Articles
A wrought heat-resistant superalloy VZh179-ID has been developed for blades of the last stages of a high-pressure compressor with an operating temperature up to 800 °С of high-thrust gas turbine engines. To achieve the required indicators for mechanical properties structural studies have been carried out, the results of which are used in determining the models of alloy’s heat treatment. According to the complex of mechanical properties the developed alloy has significant quotes of superiority both in comparison with EP718-ID alloy and the most heat-resistant wrought alloy for blades EP220.
2. Inozemtsev A.A. Materials and technologies for the PD-14 engine. Proceedings of International Scientific and Technical Conference "New materials and technologies for deep processing of raw materials – the basis for the innovative development of the Russian economy". Moscow: VIAM, 2012, art. 16, 1 CD-ROM.
3. Lomberg B.S., Ovsepjan S.V., Bakradze M.M., Letnikov M.N., Mazalov I.S. The application of new wrought nickel alloys for advanced gas turbine engines. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 116–129. DOI: 10.18577/2071-9140-2017-0-S-116-129.
4. Bondarenko Yu.A. Trends in the development of high-temperature metal materials and technologies in the production of modern aircraft gas turbine engines. Aviacionnye materialy i tehnologii, 2019, no. 2 (55), pp. 3–11. DOI: 10.18577 / 2071-9140-2019-0-2-3-11.
5. Lomberg B.S., Chudareva L.T., Seryogina N.I. Influence of the structure of the EP975-ID alloy on the properties of large-sized forgings. Aviatsionnye materialy, 1984, no. 3, pp. 9–17.
6. Onishchenko G.G., Kablov E.N., Ivanov V.V. Scientific and technological development of Russia in the context of achieving national goals: problems and solutions. Innovatsii, 2020, no. 6 (260), pp. 3–16.
7. Kablov E.N. The role of fundamental research in the creation of new generation materials. Reports of XXI Mendeleev Congress on General and Applied Chemistry: in 6 vols. St. Petersburg, 2019, vol. 4, p. 24.
8. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
9. Heat-resistant wrought nickel-based alloy and product made from it: pat. 2737835 Rus. Federation, no. 2020118382; filed. 03.06.20; publ. 03.12.20.
10. Gorbovets M.A., Slavin A.V. Proof of material compliance with the requirements to part No. 33 of JARs. Aviaсionnye materialy i tehnologii, 2018, no. 3, pp. 89–94. DOI: 10.18577/2071-9140-2018-0-3-89-94.
11. Erasov V.S., Oreshko E.I. Fatigue tests of metal materials (review). Part 1. Main definitions, loading parameters, representation of results of tests. Aviacionnye materialy i tehnologii, 2020, no. 4 (61), pp. 59–70. DO1: 10.18577/2071-9140-2020-0-4-59-70.
12. Gorelik S.S. Recrystallization of metals and alloys. Moscow: Metallurgiya, 1978, 568 p.
13. Aviation materials: reference book in 13 vols. Ed. E.N. Kablov. 7th ed., rev. and add. Moscow: VIAM, 2018. Vol. 2: Deformable heat-resistant steels and alloys. Alloys based on refractory metals, 248 p.
14. INCONEL® alloy 718. Available at: http://www.specialmetals.com/documents/technical-bulletins/inconel (accessed at: January 24, 2022).
15. Khodinev I.A., Monin S.A., Ryzhkov P.V. Investigation of the growth rate of a fatigue crack in heat-resistant nickel alloys. Voprosy materialovedeniya, 2020, no. 4 (104), pp. 48–63. DOI: 10.22349/1994-6716-2020-104-4-48-63.
The article considers the effect of the martensitic structure dispersion degree on the tribotechnical characteristic of high carbon complex-alloyed steel. After hardening heat treatment of samples with a various degree of deformation there have been obtained samples with a structure from fine- to large-needle martensite. According to the results of the wear test under conditions of dry sliding friction it has been found that samples with a structure of fine-needle martensite have a wear rate lower by 50 and 70 % compared to medium- and large-needle martensitic structures.
2. Kablov E.N. Without new materials – there is no future. Metallurg, 2013, no. 12, pp. 4–8.
3. Kablov E.N. What to make the future from? The materials of the new generation, the technology of their creation and processing are the basis of innovation. Krylya Rodiny, 2016, no. 5, pp. 8–18.
4. Kablov E.N. The materials of the new generation are the basis of innovation, technological leadership and national security of Russia. Intellekt i tekhnologii, 2016, no. 2 (14), pp. 16–21.
5. Pinegin S.V. Rolling supports in cars. Moscow: Publishing House of the AS USSR, 1961. 150 p.
6. Orlov M.R., Grigorenko V.B., Morozova L.V., Naprienko S.A. Research of operational damages of bearings by methods of optical microscopy, scanning electron microscopy and Х-ray microanalysis. Trudy VIAM, 2016, no. 1 (37), paper no. 9. Available at: http://viam-works.ru (accessed: January 19, 2022). DOI: 10.18577/2307-6046-2016-0-1-62-79.
7. Kotov S.A., Muzafarova S.-V.R., Sevalnev G.S. The influence of technological factors on the operational resistance of bearings from steel EI347-Sh. Metallovedenie i termicheskaya obrabotka metallov, 2020, no. 12, pp. 43–47.
8. Yakusheva N.A. High-strength constructional steels for landing gears of perspective products of aircraft equipment. Aviacionnye materialy i tehnologii, 2020, no. 2 (59), pp. 3–9. DOI: 10.18577/2071-9140-2020-0-2-3-9.
9. Porishevsky A.I. Rolling bearings. Moscow: Mechanical Engineering, 1968, 632 p.
10. Zaitsev A.M., Korostashevsky R.V. Operation of aviation rolling bearings. Moscow: Transport, 1968, 224 p.
11. Conter L.Ya. Steel for heat-resistant bearings (review). Moscow: NIIavtoprom, 1978, 78 p.
12. Gromov V.I., Voznesenskaya N.M., Pokrovskaya N.G., Tonysheva O.A. High-strength constructional and corrosion-resistant steels developed by VIAM for aviation engineering. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 159–174. DOI: 10.18577/2071-9140-2017-0-S-159-174.
13. Korobova E.N., Sevalnev G.S., Gromov V.I., Leonov A.V. Steels for the manufacture of roller bearings for special purposes (review). Trudy VIAM, 2021, no. 11 (105), paper no. 01. Available at: http://www.viam-works.ru (accessed: February 05, 2022). DOI: 10.18577/2307-6046-2021-0-11-3-11.
14. Korneev A.A. Calculation of the heating time of the bearing. Modern innovations in science and technology: Proceedings of 4th Int. Scientific and Practical Conf. Kursk: Universitetskaya kniga, 2014, pp. 265–267.
15. Korneev A.A. The choice of hardening temperature became EI347-Sh. Prospective development of science, technology and technology: Materials of 3rd Int. Scientific and Practical Conf. Kursk: Universitetskaya kniga, 2013, pp. 157–158.
16. Morozova L.V. The damage to rolling bearings during the operation of aviation gas turbine engines. The role of fundamental research in the implementation of strategic directions for the development of materials and technologies for their processing for the period until 2030. Moscow: VIAM, 2019, pp. 175–189.
17. Geller Yu.A. Instrumental steel. Moscow: Metallurgy, 1983, 525 p.
18. Sevalnev G.S., Sevalneva T.G., Kolmakov A.G., Dulnev K.V., Krylov S.A. Study of the tribo-technical characteristics of corrosion-resistant steels with different mechanisms of volumetric hardening. Trudy VIAM, 2021, no. 10 (104), paper no. 01. Available at: http://www.viam-works.ru (accessed: February 07, 2022). DOI: 10.18577/2307-6046-2021-0-10-3-11.
19. Spector A.G., Zelbet B.M., Kiseleva S.A. The structure and properties of bearing steels. Moscow: Metallurgiya, 1980, 264 p.
20. Rausin Ya.R. Thermal processing of chromium steel (for bearings and tools). Moscow: Mashgiz, 1963, 384 p.
21. The Materials Project. Available at: https://materialsproject.org (accessed: February 10, 2022).
The article presents the results of a complex of studies: analysis of the microstructure, determination of mechanical properties under the influence of breaking loads at break, shear, as well as determination of fatigue characteristics at room temperature of fasteners made of VT47 pseudo-β-titanium alloy. A comparative analysis of the obtained research results was carried out, showing the dependence of the mechanical properties of fasteners on the structure. The relevance of the use of VT47 pseudo-β-titanium alloy as material of fasteners is shown.
2. Kablov E.N. What is the future to be made of? Materials of a new generation, technologies for their creation and processing – the basis of innovation. Krylya Rodiny, 2016, no. 5, pp. 8–18.
3. Kablov E.N., Kashapov O.S., Medvedev P.N., Pavlova T.V. Study of a α + β-titanium alloy based on a system of Ti–Al–Sn–Zr–Si–β-stabilizing alloying elements. Aviacionnye materialy i tehnologii, 2020, no. 1 (58), pp. 30–37. DOI: 10.18577/2071-9140-2020-0-1-30-37.
4. Vlasov A.P. Progressive fasteners. Moscow: Mashinostroenie, 1991, 256 p.
5. Volodin V.A. Fastening systems for highly loaded aircraft structures. Experience and prospects for use in civil aircraft. CALS International Encyclopedia. Aerospace engineering. Moscow: NITs ASK, 2015, pp. 125–128.
6. Volodin V.A., Bratukhin V.A. Technological features of the manufacture of fastening systems for joining composite materials. Trudy NGTU im. R.Ye. Alekseyeva, 2017, no. 2 (117), pp. 113–117.
7. Panin P.V., Nochovnaya N.A., Kablov D.E., Alekseev E.B., Shiryaev A.A., Novak A.V. A practical guide to the metallography of alloys based on titanium and its intermetallic compounds: textbook. allowance. Ed. E.N. Kablov. Moscow: VIAM, 2020, 200 p.
8. Lyasotskaya V.S. Heat treatment of welded joints of titanium alloys. Moscow: Ecomet, 2003. 352 p.
9. Nochovnaya N.A. Research of the influence of parameters of isothermal deformation and heat treatment on structure and mechanical properties punchings from alloy VT6ch. Trudy VIAM, 2017, no. 10 (58), paper no. 03. Available at: http://www.viam-works.ru (accessed: March 03, 2022). DOI: 10.18577/2071-9140-2017-0-10-3-3.
10. Glazunov S.G., Yasinsky K.K. Titanium alloys for aviation technology and other industries. Tekhnologiya legkikh splavov, 1993, no. 7–8, pp. 47–54.
11. Glazunov S.G., Moiseev V.N. Structural titanium alloys. Moscow: Metallurgiya, 1974, 368 p.
12. Ilyin A.A., Kolachev B.A., Polkin I.S. Titanium alloys. Composition, structure, properties: reference. Moscow: VILS-MATI, 2009, 520 p.
13. Moiseev V.N. Beta-titanium alloys and prospects for their development. Metallovedenie i termicheskaya obrabotka metallov, 1998, no. 12, pp. 11–14.
14. Kolachev B.A., Sadkov V.V., Talalaev V.D. Vacuum annealing of titanium structures. Moscow: Mashinostroenie, 1991, 224 p.
15. Leyens C., Peters M. Titanium and Titanium Alloys. Fundamentals and Applications. Weinheim: WILEY-VCH Verlag GmbH&Co. KGaA, 2003, 513 p.
16. Whittaker J.T. Ductility and Use of Titanium Alloy and Stainless Steel Aerospace Fasteners: Degree of Master of Science in Mechanical Engineering. University of South Florida, 2015, 91 р.
17. Birger I.A., Iosilevich G.B. Threaded and flange connections. Moscow: Mashinostroenie, 1990, 368 p.
18. Kolganov I.M., Dubrovsky P.V., Arkhipov A.N. Manufacturability of aircraft structures, ways to improve. Part 1: textbook. Ulyanovsk: UlGTU, 2003, 148 p.
19. Boyer R.R., Briggs R.D. The Use of β Titanium Alloys in the Aerospace Industry. Journal of Materials Engineering and Performance, 2005, vol. 14 (6), pp. 681–685.
20. Duyunova V.A., Leonov A.A., Molodtsov S.V. VIAM's contribution to the development of light alloys and the corrosion control of rocket and space technology products. Trudy VIAM, 2020, no. 2 (86), paper no. 03. Available at: http://www.viam-works.ru (accessed: December 13, 2021). DOI: 10.18577/2307-6046-2020-0-2-22-30.
21. Panin P.V., Lukina E.A., Alekseev E.B. Effect of hydrogen doping on structure and phase composition of sheet semi-products of VT23 titanium alloy. Trudy VIAM, 2018, no. 7 (67), paper no. 06. Available at: http://www.viam-works.ru (accessed: December 13, 2021). DOI: 10.18577/2307-6046-2018-0-7-49-57.
22. Panin P.V., Dzunovich D.A., Lukina E.A. Effect of hydrogen doping on processing ductility and texture of sheet semi-products of VT23 titanium alloy. Trudy VIAM, 2018, no. 7 (67), paper no. 07. Available at: http://www.viam-works.ru (accessed: December 13, 202). DOI: 10.18577/2307-6046-2018-0-7-58-68.
23. Santhosh R., Geetha M., NageswaraRao M. Recent Developments in Heat Treatment of Beta Titanium Alloys for Aerospace Applications. Transactions of the Indian Institute of Metals, 2017, vol. 70 (7), pp. 1681–1688.
24. Bania P.J., Hutt A.J., Adams R.E. Ultra high strength titanium alloy for fasteners. Titanium-92 Science and Technology: Proceedings of the 7th World Conference on Titanium. Denver: Minerals, Metals & Materials Society, 1993, pp. 2899–2906.
25. Zolotorevsky V.S. Mechanical properties of materials: a textbook for universities. 2nd ed. Moscow: Metallurgiya, 1983, 352 p.
26. Inagaki I., Shirai Y., Takechi T., Ariyasu N. Application and Features of Titanium for the Aerospace Industry. Nippon Steel & Sumitomo Metal Technical, 2014, report no. 106, pp. 22–27.
27. Duyunova V.A., Putyrskiy S.V., Arislanov A.A., Krokhina V.A., Shiryaev A.A. Analysis of the effect of heat treatment on the structure and mechanical properties of bars made of VT47 titanium alloy. Aviation materials and technologies, 2021, no. 4 (65), paper no. 03. Available at: http://www.journal.viam.ru (accessed: March 03, 2022). DOI: 10.18577/2713-0193-2021-0-4-26-34.
It is shown that the use of EP-0234 epoxy primer, used as an adhesive sublayer under VK-36 epoxy-polysulfone adhesive leads to an increase in the holding time between the process of chemical oxidation in chromic acid (An.Ox.chrome) of the glued surfaces of aluminum alloys and the start of technological bonding work for up to 30 days (instead of 2 days for anodized surfaces without primer) without deterioration of the glued samples, and in some cases – to their improvement.
2. Kirillov V.N., Vapirov Yu.M., Drozd E.A. Research of atmospheric firmness of polymeric composite materials in the conditions of the atmosphere of warm wet and moderately warm climate. Aviacionnye materialy i tehnologii, 2012, no. 4, pp. 31–38.
3. Petrova A.P., Lukina N.Ph., Isaev A.Yu. Operability of glued joints on epoxy film adhesives at simultaneous influence of loadings and climatic factors. Trudy VIAM, 2019, no. 9 (81), paper no. 06. Available at: http://www.viam-works.ru (accessed: March 16, 2022). DOI: 10.18577/2307-6046-2019-0-9-47-56.
4. Fedoseev M.S., Shcherban' M.G., Derzhavinskaya L.F. Increasing the adhesion of epoxy adhesive compositions to aluminum using promoters of epoxy- and aminoalkoxysilanes. Klei. Germetiki. Tekhnologii, 2020, no. 5, pp. 7–13.
5. Aronovich D.A., Varlamov V.P., Voitovich V.A. et al. Bonding in mechanical engineering: reference book. Moscow: Nauka i tehnologii, 2005, vol. 1, 544 p.
6. Laptev A.B., Barbotko S.L., Nikolaev E.V. The main research areas of the persistence properties of materials under the influence of climatic and operational factors. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 547–561. DOI: 10.18577/2071-9140-2017-0-S-547-561.
7. Startsev O.V., Prokopenko K.O., Litvinov A.A. et al. Investigation of thermal moisture aging of aviation fiberglass. Klei. Germetiki. Tekhnologii, 2009, no. 8, pp. 18–22.
8. Petrovа А.Р., Kuznetsova V.А., Lukina N.Ph., Isayev A.Yu. Influence of corrosion inhibit-ing primer on properties of the glued joints executed using organic silicon glue-hermetic. Trudy VIAM, 2020, no. 10 (92), paper no. 02. Available at: http://www.viam-works.ru (accessed: March 03, 2022). DOI: 10.18577/2307-6046-2020-0-10-13-20.
9. Aviation materials: reference book in 13 vols. Ed. E.N. Kablov. Moscow: VIAM, 2019, vol. 10, part 1: Adhesives. Adhesive prepregs, pp. 17–20.
10. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
11. Kablov E.N. Russia in the market of intellectual resources. Ekspert, 2015, no. 28 (951), pp. 48–51.
12. Kablov E.N. What is the future to be made of? Materials of a new generation, technologies for their creation and processing – the basis of innovation. Krylya Rodiny, 2016, no. 5, pp. 8–18.
13. Petrova A.P., Anikhovskaya L.I. Influence of adhesive primer EP-0234 on the properties of adhesive joints made with phenol-rubber adhesive VK-50. Klei. Germetiki. Tekhnologii, 2016, no. 1, pp. 19–24.
14. Potsius A.V. Adhesives, adhesion, bonding technology: trans. from Engl. St. Petersburg: Profession, 2007, 376 p.
15. Tsverava V.G., Rusin M.Yu., Nepovinnykh V.I., Himitsaev A.S. Analysis of the influence of accelerated climatic aging on the strength of adhesive joints. Klei. Germetiki. Tekhnologii, 2018, no. 8, pp. 28–31.
16. Isaev A.Yu., Rubtsova E.V., Kotova E.V., Sutyagin M.N. Research of properties of glues and glue binding, made with use of modern domestic component base. Trudy VIAM, 2021, no. 3 (97), paper no. 05. Available at: http://www.viam-works.ru (accessed: October 6, 2021). DOI: 10.18577/2307-6046-2021-0-3-58-67.
17. Nikolaev E.V., Kirillov V.N., Skirta A.A., Grashhenkov D.V. Study of moisture transport rules and development of a standard on measurement of the diffusion coefficient and moisture content limit to evaluate mechanical properties of carbon fiber reinforced plastics. Aviacionnye materialy i tehnologii, 2013, no. 3, pp. 44–48.
18. Kablov E.N., Laptev A.B., Prokopenko A.N., Gulyaev A.I. Relaxation of polymeric composite materials under the prolonged action of static load and climate (review). Part 1. Binders. Aviation materials and technologies, 2021, no. 4 (65), paper no. 08. Available at: http://www.journal.viam.ru (accessed: February 6, 2022). DOI: 10.18577/2071-9140-2021-0-4-70-80.
A comparison of the technological properties of prepregs produced by online and offline technologies and the physical and mechanical properties of carbon fiber plastics based on a molten epoxy highly deformative binder is carried out. The advantages and disadvantages of the considered prepreg manufacturing technologies and their influence on the properties of carbon fiber plastics are evaluated. It is shown that the difference in the technology of obtaining semi-finished products (prepregs) does not affect the obtaining of the final properties of carbon fiber plastics obtained by autoclave molding.
2. Kablov E.N. VIAM: new generation materials for PD-14. Krylya Rodiny, 2019, no. 7–8, pp. 54–58.
3. Kablov E.N. The role of fundamental research in the creation of new generation materials. Reports XXI Mendeleev Congress on General and Applied Chemistry: in 6 vols. St. Petersburg, 2019, vol. 4, p. 24.
4. Kablov E.N. Materials of a new generation and digital technologies for their processing. Vestnik Rossiyskoy akademii nauk, 2020, vol. 90, no. 4, pp. 331–334.
5. Kablov E.N. New materials are needed for space exploration. Nauchnaya Rossiya. Available at: https://scientificrussia.ru/interviews/akademik-e-n-kablov-dlya-osvoeniya-kosmosa-nuzhny-novye-materialy (accessed: December 10, 2021).
6. Mukhametov R.R., Petrova A.P. Thermosetting binders for polymer composites (review). Aviacionnye materialy i tehnologii, 2019, no. 3 (56), pp. 48–58. DOI: 10.18577/2071-9140-2019-0-3-48-58.
7. Kerber M.L., Vinogradov V.M., Golovkin G.S. et al. Polymer composite materials: structure, properties, technology: textbook. 3rd ed., rev. and add. St. Petersburg: Profession, 2011, 556 p.
8. Kaushik V., Raghavan J. Experimental study of tool–part interaction during autoclave processing of thermoset polymer composite structures. Composites. Part A: Applied Science and Manufacturing, 2010, vol. 41, no. 9, pp. 1210–1218.
9. Dushin M.I., Hrulkov A.V., Muhametov R.R. A choice of technological parameters of autoclave formation of details from polymeric composite materials. Aviacionnye materialy i tehnologii, 2011, no. 3, pp. 20–26.
10. Timoshkov P.N., Goncharov V.A., Usacheva M.N., Khrulkov A.V. The development of automated laying: from the beginning to our days (review). Part 1. Automated Tape Laying (ATL). Aviation materials and technologies, 2021, no. 2 (63), paper no. 06. Available at: http://www.journal.viam.ru (accessed: December 19, 2021). DOI: 10.18577/2713-0193-2021-0-2-51-61.
11. Kablov E.N., Chursova L.V., Babin A.N., Mukhametov R.R., Panina N.N. Developments of FSUE "VIAM" in the field of melt binders for polymer composite materials. Polimernye materialy i tekhnologii, 2016, vol. 2, no. 2, pp. 37–42.
12. Donetsk K.I., Kogan D.I., Khrulkov A.V. Using the principles of "green chemistry" in promising technologies for the manufacture of products from PCM. Kompozitnyy mir, 2013, no. 5, pp. 34–38.
13. Epoxy binder, prepreg based on it and a product made from it: pat. RU 2012137431A; filed 03.09.12; publ. 10.03.14.
14. Kablov E.N., Chursova L.V., Lukina N.F., Kutsevich K.E., Rubtsova E.V., Petrova A.P. A Study of Epoxide-Polysulfone Polymer Systems for High-Strength Adhesives of Aviation Purpose. Polymer Science. Series D, 2017, vol. 10, no. 3, pp. 225–229.
15. Gunyaeva A.G., Sidorina A.I., Kurnosov A.O., Klimenko O.N. Polymeric composite materials of new generation on the basis of binder VSE-1212 and the filling agents alternative to ones of Porcher Ind. and Toho Tenax. Aviacionnye materialy i tehnologii, 2018, no. 3 (52), pp. 18–26. DOI: 10.18577/2071-9140-2018-0-3-18-26.
16. Zheleznyak V.G., Muhametov R.R., Chursova L.V. Study of possibility of thermoset binder creation for operating temperature up to 400 °C. Aviacionnye materialy i tehnologii, 2013, no. S2, pp. 58–61.
17. Raskutin A.E. Development strategy of polymer composite materials. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 344–348. DOI: 10.18577/2071-9140-2017-0-S-344-348.
18. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
19. Grashchenkov D.V. Strategy of development of non-metallic materials, metal composite materials and heat-shielding. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 264–271. DOI: 10.18577/2071-9140-2017-0-S-264-271.
Currently, polymer composite materials (PCM) are widely used instead of such traditional materials as steel or wood. For large-sized PCM parts, the infusion process is becoming the most popular and frequently used. This technology is used to manufacture ship hulls, wind turbine blades, aircraft wings. The purpose of this review is to consider various types of infusion, their advantages, disadvantages and prospects for use.
2. Kablov E.N. Formation of domestic space materials science. Vestnik RFFI, 2017, no. 3, pp. 97–105.
3. Kablov E.N. VIAM: new generation materials for PD-14. Krylya Rodiny, 2019, no. 7–8, pp. 54–58.
4. Timoshkov P.N., Goncharov V.A., Usacheva M.N., Khrulkov A.V. The development of automated laying: from the beginning to our days (review). Part 1. Automated Tape Laying (ATL). Aviation materials and technologies, 2021, no. 2 (63), paper no. 06. Available at: http://www.journal.viam.ru (accessed: February 18, 2022). DOI: 10.18577/2713-0193-2021-0-2-51-61.
5. Sidorina A.I. Multiaxial carbon fabrics in the products of aviation technology (review). Aviation materials and technologies, 2021, no. 3 (64), paper no. 10. Available at: http://www.journal.viam.ru (accessed: February 16, 2022). DOI: 10.18577/2713-0193-2021-0-3-105-116.
6. Mukhametov R.R., Petrova A.P. Thermosetting binders for polymer composites (review). Aviacionnye materialy i tehnologii, 2019, no. 3 (56), pp. 48–58. DOI: 10.18577/2071-9140-2019-0-3-48-58.
7. Timoshkov P.N., Khrulkov A.V., Yazvenko L.N., Composite materials for non-autoclave technology (review). Trudy VIAM, 2018, no. 3 (63), paper no. 05. Available at: http://www.viam-works.ru (accessed: February 17, 2022). DOI: 10.18577/2307-6046-2018-0-3-37-48.
8. Tkachuk A.I., Donetsky K.I., Terekhov I.V., Karavaev R.Yu. The use of thermosetting matrices for the manufacture of polymer composite materials by the non-autoclave molding methods. Aviation materials and technology, 2021, no. 1 (62), paper no. 03. Available at: https://journal.viam.ru (accessed: February 17, 2022). DOI: 10.18577/2713-0193-2021-0-1-22-23.
9. Aviation of Russia: MS-21 – an airliner with a "black" wing. Available at: https://aviation21.ru/ms-21-lajner-s-chyornym-krylom/ (accessed: February 16, 2022).
10. Frantsev M.E. Design analysis of the displacement of single-hull anti-mine ships made of composite materials. Kompozitnyy mir, 2020, no. 4, pp. 58–69.
11. Solovieva A.A., Kulak K.S., Artamonova E.Yu. The use of composite materials in the design of wind power installations. Molodoy uchenyy, 2016, no. 22 (126), pp. 50–54.
12. Umatex Rosatom launched a PAN plant into industrial production. Available at: https://umatex.com/news/yumateks-rosatom-zapustil-v-promyshlennoe-proizvodstvo-pan-zavod/ (accessed: February 16, 2022).
13. Advani S.G., Sozer E.M. Process modeling in composites manufacturing. New York: CRC Press, 2010, 630 p.
14. Williams C., Summerscales J., Grove S. Resin Infusion under Flexible Tooling (RIFT): a review. Composites. Part A: Applied Science and Manufacturing, 1996, vol. 27 (7), pp. 517–524.
15. Hindersmann A. Confusion about infusion: An overview of infusion processes. Composites. Part A: Applied Science and Manufacturing, 2019, vol. 126, pp. 55–83.
16. Goncharov V.A., Raskutin A.E. Computer modeling of the infusion process in the manufacture of composite arched element. Trudy VIAM, 2015, no. 7, paper no. 11. Available at: http://www.viam-works.ru (accessed: February 17, 2022). DOI: 10.18577/2307-6046-2015-0-7-11-11.
17. Veshkin E.A., Postnov V.I., Postnova M.V., Barannikov A.A. Experience in the use of vacuum infusion technologies in the production of PCM structures. Izvestiya Samarskogo nauchnogo tsentra Rossiyskoy akademii nauk, 2018, vol. 20, no. 4-3, pp. 344–350.
18. Method of molding: pat. US2495640A. No. 598339; filed 31.05.46; publ. 24.01.50.
19. Improvements in or relating to methods of producing Reinforced Plastic Structures: pat. GB944955A. No. 13029/60; filed 12.04.60; publ. 18.12.63.
20. Method and apparatus for producing a thin-walled article of synthetic resin, in particular a large-sized article: pat. US4359437A. No. 242295; filed 11.03.80; publ. 16.11.82.
21. Moulding cooling fan operating circuits for road vehicles: pat. GB1432333A. No. 14946/72; filed 30.03.72; publ. 14.04.76.
22. Method for manufacturing an object of synthetic resin: pat. US5096651A. No. 527450; filed 23.05.90; publ. 17.03.92.
23. Lazarus P. Resin infusion of marine composites. International SAMPE symposium, 1996, no. 41, pp. 1447–1458.
24. Kunststoffbauteilen nach einem modifizierten RTM – Verfahren: pat. DE19853709C1; filed 20.11.98; publ. 10.02.00.
25. Vakuum infusions verfahren und Vorrichtung dafür: pat. EP2700493B1; filed 24.08.12; publ. 16.09.15.
26. Herrmann A., Pabsch A., Kleineberg M. SLI-RTM fairings for Fairchild Dornier DO 328 Jet. SAMPE Europe conference, 2001, pp. 1–12.
This review considers the biological damage of thermoplastic and thermoset reinforced polymer composite materials, carbon and glass fibers and resins by microorganisms and fungi. It is shown that biodegradation affects the structural integrity of the material, physical and mechanical properties. The conditions for the favorable development of microorganisms, the mechanism of biodegradation, some types of bacteria and fungi that affect polymer composite materials and the mechanisms of biofilm formation are considered.
2. Timoshkov P.N., Goncharov V.A., Usacheva M.N., Khrulkov A.V. The development of automated laying: from the beginning to our days (review). Part 1. Automated Tape Laying (ATL). Aviation materials and technologies, 2021, no. 2 (63), paper no. 06. Available at: http://www.journal.viam.ru (accessed: January 24, 2022). DOI: 10.18577/2713-0193-2021-0-2-51-61.
3. Timoshkov P.N., Goncharov V.A., Usacheva M.N., Khrulkov A.V. The development of automated laying: from the beginning to our days (review). Part 2. Automated Fiber Placement (AFP). Aviation materials and technologies, 2021, no. 3 (64), paper no. 11. Available at: http://www.journal.viam.ru (accessed: January 24, 2022). DOI: 10.18577/2713-0193-2021-0-3-117-127.
4. Timoshkov P.N., Goncharov V.A., Usacheva M.N., Khrulkov A.V. The development of automated laying: from the beginning to our days (review). Part 3. Comparison of ATL and AFP technologies. Hybrid technology of ATL/AFP. Aviation materials and technologies, 2021, no. 4 (65), paper no. 11. Available at: http://www.journal.viam.ru (accessed: January 24, 2022). DOI: 10.18577/2713-0193-2021-0-4-43-50.
5. Belinis P.G., Donetskiy K.I., Lukyanenko Yu.V., Rogozhnikov V.N., Mayer Yu., Bystrikova D.V. Volume reinforcing solid-woven preforms for manufacturing of polymer composite materials (review). Aviacionnye materialy i tehnologii, 2019, no. 4 (57), pp. 18–26. DOI: 10.18577/2071-9140-2019-0-4-18-26.
6. Khrulkov A.V., Timoshkov P.N., Yazvenko L.N., Usacheva M.N. Composite materials for medical and biological purposes (review). Novosti materialovedeniya. Nauka i tekhnika, 2018, no. 3–4 (30), paper no. 05. Available at: http://www.materialsnews.ru (accessed: January 27, 2022).
7. Goncharov V.A., Usacheva M.N., Khrulkov A.V. Features of the structure and reinforcement transmission shafts made of polymer composite materials (review). Trudy VIAM, 2021, no. 1 (95), paper no. 9. Available at: http://www.viam-works.ru (accessed: January 24, 2022). DOI: 10.18577/2307-6046-2021-0-1-85-96.
8. Agarwal B.D., Broutman L.T. Analysis and Performance of Fiber Composites. New York: John Wiley & Sons Inc., 1990, 562 p.
9. Gu J.D., Ford T.E., Throp K.E.G., Mitchell R. Microbial Degradation of Polymeric Materials. Tri-Service Conference on Corrosion. Orlando, 1994, pp. 1–12.
10. Rose A.H. Microbial Biodeterioration. New York: Academic Press, 1981, 516 p.
11. Little B.J., Wagner P., Maki J.S. et al. Factors influencing the adhesion of microorganisms to surfaces. Journal of Adhesion, 1986, vol. 20, pp. 187–210.
12. Gu J.-D., Mitchell R. Biodeterioration. The Prokaryotes. Ed. E. Rosenberg. New York: Springer-Verlag, 2013, pp. 309–342.
13. Flemming H.C. Relevance of bioflms for the biodeterioration of surfaces of polymeric materials. Polymer Degradation and Stability, 1998, vol. 59, pp. 309–315.
14. Thorp K.E.G., Crasto A.S., Gu J.-D., Mitchell R. Biodegradation of composite materials. Proceedings of the Tri-Service Conference on Corrosion. Washington: U.S. Government Printing House, 1994, pp. 303–314.
15. Davies P., Mazeas F., Csari P. Sea water aging of glass reinforced composites: shear behavior and damage modeling. Journal of Composite Materials, 2001, vol. 35, pp. 1343–1372.
16. Gu J.-D., Ford T.E., Thorp K.E.G., Mitchell R. Microbial Growth on Fiber Reinforced Composite Materials. International Biodeterioration and Biodegradation, 1996, vol. 39, pp. 197–204.
17. Stroganov V.F., Kukoleva D.A., Akhmetshin A.S., Stroganov I.V. Biodeterioration of Polymers and Polymer Composite Materials. Polymer Science: Series D. Glues and Sealing Materials, 2009, vol. 2, no. 3, pp. 164–166.
18. Little B., Ray R., Wagner P. et al. Impact of biofouling on the electrochemical behavior of stainless steels in natural seawater. Biofouling, 1991, vol. 3, pp. 45–59.
19. Wagner P., Little B., Kevin R.H., Ray R.I. Biodegradation of Composite Materials. International Biodeterioration and Biodegradation, 1996, vol. 38, pp. 125–132.
20. Pendrys J.P. Microbially induced degradation of P55 graphite fibers. Journal of The Electrochemical Society, 1989, vol. 136, pp. 113.
21. Gu J.-D., Ford T.E., Thorp K.E.G., Mitchell R. Microbial deterioration of fiber reinforced composite materials. International Conference on Microbial Induced Corrosion, NACE International, 1995, pp. 439–460.
22. Gu J.-D., Roman M., Esselman T., Mitchell R. The role of microbial bioflms in deterioration of space station candidate materials. International Biodeterioration & Biodegradation, 1998, vol. 41, pp. 25–33.
23. Gu J.-D., Lu C., Thorp K.E.G. et al. Fiber-reinforced polymeric composites are susceptible to microbial degradation. Journal of Industrial Microbioilogy & Biotechnology, 1997, vol. 18, pp. 364–369.
24. Upsher F.J. Microbial attack on materials. Proceedings The Royal Australian Chemical Institute, 1976, vol. 43–44, pp. 173–176.
25. Tucker W.C., Brown R. Blister formation on graphite/polymer composites galvanically coupled with steel in seawater. Journal of Composite Materials, 1989, vol. 23, pp. 389–395.
26. Belik E.S., Rudakova L.V., Kulikova Yu.V. Evaluation of the effectiveness of biodegradation of polymer composite materials. Vestnik NVGU, 2017, no. 4, pp. 111–118.
27. Sakaeva E.Kh., Kulikova Yu.V., Rudakova L.V. Biodegradation of polymeric composite materials by microscopic fungi. Teoreticheskaya i prikladnaya ekologiya, 2018, no. 4, pp. 68–75.
28. Imam M.A., Breister A.M., Zhou Zh. et al. Elucidatind the Impact of Microbial Interactions on Fiber-Reinforced Polymer Composites. 35th Technical Conference of the American Society for Composites, 2020, vol. 1, pp. 475–486.
29. Kablov E.N., Erofeev V.T., Zotkina M.M., Dergunova A.V., Moiseev V.V., Rimshin V.I. Plasticized epoxy composites for manufacturing of composite reinforcement. Journal of Physics: Conference Ser.: International Conference on Engineering Systems 2020, 2020, pp. 12–31.
30. Kablov E.N., Erofeev V.T., Dergunova A.V., Deraeva E.V., Svetlov D.A. Influence of environmental factors on the processes of biodegradation of vinylester composites. Journal of Physics: Conference Ser.: International Conference on Engineering Systems 2020, 2020, pp. 12–29.
31. Wagner P., Ray R., Hart K., Little B. Microbiological degradation of stressed fiber-reinforced polymeric composites. Materials Perfomance, 1996, vol. 35, pp. 79–82.
32. Breister A.M., Imam M.A., Zhichao Zho et al. Soil microbiomes mediate degradation of vinyl ester-based polymer composites. Communication Materials, 2020, vol. 1 (101), pp. 1–15.
33. Wagner P.A., Ray R.I., Little B.J. Microbiologically Influenced Degradation of Fiber Reinforced Polymeric Composites. Materials Perfomance, 1996, vol. 33, no. 4, pp. 46–49.
34. Gu J.D. Microbial colonization of polymeric materials for space applications and mechanisms of biodeterioration: A review. International Biodeterioration & Biodegradation, 2007, vol. 59, pp. 170–179.
35. Gu J.-D., Gu J.-G., Liu J., Cheng S.-P. Sensitive Detection on Polyimides Degradation by Microorganisms Using Electrochemical Impedance Spectroscopy. Microbes and Environments, 2002, vol. 17, no. 2, pp. 105–112.
36. Gu J.-D. Biodeterioration of synthetic polymeric materials: A review. International Biodeterioration & Biodegradation, 2003, vol. 52, pp. 69–91.
37. Mitchell R. A Study of Microbial Deterioration of Fiber Reinforced Composites and Protective Coatings. Washington DC: Air Force Office of Scientific Research, 1998, 22 p.
38. Triverdi J.P., Chatterjee R.C. Biodeterioration of aramid fibre by Anthrenus flavipes. Journal of Materials Science Letters, 1989, vol. 8, pp. 605–607.
39. Solovskii M.V., Dubkova V.I., Krutko N.P. Antimicrobial activity of carbon fiber tissues modified with a polymeric complex of the antibiotic gentamicin. Prikladnaya biokhimiya i mikrobiologiya, 2009, vol. 45, no. 2, pp. 248–251.
40. Zhukovsky V.A., Khokhlova V.A., Anushchenko T.Yu. Silver-containing antimicrobial materials based on carbon and polyvinylidene fluoride fibers. Rossiyskiy khimicheskiy zhurnal, 2011, vol. 55, no. 3, pp. 24–27.
41. Ezeonu I.M., Noble J.A., Simmons R.B. et al. Effect of relative humidity on fungal colonization of fiberglass insulation. Applied and Environmental Microbiology, 1994, vol. 60, pp. 2149–2151.
42. Krivushina A.A., Sevastyanov D.V., Shein E.A., Daskovsky M.I., Usagawa Z., Avilleira G.P., Ba-tista M.G. Study for destructive influence of micromycete strains, isolated under climatic conditions of the Republic of Сuba, on polymer film materials. Trudy VIAM, 2021, no. 4 (98), paper no. 12. Available at: http://www.viam-works.ru (accessed: January 31, 2021). DOI: 10.18577/2307-6046-2021-0-4-141-150.
43. Krivushina A.A., Startsev V.O. Micromycetes-destructors of polymeric materials among extremophilic microorganisms (review). Trudy VIAM, 2022, no. 1 (107), paper no. 12. Available at: http://www.viam-works.ru (accessed: 31 January, 2022). DOI: 10.18557/2307-6046-2022-0-1-123-134.
The article presents an overview of scientific and technical information in the field of technological features of the process of obtaining high-temperature carbon plastics based on thermosetting polyimide binders. The parameters of molding are given and their comparative analysis, areas of application and recommended operating temperatures of high-temperature polyimide carbon-fiber reinforced plastics, developed and produced by foreign companies, whose products have been successfully implemented in practice in structural elements of aerospace engineering products, are presented.
2. Kablov E.N. Materials of a new generation – the basis of innovation, technological leadership and national security of Russia. Intellekt i tekhnologii, 2016, no. 2 (14), pp. 16–21.
3. Kablov E.N. Composites: today and tomorrow. Metally of Evrazii, 2015, no. 1, pp. 36–39.
4. Mukhametov R.R., Petrova A.P. Thermosetting binders for polymer composites (review). Aviacionnye materialy i tehnologii, 2019, no. 3 (56), pp. 48–58. DOI: 10.18577/2071-9140-2019-0-3-48-58.
5. Valueva M.I., Zelenina I.V., Akhmadieva K.R., Zharinov M.A., Khaskov M.A. Developments of FSUE "VIAM" in the field of high-temperature carbon plastics: directions and prospects. Materials of IV All-Rus. conf. “The role of fundamental research in the implementation of the “Strategic directions for the development of materials and technologies for their processing for the period up to 2030”. Moscow: VIAM, 2018, pp. 71–76.
6. Gunyaeva A.G., Kurnosov A.O., Gulyaev I.N. High-temperature polymer composite ma-terials developed FSUE «VIAM» for aero-space engineering: past, present and future (review). Trudy VIAM, 2021, no. 1 (95), paper no. 05. Available at: http://www.viam-works.ru (accessed: December 4, 2021). DOI: 10.18577/2307-6046-2021-0-1-43-53.
7. Kablov E.N., Valueva M.I., I.V. Zelenina, Khmelnitskiy V.V., Aleksashin V.M. Carbon plastics based on benzoxazine oligomers – perspective materials. Trudy VIAM, 2020, no. 1, paper no. 07. Available at: http://www.viam-works.ru (accessed: December 4, 2021). DOI: 10.18577/2307-6046-2020-0-1-68-77.
8. Way of receiving rasplavny poliimidny binding polimerizatsionny type: pat. 2666734 Rus. Federation, no. 2017135540; filed 05.10.17; publ. 12.09.18.
9. Zharinov M.A., Shimkin A.A., Akhmadiyeva K.R., Zelenina I.V. Features and properties of solvent-free PMR-type polyimide resin. Trudy VIAM, 2018, no. 12 (72), paper no. 05. Available at: http://www.viam-works.ru (accessed: December 4, 2021). DOI: 10.18577/2307-6046-2018-0-12-46-53.
10. Valueva M.I., Zelenina I.V., Zharinov M.A., Khaskov M.A. High-temperature carbon plastics based on thermosetting polyimide binder. Voprosy materialovedeniya, 2020, no. 3 (103), pp. 89–102.
11. Mikhailin Yu.A. Heat-resistant polymers and polymeric materials. St. Petersburg: Professiya, 2006, 624 p.
12. Mikhailin Yu.A. Heat, thermal and fire resistance of polymeric materials. St. Petersburg: Nauchnye osnovy i tekhnologii, 2011, 416 p.
13. Kerber M.L., Vinogradov V.M., Golovkin G.S. et al. Polymer composite materials: structure, properties, technology: textbook. St. Petersburg: Profession, 2008, 560 p.
14. Valueva M.I., Zelenina I.V., Zharinov M.A., Akhmadieva K.R. World market of high temperature polyimide carbon plastic (review). Trudy VIAM, 2019, no. 12 (84), paper no. 08. Available at: http://www.viam-works.ru (accessed: December 4, 2021). DOI: 10.18577/2307-6046-2019-0-12-67-79.
15. Yang S.-Y., Advance polyimide materials: synthesis, characterization, and applications. 1st ed. Elsevier, 2018, 498 p.
16. Médard Abadie M.J. High Performance Polymers – Polyimides Based – From Chemistry to Applications. Croatia: INTECH, 2012, 244 p.
17. Kuznetsov A.A., Semenova G.K. Promising high-temperature thermosetting binders for polymer composite materials. Rossiyskiy khimicheskiy zhurnal, 2010, vol. 53, no. 4, pp. 86–96.
18. Kurnosov A.O., Raskutin A.E., Mukhametov R.R., Melnikov D.A. Polymer composite materials based on thermosetting polyimide binders. Voprosy materialovedeniya, 2016, no. 4, pp. 50–62.
19. Cho D., Drzal L.T. Phenylethynyl-terminated polyimide, exfoliated graphite nanoplatelets, and the composites: an overview. Carbon letters, 2016, vol. 19, pp. 1–11.
20. Aerospace. Advance Composite Materials Selector Guide. Available at: https://www.toraytac.com/media/ca3eea73-6961-4ea8-adc7-5d1b861684f6/Bxgrfg/TAC/Documents/Selector%20Guides/Toray_Advanced_Composite_Material_Portfolio_Selector_Guide.pdf (accessed: December 4, 2021).
21. Whitley K.S., Collins T.J. Mechanical Properties of T650-35/AFR-PE-4 at Elevated Temperatures for Lightweight Aeroshell Designs. Available at: https://ntrs.nasa.gov/search.jsp?R=20060013437 2018-02-25T20:16:46+00:00Z (accessed: December 4, 2021).
22. Solvay Avimid®R Polyimide Composite. Available at: https://matweb.com/search/datasheettext.aspx?matguid=3dcb6c37bd39469c8e92b27045a13ea4 (accessed: December 4, 2021).
23. Solvay Avimid®RB Polyimide Composite. Available at: https://www.matweb.com/search/datasheettext.aspx?matguid=d3d9f6997a2145d087bfc9342a8ee61b (accessed: December 4, 2021).
24. CYCOM®2237. Solvay. 2012. Available at: https://www.solvay.com/en/product/cycom-2237 (December 4, 2021).
25. MVK-10. RTM Polyimide. Product description. Available at: http://www.maverickcorp.com/_CE/pagecontent/Documents/MVK-10.pdf (December 4, 2021).
26. MVK-14 FREEFORM®. High temperature polyimide. Available at: http://www.maverickcorp.com/high-temperature-resins/material-options-high/mvk-14-freeform/ (accessed: December 4, 2021).
27. Bain S., Ozawa S., Jim M. Criss Jr. Development of a Cure/Postcure Cycle for PETI-330 Laminates Fabricated by Resin Transfer Molding. Available at: https://www.academia.edu/5559484/Development_of_a_Cure_Postcure_Cycle_for_PETI-330_Laminates_Fabricated_by_Resin_Transfer_Molding (accessed: December 4, 2021).
28. High tempereture composite materials. Available at: https://pdf4pro.com/amp/view/high-tempereture-composite-materials-upilex-5a5302.html (accessed: December 4, 2021).
29. Connell J.W., Smith J.G., Jr., Hergenrother P.M., Criss J.M. High Temperature Transfer Molding Resins: Status of PETI-298 and PETI-330. Available at: https://www.cs.odu.edu/~mln/ltrs-pdfs/NASA-2003-35sampe-jwc.pdf (accessed: December 4, 2021).
30. Ghose S., Cano R.J., Watson K.A. et al. High temperature VARTM of phenilethynyl terminated imides. Available at: https://www.iccm-central.org/Proceedings/ICCM17proceedings/Themes/Industry/AEROSPACE%20APPLICATIONS/A2.8%20Ghose.pdf (accessed: December 4, 2021).
31. Fernberg P., Gong G., Mannberg P. Processing and properties of new polyimide composites with high temperature ability. ECCM16 – 16th European Conference on Composite Materials. Available at: http://www.escm.eu.org/eccm16/assets/0600.pdf (accessed: December 4, 2021).
32. Tsampas S., Fernberg P., Joffe R. Development of novel high Tg polyimide-based composites. Part II: Mechanical characterization. Journal of Composite Materials, 2018, vol. 52, no. 2, pр. 261–274.
33. Tsampas S., Fernberg P., Joffe R. Mechanical performance on novel high Tg polyimide matrix carbon fibre-reinforced laminates. 20th International Conference on Composite Materials. Available at: https://iccm-central.org/Proceedings/ICCM20proceedings/papers/paper-3213-1.pdf (accessed: December 4, 2021).
34. Varna J., Zrida H. Analysis of Microdamage in Thermally Aged CF/Polyimide Laminates. Mechanics of Composite Materials, 2017, vol. 53, no. 1, pp. 45–58.
35. Lee C.-S. A process simulation model for the manufacture of composite laminates from fiber-reinforced, polyimide matrix prepreg materials: a dissertation submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Engineering Mechanics. Blacksburg, 1993, 205 p.
36. Wilson D. PMR-15 Processing, Properties and Problems – a Review. British Polymer Journal, 1988, no. 20, pp. 405–416.
37. Sheppard C.H., Hoggatt J.T., Symonds W.A. Quality control developments for graphite/PMR-15 polyimide composites materials. NASA, 1979, 181 p.
38. RTM and RI processable polyimide resins: pat. US 7129318 B2; filed 30.08.04; publ. 31.10.06.
39. Thamilselvan G. Methodology for fabricating high temperature composite panel and evaluation. Toronto, 2021, 98 p.
40. Kolpachkov E.D., Vavilova M.I., Kurnosov A.O., Gunyaeva A.G. Glass-reinforced plastics based on thermosetting polyimide binders. All-Rus. Sci.-Tech. Conf. "Polymer composite materials of a new generation for civil industries": proceedings of conf. Available at: https://conf.viam.ru/sites/default/files/uploads/proceedings/1294.pdf (accessed: December 4, 2021).
41. Zharinov M.A., Petrova A.P., Babchuk I.V., Akhmadieva K.R. Heat-resistant polyimide structural adhesives (review). Klei. Germetiki. Tekhnologii, 2021, no. 4, pp. 2–8.
42. Dolmatovsky M.G., Sokolov I.I., Stepanov A.V. Destruction and control of honeycomb structures with spheroplasts. Konstruktsii iz kompozitsionnykh materialov, 2009, no. 2, pp. 97–103.
In the current trends towards saving and increasing the efficiency of electricity use, magnetic materials of the Nd–Fe–B system are widely used in the production of fully electric vehicles: cars (Tesla), aircraft, as well as new energy sources – for example, wind turbines. Considers various methods of applying protective coatings to magnetic materials of the Nd–Fe–B system, surface preparation modes and evaluates the effect of the technology of applying anticorrosive coatings on their protective ability, the magnitude of residual induction and coercive force on the magnetization of magnetic materials.
2. Savchenko A.G. Nd-Fe-B magnets and promising technologies for their production. Materials of the seminar "Scientific and technological support for the activities of enterprises, institutions and firms". Moscow: MGIU, 2003, pp. 510–546.
3. Morgunov R.B., Piskorskiy V.P., Valeev R.A., Korolev D.V. The thermal stability of rare-earth magnets supported by means of the magnetocaloric effect. Aviacionnye materialy i tehnologii, 2019, no. 1 (54), pp. 88–94. DOI: 10.18577/2071-9140-2019-0-1-88-94.
4. Korolev D.V., Stolyankov Yu.V., Piskorsky V.P., Valeev R.A., Bahmetiev M.V., Dvorezkaya E.V., Koplak O.V., Morgunov R.B. Magnetic properties and magnetic strip domains in micro stripes PrDyFeCoB. Aviation materials and technologies, 2021, no. 3 (64), paper no. 08. Available at: http://www.journal.viam.ru (accessed: September 03, 2022). DOI: 10.18577/2713-0193-2021-0-3-86-93.
5. Konovalov V.V., Dubinskiy S.V., Makarov A.D., Dotsenko A.M. Research of correlation dependencies between mechanical properties of aviation materials. Aviacionnye materialy i tehnologii, 2018, no. 2 (51), pp. 40–46. DOI: 10.18577/2071-9140-2018-0-2-40-46.
6. Bondarenko Yu.A. Trends in the development of high-temperature metal materials and technologies in the production of modern aircraft gas turbine engines. Aviacionnye materialy i tehnologii, 2019, no. 2 (55), pp. 3–11. DOI: 10.18577 / 2071-9140-2019-0-2-3-11.
7. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
8. Kablov E.N., Startsev O.V. The basic and applied research in the field of corrosion and ageing of materials in natural environments (review). Aviacionnye materialy i tehnologii, 2015, no. 4 (37), pp. 38–52. DOI: 10.18577/2071-9140-2015-0-4-38-52.
9. Kablov E.N. Innovative development is the most important priority of the state. Metaliy Eurazii, 2010, no. 2, pp. 6–11.
10. Kablov E.N. What is the future to be made of? Materials of a new generation, technologies for their creation and processing – the basis of innovation. Krylya Rodiny, 2016, no. 5, pp. 8–18.
11. Kablov E.N., Startsev O.V., Medvedev I.M. Review of international experience on corrosion and corrosion protection. Aviacionnye materialy i tehnologii, 2015, no. 2 (35), pp. 76–87. DOI: 10.18577/2071-9140-2015-0-2-76-87.
12. Lobyntsev E.S., Glushko I.M., Kuznetsov V.M. Obtaining magnets with a columnar structure by casting into honeycomb molds. Elektrotekhnicheskaya promyshlennost'. Elektrotekhnicheskiye stali, 1974, is. 9 (38), pp. 15–19.
13. Livshits B.G., Enikeev G.Kh., Blatov V.G. Production of high-energy magnets from YUNDK35T5BA alloy under industrial conditions. IV All-Union. conf. by permanent magnets. Novocherkassk: AN SSSR, 1971, p. 38.
14. Sklyarov A.E., Chaban I.P., Gridnev A.I., Vlasov V.G. Obtaining single crystals of alloys for permanent magnets in industrial conditions. Growing refractory rare metals. Moscow: Nauka, 1973, pp. 8–11.
15. Pikunov M.V., Belyaev I.V., Sidorov E.V. Crystallization of alloys and directional solidification of castings. Vladimir: Vladimir State University, 2002, 213 p.
16. Piskorsky V.P. Thermostable hard magnetic materials based on rare-earth intermetallic compounds with a tetragonal structure: thesis abstract, Dr. Sc. (Tech.). Moscow: VIAM, 2014, 36 p.
17. Ayres R.U., Peiro L.T. Material efficiency: Rare and critical metals. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2013, vol. 371 (1986), p. 20110563. DOI: 10.1098/rsta.2011.0563.
18. Nakamura H., Hirota K., Shimao M. et al. Magnetic properties of extremely small Nd–Fe–B sintered magnets. IEEE Transactions on Magnetics, 2005, vol. 41, no. 10, pp. 3844–3846.
19. Schultz L., El-Aziz A.M., Barkleit G., Mummert K. Corrosion behaviorof Nd–Fe–B permanent magnetic alloys. Materials Science and Engineering A, 1999, vol. 267, no. 2, pp. 307–313.
20. Ishii R., Miyoshi T., Kanekiyo H., Hirosawa S. High-coercivity nanocomposite permanent magnet based on Nd–Fe–B–Ti–C with Cr addition for high-temperature applications. Journal of Magnetism and Magnetic Materials, 2007, vol. 312, no. 2, pp. 410–413.
21. Kekalo I.B., Samarin B.A. Physical metallurgy of precision alloys. Alloys with special magnetic properties. Moscow: Metallurgiya, 1989, pp. 496–497.
22. Dovgalevsky Ya.M. Cast magnets from Magnico alloys. Moscow: Mashinostroenie, 1964, pp. 151–152.
Results of practical researches of corrosion resistance of the metal materials used in designs of domestic aviation engineering, for the long-term period are stated. In work the chronology of researches and development of anticorrosive protection is observed. Problem questions regarding climatic and biological firmness of materials are stated. Standard corrosion destructions of metal materials because of corrosion cracking, application of technical liquids and fuels, and also contact of diverse materials are given. Technological decisions on the anticorrosive protection, its developments accepted at different stages which are actual and now are provided.
2. Kablov E.N. Formation of domestic space materials science. Vestnik RFFI, 2017, no. 3, pp. 97–105.
3. Kablov E.N. The role of fundamental research in the creation of new generation materials. Abstracts of the XXI Mendeleev Congress on General and Applied Chemistry: in 6 vol. St. Petersburg, 2019, vol. 4, pp. 24.
4. Suchalkin E.A. Aviation of the Russian Navy – 100 years. Vozdushno-kosmicheskiye sily. Teoriya i praktika, 2017, no.1 (1), pp. 372–382.
5. Gaidarev R.V., Obertyaeva I.A. The legendary aircraft of the Great Patriotic War – Il-2. Molodezhnyy innovatsionnyy vestnik, 2020, no. 53, pp. 20–22.
6. Mukhin M.Yu. From the history of the military-industrial complex of the prewar and war years: organization of work in the field of jet aircraft construction in the USSR in the 1930s – mid-1940s. Trudy Instituta rossiyskoy istorii RAN, 2017, no. 14, pp. 72–96.
7. Dugin G.S., Manuilov S.A. Aircraft icing. Conditions for the occurrence and types of icing. Problemy bezopasnosti poletov, 2021, no. 1, pp. 27–40.
8. Timoshkov P.N., Goncharov V.A., Usacheva M.N., Khrulkov A.V. Features of technology and polymer composite materials for the manufacture of wings of advanced aircraft (review). Trudy VIAM, 2022, no. 1 (107), paper no. 07. Available at: http://www.viam-works.ru (accessed: May 15, 2022). DOI: 10.18577/2307-6046-2022-0-1-66-75.
9. Kutyrev A.E., Chesnokov D.V., Antipov V.V., Vdovin A.I. A study of the use of combined anodic dissolution of aluminum alloys with not high sensibility to IGC evidence from alloy of Al–Li–Cu system with the purpose of predicting loss of mechanical properties at atmospheric corrosion. Trudy VIAM, 2021, no. 2 (96), paper no. 12. Available at: http://www.viam-works.ru (accessed: May 15, 2022). DOI: 10.18577/2307-6046-2021-0-2-109-118.
10. Antipov V.V., Medvedev I.M., Kutyrev A.E., Zhitnyuk S.V. The investigation of electro-chemical properties of non-sealed oxide coatings on 1163, V-1461, V96С3pch aluminum alloys during accelerated testing. Trudy VIAM, 2019, no. 6 (78), paper no. 06. Available at: http://www.viam-works.ru (accessed: May 15, 2022). DOI: 10.18577/2307-6046-2019-0-6-51-64.
11. Butushin S.V., Semin A.V. Processing and analysis of data on the operating conditions of the loading of Tu-154 aircraft. Sbornik nauchnykh trudov GosNII GA, 2010, no. 311, pp. 91–97.
12. Lebedeva I.A., Kharlamov V.A. Features of flight operation of the stabilizer control system in the combined mode of operation on the Tu-154M aircraft. Nauchnyy vestnik MGTU GA, 2006, no. 103, pp. 75–81.
13. Yurin S.P., Gromov M.S., Uvaev S.F., Lisin O.V. Assessment of the state and adequacy of the resource of the fleet of AI-24 engines for An-24 and An-26 aircraft. Nauchnyy vestnik GosNII GA, 2020, no. 31, pp. 20–29.
14. Arep'ev K.A., Povarov O.Yu., Popov D.P., Dubinsky V.S. Generalization of the results of the work on the study of the units of the steering control system and the wing mechanization control system of the An-124-100 aircraft. Nauchnyy vestnik GosNII GA, 2019, no. 29, pp. 22–35.
15. Karnaukh G.E., Arustamova I.S. An-124 is the pinnacle of O.K. Antonova. X International. sci.-pract. conf. young scientists dedicated to 59th anniversary of Yu.A. Gagarin into space (April 8–9, 2020): Sat. scientific articles. Krasnodar: Publishing House - South, 2020, pp. 143–146.
16. Povarov O.Yu., Arepiev K.A., Popov D.P. Corrosion state of An-28 aircraft. Nauchnyy vestnik GosNII GA, 2021, no. 35, pp. 39–49.
17. Zhukov A.V. Analysis of some aviation events related to the operation of the An-2 and Yak-18 aircraft. Nauchnyy vestnik UI GA, 2017, no. 9, pp. 28–37.
18. Gromov M.S., Nizev V.Ya., Kostenko A.V., Smirnov A.V., Stepanov V.N. Influence of a package of repair pads on the stress state of a passenger aircraft wing panel. Nauchnyy vestnik GosNII GA, no. 36, pp. 110–117.
19. Arepev K.A., Kovalevsky S.A., Simonov T.N. Review of operating conditions for the An-24 aircraft fleet in the Russian Federation in 2017–2018. Nauchnyy vestnik GosNII GA, 2019, no. 28, pp. 40–49.
20. Maslennikova G.E., Arep'ev K.A., Tazhetdinov R.R., Nikonov V.V., Spryskov V.B. Investigation of the reasons for the change in the characteristics of the climb of the Il-96-300 aircraft. Izvestiya vysshikh uchebnykh zavedeniy. Aviatsionnaya tekhnika, 2019, no. 1, pp. 140–144.
21. Kulikov V.V., Sharova I.A., Petrova A.P. Repair of honeycomb metal structures in Il aircraft. Remont. Vosstanovleniye. Modernizatsiya, 2016, no. 12, pp. 15–18.
22. Maslennikova G.E., Kruglyakova O.V. Aircraft Il-76TD-90VD – new life of the old airframe. Nauchnyy vestnik GosNII GA, 2014, no. 4 (315), pp. 22–28.
23. Demchenko O.F. 80 years of OKB named after A.S. Yakovleva. Polet. Obshcherossiyskiy nauchno-tekhnicheskiy zhurnal, 2007, no. 5, pp. 11–17.
24. Pavlov N.V. Mi-2 helicopter – US flying laboratory. Aviatsionnyye sistemy, 2016, no. 8, pp. 53–55.
25. Urnyshev D.S., Nikushkin N.V. Analysis of corrosion damage of the power structure of the airframe of Mi-8T type helicopters. Aktualnyye problemy aviatsii i kosmonavtiki, 2010, no. 6, pp. 242–243.
26. Anikhovskaya L.I., Kolobova Z.N., Uglova G.N. Materials for the repair of blades of Mi-8 and Mi-24 helicopters under operating conditions. Klei. Germetiki. Tekhnologii, 2005, no. 12, pp. 32–33.
27. Osipov D.N., Shapkin V.S. Measurement of the rate of development of fatigue cracks in stringers made of material 01420 of the Mi-26T helicopter. Nauchnyy vestnik MGTU GA, 2010, no. 153, pp. 77–82.
28. Dmitrieva Yu.A. Nikolay Ilyich Kamov and his helicopters. Aktualnyye problemy aviatsii i kosmonavtiki, 2018, no. 4 (14), pp. 553–554.
29. Aleksandrov N. Sukhoi interceptor. 50 years in service. Dvigatel, 2008, no. 5(59), pp. 26–31.
30. Pavlyuk B.Ph. The main directions in the field of development of polymeric functional materials. Aviaсionnye materialy i tehnologii, 2017, no. S, pp. 388–392. DOI: 10.18577/2071-9140-2017-0-S-388-392.
31. Karimova S.A., Pavlovskaya T.G., Chesnokov D.V., Semenova L.V. Corrosive activity of CFRPs and protection of metal load-bearing structures in contact with CFRP. Rossiyskiy khimicheskiy zhurnal, vol. 54, no. 1, pp. 110–116.
32. Lutsenko A.N., Slavin A.V., Erasov V.S., Khvatskiy K.K. Strength tests and researches of aviation materials. Aviaсionnye materialy i tehnologii, 2017, no. S, pp. 527–546.
33. Kablov E.N. Marketing of Materials Science, Aircraft Engineering and Industry: Present and Future. Direktor po marketingu i sbytu. 2017, no. 5–6, pp. 40–44.
In this work, the principal possibility of quantifying the heat transfer coefficient of the material using a stand was tested, as well as the selection of experimental parameters to increase the reliability of the assessment of the thermal conductivity coefficient of the layered material. It is possible to use one part of the data array within one test to estimate the heat transfer coefficient of the material on its hot side, and when processing another part of the experimental data, to use the heat transfer coefficient to estimate the heat absorbed by the sample. The proposed estimation method is much simpler in terms of hardware compared to the classical calorimetric method.
2. Soboyejo W.O., Obayemi J.D., Annan E. et al. Review of High Temperature Ceramics for Aerospace Applications. Advanced Materials Research, 2016, vol. 1132, pp. 385–407.
3. Kablov E.N., Zhestkov B.E., Grashchenkov D.V., Sorokin O.Yu., Lebedeva Yu.E., Vaga-nova M.L. Investigation of the oxidation resistance of a high-temperature coating on SiC-material under the influence of a high-enthalpy flow. Teplofizika vysokikh temperatur, 2017, vol. 55, no. 6, pp. 704–711.
4. Onishchenko G.G., Kablov E.N., Ivanov V.V. Scientific and technological development of Russia in the context of achieving national goals: problems and solutions. Innovatsii, 2020, no. 6 (260), pp. 3–16.
5. Armor for "Buran". Materials and technologies of VIAM for the ISS "Energiya–Buran". Ed. E.N. Kablov. Moscow: Nauka i zhizn, 2013, 128 p.
6. Glass D.E. Thermal Protection Systems and Hot Structures for Hypersonic Vehicles. Aerospace Materials and Applications. American Institute of Aeronautics and Astronautics Inc., 2018, pp. 531–578. DOI: 10.2514/5.9781624104893.0531.0578.
7. Zamula G.N., Ivanov S.N. Determination of the effective thermal conductivity and emissivity of multilayer and reinforced structures. Uchenye zapiski TsAGI, 1970, vol. 1, no. 1, pp. 116–123.
8. Zuev A.V., Zarichnyak Yu.P., Barinov D.Ya. Measurement of thermophysical properties rigid fiber insulation. Trudy VIAM, 2021, no. 2 (96), paper no. 10. Available at: http://www.viam-works.ru (accessed: March 02, 2022). DOI: 10.18577/2307-6046-2021-0-2-88-98.
9. Zuev A.V., Zarichnyak Yu.P., Barinov D.Ya., Krasnov L.L. Measurement of thermophysical properties of flexible thermal insulation. Aviation materials and technology, 2021. no. 1 (62), paper no. 11. Available at: http://www.journal.viam.ru (accessed: March 02, 2022). DOI: 10.18577/2713-0193-2021-0-1-119-126.
10. Prosuntsov P.V., Mayorova I.A., Zuev A.V. Using combined heat transfer models to analyze the temperature state of thermal protection elements of reusable spacecraft. Teplovye protsessy v tehniki, 2014, vol. 6, no. 7, pp. 317–323.
11. Wang X., Tang Y. The Heat Transfer Model and Performance Analyses of Fibre-Enhanced Phase Change Material. Conference: Digital Manufacturing and Automation (ICDMA) International Conference. Changoha, 2010. DOI: 10.1109/ICDMA.2010.419.
12. Zarubin V.S., Zarubin S.V., Kuvyrkin G.N. Mathematical modeling of heat transfer in a unidirectional fibrous composite. Nauka i obrazovanie, 2014, no. 1, pp. 270–281. Available at: http://technomag.bmstu.ru/doc/657262.html (accessed: March 02, 2022). DOI: 10.7463/0114.0657262.
13. Lugovoy A.A., Babashov V.G., Karpov Yu.V. The thermal diffusivity of the gradientthermal insulation material. Trudy VIAM, 2014, no. 2, paper no. 02. Available at: http://viam-works.ru (accessed: March 02, 2022). DOI: 10.18577/2307-6046-2014-0-2-2-2.
14. Stand for the qualitative assessment of heat-insulating materials: pat. 156904 Rus. Federation. No. 2014138916; filed 25.09.14; publ. 20.11.15.
15. Butakov V.V., Lugovoy A.A., Varrik N.M., Babashov V.G. Assessment of thermal conductivity of a layered highly porous thermal insulation material. Aviation materials and technology, 2022. Accepted to publication.
Based on reviews of the corrosion-mechanical destruction of metals (in parts 1 and 2), the impact of the corrosive environment and mechanical loads on aluminum alloys is considered. The main theories and practical results of determining changes in the mechanical characteristics of aluminum alloys are presented. The values of the tensile velocity must correspond to the investigated metal-medium system and ensure that the mechanism of destruction of the tested material in the experiment on samples corresponds to the mechanism of destruction of real structures under operating conditions.
2. Kablov E.N. The present and future of additive technologies. Metally Evrazii, 2017, no. 1, pp. 2–6.
3. Kablov E.N., Erofeev V.T., Dergunova A.V., Deraeva E.V., Svetlov D.A. Influence of environmental factors on the processes of biodegradation of vinylester composites. Journal of Physics: Conference Series, 2020, pp. 012029. DOI: 10.1088/1742-6596/1687/1/012029.
4. Laptev A.B., Nikolaev E.V., Kurshev E.V., Goryashnik Yu.S. Features of biodegradation of thermoplastics based on polyesters in different climatic zones. Trudy VIAM, 2019, no. 7 (79), paper no. 10. Available at: http://www.viam-works.ru (accessed: November 2, 2021). DOI: 10.18577/2307-6046-2019-0-7-84-91.
5. Getsov L.B., Laptev A.B., Puzanov A.I. et al. The strength of the powder material for the GTD discs in the conditions of aggressive action of the mixture of chlorides and sodium sulfates. Aviatsionnaya tekhnika, 2019, no. 12, pp. 14–25.
6. Erasov V.S., Oreshko E.I. Reasons for dependence of mechanical characteristics of material fracture resistanceon sample sizes. Aviaсionnye materialy i tehnologii, 2018, no. 3, pp. 56–64. DOI: 10.18577/2071-9140-2018-0-3-56-64.
7. Erasov V.S., Oreshko E.I., Lutsenko A.N. Formation of new surfaces in a firm body at stages of elastic and plastic deformations, the beginning and destruction development. Trudy VIAM, 2018, no. 2, paper no. 12. Available at: http://www.viam-works.ru (accessed: November 2, 2021). DOI: 10.18577/2307-6046-2018-0-2-12-12.
8. Sinyavsky V.S., Valkov V.D., Budov G.M. Corrosion and protection of aluminum alloys. Moscow: Metallurgiya, 1979, 224 p.
9. Takase Т., Setoguchi K., Wakahara T. Effect of Surface Roughness on Fatigue Strength of 0,25 % С Annealed Steel and Policarbonate. Transactions of the Japan Society of Mechanical Engineering A, 1998, vol. 64, no. 622, pp. 1463–1467.
10. Alcantar-Modragón N., García-García V., Reyes-Calderón F. et al. Study of cracking susceptibility in similar and dissimilar welds between carbon steel and austenitic stainless steel through finger test and FE numerical model. International Journal of Advanced Manufacturing Technology. 2021, vol. 116, no. 7–8, pp. 2661–2686.
11. Laptev A., Kurs M., Lonskaya N. et al. Investigation of Corrosion Damage of Hydration Aluminium Alloys at Full-Scale Accelerated Tests. International Journal of Engineering and Technology, 2018, vol. 7, no. 4, pp. 5061–5066.
12. Rajasekaran R., Lakshminarayanan A.K. Probing the stress corrosion cracking resistance of laser beam welded AISI 316LN austenitic stainless steel. Proceedings of the Institution of Mechanical Engineers. Part C: Journal of Mechanical Engineering Science, 2021, vol. 235, no. 17, pp. 3299–3317.
13. Semenychev V.V. Corrosion resistance of alloy D16ch.-T sheets in marine subtropics. Trudy VIAM, 2014, no. 7, paper no. 11. Available at: http://www.viam-works.ru (accessed: November 2, 2021). DOI: 10.18577/2307-6046-2014-7-11-11.
14. Kablov E.N., Startsev V.O., Inozemtsev A.A. The moisture absorption of structurally similar samples from polymer composite materials in open climatic conditions with application of thermal spikes. Aviacionnye materialy i tehnologii, 2017, no. 2 (47), pp. 56–68. DOI: 10.18577/2071-9140-2017-0-2-56-68.
15. Laptev A.B., Zakirova L.I. Zagorskikh O.A., Pavlov M.R. Methods of investigation of the processes of corrosion-mechanical destruction and hydrogenation of metals (review). Part 1. Investigation of corrosion-mechanical destruction of steels. Trudy VIAM, 2022, no. 4 (110), paper no. 12. Available at: http://www.viam-works.ru (accessed: November 2, 2021). DOI: 10.18577/2307-6046-2022-0-4-118-130.
16. Borisova T.M., Castro R.A. The dielectric properties of MDP – structures based on aluminum oxide. Materials of the XII Intern. Conf. "Dielectrics-2011". St. Petersburg: Herzen Rus. State Pedagogical University, 2011, vol. 1, pp. 356–359.
17. Panin V.E. Fundamentals of physical mesomechanics. Fizicheskaya mezomekhanika, 1998, no. 1, pp. 5–22.
18. Grinevich A.V., Lutsenko A.N., Karimova S.A. Durability of products and corrosion fatigue of structural materials. Voprosy materialovedeniya, 2013, no. 1 (73), pp. 220–229.
19. Chen X., Karasz E., Badwe N., Sieradzk K. Dynamic fracture and dealloying induced stress-corrosion cracking. Corrosion Science, 2021, vol. 187. Art. 109503.
Heat-resistant alloys and steels
Lomberg B.S., Akhmedzyanov M.V., Chabina E.B., Rastorgueva O.I. Heat-resistant wrought superalloy for high-pressure compressor blades of promising gas turbine engines
Sevalnev G.S., Korobova E.N., Dvoreckov R.M., Doroshenko A.V., Muzafarova S.-V.R., Samoilova I.I. Influence of the degree of martensitic structure dispersion and size of carbide phase on the frictional interaction under conditions of dry sliding friction of high-carbon complex alloy steel
Light-metal alloys
Arislanov A.A., Putyrskiy S.V., Shiryaev A.A., Volodin А.V., Bratukhin A.V. Study of the structure and mechanical properties of fasteners made of VT47 high-strength metastable β-titanium alloy
Polymer materials
Petrova A.P., Lukina N.F., Isaev A.Yu., Smirnov O.I. The effect of the adhesive primer EP-0234 on the properties of adhesive compounds obtained using adhesive VK-36
Composite materials
Gulyaev I.N., Safronov A.M., Satdinov R.A. Comparison online and offline of prepregs manufacturing technologies and properties of carbon fiber plastics
Donetskiy K.I., Usacheva M.N., Khrulkov A.V. Infusion methods for the manufacture of polymer composite materials (review). Part 1
Usacheva M.N., Khrulkov A.V. Biodegradation of reinforced polymer composite materials (review)
Valueva M.I., Zelenina I.V., Nacharkina A.V., Ahmadieva K.R. Technological features of obtaining high temperature polyimide carbons. Foreign experience (review)
Protective and functional
coatings
Demin S.A., Zavarzin S.V., Cherednichenko I.V., Kozlov I.A. Protective anticorrosive coating of magnets of the REM–Fe–B
system
Antipov V.V., Duyunova V.A., Oglodkov M.S., Fomina M.A., Frantsuzova T.P., Kozlov I.A. 90-year practice of anticorrosive protection
Material tests
Butakov V.V., Shavnev A.A., Lugovoy A.A., Varrik N.M., Babashov V.G. An approach to the construction of a mathematical model of the passage of a heat front through a sample of a heat-shielding material under conditions of an unsteady heat flow
Laptev A.B., Zakirova L.I., Zagorskikh O.A., Pavlov M.R. Methods of investigation of the processes of corrosion-mechanical destruction and hydrogenation of metals (review). Part 3. Corrosion cracking of aluminum alloys
Conferences of
NRC «Kurchatov Institute» – VIAM
The solution of the 7th All-Russian
Scientific and Technical Conference «Climate-2022: modern approaches to assessment of influence of external factors on materials and complex technical systems», dedicated to the 125th anniversary of the birth of the aircraft designer, scientist-aerodynamicist Robert L. Bartini