Articles
CAD was used to improve chemical composition of single crystal intermetallic Ni-based superalloy with crystallographic orientation (CGO) providing an attractive combination of operation properties: density – 8,0 g/cm3; long-term strength – 130 MPa at 1100°C and =53 MPa at 1200°C and σ-1=370 MPa at 900°C on the base of 2·107 cycles. The process parameters for casting of uncooled single crystal small-sized rotor blades of GTE with CGO from the above alloy were developed. Experimental lots of uncooled small-sized rotor blades were produced with the single crystal structure yield at least 95% under conditions of pilot production at VIAM and 80% - under industrial conditions.
2. Buntushkin V.P., Bazyleva O.A. Litejnye zharoprochnye splavy na osnove intermetallida nikelja i ih primenenie dlja vysokotemperaturnyh detalej GTD [Casting superalloys based intermetallic nickel and their application to high-GTE parts] /V sb.: Aviacionnye materialy i tehnologii. Vyp. «Vysokozharoprochnye materialy dlja sovremennyh i perspektivnyh gazoturbinnyh dvigatelej i progressivnye tehnologii ih proizvodstva». M.: VIAM. 2003. S. 18–24.
3. Gerasimov V.V., Visik E.M. Tehnologicheskie aspekty lit'ja detalej gorjachego trakta GTD iz intermetallidnyh nikelevyh splavov tipa VKNA s monokristallicheskoj strukturoj [Technological aspects of the casting of turbine engine hot section of the intermetallic nickel alloys such VKNA with single-crystal structure] //Litejshhik Rossii. 2012. №2.
S. 19–23.
4. Gerasimov V.V., Visik E.M., Nikitin V.A., Zernova M.G. Opyt osvoenija tehnologii lit'ja sektorov soplovyh lopatok s monokristallicheskoj strukturoj iz splava VKNA-4U [Experience in development of casting technology sectors nozzle blades with single-crystal structure of the alloy VKNA-4U] //Aviacionnye materialy i tehnologii. 2012. №4.
S. 13−18.
5. Bondarenko Ju.A., Kablov E.N. Napravlennaja kristallizacija zharoprochnyh splavov s povyshennym temperaturnym gradientom [Directional solidification of superalloys with a high temperature gradient] //MiTOM. 2002. №7. S. 20–23.
6. Kablov E.N., Gerasimov V.V., Visik E.M. Tehnologicheskie osobennosti poluchenija monokristallicheskih obrazcov i turbinnyh lopatok iz vysokorenievyh zharoprochnyh splavov na ustanovkah UVNK-9 i VIAM-1790 [Technological features of obtaining single-crystal turbine blades and vysokorenievyh of superalloys installations UVNK-9 and VIAM-1790] /V sb.: Litejnye zharoprochnye splavy. Jeffekt S.T. Kishkina. M.: Nauka. 2006. S. 185−183.
7. Kablov E.N., Tolorajja V.N. VIAM – osnovopolozhnik otechestvennoj tehnologii lit'ja monokristallicheskih turbinnyh lopatok GTD i GTU [VIAM - founder of the national casting technology of single-crystal turbine blades and turbine engine GTU] //Aviacionnye materialy i tehnologii. 2012. №S. S. 105−117.
8. Bazyleva O.A., Arginbaeva Je.G., Turenko E.Ju. Zharoprochnye litejnye intermetallidnye splavy [Heat-resistant casting intermetallic alloys] //Aviacionnye materialy i tehnologii. 2012. №S. S. 57–60.
9. Kablov E.N., Buntushkin V.P., Bazyleva O.A., Gerasimov V.V., Timofeeva O.B. Zharoprochnye splavy na osnove intermetallida Ni3Al [Heat-resistant alloys based on the intermetallic compound Ni3Al] /V sb. trudov Mezhdunarodnoj nauch.-tehnich. konf. «Nauchnye idei S.T. Kishkina i sovremennoe materialovedenie». M.: VIAM. 2006.
S. 71–75.
10. Kablov E.N., Buntushkin V.P., Bazyleva O.A. Konstrukcionnye zharoprochnye materialy na osnove soedinenija Ni3Al dlja detalej gorjachego trakta GTD [Structural refractory materials based compound Ni3Al for hot section components GTD] //Tehnologija legkih splavov. 2007. №2. S. 75−80.
11. Kablov E.N., Gerasimov V.V., Visik E.M., Demonis I.M. Rol' napravlennoj kristalli-zacii v resursosberegajushhej tehnologii proizvodstva detalej GTD [The role of directional solidification in the resource-saving technology of production of gas-turbine] //Trudy VIAM. 2013. №3. St. 01 (viam-works.ru).
12. Kablov E.N., Svetlov I.L., Petrushin N.V. Nikelevye zharoprochnye splavy dlja lit'ja lopatok s napravlennoj i monokristallicheskoj strukturoj (Chast' I) [Nickel superalloys for casting blades with directional and single-crystal structure] //Materialovedenie. 1997. №4. S. 32–39.
13. Kablov E.N., Svetlov I.L., Petrushin N.V. Nikelevye zharoprochnye splavy dlja lit'ja lopatok s napravlennoj i monokristallicheskoj strukturoj (Chast' II) [Nickel superalloys for casting blades with directional and single-crystal structure] //Materialovedenie. 1997. №5. S. 14–16.
14. Kablov E.N., Petrushin N.V. Komp'juternyj metod konstruirovanija litejnyh zharoprochnyh nikelevyh splavov [Computer method for the construction of the casting heat-resistant nickel alloys] /V sb.: Litejnye zharoprochnye splavy. Jeffekt S.T. Kishkina. M.: Nauka. 2006. S. 56−78.
15. Kablov E.N., Petrushin N.V., Svetlov I.L., Demonis I.M. Nikelevye litejnye zharo-prochnye splavy novogo pokolenija [Casting nickel superalloys new generation] //Aviacionnye materialy i tehnologii. 2012. №S. S. 36–52.
16. Petrushin N.V., Chabina E.B., Nazarkin R.M. Konstruirovanie zharoprochnyh intermetallidnyh splavov na osnove γ′-fazy s vysokoj temperaturoj plavlenija. Chast' 2. [Construction of refractory alloys based intermetallic γ'-phase with a high melting point.] //MiTOM. 2012. №3 (681). S. 20–23.
17. Morozova G.I. Kompensacija disbalansa legirovanija zharoprochnyh nikelevyh splavov [Imbalance compensation doping of heat-resistant nickel alloys] //MiTOM. 2012. №12 (690). S. 52−56.
18. Zhang J.S., Hu Z.Q., Murata Y., Morinaga M., Yukawa N. Design and development of hot corrosion-resistant nickel-base single-crystal superalloys by the d-electrons alloy design theory: Part II. Characterization of the phase stability //Metallurgical Transaction A. 1993. V. 24. P. 2443−2450.
19. Gerasimov V.V., Visik E.M., Koljadov E.V. Vzaimosvjaz' formy fronta kristallizacii so strukturoj zharoprochnyh splavov v processe napravlennoj kristallizacii [The relationship forms the crystallization front with the structure of high-temperature alloys during directional solidification] //Trudy VIAM. 2014. №6. St. 02 (viam-works.ru).
The paper describes the studies focused on structure and mechanical properties of bars made from heat-resistant near-α-titanium alloy VТ41 with different iron contents. It was established that an increase in Fe content leads to modification of microstructure, an increase in strength and fatigue characteristics of the material and to a decrease in ductility characteristics, fracture toughness and heat resistance. In addition, rising of Fe content is accompanied by an increase of sensitivity to stress concentrators at different types of tests.
2. Kablov E.N. Materialy dlja izdelija «Buran» – innovacionnye reshenija formirovanija shestogo tehnologicheskogo uklada [Materials for the product «Buran» – innovative solutions forming the sixth technological order] //Aviacionnye materialy i tehnologii. 2013. №S1. S. 3–9.
3. Kablov E.N., Ospennikova O.G., Vershkov A.V. Redkie metally i redkozemel'nye jelementy – materialy sovremennyh i budushhih vysokih tehnologij [Rare metals and rare earth elements - materials of current and future high-tech] //Trudy VIAM. 2013. №2. St. 01 (viam-works.ru).
4. Kashapov O.S., Novak A.V., Nochovnaja N.A., Pavlova T.V. Sostojanie, problemy i perspektivy sozdanija zharoprochnyh titanovyh splavov dlja detalej GTD [Status, problems and prospects of creating heat-resistant titanium alloys for GTE parts] //Trudy VIAM. 2013. №3. St. 02 (viam-works.ru).
5. Erasov V.S., Jakovlev N.O., Nuzhnyj G.A. Kvalifikacionnye ispytanija i issledovanija prochnosti aviacionnyh materialov [Qualification testing and research strength of aircraft materials] //Aviacionnye materialy i tehnologii. 2012. №S. S. 440–448.
6. Kablov E.N. Shestoj tehnologicheskij uklad [Sixth technological way] //Nauka i zhizn'. 2010. №4. S. 2–7.
7. Titanium-base alloy: патент EP 87 30 5197, опубл. 01.06.1988. Applicant Inventor Bania Paul J. – Timet, Europe, USA.
8. Russo P.A., Yu K.O. Effect of Ni, Fe and primary alpha on the creep of alpha-beta processed and annealed Ti–6Al–2Sn–4Zr–2Mo–0,09Si /In: Titanium-99. Science and technology. 1999. P. 596–603.
9. Russo P.A., Yu K.O. Effect of Ni, Fe and Si on the creep of Ti–6Al–2Sn–4Zr–6Mo /In: Titanium-99. Science and technology. 1999. P. 713–720.
10. Ivanova L.A., Kudrjavcev A.S., Chudakov E.V., Lysenko L.V., Travin V.V. Optimizacija kompleksa sluzhebnyh svojstv titanovyh splavov marok 5V i 37 dlja uzlov i detalej jenergeticheskogo oborudovanija [Optimization of complex service properties of titanium alloys brands 5V and 37 units and parts of the power equipment] //Titan. 2010. №4. S. 23–30.
11. Travin V.V., Ivanova L.A., Kudrjavcev A.S., Kozlova I.R. Polzuchest' psevdo-al'fa-titanovyh splavov i ee vlijanie na naprjazhenno-deformirovannoe sostojanie detalej parovyh turbin [Creep pseudo-alpha titanium alloys and its influence on the stress-strain state of parts of steam turbines] //Titan. 2013. №2. S. 4–12.
12. Kashapov O.S., Pavlova T.V., Nochovnaja N.A. Vlijanie rezhimov termicheskoj obrabotki na strukturu i svojstva zharoprochnogo titanovogo splava dlja lopatok KVD [Effect of heat treatment on the structure and properties of heat-resistant titanium alloy blades for HPC] //Aviacionnye materialy i tehnologii. 2010. №2. S. 8–14.
13. Sposob termicheskoj obrabotki vysokoprochnyh (α+β)-titanovyh splavov [A method of heat treatment of high (α + β) alloy titanic]: pat. 2465366 Ros. Federacija; opubl. 15.09.2011.
14. Sposob termomehanicheskoj obrabotki izdelij iz titanovyh splavov [Method of thermomechanical processing of titanium alloys]: pat. 2457273 Ros. Federacija; opubl. 05.04.2011.
15. Horev A.I., Belov S.P., Glazunov S.G. Metallovedenie titana i ego splavov [Physical metallurgy of titanium and its alloys]. M.: Metallurgija. 1992. 352 s.
16. Horev A.I. Perspektivnye napravlenija povyshenija konstrukcionnoj prochnosti titanovyh splavov [Promising ways to improve the structural strength of titanium alloys] //Tehnologija legkih splavov. 2007. №2. S. 144–153.
17. Horev A.I. Razrabotka konstrukcionnyh titanovyh splavov dlja izgotovlenija detalej i uzlov aviakosmicheskoj tehniki [Development of structural titanium alloys for the manufacture of parts and components of aerospace engineering] //Svarochnoe proizvodstvo. 2009. №3. S. 13–23.
Various types of biaxial diagrams used for phase areas representation in titanium alloys with additionally doped with hydrogen have been reviewed both for hydrogenated state and after vacuum annealing. It has been shown that only temperature-concentration phase diagrams describe properly the high-temperature phase equilibria in «Ti-alloy–hydrogen» system. Other diagrams such as «hydrogen content–temperature of hydrogenation», «hydrogen content–cooling rate» and diagrams for quenched and annealed alloys represent phase composition at room temperature.
2. Tarasov Ju.M., Antipov V.V. Novye materialy VIAM − dlja perspektivnoj aviacionnoj tehniki proizvodstva OAO «OAK» [New materials VIAM - for promising aviation equipment produced by JSC «UAC»] //Aviacionnye materialy i tehnologii. 2012. №2. S. 5–6.
3. Shmotin Ju.N., Starkov R.Ju., Danilov D.V., Ospennikova O.G., Lomberg B.S. Novye materialy dlja perspektivnogo dvigatelja OAO «NPO „Saturn”» [New materials for advanced engine JSC «NPO „Saturn”»] //Aviacionnye materialy i tehnologii. 2012. №2. S. 6–8.
4. Nochovnaja N.A., Panin P.V., Alekseev E.B., Bokov K.A. Jekonomnolegirovannye titanovye splavy dlja sloistyh metallopolimernyh kompozicionnyh materialov [Ehkonomnolegirovannye titanium alloys for metal-layered composite materials] //Trudy VIAM. 2014. №11. St. 02 (viam-works.ru).
5. Horev A.I. Fundamental'nye i prikladnye raboty po konstrukcionnym titanovym splavam i perspektivnye napravlenija ih razvitija [Fundamental and applied research in structural titanium alloys and future directions of their development] //Trudy VIAM. 2013. №2. St. 04
(viam-works.ru).
6. Horev A.I., Belov S.P., Glazunov S.G. Metallovedenie titana i ego splavov [Physical metallurgy of titanium and its alloys]. M.: Metallurgija. 1992. 352 s.
7. Kashapov O.S., Novak A.V., Nochovnaja N.A., Pavlova T.V. Sostojanie, problemy i perspektivy sozdanija zharoprochnyh titanovyh splavov dlja detalej GTD [Status, problems and prospects of creating heat-resistant titanium alloys for GTE parts] //Trudy VIAM. 2013. №3. St. 02 (viam-works.ru).
8. Kablov E.N. Strategicheskie napravlenija razvitija materialov i tehnologij ih pererabotki na period do 2030 goda [Strategic directions of development of materials and technologies to process them for the period up to 2030] //Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
9. Kablov E.N., Ospennikova O.G., Lomberg B.S. Strategicheskie napravlenija razvitija konstrukcionnyh materialov i tehnologij ih pererabotki dlja aviacionnyh dvigatelej nastojashhego i budushhego [Strategic directions of development of structural materials and their processing technology for aircraft engines present and future] //Avtomaticheskaja svarka. 2013. №10. S. 23–32.
10. Il'in A.A., Kolachev B.A., Nosov V.K., Mamonov A.M. Vodorodnaja tehnologija titanovyh splavov [Hydrogen technology of titanium alloys]. M.: MISiS. 2002. 392 s.
11. Il'in A.A. Mehanizm i kinetika fazovyh i strukturnyh prevrashhenij v titanovyh splavah [Mechanism and kinetics of phase and structural transformations in titanium alloys]. M.: Nauka. 1994. 304 s.
12. Kolachev B.A., Il'in A.A., Nosov V.K., Mamonov A.M. Dostizhenija vodorodnoj tehnologii titanovyh splavov [Achievements hydrogen technology of titanium alloys] //Tehnologija legkih splavov. 2007. №3. S. 10–26.
13. Il'in A.A., Skvorcova S.V., Mamonov A.M. Upravlenie strukturoj titanovyh splavov metodom termovodorodnoj obrabotki [Management structure of titanium alloys by thermohydrogen processing] //Fiziko-himicheskaja mehanika materialov. 2008. №3. S. 28–34.
14. Il'in A.A., Skvorcova S.V., Panin P.V., Shalin A.V. Vlijanie termovodorodnoj obrabotki i plasticheskoj deformacii na strukturoobrazovanie v titanovyh splavah raznyh klassov [Influence thermohydrogen processing and plastic deformation on the structure formation in titanium alloys of different classes] //Aviacionnaja promyshlennost'. 2009. №4. S. 31–36.
15. Skvorcova S.V., Panin P.V., Zasypkin V.V., Zajnetdinova G.T. Formirovanie struktury v titanovom splave Ti–6Al pri termovodorodnoj obrabotke [Formation of the structure of the titanium alloy Ti-6Al when processing thermohydrogen] /V sb. trudov Mezhdunarodnoj konf. «Ti–2009 v SNG». Odessa. 2009. S. 361–363.
16. Ovchinnikov A.V., Nosov V.K., Afonin V.E., Panin P.V. Osnovnye zakonomernosti deformacii splavov titan–vodorod [Basic laws of deformation of an alloy of titanium-hydrogen] //Tehnologija legkih splavov. 2007. №3. S. 96–99.
17. Panin P.V., Dzunovich D.A., Zasypkin V.V. Sozdanie dvuhfaznoj kompozitnoj struktury v al'fa-splave Ti–6Al s pomoshh'ju termovodorodnoj obrabotki [Creation of a composite structure of two-phase alpha alloys Ti-6Al processing via thermohydrogen] //Nauchnye trudy (Vestnik MATI). 2012. №19(91). S. 33–37.
18. Panin P.V., Grushin I.A., Mitropol'skaja N.G. Issledovanie zakonomernostej izmenenija strukturno-fazovogo sostojanija titanovogo splava VT6 pri dopolnitel'nom legirovanii vodorodom [Study patterns of change in the structural-phase state of titanium alloy VT6 with additional doping with hydrogen] //Nauchnye trudy (Vestnik MATI). 2012. №20(92). S. 31–34.
19. Mamonov A.M. Nauchnye osnovy i tehnologija termovodorodnoj obrabotki polufabrikatov i izdelij iz konstrukcionnyh i zharoprochnyh titanovyh splavov [Scientific bases and technology thermohydrogen processing intermediates and products of structural and heat-resistant titanium alloys]: Avtoref. diss. d.t.n.. M. 1998. 44 s.
20. Panin P.V. Zakonomernosti formirovanija fazovogo sostava i struktury v titanovyh splavah pri termovodorodnoj obrabotke i plasticheskoj deformacii [Laws of formation of phase composition and structure in titanium alloys at thermohydrogen processing and plastic deformation]: Avtoref. diss. k.t.n. M. 2009. 24 s.
21. Belova S.B., Kolachev B.A., Mamonov I.M. Parametry diffuzii jelementov zameshhenija v α- i β-titane [The diffusion parameters of elements of substitution in α- and β-titanium] //Nauchnye trudy (Vestnik MATI). 2002. №5(77). S. 5–9.
22. Skvorcova S.V. Strukturnye aspekty kompleksnyh tehnologij obrabotki titanovyh splavov, osnovannyh na termicheskom vozdejstvii [Structural aspects of complex processing technology of titanium alloys based on thermal exposure]: Avtoref. diss. d.t.n. M. 2008. 48 s.
23. Osinceva N.O. Fazovye i strukturnye prevrashhenija v vodorodosoderzhashhih splavah sistemy Ti–Al–V [Phase and structural transformations in hydrogen alloys of Ti–Al–V]: Avtoref. diss. k.t.n. M. 2000. 24 s.
24. Cvikker U. Titan i ego splavy [Titanium and its alloys]. Per. s nem. M.: Metallurgija. 1979. 512 s.
25. Belov S.P., Brun M.Ja., Glazunov S.G. i dr. Titanovye splavy. Metallovedenie titana i ego splavov [Titanium alloys. Physical metallurgy of titanium and its alloys]. M.: Metallurgija. 1992. 352 s.
26. Il'in A.A., Kollerov M.Ju., Jekimjan M.G. Novyj tip diagramm «fazovyj sostav – temperatura nagreva – skorost' ohlazhdenija» titanovyh splavov [New chart type «phase composition – temperature heating – cooling rate» of titanium alloys]. M. 1989. 5 s. (Dep. v VNIIMI №D07857).
27. Skvorcova S.V., Panin P.V., Nochovnaja N.A. i dr. Vlijanie vodoroda na fazovye i strukturnye prevrashhenija v titanovom splave VT6 [The effect of hydrogen on the phase and structural transformations in titanium alloy BT6] //Tehnologija legkih splavov. 2011. №4. S. 35–40.
28. Panin P.V., Shirjaev A.A., Dzunovich D.A. Postroenie temperaturno-koncentracionnoj diagrammy fazovogo sostava titanovogo splava VT6, dopolnitel'no legirovannogo vodorodom [Construction of the temperature-concentration phase diagram of the titanium alloy BT6 additionally doped with hydrogen] //Tehnologija mashinostroenija. 2014. №3. S. 5–9.
Mechanical properties of heat-resistant (α+β) titanium alloys and pseudo-α-titanium alloys VT18U, VT41, VT8, VT8M-1 were investigated depending on loading conditions. The tension test of specimens with different loading rates at 20°С and maximal working temperatures were made for each alloy with the use of TIRA-test 2300/1 testing machine. It was found out that sensibility of heat-resistant titanium alloys to the loading rate varies depending on the alloying level.
2. Tarasov Ju.M., Antipov V.V. Novye materialy VIAM – dlja perspektivnoj aviacionnoj tehniki proizvodstva OAO «OAK» [New materials VIAM - for promising aviation equipment produced by JSC «UAC»] //Aviacionnye materialy i tehnologii. 2012. №2. S. 5–6.
3. Shmotin Ju.N., Starkov R.Ju., Danilov D.V., Ospennikova O.G., Lomberg B.S. Novye materialy dlja perspektivnogo dvigatelja OAO «NPO “Saturn”» [New materials for advanced engine JSC «NPO „Saturn”»] //Aviacionnye materialy i tehnologii. 2012. №2. S. 6–8.
4. Kashapov O.S., Pavlova T.V., Nochovnaja N.A. Vlijanie rezhimov termicheskoj obrabotki na strukturu i svojstva zharoprochnogo titanovogo splava dlja lopatok KVD [Effect of heat treatment on the structure and properties of heat-resistant titanium alloy blades for HPC] //Aviacionnye materialy i tehnologii. 2010. №2. S. 8–14.
5. Nochovnaja N.A., Panin P.V. Analiz ostatochnyh makronaprjazhenij v svarnyh soedinenijah titanovyh splavov raznyh klassov [Analysis of residual macroscopic stresses in welded joints of titanium alloys of different classes] //Trudy VIAM. 2014. №5. St. 02 (viam-works.ru).
6. Erasov V.S., Jakovlev N.O., Nuzhnyj G.A. Kvalifikacionnye ispytanija i issledovanija prochnosti aviacionnyh materialov [Qualification testing and research strength of aircraft materials] //Aviacionnye materialy i tehnologii. 2012. №S. S. 440–448.
7. Moiseev V.N. Vysokoprochnye titanovye splavy dlja aviakosmicheskoj tehniki [High-strength titanium alloys for aerospace engineering] /V sb. Aviacionnye materialy. Izbrannye trudy «VIAM» 1932–2002. Jubilejnyj nauch.-tehnich. sb. /Pod obshh. red. E.N. Kablova. 2002. S. 115–121.
8. Kablov E.N. Materialy dlja izdelija «Buran» – innovacionnye reshenija formirovanija shestogo tehnologicheskogo uklada [Materials for the product «Buran» – innovative solutions forming the sixth technological order] //Aviacionnye materialy i tehnologii. 2013. №S1. S. 3–9.
9. Kashapov O.S., Novak A.V., Nochovnaja N.A., Pavlova T.V. Sostojanie, problemy i per-spektivy sozdanija zharoprochnyh titanovyh splavov dlja detalej GTD [Status, problems and prospects of creating heat-resistant titanium alloys for GTE parts] //Trudy VIAM. 2013. №3. St. 02 (viam-works.ru).
10. Horev A.I., Belov S.P., Glazunov S.G. Metallovedenie titana i ego splavov [Physical metallurgy of titanium and its alloys]. M.: Metallurgija. 1992. 352 s.
11. Sposob termicheskoj obrabotki vysokoprochnyh (α+β)-titanovyh splavov [A method of heat treatment of high (α+β) alloy titanic]: pat. 2465366 Ros. Federacija; opubl. 15.09.2011.
12. Sposob termomehanicheskoj obrabotki izdelij iz titanovyh splavov [Method of thermome-chanical processing of titanium alloys]: pat. 2457273 Ros. Federacija; opubl. 05.04.2011.
13. Gorynin I.V., Kudrjavcev A.S., Ushkov S.S. i dr. Opyt izgotovlenija slitkov massoj do 17 tonn iz psevdo-al'fa splavov [Experience of producing ingots weighing up to 17 tons of pseudo-alpha alloys] //Titan. 2013. №2. S. 23–28.
14. Gorynin I.V., Ushkov S.S., Baranov A.V., Mihajlov V.I., Ushakov B.G. Titanovye splavy dlja konstrukcij morskogo primenenija [Titanium alloys for marine applications designs] //Morskie intellektual'nye tehnologii. 2009. №4. S. 61–66.
15. Ilyin A., Kolachev B., Volodin V., Ryndenkov D. About the purposefulness of comprasion of titanium alloys in terms of aluminium and Molybdenium equivalents /In: Titanium–99. Science and technology. 1999. P. 53–60.
A temperature dependence of the electrical resistivity of commercially pure titanium after severe plastic deformation was shown as a function of temperature within the range of -100/+100°С. A temperature dependence of electrical resistivity of commercially pure titanium in annealed state was offered as a measurement control technique.
2. Kablov E.N., Shhetanov B.V., Grashhenkov D.V. i dr. Metallomatrichnye kompozicionnye mate-rialy na osnove Al‒SiC [Metal matrix composites based on Al–SiC] //Aviacionnye materialy i tehnologii. 2012. №S. S. 373–380.
3. Kablov E.N. Aviakosmicheskoe materialovedenie [Aerospace materials] //Vse materialy. Jenciklopedicheskij spravochnik. 2008. №3. S. 2–14.
4. Krasnov E.I., Shtejnberg A.S., Shavnev A.A., Berezovskij V.V. Issledovanie sloistogo metallicheskogo kompozicionnogo materiala sistemy Ti–TiAl3 [Investigation metal laminate composite systems Ti–TiAl3] //Aviacionnye materialy i tehnologii. 2013. №3. S. 16–19.
5. Grinevich A.V., Lucenko A.N., Karimova S.A. Raschetnye harakteristiki metallicheskih materialov s uchetom vlazhnosti [Design characteristics of metallic materials with the humidity] //Trudy VIAM. 2014. №7. Ct. 10 (viam-works.ru).
6. Kablov E.N., Grashhenkov D.V., Shhetanov B.V. i dr. Metallicheskie kompozicionnye materialy na osnove Al–SiC dlja silovoj jelektroniki [Metal composite materials on the basis of Al–SiC power electronics] //Mehanika kompozicionnyh materialov i konstrukcij. 2012. T. 2. №3. S. 359–368.
7. Grishina O.I., Kochetov V.N., Shavnev A.A., Serpova V.M. Aspekty primenenija vysokoproch-nyh i vysokomodul'nyh voloknistyh metallicheskih kompozicionnyh materialov aviacionnogo naznachenija (obzor) [Aspects of the use of high-strength and high-fiber metal composites aviation applications (review)] //Trudy VIAM. 2014. №10. St. 05 (viam-works.ru).
8. Milejko S.T. Kompozity i nanostruktury [Composites and nanostructures] //Kompozity i nanostruktury. 2009. №1. S. 6–37.
9. Sharkeev Ju.P., Eroshenko A.Ju., Bratchikov A.D. i dr. Struktura i mehanicheskie svojstva nanostrukturirovannogo titana posle dorekristallizacionnyh otzhigov [Structure and mechanical properties of nanostructured titanium after annealing dorekristallizatsionnyh] //Fizicheskaja me-zomehanika. 2005. T. 8. Spec. vyp. S. 91–94.
10. Kurzina I.A., Kozlov Je.V., Sharkeev Ju.P. i dr. Nanokristallicheskie intermetallidnye i nitridnye struktury, formirujushhiesja pri ionno-plazmennom vozdejstvii [Nanocrystalline intermetallic and nitride structures, which are formed in ion-plasma exposure]. Tomsk: Izd-vo NTL. 2008. 324 s.
11. Sharkeev Yu.P., Legostaeva E.V., Eroshenko A.Yu. et al. The Structure and Physical and Mechanical Properties of a Novel Biocomposite Material, Nanostructured Titanium-Calcium-Phosphate Coating //Composite Interfaces. 2009. V. 16. P. 535–546.
12. Eroshenko A.Ju., Sharkeev Ju.P., Tolmachev A.I. i dr. Struktura i svojstva ob#emnogo ul'tramelkozernistogo titana, poluchennogo abc-pressovaniem i prokatkoj [The structure and properties of bulk ultrafine titanium obtained abc-pressing and rolling] //Perspektivnye materialy. 2009. №7. S. 107–112.
13. Sharkeev Ju.P., Polenichkin V.K. Perspektivy primenenija ul'tramelkozernistogo titana v stomatologii [Prospects for the use of ultrafine titanium in dentistry] //Perspektivnye materialy. 2009. №7. S. 372–377.
14. Chawla N., Chawla K.K. Metal Matrix Composites /In: Springer Sience+Business Media. 2006. P. 401.
15. Kablov E.N., Grashchenkov D.V., Isaeva N.V., Solntsev S.St. Perspective high-temperature ceramic composite materials //Russian Journal of General Chemistry. 2011. V. 81. №5. S. 986–991.
Automated laying made by ATL and AFP methods is used worldwide to increase productivity and accuracy of prepregs laying in the course of manufacture of large-sized PCM-based parts. However, conventional prepregs are not always suitable for processing by these methods – they have to meet special requirements in terms of delivery form, quality and processability. Some features of prepregs intended for automated laying, requirements to them and an influence of laying parameters on their technological properties are discussed in the article.
2. Muhametov R.R., Ahmadieva K.R., Chursova L.V., Kablov E.N. Jepoksidnoe svjazujushhee, prepreg na ego osnove i izdelie, vypolnennoe iz nego [Epoxy binder prepreg on its base and a product made therefrom] //Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 3–4.
3. Kablov E.N. Himija v aviacionnom materialovedenii [Chemistry aviation materials] //Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 3–4.
4. Kablov E.N., Shhetanov B.V., Ivahnenko Ju.A., Balinova Ju.A. Perspektivnye armirujushhie vysokotemperaturnye volokna dlja metallicheskih i keramicheskih kompozicionnyh materialov [Prospective reinforcing fibers for high temperature ceramic composites and metal materials] //Trudy VIAM. 2013. №2. St. 05 (viam-works.ru)
5. Kobets L.P., Deev I.S. Carbon fibres: structure and mechanical properties //Composites science and technology. 1998. V. 57. №12. P. 1571–1580.
6. Sloan J. ATL and AFP: defining the megatrends in composite aerostructures //High performance composites. July 2008. P. 20–25.
7. Grimshaw M.N., Grant C.G., Diaz J.M.L. Advanced technology tape laying for affordable manufacturing of large composite structures /In: 46-th International SAMPE Symposium. 2001. P. 2484–2494.
8. Dirk H., Lukaszewicz J.A., Ward C., Potter K.D. The engineering aspects of automated prepreg layup: History, present and future //Composites: Part B. 2012. V. 43. P. 997–1009.
9. Grimshaw M.N. Automated tape laying //Composites. 2001. V. 21. P. 480–500.
10. Banks R. Development of a new structural prepreg: characterisation of handling, drape and tack properties //Composite Structures. 2004. V. 66(1–4). P. 169–174.
11. Lukaszewicz DH-JA, Weaver P.M., Potter K. The impact of processing conditions on the final part quality in automated tape deposition technologies /In: Sampe Seico. Paris. 2009. P. 45–70.
12. Lukaszewicz DH-JA, Weaver P.M., Potter K. An empirical model for the automated deposition of thermoset composite /In: ACS – 24-th technical conference. Newark-Delaware. 2009. P. 22–76.
13. Hrul'kov A.V., Dushin M.I., Popov Ju.O., Kogan D.I. Issledovanija i razrabotka avtoklavnyh i bezavtoklavnyh tehnologij formovanija PKM [Research and development autoclave and non-autoclave molding technology PCM] //Aviacionnye materialy i tehnologii. 2012. №S. S. 292–301.
14. Dushin M.I., Hrul'kov A.V., Muhametov P.P. Vybor tehnologicheskih parametrov avtoklavnogo formovanija detalej iz polimernyh kompozicionnyh materialov [The choice of process parameters autoclave molding parts from polymeric composite materials] //Aviacionnye materialy i tehnologii. 2011. №3. S. 20–26.
15. Ahn K.J., Seferis J.C., Pelton T., Wilhelm M. Analysis and characterization of prepreg tack //Polym Compos. 1992. V. 13(3). P. 197–206.
16. Seferis J.C., Meissonnier J. Development of a tack and drape test for prepregs based on viscoelastic principles //Sampe Quarterly-Soc Adv Mater Process Eng. 1989. V. 20(3). P. 55–64.
17. Muhametov R.R., Merkulova Ju.I., Chursova L.V. Termoreaktivnye polimernye svjazujushhie s prognoziruemym urovnem reologicheskih i deformativnyh svojstv [Thermosetting polymeric binders with the projected level of rheology and deformation properties] //Klei. Germetiki. Tehnologii. 2012. №5. S. 19–24.
18. Jepoksidnaja kompozicija [Epoxy composition]: pat. 2447104 Ros. Federacija; opubl. 05.10.2010.
19. Crossley R.J., Schubel P.J., Warrior N.A. The experimental determination of prepreg tack and dynamic stiffness //Composites. Part A. 2012. V. 43. P. 423–434.
20. Crossley R.J., Schubel P.J., Warrior N.A. The experimental characterisation and investigate on of prepreg tack /In: Proceedings of ICCM-18. Edinburgh. 2009. P. 1–11.
21. Muhametov R.R., Ahmadieva K.R., Chursova L.V., Kogan D.I. Novye polimernye svjazujushhie dlja perspektivnyh metodov izgotovlenija konstrukcionnyh voloknistyh PKM [New polymeric binders for advanced manufacturing methods of structural fiber PCM] //Aviacionnye materialy i tehnologii. 2011. №2. S. 38–42.
22. Babin A.N. Svjazujushhie dlja polimernyh kompozicionnyh materialov novogo pokolenija [Binders for polymeric composite materials of new generation] //Trudy VIAM. 2013. №4 (viam-works.ru).
23. Muhametov R.R., Ahmadieva K.R., Kim M.A., Babin A.N. Rasplavnye svjazujushhie dlja perspektivnyh metodov izgotovlenija PKM novogo pokolenija [Melt binders promising methods of manufacture of a new generation of PCM] //Aviacionnye materialy i tehnologii. 2012. №S. S. 260–265.
This article is dedicated to the creation of fire-resistant radar-absorbing material based on inorganic fibers with the purpose to lining of anechoic chambers intended for different tests within a wide frequency range; radar absorbing materials and coatings for protection of hardware against high power electromagnetic influence were developed as well.
2. Kablov E.N. Aviakosmicheskoe materialovedenie [Aerospace materials] //Vse materialy. Jenciklopedicheskij spravochnik. 2008. №3. S. 2–14.
3. Kablov E.N. Materialy i himicheskie tehnologii dlja aviacionnoj tehniki [Materials and chemical technologies, aircraft] //Vestnik Rossijskoj akademii nauk. 2012. T. 82. №6. S. 520–530.
4. Dospehi dlja «Burana». Materialy i tehnologii VIAM dlja MKS «Jenergija–Buran» [Armor for «Buran». Materials and technologies for the ISS VIAM «Energia–Buran»] /Pod obshh. red. E.N. Kablova M.: Fond «Nauka i zhizn'». 2013. 128 s.
5. Beljaev A.A., Kondrashov S.V., Lepeshkin V.V., Romanov A.M. Radiopogloshhajushhie materialy [Radio-absorbing materials] //Aviacionnye materialy i tehnologii. 2012. №S. S. 348–352.
6. Nikol'skij V.V., Nikol'skaja T.I. Jelektrodinamika i rasprostranenie radiovoln [Electrodynamics and propagation]. M.: URSS. 2012. S. 163–164.
7. Beljaev A.A., Bespalova E.E., Romanov A.M. Pozharobezopasnye radiopogloshhajushhie materialy dlja bezjehovyh kamer [Fireproof materials for radio-anechoic chambers] //Aviacionnye materialy i tehnologii. 2013. №1. S. 53–55.
8. Lushina M.V., Parshin S.G., Rzhevskij A.A. Sovremennye jekranirujushhie i radiopogloshhajushhie materialy [Modern shielding and radio absorbing materials] //Sistemy upravlenija i obrabotka informacii. 2011. №22. S. 208–214, 223.
9. Bibikov S.B., Prokof'ev M.V., Kulikovskij K.Je., Zhuravlev V.A. Razrabotka materialov i pokrytij, ispol'zuemyh dlja provedenija radiotehnicheskih ispytanij i obespechenija jelektromagnitnoj sovmestimosti [Development of materials and coatings used for testing of radio and electromagnetic compatibility] //Voprosy oboronnoj tehniki. Ser. «Tehnicheskie sredstva protivodejstvija terrorizmu». 2013. №5–6. S. 56–64.
10. Bibikov S.B., Titov A.N., Cherepanov A.K. Sintez materiala s zadannym kojefficientom otrazhenija v shirokom diapazone chastot i uglov padenija [Synthesis of a material with a specified reflectivity in a wide range of frequencies and angles of incidence] /V sb. trudov XV Mezhdunarodnoj nauch.-tehnich. konf. «Radiolokacija, navigacija, svjaz'». Voronezh. 2009. S. 1578–1584.
11. Bibikov S.B., Zasovin Je.A., Cherepanov A.K., Hmel'nik G.I. Matematicheskoe modelirovanie parametrov mnogoslojnyh radiopogloshhajushhih pokrytij [Mathematical modeling of radar parameters of multilayer coatings] /V sb. trudov XV Mezhdunarodnoj nauch.-tehnich. konf. «Radiolokacija, navigacija, svjaz'». Voronezh. 2009. S. 1585–1595.
12. Latypova A.F., Kalinin Ju.E. Analiz perspektivnyh radiopogloshhajushhih materialov [Analysis of promising radar absorbing materials] //Vestnik Voronezhskogo gosudarstvennogo tehnicheskogo un-ta. 2012. T. 8. №6. S. 70–76.
13. Micmaher M.Ju., Torgovanov V.A. Bezjehovye kamery SVCh [Microwave anechoic chambers]. M.: Radio i svjaz'. 1982. 129 s.
14. Maslov M.Ju., Semakov L.M., Skachkov D.V. Ispytatel'naja bezjehovaja kamera diapazona 1200 MGc [Anechoic chamber test range 1200 MHz] //Telekommunikacii i transport. 2009. Spec. vyp. «Tehnologii informacionnogo obshhestva». S. 123–125.
15. Beljaev A.A., Agafonova A.S., Antipova E.A., Botanogova E.D. Konstrukcionnyj radiopogloshhajushhij material trehslojnoj struktury s soglasujushhim sloem [Structural radar-absorbing material is a three-layer structure with a matching layer] //Trudy VIAM. 2013. №7. St. 02 (viam-works.ru).
16. Agafonova A.S., Beljaev A.A., Kondrashov Je.K., Romanov A.M. Osobennosti formirovanija monolitnyh konstrukcionnyh radiopogloshhajushhih materialov na osnove kompozitov, napolnennyh rezistivnym voloknom [Features of formation of monolithic structural radar absorbing materials based composites filled with resistive fiber] //Aviacionnye materialy i tehnologii. 2013. №3. S. 56–59.
17. Radiopogloshhajushhij material [Radar-absorbing material]: pat. 2417491 Ros. Federacija; opubl. 27.04.2011.
18. Bespalova E.E., Kondrashov Je.K. Osobennosti korrektirovki receptury pozharobezopasnogo materiala dlja bezjehovyh kamer pri izmenenii parametrov radiopogloshhajushhego napolnitelja [Features adjustments recipe fireproof material for anechoic chambers when changing the radar absorbing filler] //Aviacionnye materialy i tehnologii. 2014. №2. S. 48–52.
19. Grashhenkov D.V., Shhetanov B.V., Tinjakova E.V., Shheglova T.M. O vozmozhnosti ispol'zovanija kvarcevogo volokna v kachestve svjazujushhego pri poluchenii legkovesnogo teplozashhitnogo materiala na osnove volokon Al2O3 [The possibility of using a silica fiber as a binder in the preparation of a lightweight heat-fiber-based material Al2O3] //Aviacionnye materialy i tehnologii. 2011. №4. S. 8–14.
20. Volkov V.P., Zeleneckij A.N. i dr. Poluchenie radiozashhitnyh polimernyh materialov ponizhennoj gorjuchesti [Study of the dielectric characteristics of the waveguide method steklosotoplasta] //Plasticheskie massy. 2008. №6. S. 42–46.
21. Shirokov V.V., Romanov A.M. Issledovanie dijelektricheskih harakteristik steklosoto-plasta volnovodnym metodom [Study of the dielectric characteristics of the waveguide method steklosotoplasta] //Aviacionnye materialy i tehnologii. 2013. №4. S. 62–68.
22. Beljaev A.A., Shirokov V.V., Romanov A.M. Osobennosti optimizacii rezonansnyh radiopo-gloshhajushhih materialov nemagnitnogo tipa [Features optimization resonance absorbing materials such as non-magnetic] //Trudy VIAM. 2014. №11. St. 05 (viam-works.ru).
An effect of reinforcing silicon carbide additives and heat treatment on the wear of nickel-phosphorous coatings (NiP) produced by electrodeposition was investigated. It was found that the wear of the investigated coatings could have an abrasive-oxidative nature: predominantly abrasive for NiP–SiC composite coatings and predominantly oxidative for NiP coatings accompanied by fatigue fracture of nickel oxides. Additives of SiC allow increasing the hardness of electrolytic coatings, but they prevent fixation of oxide films formed during friction on the contact surface. Heat treatment increases the hardness of the coatings due to deposition of the crystalline phase Ni3P, which reduces the wear rate of the coatings.
2. Litye lopatki gazoturbinnyh dvigatelej. Splavy, tehnologii, pokrytija [Alloy blades of gas turbine engines. Alloys Technology, coating]. 2-e izd. /Pod obshh. red. E.N. Kablova. M.: Nauka. 2006. 632 s.
3. Kablov E.N., Muboyadzhyan S.A. Heat-resistant coatings for the high-pressure turbine blades of promising GTES //Russian metallurgy (Metally). 2012. V. 2012. №1. P. 1–7.
4. Mubojadzhjan S.A., Aleksandrov D.A., Gorlov D.S. Nanoslojnye uprochnjajushhie pokrytija dlja zashhity stal'nyh i titanovyh lopatok kompressora GTD [Nanolayer strengthening coatings for protection of steel and titanium compressor blades of GTE] //Aviacionnye materialy i tehnologii. 2011. №3. S. 3–8.
5. Kablov E.N. Korrozija ili zhizn' [Corrosion or life] //Nauka i zhizn'. 2012. №11. S. 16–21.
6. Mubojadzhjan S.A., Galojan A.G. Kompleksnye termodiffuzionnye zharostojkie pokrytija dlja bezuglerodistyh zharoprochnyh splavov na nikelevoj osnove [Integrated thermal diffu-sion heat-resistant coatings for carbon-free heat-resistant nickel-based alloys] //Aviacionnye materialy i tehnologii. 2012. №3. S. 25–30.
7. Kablov E.N., Mubojadzhjan S.A. Teplozashhitnye pokrytija dlja lopatok turbiny vysokogo davlenija perspektivnyh GTD [Thermal barrier coatings for turbine blades of high-pressure turbine engine perspective] //Metally. 2012. №1. C. 5–13.
8. Kablov E.N., Mubojadzhjan S.A. Zharostojkie i teplozashhitnye pokrytija dlja lopatok turbiny vysokogo davlenija perspektivnyh GTD [Heat-resistant and heat-resistant coatings for high-pressure turbine blades promising GTD] //Aviacionnye materialy i tehnologii. 2012. №S. S. 60–70.
9. Kablov E.N. Strategicheskie napravlenija razvitija materialov i tehnologij ih pererabotki na period do 2030 goda [Strategic directions of development of materials and technologies to process them for the period up to 2030] //Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
10. Mubojadzhjan S.A., Aleksandrov D.A., Gorlov D.S., Egorova L.P., Bulavinceva E.E. Zashhitnye i uprochnjajushhie ionno-plazmennye pokrytija dlja lopatok i drugih otvetstvennyh detalej kompressora GTD [Protective and strengthening ion-plasma coatings for blades and other critical parts of the compressor GTE] //Aviacionnye materialy i tehnologii. 2012. №S. S. 71–81.
11. Kablov E.N., Mubojadzhjan S.A., Budinovskij S.A., Lucenko A.N. Ionno-plazmennye zashhitnye pokrytija dlja lopatok gazoturbinnyh dvigatelej [Ion-plasma protective coatings for gas turbine engine blades] //Metally. 2007. №5. S. 23–34.
12. Semenychev V.V., Salahova R.K., Tjurikov E.V., Il'in V.A. Zashhitnye i funkcional'nye gal'vanicheskie pokrytija, poluchaemye s primeneniem nanorazmernyh chastic [Functional and protective electroplated coatings obtained using nanoscale particles] //Aviacionnye materialy i tehnologii. 2012. №S. S. 335–342.
13. Kablov E.N., Ospennikova O.G., Lomberg B.S. Strategicheskie napravlenija razvitija konstrukcionnyh materialov i tehnologij ih pererabotki dlja aviacionnyh dvigatelej nastojashhego i budushhego [Strategic directions of development of structural materials and their processing technology for aircraft engines present and future] //Avtomaticheskaja svarka. 2013. №10. S. 23–32.
14. Kablov E.N., Mubojadzhjan S.A., Lucenko A.N. Nanostrukturnye ionno-plazmennye zashhitnye i uprochnjajushhie pokrytija dlja lopatok gazoturbinnyh dvigatelej [Nanostructured ion-plasma protective and strengthening coatings for gas turbine engine blades] //Voprosy materialovedenija. 2008. №2 (54). S. 175–187.
15. Apachitei I., Duszczyk J. Autocatalytic nickel coatings on aluminium with improved abrasive wear resistance //Surface and Coatings Technology. 2000. V. 132. №1. P. 89–98.
16. Mehta S.C., Smith D.A., Erb U. Study of grain growth in electrodeposited nanocrystalline nickel-1.2 wt.% phosphorus alloy //Materials Science and Engineering A. 1995. V. 204. №1–2. P. 227–232.
17. Jena A.K., Chaturvedi M.C. Effect of heat treatment of NiP coatings //Phase Transformation in Materials, Prentice Hall, Englewood Cliffs. 1992. P. 103–105.
18. Chen C.K., Feng H.M., Lin H.C., Hon M.H. The effect of heat treatment on the micro-structure of electroless Ni–P coatings containing SiC particles //Thin Solid Films. 2002. V. 416. №1–2. P. 31–37.
19. Pribytkov G.A., Polev I.V. i dr. Struktura i abrazivnaja iznosostojkost' kompozitov tugoplavkij karbid – metallicheskaja matrica. Ch. 1 [Structure and abrasive wear resistance of the composites refractory carbide - metal matrix] //Fizicheskaja mezomehanika. 2004. №7. S. 419–422.
20. Hrushhov M.M., Babichev M.A. Abrazivnoe iznashivanie [Abrasive wear]. M.: Nauka. 1970. 252 s.
21. Aslanjan I.R., Shuster L.Sh. Iznashivanie gal'vanicheskih nikel'-fosfornyh pokrytij [Wear a galvanic nickel-phosphorus coatings] //Vestnik mashinostroenija. 2010. №12. S. 34–38.
Heat-resistant nickel alloys are widely applied in the modern aviation industry and engine building. Some critical components subjected to huge thermal and power loadings are made of them. Thus, an important task is to control chemical composition of nickel-based alloys, in particular the content of trace constituents, which include gallium, germanium, arsenic and selenium. Gallium, germanium, arsenic and selenium content in certified reference samples of nickel alloys microalloyed by REM was determined using mass spectrometry with inductively coupled plasma (ICP-MS). The method of dissolution of a sample and its preparation for analysis was described. Spectral interferences were eliminated using the equations of mathematical correction. The detection limits (% mass.) were as follows: Ga – 0,000002, Ge – 0,000002, Se – 0,00003, As – 0,00004. The range of the defined concentrations was 0,000009–0,0023% mass., the relative standard deviation of not higher than 0,05.
2. Kablov E.N. Strategicheskie napravlenija razvitija materialov i tehnologij ih pererabotki na period do 2030 goda [Strategic directions of development of materials and technologies to process them for the period up to 2030] //Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
3. Kablov E.N., Petrushin N.V., Svetlov I.L., Demonis I.M. Nikelevye litejnye zharoprochnye splavy novogo pokolenija [Casting nickel superalloys new generation] //Aviacionnye materialy i tehnologii. 2012. №S. S. 36–52.
4. Kablov E.N., Petrushin N.V., Vasilenok L.B., Morozova G.I. Renij v zharoprochnyh nikelevyh splavah dlja lopatok gazovyh turbin (prodolzhenie) [Rhenium in nickel superalloys for gas turbine blades (continued)] //Materialovedenie. 2000. №3. S. 38–43.
5. Kablov E.N., Logunov A.V., Sidorov V.V. Mikrolegirovanie RZM – sovremennaja tehnologija povyshenija svojstv litejnyh zharoprochnyh nikelevyh splavov [Microalloying REM - modern technology improve the properties of heat-resistant nickel alloys casting] //Perspektivnye materialy. 2001. №1. S. 23–34.
6. Kablov E.N. Fiziko-mehanicheskie i tehnologicheskie osobennosti sozdanija zharoprochnyh splavov, soderzhashhih renij [Physical, mechanical and technological features of the creation of high-temperature alloys containing rhenium] //Vestnik Moskovskogo universiteta. Ser. 2. Himija. 2005. T. 46. №3. S. 155–167.
7. Kablov E.N., Buntushkin V.P., Povarova K.B., Bazyleva O.A., Morozova G.I., Kazanskaja N.K. Malolegirovannye legkie zharoprochnye vysokotemperaturnye materialy na osnove intermetallida Ni3Al [Low-alloy high-temperature heat-resistant lightweight materials based on the intermetallic compound Ni3Al] //Metally. 1999. №1. S. 58–65.
8. Lomberg B.S., Ovsepjan S.V., Bakradze M.M. Osobennosti legirovanija i termicheskoj obrabotki zharoprochnyh nikelevyh splavov dlja diskov gazoturbinnyh dvigatelej novogo pokolenija [Features alloying and heat treatment of heat-resistant nickel alloys for disks of gas turbine engines of the new generation] //Aviacionnye materialy i tehnologii. 2010. №2. S. 3‒8.
9. Sidorov V.V., Timofeeva O.B., Kalicev V.A., Gorjunov A.V. Vlijanie mikrolegirovanija RZM na svojstva i strukturno-fazovye prevrashhenija v intermetallidnom splave VKNA-25-VI [Effect of microalloying REM on the properties and structural phase transformations in intermetallic alloys VKNA-25-VI] //Aviacionnye materialy i tehnologii. 2012. №4. S. 8‒13.
10. Min P.G., Sidorov V.V. Rafinirovanie othodov zharoprochnogo nikelevogo splava ZhS32-VI ot primesi kremnija v uslovijah vakuumnoj indukcionnoj plavki [Refining of nickel superalloys ZHS32-VI of silicon impurities in a vacuum induction melting] //Trudy VIAM. 2014. №9. St. 01 (viam-works.ru).
11. GOST 11739.26–90. Splavy aljuminievye litejnye i deformiruemye. Metody opredelenija gallija [Aluminum casting alloys and wrought. Methods for determination of gallium].
12. Mirzoyan F.V., Tarayan V.M., Hairyan E.K. Sensitive spectrophotometric determination of germanium as methylene blue 12-molybdogermanate //Analytica Chimica Acta. 1981. V. 124. P. 185–192.
13. GOST 6689.13–92. Nikel', splavy nikelevye i medno-nikelevye. Metody opredelenija mysh'jaka [Nickel, nickel and copper-nickel. Methods for determination of arsenic].
14. GOST 13047.25–2002. Nikel'. Kobal't. Metody opredelenija selena v nikele [Nickel. Cobalt. Methods for determination of selenium in nickel].
15. Hu J., Wang H. Determination of Trace Elements in Super Alloy by ICP-MS //Mikrochim. Acta. 2001. V. 137. P. 149–155.
16. Pupyshev A.A., Jepova E.N. Spektral'nye pomehi poliatomnyh ionov v metode mass-spektrometrii s induktivno-svjazannoj plazmoj [Spectral interference polyatomic ions in mass spectrometry with inductively coupled plasma] //Analitika i kontrol'. 2001. T. 5. №4. S. 335–369.
17. Lejkin A.Ju., Jakimovich P.V. Sistemy podavlenija spektral'nyh interferencij v mass-spektrometrii s induktivno-svjazannoj plazmoj [Spectral interferences suppression system in mass-spectrometry with inductively coupled plasma] //Zhurnal analiticheskoj himii. 2012. T. 67. №8. S. 752–762.
18. Gao Y., Liu R. at al. Application of chemical vapor generation in ICP-MS: A review //Chin Sci Bull. 2013. V. 58. P. 1980–1991.
19. Nie X., Liang Y. Determination of trace elements in high purity nickel by high resolution inductively coupled plasma mass spectrometry //J. Cent. South Univ. 2012. V. 19. P. 2416−2420.
20. Jakubenko E.V., Vojtkova Z.A., Chernikova I.I., Ermolaeva T.N. Mikrovolnovaja probopodgotovka dlja opredelenija Si, P, V, Cr, Mn, Ni, Cu, W metodom AJeS-ISP v konstrukcionnyh staljah [Microwave sample preparation for determination of Si, P, V, Cr, Mn, Ni, Cu, W ICP-AES method for structural steels] //Zavodskaja laboratorija. Diagnostika materialov. 2014. T. 80. №1. S. 12–15.
21. Dvoreckov R.M., Karachevcev F.N., Zagvozdkina T.N., Mehanik E.A. Opredelenie legirujushhih jelementov nikelevyh splavov aviacionnogo naznachenija metodom AJeS-ISP v sochetanii s mikrovolnovoj probopodgotovkoj [Determination of alloying elements nickel alloys aviation applications by ICP-AES combined with microwave sample preparation] //Zavodskaja laboratorija. Diagnostika materialov. 2013. T. 79. №9. S. 6–9.
22. MI 1.2.052–2013. Metodika izmerenij massovoj doli primesej R, Mn, Fe, Cu, Zn, Ga, As, Se, Ag, Cd, Sn, Sb, Te, Tl, Pb, Bi v nikelevyh splavah metodom mass-spektrometrii s induktivno svjazannoj plazmoj [Method for determination of mass fraction of impurities P, Mn, Fe, Cu, Zn, Ga, As, Se, Ag, Cd, Sn, Sb, Te, Tl, Pb, Bi in nickel alloys by mass spectrometry with inductively coupled plasma]. M.: VIAM. 2013.
Narrowing of the alloying limits is a current trend in the development of new alloys. In order to determine the exact chemical composition of the alloys under development, it is necessary to use an analyzing procedure, which provides the relative error at least three times lower than the alloying limits. The error value is within 1,5 to 2,5% (rel.) range for the majority of alloying elements. Application of model solutions for atomic absorption analysis to reduce measurement errors of alloying elements and impurities was described in the paper. The use of model solutions as reference samples allowed to reduce the error of measurement techniques down to 1% (rel.).
2. Lomberg B.S., Ovsepjan S.V., Bakradze M.M., Mazalov I.S. Vysokotemperaturnye zharoprochnye nikelevye splavy dlja detalej gazoturbinnyh dvigatelej [High-temperature heat-resistant nickel alloys for turbine engines parts] //Aviacionnye materialy i tehnologii. 2012. №S. S. 52–57.
3. Lomberg B.S., Ovsepjan S.V., Bakradze M.M. Osobennosti legirovanija i termicheskoj obrabotki zharoprochnyh nikelevyh splavov dlja diskov gazoturbinnyh dvigatelej novogo pokolenija [Features alloying and heat treatment of heat-resistant nickel alloys for disks of gas turbine engines of the new generation] //Aviacionnye materialy i tehnologii. 2010. №2. S. 3–8.
4. Lomberg B.S., Ovsepjan S.V., Bakradze M.M. Novyj zharoprochnyj nikelevyj splav dlja diskov gazoturbinnyh dvigatelej (GTD) i gazoturbinnyh ustanovok (GTU) [New heat-resistant nickel alloy disks of gas turbine engines (GTE) and gas turbines (GT)] //Materialovedenie. 2010. №7. S. 24–28.
5. Kablov E.N., Petrushin N.V., Svetlov I.L., Demonis I.M. Litejnye zharoprochnye nikelevye splavy dlja perspektivnyh aviacionnyh GTD [Casting nickel superalloys for advanced gas turbine engines] //Tehnologija legkih splavov. 2007. №2. S. 6–16.
6. Lomberg B.S., Bakradze M.M., Chabina E.B., Filonova E.V. Vzaimosvjaz' struktury i svojstv vysokozharoprochnyh nikelevyh splavov dlja diskov gazoturbinnyh dvigatelej [Relationship between structure and properties of nickel-base superalloys for gas turbine engine disks] //Aviacionnye materialy i tehnologii. 2011. №2. S. 25–30.
7. Chabina E.B., Filonova E.V., Lomberg B.S., Bakradze M.M. Struktura sovremennyh deformiruemyh nikelevyh splavov [The structure of modern wrought nickel alloys] //Vse materialy. Jenciklopedicheskij spravochnik. 2012. №6. S. 22–27.
8. Petrushin N.V., Eljutin E.S., Chabina E.B., Timofeeva O.B. O fazovyh i strukturnyh prevrashhenijah v zharoprochnyh renijsoderzhashhih splavah monokristallicheskogo stroenija [Phase and structural transformations in the heat-resistant alloys rhenium single crystal structure] //Litejnoe proizvodstvo. 2008. №7. S. 1–7.
9. Petrushin N.V., Svetlov I.L., Samojlov A.P. i dr. Vysokotemperaturnye fazovye i strukturnye prevrashhenija v monokristallah zharoprochnogo nikelevogo splava, soderzhashhego renij i rutenij [High-temperature phase and structural transformations in single heat-resistant nickel alloy containing rhenium and ruthenium] //Materialovedenie. 2008. №11. S. 26–31.
10. Pupyshev A.A. Atomno-absorbcionnyj spektral'nyj analiz [Atomic absorption spectral analysis]. M.: Tehnosfera. 2009. 784 s.
11. Tormysheva E.A., Smirnova E.V., Ermolaeva T.N. Mikrovolnovaja probopodgotovka naplavochnyh materialov dlja analiza metodom atomno-jemissionnoj spektroskopii s induktivno svjazannoj plazmoj [Microwave Sample Preparation surfacing materials for analysis by atomic emission spectroscopy with inductively coupled plasma] //Zavodskaja laboratorija. Diagnostika materialov. 2010. T. 76. №10. S. 10–13.
12. Kablov E.N., Morozov G.A., Krutikov V.N., Muravskaja N.P. Attestacija standartnyh obrazcov sostava slozhnolegirovannyh splavov s primeneniem jetalona [Certification of standard samples of complex alloys using standard] //Aviacionnye materialy i tehnologii. 2012. №2. S. 9–11.
13. Letov A.F., Karachevcev F.N., Gundobin N.V., Titov V.I. Razrabotka standartnyh obrazcov sostava splavov aviacionnogo naznachenija [Development of standard samples of alloys aviation applications] //Aviacionnye materialy i tehnologii. 2012. №S. S. 393–398.
It was shown in the paper that the measurement results of reflection ratios of radar-absorbing materials performed in the waveguide for each frequency corresponded to the results of measurements at a certain angle of incidence in case of polarization of the electric vector perpendicular to the plane of incidence; thus, they do not correspond to the measurements at normal incidence. Material permittivity measurement errors caused by a gap between a specimen and waveguide wall were estimated. A simplified expression for estimation of the relative error of permittivity measurements and some examples of errors calculation for the above two cases are given in the paper.
2. Kablov E.N. Himija v aviacionnom materialovedenii [Chemistry aviation materials] //Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 3–4.
3. Kablov E.N. Aviakosmicheskoe materialovedenie [Aerospace materials] //Vse materialy. Jenciklopedicheskij spravochnik. 2008. №3. S. 2–14.
4. Beljaev A.A., Kondrashov S.V., Lepeshkin V.V., Romanov A.M. Radiopogloshhajushhie materialy [Radio-absorbing materials] //Aviacionnye materialy i tehnologii. 2012. №S. S. 348–352.
5. Beljaev A.A., Bespalova E.E., Romanov A.M. Pozharobezopasnye radiopogloshhajushhie materialy dlja bezjehovyh kamer [Fireproof materials for radio-anechoic chambers] //Aviacionnye materialy i tehnologii. 2013. №1. S. 53–55.
6. Agafonova A.S., Beljaev A.A., Kondrashov Je.K., Romanov A.M. Osobennosti formirovanija monolitnyh konstrukcionnyh radiopogloshhajushhih materialov na osnove kompozitov, napolnennyh rezistivnym voloknom [Features of formation of monolithic structural radar absorbing materials based composites filled with resistive fiber] //Aviacionnye materialy i tehnologii. 2013. №3. S. 56–59.
7. Brandt L.A. Issledovanija dijelektrikov na sverhvysokih chastotah [Studies dielectrics at microwave frequencies]. M.: Gos. izd-vo fiz.-mat. lit. 1963. S. 191–201.
8. Shirokov V.V., Romanov A.M. Issledovanie dijelektricheskih harakteristik steklosotoplasta volnovodnym metodom [Study of the dielectric characteristics of the waveguide method steklosotoplasta] //Aviacionnye materialy i tehnologii. 2013. №4. S. 62–68.
9. Beljaev A.A., Shirokov V.V., Romanov A.M. Issledovanie dijelektricheskih harakteristik monolitnyh stekloplastikov radiotehnicheskogo naznachenija [The study of dielectric properties of monolithic fiberglass radio engineering] //Kompozitnyj mir. 2014 (v pechati).
10. Bespalova E.E., Beljaev A.A., Romanov A.M., Shirokov V.V. Issledovanie dijelektricheskih harakteristik sloev mnogoslojnogo radiopogloshhajushhego materiala dlja bezjehovyh kamer na osnove vspenennogo asbesta, napolnennogo nauglerozhennym voloknom [Study of the dielectric characteristics of radar absorbing layers of the multilayer material for anechoic chambers on the basis of foam asbestos filled with carbonized fiber] //Trudy VIAM. 2014. №8. St. 12 (viam-works.ru).
11. Lushina M.V., Parshin S.G., Rzhevskij A.A. Sovremennye jekranirujushhie i radiopogloshhajushhie materialy [Modern shielding and radio absorbing materials] //Sistemy upravlenija i obrabotka informacii. 2011. №22.S. 208–214, 223.
12. Nikol'skij V.V., Nikol'skaja T.I. Jelektrodinamika i rasprostranenie radiovoln [Electrodynamics and Propagation]. M.: URSS. 2012. S. 44, 163–164.
13. Bibikov S.B., Titov A.N., Cherepanov A.K. Sintez materiala s zadannym kojefficientom otrazhenija v shirokom diapazone chastot i uglov padenija [Synthesis of a material with a specified reflectivity in a wide range of frequencies and angles of incidence] /V sb. dokl. XV Mezhdunarodnoj nauch.-tehnich. konf. «Radiolokacija. Navigacija. Svjaz'». Voronezh. 2009. S. 1578–1584.
14. Korn G.A., Korn T.M. Spusk s vychisleniem koordinat gradient [Descent from the calculation of the coordinates of the gradient]: Spravochnik po matematike. M.: Nauka. 1984. 660 s.
15. Rosenbrock H.H. An automatic method for finding the greatest or least value of a function //The Computer Journal. 1960. V. 3. Р. 175–184.
16. Brehovskih A.M. Volny v sloistyh sredah [Waves in layered media]. M.: Nauka. 1957. S. 52–56.
17. Odelevskij V.I. Raschet obobshhennoj provodimosti geterogennyh struktur. 1-matrichnye dvuhfaznye sistemy s nevytjanutymi vkljuchenijami [Calculation of generalized conductivity heterogeneous structures. 1-matrix two-phase system with unstretched inclusions] //ZhTF. 1951. T. XXI. №5. S. 668–676.
18. Fal'kovskij O.I. Tehnicheskaja jelektrodinamika [Technical electrodynamics]. SPb.: Lan'. 2009. 244 s.
19. Kolosov Ju.A., Levkov F.E. Tochnostnye harakteristiki volnovodnogo metoda opredelenija jelektricheskih parametrov dijelektrikov [Performance characteristics of the waveguide method for determining the parameters of electrical insulators] //Voprosy radiojelektroniki. Ser. Obshhie voprosy radiojelektroniki. 1985. №12. S. 18–33.
20. Kolosov Ju.A., Levkov F.E. O volnovodnom metode opredelenija jelektricheskih parametrov dijelektrikov [About waveguide method for determining the electrical parameters of dielectrics] //Voprosy radiojelektroniki. Ser. Obshhie voprosy radiojelektroniki. 1986. №1. S. 41–45.
The choice and substantiation of conditions of thermal aging of polymer composite materials intended for aviation components were described in the paper. Researches of changes in PCM strength at compression, interlayer shift and bending, and in glass-transition area and temperature were conducted at various test temperatures both in an initial state and after an impact of thermal aging. Conditions of thermal aging of materials and a strength characteristic most sensitive to temperature influence, i.e. strength at interlayer shift were defined by the results of research of a «strength/test temperatures» dependence and glass-transition area and temperature. Strength of polymer composite materials at interlayer shift was defined depending on temperature and exposition duration within the chosen conditions of thermal aging. An influence of some assumed operation temperatures and considerably higher temperatures was defined. An influence of temperature depending on the exposition duration w
2. Kablov E.N., Gunjaev G.M. Tumanov A.T. – iniciator sozdanija kompozitov [Tumanov A.T. – Initiator of the composites] /V sb. tezisov dokl. Mezhotraslevoj nauch.-tehnich. konf. «Kompozicionnye materialy v aviakosmicheskom materialovedenii». M.: VIAM. 2009. S. 6–9.
3. Kablov E.N., Starcev O.V., Krotov A.S., Kirillov V.N. Klimaticheskoe starenie kompozicionnyh materialov aviacionnogo naznachenija. III. Znachimye faktory starenija [Climatic aging of composite materials aviation applications. III. Significant factors of aging] //Deformacija i razrushenie materialov. 2011. №1. S. 34–40.
4. Muhametov R.R., Ahmadieva K.R., Chursova L.V., Kogan D.I. Novye polimernye svjazujushhie dlja perspektivnyh metodov izgotovlenija konstrukcionnyh voloknistyh PKM [New polymeric binders for advanced manufacturing methods of structural fiber PCM] //Aviacionnye materialy i tehnologii. 2011. №2. S. 38–42.
5. Kirillov V.N., Vapirov Ju.M., Drozd E.A. Issledovanie atmosfernoj stojkosti polimernyh kompozicionnyh materialov v uslovijah atmosfery teplogo vlazhnogo i umerenno teplogo klimata [The study of atmospheric resistance of polymer composite materials in the atmosphere warm, moist and moderately warm climate] //Aviacionnye materialy i tehnologii. 2012. №4. S. 31–38.
6. Mishra G., Mohapatra S.R., Behera P.R., Dash B., Mohanty U.K., Ray B.C. (National Institute Technology, Rourkela, India) Aircraft Eng. and Aerosp. technol. 2010. V. 82. №4. P. 258–266.
7. Firefighting and emergency responsestudy of advanced composites aircraft. Objective 2: Fire-fighting Effectiveness of Technologies and Agents on Composite Aircraft Fires. Distribution A: Approved for public release; distribution unlimited. 88ABW-2012-0190, 10 January 2012.
8. Espec Technology Report. 2007. №25.
9. Kablov E.N., Starcev O.V., Krotov A.S., Kirillov V.N. Klimaticheskoe starenie kompozicionnyh materialov aviacionnogo naznachenija. I. Mehanizmy starenija [Climatic aging of composite materials aviation applications. I. Mechanisms of aging] //Deformacija i razrushenie materialov. 2010. №11. S. 19–27.
10. Kirillov V.N., Starcev O.V., Efimov V.A. Klimaticheskaja stojkost' i povrezhdaemost' polimernyh kompozicionnyh materialov, problemy i puti reshenija [Weather resistance and defectiveness of polymer composite materials, problems and solutions] //Aviacionnye materialy i tehnologii. 2012. №S. S. 412–423.
11. Nikolaev E.V., Kirillov V.N., Skirta A.A., Grashhenkov D.V. Issledovanie zakonomernostej vlagoperenosa i razrabotka standarta po opredeleniju kojefficienta diffuzii i predel'nogo vlagosoderzhanija dlja ocenki mehanicheskih svojstv ugleplastikov [Study patterns of moisture transfer and development of a standard to determine the diffusion coefficient and limit the moisture content to assess the mechanical properties of carbon fiber reinforced plastics] //Aviacionnye materialy i tehnologii. 2013. №3. S. 44–48.
12. Efimov V.A., Shvedkova A.K., Koren'kova T.G., Kirillov V.N. Issledovanie polimernyh konstrukcionnyh materialov pri vozdejstvii klimaticheskih faktorov i nagruzok v laboratornyh i naturnyh uslovijah [The study of polymeric structural materials under the influence of climatic factors and stress in laboratory and field conditions] //Trudy VIAM. 2013. №1. St. 05 (viam-works.ru).
13. Skryljov N.S., Vol'nyj O.S., Postnov V.I., Barbot'ko S.L. Issledovanie vlijanija teplovyh faktorov klimata na izmenenie harakteristik pozharobezopasnosti polimernyh kompozicionnyh materialov [Investigation of the influence thermal factors of climate change on fire safety characteristics of polymer composite materials] //Trudy VIAM. 2013. №9. St. 05 (viam-works.ru).
14. Kirillov V.N., Efimov V.A. Problemy issledovanija klimaticheskoj stojkosti aviacionnyh nemetallicheskih materialov [Problems of research aircraft climatic resistance of nonmetallic materials] /V kn. 75 let. Aviacionnye materialy. Izbrannye trudy «VIAM» 1932–2007. M.: VIAM. 2007. S. 379–388.
15. Grigor'ev M.M., Kogan D.I., Tverdaja O.N., Panina N.N. Osobennosti izgotovlenija PKM metodom RFI [Peculiarities of RMB by RFI] //Trudy VIAM. 2013. №4. St. 03 (viam-works.ru).
16. Jenciklopedija polimerov [Encyclopedia of polymer]. M.: Sovetskaja jenciklopedija. 1977. T. 3. S. 491–492.
17. Menson Dzh., Sperling L. Polimernye smesi i kompozity [Polymer blends and composites]. M.: Himija. 1979. S. 200–202.
18. Simonov-Emel'janov I.D., Kuleznev V.N. Principy sozdanija kompozicionnyh materialov [Principles of creation of composite materials]. M.: MIHM. 1989. 85 s.
19. Jenciklopedija polimerov. M.: Sovetskaja jenciklopedija [Encyclopedia of polymer]. 1971. T. 2. S. 627–633.
20. Kablov E.N., Starcev O.V., Krotov A.S., Kirillov V.N. Klimaticheskoe starenie kompozicionnyh materialov aviacionnogo naznachenija. II. Relaksacija ishodnoj strukturnoj neravnovesnosti i gradient svojstv po tolshhine [Climatic aging of composite materials aviation applications. II. Relaxation of the original structural and non-equilibrium properties of gradient across the thickness] //Deformacija i razrushenie materialov. 2012. №6. S. 17–19.