Articles
An overview of traditional methods for cleaning the surface of gas turbine engine (GTE) blades from products of gas corrosion and spent coating, methods for restoring the structure and properties of the material of blades using hot isostatic pressing and heat treatment, as well as methods for applying coatings on the inner and outer surfaces of the blades is presented. The main disadvantages of these methods are described, taking into account which the state-of-the-art technology for repairing gas-turbine engine nozzle blades made of ZhS6U alloy has been developed in FSUE «VIAM», which ensures an increase in their resource and a reduction in repair costs.
2. Kablov E.N., Muboyadzhyan S.A. Protective coatings for turbine blades of promising gas turbine engines. Gazoturbinnye tekhnologii, 2001, no. 3, pp. 30–32.
3. Popova S.V., Muboyadzhyan S.A., Budinovskiy S.A., Dobrynin D.A. The feature of electrolytic plasma etching of heat resistant coatings from parts surface of high-temperature nickel alloys. Trudy VIAM, 2016, no. 2 (38), paper no. 04. Available at: http://www.viam-works.ru (accessed: March 15, 2021). DOI: 10.18577/2307-6046-2016-0-2-4-4.
4. Kablov E.N., Muboyadzhyan S.A., Budinovskiy S.A., Lutsenko A.N. Ion-plasma protective coatings for blades of gas turbine engines. Metally, 2007, no. 5. P. 23–34.
5. Kosmin A.A., Budinovskiy S.A., Muboyadzhyan S.A. Heat and corrosion resistant coating for working turbine blades from promising high-temperature alloy VZhL21. Aviacionnye materialy i tehnologii, 2017, no. 1 (46), pp. 17–24. DOI: 10.18577/2071-9140-2017-0-1-17-24.
6. Muboyadzhyan S.A., Budinovskij S.A. Ion-plasma technology: prospective processes, coatings, equipment. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 39–54. DOI: 10.18577/2071-9140-2017-0-S-39-54.
7. Tikhomirova E.A., Budinovsky S.A., Zhivushkin A.A., Sidokhin E.F. Features of thermal fatigue development in details, produced from heat-resistant alloys with coatings. Aviacionnye materialy i tehnologii, 2017, no. 3 (48), pp. 20–25. DOI: 10.18577/2071-9140-2017-0-3-20-25.
8. Kablov E.N., Ospennikova O.G., Svetlov I.L. Highly efficient cooling of GTE hot section blades. Aviacionnye materialy i tehnologii, 2017, no. 2 (47), pp. 3–14. DOI: 10.18577/2071-9140-2017-0-2-3-14.
9. Process for treating the surface of a component, made from a Ni based supperalloy, to be coated: pat. US 6440238B1; filed 09.08.99; publ. 27.08.02.
10. A method of processing channels for cooling turbine blades of a gas turbine engine: pat. 2417145С2 Rus. Federation; filed 15.07.09; publ. 27.04.11.
11. Contact solution, method and installation for cleaning the surface of metal alloys, including the surface of cracks and narrow gaps: pat. 2419684С2 Rus. Federation; filed 04.06.09; publ. 27.05.11.
12. Method for electrochemical cleaning of metal products: pat. 2411310S2 Rus. Federation; filed 20.02.09; publ. 10.02.11.
13. Method for electrochemical cleaning of metal products: pat. 2099445С1 Rus. Federation; filed 22.07.94; publ. 20.12.97.
14. Method for cleaning metal surfaces from deposits: pat. 2169794С1 Rus. Federation; filed 15.11.00; publ. 27.06.01.
15. Method for removing the coating from a metal substrate: pat. 2094546С1 Rus. Federation; filed 15.11.00; publ. 27.06.01.
16. Method for removing heat-resistant metal coating: pat. 2228396С1 Rus. Federation; filed 19.09.02; publ. 10.05.04.
17. Device and method for removing the coating: pat. 2215068С2 Rus. Federation; filed 17.12.00; publ. 27.10.03.
18. Method of removing heat-resistant coating from parts made of heat-resistant nickel alloys: pat. 2339738С1 Rus. Federation; filed 27.03.07; publ. 27.11.08.
19. Method for removing coatings from parts made of heat-resistant alloys: pat. 2200211C2 Rus. Federation; filed 07.03.01; publ. 10.03.03.
20. Nickel heat-resistant alloy, a product made of it, and a method of heat treatment of the alloy and products from it: pat. 2220220С1 Rus. Federation; filed 05.08.02; publ. 27.12.03.
21. Method of heat treatment of parts made of heat-resistant alloys based on nickel: pat. 2232204С2 Rus. Federation; filed 09.09.02; publ. 10.07.04.
22. Method of regenerative heat treatment of products made of heat-resistant nickel alloys: pat. 2459885С1 Rus. Federation; filed 15.07.11; publ. 27.08.12.
23. Method of protecting the surface of the blade: pat. 2252110С1 Rus. Federation; filed 09.10.03; publ. 20.05.05.
24. Method of restoring repair of gas turbine engine parts made of heat-resistant nickel alloys: pat. 2346799С2 Rus. Federation; filed 01.03.07; publ. 20.02.09.
25. A method of processing castings with a monocrystalline structure from heat-resistant nickel alloys with hot isostatic pressing: pat. 2380454С1 Rus. Federation; filed 11.06.08; publ. 27.01.10.
26. Method of applying a combined coating: pat. 2244041С1 Rus. Federation; filed 29.04.03; publ. 10.01.05.
27. The composition of the mixture for multiple chromoalitization: pat. 2266349С1 Rus. Federation; filed 07.06.04; publ. 20.12.05.
28. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
29. Ospennikova O.G., Orlov M.R., Gubenko L.A. Ensuring the quality of the surface of the blades in the process of hydrothermal leaching of ceramic rods. Liteinoe proizvodstvo, 2007, no. 8, pp. 31–34.
30. Orlov M.R. Pore formation in monocrystalline turbine rotor blades in the process of directional solidification. Metally, 2008, no. 1, pp. 70–75.
31. Orlov M.R. Physicochemical features of the formation of pores of thermal origin and the performance of single-crystal turbine blades. Deformatsiya i razrusheniye materialov, 2008, no. 6. P. 43–48.
32. Orlov M.R., Orlov E.M. Hydrogen brittleness of monocrystalline heat-resistant nickel alloys. Deformatsiya i razrusheniye materialov, 2008, no. 7, pp. 36–41.
In the work, the development of technologies for the manufacture and production of standard samples of heat-resistant nickel-based alloys: SDP-1, SDP-2, VSPD-9, VZhL-2, AZh-8. Developed and certified by MI 1.2.027–2011 «Method of measuring alloying elements by x-ray fluorescence method in heat-resistant alloys» establishes the measurement of the dimensions of alloying elements in heat-resistant nickel-based alloys by x-ray fluorescence method. The registration of the RSA of heat-resistant nickel-based alloys SDP-1, SDP-2, VSPD-9, VZhL-2, AZh-8 in the System of voluntary certification of standard samples of materials and materials.
2. Kablov E.N., Bondarenko Yu.A., Echin A.B. Development of technology of cast superalloys directional solidification with variable controlled temperature gradient. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 24–38. DOI: 10.18577/2071-9140-2017-0-S-24-38.
3. Bazyleva O.A., Ospennikova O.G., Arginbaeva E.G., Letnikova E.Yu., Shestakov A.V. Development trends of nickel-based intermetallic alloys. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 104–115. DOI: 10.18577/2071-9140-2017-0-S-104-115.
4. Muboyadzhyan S.A., Budinovskij S.A. Ion-plasma technology: prospective processes, coatings, equipment. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 39–54. DOI: 10.18577/2071-9140-2017-0-S-39-54.
5. Kosmin A.A., Budinovskiy S.A., Muboyadzhyan S.A. Heat and corrosion resistant coating for working turbine blades from promising high-temperature alloy VZhL21. Aviacionnye materialy i tehnologii, 2017, no. 1 (46), pp. 17–24. DOI: 10.18577/2071-9140-2017-0-1-17-24.
6. Kablov E.N., Chabina E.B., Morozov G.A., Muravskaya N.P. Conformity assessment of new materials using high-level CRM and MI. Competence. Kompetentnost, 2017, no. 2, pp. 40–46.
7. Dvoretskov R.M., Petrov PS, Orlov G.V., Karachevtsev F.N., Letov A.F. Standard samples of new grades of heat-resistant nickel alloys and their application for spectral analysis. Zavodskaya laboratoriya. Diagnostika materialov, 2018, vol. 84, no. 11, pp. 15–22.
8. Handbook of x-ray spectrometry. Ed. R.E. Van Grieken, A.A. Marcowicz. 2nd ed. New York: Marcel Dekker, 2001, pp. 14–56.
9. Criss J.W., Birks L.S. Calculation methods for fluorescent X-ray spectrometry. Empirical coeffi-cients vs. fundamental parameters. Analytical Chemistry, 1968, vol. 40, pp. 1080–1086.
10. Mashin N.I., Lebedeva R.V., Tumanova A.N. X-ray fluorescence analysis of systems Ni–Fe–Mn–Cr. Analitika i kontrol, 2004, vol. 8, no. 2, pp. 160–164.
11. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
12. Karachevtsev F.N., Alekseev A.V., Letov A.F., Dvoretskov R.M. Plasma methods of nickel alloys elemental chemical composition analysis. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 483–497. DOI: 10.18577/2071-9140-2017-0-S-483-497.
13. Dvoretskov R.M., Baranovskaya V.B., Mazalov I.S., Karachevtsev F.N. Application of atomic emission spectrometry with inductively coupled plasma for the analysis of electrolytes during electrolytic extraction of the phases of nickel alloys. Trudy VIAM, 2018, no. 12 (72), paper no. 12. Available at: http://viam-works.ru (accessed: March 17, 2021). DOI: 18577/2307-6046-2018-0-12-107-120.
14. Dvoretskov R.M., Volkova O.S., Radzikovskaya V.N., Burova V.N. Determination of beryllium in modern aviation materials by atomic emission spectrometry with inductively coupled plasma. Trudy VIAM, 2016, no. 4, paper no. 5. Available at: http://www.viam-works.ru (accessed: March 17, 2021). DOI: 10.18577/2307-6046-2016-0-4-5-5.
15. Chernikova I.I., Tyumneva K.V., Bakaldina T.V., Ermolaeva T.N. Improvement of sample preparation in the analysis of ferroalloys by atomic emission spectrometry with inductively coupled plasma. Zavodskaya laboratoriya. Diagnostika materialov, 2019, vol. 85, no. 5, pp. 11–17.
The Al2Ti intermetallic compound is a promising material for the development of heat-resistant alloys used for the manufacture of shaped parts for ground and aircraft power plants. Considers the features of the structure of two-phase alloys, evaluates the casting properties and technological characteristics in comparison with various AlTi alloys, as applied to the production of ingots and cast products. It is necessary to use technologies developed for titanium alloys in the production of cast products from such alloys.
2. Antipov V.V. Prospects for development of aluminium, magnesium and titanium alloys for aerospace engineering. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 186–194. DOI: 10.18577/2107-9140-2017-0-S-186-194.
3. Kablov E.N. VIAM: new generation materials for PD-14. Krylya Rodiny, 2019, no. 7-8, pp. 54–58.
4. Kablov E.N., Bondarenko Yu.A., Kolodyazhny M.Yu., Surova V.A., Narsky A.R. Prospects for the creation of high-temperature heat-resistant alloys based on refractory matrices and natural composites. Voprosy materialovedeniya, 2020, no. 4 (104), pp. 64–78.
5. Kablov E.N. The strategic directions of development of materials and technologies of their processing for the period to 2030. Aviacionnye materialy i tehnologii, 2012, no. S, pp. 7–17.
6. Night H.A., Bazyleva O.A., Kablov D.E., Panin P.V. Intermetallic alloys based on titanium and nickel. Ed. E.N. Kablov. Moscow: VIAM, 2018, 318 p.
7. Appel F., Clemens H., Fischer F. Modeling concepts for intermetallic titanium aluminides. Journal of Progress Materials Science, 2016, vol. 81, pp. 55–124.
8. Bewlay B.P., Nag S., Suzuki A., Weimer M.J. Titi alloys in commercial aircraft engines materials at high temperatures. Journal of Materials at High Temperatures, 2016, vol. 33, no. 5, pp. 549–559.
9. Appel F., Paul J.D.H., Oehring M. Application, Component Assessment, and Outlook. Gamma Titanium Aluminide Alloys: Science and Technology. Weinheim: Wiley-VCHg Verlag, 2011, pp. 729–738.
10. Altunin Yu.F., Glazunov S.G. Double alloys titanium-aluminum. Titanium in industry. Moscow: Oborongiz, 1961, pp. 5–30.
11. Altunin Yu.F., Glazunov S.G. High heat-resistant titanium alloys. Titanium in industry. Moscow: Oborongiz, 1961, pp. 245–253.
12. Schuster J.C., Palm M. Reassessment of the binary aluminum-titanium phase diagram. Journal of Phase Equilibria and Diffusion, 2006, vol. 27, pp. 255–277.
13. Batalu D., Cosmeleata G., Aloman A. Critical analysis of the Ti-Al phase diagrams. University Politechnica of Bucharest: Scientific Bulletin, Series B, 2006, vol. 68, no. 4, pp. 77–90.
14. Zhang L., Palm M., Stein F., Sauthoff G. Formation of lamellar microstructures Al-rich TiAl alloys between 900 to 1100 ° C. Journal of Intermetallics, 2001, vol. 9, pp. 229–238.
15. Palm M., Engberding N., Stein F. et al. Phase and evolution of microstructures in Ti – 60 Al at. %. Journal of Acta Materialia, 2012, vol. 60, pp. 3559–3569.
16. Stein F., Zhang L., Sauthoff G., Palm M. TEM and DTA study on the stability of Al5Ti3 and h-Al2Ti-superstructures in aluminum-rich TiAl alloys. Journal of Acta Materialia, 2001, vol. 49, no. 15, pp. 2919–2932.
17. Palm M., Zhang L., Stein F., Sauthoff G. Phase and phase equilibria in the Al-rich part of the Al-Ti system above 900 ° C. Journal of Intermetallics, 2002, vol. 10, no. 6, pp. 523–540.
18. Nakano T., Hayashi K., Umakoshi Y. et al. Effect of long-period superstructures on plastic properties in Al-rich TiAl single crystals. MRS Proceedings, 2004, vol. 842. DOI: 10.1557/PROC-842-S7.4.
19. Nakano T., Negishi A., Hayashi K., Umakoshi Y. Ordering process of Al5Ti3, h-Al2Ti and r-Al2Ti with FCC-base long-period superstructures in rapid solidified Al-rich TiAl alloys. Journal of Acta Materialia, 1999, vol. 47, no. 4, pp. 1091–1104.
20. Nakano T., Hayashi K., Nagasawa Y., Umakoshi Y. Plastic Deformation Behavior of Al5Ti3 Single-Phase Crystal. MRS Proceedings, 2002, vol. 753. DOI: 10.1557/PROC-753-BB5.8.
21. Hata S., Higuchi K., Itakura M. et al. Shot-range order in Al-rich γ-TiAl alloys studied by high-resolution transmission electron microscopy with image processing. Journal of Philosophical Magazine Letter, 2002, vol. 82, no. 7, pp. 363–372.
22. Hayashi K., Nakano T., Umakoshi Y. Metastable region of Al5Ti3 single-phase in time-temperature-transformation (TTT) diagram of Ti–62 at. % Al single crystal. Journal of Intermetallics, 2002, vol. 10, no. 8, pp. 771–781.
23. Hata S., Higuchi K., Mitate T. et al. HRTEM observation of Partially Ordered Long-period Superstructures in Al-Rich TiAl alloys. MRS Proceedings. 2002, vol. 753. DOI: 10.1557/PROC-753-BB4.2.
24. Hata S., Nakano T., Higuchi K.Y. et al. Semi-quantitative HRTEM for partially ordered materials: Application to Al-rich TiAl alloys. Journal of Materials Science Forum, 2003, vol. 426-432, pp. 1721–1726.
25. Hata S., Higuchi K., Mitate T. et al. HRTEM image contrast and atomistic microstructures of long-period ordered Al-rich TiAl alloys. Journal of Electronic Microscopie, 2000, vol. 53, no. 1, pp. 1–9.
26. Sturm D., Heimaier H., Saage H. et al. Creep strength of a binary Al62Ti38 alloy. International Journal Materials Research, 2010, vol. 101, no. 5, pp. 676–679.
27. Braun J., Ellner M. Phase equilibria investigation on the aluminum-rich part of the binary system Ti–Al. Journal of Metallugical Materials Transaction A, 2001, vol. 32, no. 5, pp. 1037–1047.
28. Palm M., Engberding N., Stein F., Kelm K., Irsen S. Phase and evolution of microstructures in Ti–60 at. % Al. Journal of Acta Materialia, 2012, vol. 60, pp. 3559–3569.
29. Witusiewicz V.T., Bondar A.A., Hecht U. et al. The Al–B–Nb–Ti system. III. Thermodynamic reevaluation of the constuent binary system Al – Ti. Journal of Alloys and Compounds, 2008, vol. 465, no. 1-2, pp. 64–77.
30. Heat-resistant intermetallic alloys. Available at: https://viam.ru/review/2942 (accessed: March 24, 2021).
31. Antashev V.G., Ivanov V.I., Yasinsky K.K. Development of technology for producing cast parts from the TiAl intermetallic alloy and their use in structures. Tekhnologiya legkikh splavov, 1996, no. 3, pp. 20–23.
32. Nochovnaya N.A., Ivanov V.I., Avilochev L.Yu. Intermetallic compound AlxTi – are promising material for high elevated temperatures (review). Part 1. The crystaline structure and properties of the intermetallic compound Al2Ti. Trudy VIAM, 2021, no. 3 (97), paper no. 03. Available at: http://viam-works.ru (accessed: April 12, 2021). DOI: 10.18577 / 2307-6046-2021-0-3-28-43.
33. Lukyanychev S.Yu., Shakhanova G.V., Smirnova T.R., Goryunova G.V. Structure and properties of semi-finished products made of Ti–48Al–2Nb–2Cr alloy based on TiAl intermetallic compound obtained by shaped casting. Tekhnologiya legkikh splavov, 1996, no. 3, pp. 16–19.
34. Benci J.T., Ma J.C., Feist F. Evaluation of the intermetallic compound Al2Ti for elevated – temperature application. Materials Science Engineering A, 1995, vol. 192, pp. 38–44.
35. Durlu N., Inal O.T. Ll2-type ternary titanium aluminides as electron concentration phases. Journal of Materials Science, 1992, vol. 27, no. 12, pp. 3225–3230.
36. Wu Z.L., Pope D.P. Ll2 Al3Ti-based alloys with Al2Ti precipitates – I. Structure and stability of the precipitates. Acta Metallurgica et Materialia, 1994, vol. 42, is. 2, pp. 509–518. DOI: 10.1016/0956-7151 (94) 90505-3.
37. Wu Z.L., Pope D.P. Ll2 Al3Ti-based alloys with Al2Ti precipitates – II. Deformation behavior of single crystals. Acta Metallurgica et Materialia, 1994, vol. 42, is. 2, pp. 519–526. DOI: 10.1016/0956-7151 (94) 90506-1.
38. Kablov E.N., Kashapov O.S., Medvedev P.N., Pavlova T.V. Study of a α+β-titanium alloy based on a system of Ti–Al–Sn–Zr–Si–β-stabilizing alloying elements. Aviacionnye materialy i tehnologii, 2020, no. 1 (58), pp. 30–37. DOI: 10.18577/2071-9140-2020-0-1-30-37.
39. Zhang W.J., Reddy B.V., Deeve S.C. Physical properties of TiAl alloys. Journal of Scripta Materialia, 2001, vol. 45, no. 6, pp. 645–651.
40. Paninsky M., Drevermann A., Schmitz G. J. et al. Casting and properties of Al-rich Ti–Al alloys. Proceedings International Conference "Ti-2007. Science and Tecnology". The Japan Institute of Metals, 2007, pp. 1059–1062.
41. Sturm D., Heilmaer M., Saage H. et al. Creep strength of centrifugally cast Al-rich TiAl alloys. Journal of Materials Science and Engineering A, 2009, vol. 51-511, pp. 373–376.
42. Demenok A.O., Ganeev A.A., Demenok O.B., Kulakov B.A. The choice of alloying elements for alloys based on titanium aluminide. Vestnik SUSU, ser.: Metallurgiya. 2013, no. 1, pp. 95–102.
43. Sturm D. Herstellung und Eigenschaften Al-reicher TiAl Legierungen: dissertation zur Erlangung des akademischen Grades. Magdebur: Otto-von-Guericke-Universität Magdeburg, 2010, 118 p.
A technology for the manufacture and production of reference material (CRM) of the composition of magnesium alloys of the VML20 and VMD16 grades has been developed. In FSUE «VNIIOFI» tests of CRM material were carried out in order to approve their type, as well as metrological examination. Conclusions were drawn up on checking the results of CRM testing for the composition of the indicated alloys and certificates of type approval of reference materials were issued. CRM sets of the approved type of state standard samples of high-strength magnesium alloys of VML20 and VMD16 grades have a relative error of the certified values of the mass fraction of elements in the range from 0.5 to 5% (by weight) no more than 5% rel.
2. Kablov E.N., Ospennikova O.G., Vershkov A.V. Rare metals and rare-earth elements are materials for modern and future high technologies. Aviacionnye materialy i tehnologii, 2013, no. S2, pp. 3–10.
3. Duyunova V.A., Volkova E.F., Uridiya Z.P., Trapeznikov A.V. Dynamics of the development of magnesium and cast aluminum alloys. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 225–241. DOI: 10.18577/2071-9140-2017-0-S-225-241.
4. Mukhina I.Yu., Uridiya Z.P., Trofimov N.V. Сorrosion-resistant casting magnesium alloys. Aviacionnye materialy i tehnologii, 2017, no. 2 (47), pp. 15–23. DOI: 10.18577/2071-9140-2017-0-2-15-23.
5. Leonov A.A., Trofimov N.V., Duyunova V.A., Uritia Z.P. Trends in the development of cast magnesium alloys with an increased ignition temperature (review). Trudy VIAM, 2021, no. 2 (96), paper no. 01. Available at: http://www.viam-works.ru (accessed: March 19, 2021). DOI: 10.18577/2307-6046-2021-0-2-3-9.
6. Volkova E.F., Duyunova V.A. Effect of unconventional deformation technology applicable to some commercial magnesium–based alloys. Aviacionnye materialy i tehnologii, 2016, no. 3 (42), pp. 17–23. DOI: 10.18577/2071-9140-2016-03-17-23.
7. Volkova E.F., Mostyaev I.V., Akinina M.V. Comparative analysis of mechanical properties anisotropy and microstructure of semi-finished products from high-strength magnesium alloys with REE. Trudy VIAM, 2018, no. 5 (65), paper no. 04. Available at: http://www.viam-works.ru (accessed: March 9, 2021). DOI: 10.18577/2307-6046-2018-0-5-24-33.
8. Kablov E.N., Chabina E.B., Morozov G.A., Muravskaya N.P. Assessment of the compliance of new materials using CO and high levels. Kompetentnost, 2017, no. 2. C. 40-46.
9. Lutsenko A.N., Perov N.S., Chabina E.B. The new stages of development of Testing Center. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 460–468. DOI: 10.18577/2071-9140-2017-0-S-460-468.
10. Karpov Yu.A., Baranovskaya V.B. Analytical control is an integral part of the diagnosis of materials. Zavodskaya laboratoriya. Diagnostika materialov, 2017, vol. 83, no. 1-I, pp. 5–12.
11. Karpov Yu.A. Analytical control of metallurgical production. Moscow: Metallurgiya, 1995, pp. 97–107.
12. Otto M. Modern methods of analytical chemistry: at 2 vols. Moscow: Technosfera, 2003, vol. 1, 416 p.
13. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
14. Fariñas J.C., Rucandio I., Pomares-Alfonso M.S. et al. Determination of Rare Earth and Concomitant Elements in Magnesium Alloys by Inductively Coupled Plasma Optical Emission Spectrometry. Talanta, 2016, no. 154, pp. 53–62. DOI: 10.1016/J.Talanta.2016.03.047.
15. Palekov R.M., Baranovskaya V.B., Karachevtsev F.N., Letov A.F. Determination of rare-earth metals in magnesium alloys by atomic-emission spectrometry with inductively-bound plasma. Izmeritelnaya tekhnika, 2019, no 4, pp. 62–66.
The properties of the adhesive VKR-85 recommended for gluing rubbers, rubber fabric materials bands together and gluing them to metals during the vulcanization process are given. It is shown for which types of rubbers the adhesive can be used, performance of adhesive joints under the influence of various factors. A comparison of the properties of the adhesive joints based on adhesive VKR-85 with adhesives of a similar purpose – Leuconate and Desmodur RE is given. Adhesive joints strength made with adhesive VKR-85 is higher than strength of the bonded rubber.
2. Kablov E.N. Russia in the market of intellectual resources. Ekspert, 2015, no. 28 (951), pp. 48-51.
3. Kablov E.N. What to make the future of? New generation materials, technologies for their creation and processing - the basis of innovations. Krylya Rodiny, 2016, no. 5, pp. 8–18.
4. Kablov E.N. Aviation materials science. Vse materialy. Entsiklopedicheskiy spravochnik, 2008, no. 3, pp. 2–14.
5. Aviation materials: reference book: in 13 vols. Ed. E.N. Kablova. 7th ed., add. and rev. Moscow: VIAM, 2019, vol. 10: Adhesives, sealants, rubbers, hydraulic fluids, part 1. Adhesives, adhesive prepregs. 276 p.
6. Petrova A.P., Donskoy A.A. Adhesive materials. Sealants. Saint Petersburg: Professional, 2008. 589 p.
7. Large reference book of the rubber worker: in 2 parts. Ed. S.V. Reznichenko, Yu.L. Morozov. Moscow: Tekhinform, 2012, part 2: Rubber and mechanical rubber goods, 641 p.
8. Khorova E.A., Myshlyavtsev A.V., Strizhak E.A., Tretyakova N.A. Examination of hydrogenated butadiene-nitrile rubbers by methods of differential scanning calori-metry and dynamic mechanical analysis. Aviacionnye materialy i tehnologii, 2019, no. 1 (54), pp. 11–16. DOI: 10.18577/2071-9140-2019-0-1-11-16.
9. Naumova Yu.A. Synergistic effects in elastomeric adhesive compositions. III Intern. scientific and technical conf. «Modern achievements in the field of adhesives and sealants: materials, raw materials, technologies». N. Novgorod, 2019, pp. 60–62.
10. Isaev A.Yu., Rubtsova E.V., Kotova E.V., Sutyagin M.N. Research of properties of glues and glue binding, made with use of modern domestic component base. Trudy VIAM, 2021, no. 3 (97), paper no. 05. Available at: http://www.viam-works.ru (accessed: March 22, 2021). DOI: 10.18577/2307-6046-2021-0-3-58-67.
11. Kuznetsova V.А. Influence of the elastomeric modifier on mechanical and viscoelastic properties of epoxy and rubber compositions for erosion resistant coatings. Aviacionnye materialy i tehnologii, 2020, no. 2 (59), pp. 56–62. DOI: 10.18577/2071-9140-2020-0-2-56-62.
12. Laptev A.B., Barbotko S.L., Nikolaev E.V. The main research areas of the persistence properties of materials under the influence of climatic and operational factors. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 547–561. DOI: 10.18577/2071-9140-2017-0-S-547-561.
13. Tyumeneva T.Yu., Lukina N.F. Development in the field of elastomeric adhesives for aviation. Trudy VIAM, 2016, no. 8, paper no. 9. Available at: http://viam-works.ru (accessed: April 20, 2021). DOI: 10.18577/2307-6046-2016-0-8-9-9.
14. Tyumeneva T.Yu., Lukina N.F., Zhuravleva P.L., Gulyaev A.I. Influence of nanomodifiers on the properties of elastomeric adhesive systems. Klei. Germetiki. Tekhologii, 2015, no. 3, pp. 11–16.
15. Sagomonova V.A., Kislyakova V.I., Tyumeneva T.Yu., Bolshakov V.A. Influence of the adhesive layer on the damping properties of a vibration-absorbing material based on thermoplastic polyurethane. Klei. Germetiki. Tekhologii, 2015, no. 2, pp. 8–11.
16. Petrova A.P., Malysheva G.V. Adhesives, adhesive binders and adhesive prepregs: textbook. Ed. E.N. Kablov. Moscow: VIAM, 2017, 472 p.
17. Logacheva E.P., Bokov S.V., Polsman G.S. Adhesives for attaching rubbers to each other and to other substrates. Klei. Germetiki. Tekhologii, 2007, no. 9, pp. 26–30.
18. Kopylov V.M., Ivanov V.V., Kovyazin V.A. Organosilicon dressings. Klei. Germetiki. Tekhologii, 2004, no. 6, pp. 2–12.
19. Kotova S.V., Lyusova L.R., Popov A.A. Adhesive compositions of cold curing based on butadiene-nitrile rubber and chloroprenes. Kauchuk i rezina, 2009, no. 4, pp. 29–33.
20. Lyusova L.R. Development of the direction «elastomeric adhesives» at the Department of Chemistry and Technology of Elastomer Processing. F.F. Koshelev ITHT them. M.V. Lomonosov RTU-MIREA. III Intern. scientific and technical conf. «Modern achievements in the field of adhesives and sealants: materials, raw materials, technologies». N. Novgorod, 2019, pp. 59–60.
An overview of polymeric materials of various structures used as antifriction materials is given. The experience of using various polymeric materials for the manufacture of antifriction coatings is considered. The advantages of thermosetting and thermoplastic polymers in comparison with metallic materials are revealed. Some compositions of carbon and organoplastics developed for plain bearings are described. A conclusion is made about the direction of research in the development of new binders for antifriction materials.
2. Bakhareva V.E., Nikolaev G.I., Anisimov A.V. Improving the functional properties of antifriction polymer composites for sliding friction units. Zhurnal Rossiyskogo khimicheskogo obshchestva im. D.I. Mendeleyeva, 2009, vol. LIII, no. 4, pp. 4–18.
3. Kulik V.I., Nilov A.S. Prospects for the use of ceramic materials in friction units of mining equipment. Transportnoye, gornoye i stroitelnoe mashinostroyeniye: nauka i proizvodstvo, 2020, no. 9, pp. 52–57. DOI: 10.26160/2658-3305-2020-9-52-57.
4. Anti-friction materials. Available at: https://www.niigrafit.ru (accessed: April 29, 2021).
5. Kablov E.N. Marketing of materials science, aircraft construction and industry: present and future. Direktor po marketingu i sbytu, 2017, no. 5-6, pp. 40–44.
6. Kondrashov S.V., Shashkeev K.A., Petrova G.N., Mekalina I.V. Constructional polymer composites with functional properties. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 405–419. DOI: 10.18577/2071-9140-2017-0-S-405-419.
7. Raskutin A.E. Development strategy of polymer composite materials. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 344–348. DOI: 10.18577/2071-9140-2017-0-S-344-348.
8. Kuznetsov A.A., Semenova G.K., Svidchenko E.A. Structural thermoplastics as a basis for self-lubricating polymer composite materials for antifriction purposes. Voprosy materialovedeniya, 2009, no. 1 (57), pp. 116–126.
9. Kablov E.N., Kulagina G.S., Zhelezina G.F., Lons-kii S.L., Kurshev E.V. Microstructure research of the unidirectional organoplastic based on Rusar-NT aramid fibers and epoxy-polysulfone binder. Aviacionnye materialy i tehnologii, 2020, no. 4 (61), pp. 19–26. DOI: 10.18577/2071-9140-2020-0-4-19-26.
10. Encyclopedia of Polymers: in 3 vols. Ed. V.A. Kargin. Moscow: Sovetskaya Encyclopedia, 1972, vol. 1, p. 202.
11. A method of manufacturing an antifriction material based on composite wood plastics: pat. 905115 USSR; filed 11.07.78; publ. 15.02.82.
12. Polymer composition for the manufacture of antifriction material: pat. 1790201 Rus. Federation; filed 17.07.89; publ. 10.05.95.
13. Antifriction composition: pat. 1807993 USSR; filed 06.03.91; publ. 07.04.93.
14. Bushing of the lever brake system of rail transport: pat. 2298707 Rus. Federation; filed 04.10.05; publ. 10.05.07.
15. Application-tested MOLYKOTE® Specialty Lubricants solve your toughest challenges. Available at: https://www.dupont.com/molykote.html (accessed: March 30, 2021).
16. Specialty Compounding Solutions from SABIC. Available at: https://www.sabic.com/en/products/specialties/compounding-solutions (accessed: March 30, 2021).
17. Mikhailin Yu.A. Heat-resistant polymers and polymer materials. Saint Petersburg: Professiya, 2006, 624 p.
18. Buznik V.M., Yurkov G.Yu. Application of fluoropolymer materials in tribology: state and prospects. Voprosy materialovedeniya, 2012, no. 4 (72), pp. 133–138.
19. Istomin N.P., Semenov A.P. Antifriction properties of composite materials based on fluoropolymers. Moscow: Nauka, 1981, 148 p.
20. Antifriction product: pat. 2068423 Rus. Federation; filed 12.03.92; publ. 27.10.96.
21. Antifriction composite: pat. 2155198 Rus. Federation; filed 13.01.98; opubl. 27.08.00.
22. Composite tribological material: pat. 2293092 Rus. Federation; filed 28.12.05; publ. 10.02.17.
23. Antifriction composite material for sliding bearings of ship shafts and propeller shafts: pat. 2554182 Rus. Federation; filed 19.12.13; opubl. 27.06.15.
24. A kind of environment protection type multifunctional carbon fiber wear-reduced coating and preparation method thereof: pat. CN108219667A; filed 26.02.18; publ. 29.06.18
25. Torlon® PAI. Available at: https://www.solvay.com/en/brands/torlon-pai (accessed: March 30, 2021).
26. Sliding bearing for internal combustion engine: pat. EP0984182B1; filed 02.22.99; publ. 08.03.00.
27. Plain bearing: pat. EP1775487A2; filed 09.10.06; publ. 18.04.07.
28. Anti-friction coating to piston assembly: pat. US20140272188A1; filed 14.03.14; publ. 18.09.14.
29. David L.B., Gregory W.S. A low friction and ultra low wear rate PEEK/PTFE composite. Wear, 2006, vol. 261, pp. 410–418.
30. Antifriction composite material for the manufacture of sealing elements for ship fittings: pat. 2463321 Rus. Federation; filed 01.04.11; publ. 10.10.12.
31. Lubricating composition: pat. 2596820 Rus. Federation; filed 22.04.15; publ. 10.09.16.
32. High-strength antifriction composite based on polyetheretherketone for medicine and a method for its manufacture: pat. 2729653 Rus. Federation; filed 03.03.20; publ. 11.08.20.
33. Friction, wear and lubrication: reference book: in 2 vols. Ed. I.V. Kragelsky, V.V. Alisin. Moscow: Mashinostroenie, 1979, vol. 1, 300 p.
34. Bely V.A., Svaridenok A.A., Petrovets M.I., Savkin V.G. Friction and wear of polymer-based materials. Minsk: Nauka i tekhnika, 1986, 430 p.
35. Solomentseva A.V., Fadeeva V.M., Zhelezina G.F. Antifriction organoplastics for heavy loaded sliding friction units of aircraft structures. Aviacionnye materialy i tehnologii, 2016, no. 2, pp. 30–34. DOI: 10.18577/2071-9140-2016-0-2-30-34.
36. Kulagina G.S., Zhelezina G.F., Levakova N.M. Antifriction organoplastics for high-loaded friction knots. Trudy VIAM, 2019, no. 2 (74), paper no. 09. Available at: http://www.viam-works.ru (accessed: March 10, 2021). DOI: 10.18577/2307-6046-2019-0-2-89-96.
37. Kulagina G.S., Korobova A.V., Ilichev A.V., Zhelezina G.F. Physical and physico-mechanical properties of antifriction organoplastics based on combined fabric filler and epoxy binder. Trudy VIAM, 2017, no. 10 (58), paper no. 08. Available at: http://www.viam-works.ru (accessed: March 10, 2021). DOI: 10.18577/2307-6046-2017-0-10-8-8.
38. Binder for antifriction products, prepreg and a product made from it: pat. 2313010 Rus. Federation; filed 06.06.06; publ. 20.12.07
39. Antifriction organoplastic prepreg and a product made from it: pat. 2404202 Rus. Federation; filed 31.03.09; publ. 20.11.10.
40. Antifriction material: pat. 1590495 USSR; filed 01.07.88; publ. 07.09.90.
41. Antifriction composition: pat. 2295546 Rus. Federation; filed 01.08.05; publ. 20.03.07.
42. Antifriction filled composition and method for its production: pat. 2394850 Rus. Federation; filed 10.12.08; publ. 20.07.10
43. Antifriction composition: pat. 2526989 Rus. Federation; filed 30.10.12; publ. 27.08.14.
44. Khmelnitsky V.V., Shimkin A.A. Polymeric benzoxazines – a new type of high temperature polymer resins (review). Trudy VIAM, 2019, no. 2 (74), paper no. 05. Available at: http://viam-works.ru (accessed: March 10, 2021). DOI: 10.18577/2307-6046-2019-0-2-43-57.
45. Christian S., Katharina L., Andreas T. Benzoxazine miniemilsions stabilized with polymerizable nonionic benzoxazine surfactants. Macromolecules, 2010, vol. 43, pp. 8933–8941.
46. Ghosh N., Kiskan B., Yagci Y. Polybenzoxazines – new high performance thermosetting resins: synthesis and properties. Progress in Polymer Science, 2007, vol. 32, pp. 1344-1391.
47. Kablov E.N., Valueva M.I., I.V. Zelenina, Khmelnitskiy V.V., Aleksashin V.M. Carbon plastics based on benzoxazine oligomers – perspective materials. Trudy VIAM, 2020, no. 1, paper no. 07. Available at: http://www.viam-works.ru (accessed: March 10, 2021). DOI: 10.18577/2307-6046-2020-0-1-68-77.
48. Ishida H., Agag T. Handbook of Benzoxazine Resins. Amsterdam: Elsevier, 2011, 688 p. DOI: 10.1016/B978-0-444-53790-4.00063-1.
49. Khmelnitsky V.V., Sarychev I.A., Khaskov M.A., Guseva M.A. Research of the effect of epoxy resins on the properties of benzoxa-zine monomer BA-a and theirs copolymers. Trudy VIAM, 2020, no. 1, paper no. 04. Available at: http://www.viam-works.ru (accessed: March 10, 2021). DOI: 10.18577 / 2307-6046-2020-0-1-38-46.
50. Jin L., Agag T., Ishida H. Bis (benzoxazine-maleimide) s as a novel class of high performance resin: Synthesis and properties. European Polymer Journal, 2010, vol. 46, pp. 354–363.
51. Jubsilp C., Taewattana R., Takeichi T., Rimdusit S. Investigation on Rubber-Modified Polybenzoxazine Composites for Lubricating Material Applications. Journal of Materials Engineering and Performance, 2015, vol. 24, pp. 3958–3968. DOI: 10.1007/s11665-015-1660-5.
52. Jia Y., Yan H., Ma L., Zhang J. Improved mechanical and tribological properties of benzoxazine-bismaleimides resin by surface-functionalized carbon nanotubes. Journal Polymer Research, 2014, vol. 21, p. 499. DOI: 10.1007/s10965-014-0499-z.
53. Wang Z., Zhao J., Ran Q. et al. Research on curing mechanism and thermal property of bis-allyl benzoxazine and N,N'-(2,2,4trimethylhexane-1,6-diyl) dimaleimide blend. Reactive and Functional Polymers, 2013, vol. 73, pp. 668–673.
Data on the use of various types of silver filler in electrically conductive adhesive compositions are presented. The influence of form and size particles of silver filler on the conductive properties of adhesive bondline.
The effect of surface treatment of conductive particles with surfactants, the component composition of the resin part and the curing conditions of conductive adhesive compositions on their microstructure and conductive properties is shown.An overview of the results of studies of the microstructure of conductive silver-containing adhesive compositions is given.
2. Bazarova F.F., Kolesova L.S. Adhesives in the manufacture of electronic equipment. Moscow: Energiya, 1975, 112 p.
3. Petrova A.P., Isaev A.Yu., Lukina N.F., Pavlyuk B.Ph. Influence of fillers on the electrical conductivity of adhesives and the properties of electrically conductive adhesives. Review. Klei. Germetiki. Tekhnologii, 2018, no. 8, pp. 9–15.
4. Perov N.S. Design of polymeric materials on the molecular principles. II. The molecu-lar mobility in the cross-linked complex systems. Aviacionnye materialy i tehnologii, 2017, no. 4 (49), pp. 30–36. DOI: 10.18577/2071-9140-2017-0-4-30-36.
5. Ranzhin Yu.S., Kalashnikov Yu.N., Litvinenko N.P. Electrically Conductive Adhesives for Automatic Assembly of Open Crystals. Electronics and Microelectronics Microwave: collection of articles of the V All-Rus. Conf. Saint Petersburg: Publ. SPSETU “LETI”, 2016, vol. 2, pp. 97–101.
6. Lewis A., Asymtek A.B. Conductive Adhesive Dispensing Process. Available at: https://smtnet.com/library/files/upload/Conductive-Adhesive-Dispensing.pdf (accessed: October 14, 2020).
7. Lukin V.I., Rulnikov V.S., Afanasiev-Khodikin A.N., Kucevich K.E., Nischev K.N. The method for adhesion strength determining of silver coating to the silicon substrate by glue applying. Trudy VIAM, 2015, no. 4, paper no. 12. Available at: http://www.viam-works.ru (accessed: October 14, 2020). DOI: 10.18577 / 2307-6046-2015-0-4-12-12.
8. Kutsevich K.E., Tyumeneva T.Yu., Petrova A.P. Influence of fillers on properties of adhesive prepregs and PCM on their basis. Aviacionnye materialy i tehnologii, 2017, no. 4 (49), pp. 51–55. DOI: 10.18577/2071-9140-2017-0-4-51-55.
9. Li Y., Wong C.P. Recent advances of conductive adhesives as a lead-free alternative in electronic packaging: Materials, processing, reliability and applications. Materials Science and Engineering R: Reports, 2006, vol. 51, is. 1–3, pp. 1–35. DOI: 10.1016/j.mser.2006.01.001.
10. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
11. Kablov E.N. Russia in the market of intellectual resources. Ekspert, 2015, no. 28 (951), pp. 48–51.
12. Kablov E.N. What to make the future of? New generation materials, technologies for their creation and processing - the basis of innovation. Krylya Rodiny, 2016, no. 5, pp. 8‒18.
13. Laptev A.B., Barbotko S.L., Nikolaev E.V. The main research areas of the persistence properties of materials under the influence of climatic and operational factors. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 547–561. DOI: 10.18577/2071-9140-2017-0-S-547-561.
14. Isaev A.Yu., Rubtsova E.V., Kotova E.V., Sutyagin M.N. Research of properties of glues and glue binding, made with use of modern domestic component base. Trudy VIAM, 2021, no. 3 (97), paper no. 05. Available at: http://www.viam-works.ru (accessed: March 22, 2021). DOI: 10.18577/2307-6046-2021-0-3-58-67.
15. Inoue M., Liu J. Effects of multi-modal filler size distributions on thermal conductivity of electrically conductive adhesives containing Ag micro and nanoparticles. Transactions of The Japan Institute of Electronics Packaging, 2009, vol. 2, no. 1, pp. 125–133.
16. Jiang H., Moon K., Li Y., Wong C.P. Ultra High Conductivity of Isotropic Conductive Adhesives. Proceedings of the 56th Electronic Components and Technology Conference. 2006, vol. 6, pp. 485–490. DOI: 10.1109/ECTC.2006.1645691.
17. Mir I., Kumar D. Recent advances in isotropic conductive adhesives for electronics packaging applications. International Journal of Adhesion & Adhesives, 2008, vol. 28, is. 7, pp. 362–371.
18. Moskovits M., Suh J.S. Conformation of mono-carboxylic and dicarboxylic-acids adsorbed on silver surfaces. Journal of American Chemical Society, 1985, vol. 107, no. 24, pp. 6826–6829.
19. Kohinata S., Shiraki Y., Inoue M., Uenishi K. Investigation of the influence of the cure shrinkage in electrically conductive adhesive, and the mechanism for conductivity. Journal of Smart Processing, 2014, vol. 3 (4), no. 1, pp. 246–253. DOI: 10.7791/jspmee.3.246
20. Inoue M., Liu J. Electrical and thermal properties of electrically conductive adhesives using a heat-resistant epoxy binder. Proceedings of the 2nd Electronics System Integration Technology Conference, 2008, pp. 1147–1152.
The properties of heat-resistant polymer fibers (Arimid, PFBT) and samples of organoplastics based on them have been investigated. It has been established that polyimide and polybenzazole fibers can be used as a reinforcing filler to create organoplastics at operating temperatures up to 350‒400 °C. The level of retention of the elastic modulus in bending of organoplastics based on PFBT fiber and IP-5 heterocyclic binder is 90 %. Heat-resistant organoplastics are promising for use in the aerospace industry and mechanical engineering.
2. Kablov E.N. Materials and chemical technologies for aviation equipment. Vestnik Rossiyskoy akademii nauk, 2012, vol. 82, no. 6, pp. 520–530.
3. Kablov E.N. Russia needs new generation materials. Redkiye zemli, 2014, no. 3, pp. 8–13.
4. Gunyaeva A.G., Kurnosov A.O., Gulyaev I.N. High-temperature polymer composite ma-terials developed FSUE «VIAM» for aero-space engineering: past, present and future (review). Trudy VIAM, 2021, no. 1 (95), paper no. 05. Available at: http://www.viam-works.ru (accessed: April 19, 2021). DOI: 10.18577/2307-6046-2021-0-1-43-53.
5. Zhang S., Zhao D. Advances in Materials Science and Engineering. Aerospace materials handbook. CRC Press, 2012. 781 p.
6. Kablov E.N. Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030». Aviacionnye materialy i tehnologii, 2015, no. 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
7. Erasov V.S., Kotova E.A. Erosion resistance of aviation materials to influence of solid (dust) particles. Aviacionnye materialy i tehnologii, 2011, no. 3, pp. 30–36.
8. Kablov E.N. Materials of the new generation and digital technology of their processing. Vestnik Rossiyskoy akademii nauk, 2020, vol. 90, no. 4, pp. 331–334.
9. Raskutin A.E. Russian polymer composite materials of new generation, their exploitation and implementation in advanced developed constructions. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 349–367. DOI: 10.18577/2071-9140-2017-0-S-349-367.
10. Ironine G.F., Winov S.I., Solovyova N.A., Kulagina G.S. Aramid organotextolites for shock-resistant aviation structures. Zhurnal prikladnoy khimii, 2019, vol. 92, no. 3, pp. 358–364. DOI: 10.1134/S0044461819030101.
11. Shuldeshova P.M., Deev I.S., Zhelezina G.F. Features of destruction of SVM aramide fibers and structural organoplastics on their basis. Trudy VIAM, 2016, no. 2 (38), paper no. 11. Available at: http://www.viam-works.ru (accessed: March 29, 2021). DOI 10.18577/2307-6046-2016-0-2-11-11.
12. Zhelezina G.F., Gulyaev I.N., Soloveva N.A. Aramide organic plastics of new generation for aviation designs. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 368–378. DOI: 10.18577/2071-9140-2017-0-S-368-378.
13. Mikhailin Yu.A. Construction polymer composite materials. 2nd ed. Saint Petersburg: Nauchnye osnovy i tekhnoogii, 2018. 822 p.
14. Deev I.S., Kablov E.N., Kobets L.P., Chursova L.V. Research of the scanning electron microscopy method deformation of microphase structure of polymeric matrix at mechanical loading. Trudy VIAM, 2014, no. 7, paper no. 06. Available at: http://www.viam-works.ru (accessed: accessed: April 14, 2021). DOI: 10.18577/2307-6046-2014-0-7-6-6.
15. Mikhailin Yu.A. Heat, thermo- and fire resistance of polymeric materials. Saint Petersburg: Nauchnye osnovy i tekhnoogii, 2011. 416 p.
16. Perepelkin K.E. Chemical fibers: production development, methods of obtaining, properties, perspectives. Saint Petersburg: SPGUTD, 2008, 354 p.
17. Mukhametov R.R., Petrova A.P. Thermosetting binders for polymer composites (review). Aviacionnye materialy i tehnologii, 2019, no. 3 (56), pp. 48–58. DOI: 10.18577/2071-9140-2019-0-3-48-58.
18. Aronovich D.A., Gladkiki S.N., Malysheva G.V., Motovilin G.V. Bonding in the machine Structure: directory in 2 vols. Moscow: Science and Technology, 2005, 244 p.
19. Petrova A.P., Malysheva G.V. Adhesives, adhesive binder and adhesive prepregs: textbook. Ed. E.N. Kablov. Moscow: VIAM, 2017, 472 p.
20. Skolkutin A.E., Davydova I.F., Mukhametov R.R., Minakov V.T. A new heat-resistant binder for glass and carbon styles. Klei. Germetiki. Tekhnologii, 2007, no. 11, pp. 20–23.
21. Zheleznyak V.G., Muhametov R.R., Chursova L.V. Study of possibility of thermoset binder creation for operating temperature up to 400°C. Aviacionnye materialy i tehnologii, 2013, no. S2, pp. 58–61.
Experimental compositions of coatings based on SiO2–Al2O3–MgO matrix glass and modifying additives are considered. A number of refractory metal oxides were selected as modifying additives. The influence of these additives on the properties of the coating melt, such as the spreadability and the wetting edge angle, as well as the oxidability of the resulting compositions, is studied. It was found that the experimental coating modified with aluminum oxide has the best protective properties. The introduction of modifying additives in quantities of more than 5 % is considered inappropriate.
2. Ospennikova O.G., Podieiachev V.N., Stoliankov Yu.V. Refractory alloys for innovative equipment. Trudy VIAM, 2016, no. 10, paper no. 5. Available at: http://www.viam-works.ru (accessed: February 18, 2021). DOI: 10.18577/2307-6046-2016-0-10-5-5.
3. Kablov E.N. The role of chemistry in the creation of new generation materials for complex technical systems. Reports of XX Mendeleev Congress on General and Applied Chemistry. Ekaterinburg: Ural Branch of the Russian Academy of Sciences, 2016, pp. 25–26.
4. Grashchenkov D.V. Strategy of development of non-metallic materials, metal composite materials and heat-shielding. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 264–271. DOI: 10.18577/2071-9140-2017-0-S-264-271.
5. Kashin D.S., Dergacheva P.E., Stekhov P.A. Heat resistant slurry coatings (review). Trudy VIAM, 2018, no. 5 (65), paper no. 08. Available at: http://www.viam-works.ru (accessed: February 18, 2021). DOI: 10.18577/2307-6046-2018-0-5-64-75.
6. Kablov E.N., Grashchenkov D.V., Isaeva N.V., Solntsev S.S. Promising high-temperature ceramic composite materials. Rossiyskiy khimicheskiy zhurnal, 2010, vol. LIV, no. 1, pp. 20–24.
7. Solntsev S.S. Protective technological coatings and refractory enamels. Moscow: Mashinostroenie, 1984, 256 p.
8. Kablov E.N., Evgenov A.G., Ospennikova O.G., Semenov B.I., Semenov A.B., Korolev V.A. Metal-powder compositions of EP648 heat-resistant alloy produced by FSUE «VIAM» State Scientific Center of the Russian Federation in technologies of selective laser alloying, laser gas-powder surfacing and high-precision casting of polymers filled with metal powders. Izvestiya vysshikh uchebnykh zavedeniy, ser.: Mashinostroyenie, 2016, no. 9, pp. 62–80. DOI: 10.18698/0536-1044-2016-9-62-80.
9. Evgenov A.G., Gorbovec M.A., Prager S.M. Structure and mechanical properties of heat resistant alloys VZh159 and EP648, prepared by selective laser fusing. Aviacionnye materialy i tehnologii, 2016, no. S1, pp. 8–15. DOI: 10.18577/2071-9140-2016-0-S1-8-15.
10. Zhitnyuk S.V. Effect of sintering additives on the properties of silicon carbide-based ceramics (review). Trudy VIAM, 2019, no. 3 (75), paper no. 09. Available at: http://www.viam-works.ru (accessed: February 18, 2021). DOI: 10.18577/2307-6046-2019-0-3-79-86.
11. Biryukova A.A., Dzhienalyev T.D., Boronina A.V. et al. Influence of modifying additives on the synthesis and properties of cordierite-mullite ceramics from raw materials of Kazakhstan. Nauchnye issledovaniya i razrabotki, 2017, no. 3, pp. 148–152.
12. Lysenko V. Ceramics from magnesium oxide nanopowder: creation and properties. Nanoindustriya, 2016, no. 4, pp. 94–97. DOI: 10.22184/1993-8578.2016.66.4.94.97.
13. Vitkalova I.A., Torlova A.S., Pikalov E.S. Influence of lanthanum oxide on the properties of chemically resistant ceramics obtained using galvanic sludge. Mezhdunarodniy nauchno-issledovatelskiy zhurnal, 2019, no. 10 (88), pp. 35–39.
14. Alekseev R.O., Savinkov V.I., Sigaev V.N. Optical glasses with high values of refractive index and dispersion. Uspekhi v khimii i khimicheskoy tekhnologii, 2018, vol. XXXII, no. 2, pp. 34–36.
15. Chakraborty I.N., Shelby J.E., Condrate R.A. Properties and structure of lanthanum borate glasses. Journal of the American Ceramic Society, 1984, vol. 67, no. 12, pp. 782–785.
16. Betekhin A.G. Mineralogy course. Moscow: Book House «Universitet», 2007. 721 p.
17. Baraz V.R., Levchenko V.P., Povzner A.A. The structure and physical properties of crystals: textbook. Ekaterinburg: USTU-UPI, 2009, 164 p.
Considers possibility of corrosion damage evaluation using eddy current method implemented with surface probe. Comparative analysis of amplitude-phase and phase suppression methods implementation has been conducted. Finite-element model for calculating probe signal response to defects of different corrosion type was designed. Experimental research has been conducted that allowed to verify the designed model and to confirm results gained with mathematical simulation.
2. Lutsenko A.N., Slavin A.V., Erasov V.S., Khvackij K.K. Strength tests and researches of aviation materials. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 527–546. DOI: 10.18577/2071-9140-2017-0-S-527-546.
3. Ospennikova O.G., Napriyenko S.A., Lukina E.A. Study of operational destruction of the GTP compressordisk of alloy VT8. Trudy VIAM, 2018, no. 12 (72), paper no. 11. Available at: http://www.viam-works.ru (accessed: February 2, 2021). DOI: 10.18577/2307-6046-2018-0-12-97-106.
4. Kablov E.N. Modern materials – the basis of innovative modernization of Russia. Metally Evrazii, 2012, no. 3, pp. 10–15.
5. Kablov E.N. Russia in the market of intellectual resources. Ekspert, 2015, no. 28 (951), pp. 48–51.
6. Antipov V.V. Prospects for development of aluminium, magnesium and titanium alloys for aerospace engineering. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 186–194. DOI: 10.18577/2107-9140-2017-0-S-186-194.
7. Lutsenko A.N., Perov N.S., Chabina E.B. The new stages of development of Testing Center. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 460–468. DOI: 10.18577/2071-9140-2017-0-S-460-468.
8. Kulichkova S.I., Golovkov A.N., Kudinov I.I., Laptev A.S. Modern flaw detection materials, equipment and automation of the process of capillary non-destructive testing. Kontrol. Diagnostika, 2019, no. 2, pp. 52–57. DOI: 10.14489/td.2019.02.pp052-057.
9. Golovkov A.N., Kulichkova S.I., Kudinov I.I., Skorobogatko D.S. Analysis of existing test pieces for testing of sensitivity of flaw detection materials during penetrant testing (review). Trudy VIAM, 2019, no. 11 (83), paper no. 11. Available at: http://www.viam-works.ru (accessed: December 23, 2020). DOI: 10.18577/2307-6046-2019-0-11-95-103.
10. Non-destructive testing and diagnostics: reference. Ed. V.V. Klyuev. Moscow: Mashinostroenie, 2003.656 p.
11. Bakunov A.S., Gerasimov V.G., Ostanin Yu.Ya. Eddy current testing with overhead transducers. Moscow: Moscow Energy Institute, 1985, 86 p.
12. Gerasimov V.G., Klyuev V.V., Shaternikov V.E. Methods and devices for electromagnetic control. Moscow: Spektr, 2010, 256 p.
13. Gerasimov V.G., Pokrovsky A.D., Sukhorukov V.V. Non-destructive testing: in 5 books. Moscow: Vysshaya shkola, 1992, book 3: Electromagnetic control, 312 p.
14. GOST 27333–87. Non-destructive testing. Measurement of electrical conductivity of non-ferrous metals by eddy current method. Moscow: Publ. house of standards, 2005, 6 p.
15. Shitikov V.S., Kodak N.P., Golovkov A.N., Kudinov I.I. Analysis of the features of control of parts made of titanium and heat-resistant alloys by the eddy current method for the presence of cracks. Elektrometallurgiya, 2020, no. 8, pp. 20–29. DOI: 10.31044/1684-5781-2020-0-8-20-29.
16. Kutyrev A.E., Chesnokov D.V., Antipov V.V., Vdovin A.I. The development of a solution for promotion of corrosion attack on aluminium alloys in a galvanostatic mode. Trudy VIAM, 2018, no. 9 (69), paper no. 11. Available at: http://www.viam-works.ru (accessed: December 23, 2020). DOI: 10.18577/2307-6046-2018-0-9-105-118.
The question of the quality of samples made of polymer composite materials and its verification by x-ray computed tomography is considered. The capabilities of North Star Imaging X5000 tomograph were studied and the samples from PCM were examined for detection and evaluation of the porosity volume fraction. The factors influencing the accuracy of the estimation of the porosity volume fraction are investigated. Namely the size voxel, a filter material, quantity of projections. On the other hand, the size вокселя defines resolution of the digital image, the relation depends on a material of the applied filter a signal/noise, productivity of control worsens with growth of quantity of projections. The choice of optimum values of the listed parametres is necessary for satisfactory quality received tomographic images.
2. Ivanova D.A., Sitnikova A.I., Shlyapina S.D. Composite materials: textbook. Moscow: Yurayt, 2019, p. 13–15.
3. Kablov E.N., Sagomonova V.A., Sorokin A.E., Tselikin V.V., Gulyaev A.I. Investigation of the structure and properties of a polymer composite material with an integrated vibration-absorbing layer. Vse materialy. Entsiklopedicheskiy spravochnik, 2020, no. 3, p. 2–9.
4. Kablov E.N., Startsev V.O. Systematical analysis of the climatics influence on mechanical properties of the polymer composite materials based on domestic and foreign sources (review). Aviacionnye materialy i tehnologii, 2018, no. 2 (51), pp. 47–58. DOI: 10.18577/2071-9140-2018-0-2-47-58.
5. Troitsky V.A., Karmanov M.N., Troitskaya N.V. Non-destructive quality control of composite materials. Tekhnicheskaya diagnostika i nerazrushayushchiy kontrol. 2014, no. 3, p. 20–33.
6. Vorobe V.V., Markin V.B. Classification of defects in laminated composites. Manufacturing quality control and repair technology for composite structures. Novosibirsk: Nauka, 2006, pp. 20–25.
7. Kartashova E.D., Muizemnek A.Yu. Technological defects in polymer layered composite materials. Izvestiya vysshikh uchebnykh zavedeniy. Povolzhskiy region. Tekhnicheskiye nauki, 2017, no. 2 (42), pp. 79–89.
8. Boychuk A.S., Dikov I.A., Generalov A.S. The increase of sensitivity and resolution of FRP solid samples nondestructive ultrasonic testing using the ultrasonic phased array. Aviacionnye materialy i tehnologii, 2019, no. 3 (56), pp. 83–88. DOI: 10.18577/2071-9140-2019-0-3-83-88.
9. Chertishchev V.Yu. The estimation of the probability of defects detection by the acoustic methods, depending on their size in constructions from PCM for output control data in the form of binary. Aviaсionnye materialy i tehnologii, 2018, no. 3, pp. 65–79. DOI: 10.18577 / 2071-9140-2018-0-3-65-79.
10. Kruth J.P., Bartscher M. Computed tomography for dimensional metrology. CIRP Annals – Manufacturing Technology, 2011, no. 60, pp. 821–842.
11. Demidov A.A., Mikhailova N.A., Krupnina O.A. Estimation of the volume fraction of porosity in samples made of polymer composite materials by x-ray computed tomography. Digital technologies, modeling and automation of non-destructive testing processes in the aerospace industry. Problems and prospects of implementation: materials of the XIII All-Russian. conf. on testing and research of properties of materials «TestMat». Moscow: VIAM, 2021, pp. 114–132.
12. Krupnina O.A., Kosarina E.I., Demidov A.A., Turbin E.M. Choice of modes and parameters of control of aviation equipment by digital radiography method. Kommentarii k standartam, TU, sertifikatam: yezhemesyachnoye prilozheniye k zhurnalu «Vse materialy. Entsiklopedicheskiy spravochnik». 2017, no. 8, pp. 50–51.
13. Kosarina E.I., Demidov A.A., Mikhaylova N.A., Smirnov A.V. Theoretical aspects when creating elec-tronic reference X-ray images containing quantitative information. Aviacionnye materialy i tehnologii, 2019, no. 4 (57), pp. 87–94. DOI: 10.18577/2071-9140-2019-0-4-87-94.
14. Simonov E.N., Kuznetsov K.N. Reconstruction of volumetric images of x-ray computed tomography using holographic methods. Vestnik YuUrGU. Ser.: Kompyuternye tekhnologii, upravlenie, radioelektronika, 2013, vol. 13, no. 3, pp. 77–81.
15. Vinogradova A.A., Kaznacheeva A.O., Musalmov V.M. Fractal analysis of brain tomograms. Izvestiya vuzov. Ser.: Priborostroyenie. 2013, vol. 56, no. 12, pp. 14–19.
16. Gonzalez R., Woods R. Segmentation (image processing). Digital image processing. 3rd ed., rev. and add. Moscow: Tekhnosfera, 2012, pp. 860–865.
17. Chulichkov A.I., Pytev Yu.P., Falomkina O.V., Zubyuk A.V. Methods of morphological analysis of data and their applications. Uchenye zapiski fizicheskogo fakulteta moskovskogo universiteta, 2017, no. 4, art. 1740707. Available at: http://uzmu.phys.msu.ru (accessed: March 30, 2021).
18. Kato M., Takahashi M. Evaluation of porosity and its variation in porous materials using microfocus x-ray computed tomography considering the partial volume effect. Materials Transactions, 2013, no. 9, pp. 1678–1685.
In this work has been investigated the climatic resistance of carbon and fiberglass polymers for aviation purposes based on solvent-free binders VST-1208, VSE-1212, VSR-3M after 3 years of exposure of these materials in the moderate cold climate of Moscow and the moderate warm climate of Gelendzhik. The effect of destruction, post curing, plasticization of binders on the compressive and flexural strengths of carbon plastics VKU-27L, VKU-39, VKU-46 and fiberglass plastics VPS-47/7781, VPS-48/778 was determined using the methods of profilometry, moisture transfer and dynamic mechanical analysis. It is shown that while determining the state of PCM after climatic exposure, it is necessary to take into account the effects of the reversible plasticizing action of moisture. A comparison is made of the climatic resistance of the investigated materials.
2. Kablov E.N., Chursova L.V., Babin A.N., Mukhametov R.R., Panina N.N. Development of FSUE «VIAM» in the field of melt binders for polymer composite materials. Polimernyye materialy i tekhnologii, 2016, vol. 2, no. 2, pp. 37–42.
3. Raskutin A.E. Structural carbon plastics based on new melt-type binders and PORCHER fabrics. Novosti materialovedeniya. Nauka i tekhnika, 2013, no. 5. Art. 01. URL: http://www.materialsnews.ru (accessed: March 28, 2021).
4. Raskutin A.E. Russian polymer composite materials of new generation, their exploitation and implementation in advanced developed constructions. Aviacionnye materialy i tehnologii, 2017, no. S, pp. 349–367. DOI: 10.18577/2071-9140-2017-0-S-349-367.
5. Popov Yu.O., Kolokoltseva T.V., Khrulkov A.V. The new generation of materials and technologies for helicopter blade spars. Aviacionnye materialy i tehnologii, 2014, no. S2, pp. 5–9. DOI: 10.18577/2071-9140-2014-0-S2-5-9.
6. Gunyayeva A.G., Sidorina A.I., Kurnosov A.O., Klimenko O.N. Polymeric composite materials of new generation on the basis of binder VSE-1212 and the filling agents alternative to ones of Porcher Ind. and Toho Tenax. Aviacionnye materialy i tehnologii, 2018, no. 3 (52), pp. 18–26. DOI: 10.18577/2071-9140-2018-0-3-18-26.
7. Startsev O.V., Prokopenko K.O., Litvinov A.A., Krotov A.S., Anikhovskaya L.I., Dementyeva L.A. Investigation of thermal and humidity aging of aviation fiberglass. Klei. Germetiki. Tekhnologii, 2009, no. 8, pp. 18–21.
8. Startsev O.V., Vapirov Yu.M., Deev I.S., Yartsev V.A., Krivonos V.V., Mitrofanova E.A., Chubarova M.A. Influence of prolonged atmospheric aging on the properties and structure of carbon fiber. Mekhanika kompozitnykh materialov, 1986, no. 4, pp. 637–642.
9. Startsev O.V., Meletov V.P., Perov B.V., Mashinskaya G.P. Investigations of the aging mechanism of organotextile in a subtropical climate. Mekhanika kompozitnykh materialov, 1986, no. 3, pp. 462–467.
10. Nikolaev E.V., Barbotko S.L., Andreeva N.P., Pavlov M.R., Grashchenkov D.V. Complex research of influence of climatic and operational factors on new generation epoxy binding and polymeric composite materials on its basis. Part 4. Natural climatic tests of polymeric composite materials on the basis of epoxy matrix. Trudy VIAM, 2016, no. 6, paper no. 11. Available at: http://www.viam-works.ru (accessed: March 28, 2021). DOI: 10.18577/2307-6046-2016-0-6-11-11.
11. Mishurov K.S., Pavlovskiy K.A., Imametdinov E.Sh. fiber reinforced plastic) VKU-27L. Trudy VIAM, 2018, no. 3 (63), paper no. 07. Available at: http://www.viam-works.ru (accessed: March 28, 2021). DOI: 10.18577/2307-6046-2018-0-3-60-67.
12. Mishurov K.S., Mishkin S.I. Environmental effect on properties of CFRP (Carbon Fiber Reinforced Plastic) VKU-39. Trudy VIAM, 2016, no. 12 (48), paper no. 08. Available at: http://www.viam-works.ru (accessed: March 28, 2021). DOI: 10.18577/2307-6046-2016-0-12-8-8.
13. Slavin A.V., Startsev O.V. Properties of aircraft glass- and carbonfibers reinforced plastics at the early stage of natural weathering. Trudy VIAM, 2018, no. 9 (69), paper no. 8. Available at: http://www.viam-works.ru (accessed: March 28, 2021). DOI: 10.18577/2307-6046-2018-0-9-71-82.
14. Blaznov A.N., Zimin D.E., Anisimov E.E., Sinitsyn A.V., Zhurkovsky N.E. Investigation of the durability of composites under load and high humidity. Nauchno-tekhnicheskiy vestnik Povolzhya, 2018, no. 11, pp. 98–101.
15. Andreeva N.P., Pavlov M.R., Nikolaev E.V., Kurnosov A.O. Research of climatic factors influence of cold, temperate (moderate) and tropical climates on properties of construction fibreglass. Trudy VIAM, 2019, no. 3 (75), paper no. 12. Available at: http://www.viam-works.ru (accessed: March 28, 2021). DOI: 10.18577/2307-6046-2019-0-3-105-114.
16. Kablov E.N., Startsev V.O. Systematical analysis of the climatics influence on mechanical properties of the polymer composite materials based on domestic and foreign sources (review). Aviacionnye materialy i tehnologii, 2018, no. 2 (51), pp. 47–58. DOI: 10.18577/2071-9140-2018-0-2-47-58.
17. Kablov E.N., Startsev O.V., Krotov A.S., Kirillov V.N. Climatic aging of composite materials for aviation purposes. I. Mechanisms of aging. Deformatsiya i razrusheniye materialov, 2010, no. 11, pp. 40–46.
18. Kablov E.N., Startsev O.V., Krotov A.S., Kirillov V.N. Climatic aging of composite materials for aviation purposes. II. Relaxation of the initial structural nonequilibrium and the gradient of properties over thickness. Deformatsiya i razrusheniye materialov, 2010, no. 12, pp. 40–46.
19. Panin S.V., Startsev V.O., Course M.G., Varchenko E.A. Development of climate methods mechanical testing of materials for mechanical engineering and construction at the GCCT VIAM named G.V. Akimova. Vse materialy. Entsiklopedicheskiy spravochnik. Kommentarii k standartam, TU, sertifikatam, 2016, no. 10, pp. 50–61.
20. Startsev V.O. Climatic resistance of polymer composite materials and protective coatings in a moderately warm climate: thesis, Dr. Sc. (Tech.). Moscow: VIAM, 2018, 308 p.
21. Nizina T.A., Selyaev V.P., Nizin D.R., Chernov A.N. Influence of the color of polymer composite materials on the mode of operation of protective and decorative coatings under the influence of natural climatic factors. Regional architecture and construction, 2016, no. 1 (26). S. 59–67.
22. Vapirov Y.M., Krivonos V.V., Startsev O.V. Interpretation of the anomalous change in the properties of carbon-fiber-reinforced plastic KMU-1U during aging in different climatic regions. Mechanics of Composite Materials, 1994, vol. 30, pp. 190–194.
23. Filistovich D.V., Startsev O.V., Kuznetsov A.A., Krotov A.S., Anikhovskaya L.I., Dementeva L.A. Effect of moisture on the anisotropy of the dynamic shear modulus of glass-reinforced plastics. Doklady Physics, 2003, vol. 48, no. 6, pp. 306–308.
24. Startseva L.T., Panin S.V., Startsev O.V., Krotov A.S. Moisture diffusion in glass-fiber-reinforced plastics after their climatic aging. Doklady Physical Chemistry, 2014, vol. 456, pp. 77–81.
25. Kablov E.N., Startsev O.V., Panin S.V. Moisture transfer in carbon-fiber-reinforced plastic with degraded surface. Doklady Physical Chemistry, 2015, vol. 461, pp. 80–83.
26. Startseva L.T., Panin S.V., Startsev O.V., Krotov A.S. Diffusion of moisture in fiberglass after their climatic aging. Reports of the Academy of Sciences, 2014, vol. 345, no. 3, pp. 305–309.
27. Kablov E.N., Startsev V.O., Inozemtsev A.A. The moisture absorption of structurally similar samples from polymer composite materials in open climatic conditions with application of thermal spikes. Aviacionnye materialy i tehnologii, 2017, no. 2 (47), pp. 56–68. DOI: 10.18577/2071-9140-2017-0-2-56-68.
28. Startsev O.V., Medvedev I.M., Krotov A.S., Panin S.V. Dependence of the surface temperature of the samples on the characteristics of the climate during exposure in natural conditions. Korroziya: materialy, zashchita, 2013, no. 7, pp. 43–47.
29. Startsev O.V., Sortyakov E.D., Isupov V.V., Nasonov A.D., Skurydin Yu.G., Kovalenko A.A., Nikishin E.F. Acoustic spectroscopy of polymer composite materials exposed in open space. Experimental methods in the physics of structurally inhomogeneous media: Proceedings of All-Rus. Scientific and Technical Conf. Barnaul, 1997. S. 32–39.
30. Startsev O.V., Lebedev M.P. Glass transition temperature and characteristic temperatures of the α-transition of amorphous polymers as exemplified by polymethyl methacrylate. Vysokomolekulyarnyye soyedineniya A, 2018, vol. 60, no. 4S, pp. 3–16.
31. Startsev O.V., Vapirov Yu.M., Lebedev M.P., Kychkin A.K. Comparison of glass-transition temperatures for epoxy polymers obtained by methods of thermal analysis. Mechanics of Composite Materials, 2020, vol. 56, pp. 227–240.
32. Sousa J.M., Correia J.R., Cabral-Fonseca S. Durability of glass fibre reinforced polymer pultruded profiles: comparison between QUV accelerated exposure and natural weathering in a mediterranean climate. Experimental Technique, 2016, vol. 40, pp. 207–219.
33. Hahn H.T. Residual Stresses in Polymer Matrix Composite Laminates. Journal of Composite Materials, 1976, vol. 10, pp. 266–278.
34. Dutta P.K., Hui D. Low-temperature and freeze-thaw durability of thick composites. Composites, part B. 1996, vol. 27, pp. 371–379.
35. Dutta P.K. Durability issues of composites in cold regions. Polymer Composites II. Applications of composites in infrastructure renewal and economic development. CRС Press, 2001, pp. 125–136.
36. Jafari A., Ashrafi H., Bazli M., Ozbakkaloglu T. Effect of thermal cycles on mechanical response of pultruded glass fiber reinforced polymer profiles of different geometries. Composite Structures, 2019, vol. 223, art. 110959.
Authors named |
Position, academic degree |
FSUE «All-Russian scientific research institute of aviation materials» SSC of RF; e-mail:This email address is being protected from spambots. You need JavaScript enabled to view it. |
|
Maria V. Akinina |
Engineer |
Maria S. Alekseeva |
Deputy Head of Laboratory, Candidate of Sciences (Tech.) |
Alexander N. Afanasyev-Khodykin |
Head of Sector |
Kirill L. Besednov |
Engineer |
Maria L. Vaganova |
Head of Laboratory, Candidate of Sciences (Chem.) |
Aleksandr A. Demidov |
Head of Sector |
Valentina S. Denisova |
Head of Sector |
Danil A. Dobrynin |
First Category Engineer |
Sergey G. Eroshkin |
Head of Sector |
Galina F. Zhelezina |
Head of Sector, Candidate of Sciences (Tech.) |
Olga B. Zastrogina |
Deputy Head of Laboratory, Candidate of Sciences (Tech.) |
Viktor I. Ivanov |
Senior Researcher |
Aleksey Yu. Isaev |
Head of Laboratory, Candidate of Sciences (Tech.) |
Fedor N. Karachevtsev |
Head of Laboratory, Candidate of Sciences (Chem.) |
Natalia P. Kodak |
Technician |
Ekaterina I. Kosarina |
Chief Researcher, Doctor of Sciences (Tech.) |
Olga A. Krupnina |
Senior Researcher |
Galina S. Kulagina |
Senior Researcher, Candidate of Sciences (Chem.) |
Natalia Ph. Lukina |
Chief Researcher, Candidate of Sciences (Tech.) |
Galina A. Malinina |
Second Category Engineer, Candidate of Sciences (Chem.) |
Natalya A. Mikhaylova |
Leading Engineer, Candidate of Sciences (Tech.) |
Igor V. Mostayev |
First Category Engineer |
Aleftina P. Petrova |
Chief Researcher, Doctor of Sciences (Tech.) |
Ekaterina A. Prokhorchuk |
Technician |
Yuri V. Reshetnikov |
Engineer |
Ekaterina V. Rubtsova |
Head of Sector |
Evgenia A. Serkova |
Head of Sector |
Andrey V. Slavin |
Head of Testing Center, Doctor of Sciences (Tech.) |
Oleg I. Smirnov |
Engineer |
Valery O. Startsev |
Head of Laboratory, Doctor of Sciences (Tech.) |
Stanislav S. Solntcev |
Assistant to Director General, Doctor of Sciences (Tech.) |
Vyacheslav I. Titov |
Leading Researcher |
Andrey V. Trapeznikov |
Head of Sector |
Vladimir V. Khmelnitskiy |
Engineer |
Vladislav S. Shitikov |
Head of Sector |
Polina M. Shuldeshova |
Second category engineer-technologist |
JSCResearch and Production Enterprise «Termoteks»; e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it. |
|
Tatiana E. Chernykh |
Head of Sector, Candidate of Sciences (Chem.) |