Articles
Thermodynamic calculation of phase structure of resource Al–Cu–Mg system alloys with and without Ag additive was carried out. The effect of small additive of silver on structure and properties of 1,5–2,0 mm thickness sheets of Al–Cu–Mg alloys in naturally aged condition was investigated. It is shown that silver in amount up to 0,6 wt. % leads to increasing of strength characteristics (up to 10%,) fatigue durability (more, than by 15%), crack resistance (up to 10%) and resistance to corrosion cracking with preservation of relative elongation level. Addition of silver in Al–Cu–Mg system alloys is a perspective way of increasing a service life and reliability of articles of aeronautical engineering.
2. Kablov E.N. Strategicheskie napravlenija razvitija materialov i tehnologij ih pererabotki na period do 2030 goda [Strategic directions of development of materials and technologies to process them for the period up to 2030] //Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
3. Antipov V.V., Senatorova O.G., Tkachenko E.A., Vahromov R.O. Aljuminievye deformiruemye splavy [Aluminum wrought alloys] //Aviacionnye materialy i tehnologii. 2012. №S. S. 167–182.
4. Kaigorodova L.I., Sel'nikhina E.I., Tkachenko E.A., Senatorova O.G. Effect of small additions of Sc and Zr on the structure and mechanical properties of an Al–Zn–Mg–Cu alloy //The Physics of Metals and Metallography. 1996. V. 81. №5. P. 513–519.
5. Novikov I.I., Zolotorevskij V.S., Portnoj V.K. i dr. Metallovedenie [Metallography].
T. 2. M.: MISiS. 2009. S. 262–312.
6. Cvetnye metally i splavy. Kompozicionnye metallicheskie materialy [Non-ferrous metals and alloys. Composite Metallic Materials]: Jenciklopedija /Pod red. I.N. Fridljandera, E.N. Kablova. M.: Mashinostroenie. 2001. S. 57–91.
7. Rohlin L.L., Bochvar N.R., Dobatkina T.V. Sovmestnoe vlijanie nekotoryh perehodnyh metallov na izmenenie fazovogo sostava i rekristallizaciju aljuminija [The joint effect of some transition metals on the change in the phase composition and recrystallization of aluminum] //Tehnologija legkih splavov. 2009. №2. S. 20–27.
8. Kablov E.N., Ospennikova O.G., Vershkov A.V. Redkie metally i redkozemel'nye jelementy – materialy sovremennyh i budushhih vysokih tehnologij [Rare metals and rare-earth elements – materials for current and future high-tech] //Trudy VIAM. 2013. №2. St. 01 (viam-works.ru).
9. Zaharov V.V., Elagin V.I., Rostova T.D., Filatov Ju.A. Metallovedcheskie principy legirovanija aljuminievyh splavov skandiem [Metalscience principles alloying of aluminum alloys with scandium] //Tehnologija legkih splavov. 2010. №1. S. 67–73.
10. Ryabov D.K., Kolobnev N.I., Samohvalov S.V. Effect of scandium addition on mechanical properties and corrosion resistance of medium strength Al–Zn–Mg(–Cu) alloy //Materials Science Forum. 2014. V. 794–796. P. 241–246.
11. Teleshov V.V., Golovleva A.P. Vlijanie malyh dobavok serebra i parametrov tehnologii izgotovlenija na strukturu i svojstva polufabrikatov iz splavov sistemy
Al–Cu–Mg–Ag–Xi [The influence of small additions of silver and manufacturing technology parameters on the structure and properties of semi-finished products of alloy systems Al–Cu–Mg–Ag–Xi] //Tehnologija legkih splavov. 2006. №1–2. S. 99–119.
12. Chirkov E.F. Temp razuprochnenija pri nagrevah – kriterij ocenki zharoprochnosti konstrukcionnyh splavov sistem Al–Cu–Mg i Al–Cu [Pace of softening when heated - evaluation criterion of heat resistance of structural alloys systems Al–Cu–Mg and
Al–Cu] //Trudy VIAM. 2013. №2. St. 02 (viam-works.ru).
13. Song Bai, Zhiyi Liu, Yanxia Gu, Xuanwei Zhou, Sumin Zeng. Microstructures and fatigue fracture behavior of an Al–Cu–Mg–Ag alloy with a low Cu/Mg ratio //Materials Science and Engineering A. 2011. №530. P. 473–480.
14. Хiao Yan Liu, Qing Lin Pan, Cong Ge Lu, Yun Bin He, Wen Bin Li, Wen Jie Liang. Microstructure and mechanical properties of Al–Cu–Mg–Mn–Zr alloy with trace amounts Ag //Materials Science and Engineering A. 2009. №525. P. 128–132.
15. Antipov V.V., Vakhromov R.O., Phedorenko T.P., Lukina E.A. Structure and Properties of Semiproducts from Al–Cu–Mg–Ag V-1213 Alloy /In: 12-th International Conference on Aluminium Alloy. Yokohama: The Japan Institute of Light Metals. 2010. Р. 2405–2410.
16. Grigor'ev M.V., Antipov V.V., Vahromov R.O., Senatorova O.G., Ovsjannikov B.V. Struktura i svojstva slitkov iz splava sistemy Al–Cu–Mg s mikrodobavkami serebra [Structure and properties of alloy ingots of Al–Cu–Mg with micro silver] //Aviacionnye materialy i tehnologii. 2013. №3. S. 3–6.
17. Rjabov D.K., Kolobnev N.I. Izmenenie mehanicheskih svojstv splava 1913 pri dvuhstupenchatom iskusstvennom starenii [Changes in mechanical properties of alloy 1913 with a two-stage artificial aging] //Aviacionnye materialy i tehnologii. 2013. №4. S. 3–7.
18. Rjabov D.K., Kolobnev N.I., Samohvalov S.V., Mahsidov V.V. Vlijanie predvaritel'nogo estestvennogo starenija na svojstva splava 1913 v iskusstvenno sostarennom sostojanii [Effect of prior natural aging on the properties of the alloy 1913, artificially aged condition] //Aviacionnye materialy i tehnologii. 2013. №2. S. 8–11.
19. Splav na osnove aljuminija i izdelie, vypolnennoe iz nego [Aluminum-based alloy and article made therefrom]: pat. 2278179 Ros. Federacija; opubl. 20.06.2006. Bjul. №17.
Determination of phosphorus mass content (less than 0,001% wt.) in standard specimens of nickel alloys was carried out by mass-spectrometry method with inductively coupled plasma (ICP-MS). Spectral interferences were eliminated using mathematical correction equation. The technique of sample dissolving and its preparation for analysis was presented. Relative standard deviation doesn’t exceed 0,05 in the concentration range of 0,0006–0,0065% wt. A detection limit in solution is 0,7μg/l, a detection limit in alloys – 0, 0004 % wt.
2. Kablov E.N., Sidorov V.V., Kablov D.E., Rigin V.E., Gorjunov A.V. Sovremennye tehnologii poluchenija prutkovyh zagotovok iz litejnyh zharoprochnyh splavov novogo pokolenija [Modern technologies for bar stock of casting superalloys new generation] //Aviacionnye materialy i tehnologii. 2012. №S. C. 97–105.
3. Kablov E.N., Bondarenko Ju.A., Echin A.B., Surova V.A. Razvitie processa napravlennoj kristallizacii lopatok GTD iz zharoprochnyh splavov s monokristallicheskoj i kompozicionnoj strukturoj [The development process of directional solidification of gas turbine engine blades with a single-crystal superalloys and composite structure] //Aviacionnye materialy i tehnologii. 2012. №1. S. 3–8.
4. Bondarenko Ju.A., Kablov E.N. Napravlennaja kristallizacija zharoprochnyh splavov s povyshennym temperaturnym gradientom [Directional solidification of superalloys with a high temperature gradient] //MiTOM. 2002. №7. S. 20–23.
5. Kablov E.N., Ospennikova O.G., Sidorov V.V., Rigin V.E., Kablov D.E. Osobennosti tehnologii vyplavki i razlivki sovremennyh litejnyh vysokozharoprochnyh nikelevyh splavov [Technology features smelting and casting foundry modern nickel-base superalloys] //Vestnik MGTU im. N.Je. Baumana. Ser. «Mashinostroenie». 2011. №SP2.
S. 68–78.
6. Min P.G., Sidorov V.V. Opyt pererabotki litejnyh othodov splava ZhS32-VI na nauchno-proizvodstvennom komplekse VIAM po izgotovleniju lityh prutkovyh (shihtovyh) zagotovok [Experience in processing of waste foundry alloy ZhS32-VI at the scientific-industrial complex for the production of cast VIAM of bar (charge) blanks] //Aviacionnye materialy i tehnologii. 2013. №4. S. 20–25.
7. Kashapov O.S., Novak A.V., Nochovnaja N.A., Pavlova T.V. Sostojanie problemy i perspektivy sozdanija zharoprochnyh titanovyh splavov dlja detalej GTD [State of the problem and the prospects for the creation of high-temperature titanium alloys for GTE parts] //Trudy VIAM. 2013. №3. St. 02 (viam-works.ru).
8. Kablov E.N., Bondarenko Ju.A., Kablov D.E., Osobennosti struktury i zharoprochnyh svojstv monokristallov <001> vysokorenievogo nikelevogo zharoprochnogo splava, poluchennogo v uslovijah vysokogradientnoj napravlennoj kristallizacii [Features of the structure and properties of single crystals of high-temperature <001> vysokorenievogo nickel superalloy, obtained with high-gradient directional solidification] //Aviacionnye materialy i tehnologii. 2011. №4. S. 25–31.
9. Kablov E.N., Petrushin N.V., Bronfin M.B., Alekseev A.A. Osobennosti monokristallicheskih zharoprochnyh nikelevyh splavov, legirovannyh reniem [Features single-crystal high-temperature nickel alloys, alloyed with rhenium] //Metally. 2006. №5. S. 47–57.
10. Kablov D.E., Sidorov V.V., Min P.G. Vlijanie primesi azota na strukturu monokristallov zharoprochnogo nikelevogo splava ZhS30-VI i razrabotka jeffektivnyh sposobov ego rafinirovanija [Influence of nitrogen impurities on the structure of single-crystal nickel superalloys ZhS30-VI and develop effective ways of refining it] //Aviacionnye materialy i tehnologii. 2012. №2. S. 32–36.
11. Kablov D.E., Chabina E.B., Sidorov V.V., Min P.G. Issledovanie vlijanija azota na strukturu i svojstva monokristallov iz litejnogo zharoprochnogo splava ZhS30-VI [Investigation of the influence of nitrogen on the structure and properties of single crystals of cast superalloy ZhS30-VI] //MiTOM. 2013. №8. S. 3–7.
12. Kablov D.E., Sidorov V.V., Min P.G. Zakonomernosti povedenija azota pri poluchenii monokristallov zharoprochnogo nikelevogo splava ZhS30-VI i ego vlijanie na jekspluatacionnye svojstva [Of the behavior of nitrogen in the preparation of single crystals of heat-resistant nickel alloy ZhS30-VI and its impact on the performance of the] //MiTOM. 2014. №1. S. 8–12.
13. Sidorov V.V., Rigin V.E., Timofeeva O.B., Min P.G. Vlijanie kremnija i fosfora na zharoprochnye svojstva i strukturno-fazovye prevrashhenija v monokristallah iz vysokozharoprochnogo splava VZhM4-VI [Effect of silicon and phosphorus on the heat-resistant properties and structural phase transitions in single crystals of a highly heat resistant alloy VZhM4-VI] //Aviacionnye materialy i tehnologii. 2013. №3. S. 32–38.
14. Sidorov V.V., Rigin V.E., Filonova E.V., Timofeeva O.B. Strukturnye issledovanija i svojstva monokristallov splavov VZhM4-VI i VZhM5-VI, soderzhashhih povyshennye kolichestva fosfora [Structural studies of the properties of single crystals and alloys VZhM4-VI-VI and VZhM5 containing elevated levels of phosphorus] //Trudy VIAM. 2014. №3. St. 02 (viam-works.ru).
15. Zhu Y., Radavich J. at al. The development and Long-Time structural stability of a low segregation Hf free supper alloy – DZ 125 //Supper alloys. 2000. P. 329–339.
16. Yuan C., Yin F. at al. Effect of phosphorus on microstructure and high temperature properties of a cast Ni-base supper alloy //J. Mater. Sci. Technol. 2002. V. 18. №6.
P. 555–557.
17. Hu Z., Song H. at al. Effect of phosphorus on microstructure and creep property of In 718b supper alloy //J. Mater. Sci. Technol. 2005. V. 21. P. 73–76.
18. GOST 6689.19–92. Nikel', splavy nikelevye i medno-nikelevye. Metody opredelenija fosfora [Nickel, nickel and copper-nickel. Methods for the determination of phosphorus].
19. ASTM E 1917–13. Standard Test Method for Determination of Phosphorus in Nickel, Ferronickel, and Nickel Alloys by Phosphovanadomolybdate Spectrophotometry.
20. Pupyshev A.A., Danilova D.A. Ispol'zovanie atomno-jemissionnoj spektrometrii s induktivno svjazannoj plazmoj dlja analiza materialov i produktov chernoj metallurgii [Using atomic emission spectrometry with inductively coupled plasma analysis of materials and products of ferrous metallurgy] //Analitika i kontrol'. 2007. T. 11. №2–3.
S. 131–181.
21. Jakubenko E.V., Vojtkova Z.A., Chernikova I.I., Ermolaeva T.N. Mikrovolnovaja probopodgotovka dlja opredelenija Si, P, V, Cr, Mn, Ni, Cu, W metodom AJeS-ISP v konstrukcionnyh staljah [Microwave sample preparation for the determination of Si, P, V, Cr, Mn, Ni, Cu, W by ICP-AES in structural steels] //Zavodskaja laboratorija. Diagnostika materialov. 2014. T. 80. №1. S. 12–15.
22. Hoffmann V., Kasik M., Robinson P.K. at al. Glow discharge mass spectrometry //Anal Bioanal Chem. 2005. V. 381. P. 173–188.
23. Finkeldei S., Staats G. ICP-MS – A powerful analytical technique for the analysis of traces of Sb, Bi, Pb, Sn and P in steel //Fresenius J. Anal Chem. 1997. V. 359. P. 357–360.
24. Hu J., Wang H. Determination of Trace Elements in Super Alloy by ICP-MS //Mikrochim. Acta. 2001. V. 137. P. 149–155.
25. Yang C., Jiang S. Determination of B, Si, P and S in steels by inductively coupled plasma quadrupole mass spectrometry with dynamic reaction cell //Spectrochimica Acta. Part B. 2004. V. 59. P. 1389–1394.
26. Pupyshev A.A., Jepova E.N. Spektral'nye pomehi poliatomnyh ionov v metode mass-spektrometrii s induktivno svjazannoj plazmoj [Spectral interferences of polyatomic ions in the method of mass spectrometry with inductively coupled plasma] //Analitika i kontrol'. 2001. T. 5. №4. S. 335–369.
27. Kovacevic M., Goessler W. аt al. Matrix effects during phosphorus determination with quadrupole inductively coupled plasma mass spectrometry //Anal. Bioanal. Chem. 2005. V. 383. P. 145–151.
28. Microwave Sample Preparation Note: 5MT-14 (Ni–Cr Alloy). 1998. CEM Corp.
29. Grebneva O.N., Kubrakova I.V., Kudinova T.F., Kuzmin N.M. Direct determination of trace elements in niobium, tantalum and their oxides by inductively coupled plasma atomic emission spectrometry after microwave dissolution //Spectrochimica Acta. Part B: Atomic spectroscopy. 1997. V. 52. №8. P. 1151–1159.
30. Ganeev A.A., Gubal' A.R., Uskov K.N., Potapov S.V. Analiticheskaja mass-spektrometrija s tlejushhim razrjadom [Analytical mass spectrometry with a glow discharge] //Izvestija RAN. Ser. Himicheskaja. 2012. №4. S. 1–17.
31. Dvoreckov R.M., Karachevcev F.N., Zagvozdkina T.N., Mehanik E.A. Opredelenie legirujushhih jelementov nikelevyh splavov aviacionnogo naznachenija metodom AJeS-ISP v sochetanii s mikrovolnovoj probopodgotovkoj [Determination of alloying elements nickel alloys for aircraft industry by ICP-AES in combination with microwave sample preparation] //Zavodskaja laboratorija. Diagnostika materialov. 2013. T. 79. №9. S. 6–9.
This paper represents results of investigation on choosing coupling agents for carbon fibers for production of carbon fiber-reinforced plastics based on thermoplastic heat-resistant matrixes – polyarilsulfones PSF-T1 and PSF-T2. Carbon fiber-reinforced plastics (CFRP) have got a number of advanced properties – low density, high elasticity modulus, strength, heat resistance, high durability, low temperature linear expansion coefficient. The drawback of these materials is a low shear strength because of poor adhesion of binder to carbon fiber surface. Dressing of carbon fibers were made by epoxy resins solutions, polyimides, polyether oligomers, rolivsan, polysulfone etc. Influence of coupling agent nature on mechanical properties of thermoplastic heat-resistant CFRP at room (20°C) and high temperatures (160 and 185°C) is shown. Strength characteristics data are presented.
2. Bejder Je.Ja., Petrova G.N., Izotova T.F., Gureeva E.V. Kompozicionnye termoplastichnye materialy i penopoliimidy [Thermoplastic composite materials and penopoliimidy] //Trudy VIAM. 2013. №11. St. 01 (viam-works.ru).
3. Kablov E.N. Himija v aviacionnom materialovedenii [Composite and thermoplastic materials penopoliimidy] //Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 3–4.
4. Bejder Je.Ja., Malyshenok S.V., Petrova G.N. Kompozicionnye termoplastichnye materialy – svojstva i sposoby pererabotki [Chemistry aviation materials] //Plasticheskie massy. 2013. №7. S. 56–60.
5. Kablov E.N. Aviakosmicheskoe materialovedenie [Aerospace Materials] //Vse materialy. Jenciklopedicheskij spravochnik. 2008. №3. S. 2–14.
6. Gunjaev G.M., Chursova L.V., Komarova O.A., Gunjaeva A.G. Konstrukcionnye ugleplastiki, modificirovannye nanochasticami [Structural carbon composites modified nanoparticles] //Aviacionnye materialy i tehnologii. 2012. №S. S. 277–286.
7. Petrova G.N., Bejder Je.Ja. Konstrukcionnye materialy na osnove armirovannyh termo-plastov [Structural materials based on reinforced thermoplastics] //Rossijskij himicheskij zhurnal. 2010. T. LІV. №1. S. 30–40.
8. Uglerodnye volokna i uglekompozity [Carbon fiber and uglekompozity]: Per. s ang. /Pod red. Je. Fitcera. M.: Mir. 1988. 336 s.
9. Guljaev I.N., Vlasenko F.S., Zelenina I.V., Raskutin A.E. Napravlenija razvitija termostojkih ugleplastikov na osnove poliimidnyh i geterociklicheskih polimerov [Directions of development of heat-resistant carbon-fiber-based polyimide polymers and heterocyclic] //Trudy VIAM. 2014. №1. St. 04 (viam-works.ru).
10. Varshavskij V.Ja. Uglerodnye volokna [carbon fiber]. M.: VINITI. 2005. 498 s.
11. Gunjaev G.M., Kablov E.N., Aleksashin V.M. Modificirovanie konstrukcionnyh ugleplastikov uglerodnymi nanochasticami [Modification of structural carbon fiber with carbon nanoparticles] //Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 5–11.
12. Stepashkin A.A., Churkov D.N. i dr. Poverhnostnaja obrabotka uglerodnyh volokon [Surface treatment of carbon fibers] //Materialovedenie. 2013. №2. S. 44–50.
13. Bejder Je.Ja., Petrova G.N., Izotova T.F., Barbot'ko S.L. Stekloplastiki na termoplastichnoj matrice [Glass-reinforced on thermoplastic matrix] //Trudy VIAM. 2013. №7. St. 03 (viam-works.ru).
14. Doneckij K.I., Hrul'kov A.V., Kogan D.I., Belinis P.G., Luk'janenko Ju.V. Primenenie ob`emno-armirujushhih preform dlja izgotovlenija izdelij iz PKM [Application of space-reinforcing preforms for the manufacture of RMB] //Aviacionnye materialy i tehnologii. 2013. №1. S. 35–39.
15. Dushin M.I., Hrul'kov A.V., Muhametov R.R., Chursova L.V. Osobennosti izgotovlenija izdelij iz PKM metodom propitki pod davleniem [Features manufacture of RMB by pressure impregnation] //Aviacionnye materialy i tehnolo-gii. 2012. №1. S.18–26.
A sequence of operations for modeling of PCM based on VSE-21 resin and Tenax-E Style 450 fabric manufacture by infusion method is described. Phenomenological processes appearing at forming and also critical characteristics which have to be taken into account during the imitation process are given. Abilities of modeling usage for forming parameters identification even on the stage of calculation and algorithm of model realization to get a high convergence during modeling are described.
2. Kablov E.N. Materialy i himicheskie tehnologii dlja aviacionnoj tehniki [Materials and chemical technologies for aircraft equipment] //Vestnik Rossijskoj akademii nauk. 2012. T. 82. №6. S. 520–530.
3. Kablov E.N., Karimova S.A., Semenova L.V. Korrozionnaja aktivnost' ugleplastikov i zashhita metallicheskih silovyh konstrukcij v kontakte s ugleplastikom [Corrosiveness CFRP and protection of metal bearing structures in contact with the carbon fiber] //Korrozija: materialy, zashhita. 2011. №12. S. 1–7.
4. Kablov E.N. Korrozija ili zhizn' [Corrosion or life] //Nauka i zhizn'. 2012. №11. S. 16–21.
5. Raskutin A.E., Goncharov V.A. Komp'juternoe modelirovanie tehnologicheskogo processa izgotovlenija PKM metodom vakuumnoj infuzii [Computer simulation of the technological process of RMB by vacuum infusion] //Aviacionnye materialy i tehnologii. 2012. №S. S. 286–291.
6. Dushin M.I., Muhametov R.R., Platonov A.A., Merkulova Ju.I. Issledovanie fil'tracionnyh harakteristik armirujushhih napolnitelej i svjazujushhih pri razrabotke tehnologii bezavtoklavnogo formovanija polimernyh kompozicionnyh materialov [Study of the filtration characteristics of reinforcing fillers and binders in the development of technology bezavtoklavnogo molding of polymer composites] //Aviacionnye materialy i tehnologii. 2013. №2. S. 22–25.
7. Grigor'ev M.M., Kogan D.I., Tverdaja O.N., Panina N.N. Osobennosti izgotovlenija PKM metodom RFI [Peculiarities of RMB by RFI] //Trudy VIAM. 2013. №4. St. 03 (viam-works.ru).
8. Sokolov I.I., Raskutin A.E. Ugleplastiki i stekloplastiki novogo pokolenija [Carbon and fiberglass new generation] //Trudy VIAM. 2013. №4 (viam-works.ru).
9. Dushin M.I., Hrul'kov A.V., Muhametov R.R., Chursova L.V. Osobennosti izgotovlenija izdelij iz PKM metodom propitki pod davleniem [Features the manufacture of RMB by pressure impregnation] //Aviacionnye materialy i tehnologii. 2012. №1. S. 24–33.
10. Mihajlin Ju.A. Konstrukcionnye polimernye kompozicionnye materialy Structural polymer composite materials [Structural polymer composite materials]. SPb.: Nauchnye osnovy i tehnologii. 2008. 822 s.
11. Kablov E.N., Starcev O.V., Krotov A.S., Kirillov V.N. Klimaticheskoe starenie kompozicionnyh materialov aviacionnogo naznachenija. III. Znachimye faktory starenija [Climatic aging of composite materials for aircraft industry. III. Significant factors of aging] //Deformacija i razrushenie materialov. 2011. №1. S. 34–40.
12. Kirillov V.N., Starcev O.V., Efimov V.A.Klimaticheskaja stojkost' i povrezhdaemost' polimernyh kompozicionnyh materialov, problemy i puti reshenija [Weather resistance and a defect of polymeric composite materials, problems and solutions] //Aviacionnye materialy i tehnologii. 2012. №S. S. 412–423.
13. Kirillov V.N., Efimov V.A., Shvedkova A.K., Nikolaev E.V.Issledovanie vlijanija klimaticheskih faktorov i mehanicheskogo nagruzhenija na strukturu i mehanicheskie svojstva PKM [Investigation of the influence of climatic factors and mechanical loading on the structure and mechanical properties of the PCM] //Aviacionnye materialy i tehnologii. 2011. №4. S. 41–45.
14. Chursova L.V., Dushin M.I., Kogan D.I., Panina N.N., Kim M.A., Gurevich Ja.M., Platonov A.A. Plenochnye svjazujushhie dlja RFI-tehnologii [Film binders for RFI-technology] //Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 63–66.
15. Goncharov V.A., Shienok A.M., Sorokin K.V., Fedotov M.Ju., Zelenskij P.V. Modelirovanie infuzionnyh tehnologij izgotovlenija sloistyh polimernyh kompozicionnyh materialov [Simulation of infusion technology manufacturing laminates of polymer composite materials] //Vse materialy. Jenciklopedicheskij spravochnik. 2013. №1.
S. 43–49.
16. Goncharov V.A., Fedotov M.Ju., Sorokin K.V., Raskutin A.E. Modelirovanie stadii propitki poluchenija ugleplastikov na osnove jepoksidnyh svjazujushhih dlja RTM i VARTM tehnologij [Modeling of the impregnation step, obtaining carbon-fiber epoxy binders for RTM and VARTM technology] //Spravochnik. Inzhenernyj zhurnal. 2013. №12. S. 24–28.
17. Goncharov V.A. Modelirovanie infuzionnyh tehnologij izgotovlenija PKM na osnove jepoksidnyh svjazujushhih i uglerodnyh tkanej Porcher [Modeling infusion manufacturing techniques PCM epoxy binder and carbon fabrics Porcher] //Novosti materialovedenija. Nauka i tehnika. 2013. №5. St. 08 (materialsnews.ru).
18. Bunakov V.A., Golovkina G.S. Armirovannye plastiki [Reinforced plastics]. M.: MAI. 1997. 404 s.
19. Koefoed M.S. Modeling and Simulation of the VARTM Process for Wind Turbine Blades. Industrial Ph.D. Dissertation. 2003. P. 5–10.
20. Weitzenbock J.R., Shenoi R.A., Wilson P.A. Radial flow permeability measurement. Part А: Theory. Composites Part A: Applied Science and Manufacturing. 1999. V. 30(6). Р. 781–796.
21. Kotov V.V. Modelirovanie proizvodstva kompozicionnyh materialov – vyzov vremeni [Modeling of composite materials – call time] //Perspektivnye materialy dlja aviakosmicheskoj promyshlennosti. 2011. №1. S. 21–23.
22. Mastbergen D.В. Simulation and Testing of Resin Infusion Manufacturing Processes for Large Composite Structures, SAND2006-7856P Unlimited Release Printed October. 2007. Р. 12–53.
23. Hrul'kov A.V., Dushin M.I., Popov Ju.O., Kogan D.I. Issledovanija i razrabotka avtoklavnyh i bezavtoklavnyh tehnologij formovanija PKM [Research and development and autoclave molding technology bezavtoklavnogo PCM] //Aviacionnye materialy i tehnologii. 2012. №S. S. 292–301.
24. Goncharov V.A., Fedotov M.Ju., Shienok A.M. Modelirovanie polimernyh kompozicionnyh materialov [Simulations of polymer composite materials] /V sb. trudov konf. «Novye materialy i tehnologii glubokoj pererabotki syr'ja – osnova innovacionnogo razvitija jekonomiki Rossii». M.: VIAM. 2010. S. 8.
25. Goncharov V.A., Fedotov M.Ju. Modelirovanie fiziko-mehanicheskih svojstv intellektual'nogo ugleplastika s optovolokonnymi sensorami [Modeling of physical and mechanical properties of carbon fiber with fiber optic smart sensors] /V sb. materialov V Mezhdunarodnoj konferencii «Deformacija i razrushenie materialov i nanomaterialov» DFMN 2013. M. 2013. S. 822–823.
26. Li J., Zhang C., Liang R., Wang B., Walsh S. Modeling and analysis of thickness gradient and variations in vacuum-assisted resin transfer molding process //Polymer Composites. 2008. V. 29. P. 473–482.
27. Ouagne P., Bréard J. Continuous transverse permeability of fibrous media //Composites Part A: Applied Science and Manufacturing. 2010. V. 41. P. 22–28.
28. Yenilmez B., Senan M., Murat Sozer E. Variation of part thickness and compaction pressure in vacuum infusion process //Composites Science and Technology. 2009.
V. 69. Р. 1710–1719.
29. Antonucci V., Esposito M., Ricciardi M. R., Raffone M., Zarrelli M., Giordano M. Permeability characterization of stitched carbon fiber preforms by fiber optic sensors //Express Polymer Letters. 2011. V. 5. P. 1075–1084.
30. Porto J., Letzow M., Dos Santos E., Amico S., Souza J., Isoldi L. Computational modeling of RTM and LRTM processes applied to complex geometries //Engenharia Térmica (Thermal Engineering). 2012. V. 11. P. 93–99.
A review of metal composite materials based on aluminum and titanium matrixes, rein-forced with high-strength fibers of refractory compounds for application in constructions of aerotechnics and space transport systems is presented.
2. Kablov E.N. Sovremennye materialy – osnova innovacionnoj modernizacii Rossii [Modern materials – the basis of innovative modernization of Russia] //Metally Evrazii. 2012. №3. S. 10–15.
3. Kablov E.N. Razrabotki VIAM dlja gazoturbinnyh dvigatelej i ustanovok [VIAM development for gas turbine engines and systems] //Kryl'ja Rodiny. 2010. №4. S. 31–33.
4. Kablov E.N., Ospennikova O.G., Bazyleva O.A. Materialy dlja vysokonagruzhennyh detalej gazoturbinnyh dvigatelej [Materials for highly loaded parts of gas turbine engines] //Vestnik MGTU im. N.Je. Baumana. 2011. №SP2. S. 13–19.
5. Kablov E.N., Gerasimov V.V., Visik E.M., Demonis I.M. Rol' napravlennoj kristallizacii v resursosberegajushhej tehnologii proizvodstva detalej GTD [The role of directional solidification in the resource-saving technology of production of gas-turbine] //Trudy VIAM. 2013. №3. St. 01 (viam-works.ru).
6. Metallicheskie kompozicionnye materialy [Metal composite materials] /V kn. Istorija aviacionnogo materialovedenija. VIAM – 80 let: gody i ljudi /Pod obshh. red. E.N. Kablova. M.: VIAM. 2012. S. 373–380.
7. Tarasov Ju.M., Antipov V.V. Novye materialy VIAM − dlja perspektivnoj aviacionnoj tehniki proizvodstva OAO «OAK» [New materials VIAM – for promising aviation equipment produced by OJC «UAC»] //Aviacionnye materialy i tehnologii. 2012. №2. S. 5–6.
8. Shmotin Ju.N., Starkov R.Ju., Danilov D.V., Ospennikova O.G., Lomberg B.S. Novye materialy dlja perspektivnogo dvigatelja OAO «NPO „Saturn”» [New materials for advanced engine OJC «SPA „Saturn”»] //Aviacionnye materialy i tehnologii. 2012. №2. S. 6–8.
9. Doroshenko N.I., Chursova L.V. Jevoljucija materialov dlja lopastej vertoletov [Evolution of materials for helicopter blades] //Aviacionnye materialy i tehnologii. 2012. №2. S. 16–18.
10. Kablov E.N., Shhetanov B.V., Ivahnenko Ju.A., Balinova Ju.A. Perspektivnye armirujushhie vysokotemperaturnye volokna dlja metallicheskih i keramicheskih kompozicionnyh materialov [Promising reinforcing fibers for high temperature metal and ceramic composite materials] //Trudy VIAM. 2013. №2. St. 05 (viam-works.ru).
11. Kablov E.N. Aviakosmicheskoe materialovedenie [Aerospace materials] //Vse materialy. Jenciklopedicheskij spravochnik. 2008. №3. S. 2–14.
12. Kablov E.N., Bondarenko Ju.A., Echin A.B., Surova V.A. Razvitie processa napravlennoj kristallizacii lopatok GTD iz zharoprochnyh splavov s monokristallicheskoj i kompozicionnoj strukturoj [The development process of directional solidification of gas turbine engine blades with a single-crystal superalloys and composite structure] //Aviacionnye materialy i tehnologii. 2012. №1. S. 3–8.
13. Belov N.A. Jekonomnolegirovannye zharoprochnye aljuminievye splavy: principy optimizacii fazovogo sostava [Ehkonomnolegirovannye heat-resistant aluminum alloys: principles of optimization phase composition] //Aviacionnye materialy i tehnologii. 2011. №2. S. 6–11.
14. Kovtunov A.I., Mjamin S.V. Issledovanie tehnologicheskih i mehanicheskih svojstv sloistyh titanoaljuminievyh kompozicionnyh materialov, poluchennyh zhidkofaznym sposobom [Investigation of processing and mechanical properties titanoalyuminievyh layered composite material obtained by the liquid phase method] //Aviacionnye materialy i tehnologii. 2013. №1. S. 9–12.
15. Kablov E.N., Shhetanov B.V., Grashhenkov D.V., Shavnev A.A., Njafkin A.N. Metallomatrichnye kompozicionnye materialy na osnove Al–SiC [Metal matrix composites based on Al–SiC] //Aviacionnye materialy i tehnologii. 2012. №S. S. 373–380.
16. Kablov E.N., Chibirkin V.V., Vdovin S.M. Izgotovlenie, svojstva i primenenie teplootvodjashhih osnovanij iz MMK Al–SiC v silovoj jelektronike i preobrazovatel'noj tehnike [Manufacture, properties and applications of heat-removing bases from MMK Al–SiC in power electronics and converter equipment] //Aviacionnye materialy i tehnologii. 2012. №2. S. 20–22.
17. Pratt and Whitney Composite Rotor Test //Interavia Air Letter. 1973. V. 7. №7881.
Р. 5–6.
18. Niema I.T., Garett R.A. Eutecnic Bonding of Boron-Aluminum Structural Components //Welding Journal. 1974. V. 53. №4. P. 351–360.
19. Possibility of Composite Compressor Blades Seen in Germany //Interavia Air Letter. 1975. №8188. Р. 8–9.
20. Garibotey G.F. Trends in Aerospace Materials //Astronautic and Aeronautics. 1978. V. 16. №7–8. P. 70–81.
21. Adsit N.R. Composites for Space Application //ASTM Standartisation News. 1984. Dec.
22. FDL Вegins Aluminum Matrix Composite Structure Program //Light Metal Age. 1981. V. 39. №11. P. 36.
23. Knoell A.G. Evaluation of Boron-Aluminum Tubes in Compossion //J. Spacecraft and Rockets. 1975. V. 12. №10. Р. 635–637.
24. Weisinger M.D. Boron-Aluminum Tube Struts for NASA Space Shuttle //Metals Abstracts. 1979. P. 69–72.
25. Stenger C.G. Keramick als Versterking van meltellen //Metal en Techn. 1986. V. 31. №5. P. 9–12.
26. Gorshkov L.A., Karimbaev T.D., Nozhnickij Ju.A. Voprosy sozdanija konstrukcij GTD iz KM [Questions to create structures of GTD KM] /V sb. Novye tehnologicheskie processy i nadezhnost' GTD. M.: ONTI VIAM. 1976. Vyp. 3. S. 3–10.
27. National Research Council Advanced Fibers for High-Temperature Ceramic Composites: Advanced Materials for the Twenty-First Century /In: Nat. Academy Press. Washington D.C. 1998. P. 37–38.
28. Vienna University of Technology, Institute of Materials Science and Technology. www.mmc-assess.tuwien.ac.at
29. MMC VIII-Metallic Composites and Foams. London: Royal Society. 2001.
30. Shalin R.E., Il'chenko V.M. Titanovye splavy v aviacionnom priborostroenii [Titanium alloys in aircraft instrumentation]. http://www.titanmet.ru.
31. Smarsly W. Aero Engine Materials /In: Seminar, Faculty of Mechanical Engineering, Cracow University of Technology. Poland MTU Aero engines GmbH (2006), http://www.mtu.de/en/technologies/engineering_news.
32. Miracle D.B. Aeronautical Applications of Metal-Matrix Composites. Air Force Research Laboratory. 2000. P. 1043–1049.
33. Hemptenmacher J., Schurmann H., Weber K., Peters P.W.M. Gefügeuntersuchungen und mechanische Eigenschaften der SiC (SCS-6) faserverstärkten Titanlegierung Ti–22Al–25Nb. Deutsches Zentrum für Luft- und Raumfahrt, DLR, Institut für Werkstoff-Forschung, Köln; Symposium: Verbundwerkstoffe und Werkstoffverbunde, Kassel. 2005.
34. NASA TM-2001-211343, NASA Reference Publication. 1361 р.
Results of tests by acoustic method of continuous fibers on a base of refractory oxides meant for production of flexible sealing thermal insulation are given. X-ray phase structure and elasticity modulus were defined for samples of Al2O3–SiO2 fibers after heat treatment at 700, 900 and 1200°С. Results showed that a full crystallization of ceramic structure at high-temperature burning leads to increasing of elasticity modulus of oxide fi-bers.
2. Kablov E.N. Aviakosmicheskoe materialovedenie [Aerospace materials] //Vse materialy. Jenciklopedicheskij spravochnik. 2008. №3. S. 2–14.
3. Ivahnenko Ju.A., Babashov V.G., Zimichev A.M., Tinjakova E.V. Vysokotemperaturnye teploizoljacionnye i teplozashhitnye materialy na osnove volokon tugoplavkih soedinenij [High-temperature and heat-insulating materials based on fibers of refractory compounds] //Aviacionnye materialy i tehnologii. 2012. №S. S. 380–385.
4. Tinjakova E.V., Grashhenkov D.V. Teploizoljacionnyj material na osnove mullito-korundovyh i kvarcevyh volokon [Thermal insulation material on the basis of mullite-corundum and quartz fibers] //Aviacionnye materialy i tehnologii. 2012. №3. S. 43–46.
5. Kablov E.N., Shhetanov B.V., Abuzin Ju.A., Ivahnenko Ju.A. Metallicheskie i keramicheskie kompozicionnye materialy [Metallic and ceramic composite materials] /V sb. materialov Mezhdunarodnoj nauch.-praktich. konf. «Sovremennye tehnologii – kljuchevoe zveno v vozrozhdenii otechestvennogo aviastroenija». T. 1. Kazan'. 2008.
S. 181–188.
6. Kablov E.N., Grashhenkov D.V., Isaeva N.V., Solncev S.S. Perspektivnye vysokotemperaturnye keramicheskie kompozicionnye materialy [Promising high-temperature ceramic composites] //Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 20–24.
7. Kablov E.N., Shhetanov B.V., Ivahnenko Ju.A., Balinova Ju.A. Perspektivnye armirujushhie vysokotemperaturnye volokna dlja metallicheskih i keramicheskih kompozicionnyh materialov [Promising reinforcing fibers for high temperature metal and ceramic composite materials] //Trudy VIAM. 2013. №2. St. 05 (viam-works.ru).
8. Dospehi dlja «Burana». Materialy i tehnologii VIAM dlja MKS «Jenergija–Buran» [Armor for the «Buran». Materials and technologies for the ISS VIAM «Energiya–Buran»] /Pod obshh. red. E.N. Kablova. M.: Fond «Nauka i zhizn'». 2013. S. 36–39.
9. Shhetanov B.V., Ivahnenko Ju.A., Babashov V.G. Teplozashhitnye materialy [Heat-proof materials] //Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 12–20.
10. Krenkel W., Lamon J. Hight-Temperature Ceramic Materials and Composites /In: 7-th Internatiolal Conference on Ceramic Matrix Composites (HT-CMC 7). 2010. Р. 467–472.
11. Ceramic Fibers and Coatings. Advanced Materials for the Twenty-First Century Committee on Advanced Fibers for High-Temperature Ceramic Composites. Washington: National Academy Press. 1998. 95 р.
12. Wilson D.M., Visser L.R. High performance oxide fibers for metal and ceramic composites /In: Processing of fibers & composites. 2000. Barga. 31 p.
13. Parlier M., Ritti M.-H., Jankowiak A. Potential and Perspectives for Oxide-Oxide Composites //Journal Aerospacelab. 2011. №3. Р. 1–12.
14. Jessen T., Ustundag E. /In: 24-th Annual Conference on Composites, Advanced Ceramics, Materials and Structures //Ceramic Engineering and Science Proceedings. B. 2000. V. 21. №4. P. 549–557.
15. Zimichev A.M., Varrik N.M. Termogravimetricheskie issledovanija nitej na osnove oksida aljuminija [Thermogravimetric studies strands of the alumina] //Trudy VIAM. 2014. №6. St. 06 (viam-works.ru).
16. Zimichev A.M., Varrik N.M., Dalin M.A. Izmerenie modulja uprugosti volokon iz tugoplavkih oksidov [Measurement of modulus fibers of refractory oxides] //Trudy VIAM. 2014. №6. St. 05 (viam-works.ru).
17. Dalin M.A., Generalov A.S., Bojchuk A.S., Lozhkova D.S. Osnovnye tendencii razvitija akusticheskih metodov nerazrushajushhego kontrolja [The main trends in the development of acoustic methods of non-destructive testing] //Aviacionnye materialy i tehnologii. 2013. №1. S. 64–69.
18. Generalov A.S., Murashov V.V., Dalin M.A., Bojchuk A.S. Diagnostika polimernyh kompozitov ul'trazvukovym reverberacionno-skvoznym metodom [Diagnosis of polymer composites ultrasonic cross-cutting method of reverberation] //Aviacionnye materialy i tehnologii. 2012. №1. S. 42–47.
19. Sposob poluchenija vysokotemperaturnogo volokna na osnove oksida aljuminija [Method of obtaining high fiber based on alumina]: pat. 2212388 Ros. Federacija; opubl. 20.09.2003. Bjul. №34. 6 s.
20. Bunsell A.R., Miner J. Oxide Fibers for High-Temperature Reinforcement and Insulation //Metalls and Mater. Sci. 2005. V. 57. Р. 48–51.
Samples of perspective material of thermal acoustic isolation were manufactured. The sound heat-insulating material contained the following layers:heat - sound - insulating layer on a base of basalt and silica fibers; a layer of non-woven material, based on aramid fibers; protective coating on a base of fiberglass or heat-resistant polymer film (polyimide film PMA, fluoropolymer film F-4MD, material STF-26, material on a base of fiberglass with fluoroplast F-42 impregnation, polyethersulfone film). Investigation on characterization of fire safety (duration of residual independent burning, length of burn-through) of thermal acoustic insulation material of fuselage with different protective coatings according to the requirements of aviation regulations AP-25, p. 25.856(a) Appendix F, Part VI. Tests were performed in a chamber with a heat radiation panel under an influence on the material both a heat radiation flow of variable intensity and a burner flame. Both separate specimens of pro
2. Terebnjov V.V., Artem'ev N.S., Grachev V.A. Transport: nazemnyj, morskoj, rechnoj, vozdushnyj, metro. Protivopozharnaja zashhita i tushenie pozharov [Transportation: land, sea, river, air, underground. Fire protection and fire fighting]. Kn. 6. M.: Pozhnauka. 2007. 211 s.
3. Barbot'ko S.L., Shurkova E.N. O pozharnoj bezopasnosti materialov, ispol'zuemyh dlja izgotovlenija vneshnego kontura samoletov [On the fire safety of the materials used for the manufacture of the outer contour of aircraft] //Pozharovzryvobezopasnost'. 2011. T. 20. №10. S. 19–24.
4. Barbot'ko S.L., Nagaev A.S. K voprosu ob obespechenii pozharnoj bezopasnosti vneshnego kontura samoletov [On the issue of fire safety outer contour aircraft] /V sb. dokl. VIII nauch. konf. po gidroaviacii «Gidroaviasalon–2010». Ch. II. M.: CAGI. 2010. S. 107–110.
5. Barbot'ko S.L., Shurkova E.N., Vol'nyj O.S., Skryljov N.S. Ocenka pozharnoj bezopasnosti polimernyh kompozicionnyh materialov dlja vneshnego kontura aviacionnoj tehniki [Assessment of fire safety of polymeric composite materials for the outer loop of aeronautical engineering] //Aviacionnye materialy i tehnologii. 2013. №1. S. 56–59.
6. Barbot'ko S.L. Pozharobezopasnost' aviacionnyh materialov [Flammability of aircraft materials] //Aviacionnye materialy i tehnologii. 2012. №S. S. 431–439.
7. Barbot'ko S.L., Kirillov V.N., Shurkova E.N. Ocenka pozharnoj bezopasnosti polimernyh kompozicionnyh materialov aviacionnogo naznachenija [Assessment of fire safety of polymeric composite materials for aircraft industry] //Aviacionnye materialy i tehnologii. 2012. №3. S. 56–63.
8. Sytyj Ju.V., Sagomonova V.A., Kisljakova V.I., Bol'shakov V.A. Vibropogloshhajushhie materialy na osnove termojelastoplastov [Vibration-absorbing materials based on thermoplastic elastomers] //Trudy VIAM. 2013. №3. St. 06 (viam-works.ru).
9. Nesterova T.A., Barbot'ko S.L., Nikolaeva M.F., Gerter Ju.A. Mnogoslojnyj zashhitno-dekorativnyj material dlja dekorirovanija detalej v salonah samoletov i vertoletov [Multi-layer protective decorative material for decorating details in the cabin of aircraft and helicopters] //Trudy VIAM. 2013. №8. St. 4 (viam-works.ru).
10. Obzor rynka teploizoljacionnyh materialov na osnove bazal'tovogo volokna v Rossii [Market Overview of thermal insulating materials, based on basalt fiber in Russia / Report LLC «InfoMine»] /Otchet OOO «Infomajn» (demo-versija). 2007. 145 s.
11. Ohlopkova A.A., Vasil'ev S.V., Gogoleva O.V. Razrabotka polimernyh kompozitov na osnove politetraftorjetilena i bazal'tovogo volokna [Development of polymer composites based on polytetrafluoroethylene and basalt fiber] //Neftegazovoe delo. 2011. №6. S. 404–411 (jelektronnyj nauchnyj zhurnal).
12. Kablov E.N. Aviakosmicheskoe materialovedenie [Aerospace materials] //Vse materialy. Jenciklopedicheskij spravochnik. 2008. №3. S. 2–14.
13. Istorija aviacionnogo materialovedenija. VIAM – 80 let: gody i ljudi [Strategic directions of development of materials and technologies to process them] /Pod obshh. red. E.N. Kablova. M.: VIAM. 2012. S. 505–509.
14. Kablov E.N. Strategicheskie napravlenija razvitija materialov i tehnologij ih pererabotki na period do 2030 goda [Strategic directions of development of materials and technologies to process them for the period up to 2030] //Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
15. Kablov E.N. Himija v aviacionnom materialovedenii [Chemicals in aviation materials] //Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 3–4.
16. Kablov E.N. Materialy i himicheskie tehnologii dlja aviacionnoj tehniki [Materials and chemical technologies for aircraft equipment] //Vestnik Rossijskoj akademii nauk. 2012. T. 82. №6. S. 520–530.
17. Gavril'eva A.A., Vinokurov G.G., Kychkin A.K., Oreshko S.M. Tehnologicheskie harakteristiki formovanija bazal'tovyh nepreryvnyh volokon pri fil'ernom sposobe ih poluchenija [Technological characteristics of the molding of basalt continuous fibers spun at their reception] //Izvestija Samarskogo NC RAN. 2013. T. 15. №4(2). S. 448–450.
18. Hodakova N.N., Uglova T.K., Firsov V.V., Tatarinceva O.S. Mineral'noe syr'e Kavkaza dlja proizvodstva bazal'tovyh volokon [Minerals of the Caucasus for the production of basalt fibers] //Polzunovskij vestnik. Prikladnaja himija i smezhnye oblasti. 2013. №1. S. 138–142.
19. Issledovanie rynka armirujushhih izdelij i materialov iz nepreryvnogo bazal'tovogo volokna v Rossii [Market research reinforcing materials and products of continuous basalt fiber in Russia] /Otchet agentstva «Megaresearch» (demo-versija). 2011. 142 s.
20. Stepanova E.V. Struktura i svojstva bazal'toplastikov, armirovannyh bazal'tovymi nitjami raznyh proizvoditelej, i modifikacija ih fizicheskimi i himicheskimi metodami [Structure and properties of basalt fiber reinforced basalt yarns of different manufacturers, and the modification of their physical and chemical methods]: Avtoref. dis. k.t.n. Saratov. 2006. 20 s.
21. Tatarinceva O.S. Izoljacionnye materialy iz bazal'tovyh volokon, poluchennyh indukcionnym sposobom [Insulating materials made of basalt fibers obtained inductively]: Avtoref. dis. d.t.n. Bijsk. 2006. 42 s.
22. Aviacionnye pravila. Gl. 25. Normy letnoj godnosti samoletov transportnoj kategorii [Aviation Regulations. Chap. 25 Standards of Airworthiness transport category airplanes]. 3-e izd. OAO Aviaizdat. 2009. 274 s.
23. Efimov V.A., Shvedkova A.K., Koren'kova T.G., Kirillov V.N. Issledovanie polimernyh konstrukcionnyh materialov pri vozdejstvii klimaticheskih faktorov i nagruzok v laboratornyh i naturnyh uslovijah [Investigation of polymeric structural materials under the influence of climatic factors and stress in laboratory and field conditions] //Trudy VIAM. 2013. №1. St. 05 (viam-works.ru).
24. Skryljov N.S., Vol'nyj O.S., Postnov V.I., Barbot'ko S.L. Issledovanie vlijanija teplovyh faktorov klimata na izmenenie harakteristik pozharobezopasnosti polimernyh kompozicionnyh materialov [Investigation of the influence of thermal factors of climate change on fire characteristics of polymer composite materials] //Trudy VIAM. 2013. №9. St. 05 (viam-works.ru).
By method of laser scanning confocal microscopy a study of relief changing (surface roughness(Ra), depth of corrosion pittings) of specimens tested under extension till frac-ture both without corrosion environment and under corrosion attack was carried out. 3D-models were drawn up and a quantitative evaluation of surface relief by statistical data processing of roughness, using standard software of LSCM Olympus Lext OLS3100 was carried out. It was shown, that a surface roughness (Ra), as approaching to the fracture location was increasing in 1,5 (for 1441alloy specimens) or in 3 times (for V-1469 alloy specimens) that indicates of more expressed localization of deformation in 1441 alloy.
2. Kablov E.N. Strategicheskie napravlenija razvitija materialov i tehnologij ih pererabotki na period do 2030 goda [Strategic directions of development of materials and technologies to process them for the period up to 2030] //Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
3. Kablov E.N. Korrozija ili zhizn' [Corrosion or life] //Nauka i zhizn'. 2012. №11. S. 16–21.
4. Fridljander I.N., Chuistov K.V., Berezina A.L., Kolobnev N.I., Koval' Ju.N. Aljuminij-litievye splavy. Struktura i svojstva [Aluminum-lithium alloys. Structure and Properties]. Kiev: Naukova dumka. 1992.
5. Antipov V.V., Kolobnev N.I., Hohlatova L.B. Razvitie aljuminijlitievyh splavov i mnogostupenchatyh rezhimov termicheskoj obrabotki [Development alyuminiylitievyh alloys and multi-heat treatment] //Aviacionnye materialy i tehnologii. 2012. №S.
S. 183–195.
6. Antipov V.V., Senatorova O.G., Tkachenko E.A., Vahromov R.O. Aljuminievye deformiruemye splavy [Aluminum wrought alloys] //Aviacionnye materialy i tehnologii. 2012. №S. S. 167–182.
7. Fridlyander I.N., Sister V.G., Grushko O.E., Berstenev V.V., Sheveleva L.M., Ivanova L.A. Aluminum alloys: promising materials in the automotive industry //Metal Science and Heat Treatment. 2002. Т. 44. №9–10. С. 365–370.
8. Chabina E.B., Alekseev A.A., Filonova E.V., Lukina E.A. Primenenie metodov analiticheskoj mikroskopii i rentgenostrukturnogo analiza dlja issledovanija strukturno-fazovogo sostojanija materialov [Application of the methods of analytical microscopy and X-ray analysis for the study of structural-phase state materials] //Trudy VIAM. 2013. №5. St. 06 (viam-works.ru).
9. Erasov V.S., Jakovlev N.O., Nuzhnyj G.A. Kvalifikacionnye ispytanija i issledovanija prochnosti aviacionnyh materialov [Qualification testing and research strength of aircraft materials] //Aviacionnye materialy i tehnologii. 2012. №S. S. 440–448.
10. Hohlatova L.B., Kolobnev N.I., Antipov V.V., Karimova S.A., Rudakov A.G., Oglodkov M.S. Vlijanie korrozionnoj sredy na skorost' rosta treshhiny ustalosti v aljuminievyh splavah [The influence of the corrosive environment on the rate of growth of fatigue cracks in the aluminum alloys] //Aviacionnye materialy i tehnologii. 2011. №1. S. 16–20.
11. Panin V.E., Kablov E.N., Pochivalov Ju.I., Panin S.V., Kolobnev N.I. Vlijanie nanostrukturirovanija poverhnostnogo sloja aljuminijlitievogo splava 1424 na mehanizmy deformacii, tehnologicheskie harakteristiki i ustalostnuju dolgovechnost'. Povyshenie plastichnosti i tehnologicheskih harakteristik [Influence of nanostructuring of the surface layer of the alloy alyuminiylitievogo 1424 on deformation mechanisms, technological characteristics and fatigue life. Increase in ductility and processability] //Fizicheskaja mezomehanika. 2012. T. 15. №6. S. 107–111.
12. Belikova A.F., Buravova C.N., Gordopolov Ju.A. Lokalizacija deformacii i svjaz' ee s deformirovannym sostojaniem materiala [Strain localization and its connection with the deformed state of the material] //Zhurnal tehnicheskoj fiziki. 2013. T. 83. №2. S. 153–155.
13. Seong-Woong Kim, Huck Beng Chew, K. Sharvan Kumar. In situ TEM study of crack–grain boundary interactions in thin copper foils //Scripta Materialia. 2013. V. 68. P. 154–157.
14. Vignal V., Kempf D. Influence of heterogeneous plastic strain fields on the corrosion susceptibility of duplex stainless steels at the microscale //Advances in materials science. 2007. V. 7. №1 (11) P. 77–82.
15. Shibkov A.A., Zolotov A.E., Zheltov M.A., Shuklinov A.V., Denisov A.A. Dinamika deformacionnyh polos i razrushenie aljuminijmagnievogo splava AMg6 [Dynamics of deformation bands and destruction alyuminiymagnievogo alloy AMg6] //Fizika tverdogo tela. 2011. T. 53. №10. S. 1873–1878.
16. Jain V., Mishra R.S., Verma R., Essadiqi E. Superplasticity and microstructural stability in a Mg alloy processed by hot rolling and friction stir processing //Scripta Materialia. 2013. V. 68. P. 447–450.
17. Shibkov A.A., Zolotov A.E., Zheltov M.A., Denisov A.A. Deformacionnyj haos i samoorganizacija na stadii predrazrushenija splava AMg6 [Deformation chaos and self-organization at the stage predestruction alloy AMg6] //Fizika tverdogo tela. 2011. T. 53. №10. S. 1879–1884.
18. Chuistov K.V. Lokalizacija deformacii i vozmozhnosti ee ustranenija v splavah s kogerentnoj fazoj vydelenija na Al–Li-osnove [Strain localization and the possibility of its removal in alloys with coherent phase separation on the Al–Li-based] //Metallofizika. 1991. T. 3. №7. S. 23–40.
19. Davydov V.G., Ber L.B., Samarina M.V., Barabanenkov Ju.A., Kolobnev N.I., Hohlatova L.B. Vozmozhnost' uluchshenija tehnologicheskoj plastichnosti pri holodnoj deformacii otozhzhennyh aljuminievyh splavov, soderzhashhih litij [Ability to improve the technological plasticity during cold deformation of the annealed aluminum alloy containing lithium] //Tehnologija legkih splavov. 1996. №5. S. 26–32.
20. Bois-Brochu A., Blais C. et al. Effects of deformation texture intensities and precipitates on the anisotropy of mechanical properties of Al–Li alloy 2099 T83 extrusions /In: Proceedings of the 13-th International Conference on Aluminium Alloys. Pittsburgh. 2012. P. 1831–1836.
21. Glezer A.M., Shurygina N.A., Zajchenko S.G., Permjakova I.E. Vzaimodejstvie polos deformacionnogo sdviga i nanochastic v amorfno-nanokristallicheskih splavah [The interaction of shear deformation bands and nanoparticles in amorphous-nanocrystalline alloys] //Deformacija i razrushenie materialov. 2012. №4. S. 2–12.
22. Zhegina I.P., Kotel'nikova L.V., Treninkov I.A. Vlijanie uslovij nagruzhenija na process nakoplenija povrezhdenij pered razrusheniem v splave JeK151-ID [Influence of loading conditions on the accumulation of damage before the destruction of the alloy EK151-ID] /V sb. materialov Mezhdunarodnoj konf. «Deformacija i razrushenie materialov i nanomaterialov». 2009. S. 332.
23. Hovis D.B., Heuer A.H. The use of laser scanning confocal microscopy (LSCM) in materials science //Journal of Microscopy. 2010. V. 240. №3. P. 173–180.
Results of research of properties of VRT-10 fabric-film material for emergency slide, manufactured on a base of commercial polyether fabric with double-sided fireproof coating and electro-conducting coating from a face are presented . Influence of higher and lower temperature, climatic impacts on strength characteristics and conductivity of the material was studied. The carried out study showed that the material keeps more than 90% of its strength properties after all influences, except for weft breaking strength after 100°С temperature effect for 200 hours (81,4% preservation of strength).However, in many cases a strength of material remained actually without change. A tearing resistance characteristic decreases after a cyclic drop of temperatures for 10–15%, and increases after above-zero temperatures influence. At direct increase of temperature influence, more considerable decrease of strength and elongation at rupture of VRT-10 grade material takes place. However, a residual valu
2. Kablov E.N. Strategicheskie napravlenija razvitija materialov i tehnologij ih pererabotki na period do 2030 goda [Strategic directions of development of materials and technologies to process them for the period up to 2030] //Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
3. Barbot'ko S.L. Pozharobezopasnost' aviacionnyh materialov [Flammability of Aircraft Materials] //Aviacionnye materialy i tehnologii. 2012. №S. S. 431–439.
4. Technical Standard Orbler TSO-C69с; pabl. 18.8.1999. P. 1–20.
5. Escape device for aircraft: pat. 5542629 JP; pabl. 06.08.1996.
6. Escape slides: pat. 1442711 GB; pabl. 14.07.1974.
7. Tokoprovodjashhaja tkan' [Conductive fabric]: pat. 2354766 Ros. Federacija; opubl. 10.05.2009.
8. Nesterova T.A., Platonov M.M., Nazarov I.A., Gerter Ju.A. Pozharobezopasnyj tkaneplenochnyj material dlja dorozhki skol'zhenija spasatel'nogo trapa [Tkaneplenochny fireproof material for sliding track rescue ladder] //Trudy VIAM. 2014. №6. St. 11 (viam-works.ru).
9. Mnogoslojnyj material dlja spasatel'nyh sredstv [Multi-layer material for life-saving appliances]: pat. 2502605 Ros. Federacija; opubl. 27.12.2013.
10. Lysenko V.A., Sal'nikova A.A., Mihalchan A.A. Uglerod-ftorpolimernye kompozity: povyshenie jelektroprovodnosti [Carbon-fluoropolymer composites: increase the electrical conductivity] //Himicheskie volokna. 2012. №1. S. 41–44.
11. Larionov S.A., Deev I.S., Petrova G.N., Bejder Je.Ja. Vlijanie uglerodnyh napolnitelej na jelektrofizicheskie, mehanicheskie i reologicheskie svojstva polijetilena [Influence of carbon fillers on the electrical, mechanical and rheological properties of polyethylene] //Trudy VIAM. 2013. №9. St. 04 (viam-works.ru).
12. Kablov E.N. Himija v aviacionnom materialovedenii [Chemicals in aviation materials] //Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 3–4.
13. Jekstrin Ja.I., Badamshina Je.R., Grishhuk A.A., Kulagina G.S., Lesnichaja V.A., Ol'hov Ju.A., Rjabenko A.G., Sul'janov S.N. Svojstva nanokompozitov na osnove sshitogo jelastomernogo poliuretana i ul'tramalyh dobavok odnoslojnyh uglerodnyh nanotrubok [Properties of nanocomposites based on crosslinked elastomeric polyurethane and ultra supplements of single-walled carbon nanotubes] //Vysokomolekuljarnye soedinenija. 2012. Ser. A. T. 54. №4. S. 568–577.
14. Platonov M.M., Nazarov I.A., Nesterova T.A., Bejder Je.Ja. Tkaneplenochnyj material VRT-9 dlja naduvnoj obolochki aviacionnyh spasatel'nyh trapov [Tkaneplenochny material VRT-9 inflatable shell aviation rescue ladders] //Trudy VIAM. 2013. №5. St. 05 (viam-works.ru).
15. Tjumeneva T.Ju., Kogtjonkov A.S., Lukina N.F., Chursova L.V. Uspehi v oblasti razrabotki kleev i tehnologij dlja izgotovlenija rezinotehnicheskih izdelij aviacionnogo naznachenija [Progress in the development of adhesives and technologies for the manufacture of rubber products for aircraft industry] //Klei. Germetiki. Tehnologii. 2013. №10. S. 7–10.
16. Tjumeneva T.Ju., Kogtjonkov A.S., Lukina N.F., Chursova L.V. Vlijanie napolnitelej na svojstva kleev rezinotehnicheskogo naznachenija [Effect of fillers on the properties of rubber-purpose adhesives] //Trudy VIAM. 2014. №4. St. 05 (viam-works.ru).
17. Polimernaja teplootrazhajushhaja kompozicija dlja pokrytija [Polymer heat-reflecting coating composition]: pat. 2467042 Ros. Federacija; opubl. 07.06.2011.
For strength characteristics and properties evaluation test of composite polymer ma-terials (PCM), i.e. CFRP on the basis of glue epoxy resin and carbon fillers, it is neces-sary to make test specimen first. As a rule test specimen make from CFRP plates pro-duced by means of some molding technique. Cutting tool machining is the most wide-spread method among various existing methods of test specimen production. When studying the cutting technology influence on specimen surface quality some flaws have been reviled in the form of cleavage in addition to cracks and other flaws, which are re-sponsible for test specimen surface quality, and, therefore, the CFRP characteristics. Test specimen flaws have been described with their quantitative estimation. Flaws quantitative estimation technique has been worked out by means of computerized quantitative optical metallographic analysis method.
2. Kablov E.N. Materialy i himicheskie tehnologii dlja aviacionnoj tehniki [Materials and chemical technologies for aircraft equipment] //Vestnik Rossijskoj akademii nauk. 2012. T. 82. №6. S. 520–530.
3. Kablov E.N. Aviacionnoe materialovedenie: itogi i perspektivy [Aeronautical materials: results and prospects] //Vestnik Rossijskoj akademii nauk. 2002. T. 72. №1. S. 3–12.
4. Perepjolkin K.E. Armirujushhie volokna i voloknistye polimernye kompozity [Reinforcing fibers or fibrous polymer composites]. SPb: Nauchnye osnovy i tehnologii. 2009.
S. 171–185.
5. Dushin M.I., Hrul'kov A.V., Muhametov R.R., Chursova L.V. Osobennosti izgotovlenija izdelij iz PKM metodom propitki pod davleniem [Features the manufacture of PCM by pressure impregnation] //Aviacionnye materialy i tehnologii. 2012. №1. S. 18–26.
6. Hrul'kov A.V., Dushin M.I., Popov Ju.O., Kogan D.I. Issledovanija i razrabotka avtoklavnyh i bezavtoklavnyh tehnologij formovanija PKM [Research and development and autoclave molding technology bezavtoklavnogo PCM] //Aviacionnye materialy i tehnologii. 2012. №S. S. 292–301.
7. Grigor'ev M.M., Kogan D.I., Tverdaja O.N., Panina N.N. Osobennosti izgotovlenija PKM metodom RFI [Peculiarities of PCM by RFI] //Trudy VIAM. 2013. №4. St. 03 (viam-works.ru).
8. Muhametov R.R., Ahmadieva K.R., Chursova L.V., Kogan D.I. Novye polimernye svjazujushhie dlja perspektivnyh metodov izgotovlenija konstrukcionnyh voloknistyh PKM [New polymeric binders for the promising methods for the manufacture of structural fibrous PCM] //Aviacionnye materialy i tehnologii. 2011. №2. S. 38–42.
9. Muhametov R.R., Ahmadieva K.R., Kim M.A., Babin A.N. Rasplavnye svjazujushhie dlja perspektivnyh metodov izgotovlenija PKM novogo pokolenija [Melt binders for advanced methods of manufacturing a new generation of PCM] //Aviacionnye materialy i tehnologii. 2012. №S. S. 260–265.
10. Prepreg i izdelie, vypolnennoe iz nego [Prepreg and a product made therefrom]: pat. 2427594 Ros. Federacija; opubl. 21.12.2009.
11. Aleksashin V.M., Antjufeeva N.V. Razvitie metodov termicheskogo analiza v issledovanii polimernyh kompozicionnyh materialov [Development of methods for thermal analysis in the polymer composite material] /V sb. 75 let. Aviacionnye materialy i tehnologii. Izbrannye trudy «VIAM» 1932–2007. M.: VIAM. 2007. S. 245–249.
12. Antjufeeva N.V., Aleksashin V.M., Zhelezina G.F., Stoljankov Ju.V. Metodicheskie podhody termoanaliticheskih issledovanij dlja ocenki svojstv prepregov i ugleplastikov [Methodological approaches thermoanalytical studies to evaluate the properties of the prepreg and carbon fiber reinforced plastics] //Prilozhenie k zhurnalu «Vse materialy. Jenciklopedicheskij spravochnik». 2012. №4. S. 18–28.
13. Gunjaev G.M., Kablov E.N., Aleksashin V.M. Modificirovanie konstrukcionnyh ugleplastikov uglerodnymi nanochasticami [Modification of structural carbon fiber reinforced plastics with carbon nanoparticles] //Rossijskij himicheskij zhurnal. 2010. T. 54. №1. S. 3–11.
14. Kablov E.N., Kondrashov S.V., Jurkov G.Ju. Perspektivy ispol'zovanija uglerodsoderzhashhih nanochastic v svjazujushhih dlja polimernyh kompozicionnyh materialov [Prospects for the use of carbonaceous nanoparticles in polymeric binders for composite materials] //Rossijskie nanotehnologii. 2013. T. 8. №3–4. S. 24–42.
15. Kirillov V.N., Starcev O.V., Efimov V.A. Klimaticheskaja stojkost' i povrezhdaemost' polimernyh kompozicionnyh materialov, problemy i puti reshenija [Weather resistance and a defect of polymeric composite materials, problems and solutions] //Aviacionnye materialy i tehnologii. 2012. №S. S. 412–423.
16. Kirillov V.N., Efimov V.A., Shvedkova A.K., Nikolaev E.V. Issledovanie vlijanija klimaticheskih faktorov i mehanicheskogo nagruzhenija na strukturu i mehanicheskie svojstva PKM [Investigation of the influence of climatic factors and mechanical loading on the structure and mechanical properties of the PCM] //Aviacionnye materialy i tehnologii. 2011. №4. S. 41–45.
17. Antjufeeva N.V., Stoljankov Ju.V., Ishodzhanova I.V. Issledovanie i ocenka svojstv polimernyh kompozicionnyh materialov po metodikam, garmonizirovannym s mezhdunarodnymi standartami [Research and evaluation of properties of polymeric composite materials according to the procedures harmonized with international standards] //Konstrukcii iz kompozicionnyh materialov. №3. 2013. S. 41–45.
18. ASTM D5687М-95. 2002.
19. ISO 20134. 2003.
20. Portnoj K.I., Salibekov S.E., Svetlov I.L., Chubarov V.M. Struktura i svojstva kompozicionnyh materialov [Structure and properties of composite materials]. M. Mashinostroenie. 1979. 255 s.
21. Chabina E.B., Alekseev A.A., Filonova E.V., Lukina E.A. Primenenie metodov analiticheskoj mikroskopii i rentgenostrukturnogo analiza dlja issledovanija strukturno-fazovogo sostojanija materialov [Application of the methods of analytical microscopy and X-ray analysis for the study of structural-phase state materials] //Trudy VIAM. 2013. №5. St. 06 (viam-works.ru).
22. Baurova N.I. Mikrostrukturnye issledovanija poverhnostej razrushenija ugleplastika [Microstructural studies of the fracture surfaces of CFRP] //Vse materialy. Jenciklopedicheskij spravochnik. Kompozicionnye materialy. 2012. №8. S. 25–30.
23. Cherepanov G.P. Mehanika razrushenija kompozicionnyh materialov [Fracture mechanics of composite materials]. M.: Nauka. 1983. S. 32–37.
Dielectric characteristics of input poorly filled layers of gradient radar-absorbing polymeric composite materials were investigated by nondestructive control method. Methods of measurement of complex dielectric permittivity of samples are described. A stand for carrying out non-destructive testing of complex dielectric permittivity of input layers of radar-absorbing gradient structures is described. Advantages of this method are described, cases of the most reasonable application are considered.
2. Beljaev A.A., Kondrashov S.V., Lepeshkin V.V., Romanov A.M. Radiopogloshhajushhie materialy [Radio-absorbing materials] //Aviacionnye materialy i tehnologii. 2012. №S. S. 348–352.
3. Beljaev A.A., Agafonova A.S., Antipova E.A., Botanogova E.D. Konstrukcionnyj radiopogloshhajushhij material trehslojnoj struktury s soglasujushhim sloem [Structural radar-absorbing material is a three-layer structure with a matching layer] //Trudy VIAM. 2013. №7. St. 02 (viam-works.ru).
4. Jurkov G.Ju., Kraev I.D., Obrazcova E.P. Vlijanie morfologii magnitnogo napolnitelja na radiopogloshhajushhie harakteristiki kompozicionnyh materialov [The influence of the filler on the morphology of the magnetic characteristics of radio-composite materials] (v pechati).
5. Kablov E.N. Strategicheskie napravlenija razvitija materialov i tehnologij ih pererabotki na period do 2030 goda [Strategic directions of development of materials and technologies to process them for the period up to 2030] //Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
6. Kablov E.N. Aviakosmicheskoe materialovedenie [Aerospace materials] //Vse materialy. Jenciklopedicheskij spravochnik. 2008. №3. S. 2–14.
7. Kablov E.N. Kontrol' kachestva materialov – garantija bezopasnosti jekspluatacii aviacionnoj tehniki [Quality control – a guarantee safe operation of aeronautical engineering] /V sb. Aviacionnye materialy i tehnologii. Vyp. «Metody ispytanij i kontrolja kachestva metallicheskih i nemetallicheskih materialov». M.: VIAM. 2001. S. 3–8.
8. Tkachuk A.I., Grebneva T.A., Chursova L.V., Panina N.N. Termoplastichnye svjazujushhie. Nastojashhee i budushhee [Thermoplastic binders. Present and Future] //Trudy VIAM. 2013. №11. St. 07 (viam-works.ru).
9. Kablov E.N., Sivakov D.V., Guljaev I.N., Sorokin K.V., Fedotov M.Ju., Goncharov V.A. Metody issledovanija konstrukcionnyh kompozicionnyh materialov s integrirovannoj jelektromehanicheskoj sistemoj [Methods for studying structural composite materials with an integrated electromechanical system] //Aviacionnye materialy i tehnologii. 2010. №4. S. 17–20.
10. Murashov V.V. Opredelenie fiziko-mehanicheskih harakteristik i sostava polimernyh kompozicionnyh materialov akusticheskimi metodami [Determination of physical and mechanical properties and composition of the polymer composite materials by acoustic methods] //Aviacionnye materialy i tehnologii. 2012. №S. S. 465–475.
11. Murashov V.V., Rumjancev A.F. Defekty monolitnyh detalej i mnogoslojnyh konstrukcij iz polimernyh kompozicionnyh materialov i metody ih vyjavlenija. Ch. 2. Metody vyjavlenija defektov monolitnyh detalej i mnogoslojnyh konstrukcij iz polimernyh konstrukcionnyh materialov [Defects monolithic parts and multilayer structures of polymer composite materials and methods for their detection. Part 2 Methods for detection of defects monolithic parts and multilayer structures made of polymeric structural materials] //Kontrol'. Diagnostika. 2007. №5. S. 31, 36, 41, 42.
12. Murashov V.V., Rumjancev A.F. Defektoskopija i diagnostika polimernyh kompozicionnyh materialov akusticheskimi metodami [Flaw detection and diagnosis of polymer composite materials by acoustic methods] /V kn. 75 let. Aviacionnye materialy. Izbrannye trudy «VIAM» 1932–2007: Jubilejnyj nauch.-tehnich. sb. M.: VIAM. 2007. S. 342–347.
13. Murashov V.V., Rumjancev A.F., Ivanova G.A., Fajzrahmanov N.G. Diagnostika struktury, sostava i svojstv polimernyh kompozicionnyh materialov [Diagnosis of the structure, composition and properties of polymer composites] //Aviacionnye materialy i tehnologii. 2008. №1. S. 17–24.
14. Murashov V.V., Rumjancev A.F. Opredelenie poristosti ugleplastikov lazerno-akusticheskim sposobom v aviacionnyh konstrukcijah [Porosity of carbon plastics laser-acoustic method to aerostructures] /V sb. dokl. Mezhdunarodnoj nauch.-tehnich. konf. «Gidroaviasalon–2008». M.: CAGI. 2008. Ch. 1. S. 287–291.
15. Murashov V.V., Rumjancev A.F. Diagnostika sostava i svojstv polimernyh kompozitov v detaljah i konstrukcijah [Diagnosis of the composition and properties of polymer composites in the details and constructions] //Kontrol'. Diagnostika. 2008. №8. S. 13–17.
16. Sorokin K.V., Murashov V.V., Fedotov M.Ju., Goncharov V.A. Prognozirovanie razvitija defektov v konstrukcijah iz PKM sposobom opredelenija izmenenij zhestkosti pri aktjuirovanii materiala [Prediction of the development of defects in the construction of the PCM method for determining changes in the stiffness of the material at aktyuirovanii] //Aviacionnye materialy i tehnologii. 2011. №2. S. 20–22.
17. Murashov V.V. Nerazrushajushhij kontrol' zagotovok i detalej iz uglerod-uglerodnogo kompozicionnogo materiala dlja mnogorazovogo kosmicheskogo korablja «Buran» [Nondestructive testing of pieces and parts of a carbon-carbon composite material for space shuttle «Buran»] //Trudy VIAM. 2013. №4. St. 05 (viam-works.ru).
18. Po Chul Kim, Dai Gil Lee. Composite sandwich constructions for absorbing the electromagnetic waves //Composite Structures. 2009. V. 87. Р. 161–167.
Titanium alloys find a wide application in aircraft equipment operating in all-climatic conditions, where a sea salt deposition on their surface causing hot salt corrosion at raised temperatures (≥250°C) is possible. An influence of salt deposits thickness on corrosion cracking of titanium alloys under conditions of raised temperatures and stretching or alternating loads and also a role of air oxygen in the course of hot salt cor-rosion was studied in this work. As a result of the conducted researches it was established that oxygen of air takes an active part in the process of hot salt corrosion and the main component of hard products of corrosion is TiO2. It was shown that thickness of salt deposits has an impact on cracking resistance of titanium alloys at high temperatures under loads and salt layers of ~50 microns of thickness have the highest aggression.
2. Kablov E.N. Sovremennye materialy – osnova innovacionnoj modernizacii Rossii [Modern materials - the basis of innovative modernization of Russia] //Metally Evrazii. 2012. №3. S. 10–15.
3. Karimova S.A., Pavlovskaja T.G. Razrabotka sposobov zashhity ot korrozii konstrukcij, rabotajushhih v uslovijah kosmosa [Development of methods of corrosion protection structures operating in the space environment] //Aviacionnye materialy i tehnologii. 2013. №S1. S. 35–40.
4. Kablov E.N. Materialy dlja izdelija «Buran» – innovacionnye reshenija formirovanija shestogo tehnologicheskogo uklada [Materials for the product «Buran» – innovative solutions forming the sixth technological order] //Aviacionnye materialy i tehnologii. 2013. №S1. S. 3–9.
5. Horev A.I. Fundamental'nye i prikladnye raboty po titanovym splavam dlja «Burana» i perspektivnye napravlenija ih razvitija [Fundamental and applied research in titanium alloys for «Buran» and future directions of their development] //Aviacionnye materialy i tehnologii. 2013. №S1. S. 10–14.
6. Horev A.I., Belov S.P., Glazunov S.G. Metallovedenie titana i ego splavov [Physical metallurgy of titanium and its alloys]. M.: Metallurgija. 1992. 352 s.
7. Kashapov O.S., Novak A.V., Nochovnaja N.A., Pavlova T.V. Sostojanie, problemy i perspektivy sozdanija zharoprochnyh titanovyh splavov dlja detalej GTD [Status, problems and prospects for the creation of high-temperature titanium alloys for GTD parts] //Trudy VIAM. 2013. №3. St. 02 (viam-works.ru).
8. Horev A.I. Fundamental'nye i prikladnye raboty po konstrukcionnym titanovym splavam i perspektivnye napravlenija ih razvitija [Fundamental and applied research in structural titanium alloys and future directions of their development] //Trudy VIAM. 2013. №2. St. 04 (viam-works.ru).
9. Hopev A.I. Vlijanie kompleksnogo legipovanija na mehanicheskie svojstva svapnyh soedinenij i osnovnogo metalla (α+β)- i β-titanovyh splavov [Influence of complex legipovaniya on the mechanical properties of the welded joints and base metal (α+β)- and β-titanium alloys] //Tehnologija mashinostroenija. 2007. №2. S. 29–34.
10. Solonina O.P., Glazunov S.G. Titanovye splavy. Zharoprochnye titanovye splavy [Titanium alloys. Heat-resistant titanium alloys]. M.: Metallurgija. 1976. 448 s.
11. Gorynin I.V., Ushakov S.S., Hatuncev A.N., Loshakova I.L. Titanovye splavy dlja morskoj tehniki [Titanium alloys for marine equipment]. SPb.: Politehnika. 2007. 387 s.
12. Sinjavskij S.V. Soprotivlenie titanovyh splavov razlichnym vidam korrozionnogo rastreskivanija [Resistance of titanium alloys, various types of stress-corrosion cracking] //Tehnologija legkih splavov. 2010. №4. S. 80–85.
13. Li S.Q., Lei J.F., Liu Y.-Y., Yu B.-X., Li Y.-L., Yang R. Fushi Kexue yu Fandhu Jishu. Hot-salt stress corrosion of titanium alloys of Ti811 and TC4 //Corros. Sci. And Prol. Tehnol. 2010. V. 22. №2. P. 79–84.
14. Bacos M.-P., Thomas M., Raviart J.-L., Morel A., Mercier S., Josso P. Influence of an oxidation protective coating upon hot corrosion and mechanical behavior of Ti–48Al–2Cr–2Nb alloy //Intermetallics. 2011. V. 19. №8. P. 1120–1129.
15. Yingun Hua, Yuchuan Bai, Yunxia Ye, Qing Xue, Haixie Liu, Ruifang Chen, Kangmin Chen. Hot corrosion behavior of TC11 titanium alloy treated by laser shock processing //Applied Surface Science. 2013. V. 283. №15. P. 775–780.
16. Xiong Y., Zhu S., Wang F. Synergistic corrosion behavior of coated Ti60 alloys with NaCl deposit in moist air at elevated temperature //Corros. Sci. 2008. V. 50. P. 15–22.
17. Ulrich Zwicker. Titan und Titanlegierungen. Springer-Verlag Berlin. Heidelberg. New York. 1974. 512 p.