov V.V. Resursosberegayushhaya tehnologiya pererabotki othodov litejnyh zharoprochnyh nikelevyh splavov [Resource-saving refining technology of waste of cast heat resisting nickel alloys] / V sb. trudov XXII Mezhdunarodnoj nauch.-tehnich. konf. «Litejnoe proizvodstvo i metallurgiya – 2014». Belarus. 2014. S. 118–123.
7. Sidorov V.V., Rigin V.E., Goryunov A.V., Min P.G. Opyt pererabotki v usloviyah FGUP «VIAM» litejnyh othodov zharoprochnyh splavov, obrazuyushhihsya na motorostroitelnyh i remontnyh zavodah [Experience of processing in the conditions of FSUE «VIAM» of foundry waste of the hot strength alloys which are forming at engine-building and repair plants] // Metallurg. 2014. №1. S. 86–90.
8. Sidorov V.V., Rigin V.E., Goryunov A.V., Min P.G. Resursosberegayushhaya tehnologiya pererabotki nekondicionnyh othodov litejnyh zharoprochnyh splavov [Resource-saving refining technology of unconditioned waste of foundry hot strength alloys] // Metallurg. 2014. №5. S. 35–39.
9. Sidorov V.V., Rigin V.E., Gorjunov A.V., Min P.G. Innovatsionnaya tehnologiya proizvodstva zharoprochnogo splava ZhS32-VI s uchetom pererabotki vseh vidov othodov v usloviyah sertificirovannogo serijnogo proizvodstva FGUP «VIAM» [The innovation technology of high temperature GS32-VI alloy production considering the recycling of all scrap appearance a certificated quantity production of FGUP «VIAM»] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №6.
St. 01. Available at: http://www.viam-works.ru (accessed: May 18, 2015). DOI: 10.18577/2307-6046-2014-6-1-1.
10. Sidorov V.V., Rigin V.E., Timofeeva O.B., Min P.G. Vliyanie kremniya i fosfora na zharoprochnye svojstva i strukturno-fazovye prevrashheniya v monokristallah iz vysokozharoprochnogo splava VZhM4-VI [An effect of silicon and phosphorus on high temperature properties and structure-phase transformations of single crystals of VGM4-VI superalloy] // Aviacionnye materialy i tehnologii. 2013. №3. S. 32–38.
11. Sidorov V.V., Rigin V.E., Min P.G., Folomejkin Ju.I., Timofeeva O.B., Filonova E.V., Ishodzhanova I.V. Vliyanie primesej na strukturu i svojstva vysokozharoprochnyh litejnyh splavov i razrabotka effektivnyh metodov ustraneniya ih otricatelnogo vliyaniya [Influence of impurity on structure and property of high-heat resisting cast alloys and development of effective methods of elimination of their negative influence] // Novosti materialovedeniya. Nauka i tehnika: elektron. nauch.-tehnich. zhurn. 2014. №2. St. 03. Available at: http://www.materialsnews.ru (accessed: May 18, 2015).
12. Sidorov V.V., Rigin V.E., Min P.G., Folomejkin Yu.I. Vliyanie fosfora i kremniya na strukturu i svojstva vysokozharoprochnyh litejnyh splavov i razrabotka effektivnyh metodov ustraneniya ih otricatelnogo vliyaniya [Influence of phosphorus and silicon on structure and properties of high-heat resisting cast alloys and development of effective methods of elimination of their negative influence] // MiTOM. 2015. №6. S. 55–60.
13. Kablov D.E., Sidorov V.V., Min P.G. Vliyanie primesi azota na strukturu monokristallov zharoprochnogo nikelevogo splava ZhS30-VI i razrabotka effektivnyh sposobov ego rafinirovaniya [Influence of impurity of nitrogen on structure of monocrystals of heat resisting ZhS30-VI nickel alloy and development of effective ways of its refinement] // Aviacionnye materialy i tehnologii. 2012. №2. S. 32–36.
14. Kablov D.E., Chabina E.B., Sidorov V.V., Min P.G. Issledovanie vliyaniya azota na strukturu i svojstva monokristallov iz litejnogo zharoprochnogo splava ZhS30-VI [Research of influence of nitrogen on structure and properties of monocrystals from foundry ZhS30-VI hot strength alloy] // MiTOM. 2013. №8. S. 3–7.
15. Kablov D.E., Sidorov V.V., Min P.G. Zakonomernosti povedenija azota pri poluchenii monokristallov zharoprochnogo nikelevogo splava ZhS30-VI i ego vliyanie na ekspluatacionnye svojstva [Patterns of behavior of nitrogen when receiving monocrystals of heat resisting ZhS30-VI nickel alloy and its influence on operational properties] //MiTOM. 2014. №1. S. 8–12.
16. Sidorov V.V., Min P.G., Folomejkin Yu.I., Vadeev V.E. Vliyanie skorosti filtracii slozhnolegirovannogo nikelevogo rasplava cherez penokeramicheskij filtr na soderzhanie primesi sery v metalle [Influence of speed of filtering complex-alloyed nickel rasplava via the penokeramichesky filter on the content of impurity of sulfur in metal] // Elektrometallurgiya. 2015. №5. S. 12–15.
17. Sidorov V.V., Min P.G., Burtsev V.T., Kablov D.E., Vadeev V.E. Komputernoe modelirovanie i eksperimentalnoe issledovanie reakcij rafinirovaniya v vakuume slozhnolegirovannyh renijsoderzhashhih nikelevyh rasplavov ot primesej sery i kremniya [Computer modeling and pilot study of reactions of refinement in vacuum complex-alloyed reniysoderzhashchy nickel rasplavov from sulfur and silicon impurity] // Vestnik RFFI. 2015. №1 (85). S. 32–36.
18. Min P.G., Sidorov V.V. Rafinirovanie othodov zharoprochnogo nikelevogo splava ZhS32-VI ot primesi kremniya v usloviyah vakuumnoj indukcionnoj plavki [Refining of scraps of Ni-base superalloy ZhS32-VI to eliminate silicon impurity under conditions of vacuum induction melting] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №9. St. 01. Available at: http://www.viam-works.ru (accessed: May 18, 2015). DOI: 10.18577/2307-6046-2014-9-1-1.
19. Sidorov V.V., Min P.G. Rafinirovanie slozhnolegirovannogo nikelevogo rasplava ot primesi sery pri plavke v vakuumnoj indukcionnoj pechi (chast 1) [Refinement complex-alloyed nickel rasplava from sulfur impurity when melting in the vacuum induction furnace (part 1)] // Elektrometallurgiya. 2014. №3. S. 18–23.
20. Sidorov V.V., Min P.G. Rafinirovanie slozhnolegirovannogo nikelevogo rasplava ot primesi sery pri plavke v vakuumnoj indukcionnoj pechi (chast' 2) [Refinement complex-alloyed nickel rasplava from sulfur impurity when melting in the vacuum induction furnace (part 2)] // Elektrometallurgiya. 2014. №5. S. 26–30.
21. Min P.G., Vadeev V.E., Kramer V.V. Rafinirovanie nekondicionnyh othodov deformiruemyh nikelevyh splavov v vakuumnoj indukcionnoj pechi [Refinement of unconditioned waste of deformable nickel alloys in the vacuum induction furnace] //Tehnologiya metallov. 2015. №4. S. 8–13.
22. Savickij E.M., Terehova V.F. Metallovedenie redkozemelnyh metallov [Metallurgical science of rare earth metals]. M.: Nauka, 1975. 52 s.
23. Mehanik E.A., Min P.G., Gundobin N.V., Rastegaeva G.Yu. Opredelenie massovoj doli sery v zharoprochnyh nikelevyh splavah i stalyah v diapazone koncentracij ot 0,0001 do 0,0009% (po masse) [Determination of sulfur mass fraction in heat-resistant nickel alloy and steels within the concentration range from 0,0001 to 0,0009% wt.] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №9. St. 12. Available at: http://www.viam-works.ru (accessed: May 18, 2015). DOI: 10.18577/2307-6046-2014-9-12-12.
An ingenious method for calculating the thermodynamic models for liquid metal solutions of multicomponent systems based on iron and nickel, as well as ellinvar alloy is proposed. Calculation of activity and the oxygen content in ellinvar alloy and deoxidation power of aluminum, cerium and lanthanum is determined using equations and models of regular and pseudoregular solutions. When melting the base model ellinvar alloy the content of oxygen and nitrogen is determined by the gas analysis methods. Oxygen activity is investigated by the EMF method (аO), the morphology and composition of non-metallic inclusions are studied by metalography and SEM and the benefits of Al, Ti introduction into the melt to reduce the аO and nonmetallic inclusions, comprising predominantly Ti and O2, N and S with the size 5–10 microns is shown.
2. Kablov E.N., Lomberg B.S., Ospennikova O.G. Sozdanie sovremennyh zharoprochnyh materialov i tehnologij ih proizvodstva dlya aviacionnogo dvigatelestroeniya [Creation of modern heat resisting materials and technologies of their production for aviation engine building] // Krylya Rodiny. 2012. №3–4. S. 34–38.
3. Kablov E.N., Ospennikova O.G., Lomberg B.S., Sidorov V.V. Prioritetnye napravleniya razvitiya tehnologij proizvodstva zharoprochnyh materialov dlya aviacionnogo dvigatelestroeniya [The priority directions of development of production technologies of heat resisting materials for aviation engine building] // Problemy chernoj metallurgii i materialovedenija. 2013. №3. S. 47–54.
4. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33.
5. Kablov E.N. Sovremennye materialy – osnova innovacionnoj modernizacii Rossii [Modern materials – basis of innovative modernization of Russia] // Metally Evrazii. 2012. №3. S. 10–15.
6. Bazyleva O.A., Arginbaeva E.G., Turenko E.Yu. Zharoprochnye litejnye intermetallidnye splavy [Heat resisting cast intermetallic alloys] // Aviacionnye materialy i tehnologii. 2012. №S. S. 57–60.
7. Kalitsev V.A., Shcherbakov A.I., Evgenov A.G., Mosolov A.N., Ishodzhanova I.V. Tehnologicheskie osobennosti proizvodstva elinvarnyh splavov [Technological features of production of elinvarny alloys] // Metalloobrabotka. 2012. №2. S. 45–48.
8. Erasov V.S., Grinevich A.V., Senik V.Ya., Konovalov V.V., Trunin Yu.P., Nesterenko G.I. Raschetnye znacheniya harakteristik prochnosti aviacionnyh materialov [Calculated values of characteristics of durability of aviation materials] // Aviacionnye materialy i tehnologii. 2012. №2. S. 14–16.
9. Zhegina I.P., Kotelnikova L.V., Grigorenko V.B., Zimina Z.N. Osobennosti razrusheniya deformiruemyh nikelevyh splavov i stalej [Features of destruction of deformable nickel alloys and steel] // Aviacionnye materialy i tehnologii. 2012. №S. S. 455–465.
10. Kablov D.E., Sidorov V.V., Min P.G. Vliyanie primesi azota na strukturu monokristallov zharoprochnogo nikelevogo splava ZhS30-VI i razrabotka effektivnyh sposobov ego rafinirovaniya [Influence of impurity of nitrogen on structure of monocrystals of heat resisting ZhS30-VI nickel alloy and development of effective ways of its refinement] // Aviacionnye materialy i tehnologii. 2012. №2. S. 32–36.
11. Stomahin A.Ya., Kotelnikov G.I., Sereznov V.N., Grigoryan V.A. Usovershenstvovanie raschetnyh metodov opredeleniya uslovij nitridoobrazovaniya v stali [Improvement of rated methods of definition of conditions of formation of nitrides in steel] / V kn. Fiziko-himicheskie osnovy processov proizvodstva stali. M.: Nauka. 1979. S. 242–246.
12. Morozova G.I. Zakonomernost formirovaniya himicheskogo sostava γ′/γ-matricy mnogokomponentnyh nikelevyh splavov [Pattern of forming of chemical composition γ ′/γ-матрицы multicomponent nickel alloys] // Doklady Akademii nauk. 1991. T. 320. №6. S. 1413–1416.
13. Kablov E.N., Petrushin N.V. Kompyuternyj metod konstruirovaniya litejnyh zharoprochnyh nikelevyh splavov [Computer method of designing of cast heat resisting nickel alloys] / V kn.: Litejnye zharoprochnye splavy. Effekt S.T. Kishkina / pod red. E.N. Kablova. M.: Nauka, 2006. S. 56–79.
14. Shilnikov E.V., Paderin S.N. Termodinamika rastvorov kisloroda v zhidkih metallah: Ni, Co, Fe i Mn [Thermodynamics of solutions of oxygen in liquid metals: Ni, Co, Fe and Mn] // Elektrometallurgiya. 2013. №6. S. 3–8.
15. Carlens J.P. Practical application of the oxygen activity measurements by means of the «Celox II oxygen cell». Hereaus Electro-Nite Int. 2000. 45 p.
Fractures of single-crystal turbine blades of GTP of alloys GS26-VI and GS32-VI after operating damage were analyzed to identify fracture mechanism. Single-crystal samples of alloy GS32-VI were tested under short-term loading and creep at temperature of 570°С, which corresponded to working conditions of blade tails, to confirm the fracture mechanism.
2. Kablov E.N., Bondarenko Yu.A., Echin A.B., Surova V.A. Kablov D.E. Razvitie processa napravlennoj kristllizacii lopatok GTD iz zharoprochnyh i intermetallidnyh splavov s monokristallicheskoj strukturoj [Development of process of the directed kristllizatsiya of blades of GTE from heat resisting and intermetallic alloys with single-crystal structure] // Vestnik MGTU im. N.E. Baumana. Ser. «Mashinostroenie». 2011. №SP2. S. 20–25.
3. Litye lopatki gazoturbinnyh dvigatelej: splavy, tehnologii, pokrytija. 2-e izd. / pod obshh. red. E.N. Kablova [Cast blades of gas turbine engines: alloys, technologies, coverings. 2nd ed. / under the general editorship of E.N.Kablov]. M.: Nauka, 2006. 632 s.
4. Kablov E.N., Bondarenko Yu.A., Kablov D.E. Osobennosti struktury i zharoprochnyh svojstv monokristallov <001> vysokorenievogo nikelevogo zharoprochnogo splava, poluchennogo v usloviyah vysokogradientnoj napravlennoj kristallizacii [Features of structure and heat resisting properties of monocrystals of <001> high-rhenium nickel hot strength alloys received in the conditions of high-gradient directed crystallization] // Aviacionnye materialy i tehnologii. 2011. №4. S. 25–31.
5. Chabina E.B., Alekseev A.A., Filonova E.V., Lukina E.A. Primenenie metodov analiticheskoj mikroskopii i rentgenostrukturnogo analiza dlya issledovaniya strukturno-fazovogo sostoyaniya materialov [Application of methods of analytical microscopy and X-ray of the structural analysis for research of structural and phase condition of materials] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. № 5. St. 06. Available at: http://www.viam-works.ru (accessed: February 10, 2015).
6. Nazarkin R.M. Rentgenodifrakcionnye metodiki precizionnogo opredeleniya parametrov kristallicheskih reshetok nikelevyh zharoprochnyh splavov (kratkij obzor) [X-ray diffraction techniques for precise determination of lattice constants in Ni-based superalloys: a brief review] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 41–48.
7. Echin A.B., Bondarenko Yu.A. Novaya promyshlennaya vysokogradientnaya ustanovka UVNS-6 dlya polucheniya lopatok i drugih detalej GTD iz litejnyh zharoprochnyh i intermetallidnyh splavov s monokristallicheskoj strukturoj [New industrial high-gradient UVNS-6 for manufacture of GTE blades and other parts from casting heat-resistant and intermetallic alloys with single-crystal structure] // Aviacionnye materialy i tehnologii. 2014. №4. S. 31–36.
8. Orlov M.R., Yakimova M.S., Letov A.F. Analiz rabotosposobnosti monokristallicheskih lopatok turbiny vysokogo davleniya v sostave nazemnyh gazoturbinnyh ustanovok [The analysis of operability of single-crystal turbine blades of high pressure as a part of land gas turbine units] //Aviacionnye materialy i tehnologii. 2012. №S. S. 399–407.
9. Krylov O.V. Geterogennyj kataliz [Heterogeneous catalysis]. M.: Akademkniga, 2004. 679 s.
10. Stepanov A.V. Poluchenie vodoroda i vodorodsoderzhashhih gazov [Receiving hydrogen and vodorodsoderzhashchy gases]. Kiev: Naukova dumka, 1982. 312 s.
11. Tolorajya V.N., Kablov E.N., Orehov N.G. Tehnologii litya monokristallicheskih turbinnyh lopatok GTD i GTU [Casting technologies of single-crystal turbine blades of GTE and GTU] // Aviacionnye materialy i tehnologii. 2003. №1. S. 63–79.
12. Shalin R.E., Svetlov I.L., Kachanov E.B. Monokristally nikelevyh zharoprochnyh splavov [Monocrystals of nickel hot strength alloys]. M.: Mashinostroenie, 1977, 336 s.
13. Ospennikova O.G., Orlov M.R., Avtaev V.V. Anizotropiya uprugoplasticheskih harakteristik zharoprochnyh nikelevyh splavov – osnova konstruirovaniya monokristallicheskih turbinnyh lopatok [Anisotropy of elasto-plastic characteristics of heat resisting nickel alloys – basis of designing of single-crystal turbine blades] // Deformaciya i razrushenie materialov. 2013. №11. S. 12–19.
14. Krivko A.I., Epishin A.I., Svetlov I.L., Samojlov A.I. Uprugie svojstva monokristallov nikelevyh splavov [Elastic properties of monocrystals of nickel alloys] // Problemy prochnosti. 1988. №2. C. 68–75.
15. Svetlov I.L., Suhanov N.N., Krivko A.I. Temperaturnaja zavisimost' harakteristik kratkovremennoj prochnosti, modulja Junga i kojefficienta linejnogo rasshirenija monokristallov splava ZhS6F[Temperature dependence of characteristics of short-term durability, Ung’s module and factor of linear dilatation of monocrystals of alloy of ZhS6F] // Problemy prochnosti. 1987. №4. C. 51–56.
The article is considering the process of coating removal from the surface of complicated profile parts of high-temperature nickel alloys in plasma of electrolyte which is a neutral low concentration solution. Electrolytic plasma treatment is performed through the cathodic polarization of the treated part to avoid over echting of the base. The characteristic curve of the uniformity and velocity of the coating removal on electrolyte composition and processing optionssuch as voltage, temperature, ratio between period of direct current pulse packet and spacing interval is studied.
2. Bybin A.A., Nevyantseva R.R., Smolnikova O.G. Zakonomernosti udaleniya vneshnej i vnutrennej zon zharostojkogo alyuminidnogo pokrytiya s dlitelnoj narabotkoj pri remonte lopatok TVD [Patterns of removal of external and internal zones of heat resisting alyuminidny covering with long operating time at repair of blades of THP] //Vestnik UGATU. 2008. T. 10. №1 (26). S. 127–130.
3. Lesnikov V.P., Kuznetsov V.P., Korotkih A.V. Tehnologiya vosstanovitelnogo remonta turbinnyh lopatok GTD [Technology of restoring repair of turbine blades of GTE] // Aviacionnaya kosmicheskaja tehnika i tehnologija. 2004. №7 (15). S. 236–239.
4. Kablov E.N. Materialy i himicheskie tehnologii dlya aviacionnoj tehniki [Materials and chemical technologies for aviation engineering] // Vestnik Rossijskoj akademii nauk. 2012. T. 82. №6. S. 520–530.
5. Kablov E.N., Muboyadzhyan S.A. Zashhitnye pokrytiya lopatok turbin GTD [Protecting covers of blades of turbines GTE] / V kn. Aviacionnye materialy. Izbrannye trudy «VIAM» 1932–2002: yubilejnyj nauch.-tehnich. sb. M.: MISIS–VIAM, 2002. S. 70–81.
6. Kablov E.N., Muboyadzhyan S.A. Zharostojkie i teplozashhitnye pokrytiya dlya lopatok turbiny vysokogo davleniya perspektivnyh GTD [Heat resisting and heat-protective coverings for turbine blades of high pressure of perspective GTE] // Aviacionnye materialy i tehnologii. 2012. №S. S. 60–70.
7. Muboyadzhyan S.A., Aleksandrov D.A., Gorlov D.S., Egorova L.P., Bulavinceva E.E. Zashhitnye i uprochnjayushhie ionno-plazmennye pokrytiya dlya lopatok i drugih otvetstvennyh detalej kompressora GTD [Protective and strengthening ion-plasma coverings for blades and other responsible details of the GTE compressor] // Aviacionnye materialy i tehnologii. 2012. №S. S. 71–81.
8. Matveev P.V., Budinovskij S.A., Muboyadzhyan S.A., Kosmin A.A. Zashhitnye zharostojkie pokrytiya dlya splavov na osnove intermetallidov nikelya [High-temperature coatings for intermetallic nickel-based alloys] // Aviacionnye materialy i tehnologii. 2013. №2. S. 12–15.
9. Matveev P.V., Budinovskij S.A., Chubarov D.A. Tehnologiya polucheniya ionno-plazmennyh zharostojkih podsloev s povyshennym soderzhaniem alyuminiya dlya perspektivnyh TZP [Technology for production of ion-plasma heat-resistant bonding sub-layers with increased aluminum content for advanced TBCs] // Aviacionnye materialy i tehnologii. 2014. №S5. S. 56–60.
10. Gayamov A.M., Budinovskij S.A. Issledovanie vliyaniya tolshhiny barernogo sloya pokrytiya na svojstva kompozicij iz zharoprochnyh splavov VZhM1 i ZhS36 s zharostojkim pokrytiem [Study of an effect of thickness of the barrier coating layer on properties of compositions of high-temperature alloys VZhM1 and ZhS36 with heat-resistant coatings] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №9. St. 03. Available at: http://viam-works.ru (accessed: June 11, 2015). DOI: 10.18577/2307-6046-2014-0-9-3-3.
11. Kablov E.N., Muboyadzhyan S.A., Budinovskij S.A., Lutsenko A.N. Ionno-plazmennye zashhitnye pokrytija dlja lopatok gazoturbinnyh dvigatelej [Ion-plasma protecting covers for blades of gas turbine engines] // Metally. 2007. №5. S. 23–34.
12. Kryukov A.P., Puzina Yu.Yu. Opredelenie tolshhiny parovoj plenki v zadache o plenochnom kipenii nedogretoj zhidkosti [Determination of thickness of steam film in task about film boiling of nedogrety liquid] / V sb. trudov V Rossijskoj nacionalnoj konf. po teploobmenu. M.: Izdatelskij dom MEI. 2010. T. 4. S. 100–103.
13. Lazarenko B.R., Duradzhi V.N., Bryantsev I.V. O strukture i soprotivlenii prielektrodnoj zony pri nagreve metallov v elektrolitnoj plazme [About structure and resistance of prielektrodny zone when heating metals in elektrolitny plasma] // Elektronnaja obrabotka materialov. 1980. №2. S. 50–55.
14. Budinovskij S.A., Muboyadzhyan S.A. Razrabotka novyh processov udaleniya otrabotannyh zharostojkih alyuminidnyh pokrytij s poverhnosti pera rabochih lopatok turbin [Development of new processes of removal of the fulfilled heat resisting alyuminidny coverings from surface of feather of working blades of turbines] / V sb. Aviacionnye materialy i tehnologii. M.: VIAM. 2005. №1. S. 40–49.
15. Kablov E.N., Muboyadzhyan S.A., Budinovskij S.A., Yagodkin Yu.D. Perspektivy primeneniya ionno-plazmennoj tehnologii vysokih energij dlya mezhresursnogo remonta lopatok turbin [Perspectives of application of ion-plasma technology of high energy for interresource repair of blades of turbines] / V sb.: Aviacionnye materialy i tehnologii. Vyp. «Remontnye tehnologii v aviastroenii». M.: VIAM. 2002, S. 6–13.
16. Popova S.V., Muboyadzhyan S.A., Budinovskij S.A. Elektrolitno-plazmennaja finishnaya obrabotka metallov i splavov [Electrolit-plasma finishing processing of metals and alloys] // Pisma o materialah. 2015. T. 5. №1. S. 39–40.
Phase composition and structure analyses have been carried out on hydrogenated samples of VT6 (Ti–6,25Al–4,1V, wt.%) titanium alloy after low-temperature vacuum annealing. It has been shown that nanoscale α-phase particles can precipitate in (α+β)-structure upon low-temperature vacuum annealing if preceding hydrogenation process was ended in β-area and as a result a single β-phase structure was kinetically achieved at room temperature.
2. Kablov E.N. Shestoj tehnologicheskij uklad [Sixth technological way] //Nauka i zhizn. 2010. №4. S. 2–7.
3. Kablov E.N. Materialy i himicheskie tehnologii dlya aviacionnoj tehniki [Materials and chemical technologies for aviation engineering] // Vestnik Rossijskoj akademii nauk. 2012. T. 82. №6. S. 520–530.
4. Nochovnaya N.A. Perspektivy i problemy primeneniya titanovyh splavov [Perspectives and problems of application of titanium alloys] / V sb. Aviacionnye materialy i tehnologii. Vyp. «Perspektivy razvitiya i primeneniya titanovyh splavov dlya samoletov, raket, dvigatelej i sudov»: sb. dokladov yubilejnogo soveshhaniya, posvyashhennogo 55-letiyu titanovoj laboratorii VIAM. M.: VIAM. 2007. S. 4–8.
5. Horev A.I. Fundamentalnye i prikladnye raboty po konstrukcionnym titanovym splavam i perspektivnye napravleniya ih razvitiya [Fundamental and applied works on structural titanium alloys and perspective directions of their development] //Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №2. St. 04. Available at: http://www.viam-works.ru (accessed: July 14, 2015).
6. Nochovnaya N.A., Panin P.V., Alekseev E.B., Bokov K.A. Ekonomnolegirovannye titanovye splavy dlya sloistyh metallopolimernyh kompozicionnyh materialov [Low-cost alloyed titanium alloys for metal-polymer laminates] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №11. St. 02. Available at: http://www.viam-works.ru (accessed: July 14, 2015). DOI: 10.18577/2307-6046-2014-0-11-2-2.
7. Ilin A.A., Kolachev B.A., Nosov V.K., Mamonov A.M. Vodorodnaya tehnologiya titanovyh splavov [Hydrogen technology of titanium alloys]. M.: Izdatelskij dom MISiS, 2002. 392 s.
8. Panin P.V., Dzunovich D.A., Alekseev E.B. Sposoby opisaniya fazovogo sostava titanovyh splavov, dopolnitelno legirovannyh vodorodom (obzor) [Ways of phase areas representation in titanium alloys additionally doped with hydrogen (review)] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №3. St. 03. Available at: http://www.viam-works.ru (accessed: July 14, 2015). DOI: 10.18577/2307-6046-2015-0-3-3-3.
9. Panin P.V., Shiryaev A.A., Dzunovich D.A. Postroenie temperaturno-koncentracionnoj diagrammy fazovogo sostava titanovogo splava VT6, dopolnitelno legirovannogo vodorodom [Creation of the temperature and concentration chart of phase composition of the VT6 titanium alloy which has been in addition alloyed by hydrogen] // Tehnologiya mashinostroeniya. 2014. №3. S. 5–9.
10. Ilin A.A., Skvorcova S.V., Mamonov A.M., Kollerov M.Yu. Fazovye i strukturnye prevrashheniya v titanovyh splavah raznyh klassov pod dejstviem vodoroda [Phase and structural transformations in titanium alloys of different classes under the influence of hydrogen] // Titan. 2007. №1. S. 32–37.
11. Skvortsova S.V., Panin P.V., Nochovnaya N.A., Grushin I.A., Mitropolskaya N.G. Vliyanie vodoroda na fazovye i strukturnye prevrashheniya v titanovom splave VT6 [Influence of hydrogen on phase and structural transformations in BT6 titanium alloy] //Tehnologiya legkih splavov. 2011. №4. S. 35–40.
12. Skvortsova S.V., Panin P.V., Dzunovich D.A., Zasypkin V.V., German M.A. Sozdanie kompozitnoj struktury v titanovom splave Ti–6Al s pomoshhyu termovodorodnoj obrabotki [Creation of composite structure in Ti-6Al titanium alloy by means of thermohydrogen treating] / V sb. tezisov dokladov VII Mezhdunarodnogo ajerokosm. kongressa (IAC’12). M.: MGU im. M.V. Lomonosova, 2012. S. 197–198.
13. Panin P.V., Dzunovich D.A., Zasypkin V.V. Sozdanie dvuhfaznoj kompozitnoj struktury v alfa-splave Ti–6Al s pomoshhyu termovodorodnoj obrabotki [Creation of diphasic composite structure in Ti–6Al alpha alloy by means of thermohydrogen treating] // Nauchnye trudy (Vestnik MATI). 2012. №19 (91). S. 33–37.
14. Panin P.V., Lukina E.A., Dzunovich D.A., German M.A. Preobrazovanie struktury titanovogo splava Ti–6Al s pomoshhyu termovodorodnoj obrabotki [Transformation of structure of Ti-6Al titanium alloy by means of thermohydrogen treating] / V sb. materialov Vserossijskoj nauch.-tehnich. konf. «Novye materialy i tehnologii – 2012». M.: MATI. 2012. S. 83–84.
15. Panin P.V., Grushin I.A., Mitropolkaya N.G. Issledovanie zakonomernostej izmeneniya strukturno-fazovogo sostoyaniya titanovogo splava VT6 pri dopolnitelnom legirovanii vodorodom [Research of patterns of change of structural and phase condition of BT6 titanium alloy at additional alloying hydrogen] // Nauchnye trudy (Vestnik MATI). 2013. №20 (92). S. 31–34.
16. Ilin A.A., Skvortsova S.V., Panin P.V., Shalin A.V. Vliyanie termovodorodnoj obrabotki i plasticheskoj deformacii na strukturoobrazovanie v titanovyh splavah raznyh klassov [Influence of thermohydrogen treating and plastic strain on structurization in titanium alloys of different classes] //Aviacionnaya promyshlennost. 2009. №4. S. 31–36.
17. Ovchinnikov A.V., Nosov V.K., Afonin V.E., Panin P.V. Osnovnye zakonomernosti deformacii splavov titan-vodorod [Main patterns of deformation of alloys titanium-hydrogen] // Tehnologiya legkih splavov. 2007. №3. S. 96–99.
18. Panin P.V., Dzunovich D.A., Lukina E.A. Upravlenie strukturoj i svojstvami titanovyh splavov pri obratimom legirovanii vodorodom i plasticheskoj deformacii [Management of structure and properties of titanium alloys at reversible alloying hydrogen and plastic strain] / V sb. materialov XIX nauch.-tehnich. konf. molodyh uchenyh i specialistov RKK «Energiya». Ser. XII. 2012. Vyp. 1–2. S. 103–107.
19. Kablov D.E., Panin P.V., Shiryaev A.A., Nochovnaya N.A. Opyt ispolzovaniya vakuumno-dugovoj pechi ALD VAR L200 dlya vyplavki slitkov zharoprochnyh splavov na osnove aljuminidov titana [The use of ADL VAR L200 vacuum-arc furnace for ingots fabrication of high-temperature titanium aluminides base alloys] // Aviacionnye materialy i tehnologii. 2014. №2. S. 27–33.
20. Panin P.V. Zakonomernosti formirovaniya fazovogo sostava i struktury v titanovyh splavah pri termovodorodnoj obrabotke i plasticheskoj deformacii [Patterns of forming of phase structure and structure in titanium alloys at thermohydrogen treating and plastic strain]: avtoref. dis. … kand. tekhn. nauk. M., 2009. 24 s.
The use of polymer composite materials is becoming increasingly wide spread. Non-autoclave technology has a very high level of attractiveness, as they allow to avoid the use of expensive equipment while ensuring the required level of properties. Global trends in the development of aviation industry show that the non-autoclave technology will be used in the manufacture of structures for UAVs, missiles, commercial and general aviation.
2. Kablov E.N., Grashhenkov D.V., Erasov V.S., Anchevskij I.Ee., Ilin V.V., Valter R.S. Stend dlya ispytaniya na klimaticheskoj stancii GCKI krupnogabaritnyh konstrukcij iz PKM [The stand for testing for the GTsKI climatic stations of large-size designs from PCM] / V sb. dokl. IX Mezhdunarod. nauch. konf. po gidroaviacii «Gidroaviasalon–2012». 2012. S. 122–123.
3. Timoshkov P.N., Kogan D.I. Sovremennye tehnologii proizvodstva polimernyh kompozicionnyh materialov novogo pokoleniya [Modern production technologies of polymeric composite materials of new generation] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №4. St. 07. Available at: http://www.viam-works.ru (accessed: June 09, 2015).
4. Sokolov I.I., Raskutin A.E. Ugleplastiki i stekloplastiki novogo pokoleniya [Coalplastics and fibreglasses of new generation] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №4. St. 09. Available at: http://viam-works.ru (accessed: June 09, 2015).
5. Hrulkov A.V., Dushin M.I., Popov Yu.O., Kogan D.I. Issledovaniya i razrabotka avtoklavnyh i bezavtoklavnyh tehnologij formovaniya PKM [Researches and development autoclave and out-of-autoclave technologies of formation of PCM] //Aviacionnye materialy i tehnologii. 2012. №S. S. 292–301.
6. Dushin M.I., Hrulkov A.V., Platonov A.A., Ahmadieva K.R. Bezavtoklavnoe formovanie ugleplastikov na osnove prepregov, poluchennyh po rastvornoj tehnologii [Out-of-autoclave formation coal plastics on the basis of the prepregs received on solution technology] // Aviacionnye materialy i tehnologii. 2012. №2. S. 43–48.
7. Babin A. N. Svyazujushhie dlya polimernyh kompozicionnyh materialov novogo pokoleniya [Binding for polymeric composite materials of new generation] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №4. St. 11. Available at: http://www.viam-works.ru (accessed: June 09, 2015).
8. Kablov E.N. Materialy i tehnologii VIAM v konstrukciyah perspektivnyh dvigatelej razrabotki OAO «Aviadvigatel» [Materials and VIAM technologies in designs of perspective engines of development of JSC «Aviadvigatel»] // Permskie aviacionnye dvigateli. 2014. №31. S. 43–47.
9. Muhametov R.R., Ahmadieva K.R., Kim M.A., Babin A.N. Rasplavnye svyazujushhie dlya perspektivnyh metodov izgotovleniya PKM novogo pokoleniya [Melt binding for perspective methods of production of PCM of new generation] // Aviacionnye materialy i tehnologii. 2012. №S. S. 260–265.
10. Chursova L.V., Dushin M.I., Kogan D.I., Panina N.N., Kim M.A., Gurevich Ya.M., Platonov A.A. Plenochnye svyazujushhie dlya RFI-tehnologii [Film binding for RFI technology] // Rossijskij himicheskij zhurnal. 2010. T. LIV. Materialy dlya aviakosmicheskoj tehniki. S. 63–67.
11. Kablov E.N., Kondrashov S.V., Yurkov G.Ju. Perspektivy ispolzovaniya uglerodsoderzhashhih nanochastic v svyazuyushhih dlya polimernyh kompozicionnyh materialov [Perspectives of use of carbon-containing nanoparticles in binding for polymeric composite materials] // Rossijskie nanotehnologii. 2013. T. 8. №3–4. S. 24–42.
12. Wang K., Kelly D., Dutton S. Multi-objective Optimisation of Composite Aerospace Structures. Composite Structures. 2002. P. 141–148.
13. Grashhenkov D.V., Chursova L.V. Strategiya razvitiya kompozicionnyh i funkcionalnyh materialov [Strategy of development of composite and functional materials] // Aviacionnye materialy i tehnologii. 2012. №S. S. 231–242.
14. Mikheyev S.V., Bourtsev B.N., Danilkina V.L., Ivannikova R.V., Selemenev S.V., Schetinin Y.S. Kamov Composite Blades // Proceedings of 31st European Rotorcraft Forum. Florence. 2005. Р. 20–22.
15. Grigorev M.M., Kogan D.I., Gusev Yu.A., Gurevich Ya.M. Osobennosti izgotovleniya PKM metodom vakuumnogo formovaniya preprega [Features of producing composites by vacuum molding of prepreg] // Aviacionnye materialy i tehnologii. 2014. №3. S. 67–71.
Methods of decrease in porosity in PCM manufactured by vacuum molding are considered. Technological properties of epoxy binder and prepreg on its basis are studied with the use of instruments of Brookfield Cap 2000+, DSC 204F1 and IAP 2003. On the basis of these studies parameters of technological mode of curing of PCM are selected. The study of the mechanical properties of fiberglass is carried out on testing machine Zwick/Roell Z050.
2. Prognozy razvitiya mirovogo rynka grazhdanskoj aviacii [Forecasts of development of the world market of civil aviation] // TI CAGI. 2003. №3–4. S. 6.
3. Available at: http://www.airbus.com (accessed: March 18, 2015).
4. Available at: http://www.compositesworld.com (accessed: March 18, 2015).
5. Veshkin E.A., Postnov V.I., Zastrogina O.B., Satdinov R.A. Tehnologiya uskorennogo formovaniya trehslojnyh sotovyh panelej interera samoleta [Technology of the accelerated formation of three-layered cellular panels of interior of airplane] // Izvestiya Samarskogo nauchnogo centra RAN. 2013. T. 15. №4 (4). S. 799–805.
6. Kogan D.I., Dushin M.I., Borshhev A.N., Veshkin E.A., Abramov P.A., Makrushin K.V Svojstva konstrukcionnyh ugleplastikov, izgotovlennyh propitkoj pod vakuumom [Properties constructional coal of the plastics made by impregnation under vacuum] // Izvestiya Samarskogo nauchnogo centra RAN. 2012. T. 14. №4 (2). S. 762–766.
7. Postnov V.I., Veshkin E.A., Abramov P.A. Osobennosti podgotovki polimernogo svyazuyushhego dlya snizheniya poristosti stekloplastikov, poluchaemyh metodom vakuumnogo formovaniya [Features of preparation polymeric binding for decrease in porosity of the fibreglasses received by method of vacuum formation] // Izvestija Samarskogo nauchnogo centra RAN. 2011. T. 13. №4 (2). S. 462–468.
8. Kablov E.N., Startsev O.V., Krotov A.S., Kirillov V.N. Klimaticheskoe starenie kompozicionnyh materialov aviacionnogo naznacheniya. III. Znachimye faktory starenya [Climatic aging of composite materials of aviation assignment. III. Significant factors of aging] // Deformaciya i razrushenie materialov. 2011. №1. S. 34–40.
9. Gecha E.Ya., Nesterenko V.A. K voprosu ob opredelenii kojefficienta diffuzii vody v polimernyh materialah po krivym pogloshheniya [To question of determination of diffusion factor of water in polymeric materials on absorption curves] // Plasticheskie massy. 2005. №5. S. 46–49.
10. Kablov E.N., Startsev O.V., Krotov A.S., Kirilov V.N. Klimaticheskoe starenie kompozicionnyh materialov aviacionnogo naznacheniya. I. Mehanizmy stareniya [Climatic aging of composite materials of aviation assignment. I. Aging mechanisms] // Deformaciyaa i razrushenie materialov. 2010. №11. S. 19–26.
11. Available at: http://www.gurit.com (accessed: March 18, 2015).
12. Available at: http://www.cytec.com (accessed: March 18, 2015).
13. Deraster R.L. Deracure curing agent DR. Product Datasheet, Finnester coating Oy. 3.11.2011.
14. Muhametov R.R., Ahmadieva K.R., Kim M.A., Babin A.N. Rasplavnye svyazujushhie dlya perspektivnyh metodov izgotovleniya PKM novogo pokoleniya [Melt binding for perspective methods of production of PCM of new generation] // Aviacionnye materialy i tehnologii. 2012. №S. S. 260–265.
15. Panina N.N., Kim M.A., Gurevich Ya.M., Grigorev M.M., Chursova L.V., Babin A.N. Svyazujushhie dlya formovaniya izdelij iz polimernyh kompozicionnyh materialov [Binding for formation of products from polymeric composite materials] // Klei. Germetiki. Tehnologii. 2013. №10. S. 27–35.
16. Anjali, Sanjay Choudhry, Vijay Kumar. Effect of porosity on themechanical strength of composite materials // International Journal of Mechanical and Industrial Engineering. 2012. V. 2. №3. P. 82–84.
17. Dushin M.I., Kogan D.I., Khrulkov A.V., Gusev Yu.A. Prichiny obrazovanija poristosti v izdeliyah iz polimernyh kompozicionnyh materialov (obzor) [The reasons of formation of porosity in products from polymeric composite materials (overview)] // Kompozity i nanostruktury. 2013. №3. S. 60–68.
18. Postnov V.I., Veshkin E.A., Abramov P.A. Puti povyshenija kachestva detalej iz PKM pri vakuumnom formovanii [Ways of improvement of quality of details from PKM at vacuum formation] // Izvestiya Samarskogo nauchnogo centra RAN. 2012. T. 14. №4 (3). S. 834–839.
19. Veshkin E.A., Abramov P.A., Postnov V.I., Strel'nikov S.V. Vlijanie tehnologii podgotovki preprega na svojstva PKM [Influence of technology of preparation of prepreg on PKM properties] // Vse materialy. Enciklopedicheskij spravochnik. 2013. №9. S. 8–14.
20. Kablov E.N. Himiya v aviacionnom materialovedenii [Chemistry in aviation materials science] // Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 3–4.
21. Antyufeeva N.V., Komarova O.A., Pavlovskij K.A., Aleksashin V.M. Opyt primeneniya kalorimetricheskogo kontrolya reakcionnoj sposobnosti preprega KMU-11tr [Practice of the calorimetric control reactionary ability prepreg KMU-11tr] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №2. St. 06. URL: http://www.viam-works.ru (accessed: March 18, 2015). DOI: 10.18577/2307-6046-2014-0-2-6-6.
22. Malysheva G.V., Ahmetova E.Sh., Shimina Yu.Yu. Ocenka temperatur fazovyh perehodov polimernyh svyazuyushhih metodom differencialno-skanirujushhej kalorimetrii [Assessment of temperatures of phase transitions polymeric binding method differential scanning calorimetry] // Klei. Germetiki. Tehnologii. 2014. №6. S. 29–33.
23. Postnov V.I., Nikitin K.E., Burhan O.L., Petuhov V.I., Orzaev V.G. Issledovanie ultrazvukovym metodom strukturnyh izmenenij v PKM v processe formovaniya polimernyh kompozicionnyh materialov [Research by ultrasonic method of structural changes in PKM in the course of formation of polymeric composite materials] // Aviacionnye materialy i tehnologii. 2009. №3. S. 25–29.
24. Nikitin K.E., Burhan O.L., Postnov V.I., Petuhov V.I. Laboratornaja ustanovka dlya issledovaniya i otrabotki processov formovaniya IPF 2003 polimernyh kompozicionnyh materialov ultrazvukovym metodom [Laboratory installation for research and working off of processes of formation of IPF of 2003 polymeric composite materials by ultrasonic method] // Zavodskaja laboratorija. Diagnostika materialov. 2008. №4. S. 38–41.
Heat-resistant CFRP VKU-38ZhN and VKU-38TR on the basis of phthalonitrile binder VSN-31 for elements of the impulse wheel of the centrifugal compressor are considered. High level of preservation of the elastic and strength properties of CFRP is shown at temperatures of 300 and 350°С. The analysis of test results of CFRP after the effect of heat-moisture conditions and heat aging shows that CFRP VKU-38ZhN and VKU-38TR possess high stability to heat-moisture as 74–100% preservation of properties in comparison with initial data at different temperatures of tests and can work for a long time at temperature of 200°С, 1000 h at temperature of 300°С and for a short time (during 200 h) at temperature of 330°С. The complex of the received properties of CFRP VKU-38TR and VKU-38ZhN allows recommending them as structural materials for products of aviation engineering.
2. Kablov E.N. Sovremennye materialy – osnova innovacionnoj modernizacii Rossii [Modern materials – basis of innovative modernization of Russia] // Metally Evrazii. 2012. №3. S. 10–15.
3. Semejstvo TRDD Trent [Family turbojet planimetric Trent engines] / V sb. Raboty vedushhih aviadvigatelestroitelnyh kompanij po sozdaniyu perspektivnyh aviacionnyh dvigatelej. M.: CIAM. 2004. 422 s.
4. Karimbaev T.D., Luppov A.A., Afanasev D.V. Rabochie lopatki ventilyatorov dlya perspektivnyh dvigatelej [Working blades of fans for perspective engines] // Dvigatel. 2011. №6. S. 2–10.
5. Kablov E.N., Salibekov S.E., Abuzin Yu.A., Rylnikov V.S., Turchenkov V.A., Karimbaev T.D., Luppov A.A. Konstruktivnye i tehnologicheskie resheniya dlya sozdaniya sostavnyh lopatok perspektivnyh ventilyatorov s primeneniem prochnyh i zhestkih metallokompozitov [Constructive and technological decisions for creation of compound blades of perspective fans using strong and rigid metalcomposites] / V sb.: Novye tehnologicheskie processy i nadezhnost GTD. Vyp. 3. Kompozicionnye i keramicheskie materialy v GTD. M.: CIAM, 2003. S. 124–139.
6. Turbomachine blade made of composite material: pat. 5672417 US; publ. 30.09.97.
7. Turbomachine blade, in particular a fan blade, and its method of manufacture: pat. 7241112 US; publ. 10.07.07.
8. Lopatka osevogo kompressora [Blade of the axial compressor]: pat. 2187715 Ros. Federacii; opubl. 20.08.02.
9. Rabochee koleso centrobezhnogo kompressora iz kompozicionnogo materiala i sposob ego izgotovleniya [The driving wheel of the centrifugal compressor from composite material and way of its manufacturing]: pat 2239100 Ros. Federacii; opubl. 27.04.04.
10. Domingues D.D., Jones H.N., Keller T.M. The effect of curing additive on the mechanical properties of phthalonitrile-carbon fiber composites // Polymer Composites. 2004. V. 25. №5. P. 554–561.
11. Phthalonitrile composites: pat. 7642336 US; publ. 05.01.10.
12. Kuznecov A.A., Semenova G.K. Perspektivnye vysokotemperaturnye termoreaktivnye svyazuyushhie dlya polimernyh kompozicionnyh materialov [Perspective high-temperature thermosetting binding for polymeric composite materials] // Rossijskij himicheskij zhurnal. 2009. T. LIII. №4. S. 86–96.
13. Raskutin A.E., Panina T.V. Problemy sozdaniya konstrukcionnyh ugleplastikov s povyshennoj termookislitelnoj stojkostyu [Problems of creation constructional ugleplastikov with the increased thermooxidizing firmness] / V sb. Aviacionnye materialy i tehnologii: nauch.-tehnich. sb. M.: VIAM, 2002. №3. S. 18–23.
14. Muhametov R.R., Ahmadieva K.R., Chursova L.V., Kogan D.I. Novye polimernye svyazujushhie dlya perspektivnyh metodov izgotovleniya konstrukcionnyh voloknistyh PKM [New polymeric binding for perspective methods of manufacturing of constructional fibrous PCM] //Aviacionnye materialy i tehnologii. 2011. №2. S. 38–42.
15. Davydova I.F., Raskutin A.E., Muhametov R.R. Novye steklo- i ugleplastiki na osnove termostojkogo svjazujushhego [The new glass and coal plastics on the basis of heat-resistant binding] / V kn. 75 let. Aviacionnye materialy. Izbrannye trudy «VIAM» 1932–2007: yubilejnyj nauch.-tehnich. sb. M.: VIAM, 2007. S. 285–289.
16. Gulyaev I.N., Vlasenko F.S., Zelenina I.V., Raskutin A.E. Napravleniya razvitiya termostojkih ugleplastikov na osnove poliimidnyh i geterociklicheskih polimerov [Development Directions of heat-resistant carbon–fiber–reinforced–plastics based on polimide and heterocyclic polymers] // Trudy VIAM: elektron. nauch.-tehni. zhurn. 2014. №1. St. 04. Available at: http://www.viam-works.ru (accessed: June 15, 2015). DOI: 10.18577/2307-6046-2014-0-1-4-4.
17. Gunyaev G.M., Kablov E.N., Aleksashin V.M. Modificirovanie konstrukcionnyh ugleplastikov uglerodnymi nanochasticami [Modifying constructional ugleplastikov carbon nanoparticles] // Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 5–11.
18. Zheleznyak V.G., Muhametov R.R., Chursova L.V. Issledovanie vozmozhnosti sozdaniya termoreaktivnogo svyazujushhego na rabochuju temperaturu do 400°S [Study of possibility of thermoset binder creation for operating temperature up to 400°C] // Aviacionnye materialy i tehnologii. 2013. №S2. S. 58–61.
19. Polimernoe svyazuyushhee i prepregi na ego osnove [Modifying constructional ugleplastikov carbon nanoparticles]: pat. 2510408 Ros. Federaciya; opubl. 27.03.14.
20. Zhou Liu, Li Sun Zhao. Study of a High-Temperature Resistant Phthalonitrile Resin Suitable for RTM // Processing at Low Temperatures: 44th ISTC. Charleston. 2012.
21. Sastri S., Satya B., Armistead J.P., Keller T.M., Sorathia U. Flammability characteristics of phthalonitrile composites edge / In: Evolving technologies for the competitive edge. Anakheym. 1997. P. 1032–1038.
The choice of optimum flame retardant and its content in rubber mix is made for creation of self-extinguishing rubber on basis of ethylenepropylene-diene rubber (EPDM). The structure and complex of physical-mechanical and operational properties of rubber on the basis of EPDM with lowered combustibility of optimum composition are studied. Results of research of the influence of particle size of flame retardants – aluminum and magnesium hydroxides on curing processes, combustibility, physical-mechanical characteristics and rubber microstructure on the basis of EPDM are provided.
2. Kablov E.N. Himiya v aviacionnom materialovedenii [Chemistry in aviation materials science] // Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 3–4.
3. Kablov E.N. Shestoj tehnologicheskij uklad [Sixth technological way] // Nauka i zhizn. 2010. №4. S. 2–7.
4. Istoriya aviacionnogo materialovedeniya. VIAM–80 let: gody i lyudi / pod. obshh. red. E.N. Kablova [History of aviation materials science. VIAM-80 years: years and people / general editorship by E.N.Kablov]. M.: VIAM, 2012. S. 346–348.
5. Bolshoj spravochnik rezinshhika: spravochnik v 2 ch. [Big directory of rezinshchik: the directory in 2 parts]. M.: OOO «Tehinform», 2012. 1385 s.
6. Tehnologiya reziny: recepturostroenie i ispytaniya. Per. s angl. / pod red. Dzh.S. Dika [Technology of rubber: compounding structure and tests. Trans. from English / editorship by J. S. Dick]. SPb.: Nauchnye osnovy i tehnologii, 2010. 617 s.
7. Alifanov E.V., Chaykun A.М., Venediktova M.A., Naumov I.S. Osobennosti receptur rezin na osnove etilenpropilenovyh kauchukov i ih primenenie v izdeliyah specialnogo naznacheniya (obzor) [Specialties of rubber compounds recipes based on ethylene-propylene rubbers and their application in the articles for special purpose (review)] // Aviacionnye materialy i tehnologii. 2015. №2 (35). S. 51–55.
8. Gorenie, destrukciya i stabilizaciya polimerov / pod red. G.E. Zaikova [Burning, destruction and stabilization of polymers / editorship by G.E. Zaikov]. SPb.: Nauchnye osnovy i tehnologii, 2008. 422 s.
9. Goryuchest i dymoobrazujushhaya sposobnost polimernyh materialov aviacionnogo naznacheniya / pod red. R.E. Shalina, B.I. Panshina [Combustibility and smoke-generating ability of polymeric materials of aviation assignment / editorship by R.E. Shalin, B.I.Panshina]. M.: VIAM, 1986. 104 s.
10. Kodolov V.I. Zamedliteli goreniya polimernyh materialov [Decelerators of burning of polymeric materials]. M.: Himiya, 1980. 269 s.
11. Barbotko S.L., Shurkova E.N., Volny O.S., Skrylyov N.S. Ocenka pozharnoj bezopasnosti polimernyh kompozicionnyh materialov dlya vneshnego kontura aviacionnoj tehniki [Evolution of polymer composite fire-safety for the outer contour of aeronautical engineering] // Aviacionnye materialy i tehnologii. 2013. №1. S. 56–59.
12. Barbotko S.L., Shurkova E.N. O pozharnoj bezopasnosti materialov, ispolzuemyh dlya izgotovleniya vneshnego kontura samoletov [About fire safety of the materials used for manufacturing of external circuit of airplanes] // Pozharovzryvobezopasnost'. 2011. T. 20. №10. S. 19–24.
13. Petrova G.N., Beider E.Ya., Perfilova D.N., Rumyantseva T.V. Pozharobezopasnye litevye termoplasty i termojelastoplastyv [Fire safety of injection molding thermoplastics and TPE materials] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №11. St. 02. Available at: http://www.viam-works.ru (accessed: December 01, 2015).
14. Petrova G.N., Rumyantseva T.V., Beider E.Ya. Vliyanie modificirujushhih dobavok na pozharobezopasnye svojstva i tehnologichnost polikarbonata [Influence of modifying additives on fireproof properties and technological effectiveness of polycarbonate] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №6. St. 06. Available at: http://www.viam-works.ru (accessed: December 01, 2015).
15. Clough R.L. Aging Effects on Fire-Retardant Additives in Polymers // Journal of Polymer Science: Polymer Chemistry Edition. 1983. V. 21. P. 767–780.
16. Shurkova E.N., Volny O.S., Izotova T.F., Barbotko S.L. Issledovanie vozmozhnosti snizheniya teplovydeleniya pri gorenii kompozicionnogo materiala putem izmeneniya ego struktury [Research of possibility of decrease in heat release when burning composite material by change of its structure] // Aviacionnye materialy i tehnologii. 2012. №1. S. 27–30.
17. Barbotko S.L. Pozharobezopasnost aviacionnyh materialov [Fire safety of aviation materials] // Aviacionnye materialy i tehnologii. 2012. №S. S. 431–439.
18. Barbotko S.L. Puti obespechenija pozharnoj bezopasnosti aviacionnyh materialov [Ways of ensuring fire safety of aviation materials] // Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 121–126.
19. Naumov I.S., Petrova A.P., Chaikun A.M. Reziny uplotnitelnogo naznacheniya i snizhenie ih goryuchesti [Rubbers of sealing assignment and decrease in their combustibility] // Vse materialy. Enciklopedicheskij spravochnik. 2013. №5. S. 28–35.
20. Mitina E.L., Naumov I.S. Samozatuhayushhij material na osnove kombinacii hloroprenovogo i butadienovogo kauchukov [Self-fading material on the basis of combination of chloroprene and butadiyene rubbers] // Klei. Germetiki. Tehnologii. 2012. №6. S. 9–12.
21. Mitina E.L., Barbotko S.L. Vliyanie antipirenov na gorjuchest dekorativnyh rezin na osnove kombinacii butadien-stirolnogo i butadienovogo kauchukov [Influence of antipyrines on combustibility of decorative rubbers on the basis of combination of styrenr-butadiene and butadiyene rubbers] // Klei. Germetiki. Tehnologii. 2012. №3. S. 17–21.
22. Naumov I.S., Chajkun A.M., Eliseev O.A. Rossijskie i mezhdunarodnye standarty na metody ispytanij rezin, syryh rezinovyh smesej i vysokomolekuljarnyh kauchukov [The Russian and international standards on test methods of rubbers, crude rubber mixes and high-molecular rubbers] // Vse materialy. Enciklopedicheskij spravochnik. 2014. № 11. S. 4–13.
23. Aviacionnye pravila. Chast 25 Normy letnoj godnosti samoletov transportnoj kategorii. 3-e izd.: utv. Sovetom po aviacii i ispolzovaniyu vozdushnogo prostranstva 11.12.2008 [Aviation rules. Part 25 of Standard of the flight validity of airplanes of transport category. 3rd ed.: approved by Council for aircraft and use of air space. November 12, 2008.]. M.: OAO «Aviaizdat». 2009. 274 s.
24. OST1 90094–79. Polimernye materialy. Metod opredeleniya goryuchesti dekorativno-otdelochnyh i konstrukcionnyh polimernyh materialov [OST1 90094-79. Polymeric materials. Method of determination of combustibility of decorative and finishing and constructional polymeric materials]. M.: Tipografiya CAGI, 1980. 8 s.
25. Eliseev O.A., Krasnov L.L., Zajceva E.I., Savenkova A.V. Razrabotka i modificirovanie elastomernyh materialov dlya primeneniya vo vseklimaticheskih usloviyah [Development and modifying of elastomeric materials for application in all weather conditions] // Aviacionnye materialy i tehnologii. 2012. №S. S. 309–314.
26. Chaikun A.M., Eliseev O.A., Naumov I.S., Venediktova M.A. Osobennosti morozostojkih rezin na osnove razlichnyh kauchukov [Features of old-resistant rubbers on the basis on different unvulcanized rubbers] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №12. St. 04. Available at: http://www.viam-works.ru (accessed: December 01, 2015).
27. Naumov I.S., Barbotko S.L., Petrova A.P., Malysheva G.V. Vliyanie antipirenov na svojstva uplotnitelnoj reziny na osnove etilenpropilen-dienovogo kauchuka (EPDK) [Influence of antipyrines on properties of sealing rubber on the basis of etilenpropilen-diene rubber (EPDK)] //Vse materialy. Jenciklopedicheskij spravochnik. 2014. №5. S. 31–34.
28. Naumov I.S., Petrova A.P., Eliseev O.A., Barbotko S.L. Eksperimentalnye issledovaniya v oblasti sozdaniya kremnijorganicheskih rezin s ponizhennoj goryuchestyu [Experimental research in the field of development of organic silicon rubbers with low flammability] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №10. St. 09. Available at: http://www.viam-works.ru (accessed: December 01, 2015).DOI: 10.18577/2307-6046-2015-0-10-9-9.
The overview of ways of giving the increased conductivity to polymer composite materials is presented. Results of researches on receiving electrically conductive hybrid polymer composite materials on the basis of noncovalent functional carbon nanotubes are provided. Researches of electrophysical, thermo - and physicomechanical characteristics are conducted. According to the results of experiments it is established that level of achieved functional properties is sufficient to successfully solve problems of giving anti-static properties to fibreglass products and increased resistance of the polymer carbon fiber materials to lightning discharge.
2. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33.
3. Kablov E.N., Kondrashov S.V., Yurkov G.Yu. Perspektivy ispolzovaniya uglerodsoderzhashhih nanochastic v svyazuyushhih dlya polimernyh kompozicionnyh materialov [Perspectives of use of carbon-containing nanoparticles in binding for polymeric composite materials] // Rossijskie nanotehnologii. 2013. T. 8. №3–4. S. 28–46.
4. Lubineau G., Rahaman A. A review of strategies for improving the degradation properties of laminated continuous-fiber/epoxy composites with carbon-based nanoreinforcements // Carbon. 2012. V. 50. P. 2377–2395.
5. Gunyaev G.M., Chursova L.V., Raskutin A.E., Gunyaeva A.G. Molniestojkost sovremennyh polimernyh kompozitov [Lightning firmness of modern polymeric composites] // Aviacionnye materialy i tehnologii. 2012. №2. S. 36–42.
6. Popkov O.V., Yurkov G.Y., Fionov A.S. Stabilization of nanoparticles on the surface of detonation nanodiamond / In: Physics, chemistry and application of nanostructures / eds. V.E. Borisenko, S.V. Gaponenko, V.S. Gurin Singapore: World Scientific. 2009. P. 369–372.
7. Reia da Costa E.F., Skordos A.A., Partridge I.K., Rezai A. RTM processing and electrical performance of carbon nanotube modified epoxy/fibre Composites // Composites Part A: Applied Science and Manufacturing. 2012. V. 43. №4. P. 593–602.
8. Garcia E.J., Wardle B.L., John Hart A., Namiko Yamamoto. Fabrication and multifunctional properties of a hybrid laminate with aligned carbon nanotubes grown In Situ // Composites Science and Technology. 2008. V. 68. P. 2034–2041.
9. Bekyarova E., Thostenson E.T., Yu A., Kim H., Gao J., Tang J., Hahn H.T., Chou T.-W., Itkis M.E., Haddon R.C. Multiscale carbon nanotube-carbon fiber reinforcement for advanced epoxy composites // Langmuir. 2007. V. 23. P. 3970–3974.
10. Zhang J., Zhuang R., Liu J., Ma E., Heinrich G., Gao S. Functional interphases with multi-walled carbon nanotubes in glass fibre/epoxy composites //Carbon. 2010. V. 48. P. 2273–2281.
11. Wang X., Yong Z.Z., Li Q.W., Bradford P.D., Liu W., Tucker D.S., Cai W., Wang H., Yuan F.G., Zhu Y.T. Ultrastrong, Stiff and Multifunctional Carbon Nanotube Composites //Mater. Res. Lett. 2012. №1. P. 1–7.
12. Sager R.J., Klein P.J., Lagoudas D.C., Zhang Q., Liu J., Dai L., Baur L.W. Effect of carbon nanotubes on the interfacial shear strength of T650 carbon fiber in an epoxy matrix // Compos. Sci. Technol. 2009. V. 69. P. 898–904.
13. Qian H., Bismarck A., Greehalgh E., Kalinka G., Shaffer M. Hierarchical composites reinforced with carbon nanotube grafted fibers: the potential assessed at the single fiber level // Chem. Mater. 2008. V. 20. P. 1862–1869.
14. Badamshina E.R., Gafurova M.P., Estrin Ya.I. Modificirovanie nanotrubok i sintez polimernyh kompozitov s ih uchastiem [Modifying of nanotubes and synthesis of polymeric composites with their participation] // Uspehi himii. 2010. V. 79. №11. S. 1027–1063.
15. Kiryuhin D.P., Kim I.P., Buznik V.M., Ignateva L.N., Kuryavyj V.G., Saharov S.G. Radiacionno-himicheskij sintez telomerov tetraftoretilena i ih ispolzovanie dlya sozdaniya tonkih zashhitnyh ftorpolimernyh pokrytij [Radiation chemical synthesis of telomeres of tetrafluorethylene and their use for creation of thin protective ftorpolimerny coverings] // Rossijskij himicheskij zhurnal. 2008. T. 52. №3. S. 66–71.
16. Blajt E.R., Blur D. Elektricheskie svojstva polimerov. Per. s angl. [Blyth E.R., Blur D. Electrical properties of polymers. Trans from English]. M: Fizmatlit, 2008. 376 s.
17. Zueva O.S., Osin Yu.N., Salnikov V.V., Zuev Yu.F. Issledovanie suspenzij uglerodnyh nanotrubok: obrazovanie mezoskopicheskih struktur iz agregatov PAV [Research of suspensions of carbon nanotubes: formation of mezoskopic structures from units of SAS] // Fundamentalnye issledovaniya. 2014. №11–5. S. 1021–1027.
18. Kondrashov S.V., Marahovskij P.S., Majorova I.A., Egorov A.A., Mansurova I.A., Yurkov G.Yu. Vliyanie rezhima otverzhdeniya na formirovanie struktury epoksikompozitov v prisutstvii uglerodnyh nanotrubok [Influence of mode of curing on structure forming epoxy composites in the presence of carbon nanotubes] // Perspektivnye materialy. 2014. №6. C. 56–63.
19. Bogatov V.A., Kondrashov S.V., Mansurova I.A., Minakov V.T. Issledovanie mehanizma vliyaniya uglerodnyh nanotrubok na fiziko-mehanicheskie svojstva nanokompozitov [Research of the mechanism of influence of carbon nanotubes on physicomechanical properties of nanocomposites] // Aviacionnye materialy i tehnologii. 2012. №S. S. 353–359.
20. Buharov S.V., Gunyaeva A.G., Raskutin A.E. Issledovaniya zony porazheniya molniezashhitnogo pokrytiya iz ugleplastikov vysokovoltnymi razryadami, imitiruyushhimi toki molnii [Researches of zone of defeat of Lightning firmness cover from coal plastics the high-voltage discharges simulating lightning currents] // Nauchno-tehnicheskij sbornik «Nauchnye trudy» (Vestnik «MATI»). 2014. №22 (94). S. 4–14.
21. Kablov E.N., Gunyaev G.M. Nanomaterialy – proryv v materialovedenii mikromira [Nanomaterials – break in microcosm materials science] / V kn. 75 let. Aviacionnye materialy. Izbrannye trudy «VIAM» 1932–2007: yubilejnyj nauch.-tehnich. sb. M.: VIAM. 2007. S. 225–232.
22. Gunyaev G.M., Chursova L.V., Komarova O.A., Gunyaeva A.G. Konstrukcionnye ugleplastiki, modificirovannye nanochasticami [Constructional coal the plastics modified by nanoparticles] // Aviacionnye materialy i tehnologii. 2012. №S. S. 277–286.
23. Kablov E.N. Rossii nuzhny materialy novogo pokoleniya [Materials of new generation are necessary to Russia] // Redkie zemli. 2014. №3. S. 8–13.
Nature of destruction of SVM aramide fiber and structural organoplastics on its basis is researched. Features of destruction of fiber are to be considered when developing this class of polymercomposites. Nature of fibers destruction is considered at stretching and compression, as well as behavior of SVM fiber at stretching of the organoplastics on its basis.
2. Kablov E.N. Materialy i himicheskie tehnologii dlya aviacionnoj tehniki [Materials and chemical technologies for aviation engineering] // Vestnik Rossijskoj akademii nauk. 2012. T. 82. №6. S. 520–530.
3. Zhelezina G.F. Konstrukcionnye i funkcionalnye organoplastiki novogo pokoleniya [Constructional and functional organoplastics of new generation] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №4. St. 06. Available at: http://www.viam-works.ru (accessed: September 05, 2014).
4. Kablov E.N., Kirillov V.N., Zhirnov A.D., Startsev O.V., Vapirov Yu.M. Centry dlya klimaticheskih ispytanij aviacionnyh PKM [The centers for climatic tests of aviation PCM] // Aviacionnaya promyshlennost. 2009. №4. S. 36–46.
5. Zhelezina G.F., Shul'deshova P.M. Konstrukcionnye organoplastiki na osnove plenochnyh kleev [Constructional organoplasty on the basis of film glues] // Klei. Germetiki. Tehnologii. 2014. №2. S. 9–14.
6. Nefedov N.I., Kondrashov E.K., Semenova L.V., Lebedeva T.A. Erozionnostojkie pokrytiya dlya zashhity izdelij iz polimernyh kompozicionnyh materialov [Erosion-resistant coatings for protection of articles from polymer composite materials] // Aviacionnye materialy i tehnologii. 2014. №S3. S. 25–27.
7. Kraev I.D., Obraztsova E.P., Yurkov G.Yu. Vliyanie morfologii magnitnogo napolnitelya na radiopogloshhayushhie harakteristiki kompozicionnyh materialov [Influence of morphology of magnetic filler on radar-absorbing characteristics of composite materials] // Aviacionnye materialy i tehnologii. 2014. №S2. S. 10–14.
8. Sidorenko Yu.N. Konstrukcionnye i funkcionalnye voloknistye kompozicionnye materialy [Constructional and functional fibrous composite materials]. Tomsk: TGU, 2006. 107 s.
9. Shuldeshova P.M., Zhelezina G.F. Vliyanie atmosfernyh uslovij i zapylennosti sredy na svojstva konstrukcionnyh organoplastikov [An influence of atmospheric condition and dust loading on properties of structural organic plastics] // Aviacionnye materialy i tehnologii. 2014. №1. S. 64–68.
10. Shuldeshova P.M., Zhelezina G.F. Aramidnyj sloisto-tkanyj material dlya zashhity ot ballisticheskih i udarnyh vozdejstvij [The aramid layered and woven material for protection against impact and ballistic influences] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №9. St. 06. Available at: http://www.viam-works.ru (accessed: September 05, 2014). DOI: 10.18577/2307-6046-2014-0-9-6-6.
11. Shuldeshov E.M., Lepeshkin V.V., Romanov A.M. Metod nerazrushajushhego kontrolja kompleksnoj dielektricheskoj pronicaemosti vhodnyh slabo napolnennyh sloev gradientnyh radiopogloshhajushhih polimernyh kompozicionnyh materialov [Method of non-destructive testing of complex dielectric permittivity of the entrance poorly filled layers of gradient radio absorbing polymeric composite materials] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №10. St. 11. Available at: http://www.viam-works.ru (accessed: September 05, 2014). DOI: 10.18577/2307-6046-2014-0-10-11-11.
12. Semenova L.V., Novikova T.A., Nefedov N.I. Klimaticheskaya stojkost i starenie lakokrasochnogo pokrytiya [Climatic resistance and aging of the paintwork coating] // Aviacionnye materialy i tehnologii. 2014. №S3. S. 31–34.
13. Kablov E.N. Rossii nuzhny materialy novogo pokoleniya [Materials of new generation are necessary to Russia] // Redkie zemli. 2014. №3. S. 8–13.
14. Voinov S.I., Zhelezina G.F., Soloveva N.A., Yamshhikova G.A., Timoshina L.N. Vliyanie vneshnej sredy na svojstva ugleplastika, poluchennogo metodom propitki pod davleniem (RTM) [Environmental effects on properties of CFRP manufactured by RTM method] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №2. St. 08. Available at: http://www.viam-works.ru (accessed: September 05, 2014). DOI: 10.18577/2307-6046-2015-0-2-8-8.
15. Belyaev A.A., Romanov A.M., Shirokov V.V., Shuldeshov E.M. Izmerenie dielektricheskoj pronicaemosti steklosotoplasta v svobodnom prostranstve [Measurement of honeycomb glass fiber plasticspermittivity in free space] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №5. St. 06. Available at: http://www.viam-works.ru (accessed: September 05, 2014). DOI: 10.18577/2307-6046-2014-0-5-6-6.
16. Shuldeshov E.M., Lepeshkin V.V., Romanov A.M. Metod nerazrushayushhego kontrolya koefficienta otrazheniya radiopogloshhayushhih polimernyh kompozicionnyh materialov [Method of non-destructive testing of reflection coefficient of radio absorbing polymeric composite materials] // Kontrol. Diagnostika. 2015. №6. S. 44–48.
17. Donetskij K.I., Kogan D.I., Khrulkov A.V. Ispolzovanie principov «zelenoj himii» v perspektivnyh tehnologiyah izgotovlenija izdelij iz PKM [Use of principles of «green chemistry» in perspective manufacturing techniques of products from PCM] // Kompozitnyj mir. 2013. №5. S. 34–38.
18. Doneckij K.I., Khrulkov A.V. Principy «zelenoj himii» v perspektivnyh tehnologiyah izgotovleniya izdelij iz PKM [Principles of «green chemistry» in perspective manufacturing technologies of PCM
articles] // Aviacionnye materialy i tehnologii. 2014. №S2. S. 24–28.
19. Doneckij K.I., Khrulkov A.V. Primenenie naturalnyh volokon pri izgotovlenii polimernyh kompozicionnyh materialov [Application of natural fibers for manufacturing of polymer composite materials] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №2. St. 10. Available at: http://www.viam-works.ru (accessed: September 05, 2014). DOI: 10.18577/2307-6046-2015-0-2-10-10.
20. Deev I.S., Kablov E.N., Kobets L.P., Chursova L.V. Issledovanie metodom skaniruyushhej elektronnoj mikroskopii deformacii mikrofazovoj struktury polimernyh matric pri mehanicheskom nagruzhenii [Research of the scanning electron microscopy method deformation of microphase structure of polymeric matrix at mechanical loading] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №7. St. 06. Available at: http://www.viam-works.ru (accessed: September 05, 2014). DOI: 10.18577/2307-6046-2014-0-7-6-6.
21. Deev I.S., Kobec L.P. Issledovanie mikrostruktury i mikropolej deformacij v polimernyh kompozitah metodom rastrovoj elektronnoj mikroskopii [Research of microstructure and microfields of deformations in polymeric composites method of raster electron microscopy] // Zavodskaja laboratorija. Diagnostika materialov. 1999. T. 65. №4. S. 27–34.
22. Deev I.S., Kobec L.P. Issledovanie mikrostruktury i osobennostej razrushenija jepoksidnyh polimerov i kompozicionnyh materialov na ih osnove [Research of microstructure and features of destruction of epoxy polymers and composite materials on their basis] // Materialovedenie. 2010. №5. S. 8–16 (nachalo). 2010. №6. S. 13–18.
The methods used to analyze the regularities of thermally activated processes are discribed. It is shown that the most informative and reliable methods are the isothermal methods. The data on the initial components and their conversion ways to experimental samples in the technological scheme are presented. In the example of alumina materials modified with various amounts of various eutectic additives it was found that the sintering process obeys the equation of the first order kinetics formal. The apparent activation energy of sintering and initial patterns for the development of optimum firing mode of the materials are determined.
2. Kablov E.N., Grashhenkov D.V., Isaeva N.V., Solntsev S.S. Perspektivnye vysokotemperaturnye keramicheskie kompozicionnye materialy [Perspective high-temperature ceramic composite materials] // Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 20–24.
3. Kablov E.N., Shhetanov B.V., Ivahnenko Yu.A., Balinova Yu.A., Semenova E.V. Volokna dioksida cirkoniya dlya novogo pokoleniya materialov aviacii i kosmosa [Zirconium dioxide fibers for new generation of materials of aircraft and space] / V sb. materialov XXV Mezhdunarodnoj konf. «Kompozicionnye materialy v promyshlennosti». Yalta. 2005. S. 320–323.
4. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33.
5. Shchetanov B.V., Balinova Yu.A., Lyulyukina G.Yu., Soloveva E.P. Struktura i svojstva nepreryvnyh polikristallicheskih volokon α-Al2O3 [Structure and properties of continuous polycrystalline fibers α-Al2O3] // Aviacionnye materialy i tehnologii. 2012. №1. S. 13–17.
6. Kirienko T.A., Balinova Yu.A. Fiziko-himicheskie svojstva mnogokomponentnyh rastvorov dlya keramicheskih materialov, soderzhashhih polivinilovyj spirt [Physical and chemical properties of multicomponent solutions for ceramic materials containing polyvinyl alcohol] // Aviacionnye materialy i tehnologii. 2014. №1. S. 34–38.
7. Varrik N.M., Ivahnenko Yu.A., Maksimov V.G Oksid-oksidnye kompozicionnye materialy dlya gazoturbinnyh dvigatelej (obzor) [Oxide-oxide composites for gas-turbine engines] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №8. St. 03. Available at: http://www.viam-works.ru (accessed: July 20, 2015). DOI: 10.18577/2307-6046-2014-0-8-3-3.
8. Balinova Yu.A., Lyulyukina G.Yu., Kirienko T.A., Arakcheeva L.V. Svojstva promyshlennogo silikazolya i vozmozhnost ego dorabotki dlya izgotovleniya alyumosilikatnyh materialov [Properties industrial silicasoly and possibility of its completion for manufacturing of silica-alumina materials] // Steklo i keramika. 2013. №12. S. 33–36.
9. Evteev A.A., Lemeshev D.O., Zhitnyuk S.V., Makarov N.A. Keramika v sisteme ZrO2–Al2O3 s dobavkami jevtekticheskih sostavov [Ceramics in ZrO2-Al2O3 system with additives of evtektichesky structures] // Steklo i keramika. 2011. №8. S. 23–27.
10. Evteev A.A., Lemeshev D.O., Makarov N.A. Osobennosti spekanija keramiki v sisteme oksid alyuminiya–dioksid cirkoniya s dobavkami jevtekticheskih sostavov [Features of agglomeration of ceramics in system aluminum-zirconium dioxide oxide with additives of evtectic structures] // Tehnika i tehnologiya silikatov. 2013. №4. S. 2–8.
11. Evteev A.A., Makarov N.A. Nanostrukturirovannye energoeffektivnye keramicheskie materialy na osnove oksida alyuminiya i dioksida cirkoniya [The nanostructured power effective ceramic materials on the basis of aluminum oxide and zirconium dioxide] / V kataloge XII Vserossijskoj vystavki nauch.-tehnich. tvorchestva molodezhi. 2012.
12. Gropyanov V. M., Nemec I. I., Bessmertnyj V. S., Krohin V.P. Neizotermicheskie metody kinetiki v tehnologii keramiki [Nonisothermal methods of kinetics in technology of ceramics]. Belgorod: BTISM im. I. A. Grishmanova, 1984. S. 3–17.
13. Gropyanov V. M., Abbakumov V. G., Drozdeckaya G. V. Raschet energii aktivacii po dannym neizotermicheskoj kinetiki [Activation energy calculation according to nonisothermal kinetics] // Izvestiya vuzov SSSR. Ser. «Himiya i himicheskaya tehnologiya». 1976. T. 19. Vyp. 7. S. 1054.
14. Gropyanov V. M., Abbakumov V. G. Integralnye metody analiza neizotermicheskoj kinetiki [Integral methods of the analysis of nonisothermal kinetics] // Izvestiya vuzov SSSR. Ser. «Himiya i himicheskaya tehnologiya». 1979. T. 22. Vyp. 2. S. 178.
15. Ivensen V. A. Fenomenologiya spekaniya i nekotorye voprosy teorii [Phenomenology of agglomeration and some questions of the theory]. M.: Metallurgiya, 1985. 248 s.