Articles
The investigation results of the new weldable wrought alloy V-1208 based on Al–Cu–Mn system with addition of Sc, Ag and Zr are represented. Sheets from this alloy were manufactured at JSC «KUMW». It was shown that scandium, silver and zirconium complex additions increase strength and life-time characteristics, corrosion resistance and weldability. Influence of heat treatment modes on the sheets mechanical properties was studied. Complex investigations of mechanical, corrosion and operational charac-teristics are represented. Weldability with argon arc welding and friction stir welding are evaluated. Comparison with 1201 and 2219 alloys is carried out.
2. Splav na osnove aljuminija [Alloy on the basis of aluminum]: pat. 2447173 Ros. Federacija; opubl. 05.04.2011.
3. Antipov V.V., Senatorova O.G., Tkachenko E.A., Vahromov R.O. Aljuminievye deformiruemye splavy [Aluminum deformable alloys] //Aviacionnye materialy i tehnologii. 2012. №S. S. 167–182.
4. Klochkov G.G., Plotnikov A.D. Primenenie novyh splavov v raketno-kosmicheskoj tehnike [Application of new alloys in space-rocket equipment] //Cvetnye metally. 2013. №9. S. 54–57.
5. Fridljander I.N., Antipov V.V., Kolobnev N.I., Jakimova E.G. Konstrukcionnye zharoprochnye aljuminievye splavy [Structural heat resisting aluminum alloys] /V kn. 75 let. Aviacionnye materialy. Izbrannye trudy «VIAM» 1932–2007: Jubilejnyj. nauch.-tehnich. sb. M.: VIAM. 2007. S. 172–180.
6. Rioja R.J., Denzer D.K., Mooy D., Venema G. Lighter and Stiffer Materials for Use in Space Vehicles /Proceedings of the 13-th International Conference on Aluminum Alloys (ICAA-13). 2012. P. 593–598.
7. Polmear I.J. Light Alloys: From Traditional Alloys to Nanocrystals //Elsevier Butterworth-Heinemann. U.K. 2006. 132 p.
8. Senatorova O.G., Kolobnev N.I., Tkachenko E.A. I.N. Fridljander i ego splavy [Fridlyander and his alloys] //Cvetnye metally. 2013. №9. S. 28–30.
9. Kablov E.N. Materialy dlja izdelija «Buran» – innovacionnye reshenija formirovanija shestogo tehnologicheskogo uklada [Materials for the product «Buran» – innovative solutions of forming of the sixth technological way] //Aviacionnye materialy i tehnologii. 2013. №S1. S. 3–9.
10. Dospehi dlja «Burana». Materialy i tehnologii VIAM dlja MKS «Jenergija–Buran» [Armor for «Buran». Materials and VIAM technologies for ISS of «Energiya–Buran»] /Pod obshh. red. E.N. Kablova. M.: Fond «Nauka i zhizn'». 2013. S. 127.
11. Mohov V. Modul' dlja Burana [The module for the Buran] //Novosti kosmonavtiki. 1998. №23/24.
12. Fridljander I.N. Vospominanija o sozdanii aviakosmicheskoj i atomnoj tehniki iz aljuminievyh splavov [Memories of creation of aerospace and nuclear equipment from aluminum alloys]. M.: Nauka. 2005. 277 s.
13. Anil K.S., Raja K.M., Anirban M., Ahmet A. Vehicle lightweighting: challenges and opportunities with aluminum /Proceedings of the 13-th International Conference on Aluminum Alloys (ICAA-13). 2012. P. 609–622.
14. Elagin V.I. Legirovanie deformiruemyh aljuminievyh splavov perehodnymi metallami [Alloying of deformable aluminum alloys transition metals]. M.: Metallurgija. 1975. 248 s.
15. Chirkov E.F. Temp razuprochnenija pri nagrevah – kriterij ocenki zharoprochnosti konstrukcionnyh splavov sistem Al‒Cu‒Mg i Al‒Cu [Rate of loss of strength when heatings – criterion of assessment of thermal stability of structural alloys of Al‒Cu‒Mg and Al‒Cu systems] //Trudy VIAM. 2013. №2. St. 02 (viam-works.ru).
16. Grigor'ev M.V., Antipov V.V., Vahromov R.O. i dr. Struktura i svojstva slitkov iz splava sistemy Al‒Cu‒Mg s mikrodobavkami serebra [Structure and properties of ingots from Al‒Cu‒Mg system alloy with silver microadditives] //Aviacionnye materialy i tehnologii. 2013. №3. S. 3–6.
17. Ivanova A.O., Vahromov R.O., Grigor'ev M.V., Senatorova O.G. Issledovanie vlijanija malyh dobavok serebra na strukturu i svojstva resursnyh splavov sistemy Al–Cu–Mg [Research of influence of small additives of silver on structure and properties of resource alloys of Al-Cu-Mg system] //Trudy VIAM. 2014. №10. St. 01 (viam-works.ru).
18. Davydov V.G., Rostova T.D., Zakharov V.V. Scientific principles of making an alloying addition of scandium to aluminium alloys //Material Science and Engineering. A 280. 2000. P. 30–36.
19. Royset J., Ryum N. Scandium in aluminium alloys //International Material Reviews. 2005. V. 50. №1. P. 19–44.
20. Sawtell R.R., Jensen C.L. Mechanical properties and microstructures of Al–Mg–Sc alloys //Metallurgical and Material Transactions A. 1990. V. 21. №1. P. 421–430.
21. Ocenasek V., Slamova M. Effect of Sc and Zr on the structure and properties of Al–Mn1.5 alloy //Material Characteristics. 2001. V. 47. P. 157–162.
22. Fuller C.B., Seidman D.N., Dunand D.C. Evolution of nanoscale precipitates in Al micro-alloyed with Sc and Er //Acta Materialia. 2003. V. 51. P. 4803–4814.
23. Mondol S., Praveen G., Kumar S. et al. Effect of Addition of Sc and Mg on 2219 Al Alloy /Proceedings of the 12-th International Conference on Aluminum Alloys (ICAA-12). 2010. P. 447–452.
24. Lee Y.Y. Scandium Effect on Mechanical and Physical Properties for 2x19 Al Alloy /Proceedings of the 12-th International Conference on Aluminum Alloys (ICAA-12). 2010. P. 2281–2286.
25. Nikulin I., Kipelova A., Gazizov M. et al. Novel Al–Cu–Mg–Ag Alloy for High Temperature Applications /Proceedings of the 12-th International Conference on Aluminum Alloys (ICAA-12). 2010. P. 2303–2308.
26. Vural M., Caro J. Experimental analysis and constitutive modeling for the newly developed 2139-T8 alloy //J. Material Sci. Eng. 2009. V. 520. №1–2. P. 56–65.
27. Pouget G., Sigli C. Thermal Stability of Al–Cu–Mg Alloys /Proceedings of the 14-th ICAA. 2014. P. 691–696.
Current development and research trends in the field of producing and investigating of long-life heat-resistant coatings for nickel and titanium alloys with working temperature up to 1000°C are considered. The results of investigations currently taken place and the ways of improving the properties of long-life enamel coatings are shown. The FSUE «VIAM» experience on the heat-resistant coatings development capable to provide long term effective operation of the nickel and titanium parts in high operational temperatures is considered.
2. Kablov E.N., Grashhenkov D.V., Isaeva N.V., Solncev S.S., Sevast'janov V.G. Perspektivnye vysokotemperaturnye keramicheskie kompozicionnye materialy [Perspective high-temperature ceramic composite materials] //Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 20–24.
3. Ivahnenko Ju.A., Babashov V.G., Zimichev A.M., Tinjakova E.V. Vysokotemperaturnye teploizoljacionnye i teplozashhitnye materialy na osnove volokon tugoplavkih soedinenij [High-temperature heatinsulating and heat-protective materials on the basis of fibers of high-melting connections] //Aviacionnye materialy i tehnologii. 2012. №S. S. 380–385.
4. Kablov E.N., Solncev S.S., Rozenenkova V.A., Mironova N.A. Sovremennye polifunkcional'nye vysokotemperaturnye pokrytija dlja nikelevyh splavov, uplotnitel'nyh metallicheskih voloknistyh materialov i berillievyh splavov [Modern multifunctional high temperature coatings for nickel alloys, sealing metal fibrous materials and beryllium alloys] //Novosti materialovedenija. Nauka i tehnika. 2013. №1 (materialsnews.ru).
5. Solncev S.S. Vysokotemperaturnye steklokeramicheskie materialy i pokrytija – perspektivnoe napravlenie aviacionnogo materialovedenija [High-temperature steklokeramichesky materials and coverings – the perspective direction of aviation materials science] //Vse materialy. Jenciklopedicheskij spravochnik. 2009. №1. S. 26–37.
6. Solncev S.S. Zashhitnye tehnologicheskie pokrytija i tugoplavkie jemali [Protective technological coverings and high-melting enamels]. M.: Mashino-stroenie. 1984. 256 s.
7. Solncev S.S., Shvagireva V.V., Isaeva N.V., Solov'eva G.A. Armirovannye zharostojkie steklojemali dlja kamer sgoranija gazoturbinnyh dvigatelej [Reinforced heat resisting stekloemali for combustion tubes of gas turbine engines] //Aviacionnye materialy i tehnologii. 2010. №1. S. 26–29.
8. Das S., Datta S., Basu D., Das G.C. Hot corrosion of glass coating on nickel base superalloy //Ceramics International. 2008. V. 34. P. 1215–1222.
9. Minghui Chen, Mingli Shen, Shenglong Zhu, Fuhui Wang, Xiaolan Wang. Effect of sand blasting and glass matrix composite coating on oxidation resistance of a nickel-based superalloy at 1000°C //Corrosion Science. 2013. V. 73. P. 331–341.
10. Das S., Mukhopadhyay A.K., Datta S., Basu D. Evaluation of microwave processed glass-ceramic coating on nimonic superalloy substrate //Ceramics International. 2010. V. 36. P. 1125–1130.
11. Minghui Chen, Mingli Shen, Shenglong Zhu, Fuhui Wang. Comparative study of interfacial reaction between superalloy substrate and glass coating with and without alumina particles incorporation //Applied Surface Science. 2013. V. 271. P. 228–233.
12. Xiaowei Niu, He Zhang, Xiaojun Hu, Wei Han. Synthesis of well-adhered SiO2–Al2O3 glass-ceramic coating on NiCrFe alloy supports //Applied Surface Science. 2013. V. 268. P. 265–269.
13. Minghui Chen, Wenbo Li, Mingli Shen, Shenglong Zhu, Fuhui Wang. Glass-ceramic coating on titanium alloys for high temperature oxidation protection: Oxidation kinetics and microsctucture //Corrosion Science. 2013. V. 74. P. 178–186.
14. Zinqi Xiao, Fatang Tan, Wei Wang, Fazhe Sun, Hongfei Lu, Xiaolin Qui, Jianguo Chen, Xueliang Qiao. Oxidation protection of Ti–6Al–4V alloy using a novel glass-amorphous silica composite coating //Ceramics International. 2014. V. 40. P. 3503–3509.
15. Wenbo Li, Minghui Chen, Mingyu Wu, Shenglong Zhu, Cheng Wang, Fuhui Wang. Microstructure and oxidation behavior of a SiC–Al2O3–glass composite coating on Ti–47Al–2Cr–2Nb alloy //Corrosion Science. 2014. V. 87. P. 179–186.
16. Wenbo Li, Minghui Chen, Cheng Wang, Shenglong Zhu, Fuhui Wang. Preparation and oxidation behavior of SiO2–Al2O3–glass composite coating on Ti–47Al–2Cr–2Nb alloy //Surface & Coatings Technology. 2013. V. 218. P. 30–38.
17. Solncev S.St., Shvagireva V.V., Isaeva N.V., Solov'eva G.A. Zharostojkoe pokrytie dlja zashhity vysokoprochnyh slozhnolegirovannyh nikelevyh splavov ot vysokotemperatur-noj gazovoj korrozii [Heat resisting covering for protection of high-strength complex-alloyed nickel alloys against high-temperature gas corrosion] //Trudy VIAM. 2014. №6. St. 04 (viam-works.ru).
18. Solncev St.S., Rozenenkova V.A., Mironova N.A., Solov'eva G.A. Vysokotemperaturnye pokrytija dlja voloknistyh substratov [High temperature coatings for fibrous substrates] //Trudy VIAM. 2013. №10. St. 03 (viam-works.ru).
19. Solncev S.St., Shvagireva V.V., Isaeva N.V., Solov'eva G.A. Mnogocelevoe steklojemalevoe pokrytie dlja zashhity lityh fasonnyh detalej gazoturbinnyh dvigatelej [Multi-purpose stekloe-malevy covering for protection of cast shaped details of gas turbine engines] //Trudy VIAM. 2014. №3. St. 04 (viam-works.ru).
20. Solncev St.S. Vysokotemperaturnye kompozicionnye materialy i pokrytija na osnove stekla i keramiki [High-temperature composite materials and coverings on the basis of glass and ceramics] /V sb. 75 let. Aviacionnye materialy. Izbrannye trudy «VIAM» 1932–2007: Jubilejnyj nauch.-tehnich. sb. M.: VIAM. 2007. S. 90–99.
21. Solncev St.S., Rozenenkova V.A., Mironova N.A. Vysokotemperaturnye steklokeramicheskie pokrytija i kompozicionnye materialy [High-temperature steklokeramichesky coverings and composite materials] //Aviacionnye materialy i tehnologii. 2012. №S. S. 359–368.
The matter of amorphous metal bands application in the laminated metal-polymeric functional components (actuators) for smart materials is hereby considered. The remarkable feature of the metal amorphous materials is their structural and chemical homogeneity, high plasticity and their resistance to repeated bending and corrosion. It is suggested to use the amorphous metal materials as bands in conjunction with ferroelectric ceramics made of lead zirconium-titanate to create laminated piezoelectric cells. Phase transformation process in nickel-based amorphous alloy VPr51 of metal-metalloid type by means of differential scanning calorimetry and thermo-mechanical analysis methods is studied as well. It is determined that the given nickel-based amorphous alloy keeps its structural homogeneity and workability in the temperature range up to 380°C relevant to the piezoelectric materials based on lead titanate-zirconium operation.
2. Kablov E.N. Sovremennye materialy – osnova innovacionnoj modernizacii Rossii [Modern materials – basis of innovative modernization of Russia] //Metally Evrazii. 2012. №3. S. 10–15.
3. Kablov E.N. Himija v aviacionnom materialovedenii [Chemistry in aviation materials science] //Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 3–4.
4. Guljaev I.N., Gunjaev G.M. Ispol'zovanie nepreryvnyh armirujushhih volokon v kachestve tenzorezistornyh sensornyh jelementov [Use of continuous reinforcing fibers as tenzorezistorny touch elements] //Aviacionnye materialy i tehnologii. 2010. №2. S. 22–27.
5. Guljaev I.N., Gunjaev G.M., Raskutin A.E. Polimernye kompozicionnye materialy s funkcijami adaptacii i diagnostiki sostojanija [Polymeric composite materials with functions of adaptation and condition diagnostics] //Aviacionnye materialy i tehnologii. 2012. №S. S. 242–253.
6. Kablov E.N., Sivakov D.V., Guljaev I.N., Sorokin K.V., Fedotov M.Ju., Goncharov V.A. Metody issledovanija konstrukcionnyh kompozicionnyh materialov s integrirovannoj jelektromehanicheskoj sistemoj [Methods of research of constructional composite materials with the integrated electromechanical system] //Aviacionnye materialy i tehnologii. 2010. №4. S. 17–20.
7. Sivakov D.V., Guljaev I.N., Sorokin K.V., Fedotov M.Ju., Goncharov V.A. Osobennosti sozdanija polimernyh kompozicionnyh materialov s integrirovannoj aktivnoj jelektromehanicheskoj aktjuatornoj sistemoj na osnove p'ezojelektrikov [Features of creation of polymeric composite materials with the integrated active electromechanical aktyuatorny system on the basis of piezoelectric materials] //Aviacionnye materialy i tehnologii. 2011. №1. S. 31–34.
8. Muhametov R.R., Ahmadieva K.R., Chursova L.V, Kogan D.I. Novye polimernye svjazujushhie dlja perspektivnyh metodov izgotovlenija konstrukcionnyh voloknistyh PKM [New polymeric binding for perspective methods of manufacturing of constructional fibrous PKM] //Aviacionnye materialy i tehnologii. 2011. №2. S. 38–42.
9. Deev I.S., Kablov E.N., Kobec L.P., Chursova L.V. Issledovanie metodom skanirujushhej jelektronnoj mikroskopii deformacii mikrofazovoj struktury polimernyh matric pri mehanicheskom nagruzhenii [Research by method of scanning electron microscopy of deformation of microphase structure of polymeric matrixes at mechanical loading] //Trudy VIAM. 2014. №7. St. 06 (viam-works.ru).
10. Mihajlin Ju.A. Special'nye polimernye kompozicionnye materialy [Special polymeric composite materials]. SPb.: Izd-vo «NOT». 2009. 657 s.
11. P'ezojelektricheskij sloistyj aktjuator [Piezoelectric layered aktyuator]: pat. №101271 Ros. Federacija; opubl. 10.01.2011.
12. Fizikohimija amorfnyh (stekloobraznyh) metallicheskih materialov [Fizikokhimiya of amor-phous (stekloobrazny) metal materials] /Pod red. Ju.K. Kovneristogo. M.: Metallurgija. 1987. 328 s.
13. Amorfnye metallicheskie splavy [Amorphous metal alloys]: Per. s angl.; Pod red. F.E. Ljuborskogo. M.: Metallurgija. 1987. 584 s.
14. Kovneristyj Ju.K., Osipov Je.K., Trofimova E.A. Fiziko-himicheskie osnovy sozdanija amorfnyh metallicheskih splavov [Physical and chemical bases of creation of amorphous metal alloys]. M.: Nauka. 1983. 145 s.
15. Alehin V.P., Honik V.A. Struktura i fizicheskie zakonomernosti deformacii amorfnyh splavov [Structure and physical patterns of deformation of amorphous alloys]. M.: Metallurgija. 1992. 248 s.
16. Stoljankov Ju.V., Aleksashin V.M., Antjufeeva N.V. K voprosu ob ocenke sklonnosti metallicheskih sistem k amorfizacii [To question of assessment of tendency of metal systems to amorfizatsiya] //Aviacionnye materialy i tehnologii (v pechati).
17. Zolotuhin I.V. Fizicheskie svojstva amorfnyh metallicheskih materialov [Physical properties of amorphous metal materials]. M: Metallurgija. 1986. S. 56.
18. Stoljankov Ju.V., Antjufeeva N.V., Raskutin A.E., Karimova S.A. Issledovanie vozmozhnosti sozdanija metallopolimernyh kompozicionnyh materialov s ispol'zovaniem tonkolistovyh amorfnyh splavov [Research of possibility of creation of metalpolymeric composite materials with use of tonkolistovy amorphous alloys] //Kompozity i nanostruktury. 2014. T. 6. №1. S. 25–31.
19.Antjufeeva N.V., Aleksashin V.M., Zhelezina G.F., Stoljankov Ju.V. Metodicheskie podhody termoanaliticheskih issledovanij dlja ocenki svojstv prepregov i ugleplastikov [Methodical ap-proaches of thermoanalytical researches for assessment of properties of prepregs and ugleplastikov] //Prilozhenie k zhurnalu «Vse materialy. Jenciklopedicheskij spravochnik». 2012. №4. S. 18–27.
The method of raster electron microscopy and the fractographic analysis was applied to research surface and microstructure of heat resistant nickel alloys samples before and after destruction in order to identify pre-destruction signs after tests for short-term and long-term hardness and also for low-cyclic fatigue at temperatures of 20, 650 and 750°С. It is determined that exits density of slip planes on surface of studied samples depends on testing method, level of applied load and temperature of tests, there are differences in behavior of alloys during the loading. Difference in resistance to slip systems development and to destruction start after exhaustion of material ability for plastic deformation is shown for two alloys.
2. Kablov E.N. Aviakosmicheskoe materialovedenie [Aerospace materials science] //Vse materialy. Jenciklopedicheskij spravochnik. 2008. №3. S. 2–14.
3. Kablov E.N., Lomberg B.S., Ospennikova O.G. Sozdanie sovremennyh zharoprochnyh materialov i tehnologij ih proizvodstva dlja aviacionnogo dvigatelestroenija [Creation of modern heat resisting materials and technologies of their production for aviation engine building] //Kryl'ja Rodiny. 2012. №3–4. S. 34–38.
4. Kablov E.N., Ospennikova O.G., Lomberg B.S., Sidorov V.V. Prioritetnye napravlenija razvitija tehnologij proizvodstva zharoprochnyh materialov dlja aviacionnogo dvigatelestroenija [The priority directions of development of production technologies of heat resisting materials for aviation engine building] //Problemy chernoj metallurgii i materialovedenija. 2013. №3. S. 47–54.
5. Panin V.E., Egorushkin V.E., Panin A.V., Moiseenko D.D. Priroda lokalizacii plasticheskoj deformacii tverdyh tel [Nature of localization of plastic strain of solid bodies] //Zhurnal tehnicheskoj fiziki. 2007. T. 77. №8. S. 62–69.
6. Malinina N.A. Mezomehanika mnogourovnevoj sistemy strukturnyh naprjazhenij [Mesomechanics of multilayer system of structural tension] //Vestnik Novgorodskogo gosudarstvennogo universiteta. 2004. №26. S. 7–12.
7. Zangwill A. Phisics of surfaces. Cambridge: Cambridge Interscience Publishing. 1988. 339 p.
8. Panin V.E. Problemy mezomehaniki prochnosti i plastichnosti nanostrukturnyh materialov [Problems of mesomechanics of durability and plasticity of nanostructural materials] //Izvestija vuzov. Fizika. 2004. №8. S. 17.
9. Panin V.E., Moiseenko D.D., Zhevlakov A.L., Maksimov P.V. Vozniknovenie zarodyshej mezopolos lokalizovannoj deformacii na interfejse «poverhnostnyj sloj–podlozhka» i ih rasprostranenie v ob#eme nagruzhennogo tverdogo tela, nahodjashhegosja v neravnovesnom sostojanii [Emergence of germs of mesostrips of the localized deformation on the interface «surface layer substrate» and their distribution in the volume of the loaded solid body being in nonequilibrium condition] //Pis'ma v zhurnal tehnicheskoj fiziki. 2008. T. 34. №5. S. 22–27.
10. Alehin V.P. Fizika prochnosti i plastichnosti poverhnostnyh sloev materialov [Physics of durability and plasticity of surface layers of materials]. M.: Nauka. 1983. 280 s.
11. Panin V.E., Elsukova T.F., Kuzina O.Ju., Sharypova A.Ju. Masshtabnaja invariantnost' mehanizmov deformacii polikristallov [Large-scale invariancy of mechanisms of deformation of polycrystals] /In: II International Conference «Deformation & Fracture of Materials and Nanomaterials». M.: DFMN. 2007. P. 23–25.
12. Romanov A.N., Filimonova N.I. Nakoplenie povrezhdenij v lokal'nyh zonah konstrukcionnogo materiala i rassredotochennoe treshhinoobrazovanie [Accumulation of damages to local zones of constructional material and the dispersed crack formation] /In: II International Conference «Deformation & Fracture of Materials and Nanomaterials». M.: DFMN. 2007. P. 47–48.
13. Panin V.E., Panin A.V. Jeffekt poverhnostnogo sloja v deformiruemom tverdom tele [Effect of surface layer in deformable solid body] //Fizicheskaja mezomehanika. 2005. T. 8. №5. S. 7–15.
14. Romanov A.N., Filimonova N.I., Ganieva G.M. i dr. Osnovnye tipy mikrorel'efov v kon-strukcionnyh metallicheskih materialah pri vysokotemperaturnom ciklicheskom nagruzhenii [The main types of microreliefs in constructional metal materials at high-temperature cyclic loading] /In: II International Conference «Deformation & Fracture of Materials and Nanomaterials». M.: DFMN. 2007. P. 49–50.
15. Petuhov A.N. Vklad v razrushenie metallicheskih materialov i detalej tehnologicheskih deformacij poverhnostnogo sloja [Contribution to destruction of metal materials and details of technological deformations of surface layer] /V sb. trudov II Mezhdunarodnoj konf. «Deformacija i razrushenie materialov i nanomaterialov». M.: IMET. 2006. T. I. S. 219–221.
16. Gordeeva T.A., Zhegina I.P. Analiz izlomov pri ocenke nadezhnosti materialov [The analysis of breaks at assessment of reliability of materials]. M.: Mashinostroenie. 1975. 200 s.
17. Erasov V.S., Jakovlev N.O., Nuzhnyj G.A. Kvalifikacionnye ispytanija i issledovanija prochnosti aviacionnyh materialov [Qualification tests and researches of durability of aviation materials] //Aviacionnye materialy i tehnologii 2012. №S. S. 440–448.
18. Erasov V.S., Grinevich A.V., Senik V.Ja., Konovalov V.V., Trunin Ju.P., Nesterenko G.I. Raschetnye znachenija harakteristik prochnosti aviacionnyh materialov [Calculated values of characteristics of durability of aviation materials] //Aviacionnye materialy i tehnologii. 2012. №2. S. 14–16.
19. Chabina E.B., Alekseev A.A., Filonova E.V., Lukina E.A. Primenenie metodov analiticheskoj mikroskopii i rentgenostrukturnogo analiza dlja issledovanija strukturno-fazovogo sostojanija materialov [Application of methods of analytical microscopy and the rentgenostrukturny analysis for research of structural and phase condition of materials] //Trudy VIAM. 2013. №5. St. 06 (viam-works.ru).
20. Terent'ev V.F., Beljaev M.S., Bakradze M.M. i dr. Razrushenie zharoprochnogo splava VZh175 v uslovijah zhestkogo malociklovogo nagruzhenija [VZh175 hot strength alloy destruction in the conditions of rigid low-cyclic loading] //Trudy VIAM. 2014. №11. St. 12 (viam-works.ru).
21. Kablov E.N., Petrushin N.V., Svetlov I.L., Demonis I.M. Nikelevye litejnye zharoprochnye splavy novogo pokolenija [Nickel foundry hot strength alloys of new generation] //Aviacionnye materialy i tehnologii. 2012. №S. S. 36–52.
22. Kablov E.N., Petrushin N.V., Vasilenok L.B., Morozova G.I. Renij v zharoprochnyh nikelevyh splavah dlja lopatok gazovyh turbin (prodolzhenie) [Reny in heat resisting nickel alloys for blades of gas turbines (continuation)] //Materialovedenie. 2000. №3. S. 38–43.
23. Lomberg B.S., Ovsepjan S.V., Bakradze M.M. i dr. Vysokotemperaturnye zharoprochnye ni-kelevye splavy dlja detalej gazoturbinnyh dvigatelej [High-temperature heat resisting nickel alloys for details of gas turbine engines] //Aviacionnye materialy i tehno-logii. 2012. №S. S. 52–57.
24. Morozova G.I. Zakonomernost' formirovanija himicheskogo sostava γ′/γ-matricy mnogokomponentnyh nikelevyh splavov [Pattern of forming of chemical composition γ′/γ-матрицы multicomponent nickel alloys] //Doklady Akademii nauk. 1991. T. 320. №6. S. 1413–1416.
The complex thermal barrier coating (TBC) for rotor blades of jet prop engines made of nickel-base superalloy VZHM4 working at temperatures up to 1200°С is represented, and also application of high-temperature heat resistant coatings for intermetallic nickel-base alloys as a bond coatings for turbine nozzle blades working at temperatures up to 1250°С is considered. Results of high-temperature tests of VZhM4 and VKNA-25 alloys with applied TBC are represented. It is shown that [Ni–Cr–Al–Ta–Re–Y–Hf+Al–Ni–Y]+(Zr–Y–Gd)O TBC protects VZhM4 alloy at temperatures up to 1200°С and [Ni–Cr–Al–Hf+Al–Ni–Hf]+(Zr–Y–Gd)O HPC protects VKNA-25 alloy at temperatures up to 1250°С. Research of thermal conductivity of ceramic (Zr–Y–Gd)O material is made.
2. Kuznecov V.P., Lesnikov V.P., Konakova I.P., Petrushin N.V., Mubojadzhjan S.A. Struktura i fazovyj sostav monokristallicheskogo splava VZhM4 s gazocirkuljacionnym zashhitnym pokrytiem [Structure and phase composition of VZhM4 single-crystal alloy with gazotsirkulyatsionny protecting cover] //MiTOM. 2011. №3. S. 28–32.
3. Bazyleva O.A., Arginbaeva Je.G., Turenko E.Ju. Zharoprochnye litejnye intermetallidnye splavy [Heat resisting cast intermetallidny alloys] //Aviacionnye materialy i tehnologii. 2012. №S. S. 57–60.
4. Kablov E.N., Ospennikova O.G., Bazyleva O.A. Materialy dlja vysokoteplonagruzhennyh detalej gazoturbinnyh dvigatelej [Materials for the high-heatloaded details of gas turbine engines] //Vestnik MGTU im. N.Je. Baumana. Ser. «Mashinostroenie». 2011. №SP2. S. 13–19.
5. Budinovskij S.A. Primenenie analiticheskoj modeli opredelenija uprugih mehanicheskih i termicheskih naprjazhenij v mnogoslojnoj sisteme v reshenii zadach po sozdaniju zharostojkih aljuminidnyh pokrytij [Application of analytical model of determination of elastic mechanical and thermal stresses in multi-layer system in the solution of tasks on creation of heat resisting alyuminidny coverings] //Uprochnjajushhie tehnologii i pokrytija. 2013. №3. S. 3–11.
6. Budinovskij S.A., Kablov E.N., Mubojadzhjan S.A. Primenenie analiticheskoj modeli opredelenija uprugih naprjazhenij v mnogoslojnoj sisteme pri reshenii zadach po sozdaniju vysokotemperaturnyh zharostojkih pokrytij dlja rabochih lopatok aviacionnyh turbin [Application of analytical model of determination of elastic stresses in multi-layer system at the solution of tasks on creation of high-temperature heat resisting coverings for working blades of aviation turbines] //Vestnik MGTU im. N.Je. Baumana. Ser. «Mashinostroenie». 2011. №SP2. S. 26–37.
7. Smirnov A.A., Budinovskij S.A. Analiz jevoljucii normal'nyh naprjazhenij v sisteme «splav–pokrytie» v oblasti temperatur do 1200°С [The analysis of evolution of normal stresses in splav-pokrytiye system in the field of temperatures to 1200°С] //Aviacionnye materialy i tehnologii. 2014. №2. S. 8–14.
8. Budinovskij S.A., Matveev P.V., Smirnov A.A. Issledovanie zharostojkosti litejnyh zharoprochnyh nikelevyh splavov v oblasti temperatur 1000–1200°С [Research of heat resistance of cast heat resisting nickel alloys in the field of temperatures 1000–1200°C] //Aviacionnaja promyshlennost'. 2014. №2. S. 48–52.
9. Budinovskij S.A., Mubojadzhjan S.A., Gajamov A.M., Stepanova S.V. Ionno-plazmennye zharostojkie pokrytija s kompozicionnym bar'ernym sloem dlja zashhity ot okislenija splava ZhS36-VI [Ion-plasma heat resisting coverings with composition barrier layer for protection against oxidation of alloy ZhS36-VI] //MiTOM. 2011. №1. S. 34–40.
10. Mubojadzhjan S.A., Budinovskij S.A., Gajamov A.M., Smirnov A.A. Poluchenie keramicheskih teplozashhitnyh pokrytij dlja rabochih lopatok turbin aviacionnyh GTD magnetronnym metodom [Receiving ceramic heat-protective coatings for working blades of turbines of aviation GTD magnetronny method] //Aviacionnye materialy i tehnologii. 2012. №4. S. 3–8.
11. Mubojadzhjan S.A., Budinovskij S.A., Gajamov A.M., Matveev P.V. Vysokotemperaturnye zharostojkie pokrytija i zharostojkie sloi dlja teplozashhitnyh pokrytij [High-temperature heat resisting coverings and heat resisting layers for heat-protective coverings] //Aviacionnye materialy i tehnologii. 2013. №1. S. 17–20.
12. Kablov E.N., Mubojadzhjan S.A. Zharostojkie i teplozashhitnye pokrytija dlja lopatok turbiny vysokogo davlenija perspektivnyh GTD [Heat resisting and heat-protective coverings for turbine blades of high pressure of perspective GTD] //Aviacionnye materialy i tehnologii. 2012. №S. S. 60–70.
13. Chubarov D.A., Matveev P.V. Novye keramicheskie materialy dlja teplozashhitnyh pokrytij rabochih lopatok GTD [New ceramic materials for heat-protective coverings of working blades of GTD] //Aviacionnye materialy i tehnologii. 2013. №4. S. 43–46.
14. Budinovskij S.A., Mubojadzhjan S.A., Gajamov A.M. Sovremennoe sostojanie i osnovnye tendencii razvitija vysokotemperaturnyh teplozashhitnyh pokrytij dlja rabochih lopatok turbin aviacionnyh GTD [Current state and the main tendencies of development of high-temperature heat-protective coverings for working blades of turbines of aviation GTD] //Aviacionnaja promyshlennost'. 2008. №4. S. 33–37.
15. Gajamov A.M., Budinovskij S.A., Mubojadzhjan S.A., Kos'min A.A. Vybor zharostojkogo pokrytija dlja zharoprochnogo nikelevogo renij-rutenijsoderzhashhego splava marki VZhM4 [Choice of heat resisting covering for heat resisting nickel reny -ruteniysoderzhashchy alloy of the VZhM4 brand] //Trudy VIAM. 2014. №1. St. 01 (viam-works.ru).
16. Budinovskij S.A., Mubojadzhjan S.A., Gajamov A.M., Matveev P.V. Razrabotka ionno-plazmennyh zharostojkih metallicheskih sloev teplozashhitnyh pokrytij dlja ohlazhdaemyh rabochih lopatok turbin [Development of ion-plasma heat resisting metal layers of heat-protective coverings for cooled working blades of turbines] //MiTOM. 2013. №11. S. 16–21.
17. Kos'min A.A., Budinovskij S.A., Mubojadzhjan S.A., Bulavinceva E.E. Zharostojkoe pokrytie dlja novogo perspektivnogo intermetallidnogo splava VIN3 [Heat resisting covering for new perspective intermetallidny alloy of VIN3] //Svarochnoe proizvodstvo. 2013. №6. S. 35–37.
18. Matveev P.V., Budinovskij S.A., Mubojadzhjan S.A., Kos'min A.A. Zashhitnye zharostojkie pokrytija dlja splavov na osnove intermetallidov nikelja [Protective heat resisting coverings for alloys on the basis of nickel intermetallic compound] //Aviacionnye materialy i teh-nologii. 2013. №2. S. 12–15.
19. Matveev P.V., Budinovskij S.A. Issledovanie svojstv zashhitnyh zharostojkih pokrytij dlja intermetallidnyh nikelevyh splavov tipa VKNA dlja rabochih temperatur do 1300°С [Research of properties of protective heat resisting coverings for intermetallidny nickel alloys of VKNA type for working temperatures to 1300°С] //Aviacionnye materialy i tehnologii. 2014. №3. S. 22–26.
20. Kablov E.N., Mubojadzhjan S.A., Budinovskij S.A., Lucenko A.N. Ionno-plazmennye zashhitnye pokrytija dlja lopatok gazoturbinnyh dvigatelej [Ion-plasma protecting covers for blades of gas turbine engines] //Metally. 2007. №5. S. 23–34.
21. Muboyadzhyan S.A., Kablov E.N. Vacuum plasma technique of protective coatings pro-duction of complex alloys //MiTOM. 1995. №2. S. 15–18.
22. Kablov E.N., Mubojadzhjan S.A., Budinovskij S.A., Pomelov Ja.A. Ionno-plazmennye zash-hitnye pokrytija dlja lopatok gazoturbinnyh dvigatelej [Ion-plasma protecting covers for blades of gas turbine engines] //Konversija v mashinostroenii. 1999. №2. S. 42–47.
It was determined that the maximum level of strength is achieved after full heat treatment (quenching and artificial ageing) after welding. Heat treatment of welded joints made by friction stir welding leads to structural heterogeneity alignment and removal of weakening of the heat affected zone. After-welding modes of heat treatment do not practically influence the protective properties of non-metallic inorganic coatings.
2. Kablov E.N. Aviakosmicheskoe materialovedenie [Aerospace materials science] //Vse materialy. Jenciklopedicheskij spravochnik. 2008. №3. S. 2–14.
3. Kablov E.N. Sovremennye materialy – osnova innovacionnoj modernizacii Rossii [Modern materials – basis of innovative modernization of Russia] //Metally Evrazii. 2012. №3. S. 10–15.
4. Panin V.E., Kablov E.N., Pochivalov Ju.I., Panin S.V., Kolobnev N.I. Vlijanie nanostrukturirovanija poverhnostnogo sloja aljuminij-litievogo splava 1424 na mehanizmy deformacii, tehnologicheskie harakteristiki i ustalostnuju dolgovechnost'. Povyshenie plastichnosti i tehnologicheskih harakteristik [Influence of nanostructuring surface layer aluminum-lithium alloy 1424 on deformation mechanisms, technical characteristics and fatigue life. Increase of plasticity and technical characteristics] //Fizicheskaja mezomehanika. 2012. T. 15. №6. S. 107–111.
5. Antipov V.V., Senatorova O.G., Tkachenko E.A., Vahromov R.O. Aljuminievye deformiruemye splavy [Aluminum deformable alloys] //Aviacionnye materialy i tehnologii. 2012. №S. S. 167–182.
6. Fridljander I.N., Chuistov K.V., Berezina A.L., Kolobnev N.I., Koval' Ju.N. Aljuminij-litievye splavy. Struktura i svojstva [Aluminum-lithium alloys. Structure and properties]. K.: Naukova dumka. 1992.
7. Fridlyander I.N., Sister V.G., Grushko O.E., Berstenev V.V., Sheveleva L.M., Ivanova L.A. Aluminum alloys: promising materials in the automotive industry //Metal Science and Heat Treatment. 2002. Т. 44. №9–10. P. 365–370.
8. Klochkova Ju.Ju., Grushko O.E., Lancova L.P., Burljaeva I.P., Ovsjannikov B.V. Osvoenie v promyshlennom proizvodstve polufabrikatov iz perspektivnogo aljuminijlitievogo splava V-1469 [Development in industrial production of semi-finished products from perspective alyuminiylitiyevy alloy V-1469] //Aviacionnye materialy i tehnologii. 2011. №1. S. 8–12.
9. Klochkov G.G., Grushko O.E., Klochkova Ju.Ju., Romanenko V.Ju. Promyshlennoe osvoenie vysokoprochnogo splava V-1469 sistemy Al–Cu–Li–Mg [Industrial development of V-1469 high-strength alloy of Al–Cu–Li–Mg system] //Trudy VIAM. 2014. №7. St. 01 (viam-works.ru).
10. Samorukov M.L. Analiticheskij podhod k matematicheskomu modelirovaniju temperaturnoj sostavljajushhej rotacionnoj svarki treniem [Analytical approach to mathematical modeling of temperature component of rotational friction bonding] //Trudy VIAM. 2013. №9. St. 03 (viam-works.ru).
11. Lukin V.I., Ospennikova O.G., Ioda E.N., Panteleev M.D. Svarka aljuminievyh splavov v aviakosmicheskoj promyshlennosti [Welding of aluminum alloys in the aerospace industry] //Svarka i diagnostika. 2013. №2. S. 47–52.
12. Lukin V.I., Ioda E.N., Bazeskin A.V. i dr. Povyshenie nadezhnosti svarnyh soedinenij iz vysokoprochnogo aljuminievo-litievogo splava V-1461 [Increase of reliability of welded connections from high-strength aluminum-lithium alloy V-1461] //Svarochnoe proizvodstvo. 2010. №11. S. 14–17.
13. Petrovic M., Veljic D., Rakin M., Radovic N., Sedmak A., Bajic N. Friction-stir welding of high-strength aluminium alloys and a numerical simulation of plunge stage //Materials in technology. 2012. V. 46. №3. P. 215–221.
14. Silis M.I., Eliseev A.A., Silis V.Je. i dr. Osobennosti struktury svarnyh soedinenij aljuminievyh splavov, poluchennyh frikcionnoj svarkoj [Features of structure of welded compounds of the aluminum alloys received by frictional welding] //MiTOM. 2009. №4. S. 34–39.
15. Lukin V.I., Ioda E.N., Bazeskin A.V. i dr. Osobennosti formirovanija svarnogo soedinenija pri svarke treniem s peremeshivaniem aljuminievogo splava V-1469 [Features of forming of welded connection at friction bonding with V-1469 aluminum alloy hashing] //Svarochnoe proizvodstvo. 2012. №6. S. 30–36.
16. Antipov V.V., Kolobnev N.I., Hohlatova L.B. Razvitie aljuminijlitievyh splavov i mnogostupenchatyh rezhimov termicheskoj obrabotki [Development of alyuminiylitiyevy alloys and multistage modes of thermal processing] //Aviacionnye materialy i tehnologii. 2012. №S. S. 183–195.
17. Oglodkov M.S., Hohlatova L.B., Kolobnev N.I. i dr. Vlijanie termomehanicheskoj obrabotki na svojstva i strukturu splava sistemy Al–Cu–Mg–Li–Zn [Influence of thermomechanical processing on properties and Al–Cu–Mg–Li–Zn system alloy structure] //Aviacionnye materialy i tehnologii. 2010. №4. S. 7–11.
18. Zhilikov V.P., Karimova S.A., Leshko S.S., Chesnokov D.V. Issledovanie dinamiki korrozii aljuminievyh splavov pri ispytanii v kamere solevogo tumana (KST) [Research of dynamics of corrosion of aluminum alloys when testing in the salt spray chamber (KST)] //Aviacionnye materialy i tehnologii. 2012. №4. S. 18–22.
The article considers advantages and disadvantages of currently used ZrO2–(7–8)%Y2O3 (yttrium-stabilized zirconia – YSZ) ceramic layer, widely used now in serial coatings to protect turbine blades of gas turbine engines. The systems and some properties of new ceramic materials based on zirconium oxide with the addition of one or more rare earth elements which are currently being developed abroad are represented. The ceramic layers developed by VIAM brought on by magnetron midrange targets sputtering based on zirconium alloys with rare earth metals with following plasma chemical ceramics deposition in the argon oxygen environment are shown. The microstructure of the surface of the deposited layers, thermal conductivity and the prospects of their use in the development of a new thermal barrier coating (TBC) generation are investigated.
2. Kuznecov V.P., Lesnikov V.P., Konakova I.P. i dr. Struktura i fazovyj sostav monokristallicheskogo splava VZhM4 s gazocirkuljacionnym zashhitnym pokrytiem [Structure and phase composition of VZhM4 single-crystal alloy with gazotsirkulyatsionny protecting cover] //MiTOM. 2011. №3. S. 28–32.
3. Kos'min A.A., Budinovskij S.A., Mubojadzhjan S.A., Bulavinceva E.E. Zharostojkoe pokrytie dlja novogo perspektivnogo intermetallidnogo splava VIN3 [Heat resisting covering for new perspective intermetallidny alloy of VIN3] //Svarochnoe proizvodstvo. 2013. №6. S. 35–37.
4. Budinovskij S.A., Kablov E.N., Mubojadzhjan S.A. Primenenie analiticheskoj modeli opredelenija uprugih naprjazhenij v mnogoslojnoj sisteme pri reshenii zadach po sozdaniju vysokotemperaturnyh zharostojkih pokrytij dlja rabochih lopatok aviacionnyh turbin [Application of analytical model of determination of elastic stresses in multi-layer system at the solution of tasks on creation of high-temperature heat resisting coverings for working blades of aviation turbines] //Vestnik MGTU im. N.Je. Baumana. Ser. «Mashinostroenie». 2011. №SP2. S. 26–37.
5. Kablov E.N., Ospennikova O.G., Bazyleva O.A. Materialy dlja vysokoteplonagruzhennyh detalej gazoturbinnyh dvigatelej [Materials for the high-heatloaded details of gas turbine engines] //Vestnik MGTU im. N.Je. Baumana. Ser. «Mashinostroenie». 2011. №SP2. S. 13–19.
6. Kablov E.N., Mubojadzhjan S.A. Ionnoe travlenie i modificirovanie poverhnosti otvetstvennyh detalej mashin v vakuumno-dugovoj plazme [Ion etching and modifying of surface of responsible details of machines in vacuum and arc plasma] //Vestnik MGTU im. N.Je. Baumana. Ser. «Mashinostroenie». 2011. №SP2. S. 149–163.
7. Kablov E.N., Mubojadzhjan S.A., Budinovskij S.A., Pomelov Ja.A. Ionno-plazmennye zashhitnye pokrytija dlja lopatok gazoturbinnyh dvigatelej [Ion-plasma protecting covers for blades of gas turbine engines] //Konversija v mashinostroenii. 1999. №2. S. 42–47.
8. Muboyadzhyan S.A., Kablov E.N. Vacuum plasma technique of protective coatings production of complex alloys//MiTOM. 1995. №2. S. 15–18.
9. Kablov E.N., Ospennikova O.G., Vershkov A.V. Redkie metally i redkozemel'nye jelementy – materialy sovremennyh i budushhih vysokih tehnologij [Rare metals and rare earth elements – materials of modern and future high technologies] //Trudy VIAM. 2013. №2. St. 01 (viam-works.ru).
10. Matveev P.V., Budinovskij S.A., Mubojadzhjan S.A., Kos'min A.A. Zashhitnye zharostojkie pokrytija dlja splavov na osnove intermetallidov nikelja [Protective heat resisting coverings for alloys on the basis of nickel intermetallic compound] //Aviacionnye materialy i teh-nologii. 2013. №2. S. 12–15.
11. Budinovskij S.A., Mubojadzhjan S.A., Gajamov A.M., Matveev P.V. Razrabotka ionno-plazmennyh zharostojkih metallicheskih sloev teplozashhitnyh pokrytij dlja ohlazhdaemyh rabochih lopatok turbin [Development of ion-plasma heat resisting metal layers of heat-protective coverings for cooled working blades of turbines] //MiTOM. 2013. №11. S. 16–21.
12. Budinovskij S.A., Mubojadzhjan S.A., Gajamov A.M., Stepanova S.V. Ionno-plazmennye zharostojkie pokrytija s kompozicionnym bar'ernym sloem dlja zashhity ot okislenija splava ZhS36-VI [Ion-plasma heat resisting coverings with composition barrier layer for protection against oxidation of alloy ZhS36-VI] //MiTOM. 2011. №1. S. 34–40.
13. Kablov E.N., Mubojadzhjan S.A., Budinovskij S.A., Lucenko A.N. Ionno-plazmennye zashhitnye pokrytija dlja lopatok gazoturbinnyh dvigatelej [Ion-plasma protecting covers for blades of gas turbine engines] //Metally. 2007. №5. S. 23–34.
14. Gajamov A.M., Budinovskij S.A., Mubojadzhjan S.A., Kos'min A.A. Vybor zharostojkogo po-krytija dlja zharoprochnogo nikelevogo renij-rutenijsoderzhashhego splava marki VZhM4 [Choice of heat resisting covering for heat resisting nickel reny-ruteniysoderzhashchy alloy of the VZhM4 brand] //Trudy VIAM. 2014. №1. St. 01 (viam-works.ru).
15. Budinovskij S.A. Primenenie analiticheskoj modeli opredelenija uprugih mehanicheskih i termicheskih naprjazhenij v mnogoslojnoj sisteme v reshenii zadach po sozdaniju zharostojkih aljuminidnyh pokrytij [Application of analytical model of determination of elastic mechanical and thermal stresses in multi-layer system in the solution of tasks on creation of heat resisting alyuminidny coverings] //Uprochnjajushhie tehnologii i pokrytija. 2013. №3. S. 3–11.
16. Mubojadzhjan S.A., Budinovskij S.A., Gajamov A.M., Matveev P.V. Vysokotemperaturnye zharostojkie pokrytija i zharostojkie sloi dlja teplozashhitnyh pokrytij [High-temperature heat resisting coverings and heat resisting layers for heat-protective coverings] //Aviacionnye materialy i tehnologii. 2013. №1. S. 17–20.
17. Chubarov D.A., Matveev P.V. Novye keramicheskie materialy dlja teplozashhitnyh pokrytij rabochih lopatok GTD [New ceramic materials for heat-protective coverings of working blades of GTD] //Aviacionnye materialy i tehnologii. 2013. №4. S. 43–46.
18. Tsipas Sofia. Thermophysical properties of Plasma Sprayed thermal Barrier Coatings. University of Cambridge. 2005. P. 1–25.
19. Levi C.G. Emerging materials and processes for thermal barrier systems //Current Opinion in Solid State and Materials Science. 2004. №8. P. 77–91.
20. Clarke D.R., Phillpot S.R. Thermal barrier coating materials //Materialstoday. 2005. V. 8. №6. P. 22–29.
21. Narottam P. Bansal, Dongming Zhu, Maryam Eslamloo-Grami. Effects of Doping on Thermal Conductivity of Pyrochlore Oxides for Advanced Thermal Barrier Coatings, NASA/TM–2006-214483.
22. Kablov E.N., Mubojadzhjan S.A. Teplozashhitnye pokrytija dlja lopatok turbiny vysokogo davlenija perspektivnyh GTD [Heat-protective coverings for turbine blades of high pressure of perspective GTD] //Metally. 2012. №1. S. 5–13.
23. Kablov E.N., Mubojadzhjan S.A. Zharostojkie i teplozashhitnye pokrytija dlja lopatok turbiny vysokogo davlenija perspektivnyh GTD [Heat resisting and heat-protective coverings for turbine blades of high pressure of perspective GTD] //Aviacionnye materialy i tehnologii. 2012. №S. S. 60–70.
24. Mubojadzhjan S.A., Budinovskij S.A., Gajamov A.M., Smirnov A.A. Poluchenie keramich-eskih teplozashhitnyh pokrytij dlja rabochih lopatok turbin aviacionnyh GTD magnetronnym metodom [Receiving ceramic heat-protective coatings for working blades of turbines of aviation GTD magnetronny method] //Aviacionnye materialy i tehnologii. 2012. №4. S. 3–8.
The possibility of using ion-plasma coatings deposited by high energy vacuum-plasma technology to reduce the free end oscillations amplitude of VT6 titanium alloy samples during testing on vibrodynamic bench at resonance conditions by the first bending mode is hereby shown. The coatings based on pure Ti, Zr, Cr, Ni, Al, Cu metals deposited on the MAP-3 unit under modes enabling the coating growth in the range of 19–73 g/m2 while the tempera-ture of ion and radiation heating does not exceed tempering temperature of the VT6 titanium alloy is investigated. The tests on the damping capacity of applied coatings were performed. It is established that aluminum coating has the best properties.
2. Shorr B.F., Serebrjakov N.N. Raschetno-jeksperimental'nyj analiz amplitudno-zavisimyh harakteristik dempfirovanija v detaljah i materialah [The rated and experimental analysis of amplitude and dependent characteristics of damping in details and materials] //Problemy mashinostroenija i nadezhnosti mashin. 2011. №3. S. 91–99.
3. Sordelet D.J., Kim J.S., Besser M.F. Dryslidin go fpolygrainedquasicrystalinne and crystalline
Al–Cu–Fe alloys //Mat. Res. Soc. Symp. Poc. 1999. V. 553. P. 459–470.
4. Paton B.E., Movchan B.A. Composite Materials Deposited from the Vapour Phase in Vacuum Soviet Technologies Review //Weld and Surfacing. 1991. V. 2. P. 43–64.
5. Mubojadzhjan S.A., Pomelov Ja.A. Zashhitnye pokrytija dlja lopatok kompressora GTD [Protecting covers for GTD compressor blades] /V sb.: Aviacionnye materialy i tehnologii. Vyp. «Vysokozharoprochnye materialy dlja sovremennyh i perspektivnyh gazoturbinnyh dvigatelej i progressivnye tehnologii ih proizvodstva» M.: VIAM. 2003. S. 116–131.
6. Sposob poluchenija litogo trubnogo katoda iz splavov na osnove aljuminija dlja ionno-plazmennogo nanesenija pokrytij [Way of receiving the cast pipe cathode from alloys on the basis of aluminum for ion-plasma drawing coverings]: pat. 2340426 Ros. Federacija; opubl. 16.04.2007.
7. Sposob poluchenija lityh trubnyh izdelij iz splavov na osnove nikelja i/ili kobal'ta [Way of receiving cast tubular goods from alloys on the basis of nickel and/or cobalt]: pat. 2344019 Ros. Federacija; opubl. 16.04.2007.
8. Kablov E.N. Strategicheskie napravlenija razvitija materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period till 2030] //Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
9. Kablov E.N., Ospennikova O.G., Bazyleva O.A. Materialy dlja vysokoteplonagruzhennyh detalej gazoturbinnyh dvigatelej [Materials for the high-heatloaded details of gas turbine engines] //Vestnik MGTU im. N.Je. Baumana. Ser. «Mashinostroenie». 2011. №SP2. S. 13–19.
10. Ustanovka dlja nanesenija zashhitnyh pokrytij [Installation for drawing protecting covers]: pat. 2318078 Ros. Federacija; opubl. 26.06.2006.
11. Kashapov O.S., Pavlova T.V., Nochovnaja N.A. Vlijanie rezhimov termicheskoj obrabotki na strukturu i svojstva zharoprochnogo titanovogo splava dlja lopatok KVD [Influence of modes of thermal processing on structure and property of heat resisting titanium alloy for KVD blades] //Aviacionnye materialy i tehnologii. 2010. №2. S. 8–14.
12. Splav na osnove titana [Titanium-based alloy]: pat. 2426808 Ros. Federacija; opubl. 20.08.2011.
13. Sibileva S.V., Karimova S.A. Obrabotka poverhnosti titanovyh splavov s cel'ju obespechenija adgezionnyh svojstv [Surface treatment of titanium alloys for the purpose of ensuring adhesive properties] //Aviacionnye materialy i tehnologii. 2013. №S2. S. 25–35.
14. Mubojadzhjan S.A. Osobennosti osazhdenija iz dvuhfaznogo potoka mnogokomponentnoj plazmy vakuumno-dugovogo razrjada, soderzhashhego mikrokapli isparjaemogo materiala [Features of sedimentation from diphasic flow of multicomponent plasma of the vacuum arc discharge containing microdrops of evaporated material] //Metally. 2008. №2. C. 20–34.
15. Mubojadzhjan S.A., Aleksandrov D.A., Gorlov D.S. Nanoslojnye uprochnjajushhie pokrytija dlja zashhity stal'nyh i titanovyh lopatok kompressora GTD [Nanolayer strengthening coverings for protection of steel and titanic compressor blades of GTD] //Aviacionnye materialy i tehnologii. 2011. №3. S. 3–8.
16. Mubojadzhjan S.A., Aleksandrov D.A., Gorlov D.S. i dr. Zashhitnye i uprochnjajushhie ionno-plazmennye pokrytija dlja lopatok i drugih otvetstvennyh detalej kompressora GTD [Protective and strengthening ion-plasma coverings for blades and other responsible details of the GTD compressor] //Aviacionnye materialy i tehnologii. 2012. №S. S. 71–81.
17. Kablov E.N., Mubojadzhjan S.A., Budinovskij S.A., Pomelov Ja.A. Ionno-plazmennye zashhitnye pokrytija dlja lopatok gazoturbinnyh dvigatelej [Ion-plasma protecting covers for blades of gas turbine engines] //Konversija v mashinostroenii. 1999. №2. S. 42–47.
18. Muboyadzhyan S.A., Kablov E.N. Vacuum plasma technique of protective coatings pro-duction of complex alloys //МiТОМ. 1995. №2. С. 15–18.
19. Kablov E.N., Mubojadzhjan S.A., Budinovskij S.A., Lucenko A.N. Ionno-plazmennye zashhitnye pokrytija dlja lopatok gazoturbinnyh dvigatelej [Ion-plasma protecting covers for blades of gas turbine engines] //Metally. 2007. №5. S. 23–34.
20. Kablov E.N., Ospennikova O.G., Vershkov A.V. Redkie metally i redkozemel'nye jelementy – materialy sovremennyh i budushhih vysokih tehnologij [Rare metals and rare earth elements – materials of modern and future high technologies] //Trudy VIAM. 2013. №2. St. 01 (viam-works.ru).
21. Kablov E.N., Mubojadzhjan S.A. Ionnoe travlenie i modificirovanie poverhnosti otvetstvennyh detalej mashin v vakuumno-dugovoj plazme [Ion etching and modifying of surface of responsible details of machines in vacuum and arc plasma] //Vestnik MGTU im. N.Je. Baumana. Ser. «Mashinostroenie». 2011. №SP2. S. 149–163.
22. Becofen S.Ja., Smirnov V.G., Ashmarin A.A., Shaforostov A.A. Kolichestvennye metody opisanija tekstury i anizotropii svojstv splavov na osnove titana i magnija [Quantitative methods of the description of structure and anisotropy of properties of titanium-based alloys and magnesium] //Titan. 2010. №2. S. 16–22.
23. Ustinov A.I., Movchan B.A., Skorodzievskij V.S. Issledovanie dempfirujushhej sposobnosti ploskih obrazcov iz titanovogo splava Ti–6%Al–4%V s pokrytijami iz olova i ittrija [Research of damping capacity of flat samples from Ti–6%Al–4%V titanium alloy with coverings from tin and yttrium] //Problemy prochnosti. 2001. №4. S. 55–61.
24. Ustinov A.I. Dissipativnye svojstva nanostrukturirovannyh materialov [Dissipative properties of the nanostructured materials] //Problemy prochnosti. 2008. №5. S. 96–104.
The physical, mechanical and thermo-physical properties of the domestic foamed elastic VPP-1 and rigid plate-type VPP-5 polymer materials produced to substitute the foreign foamed elastic «Solimide» (USA) and rigid plate-type «Rohacell» (Germany) polyimide materials are described in the article. Properties of the domestic foamed VPP-1 and VPP-5 polyimide materials are compared with foreign foamed polyimide analogue materials. The description of the manufacturing method for the foamed polyimide test specimens on the foamed polymeric materials mechanical treatment equipment developed in VIAM is provided. The recommendations on application of the domestic foamed polyimide materials VPP-1 and VPP-5 are given as well.
2. Kablov E.N. Himija v aviacionnom materialovedenii [Chemistry in aviation materials science] //Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 3–4.
3. Kablov E.N. Razrabotki VIAM dlja gazoturbinnyh dvigatelej i ustanovok [Development of VIAM for gas turbine engines and installations] //Kryl'ja Rodiny. 2010. №4. S. 31–33.
4. Bejder Je.Ja., Petrova G.N., Izotova T.F., Barbot'ko S.L. Stekloplastiki na termoplastichnoj matrice [Fibreglasses on thermoflexible matrix] //Trudy VIAM. 2013. №7. St. 03 (viam-works.ru).
5. Stoljankov Ju.V., Ishodzhanova I.V., Antjufeeva N.V. K voprosu o defektah obrazcov dlja ispytanij ugleplastikov [To question of defects of test pieces ugleplastikov] //Trudy VIAM. 2014. №10. St. 10 (viam-works.ru).
6. Doroshenko N.I., Chursova L.V. Jevoljucija materialov dlja lopastej vertoletov [Evolution of materials for blades of helicopters] //Aviacionnye materialy i tehnologii. 2012. №2. S. 16–18.
7. Petrova G.N., Rumjanceva T.V., Bejder Je.Ja. Vlijanie modificirujushhih dobavok na pozharobezopasnye svojstva i tehnologichnost' polikarbonata [Influence of modifying additives on fireproof properties and technological effectiveness of polycarbonate] //Trudy VIAM. 2013 №6. St. 06 (viam-works.ru).
8. Dobrohotova M.L. i dr. Poliimidy [Polyimide]: Spravochnik po plasticheskim massam. M.: Himija. 1969. S. 317–325.
9. PMI – peny s iskljuchitel'nymi harakteristikami [PMI – foams with exclusive characteristics] //Plastiks. 2007. №10. S. 1–2.
10. Krut'ko Je.T., Prokopchuk N.R. Perspektivnye puti sozdanija novyh termostojkih materia-lov na osnove poliimidov [Perspective ways of creation of new heat-resistant materials on the basis of polyimide] //Trudy BGTU. 2013. №4. Himija, tehnologija organicheskih veshhestv i biotehnologii. S. 145–149.
11. Mihajlin Ju.A. Termoustojchivye polimery i polimernye materialy [Thermosteady polymers and polymeric materials]. SPb.: Professija. 2006. 623 s.
12. Kornienko P.V., Shirshin K.V. i dr. Poluchenie vspenennyh poliimidnyh materialov na osnove akrilonitrila i metakrilovoj kisloty [Receiving frothed polyimide materials on basis akrilonitrila and methacrylic acid] //Plasticheskie massy. 2013. №6. S. 4–17.
13. Berlin A.A., Shutov F.A. Himija i tehnologija gazonapolnennyh vysokopolimerov [Chemistry and technology of gas-filled high polymers]. M.: Nauka. 1980. 504 s.
14. Bejder Je.Ja., Gureeva E.V., Petrova G.N. Penopoliimidy [Penopoliimidy] //Vse materialy. Jenciklopediche-skij spravochnik. 2012. №6. S. 2–8.
15. Bejder Je.Ja., Petrova G.N., Izotova T.F., Gureeva E.V. Kompozicionnye termoplastichnye materialy i penopoliimidy [Composite thermoflexible materials and penopoliimidy] //Trudy VIAM. 2013. №11. St. 01 (viam-works.ru).
16. Stoljankov Ju.V., Bejder Je.Ja., Platonov M.M., Petrova G.N. Ustrojstvo dlja mehanicheskoj obrabotki vspenennyh polimernyh materialov [The device for machining of frothed polymeric materials] //Trudy VIAM. 2015 (v pechati).
17. Ustrojstvo dlja mehanicheskoj obrabotki vspenennyh polimernyh materialov [The device for machining of frothed polymeric materials]: pat. №145916. Ros. Federacija; opubl. 27.09.2014.
In this work the anti-corrosion properties of polyesterurethane compound in conditions of high humidity (WKL-100) and the salt spray chamber (KCT-35) on samples of 30KhGSA steel and D16-T, 1163-AT and 1163-T aluminum alloys were determined. The results were compared with properties of well-known Cor Ban 35, PINS AT (TU38.401-58-120–95) and Dinitrol AV-40 protecting compounds. The fulfilled tests have shown high protective properties of pilot batch of PEUK compound for application in technological processes for enhanced parts and units protection in aviation hardware.
2. Kablov E.N. Aviakosmicheskoe materialovedenie [Aerospace materials science] //Vse materialy. Jenciklopedicheskij spravochnik. 2008. №3. S. 2–14.
3. Kablov E.N., Starcev O.V., Krotov A.S., Kirillov V.N. Klimaticheskoe starenie kompozicionnyh materialov aviacionnogo naznachenija. II. Relaksacija ishodnoj strukturnoj neravnovesnosti i gradient svojstv po tolshhine [Climatic aging of composite materials of aviation assignment. II. Relaxation of initial structural non-equilibrium and gradient of properties on thickness] //Deformacija i razrushenie materialov. 2012. №6. S. 17–19.
4. Kablov E.N., Starcev O.V., Krotov A.S., Kirillov V.N. Klimaticheskoe starenie kompozicionnyh materialov aviacionnogo naznachenija. I. Mehanizmy starenija [Climatic aging of composite materials of aviation assignment. I. Aging mechanisms] //Deformacija i razrushenie materialov. 2010. №11. S. 19–27.
5. Kablov E.N., Petrova A.P., Narskij A.R. G.V. Akimov – sozdatel' otechestvennoj nauki o kor-rozii [G.V. Akimov – the creator of domestic science about corrosion] //Istorija nauki i tehniki. 2009. №11. S. 12–15.
6. Kirillov V.N., Starcev O.V., Efimov V.A. Klimaticheskaja stojkost' i povrezhdaemost' polimernyh kompozicionnyh materialov, problemy i puti reshenija [Climatic firmness and damageability of polymeric composite materials, problems and solutions] //Aviacionnye materialy i tehnologii. 2012. №S. S. 412–423.
7. Kirillov V.N., Efimov V.A., Shvedkova A.K., Nikolaev E.V. Issledovanie vlijanija klimaticheskih faktorov i mehanicheskogo nagruzhenija na strukturu i mehanicheskie svojstva PKM [Research of influence of climatic factors and mechanical loading on structure and the PKM mechanical properties] //Aviacionnye materialy i tehnologii. 2011. №4. S. 41–45.
8. Kablov E.N., Starcev O.V., Krotov A.S., Kirillov V.N. Klimaticheskoe starenie kompozicionnyh materialov aviacionnogo naznachenija. III. Znachimye faktory starenija [Climatic aging of composite materials of aviation assignment. III. Significant factors of aging] //Deformacija i razrushenie materialov. 2011. №1. S. 34–40.
9. Semenova L.V., Nefedov N.I. Pokrytija dlja zashhity gidroagregatov [Coverings for protection of hydraulic units] //Trudy VIAM. 2014. №2. St. 05. (viam-works.ru).
10. Karimova S.A., Pavlovskaja T.G. Razrabotka sposobov zashhity ot korrozii konstrukcij, rabotajushhih v uslovijah kosmosa [Development of ways of corrosion protection of the designs working in the conditions of space] //Trudy VIAM. 2013. №4. St. 02. (viam-works.ru).
11. Gui F., Furrow K., Williams J., Cooper K., Kelly R.G. Laboratory evaluations of corrosion prevention compounds for aircraft. Department of Materials Science and Engineering, University of Virginia. 2002.
12. Craig B.D., Lane R.A., Rose D.H. Corrosion Prevention and Control: A Program Man-agement Guide for Selecting Materials //Advanced Materials, Manufacturing and Testing Information Analysis Center. 2006. P. 75–82.
13. Zalivochnyj kompaund [Filling compound]: pat. №2006022 Ros. Federacija; opubl. 05.01.2004.
14. Nizamov T.I. Osobennosti proektirovanija antenny gidrolokatora dlja morskogo monitoringa [Features of design of the aerial of the sonar for sea monitoring] //Izvestija NAN Azerbajdzhana. Ser. «Fiziko-matematicheskie i tehnicheskie nauki». 2003. №5(II). S. 184–190.
15. Topliva, smazochnye materialy, tehnicheskie zhidkosti. Assortiment. Primenenie [Fuels, lubricants, technical liquids. Range. Application]: Spravochnik /Pod red. V.M. Shkol'nikova. 2-e izd. M.: Tehinform. 1999. S. 384, 386.
16. GOST 9.054–80 Edinaja sistema zashhity ot korrozii i starenija. Materialy konservacion-nye. Masla, smazki i neftjanye ingibirovannye tonkoplenochnye pokrytija. Metody uskorennyh ispytanij zashhitnyh svojstv [Uniform system of corrosion protection and aging. Materials konservatsionny. Oils, lubricant and oil inhibited thin-film coverings. Methods of accelerated tests of protective properties].
17. Antipov V.V., Senatorova O.G., Tkachenko E.A., Vahromov R.O. Aljuminievye deformiruemye splavy [Aluminum deformable alloys] //Aviacionnye materialy i tehnologii. 2012. №S. S. 167–182.
18. Zhilikov V.P., Karimova S.A., Leshko S.S., Chesnokov D.V. Issledovanie dinamiki korrozii aljuminievyh splavov pri ispytanii v kamere solevogo tumana (KST) [Research of dynamics of corrosion of aluminum alloys when testing in the salt spray chamber (KST)] //Aviacionnye materialy i tehnologii. 2012. №4. S. 18–22.
19. Kurs M.G., Karimova S.A. Naturno-uskorennye ispytanija: osobennosti metodiki i sposoby ocenki korrozionnyh harakteristik aljuminievyh splavov [Natural accelerated tests: features of technique and ways of assessment of corrosion characteristics of aluminum alloys] //Aviacionnye materialy i tehnologii. 2014. №1. S. 51–57.
On the investigations examples of aircraft gas turbine engines corrosive damages after 5 years exposure on the open experimental ground of the FSUE «VIAM» G.V. Akimov Gelendzhik climatic test center (VIAM GCTC) the possibilities of confocal laser imaging microscopy are represented. The 3D-models were built and quantitative assessment of surface topography by statistical data processing of the roughness using standard software was undertaken.
2. Kablov E.N. Strategicheskie napravlenija razvitija materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period till 2030] //Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
3. Kablov E.N. Korrozija ili zhizn' [Corrosion or life] //Nauka i zhizn'. 2012. №11. S. 16–21.
4. Orlov M.R. Strategicheskie napravlenija razvitija Ispytatel'nogo centra FGUP «VIAM» [Strategic directions of development of the Test center VIAM Federal State Unitary Enterprise] //Aviacionnye materialy i tehnologii. 2012. №S. S. 387–393.
5. Morozova L.V., Ishodzhanova I.V. Issledovanie zakonomernostej izmenenija rel'efa pover-hnosti obrazcov iz aljuminijlitievyh splavov metodom lazernoj mikroskopii [Research of patterns of change of relief of surface of samples from alyuminiylitiyevy alloys method of laser microscopy] //Trudy VIAM. 2014. №10. St. 08 (viam-works.ru).
6. Fridljander I.N., Chuistov K.V., Berezina A.L., Kolobnev N.I., Koval' Ju.N. Aljuminij-litievye splavy. Struktura i svojstva [Aluminum - lithium alloys. Structure and properties]. K.: Naukova dumka. 1992.
7. Antipov V.V., Kolobnev N.I., Hohlatova L.B. Razvitie aljuminijlitievyh splavov i mnogostupenchatyh rezhimov termicheskoj obrabotki [Development of alyuminiylitiyevy alloys and multistage modes of thermal processing] //Aviacionnye materialy i tehnologii. 2012. №S. S. 183–195.
8. Orlov M.R. High-Temperature Corrosive Damage to Superalloys during Operation of Blades of Gas-Turbines and Power Plans //Polymer science. D. 2013. V. 6. №3. P. 250–255.
9. Abraimov N.V., Orlov M.R., Shkretov Ju.P. Nekotorye aspekty vysokotemperaturnogo okis-lenija splava na osnove γʹ-Ni3Al [Some aspects of high-temperature oxidation of alloy on basis γʹ-Ni3Al] //Korrozija: materialy, zashhita. 2010. №8. S. 1–11.
10. Orlov M.R., Ospennikova O.G., Gromov V.I. Zamedlennoe razrushenie stali 38HN3MA v processe dlitel'noj jekspluatacii [Steel 38ХН3МА delayed fracture in the course of long operation] //Vestnik MGTU im. N.Je. Baumana. Ser. «Mashinostroenie». 2011. №SP2. S. 5–12.
11. Orlov M.R., Jakimova M.S. Zamedlennoe razrushenie monokristallicheskih lopatok iz zharo-prochnogo splava ZhS26-VI v processe jekspluatacii GTU [Delayed fracture of single-crystal blades from ZhS26-VI hot strength alloy in use GTU] //Gazoturbinnye tehnologii. 2011. №8. S. 10–15.
12. Ishodzhanova I.V. Primenenie konfokal'noj lazernoj skanirujushhej mikroskopii dlja reshenija materialovedcheskih zadach [Application of konfokalny laser scanning microscopy for the solution of materialovedchesky tasks] /V sb. materialov VII Evrazijskoj nauch.-praktich. konf. «Prochnost' neodnorodnyh struktur». M.: MISiS. 2014. S. 138.
13. Chabina E.B., Alekseev A.A., Filonova E.V., Lukina E.A. Primenenie metodov analiticheskoj mikroskopii i rentgenostrukturnogo analiza dlja issledovanija strukturno-fazovogo sostojanija materialov [Application of methods of analytical microscopy and the rentgenostrukturny analysis for research of structural and phase condition of materials] //Trudy VIAM. 2013. №5. St. 06 (viam-works.ru).
14. Klevcov G.V., Merson E.D. O vozmozhnosti ispol'zovanija konfokal'nogo lazernogo skanirujushhego mikroskopa dlja issledovanija mikrorel'efa poverhnosti razrushenija metallicheskih materialov [About possibility of use of konfokalny laser scanning microscope for research of microrelief of surface of destruction of metal materials] //Fundamental'nye issledovanija. 2012. №11. S. 1185–1189.
15. Hovis D.B., Heuer A.H. The use of laser scanning confocal microscopy (LSCM) in materials science //Journal of Microscopy. 2010. V. 240. №3. P. 173–180.
16. Klark Je.R., Jeberhardt K.N. Mikroskopicheskie metody issledovanija materialov [Microscopic methods of research of materials]. M.: Tehnosfera. 2007. 376 s.
17. Orlov M.R., Ospennikova O.G., Naprienko S.A., Morozova L.V. Issledovanie ustalostnogo razrushenija konicheskih shesteren reduktora central'nogo privoda gazoturbinnogo dvigatelja, izgotovlennyh iz stali 20H3MVF [Research of fatigue failure of conic gear wheels of reducer of the central drive of the gas turbine engine, made of steel 20Х3МВФ] //Deformacija i razrushenie materialov. 2014. №7. S. 18–26.
18. Jevans Ju.R. Korrozija, passivnost' i zashhita metallov [Corrosion, passivity and protection of metals]. M.: Gosudarstvennoe nauch.-tehnich. izd-vo lit. po chernoj i cvetnoj metallurgii. 1941. 886 s.
19. Orlov M.R., Ospennikova O.G., Karachevcev F.N. Obespechenie kachestva poverhnosti rabochih lopatok turbiny pri nanesenii zashhitnyh diffuzionnyh pokrytij [Providing surface quality of working turbine blades when drawing protective diffusion coatings] //Metallurg. 2013. №2. S. 77–84.
20. Orlov M.R., Ospennikova O.G., Rassohina L.I. Podgotovka poverhnosti lopatok turbiny dlja nerazrushajushhego kontrolja metodom kapilljarnoj defektoskopii [Surface preparation of turbine blades for non-destructive testing by method of capillary defektoskopiya] //Zavodskaja laboratorija. Diagnostika materialov. 2013. №8. S. 52–60.
21. Zhuk N.P. Kurs teorii korrozii i zashhity metallov [Course of the theory of corrosion and protection of metals]. M.: Metallurgija. 1976. 472 s.
22. Shluger M.A., Azhogin F.F., Efimov E.A. Korrozija i zashhita metallov [Corrosion and protection of metals]. M.: Metallurgija. 1981. 216 s.
23. Sokol I.Ja., Ul'janin E.A., Fel'dgandler Je.G. i dr. Struktura i korrozija metallov i splavov. Atlas [Structure and corrosion of metals and alloys. Atlas]: Sprav. izd. M.: Metallurgija. 1989. 400 s.
24. Semenova I.V., Florianovich G.M., Horoshilov A.V. Korrozija i zashhita ot korrozii [Corrosion and corrosion protection]. M.: Fizmatlit. 2002. 336 s.
25. Environmental and Industrial Corrosion – Practical and Theoretical Aspects /Ed. B.V. Salas, M. Schorr. In Tech. 2012. 168 p.
26. Reformatskaja I.I., Rodionova I.G., Bejlin Ju.A. i dr. Rol' nemetallicheskih vkljuchenij i mikrostruktury v processe lokal'noj korrozii uglerodistyh i nizkolegirovannyh stalej [Role of non-metallic inclusions and microstructure in the course of local corrosion carbonaceous and low-alloy steels] //Zashhita metallov. 2004. T. 40. №5. S. 498–503.
27. Filippov G.A., Rodionova I.G., Baklanova O.N. Korrozionnaja stojkost' stal'nyh trubo-provodov [Corrosion resistance of steel pipelines] //Tehnologija metallov. 2004. №2. S. 24–27.
28. Rodionova I.G., Baklanova O.N., Filippov G.A. i dr. Rol' nemetallicheskih vkljuchenij v uskorenii processov lokal'noj korrozii neftepromyslovyh truboprovodov i drugih vidov metalloprodukcii i oborudovanija iz uglerodistyh i nizkolegirovannyh stalej [Role of non-metallic inclusions in acceleration of processes of local corrosion of oil-field pipelines and other types of steel products and the equipment from carbonaceous and low-alloy steels]. M.: Metallurgizdat. 2005. S. 7–14.
29. Semenychev V.V. Korrozionnaja stojkost' listov splava D16ch.-T v morskih subtropikah [Corrosion resistance of sheets of alloy Д16ч.-T in sea subtropics] //Trudy VIAM. 2014. №7. St. 11 (viam-works.ru).
The method of determining the adhesion strength of silver coating to the silicon substrate was developed for defining the quality of contact connections in semiconductor elements. It is shown hereby that the best option is to use high-adhesive membranous glue VK-51 and a special tooling with molybdenum heat compensators.
2. Kablov E.N. Strategicheskie napravlenija razvitija materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period till 2030] //Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
3. Petrova A.P., Lukina N.F. Klei dlja mnogorazovoj kosmicheskoj sistemy [Glues for reusable space system] //Trudy VIAM. 2013. №4. St. 04 (viam-works.ru).
4. Petrova A.P., Donskoj A.A., Chalyh A.E., Shherbina A.A. Klejashhie materialy. Germetiki [Gluing materials. Hermetics]: Spravochnik. SPb.: Professional. 2008. 592 s.
5. Petrova A.P. Klejashhie materialy [Gluing materials]: Spravochnik. M.: ZAO Redakcija zhurnala «Kauchuk i rezi-na». 2002. 196 s.
6. Lukina N.F., Dement'eva L.A., Petrova A.P., Serezhenkov A.A. Konstrukcionnye i termostojkie klei [Constructional and heat-resistant glues] //Aviacionnye materialy i tehnologii. 2012. №S. S. 328–335.
7. Kucevich K.E., Dement'eva L.A., Lukina N.F., Chursova L.V. Svojstva i naznachenie kleja VK-36RM dlja aviacionnoj tehniki [Properties and glue assignment R of aviation engineering] //Klei. Germetiki. Tehnologii. 2013. №8. S. 5–6.
8. Dement'eva L.A., Lukina N.F., Serezhenkov A.A., Kucevich K.E. Osnovnye svojstva i nazna-chenie PKM na osnove kleevyh prepregov [The main properties and PKM assignment on the basis of glue prepregs] /V sb. tez. dokl. XIX Mezhdunarodnoj nauch.-tehn. konf. «Konstrukcii i tehnologii poluchenija izdelij iz nemetallicheskih materialov». Obninsk. 2010. S. 11–12.
9. Dement'eva L.A., Serezhenkov A.A., Lukina N.F., Kucevich K.E. Kleevye prepregi i sloistye materialy na ih osnove [Glue prepregs and layered materials on their basis] //Aviacionnye materialy i tehnologii. 2013. №2. S. 19–21.
10. Lukina N.F., Dement’eva L.A., Serezhenkov A.A. et al. Adhesive prepregs and composite matirials on their bases //Russian J. of General Chemistry. 2011. V. 81. №5. P. 1022–1024.
11. Lukina N.F., Dement'eva L.A., Serezhenkov A.A. i dr. Kleevye prepregi i kompozicionnye materialy na ih osnove [Glue prepregs and composite materials on their basis] //Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 53–56.
12. Dement'eva L.A., Serezhenkov A.A., Bocharova L.I. i dr. Svojstva kompozicionnyh materialov na osnove kleevyh prepregov [Properties of composite materials on the basis of glue prepregs] //Klei. Germetiki. Tehnologii. 2012. №6. S. 19–24.
13. Kablov E.N., Antipov V.V., Senatorova O.G., Lukina N.F. Novyj klass sloistyh aljumostekloplastikov na osnove aljuminij-litievogo splava 1441 s ponizhennoj plotnost'ju [New class layered alyumostekloplastikov on basis aluminum-lithium alloy 1441 with lowered density] //Vestnik MGTU im. N.Je. Baumana. 2011. №SP2. S. 174–184.
14. Kleevaja kompozicija [Glue composition]: pat. 2471842 Ros. Federacija; opubl. 11.05.2011.
15. Kablov E.N. Himija v aviacionnom materialovedenii [Chemistry in aviation materials science] //Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 3–4.
16. Antipov V.V., Senatorova O.G., Lukina N.F., Sidel'nikov V.V., Shestov V.V. Sloistye metallopolimernye kompozicionnye materialy [Layered metalpolymeric composite materials] //Aviacionnye materialy i tehnologii. 2012. №S. S. 226–230.
17. Sharova I.A., Petrova A.P. Obzor po materialam Mezhdunarodnoj konferencii po klejam i germetikam (WAC-2012, Francija) [The overview on materials of the International conference on glues and hermetics (WAC-2012, France)] //Trudy VIAM. 2013. №8. St. 06 (viam-works.ru).
18. Zhang Zhiye (Zach), Lu Guo-Quan. Pressure-Assisted Low-Temperatuze Sintering of Silver Paste as an Alternative Die-Attach Solution to Soldez Reflow //Trans. Jnd. Applicat. 2002. V. 25. №4. Р. 279–283.