Articles
The features of the production of single-crystal blades from nickel heat-resistant alloys are considered. Metallographic and fractographic studies of the destroyed blades were performed to identify the causes of destruction. The features of fatigue and static destruction of single-crystal turbine blades have been studied by optical and scanning electron microscopy using X-ray spectral microanalysis. Recommendations are given to prevent the formation of recrystallized polyhedral grains.
2. Kablov E.N., Sidorov V.V., Kablov D.E., Min P.G. The metallurgical fundamentals for high quality maintenance of single crystal heat-resistant nickel alloys. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 55–71. DOI: 10.18577/2071-9140-2017-0-S-55-71.
3. Kablov E.N., Echin A.B., Bondarenko Yu.A. History of development of directional crystallization technology and equipment for casting blades of gas turbine engines. Trudy VIAM, 2020, no. 3 (87), paper no. 01. Available at: http://www.viam-works.ru (accessed: May 15, 2023). DOI: 10.18577/2307-6046-2020-0-3-3-12.
4. Kablov E.N. The role of fundamental research in the creation of materials of the new generation. Reports of XXI Mendeleevsky Congress for General and Applied Chemistry: in 6 vols. St. Petersburg, 2019, vol. 4, p. 24.
5. Petrushin N.V., Ospennikova O.G., Svetlov I.L. Single-crystal Ni-based superalloys for turbine blades of advanced gas turbine engines. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 72−103. DOI: 10.18577/2071-9140-2017-0-S-72-103.
6. Toloraya V.N., Kablov E.N., Demonis I.M. The technology for obtaining monocrystalline castings of turbine blades of the GTD of a given crystallographic orientation from renius-containing heat-resistant alloys. Aviacionnye materialy i tehnologii, 2004, no. 1, pp. 107–118.
7. Sims Ch.T., Norman S.S., Wilman S.Kh. Superplanes II: in 2 vols. Moscow: Metallurgiya, 1995, vol. 1: Heat-resistant materials for aerospace and industrial power plants, 384 p.
8. Sidorov V.V., Kablov D.E., Chabina E.B., Ospennikova O.G., Simonov V.N., Puchkov Yu.A. The influence of impurities and microlegy on the structure and operational properties of monocristals of heat-resistant nickel alloys. Moscow: VIAM, 2020, 335 p.
9. Lomberg B.S., Shestakova A.A., Bakradze M.M., Karachevtsev F.N. The investigation of the stability of γʹ-phase with size below 100 nm in Ni-base superalloy VZh175-ID. Aviacionnye materialy i tehnologii, 2018, no. 4 (53), pp. 3–10. DOI: 10.18577/2071-9140-2018-0-4-3-10.
10. Letnikov M.N., Lomberg B.S., Ospennikova O.G., Bakradze M.M. The influence of quench rate on microstructure and mechanical properties of nickel-based wrought superalloy VZh175-ID. Aviacionnye materialy i tehnologii, 2019, no. 2 (55), pp. 21–30. DOI: 10.18577/2071-9140-2019-0-2-21-30.
11. Gerasimov S.A., Kuksenova L.I., Lapteva V.G., Ospennikova O.G., Alekseeva M.S., Gromov V.I. Surface engineering and operational properties of the nitrogenized structural steels. Moscow: VIAM, 2019, 599 p.
12. Kablov E.N., Ospennikova O.G., Kudinov I.I., Golovkov A.N., Generalov A.S., Knyazev A.V. Assessment of the probability of identifying operational defects in the details of aviation equipment from heat-resistant alloys using flaw detective fluids of domestic and foreign production. Defektoskopiya, 2021, no. 1, pp. 64–71.
13. Bytsenko O.A., Grigorenko V.B., Lukina E.A., Morozova L.V. Development of methods for metal-physical research: methodological issues and practical significance. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 498–515. DOI: 10.18577/2071-9140-2017-0-S-498-515.
14. Belyaev M.S., Morozova L.V., Gorbovets M.A. Destruction of the samples of monocrystals of experimental heat-resistant nickel alloy, tested for multicycle fatigue. Materialovedenie, 2020, no. 8, pp. 7–13.
15. Grigorenko V.B., Morozova L.V. Application of the scanning electron microscopy for studying of initial destruction stages. Aviacionnye materialy i tehnologii, 2018, no. 1 (50), pp. 77–87. DOI: 10.18577/2071-9140-2018-0-1-77-87.
16. Naprienko S.A., Orlov M.R. Damage of single-crystal turbine blades of GTP. Trudy VIAM, 2016, no. 2 (38), paper no. 03. Available at: http://www.viam-works.ru (accessed: May 15, 2023). DOI: 10.18577/2307-6046-2016-0-2-3-3.
In the first part of the study conducted at the National Research Center «Kurchatov Institute» – VIAM, the technology of manufacturing foam ceramic filters designed to purify the melt from non-metallic inclusions is considered. Technological parameters for the manufacture of foam ceramic filters using domestic refractory materials have been developed, several experimental samples of filters based on aluminum oxide (III) and zirconium oxide (IV) have been manufactured, their physical and mechanical properties have been determined. The full compliance of the properties of the manufactured filters with the requirements of the technical specification has been established.
2. Kablov E.N., Shompolov E.G., Sidorov V.V., Rigin V.E., Kayumov R.G. Organization of production of cast rod (charge) billets from nickel casting heat-resistant alloys. Elektrometallurgiya, 2007, no. 1, pp. 2–5.
3. Bondarenko Yu.A. Trends in the development of high-temperature metal materials and technologies in the production of modern aircraft gas turbine engines. Aviacionnye materialy i tehnologii, 2019, no. 2 (55), pp. 3–11. DOI: 10.18577/2071-9140-2019-0-2-3-11.
4. Echin A.B., Bondarenko Yu.A., Kolodyazhny M.Yu., Surova V.A. Review of perspective high-temperature superalloys based on refractory non-metallic materials for production of gas turbine engines. Aviation materials and technologies, 2023, no. 3 (72), paper no. 03. Available at: http://www.journal.viam.ru (accessed: September 11, 2023). DOI: 10.18577/2713-0193-2023-0-3-30-41.
5. Kablov E.N., Ospennikova O.G., Sidorov V.V., Rigin V.E., Kablov D.E. Features of the technology of smelting and casting modern foundry high-heat-resistant nickel alloys. Vestnik MGTU im. N.E. Baumana. Ser.: Mechanical engineering, 2011, no. SP2, pp. 68–78.
6. Sidorov V.V., Iskhodzhanova I.V., Rigin V.E., Folomeikin Yu.I. Evaluation of filtration efficiency during casting of complex-alloyed nickel melt. Elektrometallurgiya, 2011, no. 11, pp. 17–21.
7. Kablov E.N., Sidorov V.V., Kablov D.E., Min P.G. The metallurgical fundamentals for high quality maintenance of single crystal heat-resistant nickel alloys. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 55–71. DOI: 10.18577/2071-9140-2017-0-S-55-71.
8. Demchenko A.I., Shevyakov V.F., Korovin V.A., Belyaev S.V., Gushchin V.N. Improving the quality of nickel alloy by filtration through a ceramic foam filter. Liteyshchik Rossii, 2019, no. 6, pp. 29–33.
9. Staroverov Yu.S., Chernov Yu.A. Application of ceramic foam filters in foundries and steelmaking abroad. Ogneupory, 1992, no. 1, pp. 38–40.
10. Ofitserov A.A., Zavolosnov B.S. Foam ceramic filters for filtration of heat-resistant nickel alloys. Liteynoe proizvodstvo, 1993, no. 4, pp. 19–20.
11. Babashov V.G., Varrik N.M., Karaseva T.A. Porous ceramic for filtration of metal melts and hot gases (rеview). Trudy VIAM, 2020, no. 8 (90), paper no. 6. Available at: http://www.viam-works.ru (accessed: August 24, 2023). DOI: 10.18577/2307-6046-2020-0-8-54-63.
12. Ten E.B., Voevodina M.A. Filtration of high-strength cast iron melt. Liteynoe proizvodstvo, 1993, no. 7, pp. 5–8.
13. Dibrov I.A., Kozlov A.V. Developments in the field of melting, pouring, modifying and refining foundry alloys. Liteynoe proizvodstvo, 2000, no. 6, pp. 24–26.
14. Emelyanov V.O., Martynov K.V., Mutilov V.N., Sokolov A.V., Sukhanova V.P. Aqueous solution of silica sol as an alternative to ethyl silicate in LVM. Liteynoe proizvodstvo, 2012, no. 3, pp. 30–31.
15. Min P.G., Vadeev V.E. The development and introduction into serial production of the new superalloy VZhL125 for the advanced aviation engines vanes. Aviation materials and technologies, 2023, no. 1 (70), paper no. 01. Available at: http://www.journal.viam.ru (accessed: August 24, 2023). DOI: 10.18577/2713-0193-2023-0-3-3-14.
The article discusses synthetic heatresistant polymer fibers that for the manufacture of antifriction composite materials. The properties of fibre of various chemical nature (para- and metaаramid, polyimide, fluorinecontaining, etc.) are given. Doublesided fabrics based on heat-resistant polymer fibers containing two types of fibers with antifriction and reinforcing properties for use as part of selflubricating antifriction materials are considered.
2. Mikhailin Yu.A. Fibrous polymer composite materials in technology. St. Petersburg: Scientific principles and technologies, 2013, 720 p.
3. Lubin J. Handbook of composite materials: in 2 books. Ed. B.E. Geller. Moscow: Mechanical Engineering, 1988, book 1, 448 p.
4. Perepelkin K.E. High-strength, high-modulus yarns based on linear polymers: principles of production, structure, properties, application. Khimicheskiye volokna, 2010, no. 2, pp. 3–10.
5. Mikhailin Yu.A. Structural polymer composite materials. 2nd ed. St. Petersburg: Scientific principles and technologies, 2013, 822 p.
6. Kobylkin I.F., Selivanov V.V. Materials and structures of light armor protection: textbook. Moscow: MSTU im. N.E. Bauman, 2014, 191 p.
7. Gladkov A.N. Development of a process for producing high-strength and high-modulus Armalon threads: thesis, Cand. Sc. (Tech.). Moscow: MSTU im. A.N. Kosygin, 2007, 109 p.
8. Hearle J.W.S., Lomas B., Cooke W.D. Atlas of fibre fracture and damage to textiles. 2nd ed. Woodhead Publishing Ltd., 1998, 477 p.
9. Kablov E.N., Kulagina G.S., Zhelezina G.F., Lonskii S.L., Kurshev E.V. Microstructure research of the unidirectional organoplastic based on Rusar-NT aramid fibers and epoxy-polysulfone binder. Aviacionnye materialy i tehnologii, 2020, no. 4 (61), pp. 19–26. DOI: 10.18577/2071-9140-2020-0-4-19-26.
10. Mikhailin Yu.A. Heat, thermal and fire resistance of polymer materials. St. Petersburg: Scientific principles and technologies, 2011, 416 p.
11. Lee G., Stoffey D., Neville K. New linear polymers. Moscow: Khimiya, 1972, 280 p.
12. Mikhailin Yu.A. Heat-resistant polymers and polymer materials. St. Petersburg: Profession, 2012, 624 p.
13. Musina T.K., Volokhina A.V., Shchetinin A.M. et al. Polyimide and aramid fibers and threads with special properties and products based on them. V mire oborudovaniya, 2010, no. 2 (91), pp. 4–8.
14. Dresvyanina E.N., Makarova R.A., Trusov Yu.D. High-heat-resistant polyoxadisole fibers, threads and textiles based on them. Tekhnicheskiy tekstil, 2007, no. 16, pp. 15–20.
15. Perepelkin K.E., Malanyina O.B., Pakshver E.A., Makarova R.A. Comparative assessment of the thermal characteristics of aromatic threads (polyoxazole, polyimide and polyaramid). Khimicheskiye volokna, 2004, no. 5, рр. 45–48.
16. Korneeva N.V. Development of fibrous polymer composite materials reinforced with UHMWPE fibers, fabrics and non-woven materials treated with nonequilibrium low-temperature plasma: thesis, Dr. Sc. (Tech.). Kazan, 2011, 296 p.
17. Kuzharov A.S., Ryadchenko V.G., Grechko V.O. et al. Study of tribological properties of various textile structures based on fibrous polytetrafluoroethylene. Trenie i iznos, 1986, vol. 7, no. 5, pp. 945–950.
18. Kuzharov A.S., Ryadchenko V.G. Composite antifriction coatings based on polytetrafluoroethylene fibers. Wearlessness: interuniversity collection scientific works. Rostov-on-Don: RISHM, 1992, vol. 2, pp. 140–147.
19. Kan A.Ch., Kulagina G.S., Ayupov T.R., Zhelezina G.F. The influence of environmental factors on the characteristics of antifriction organoplasty Orgalon AF-1M. Trudy VIAM, 2018, no. 3 (109), paper no. 09. Available at: http://www.viam-works.ru (accessed: September 01, 2023). DOI: 10.18577/2307-6046-2022-0-3-91-101.
20. Kablov E.N. Materials for aerospace technology. Vse materialy. Entsiklopedicheskiy spravochnik, 2007, no. 5, рр. 7–27.
21. Kablov E.N. Main directions of development of materials for aerospace technology of the XXI century. Perspektivnye materialy, 2000, no. 3, pp. 27–36.
22. Kulagina G.S., Zhelezina G.F., Levakova N.M. Antifriction organoplastics for high-loaded friction knots. Trudy VIAM, 2019, no. 2 (74), paper no. 09. Available at: http://www.viam-works.ru (accessed: September 01, 2023). DOI: 10.18577/2307-6046-2019-0-2-89-96
23. Sorokin A.E., Ivanov M.S., Sagomonova V.A. Thermoplastic polymer composite materials based on polyetheretherketones of various manufacturers. Aviation materials and technologies, 2022, no. 1 (66), paper no. 04. Available at: http://www.journal.viam.ru (accessed: September 01, 2023). DOI: 10.18577/2071-9140-2022-0-1-41-50.
The article studied the exploitation properties of antifriction organoplastics based on a new reinforcing fabric consisting of two types of fibers: polytetrafluoroethylene and polyoxadiazole fiber Arcelon. The nature of destruction during delamination of organoplastic from a metal substrate and the influence of various factors (temperature, humidity, salt fog, tropical chamber conditions, etc.) on adhesive strength were studied. It has been shown that, under the influence of operational factors, organoplastic has high adhesive strength values – above the allowable minimum level.
2. Kulagina G.S., Zhelezina G.F., Levakova N.M. Antifriction organoplastics for high-loaded friction knots. Trudy VIAM, 2019, no. 2 (74), paper no. 09. Available at: http://www.viam-works.ru (accessed: September 22, 2023). DOI: 10.18577/2307-6046-2019-0-2-89-96.
3. Kablov E.N., Startsev V.O. Climate aging of polymer composite aviation materials. I. Assessment of the influence of significant factors of exposure. Deformatsiya i razrusheniye materialov, 2019, no. 12, pp. 7–16.
4. Kablov E.N., Startsev V.O. Systematical analysis of the climatics influence on mechanical properties of the polymer composite materials based on domestic and foreign sources (review). Aviacionnye materialy i tehnologii, 2018, no. 2 (51), pp. 47–58. DOI: 10.18577/2071-9140-2018-0-2-47-58.
5. Gulyaev A.I., Medvedev P.N., Sbitneva S.V., Petrov A.A. Experimental research of «fiber–matrix» adhesion strength in carbon fiber epoxy/polysulphone composite. Aviacionnye materialy i tehnologii, 2019, no. 4 (57), pp. 80–86. DOI: 10.18577/2071-9140-2019-0-4-80-86.
6. Kulagina G.S., Kan A.Ch., Zhelezina G.F., Levakova N.M. Antifriction materials based on polymer fibers. Trudy VIAM, 2022, no. 11 (117), paper no. 05. Available at: http://www.viam-works.ru (accessed: September 22, 2023). DOI: 10.18577/2307-6046-2022-0-11-48-59.
7. Pashin Yu.A., Malkevich S.G., Dunaevskaya I.S. Fluoroplasts. Leningrad: Khimiya, 1978, p. 232.
8. Sagalaev G.V. The tribotechnical properties of antifriction self-losing plastics. Moscow: Publ. house of standards, 1982, 64 p.
9. Kuzharov A.S., Rygchenko V.G., Grechko V.O. et al. Study of the tribotechnical properties of various textile structures based on fibrous political radiator-ethyl. Trenie i iznos, 1986, vol. 7, no. 5, pp. 945–950.
10. Kuzharov A.S., Rygchenko V.G. Compositional antifriction coatings based on the fibers of political radiatorethnicity. Consistency: interuniversity collection scientific works. Rostov-on-Don: RISHM, 1992, is. 2, pp. 140–147.
11. Voinstein V.E., Troyanovskaya G.I. Dry lubricants and selflubricating materials. Moscow: Mechanical Engineering, 1968, p. 179.
12. Permant antifriction organoplasty and product made from it: pat. 2404202 Rus. Federation; No. 2009111566/05; appl. 31.03.09; publ. 20.11.10.
13. Perepelkin K.E. Reinforcing fibers and fibrous polymer composites. St. Petersburg: Scientific foundations and technologies, 2009, 380 p.
14. Dresvyanina E.N., Makarova R.A., Trusov Yu.D. Highterm-resistant polyoxadiazol fibers, threads and textiles based on them. Tekhnicheskiy tekstil, 2007, no. 16, pp. 15–20.
15. Poghosyan A.K. Friction and wear of filler materials filled. Moscow: Science, 1977, 138 p.
16. Myshkin N.K., Petrookovets M.I. Tribology. Principles and applications. Gomel: IMMS NANB, 2002, 310 p.
17. Tkachuk A.I., Donetsky K.I., Terekhov I.V., Karavaev R.Yu. The use of thermosetting matrices for the manufacture of polymer composite materials by the non-autoclave molding methods. Aviation materials and technology, 2021, no. 1 (62), paper no. 03. Available at: https://journal.viam.ru (accessed: September 22, 2023). DOI: 10.18577/2713-0193-2021-0-1-22-33.
18. Deev I.S., Kobets L.P. Study of microstructure and micropolis of deformations in polymer composites by the method of raster electron microscopy. Zavodskaya laboratoriya. Diagnostika materialov, 1999, vol. 65, no. 4, pp. 27–34.
19. Deev I.S., Kablov E.N., Kobets L.P., Chursova L.V. Research of the scanning electron microscopy method deformation of microphase structure of polymeric matrix at mechanical loading. Trudy VIAM, 2014, no. 7, paper no. 06. Available at: http://www.viam-works.ru (accessed: September 22, 2023). DOI: 10.18577/2307-6046-2014-0-7-6-6.
20. Grigorenko V.B., Morozova L.V. Application of the scanning electron microscopy for studying of initial destruction stages. Aviacionnye materialy i tehnologii, 2018, no. 1 (50), pp. 77–87. DOI: 10.18577/2071-9140-2018-0-1-77-87.
This article presents the main results on the development of prepregs and polymer composite materials (fiberglass and carbon fiber) based on the melting epoxy resin union and reinforcing fillers-glass-circuits of the T-64(VMP)-78, glass-winding RVMPN10-1200-14 and carbon fiber UMT49S-12K-EP. The process of developing prepregs, technologies for their manufacture on the impregnation, the choice of the main parameters of impregnation is described. The results of a study of the properties of the prepregs obtained under selected technological regimes and made from them PCM are also given.
2. Basharov E.A., Vagin A.Yu. Analysis of the use of composite materials in the design of helicopter airframes. Trudy MAI, 2017, no. 92, pp. 1–33.
3. Composites-intensive helicopter makes commercial debut. CompositesWorld.com. Available at: https://www.compositesworld.com/news/composites-intensive-helicopter-makes-commercial-debut (accessed: July 22, 2023).
4. Weber T.A., Ruff-Stahl H.-J.K. Advances in Composite Manufacturing of Helicopter Parts. International Journal of Aviation, Aeronautics and Aerospace, 2017, vol. 4, is. 1, pp. 1–33.
5. Kablov E.N., Erofeev V.T., Zotkina M.M., Dergunova A.V., Moiseev V.V., Rimshin V.I. Plasticized epoxy composites for manufacturing of composite reinforcement. Journal of Physics: Conference Series: International Conference on Engineering Systems 2020, 2020, vol. 1687, p. 012031.
6. Kablov E.N. The role of fundamental research in the creation of new generation materials. Reports XXI Mendeleev Congress on General and Applied Chemistry: in 6 vol. St. Petersburg, 2019, vol. 4, p. 24.
7. Onishchenko G.G., Kablov E.N., Ivanov V.V. Scientific and technological development of Russia in the context of achieving national goals: problems and solutions. Innovatsii, 2020, no. 6 (260), pp. 3–16.
8. Gunyaev G.M., Sorina T.G., Khoroshilova I.P., Rumyantsev A.F. Structural epoxy carbon fiber reinforced plastics. Aviatsionnaya promyshlennost, 1984, no. 12, pp. 2–16.
9. Belinis P.G., Lukyanenko Yu.V., Rogozhnikov V.N., Tsykun R.G., Donetskiy K.I. Design research on a constructural multilayer woven preform of an integral panel fragment for aircraft. Aviation materials and technologies, 2023, no. 3 (72), paper no. 09. Available at: http://www.journal.viam.ru (accessed: August 29, 2023). DOI: 10.18577/2713-0193-2023-0-3-114-124.
10. Antipov V.V., Somov A.V., Sidelnikov V.V., Nefedova Yu.N., Ogurtsov P.S., Soloviev V.A. Technological features of shaping fire-resistant light laminated material for helicopter engine hood manufacturing. Aviation materials and technologies, 2023, no. 3 (72), paper no. 07. Available at: http://www.journal.viam.ru (accessed: August 29, 2023). DOI: 10.18577/2713-0193-2023-0-3-90-100.
11. Startsev V.O., Antipov V.V., Slavin A.V., Gorbovets M.A. Modern domestic polymer composite materials for aviation industry (review). Aviation materials and technologies, 2023, no. 2 (71), paper no. 10. Available at: http://www.journal.viam.ru (accessed: August 29, 2023). DOI: 10.18577/2713-0193-2023-0-2-122-144.
12. Zavalov O.A. Design of helicopter rotors and tail rotors. Moscow: MAI, 2001, 72 p.
13. Popov Y.O., Kolokolceva T.V., Gusev Y.A., Gromova A.A. Development of the constructive and technological solution for a sheet fibreglass for tail section skins of helicopter rotor blades. Trudy VIAM, 2016, no. 1 (37), paper no. 05. Available at: http://www.viam-works.ru (accessed: July 28, 2023). DOI: 10.18577/2307-6046-2016-0-1-42-49.
14. Miychenko I.P. Technology of semi-finished polymer materials. St. Petersburg: NOT, 2012. 374 p.
15. Composite Materials Handbook-17. SAE International, 2012. Vol. 1: Polymer matrix composites guidelines for characterization of structural materials, р. 96.
16. Kolokoltseva T.V., Popov Yu.O., Usacheva M.N., Gromova A.A. Prepregs and fiberglass based on VSR-3М binder and fiberglass fabrics for use in helicopter blades. Trudy VIAM, 2018, no. 3 (109), paper no. 03. Available at: http://www.viam-works.ru (accessed: July 27, 2023). DOI: 10.18577/2307-6046-2022-0-3-27-34.
This article presents the main results on the development of prepreg and carbon fiber based on the VSR-3M resin and carbon fabric grade VTkU-2.200. The process of studying prepreg, the technology of its production in an impregnation installation, and the selection of the main parameters of impregnation are described. Correct selection of impregnation parameters guarantees the production of materials with the required properties. The results of a study of the properties of prepreg obtained using the selected technological mode and carbon fiber reinforced plastic made from it are also presented.
2. Polymer composite materials: structure, properties, technology: textbook. manual. Ed. A.A. Berlin. St. Petersburg: Profession, 2011, 560 p.
3. Timoshkov P.N., Goncharov V.A., Usacheva M.N., Khrulkov A.V. The development of automated laying: from the beginning to our days (review). Part 1. Automated Tape Laying (ATL). Aviation materials and technologies, 2021, no. 2 (63), paper no. 06. Available at: http://www.journal.viam.ru (accessed: August 20, 2023). DOI: 10.18577/2713-0193-2021-0-2-51-61.
4. Timoshkov P.N., Goncharov V.A., Usacheva M.N., Khrulkov A.V. The development of automated laying: from the beginning to our days (review). Part 2. Automated Fiber Placement (AFP). Aviation materials and technologies, 2021, no. 3 (64), paper no. 11. Available at: http://www.journal.viam.ru (accessed: August 20, 2023). DOI: 10.18577/2713-0193-2021-0-3-117-127.
5. Timoshkov P.N., Goncharov V.A., Usacheva M.N., Khrulkov A.V. The development of automated laying: from the beginning to our days (review). Part 3. Comparison of ATL and AFP technologies. Hybrid technology of ATL/AFP. Aviation materials and technologies, 2021, no. 4 (65), paper no. 05. Available at: http://www.journal.viam.ru (accessed: August 20, 2023). DOI: 10.18577/2713-0193-2021-0-4-43-50.
6. Kablov E.N. New generation materials and digital technologies for their processing. Vestnik Rossiyskoy akademii nauk, 2020, vol. 90, no. 4, pp. 331–334.
7. Kablov E.N. The formation of domestic space material science. Vestnik RFFI, 2017, no. 3,pp. 97–105.
8. Kablov E.N. VIAM: New generation materials for PD-14. Krylya Rodiny, 2019, no. 7–8, pp. 54–58.
9. Weber T.A., Ruff-Stahl H.-J.K. Advances in Composite Manufacturing of Helicopter Parts. International Journal of Aviation, Aeronautics and Aerospace, 2017, vol. 4, is. 1, pp. 1–33.
10. Sidorina A.I., Safronov A.M., Kutsevich K.E., Klimenko O.N. Carbon fabrics for aircraft products. Trudy VIAM, 2020, no. 12 (94), paper no. 05. Available at: http://www.viam-works.ru (accessed: September 01, 2023). DOI: 10.18577/2307-6046-2020-0-12-47-58.
11. Handbook of compositional materials: in 2 book. Ed. J. Lubina; trans. from Engl. A.B. Geller, M.M. Helmont. Moscow: Mashinostroenie, 1988, book 1, 448 p.
12. Qiang Liu, Yongzhou Lin, Zhijian Zong, Guangyong Sun, Qing Li. Lightweight design of carbon twill weave fabric composite body structure for electric vehicle. Composite Structures, 2013, vol. 97, pp. 231–238.
13. HexPly Prepreg Technology. Available at: https://www.hexcel.com/user_area/content_media/raw/Prepreg_Technology.pdf (accessed: September 20, 2023).
14. Composite Materials Handbook-17 (СМН-17). SAE International, 2012, vol. 1: Polymer matrix composites guidelines for characterization of structural materials, р. 96.
15. Kolokoltseva T.V., Popov Yu.O., Usacheva M.N., Gromova A.A. Prepregs and fiberglass based on VSR-3М binder and fiberglass fabrics for use in helicopter blades. Trudy VIAM, 2018, no. 3 (109), paper no. 03. Available at: http://www.viam-works.ru (accessed: August 27, 2023). DOI: 10.18577/2307-6046-2022-0-3-27-34.
The structure of aluminum matrix composite powder reinforced by silicon carbide particles and then spheroidized is investigated. The structure of selective laser melting material made of this powder is investigated as well. The main principles of forming of such structure are determined. In addiction an effect of gasostatic and heat treatment on selective laser melting material structure is considered.
2. Kablov E.N., Evgenov A.G., Petrushin N.V., Shurtakov S.V., Zaitsev D.V. To the question of the mechanism of the formation of the thin structure of the track in the process of selective laser rafting. Metallovedenie i termicheskaya obrabotka metallov, 2023, no. 2 (812), pp. 44–55. DOI: 10.30906/Mitom.2023.2.44-55.
3. Aslanian G.G., Sukhov D.I., Mazalov P.B., Sulyanova E.A. Fractographic study of Co–Cr–Ni–W–Ta alloy samples obtained by selective laser melting. Trudy VIAM, 2019, no. 4 (76), paper no. 01. Available at: http://www.viam-works.ru (accessed: August 16, 2023). DOI: 10.18577/2307-6046-2019-0-4-3-10.
4. Ospennikova O.G., Naprienko S.A., Medvedev P.N., Zaitsev D.V., Rogalev A.M. Features of the formation of the structural-phase state of the EP648 alloy during selective lase manufacture. Trudy VIAM, 2021, no. 8 (102), paper no. 01. Available at: http://www.viam-works.ru (accessed: August 16, 2023). DOI: 10.18577/2307-6046-2021-0-8-3-11.
5. Nerush S.V., Kaplanskii Yu.Yu., Dynin N.V., Benarieb I., Savichev I.D. Development of laser powder bed fusion parameters, structure and mechanical properties of a high-strength aluminum alloy Al–Ce–Cu. Trudy VIAM, 2023, no. 1 (119), paper no. 05. Available at: http://www.viam-works.ru (accessed: August 16, 2023). DOI: 10.18557/2307-6046-2023-0-1-50-68.
6. Sukhov D.I., Kaplansky Yu.Yu., Rogalev A.M., Kurkin S.E. The features of processing Cr-rich nickel based alloy by selective laser melting. Trudy VIAM, 2023, no. 1 (119), paper no. 02. Available at: http://www.viam-works.ru (accessed: August 16, 2023). DOI: 10.18557/2307-6046-2023-0-1-15-27.
7. Stoyakina E.A., Kurbatkina E.I., Simonov V.N., Kosolapov D.V., Gololobov A.V. Mechanical properties of aluminium-matrix composite materials reinforсed with SiC particles, depending on the matrix alloy (review). Trudy VIAM, 2018, no. 2, paper no. 08. Available at: http://www.viam-works.ru (accessed: August 16, 2023). DOI: 10.18577 / 2307-6046-2018-0-2-8-8.
8. Nyafkin A.N., Shavnev A.A., Kurbatkina E.I., Kosolapov D.V. Studying the effect of silicon carbide particle size on the linear thermal expansion coefficient of the composite material based on aluminum alloy. Trudy VIAM, 2020, no. 2 (86), paper no. 05. Available at: http://www.viam-works.ru (accessed: August 16, 2023). DOI: 10.18577/2307-6046-2020-0-2-41-49.
9. Martin J.H., Yahata B.D., Hundley J.M. et al. 3D printing of high-strength aluminium alloys. Nature, 2017, vol. 549, pp. 365−369. DOI: 10.1038/nature23894.
10. Spigarelli S., Paoletti C. A new model for the description of creep behaviour of aluminium-based composites reinforced with nanosized particles. Composites Part A: Applied Science and Manufacturing, 2018, vol. 112, pp. 346−355. DOI: 10.1016/j.compositesa.2018.06.021.
11. Loh L.E., Chua C.K., Yeong W.Y. et al. Numerical investigation and an effective modelling on the selective laser melting (SLM) process with aluminium alloy 6061. International Journal of Heat and Mass Transfer, 2015, vol. 80, pp. 288−300. DOI: 10.1016/j.ijheatmasstransfer.2014.09.014.
12. Chang F., Gu D., Dai D., Yuan P. Selective laser melting of in-situ Al4SiC4+SiC hybrid reinforced Al matrix composites: Influence of starting SiC particle size. Surface and Coatings Technology, 2015, vol. 272, pp. 15−24. DOI: 10.1016/j.surfcoat.2015.04.029.
13. Dai D., Gu D., Xia M. et al. Melt spreading behavior, microstructure evolution and wear resistance of selective laser melting additive manufactured AlN/AlSi10Mg nanocomposite. Surface and Coatings Technology, 2018, vol. 349, pp. 279−288. DOI: 10.1016/j.surfcoat.2018.05.072.
14. Light Metal Alloys Application. Еd. Mandredi W.А. Croatia: InTech, 2014, 252 p. DOI: 10.5772/57069.
15. Canali R. Study, development and characterization of aluminum based materials by additive manufacturing: PhD thesis. Turin: Politecnico di Torino, 2015, 116 p. DOI: 10.6092/polito/porto/2598770.
16. Zhitnyuk S.V., Medvedev P.N. Investigation of microstructure and phase composition of the metallic composite material Al–Si–Mg system modified by silicon carbide particles by mechanical alloying. Part 1. Trudy VIAM, 2023, no. 1 (119), paper no. 08. Available at: http://www.viam-works.ru (accessed: August 16, 2023). DOI: 10.18577/2307-6046-2023-0-1-97-106.
17. Zhitnyuk S.V., Medvedev P.N. Investigation of microstructure and phase composition of the metallic composite material Al–Si–Mg system modified by silicon carbide particles by mechanical alloying. Part 2. Trudy VIAM, 2023, no. 1 (119), paper no. 09. Available at: http://www.viam-works.ru (accessed: August 16, 2023). DOI: 10.18577/2307-6046-2023-0-1-107-118.
In this paper has been investigated influence of direct crystallizations parameters on permanent magnets alloy UNDKBA (Alnico 5-7) for non-defective percent. For this paper were produced permanent magnets by using different types of seeds and technological parameter. It established that the main parameters for manufacturing castings permanent magnets are temperature, broaching speed, composition and type of the seed. Revealed that slow broaching speed, monocrystalline seed with the crystallographic orientation allows to obtain permanent magnets with non-defective percent higher than 80.
2. Altman A.B., Vernikovsky E.E., Gerberg A.N. Permanent magnets: a reference book. Moscow: Energiya, 1980, 478 p.
3. Kekalo I.B. Physical materials science of precision alloys. Moscow: Metallurgiya, 1989, 497 p.
4. Chumakov V.A., Stepanov V.M., Verin A.S. Technology of casting blades of gas turbine engines using the method of directional crystallization. Liteynoe proizvodstvo, 1978, no. 1, pp. 23–24.
5. Gerasimov V.V., Visik E.M., Kolyadov E.V. On unused reserves of directional crystallization in improving the performance characteristics of gas turbine engines and gas turbine units. Liteynoe proizvodstvo, 2013, no. 9, pp. 30–32.
6. Kolyadov E.V., Gerasimov V.V. The influence of the reduced size of the casting on the axial temperature gradient and the macrostructure of casting for directional solidification at the facility UVNK-15. Aviacionnye materialy i tehnologii, 2014, no. 3, pp. 3–9. DOI: 10.18577/2071-9140-2014-0-3-3-9.
7. Kablov E.N., Gerasimov V.V., Visik E.M., Demonis I.M. Role of the directed crystallization in the resource-saving production technology of details of GTE. Trudy VIAM, 2013, no. 3, paper no. 01. Available at: http://www.viam-works.ru (accessed: August 02, 2023).
8. Kolyadov E.V., Visik E.M., Gerasimov V.V., Arginbaeva E.G. The influence of directional solidification parameters on the structure and properties of the intermetallic alloys. Trudy VIAM, 2019, no. 3 (75), paper no. 02. Available at: http://www.viam-works.ru (accessed: August 01, 2023). DOI: 10.18577/2307-6046-2019-0-3-14-26.
9. Kuzmina N.A., Ostroukhova G.A. Blockiness and substructure in single-crystal castings of nickel heat-resistant alloys. Trudy VIAM, 2022, no. 6 (112), paper no. 02. Available at: http://www.viam-works.ru (accessed: August 03, 2023). DOI: 10.18577/2307-6046-2022-0-7-13-26.
10. Kablov E.N., Echin A.B., Bondarenko Yu.A. History of development of directional crystallization technology and equipment for casting blades of gas turbine engines. Trudy VIAM, 2020, no. 3 (87), paper no. 01. Available at: http://www.viam-works.ru (accessed: August 07, 2023). DOI: 10.18577/2307-6046-2020-0-3-3-12.
11. Min P.G., Vadeev V.E., Kramer V.V. The development of the new VZhM200 superalloy and the technology of its production for casting of the advanced engines’ blades by the directional crystallization. Aviation materials and technologies, 2021, no. 3 (64), paper no. 02. Available at: http://www.journal.viam.ru (accessed: August 12, 2023). DOI: 10.18577/2071-9140-2021-0-3-11-18.
12. Kolyadov E.V., Mezhin Yu.A. Automation of the technological process of single-crystal castings of superalloys on UVNK type installations. Trudy VIAM, 2016, no. 4, paper no. 4. Available at: http://www.viam-works.ru (accessed: August 14, 2023). DOI: 10.18577/2307-6046-2016-0-4-4-4.
13. Kolyadov E.V., Gerasimov V.V., Visik E.M., Mezhin Yu.A. Casting by the method of directional crystallization with a controlled temperature gradient at the crystallization front. Liteynoe proizvodstvo, 2016, no. 8, pp. 24–26.
14. McCallum R.W., Lewis L.H., Skomski R. et al. Practical Aspects of Modern. Annual Review of Materials Research, 2014, no. 44, pp. 451–477. DOI: 10.1146/aanurev-matsci-070813-113457.
15. Zhou L., Cuo W., Jonathan D.P. et al. On spinodal decomposition in alnico – A transmission electron microscopy and atom probe tomography study. Acta Materialia, 2018, no. 153, pp. 15–22. DOI: 10.1016/j.actamat.2018.04.042.
16. Fan M., Liu Y., Ra R. et al. On the evolution of Cu–Ni-rich bridges of Alnico alloys with tempering // Journal of Magnetism and Magnetic Materials, 2016, vol. 420, pp. 296–302. DOI: 10.1016/j.jmmm.2016.07.040.
17. Zhou L., Hamilton W.E.M., Liqin K. et al. Microstructure and coercivity in alnico 9. Journal of Magnetism and Magnetic Materials, 2018, vol. 471, pp. 142–147. DOI: 10.1016/j.jmmm.2018.09.085.
18. Zhou L., Tang W., Ke L. et al. Microstructural and magnetic property evolution with different heat-treatment conditions in an alnico alloy. Acta Materialia, 2017, vol. 133, pp. 73–80. DOI: 10.1016/j.actamat.2017.05.012.
19. Rehman S.U., Jiang Q., Lei W. et al. Microstructures and magnetic properties of cast alnico 8 permanent magnets under various heat treatment conditions. Physica B: Condensed Matter, 2018, vol. 552, pp. 136–141. DOI: 10.1016/j.physb.2018.10.007.
20. Rehman S.U., Wei C., Huang Q. et al. Tailoring the microstructure, magnetic properties and interaction mechanisms of Alnico-Ta alloys by magnetic field treatment. Journal of Alloys and Compounds, 2021, vol. 857, p. 157. DOI: 10.1016/j.jallcom.2020.157586.
21. Rehman S.U., Zubair A., Haq A. et al. Effects of Zr alloying on the microstructure and magnetic properties of Alnico permanent magnets. Journal of Magnetism and Magnetic Materials, 2017, vol. 442, pp. 136–140. DOI: 10.1016/j.jmmm.2017.06.114.
22. Rehman S.U., Jiang Q., Ge Q. et al. Microstructure and magnetic properties of alnico permanent magnetic alloys with Zr–B additives. Journal of Magnetism and Magnetic Materials, 2017, vol. 451, pp. 136–140. DOI: 10.1016/j.jmmm.2017.11.043.
23. Zubair A., Liu Z., Haq A. et al. Synthesis, magnetic and microstructural properties of Alnico magnets with additives. Journal of Magnetism and Magnetic Materials, 2017, vol. 428, pp. 125. DOI: 10.1016/j.jmmm.2016.12.023.
24. Zhao J.T., Sun Y.L., Lydiaway L. et al. Correlations of phase structure and thermal stability for Alnico 8 alloys. Journal of Magnetism and Magnetic Materials, 2017, vol. 442, pp. 208–211. DOI: 10.1016/j.jmmm.2017.06.118.
25. Zhang S.-D., Wang S., Chen S.-Y. et al. Structure and magnetic properties of alnico 8 ribbons. Physica B: Condensed Matter, 2020, vol. 597, p. 412423. DOI: 10.1016/j.physb.2020.412423.
26. Zhang C., Li Y., Han X.-H. et al. Structure and magnetic properties of Alnico ribbons. Journal of magnetism and magnetic materials, 2017, vol. 451, pp. 200–207. DOI: 10/1016/j.jmmm.2017.11.045.
27. Hosseini S.M., Novak P., Vesely M. et al. Positive temperature dependence of compressive properties in an AlNiCo poly-quasicrystal fabricated by mechanical alloying and spark plasma sintering. Scripta Materialia, 2020, vol. 187, pp. 169–174. DOI: 10.1016/j.scriptamat.2020.06.023.
28. Rehman S.U., Huang Q., Sagar R. et al. Interaction mechanism, magnetic properties and microstructure of Ce–Fe–B-Alnico spark plasma sintered magnets. Journal of Magnetism and Magnetic Materials, 2021, vol. 537, pp. 168237. DOI: 10.1016/j.jmmm.2021.168237.
29. Wang H.-W., Wang S., Cao Y.-F. et al. Structure and magnetic properties of alnico alloy doped SmCo5–xCux ribbons. Journal of Magnetism and Magnetic Materials, 2021, vol. 528, pp. 167821. DOI: 10.1016/j.jmmm.2021.167821.
30. Rehman S.U., Jiang Q., He L. et al. Microstructure and magnetic properties of NdFeB alloys by co-doping alnico elements. Physics Letters A, 2019, vol. 383, p. 125878. DOI: 10.1016/j.physleta.2019.125878.
31. Han X.-H., Sun J.-B., Wang H.-W. et al. Excellent magnetic properties determined by spinodal decomposition structure of Alnico alloy doped SmCo5-based ribbons. Journal of Alloys and Compounds, 2019, vol. 806, pp. 1188–1199. DOI: 10.1016/j.jallcom.2019.07.336.
32. Rehman S.U., Jiang Q., He L. et al. Synthesis, microstructures, magnetic properties and thermal stabilities of isotropic alnico ribbons. Journal of Magnetism and Magnetic Materials, 2018, vol. 466, pp. 277–282. DOI: 10.1016/j.jmmm.2018.07.020.
33. Rehman S.U., Ouyang H., Jiang Q. et al. Magnetic properties, phase transition temperatures and microstructure of CeFeB-alnico ribbons. Journal of Magnetism and Magnetic Materials, 2019, vol. 486, p. 165252. DOI: 10.1016/j.jmmm.2019.165252.
34. Shakirov I.V., Zhukov A.S., Perevislov S.N., Olisov A.V. Influence of selective laser alloying modes on the structure of the UNDC alloy. Fizika metallov i metallovedenie, 2022, vol. 123, no. 3, pp. 248–259.
35. Zhukov A.S., Shakirov I.V., Olisov A.V. Structural and mechanical state of the YUNDK35 alloy obtained by selective laser melting. Metallurg, 2021, no. 10, pp. 72–77.
36. Novikov S.V., Ramazanov K.N. Additive technologies: state and prospects: textbook. Ufa: UGATU, 2022. Available at: https://ugatu.su/media/uploads/MainSite/Ob%20universitete/Izdateli/El_izd/2022‐41.pdf (accessed: August 05, 2023).
37. Lyapkov A.A. Polymer additive technologies: textbook. Tomsk: Tomsk Polytech. Univ. Publ. House, 2016, 114 p.
38. Huber C., Abert C., Bruckner F. 3D Print of Polymer Bonded Rare-Earth Magnets, and 3D Magnetic Field Scanning With an End-User 3D Printer. Applied Physics Letters, 2016, vol. 109, no. 109 (16), pp. 1–5. https://doi.org/10.1063/1.4964856.
39. Khazdozian H.A., Manzano J.S., Gandha K. et al. Recycled Sm–Co bonded magnet filaments for 3D-printing of magnets. AIP Advances, 2018, vol. 8, p. 056722. DOI: 10.1063/1.5007669.
40. White E., Kassen A., Simsek E. Net shape processing of Alnico magnets by additive manufacturing // IEEE Transaction on magnetics, 2017, vol. 53, рр. 1–7. DOI: 10.1109/TMAG.2017.2711965.
41. Kablov E.N., Bondarenko Yu.A., Echin A.B., Surova V.A. Development of the process of directional crystallization of gas turbine engine blades from heat-resistant and intermetallic alloys with a single-crystal structure. Vestnik moskovskogo gosudarstvennogo tekhnicheskogo universiteta im. N.E. Baumana. Ser.: Mashinostroyenie, 2011, no. S2, pp. 20–25.
42. Pikunov M.V., Belyaev I.V., Sidorov E.V. Crystallization of alloys and directional solidification of castings. Vladimir: VSU, 2002, 213 p.
43. Kablov E.N. Cast blades of gas turbine engines: alloys, technologies, coatings. Moscow: Nauka, 2006, 632 p.
44. Methods of smelting with directional crystallization of an alloy of the Fe–Al–Ni–Co system: pat. 2662004 Rus. Federation; appl. 14.11.17; publ. 23.08.18.
45. Method for producing oriented single-crystalline seeds from alloys with peretectic transformation: pat. 2084561 Rus. Federation; appl. 05.03.94; publ. 20.07.97.
The work is devoted to the adaptation of the traditional technology of chemical oxidation of parts and workpieces made of aluminum alloys obtained by traditional methods for surface treatment of parts manufactured by selective laser fusion and metal powder composition of the VAC1 alloy. The work investigated the compatibility and influence of the main chemical components of electrolytes on the stability of solutions and the quality of the formed coating. The performance of electrolytes for oxidation and various options for chemical preparation of the surface of samples from the alloy VAC1 are considered.
2. Kablov E.N., Startsev O.V. The basic and applied research in the field of corrosion and ageing of materials in natural environments (review). Aviacionnye materialy i tehnologii, 2015, no. 4 (37), pp. 38–52. DOI: 10.18577/2071-9140-2015-0-4-38-52.
3. Kablov E.N. Innovative development is the most important priority of the state. Metally Evrazii, 2010, no. 2, pp. 6–11.
4. Kablov E.N. What will the future be made of? New generation materials, technologies for their creation and processing – the basis of innovation. Krylya Rodiny, 2016, no. 5, pp. 8–18.
5. Kablov E.N., Startsev O.V., Medvedev I.M. Review of international experience on corrosion and corrosion protection. Aviacionnye materialy i tehnologii, 2015, no. 2 (35), pp. 76–87. DOI: 10.18577/2071-9140-2015-0-2-76-87.
6. Aboulkhair N.T., Everitt N.M., Ashcroft I., Tuck C. Reducing porosity in AlSi10Mg parts processed by selective laser melting. Additive Manufacturing, 2014, vol. 1–4, pp. 77–86.
7. Prashanth K.G., Scudino S., Klauss H.J. Microstructure and mechanical properties of Al–12Si produced by selective laser melting: Effect of heat treatment. Materials Science & Engineering: A, 2014, vol. 590, pp. 153–160.
8. Weingarten С., Buchbinder D. Formation and reduction of hydrogen porosity during selective laser melting of AlSi10Mg. Journal of Materials Processing Technology, 2015, vol. 221, pp. 112–120.
9. Kablov E.N., Lukina E.A., Sbitneva S.V., Khokhlatova L.B., Zaitsev D.V. Formation of metastable phases during the decomposition of a solid solution during the artificial aging of Al alloys. Tekhnologiya legkikh splavov, 2016, no. 3, pp. 7–17.
10. Kablov E.N., Shchetanov B.V., Grashhenkov D.V., Shavnev A.A., Nyafkin A.N. Metalmatrix composite materials on the basis of Al–SiC. Aviacionnye materialy i tehnologii, 2012, no. S, pp. 373–380.
11. Kablov E.N., Antipov V.V., Chesnokov D.V., Kutyrev A.E. Application of Al–Mg–Si–Cu system aluminum alloy combined anodic dissolution for prognosis of tensile strength loss during natural exposure testing. Aviacionnye materialy i tehnologii, 2020, no. 2 (59), pp. 63–73. DOI: 10.18577/2071-9140-2020-0-2-63-73.
12. Sbitneva S.V., Lukina E.А., Benarieb I. Some structural features of aluminum alloys obtained by selective laser melting (review). Trudy VIAM, 2023, no. 1 (119), paper no. 06. Available at: http://www.viam-works.ru (accessed: August 22, 2023). DOI: 10.18577/2307-6046-2023-0-1-69-83.
13. Shchetinina N.D., Kuznetsova P.E., Dynin N.V., Selivanov A.A. Aluminum alloys with additions of Sc and Zr IN additive manufacturing (review) Aviation materials and technologies, 2021, no. 3 (64), paper no. 03. Available at: http://www.journal.viam.ru (accessed: August 24, 2023). DOI: 10.18577/2713-0193-2021-0-3-19-34.
14. Kravchenko D.V., Kozlov I.A., Nikiforov A.A. Methods for preparing the surface of aluminum alloys for electroplating (review). Trudy VIAM, 2021, no. 6 (100), paper no. 09. Available at: http://www.viam-works.ru (accessed: September 04, 2023). DOI: 10.18577/2307-6046-2021-0-6-82-99.
15. Zhelonkina S.I. Review of modern methods of preparing the surface of aluminum alloys for the application of metal coatings (part 1). Uprochnyayushchie tekhnologii i pokrytiya, 2021, vol. 17, no. 5 (197), pp. 227–231.
16. Antipov V.V. Prospects for development of aluminium, magnesium and titanium alloys for aerospace engineering. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 186–194. DOI: 10.18577/2107-9140-2017-0-S-186-194.
The purpose of this work is to determine the effect of the transitional diffusion zone at the interfacial boundary of the layers of the ceramic composite material of the Mo–Si–B system on the nature of destruction and physical and mechanical properties. Qualitative models have been created that make it possible to predict the most critical fracture zones of a composite material, and the effect of microstructure on the fracture mechanisms has been studied. Field tests of a ceramic-metal composite material with a multilayer structure were carried out, as a result of which a high convergence with the calculated models was established.
2. Carollo V., Reinoso J., Paggi M. Modeling complex crack paths in ceramic laminates: A novel variational framework combining the phase field method of fracture and the cohesive zone model. Journal of the European Ceramic Society, 2018, vol. 38, no. 7, pp. 4565–4567.
3. Korzhov V.P., Kijko V.M. Structure of layered Mo–Si–B and Nb–Si–B composites. 9th Int. Conf. «Phase transformation and crystal strength». Chernogolovka, 2016, p. 155.
4. Jain M.K., Subrahmanyam J., Ray S. Development of Mo and Ta foil reinforced (MoSi2 + 20 vol% SiCp) matrix laminated composites. Advanced Materials Research, 2012, vol. 585, pp. 306–310.
5. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
6. Wang H., Wang C. Preparation and mechanical properties of laminated zirconium diboride/molybdenum composites sintered by spark plasma sintering. Frontiers Material Science in China. 2009, vol. 3, pp. 273–280.
7. Cheng L., Sun M., Ye F. Structure design, fabrication, properties of laminated ceramics: A review // International Journal of Lightweight Materials and Manufacture, 2018, vol. 1, pp. 126–141.
8. Garshin A.P., Nilov A.S., Galinskaya O.O., Krasnov V.I. Prospects for development and ways to improve aircraft braking systems on the base ceramic matrix composite materials (review). Aviation materials and technologies, 2023, no. 2 (71), paper no. 09. Available at: http://www.journal.viam.ru (accessed: June 13, 2023). DOI: 10.18577/2713-0193-2023-0-2-104-121.
9. Kablov E.N., Antipov V.V., Girsh R.I. Constructed layered materials based on sheets of aluminum-lithium alloys and fiberglass in the structures of new generation aircraft. Vestnik mashinostroyeniya, 2020, no. 12, pp. 46–52.
10. Sevalnev G.S., Dulnev K.V., Bannykh I.O., Krasulya A.A., Tsikh S.G., Lukin E.I. Investigation of the structure and properties of diffusion layers after boriding high nitrogen steels. Aviation materials and technologies, 2023, no. 1 (70), paper no. 02. Available at: http://www.journal.viam.ru (accessed: April 27, 2023). DOI: 10.18577/2307-6046-2023-0-1-17-29.
11. Shuwei Z., Rabczuk T., Zhuang X. Phase field modeling of quasi-static and dynamic crack propagation: COMSOL implementation and case studies. Advances in Engineering Software, 2018, no. 122, pp. 31–49.
12. Kablov E.N. New generation materials and digital technologies for their processing. Vestnik Rossiyskoy akademii nauk, 2020, vol. 90, no. 4, pp. 331–334.
13. Voronov V.A., Chainikova A.S., Lebedeva Yu.E., Zhitnyuk S.V. Production, physico-mechanical and tribotechnical properties of hot-pressed carbon-ceramic composite material on the basis of silicon carbide. Aviation materials and technologies, 2022, no. 2 (67), paper no. 07. Available at: http://www.journal.viam.ru (accessed: April 14, 2023). DOI: 10.18577/2713-0193-2022-0-2-74-84.
14. Kiiko V., Prokhorov D., Stroganova T. Investigation of heat resistance and structure of layered refractory composites reinforced by chemical compound with silicon, carbon, and boron. Scientific proceedings XIV International congress «Machines. Technologies. Materials», 2017, vol. VII, pp. 544–547.
15. Goncharov B.E., Sipatov A.M., Cherkashneva N.N., Pleskan A.Yu., Samokhvalov N.Yu., Vaganova M.L., Sorokin O.Yu., Solntsev St.S., Evdokimov S.A. Studies of thermal shock resistance of an anti-oxidation coating for a multi-layered ceramic composite. Aviation materials and technologies, 2021, no. 4 (65), paper no. 06. Available at: http://www.journal.viam.ru (accessed: April 23, 2023). DOI: 10.18577/2713-0193-2021-0-51-58.
16. Kiyko V.M., Korzhov V.P. Structure of layered composites Mo–Si–B and Nb–Si–B. Izvestiya RAN, ser.: Physical, 2017, vol. 81, no. 11, pp. 1513–1521.
17. Biamino S., Antonini A., Pavese M. MoSi2 laminate processed by tape casting: Microstructure and mechanical properties’ investigation. Intermetallics, 2008, vol. 16, pp. 758–768.
18. Korzhov V.P., Kiyko V.M. Phase structure of multilayer Nb/(Si–B) and Mo/(Si–B) composites after heat treatment under pressure. VI All-Rus. Conference on Nanomaterials. Moscow, 2016, pp. 386–387.
Tests for low-cycle fatigue of a heat-resistant nickel alloy were carried out at operating temperature, deformation of tensile cycle and a frequency of 1 Hz. On the example of the obtained data of elastic-plastic deformation, the material constants of the Manson–Coffin and Ramberg–Osgood equations are determined. The main relationships that use the energy of destruction, necessary for predicting fatigue life, are considered. It is shown that the application of the energy criterion in terms of the accumulated strain energy density parameter more accurately describes the fatigue behavior in the low-cycle fatigue regime. The data obtained will make it possible in the second part of the article to use the energy criterion to predict the durability of the alloy under study under conditions of stress concentration.
2. Socie D., Marquis G. Multiaxial Fatigue. SAE International, 1999, 502 p.
3. Erasov V.S., Oreshko E.I. Fatigue tests of metal materials (review). Part 1. Main definitions, loading parameters, representation of results of tests. Aviacionnye materialy i tehnologii, 2020, no. 4 (61), pp. 59–70. DOI: 10.18577/2071-9140-2020-0-4-59-70.
4. Erasov V.S., Oreshko E.I. Tests for fatigue of metal materials (review). Part 2. Analysis of the Basquin–Manson–Coffin equation. Methods of testing and processing of results. Aviation materials and technology, 2021, no. 1 (62), paper no. 08. Available at: http://www.journal.viam.ru (accessed: March 10, 2023). DOI: 10.18577/2071-9140-2021-0-1-80-94.
5. Liao D., Zhu S.-P. Energy field intensity approach for notch fatigue analysis. International Journal of Fatigue, 2019, vol. 127, pp. 190–202. DOI: 10.1016/j.ijfatigue.2019.06.010.
6. Rigon D., Berto F., Meneghetti G. Estimating the multiaxial fatigue behaviour of C45 steel specimens by using the energy dissipation. International Journal of Fatigue, 2021, vol. 151, p. 106381. DOI: 10.1016/j.ijfatigue.2021.106381.
7. Benedetti M., Berto F., Le Bone L., Santus C. A novel Strain-Energy-Density based fatigue criterion accounting for mean stress and plasticity effects on the medium-to-high-cycle uniaxial fatigue strength of plain and notched components. International Journal of Fatigue, 2020, vol. 133, p. 105397. DOI: 10.1016/j.ijfatigue.2019.105397.
8. Volkov I.A., Korotkikh Yu.G. Equations of state of viscoelastoplastic media with damage. Moscow: Fizmatlit, 2008, 424 p.
9. Halford G.R. The energy required for fatigue (Plastic strain hystersis energy required for fatigue in ferrous and nonferrous metals). Journal of materials, 1966, vol. 1, рр. 3–18.
10. Hellouin de Menibus A., Auzoux Q., Besson J., Crépin J. Temperature increase of Zircaloy-4 cladding tubes due to plastic heat dissipation during tensile tests at 0.1–10s−1 strain rates. Journal of Nuclear Materials, 2014, vol. 454, is. 1–3, pp. 247–254. DOI: 10.1016/ j.jnucmat.2014.08.011.
11. Ellyin F. Fatigue Damage, Crack Growth and Life Prediction. London: Chapman & Hall, 1997. 486 р.
12. Park J., Nelson D. Evaluation of an energy-based approach and a critical plane approach for predicting constant amplitude multiaxial fatigue life. International Journal of Fatigue, 2000, vol. 22, is. 1, pp. 23–39. DOI: 10.1016/S0142-1123(99)00111-5.
13. Lian Y., Wang X., Wang J. et al. Application of strain energy based approach for evaluation of fatigue crack growth retardation effect under random overload. Engineering Fracture Mechanics, 2022, vol. 269, p. 108522. DOI: 10.1016/j.engfracmech.2022.108522.
14. Hao M.-F., Zhu S.-P., Xia F.-L. Multiaxial fatigue life evaluation using strain energy-based critical plane approach. Procedia Structural Integrity, 2019, vol. 22, pp. 78–83. DOI: 10.1016/j.prostr.2020.01.011.
15. Mahtabi M.J., Shamsaei N. A modified energy-based approach for fatigue life prediction of superelastic NiTi in presence of tensile mean strain and stress. International Journal of Mechanical Sciences, 2016, vol. 117, pp. 321–333. DOI: 10.1016/j.ijmecsci.2016.08.012.
16. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
17. Moyer J.M., Jackman L.A., Adasczik C.B. et al. Advances in triple melting superalloys 718, 706, and 720. Superalloys 718, 625, 706 and Various Derivatives. TMS, 1994, рр. 39–48.
18. Kablov E.N., Letnikov M.N., Ospennikova O.G., Bakradze M.M., Shestakova A.A. Particulars of the precipitation strengthening γʹ-phase during aging of heat-resistant wrought nickel superalloy VZh175-ID. Trudy VIAM, 2019, no. 9 (81), paper no. 01. Available at: http://www.viam-works.ru (accessed: August 15, 2023). DOI: 10.18577/2307-6046-2019-0-9-3-14.
19. Lomberg B.S., Shestakova A.A., Letnikov M.N., Bakradze M.M. The influence of temperature and stresses on nature of nanosize γʹ-phase in Ni-base superalloy VZh175-ID. Trudy VIAM, 2019, no. 12 (84), paper no. 01. Available at: http://www.viam-works.ru (accessed: August 13, 2023). DOI: 10.18577/2307-6046-2019-0-12-3-10.
20. Gorbovets M.A., Khodinev I.A., Ryzhkov P.V. Equipment for testing carrying out the strain-controlled low-cycle fatigue. Trudy VIAM, 2018, no. 9 (69), paper no. 06. Available at: http://www.viam-works.ru (accessed: August 03, 2023). DOI: 10.18577/2307-6046-2018-0-9-51-60.
21. Shun‐Peng Z., Lei Q., Huang H. et al. Mean stress effect correction in strain energy-based fatigue life prediction of metals. International Journal of Damage Mechanics, 2017, vol. 26, pp. 1219–1241.
22. Łagoda T. Energy models for fatigue life estimation under uniaxial random loading. Part I: The model elaboration. International Journal of Fatigue, 2001, vol. 23, is. 6, pp. 467–480.
The article, along with the achievements of N.M. Sklyarov, which have received universal recognition, examines the provisions developed by him, which determine the activities of the institute at the present time. The defining role of N.M. Sklyarov in the formation of the ideology of aviation armor, the creation of high-strength steel and in the development of a quality system of aviation materials is presented. The algorithm for the development of aviation materials formed by N.M. Sklyarov is the basis for meeting the requirements of the Airworthiness Standards of aircraft in terms of ensuring their safety and durability.
2. Dulnev R.A., Kotov P.I. Thermal fatigue of metals. Moscow: Mashinostroyenie, 1980, 200 p.
3. Shakhurin A.I. Victory wings. Moscow: Politizdat, 1990, 300 p.
4. Sklyarov N.M. The path of 70 years – from wood to supermatteral. Ed. E.N. Kablov. Moscow: MISIS – VIAM, 2002, 485 p.
5. Uzhik G.V. The strength of metals in mechanical engineering. Moscow: Trudrezervizdat, 1958, 75 p.
6. Makhutov N.A. Structural strength, resource and technogenic safety. Novosibirsk: Nauka, 2005, 1110 p.
7. Serensen S.V., Kogaev V.P., Shneiderovich G.M. The bearing capacity and calculations of the parts of the machines for strength: reference. Moscow: Mashinostroyenie, 1975, 488 p.
8. Sklyarov N.M. Work capacity as a criterion for the quality of structural aircraft materials. Aviation materials at the turn of the XX–XXI centuries. Moscow: VIAM, 1994, pp. 576–583.
9. Sklyarov N.M. Criteria for assessing the quality of aviation materials in the 21st century. Aviacionnye materialy i tehnologii, 2001, no. 1, pp. 8–15.
10. Gulyaev A.P. Metal science. Moscow: Metallurgiya, 1966, 480 p.
11. Brown M.P. The influence of alloying elements on steel properties. Kyiv: State Publ. of Tech. lit. Ukrainian SSR, 1962, 192 p.
12. Bokstein S.Z. The structure and mechanical properties of alloy steel. Moscow: State Sci.-Tech. Publ. of lit. in ferrous and non-ferrous metallurgy, 1954, 280 p.
13. VIAM 90 years: proud of the past, create the future. Ed. E.N. Kablov. Moscow: NRC «Kurchatov Institute» – VIAM, 2022, 168 p.
14. Friedman Ya.B. Kinetics of the destruction of materials. Moscow: ONTI VIAM, 1968, 44 p.
15. Grinevich A.V., Slavin A.V., Yakovlev N.O., Gulina I.V. The phenomenon of breakdown destruction during stretching. Deformatsiya i razrusheniye materialov, 2020, no. 4, pp. 43–48. DOI: 10.31044/1814-4632-2020-4-43-48.
16. Sklyarov N.M. Aviation materials quality management. Aviation materials at the turn of the XX–XXI centuries. Moscow: VIAM, 1994, pp. 572–576.
17. Kapitsa P.L. The future of science: a stenigram of speech on the International Symposium in Prague on science planning. Moscow, 1962, 8 p.
18. Kablov E.N. Quality control of materials – a guarantee of the safety of the operation of aviation equipment. Aviation materials and technologies, 2001, no. 1, pp. 3–8.
19. Antipov V.V., Panteleev M.D., Sviridov A.V., Skupov A.A., Odintsov N.S. Heat-resistant aluminum alloys 1151 and B-1213 welded fuselage panels fabrication and testing. Trudy VIAM, 2023, no. 5 (123), paper no. 03. Available at: http://www.viam-works.ru (accessed: May 22, 2023). DOI: 10.18577/2307-6046-2023-0-4-27-39.
20. Mitrakov O.V., Yakovlev N.O., Yakusheva N.A., Grinevich A.V. Destruction features of steel 20ХГСН2МФА-ВД during the fracture toughness test. Aviacionnye materialy i tehnologii, 2019, no. 1 (54), pp. 49–56. DOI: 10.18577/2071-9140-2019-0-1-49-56.
21. Iakovlev N.O., Selivanov A.A., Gulina I.V., Grinevich A.V. Revisiting the durability of hinged-bolt connections. Aviacionnye materialy i tehnologii, 2020, no. 4 (61), pp. 79–85. DOI: 10.18577/2071-9140-2020-0-4-79-85.
22. Kablov E.N., Bakradze M.M., Gromov V.I., Voznesenskaya N.M., Yakusheva N.A. New high strength structural and corrosion-resistant steels for aerospace equipment developed by FSUE «VIAM» (review). Aviacionnye materialy i tehnologii, 2020, no. 1 (58), pp. 3–11. DOI: 10.18577/2071-9140-2020-0-1-3-11.
23. Oreshko E.I., Erasov V.S., Yakovlev N.O., Utkin D.A. Methods for determining the mechanical characteristics of materials using indentation (review). Aviation materials and technology, 2021. no. 1 (62), paper no. 10. Available at: http://www.journal.viam.ru (accessed: July 08, 2023). DOI: 10.18577/2071-9140-2021-0-1-104-118.
Heat-resistant alloys and steels
Grigorenko V.B., Lukina Е.А., Terekhin А.М. Structural features destruction of monocrystalline materials
Deynega G.I., Kuzmina I.G., Bityutskaya O.N., Narsky A.R. Foam ceramic filters based on domestic refractory materials. Part 1
Polymer materials
Kulagina G.S., Zhelezina G.F., Levakova N.M., Safonov P.E. Polymer fibers in the composition of fabrics for self-lubricating antifriction materials
Kulagina G.S., Zhelezina G.F., Kan A.Ch., Kurshev E.V. Exploitation properties of antifriction selflubricating organoplastic based on fabric made of polytetrafluoroethylene and Аrcelon fibers
Composite materials
Kolokoltseva T.V., Popov Yu.O., Usacheva M.N., Gromova A.A. Prepregs of fiberglass and prepreg of carbon fiber on the basis of the resin VSE-67 for the use in the structures of helicopter blades
Kolokoltseva T.V., Popov Yu.O., Lantsov I.A., Gusev Yu.A. Prepregs and fiberglass based on VSR-3М resin and fiberglass fabrics for use in helicopter blades
Shoshev F.L., Bogachev I.A., Suhov D.I. The features of processing an aluminum matrix composite material by selective laser melting
Cherednichenko I.V., Bavina M.A., Bondarenko Yu.A., Shurygin V.D., Ovchinnikov A.D., Galimullin S.A. Influence of directed crystallization parameters on structure and properties of Alnico 5-7 alloy permanent magnets
Protective and functional
coatings
Kozlov I.A., Volkov I.A., Fomina M.A., Zakharov K.E. Features of chemical oxidation of semi-finished products obtained by selective laser melting from a metal powder composition of the alloy VAS1
Material tests
Kuznetsov B.Yu., Vlasov I.I., Grinevich D.V., Sorokin O.Yu. Modeling the destruction of a metal-ceramic сomposite material with a multilayer structure by the finite element method
Ryzhkov P.V., Gorbovets M.A., Hodinev I.A. Energy criteria for fatigue fracture of a heat-resistant nickel alloy
Outstanding scientists of VIAM
Grinevich A.V. The legacy of professor N.M. Sklyarov (to the 115th anniversary of the birth)