Articles
The purpose of this article was to demonstrate the advantages of computer-aided design (CAD), the example modeling casting details for its production of Ml5pch alloy by sand casting.
The model casting was developed with the help of program complex SolidWorks. For the resulting model casting was designed core boxes and tooling for the manufacture of sand molds. Also, as the configurations of the model was provided for the three most optimal variant of connecting the metal to casting.
For the part were calculated in the software package of computer simulation of casting processes ProCast to determine the best variant of the Gating system. According to the calculations were selected Gating system to ensure the absence of casting defects.
After the full model calculation, the selected method of manufacturing a casting, was printed using additive manufacturing equipment, manufactured and assembled sand cores and mold halves. Then, magnesium alloy ML5pch casting was carried out.
The analysis of the geometry of the resulting castings showed that the use of CAD when designing castings and snap prevented the probable defects (nonfill, deviations from geometric dimensions, Shrinkage depression, etc.). Also, the using of CAD has reduced the cycle time to manufacture the part and to reduce the likelihood of marriage.
The obtained castings have been tested on radiographic non-destructive testing. According to the results of decoding of x-ray images of microremote and other defects were detected.
In the progress of the work was demonstrated the main advantages of CAD, namely the visibility of the design and calculations, the possibility of changes to the model casting and tooling at any stage of the design process.
2. Kablov E.N. VIAM: prodolzheniye puti [VIAM: continuation of the path] // Nauka v Rossii. 2012. №3. S. 36–44.
3. Kablov E.N. Sovremennyye materialy – osnova innovatsionnoy modernizatsii Rossii [Modern materials - the basis of innovative modernization of Russia] // Metally Evrazii. 2012. №3. S. 10–15.
4. Kablov E.N. Osnovnyye itogi i napravleniya razvitiya materialov dlya perspektivnoy aviatsionnoy tekhniki [The main results and directions of the development of materials for advanced aviation technology] // 75 let. Aviatsionnyye materialy. Izbrannyye trudy «VIAM» 1932–2007: yubil. nauch.-tekhnich. sb. M.: VIAM, 2007. S. 20–26.
5. Kablov E.N. Klyuchevaya problema – materialy [The key problem is materials] // Tendentsii i oriyentiry innovatsionnogo razvitiya Rossii. M.: 2015. S. 458–470.
6. Vlasova K.A., Klyukvina T.D., Leonov A.A., Larionov S.A. Vzaimodejstvie modelnykh sostavov s plastikovoj osnastkoj, izgotovlennoj s pomoshchyu tekhnologii 3D-pechati [Interaction of model compositions with plastic equipment made using 3D printing technology] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2018. №2. St. 07. URL: http://www.viam-works.ru (accessed: February 05, 2019). DOI: 10.18577/2307-6046-2018-0-2-7-7.
7. Tekhnologiya liteynogo proizvodstva: lit'ye v peschanyye formy: ucheb. dlya vuzov / pod red. A.P. Trukhova, Yu.A. Sorokina, M.Yu. Ershova i dr. [Foundry technology: sand casting: textbook. for universities / ed. A.P. Trukhov, Yu.A. Sorokin, M.Yu. Ershov et al.]. M.: Akademiya, 2005. 582 s.
8. Shangguan H., Kang J., Deng C. et al. 3D-printed shell – truss sand mold for aluminum castings // Journal of Materials Processing Technology. 2017. Vol. 250. P. 247–253.
9. Duyunova V.A., Nechaykina T.A., Oglodkov M.S., Yakovlev A.L., Leonov A.A. Perspektivnyye razrabotki v oblasti legkikh materialov dlya sovremennoy aviakosmicheskoy tekhniki [Promising developments in the field of light materials for modern aerospace engineering] // Tekhnologiya legkikh splavov. 2018. №4. S. 28–43.
10. Zuev A.V., Loshchinin Yu.V., Barinov D.Ya., Marakhovskij P.S. Raschetno-eksperimentalnye issledovaniya teplofizicheskikh svojstv [Computational and experimental investigations of thermophysical properties] // Aviacionnye materialy i tehnologii. 2017. №S. S. 575–595. DOI: 10.18577/2071-9140-2017-0-S-575-595.
11. Fu J., Wang K. Modelling and Simulation of Die Casting Process for A356 Semi-solid Alloy // Procedia Engineering. 2014. Vol. 81. P. 1565–1570.
12. Ngo T.D., Kashani A., Imbulzano G. et al. Additive manufacturing (3D printing): a review of materials, methods, applications and challenges // Composites Part B: Engineering. 2018. Vol. 143. P. 172–196.
13. Mikhaylova A.E., Doshina A.D. 3D printer – tekhnologiya budushchego [3D printer – technology of the future] // Molodoy uchenyy. 2015. №20. S. 40–44. Available at: https://moluch.ru/archive/100/22467/ (accessed: February 05, 2019).
14. Volkova E.F., Duyunova V.A. O sovremennykh tendentsiyakh razvitiya magniyevykh splavov [On current trends in the development of magnesium alloys] // Tekhnologiya legkikh splavov. 2016. №3. S. 94–105.
15. Trofimov N.V., Leonov A.A. Protivoprigarnyye pokrytiya, ispolzuyemyye dlya litya form i sterzhney iz KhTS, primenyayemykh pri litye magniyevykh splavov (obzor) [Nonstick coating is used for molds and cores of the CTS used in the casting magnesium alloys (review)] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2017. №12 (60). St. 10. Available at: http://www.viam-works.ru (accessed: February 13, 2019). DOI: 10.18577/2307-6046-2017-0-12-10-10.
16. Klyukvina T.D., Vlasova K.A., Leonov A.A., Yashina S.A. Izuchenie mekhanizma obrazovaniya prochnosti v samotverdeyushchikh smesyakh s fenolnym svyazuyushchim (obzor) [Study of the mechanism of formation of strength in self-hardening mixtures with a phenolic binder (review)] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2018. №3. St. 03. Available at: http://viam-works.ru (accessed: Mart 21, 2019). DOI: 10.18577/2307-6046-2018-0-3-18-27.
17. Kang H.T., Ostrom T. Mechanical behavior of the cast and forged magnesium alloys and their microstructures // Material Science and Engineering: A. 2008. Vol. 490. Issue 1–2. P. 52–56.
18. Chen L., Wang Y., Peng L. et al. Study on the interfacial heat transfer coefficient between AZ91D magnesium alloy and silica sand // Experimental Thermal and Fluid Science. 2014. Vol. 54. P. 196–203.
19. Bruna M., Bolgibruchova D., Pastircak R. Numerical Simulation of Porosity for Al Based Alloys // Procedia Engineering. 2017. Vol. 177. P. 488–495.
20. Koktsinskaya E.M. Tekhnologiya 3D-pechati: obzor poslednikh novostey [3D printing technology: a review of the latest news] // Videonauka. 2016. №2 (2). Available at: https://cyberleninka.ru/article/n/tehnologiya-3d-pechati-obzor-poslednih-novostey (accessed: February 05, 2019).
21. Platonov M.M., Petrova G.N., Larionov S.A., Barbotko S.L. Optimizatsiya sostava polimernoy kompozitsii s ponizhennoy pozharnoy opasnostyu na osnove polikarbonata dlya tekhnologii 3D-pechati rasplavlennoy polimernoy nityu [Optimization of the composition of the polymer composition with reduced fire hazard based on polycarbonate for 3D printing technology with molten polymer thread] // Izvestiya vuzov. Ser.: Khimiya i khimicheskaya tekhnologiya. 2017. T. 60. №1. S. 87–94.
22. Smirnov O.I., Skorodumov S.V. Modelirovaniye tekhnologii posloynogo sinteza pri razrabotke izdeliy slozhnoy formy [Modeling the technology of layer-by-layer synthesis in the development of products of complex shape] // Sovremennyye naukoyemkiye tekhnologii. 2010. №4. S. 83–87.
23. Dudek P. FDM 3D printing technology in manufacturing composite elements // Archives of Metallurgy and Materials. 2013. Vol. 58. Issue 4. DOI: 10.2478/amm-2013-0186.
24. Lakedemonskiy A.V., Kvasha F.S., Mendeleyev Ya.I. i dr. Liteynye defekty i sposoby ikh ustraneniya [Foundry defects and methods for their elimination]. M.: Mashinostroyeniye, 1972. 152 s.
25. Proizvodstvo tochnykh otlivok [Production of precision castings] / I. Doshkarzh, Ya. Gabriyel, M. Gousht, M. Pavelka . M.: Mashinostroyeniye, 1979. 296 s.
26. Boychuk A.S. Nerazrushayushchiy kontrol detaley i konstruktsiy aviatsionnoy tekhniki iz polimernykh kompozitsionnykh materialov pri ispolzovanii ultrazvukovykh fazirovannykh reshetok [Non-destructive testing of parts and structures of aircraft from polymer composite materials using ultrasonic phased arrays] // Tez. dokl. 19-y Vseros. nauch.-tekhnich. konf. po nerazrushayushchemu kontrolyu i tekhnicheskoy diagnostike. Samara, 2011. S. 289–291.
27. Zhukovskiy S.S. Kholodnotverdeyushchiye svyazuyushchiye smesi dlya liteynykh sterzhney i form: spravochnik [Cold hardening binders for foundry cores and molds: reference]. M.: Mashinostroyeniye, 2010. 256 s.
This article discusses the influence of the spheroidization process on the morphology, microstructure and fractional composition of the VKNA-4U alloy reinforced with Al2O3-Y2O3 particles.
For the study, the matrix alloy VKNA-4U reinforced with nanosized powder Al2O3-Y2O3 was used. The matrix alloy was melted from the initial charge blanks for VKNA-4U alloy in an induction furnace. Obtaining powder matrix alloy VKNA-4U carried out by the method of gas atomization. Nanosized oxide Al2O3-Y2O3, was obtained in the plasma torch at the Institute of Metallurgy and Materials Science named A.A. Baykova RAS. Mechanical alloying of the powder alloy VKNA-4U and the hardener Al2O3-Y2O3 was carried out in an attritor. The powder processing of the alloy VKNA-4U reinforced with dispersed particles Al2O3-Y2O3 was processed in a plasma-chemical installation.
Plasma processing when creating spherical composite cermet powders allows to correct machining defects - to make the shape of particles more round and smooth, thereby improving the fluidity of the material, due to the melting of the matrix material and for better contact of the particles of cermet powder with further compaction.
During the experiment, it was found that the process of spheroidization significantly affects the morphology of the particles. Studies show how the morphology of particles changes. After machining, the particles have a fragmentation shape. Due to the process of spheroidization, the particles take a rounded shape, which affects such a parameter as fluidity, which is necessary for use in plants for additive manufacturing.
When analyzing the microstructure, it was found that the particles of the reinforcing f
2. Tjong S.C. Novel nanoparticle-reinforced metal matrix composites with enhanced mechanical properties // Advanced Engineering Materials. 2007. Vol. 9. P. 639–652.
3. Sanaty-Zadeh A. Comparison between current models for the strength of particulate-reinforced metal matrix nanocomposites with emphasis on consideration of Hall–Petch effect // Materials Science and Engineering. 2012. Vol. 531. P. 112–118.
4. Viswanathan V., Laha T., Balani K. et al. Challenges and advances in nanocomposite processing techniques // Materials Science and Engineering: R. 2006. Vol. 54 (5). P. 121–285.
5. Dovbysh V.M., Zabednov P.V., Zlenko M.A. Additivnyye tekhnologii i izdeliya iz metalla [Additive technologies and metal products]. Available at: http://nami.ru/upload/AT_metall.pdf (accessed: October 08, 2019).
6. Frazier W.E. Metal Additive Manufacturing: A Review // Journal of Materials Engineering and Performance. 2014. Vol. 23(6). P. 1917–1928.
7. Emmelmann C., Kranz J., Herzog D., Wycisk E. Laser Additive Manufacturing of Metals, Laser Technology in Biomimetics // Biological and Medical Physics, Biomedical Engineering. 2013. P. 143–162.
8. Kumar S., Kruth J.-P. Composites by rapid prototyping technology // Materials and Design. 2010. Vol. 31. P. 850–856.
9. Song B., Dong S., Coddet C. Rapid in-situ fabrication of Fe/SiC bulk nanocomposites by selective laser melting directly from a mixed powder of micro-sized Fe and micro-sized SiC // Scripta Materialia. 2014. Vol. 75. P. 90–93.
10. Dadbakhsh S., Hao L., Jerrard P.G.E., Zhang D.Z. Experimental investigation on selective laser melting behaviour and processing windows of in situ reacted Al/Fe2O3 powder mixture // Powder Technology. 2012. Vol. 231. P. 112–121.
11. Simchi A., Godlinski D. Effect of SiC particles on the laser sintering of Al–7Si–0.3Mg alloy // Scripta Materialia. 2008. Vol. 59. No. 2. P. 199–202.
12. Singha S.S., Royb D., Mitraa R. et al. Studies on laser sintering of mechanically alloyed Al50Ti40Si10 composite // Materials Science and Engineering: A. 2009. Vol. 501. No. 1–2. P. 242–247.
13. Gua D., Meiners W. Microstructure characteristics and formation mechanisms of in situ WC cemented carbide based hardmetals prepared by Selective Laser Melting // Materials Science and Engineering: A. 2010. Vol. 527. No. 29–30. P. 7585–7592.
14. Gu D., Shen Y., Lu Z. Preparation of TiN–Ti5Si3 in-situ composites by Selective Laser Melting // Materials Letters. 2009. Vol. 63. No. 18–19. P. 1577–1579.
15. Gu D., Wang Z., Shen Y. et al. In-situ TiC particle reinforced Ti–Al matrix composites: Powder preparation by mechanical alloying and Selective Laser Melting behavior // Applied Surface Science. 2009. Vol. 255. No. 22. P. 9230–9240.
16. Zhang D., Cai Q., Liu J., He J., Li R. Microstructural evolvement and formation of selective laser melting W–Ni–Cu composite powder // The International Journal of Advanced Manufacturing Technology. 2013. Vol. 67. P. 2233–2242.
17. Biedunkiewicz A., Biedunkiewicz W., Figiel P., Grzesiak D. Preparation of stainless steel-TiC composite by selective laser melting // Chemike Listy. 2011. Vol. 105. P. 773–774.
18. Ghosh S.K., Saha P., Kishore S. Influence of size and volume fraction of SiC particulates on properties of ex situ reinforced Al–4.5Cu–3Mg metal matrix composite prepared by direct metal laser sintering process // Materials Science and Engineering. A. 2010. Vol. 527. No. 18–19. P. 4694–4701.
19. Nizkotemperaturnaya plazma / pod red. M.F. Zhukova [Low-temperature plasma / ed. M.F. Zhukov]. Novosibirsk: Nauka, 1999. T.17: Elektrodugovyye generatory termicheskoy plazmy. 712 s.
20. Tsvetkov Yu.V., Panfilov S.A. Nizkotemperaturnaya plazma v protsessakh vosstanovleniya [Low-temperature plasma in the recovery process]. M.: Nauka, 1980. 360 s.
21. Tsvetkov Yu.V. Plasma metallurgy. Current state, problems and prospects // Pure and Applied Chemistry. 1999. Vol. 71. No. 10. P. 1853–1862.
22. Alekseev N.V., Grechikov M.I., Samokhin A.V., Tsvetkov Yu.V. Upravleniye dispersnostyu metallicheskikh poroshkov, poluchayemykh v protsessakh plazmennogo vosstanovleniya [Dispersion control of metal powders obtained in plasma reduction processes] // Fizika i khimiya obrabotki materialov. 1997. №6. S. 54–60.
23. Alekseev N.V., Samokhin A.V., Tsvetkov Yu.V. Sintez nanoporoshkov karbonitrida titana pri vzaimodeystvii tetrakhlorida titana s uglevodorodno-vozdushnoy plazmoy [Synthesis of nanopowders of titanium carbonitride in the interaction of titanium tetrachloride with hydrocarbon-air plasma] // Khimiya vysokikh energiy. 1999. T. 33. №3. S. 238–242.
24. Alekseyv N.V., Balikhin I.L., Kurkin E.N. i dr. Formirovaniye ultradispersnogo poroshka oksida alyuminiya v usloviyakh ogranichennoy strui vozdushnoy plazmy [The formation of ultrafine aluminum oxide powder in a limited jet of air plasma] // Fizika i khimiya obrabotki materialov. 1994. №4–5. S.72–78.
25. Alekseev N.V., Agafonov K.N., Kurkin E.N. i dr. Sintez nanochastits oksida alyuminiya pri okislenii metalla v potokakh termicheskoy plazmy [Synthesis of aluminum oxide nanoparticles during metal oxidation in thermal plasma flows] // Fizika i khimiya obrabotki materialov. 1997. №3. S. 33–38.
26. Plazmennaya ustanovka dlya polucheniya nanoporoshkov: pat. 2311225. Ros. Federatsiya. №2006110838/15 [Plasma apparatus for producing nanopowders: pat. 2311225. Rus. Federation. No. 2006110838/15]; zayavl. 05.04.06; publ. 27.11.07.
27. Kotlyarov V.I., Beshkarev V.T., Kartsev V.E. i dr. Polucheniye sfericheskikh poroshkov dlya additivnykh tekhnologiy na osnove metallov IV gruppy [Obtaining spherical powders for additive technologies based on metals of group IV] // Fizika i khimiya obrabotki materialov. 2016. №2. S. 63–70.
28. Tsvetkov Yu.V., Samokhin A.V., Fadeyev A.A. i dr. Sferoidizatsiya metallicheskikh poroshkov v termicheskoy plazme elektrodugovogo razryada [Spheroidization of metal powders in thermal plasma of an electric arc discharge] // Tekhnologiya legkikh splavov. 2016. №2. S.19–24.
29. Kotlyarov V.I., Beshkarev V.T., Yuzhakova E.A. i dr. Puti povysheniya kachestva poroshkov na osnove titana dlya additivnykh tekhnologiy [Ways to improve the quality of titanium-based powders for additive technologies] // Sb. dokl. III Vseros. nauch.-tekhnich. konf. «Rol' fundamental'nykh issledovaniy pri realizatsii «Strategicheskikh napravleniy razvitiya materialov i tekhnologiy ikh pererabotki na period do 2030 goda». M.: VIAM, 2016. S. 18.
30. Kotlyarov V.I., Beshkarev V.T., Kartsev V.E. i dr. Polucheniye poroshkov na osnove titana dlya additivnykh tekhnologiy [Obtaining powders based on titanium for additive technologies] // Sb. dokl. II Mezhdunar. konf. «Additivnyye tekhnologii: nastoyashcheye i budushcheye». M.: VIAM, 2016. S. 2.
31. Popovich A.A., Razumov N.G., Grigorev A.V. i dr. Polucheniye poroshka splava Nb–16Si metodom mekhanicheskogo legirovaniya i sferoidizatsii v termicheskoy plazme elektrodugovogo razryada dlya additivnykh tekhnologiy [Obtaining Nb–16Si alloy powder by mechanical alloying and spheroidization in thermal plasma of an electric arc discharge for additive technologies] // Izvestiya vuzov. Poroshkovaya metallurgiya i funktsional'nyye pokrytiya. 2017. T. 3. S. 32–40.
32. Fadeyev A.A. Sferoidizatsiya poroshka nerzhaveyushchey stali v termicheskoy plazme elektrodugovogo razryada [Spheroidization of stainless steel powder in thermal plasma of an electric arc discharge] // Sb. dokl. XIII Ros. yezhegod. konf. molodykh nauchnykh sotrudnikov i aspirantov «Fiziko-khimiya i tekhnologiya neorganicheskikh materialov». M.: IMET RAN, 2016. S. 243–245.
33. Sposob polucheniya uzkofraktsionnykh sfericheskikh poroshkov iz zharoprochnykh splavov na osnove alyuminida nikelya: pat. 2681022 Ros. Federatsiya. №2018123137 [A method of obtaining narrow fractional spherical powders from heat-resistant alloys based on nickel aluminide: pat. 2681022 Rus. Federation. No. 2018123137]; zayavl. 26.06.18; publ. 01.03.19.
34. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
35. Kablov E.N., Bondarenko Yu.A., Echin A.B. Razvitiye tekhnologii napravlennoy kristallizatsii liteynykh vysokozharoprochnykh splavov s peremennym upravlyayemym temperaturnym gradiyentom [Development of technology of cast superalloys directional solidification with variable controlled temperature gradient] // Aviacionnyye materialy i tehnologii. 2017. №S. S. 24–38. DOI: 10.18577/2071-9140-2017-0-S-24-38.
36. Ospennikova O.G., Podieiachev V.N., Stoliankov Yu.V. Tugoplavkie splavy dlia novoi tekhniki [Refractory alloys for innovative equipment] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2016. №10. St. 05. Available at: http://www.viam-works.ru (accessed: April 10, 2019). DOI:10.18577/2307-6046-2016-0-10-5-5.
37. Kablov E.N., Buntushkin V.P., Bazyleva O.A. Konstruktsionnyye zharoprochnyye materialy na osnove soyedineniya Ni3Al dlya detaley goryachego trakta GTD [Heat-resistant structural materials based on the Ni3Al compound for the details of a hot gas turbine engine] // Tekhnologiya legkikh splavov. 2007. №2. S. 75−80.
38. Ospennikova O.G., Bazyleva O.A., Evgenov A.G., Arginbayeva E.G., Turenko Ye.Yu. Mikrostrukturnyye i fazovyye prevrashcheniya v intermetallidnom splave na osnove Ni3Al posle vozdeystviya termicheskoy obrabotki i goryachego izostaticheskogo pressovaniya [Microstructural and phase transformations in intermetalliс Ni3Al-based alloy after heat treatment and hot isostatic pressing] // Aviacionnyye materialy i tehnologii. 2016. №S1. S. 36–43. DOI: 10.18577/2071-9140-2016-0-S1-36-43.
The basic methods of molding PCM products are considered. For a more detailed analysis of the distinctive features, advantages and disadvantages, it is proposed to consider methods for obtaining products from PCM in accordance with the classification:
– prepreg methods – methods of molding products from polymer composite materials in which prefabricated semi-finished products are used – prepregs, reinforcing fillers, impregnated with a binder; among these methods, the article examined: pressing, autoclave molding, the automated strip laying method (ATL – Automated Tape Laying) and the automated fiber laying method (AFP – Automated Fiber Placement);
– direct process (direct process) – methods of forming products from polymer composite materials, which do not require preparation of the prepreg, due to which the molding takes place in one technological cycle, in the amount of forming equipment; among these methods, the article examined: infusion, pressure impregnation (RTM – Resin Transfer Molding), film binder impregnation (RFI – Resin Film Infusion);
– other methods – this class of processing methods includes methods in which the use of prepregs is not mandatory, and with certain technological features with these methods, the molding of a product can be carried out in one technological operation; also, molding methods were assigned to this class, the use of which to obtain PCM products for use in the aviation industry is not advisable, due to insufficient control of the parameters of the molded product during production and, as a result, the high probability of obtaining the final product, with properties not satisfying product requirements; among these methods, the article examined: winding method and contact molding methods (manual calculation method and calcu
2. Kablov E.N., Startsev V.O. Sistemnyj analiz vliyaniya klimata na mekhanicheskie svojstva polimernykh kompozitsionnykh materialov po dannym otechestvennykh i zarubezhnykh istochnikov (obzor) [Systematical analysis of the climatics influence on mechanical properties of the polymer composite materials based on domestic and foreign sources (review)] // Aviacionnye materialy i tehnologii. 2018. №2 (51). S. 47–58. DOI: 10.18577/2071-9140-2018-0-2-47-58.
3. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
4. Raskutin A.E. Strategiia razvitiia polimernykh kompozitsionnykh materialov [Development strategy of polymer composite materials] // Aviaсionnye materialy i tehnologii. 2017. №S. S. 344–348. DOI: 10.18577/2071-9140-2017-0-S-344-348.
5. Bychkov R.A. Fizika i khimiya materialov pokrytiy: ucheb.-metod. posobiye [Physics and chemistry of coating materials: tutorial]. M.: MGAPI, 2004. 268 s.
6. Dzhogan O.M., Kostenko O.P. Metody propitki pod davleniyem [Pressure impregnation methods] // Voprosy proyektirovaniya i proizvodstva konstruktsiy letatelnykh apparatov. 2011. №4. S. 111–125.
7. Kogan D.I. Tekhnologiya izgotovleniya polimernykh kompozitsionnykh materialov sposobom propitki plenochnymi svyazuyushchimi: dis. … kand. tekhn. nauk [The manufacturing technology of polymer composite materials by the method of impregnation with film binders: thesis, Cand. Sc. (Tech.)]. M.: VIAM, 2011. 139 s.
8. Kallister U., Ritvich D. Materialovedeniye: ot tekhnologii k primeneniyu (metally, keramika, polimery) [Material science: from technology to application (metals, ceramics, polymers).]. SPb.: Nauchnyye osnovy i tekhnologii, 2011. 896 s.
9. Balakirev V.S., Zayev A.V., Bolshakov A.A. i dr. Avtomatizirovannyye proizvodstva izdeliy iz kompozitsionnykh materialov [Automated production of products from composite materials]. M.: Khimiya, 1990. 240 s.
10. Trostyanskaya E.B., Golovkin G.S., Dmitrenko V.P. i dr. Perspektivnyye PKM i progressivnyye tekhnologii proizvodstva iz nikh elementov konstruktsii LA [Promising PCM and advanced technologies for the production of aircraft structural elements from them] // Aviatsionnaya promyshlennost. 1987. №2. S. 37–42.
11. Bratukhin A.G., Bogolyubov V.S., Sirotkin O.S. Tekhnologiya proizvodstva izdeliy i integralnykh konstruktsiy iz kompozitsionnykh materialov v mashinostroyenii [Technology for the production of products and integrated structures from composite materials in mechanical engineering]. M.: Gotika, 2003. 516 s.
12. Dushin M.I., Hrulkov A.V., Muhametov R.R. Vybor tehnologicheskih parametrov avtoklavnogo formovaniya detalej iz polimernyh kompozicionnyh materialov [A choice of technological parameters of autoclave formation of details from polymeric composite materials] // Aviacionnye materialy i tehnologii. 2011. №3. S. 20–26.
13. Kolosov A.E., Repelis I.A., Khozin V.G., Klyavin V.V. Propitka voloknistykh napolniteley polimernym svyazuyushchim [The impregnation of fibrous fillers with a polymer binder] // Mekhanika kompozitnykh materialov. 1988. №3. S. 490–496.
14. Fisher K. Autoclave quality outside the autoclave? // High-Performance Composites. 2006. Vol. 21. No. 2. P. 14–23.
15. MS-21 – layner s «chernym» krylom [MS-21 is a liner with a «black» wing] // Aviatsiya Rossii^ internet-portal. Available at: http://www.aviation21.ru (accessed: October 18, 2019).
16. Nelyub V.A., Grashchenkov D.V., Kogan D.I., Sokolov I.A. Primeneniye pryamykh metodov formovaniya pri proizvodstve krupnogabaritnykh detaley iz stekloplastikov [The use of direct molding methods in the production of large-sized parts from fiberglass] // Khimicheskaya tekhnologiya. 2012. №12. S. 735–739.
17. Gusev Yu.A., Borshhev A.V., Khrulkov A.V. Osobennosti prepregov dlya avtomatizirovannoj vykladki metodami ATL i AFP [Features of prepregs intended for automated laying by ATL and AFP technologies] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №3. St. 06. Available at: http://www.viam-works.ru (accessed: September 19, 2019). DOI: 10.18577/2307-6046-2015-0-3-6-6.
18. Sloan J. ATL and AFP: defining the megatrends in composite aerostructures // High Performance Composites. 2008. Vol. 22. No. 6. P. 20–25.
19. Komarov V.A., Kurkin E.I., Kuznetsov A.S. Issledovaniye i modifikatsiya osnastki i formoobrazuyushchey poverkhnosti s tselyu povysheniya tochnosti izgotovleniya detaley metodom vakuumnoy infuzii [Research and modification of tooling and shaping surface in order to increase the accuracy of manufacturing parts by vacuum infusion] // Izvestiya Samarskogo nauchnogo tsentra RAN. 2013. T. 15. №6 (3). Available at: https://cyberleninka.ru (accessed: November 05, 2019).
20. Dushin M. I., Hrulkov A.V., Muhametov R.R., Chursova L.V. Osobennosti izgotovleniya izdelij iz PKM metodom propitki pod davleniem [Features of manufacturing of products from PCM impregnation method under pressure] // Aviacionnye materialy i tehnologii. 2012. №1. S. 18–26.
21. Metod vakuumnoy infuzii i oblasti yeye primeneniya. Ustanovki vakuumnoy infuzii // Oborudovanie dlya sozdaniya i podderzhaniya vakuuma. Laboratornye i promyshlennye vakuumnye sistemy I termicheskoe oborudovanie. Available at: http://www.uksim-oz.ru (accessed: October 18, 2019).
22. Vacuum injection process for manufacturing fiber reinforced composite products involves evacuating second chamber causing resin to flow into preform in adjacent evacuated first chamber: pat. 10013409 DE; filed 17.03.00; publ. 23.11.00.
23. Ivanov M.S., Nesterova T.A., Platonov M.M. Polupronitsayemyye membrany dlya protsessa vakuumnoy infuzii PKM (obzor) [Semipermeable membranes for vacuum infusion molding of polymer composite materials (review)] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2017. №2 (50). St. 07. Available at: http://www.viam-works.ru (accessed: October 21, 2019). DOI: 10.18577/2307-6046-2017-0-2-7-7.
24. Chursova L.V., Dushin M.I., Khrulkov A.V., Mukhametov R.R., Kogan D.I., Popov Yu.O. Osobennosti tekhnologii izgotovleniya detaley iz kompozitsionnykh materialov metodom propitki pod davleniyem [Features of the technology for manufacturing parts from composite materials by pressure impregnation] // Tez. dokl. Mezhotrasl. nauch.-tekhn. konf. «Kompozitsionnyye materialy v aviakosmicheskom materialovedenii». M., 2009. S. 22–25.
25. Tekhnologii [Technologies] // Kompaniya «Sovremennyye polimernyye tekhnologii»: ofits. sayt. Available at: http://www.apotech.ru (accessed: October 18, 2019).
26. Gurevich Ya.M., Platonov A.A. Plenochnyye svyazuyushchiye dlya RFI-tekhnologii [Film binders for RFI technology] // Rossiyskiy khimicheskiy zhurnal. 2010. T. LIV: Materialy dlya aviakosmicheskoy tekhniki. S. 63–67.
27. Timoshkov P.N., Platonov A.A., Hrulkov A.V. Propitka plenochnym svyazuyushhim (RFI) kak perspektivnaya bezavtoklavnaya tehnologiya polucheniya izdelij iz PKM [Film resin infusion as an advanced method for out-of-autoclave processing of polymer composites] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №5. St. 09. Available at: http://www.viam-works.ru (accessed: November 05, 2019). DOI: 10.18577/2307-6046-2015-0-5-9-9.
28. Rudd C.D., Long A.C., Kendall K.N., Mangin C.G.E. Liquid Moulding Technologies. Woodhead Publishing and SAE International, 1997. P. 42–57.
29. Ispolzovaniye kompozitov v vetroenergetike // Eksperimentalnyj zavod kompozitnykh materialov: ofits. sayt. Available at: http://www.ezkm.ru (accessed: October 18, 2019).
30. Vlasov S.V., Kandyrin L.B., Kuleznev A.V. i dr. Osnovy tekhnologii pererabotki plastmass [Fundamentals of plastics processing technology]. M.: Khimiya, 2004. 600 s.
31. Kholodnikov Yu.V. Sposoby izgotovleniya izdeliy iz kompozitov [Methods of manufacturing products from composites] // Mezhdunarodnyy zhurnal prikladnykh i fundamentalnykh issledovaniy. 2016. №6. S. 214–221.
32. Zuyev A.S., Emashev A.Yu., Shaydurova G.I. Analiz osobennostey izgotovleniya izdeliy iz polimernykh kompozitsionnykh materialov metodom namotki. Formoobrazuyushchiye opravki [Analysis of the features of manufacturing products from polymer composite materials by winding. Forming mandrels] // Vestnik Moskovskogo gosudarstvennogo tekhnicheskogo universiteta im. N.E. Baumana. Ser.: Mashinostroyeniye. 2018. №3. S. 4–11.
33. Kryzhanovskiy V.K., Kerber M.L., Burlov V.V. Proizvodstvo izdeliy iz polimernykh materialov [Production of products from polymeric materials]. SPb.: Professiya, 2004. 464 s.
34. Metod ruchnoy vykladki (kontaktnoye formovaniye) [Manual calculation method (contact molding)] // Naucho-proizvodstvennoe predpriyatie «Polet»: ofits. sayt. Available at: http://www.npppolet.ru (accessed: October 18, 2019).
35. Tekhnologii [Technologyies] // Kompaniya «Empire-boats»: ofits. sayt. Available at: http:// www.empire-boats.ru (accessed: October 18, 2019).
The use of polymeric spheroplasts on the basis of new high-strength binders in the composition of multilayer structures with carbon or fiberglass casings with a high level of physicomechanical, dielectric and thermal characteristics in various operating conditions, including when exposed to high temperatures and in conditions of high humidity, opens broad prospects. In addition to ensuring the process of combining the elements of honeycomb structures, spheroplast during operation participates in the perception and transmission of acting loads, while maintaining the specified level of strength and durability of the joint. To obtain a spheroplastic filler, the study of the rheological behavior of a polymer base based on epoxy oligomer and the effect of dispersed fillers on the viscosity of the material is required. Epoxy oligomer should have a reduced viscosity at temperatures up to 100 ° C for the smooth introduction of dispersed fillers and reduce the load on the equipment during the synthesis of the polymer base. The paper presents 2 methods for regulating the viscosity of spheroplasts: the first method is to change the ratio of the content of hollow glass microspheres, the second is based on the addition of a highly dispersed component of aerosil. This method is very effective in those cases where high requirements for weight and improved compressive strength properties are imposed on the cured spheroplasty.
As a result of the work carried out, the choice of parameters was made and the ratios of the components of aggregate-spheroplastic brand VZ-21 were calculated. Samples of the polymer base and spheroplastic filler brand VZ-21 were manufactured and investigated.
The spheroplastic filler of the brand VZ-21 is designed to fill sections of multi-layer honeycomb structures in order to improve the physicomechanical characteristics of aircraft wing mechanizati
2. Kablov E.N. Iz chego sdelat budushcheye? Materialy novogo pokoleniya, tekhnologii ikh sozdaniya i pererabotki – osnova innovatsiy [What to make the future of? Materials of a new generation, technologies for their creation and processing – the basis of innovation] // Krylya Rodiny. 2016. №5. S. 8–18.
3. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
4. Kablov E.N. Materialy – osnova lyubogo dela [Materials are the basis of any business] // Delovaya slava Rossii. 2013. №2. S. 4–9.
5. Kostyukov V.I. Primeneniye konstruktsionnykh plastmass v proizvodstve letatelnykh apparatov [The use of structural plastics in the manufacture of aircraft]. M.: Mashinostroyeniye, 1971. S. 192–196.
6. Zakharov A.G., Anoshkin A.N., Kop'v V.F. Issledovaniye novykh vidov zapolniteley iz polimernykh kompozitsionnykh materialov dlya mnogosloynykh zvukopogloshchayushchikh konstruktsiy [The study of new types of aggregates made of polymer composite materials for multilayer sound-absorbing structures] // Vestnik Permskogo natsionalnogo issledovatelskogo politekhnicheskogo universiteta. Ser.: Aerokosmicheskaya tekhnika. 2017. №51. S. 95–103.
7. Kostyukov V.I. Stekloplastiki na osnove kapillyarnykh steklyannykh volokon i mikrosfer [Fiberglass based on capillary glass fibers and microspheres] // Aviatsionnyye materialy na rubezhe XX–XXI vekov. M.: VIAM, 1994. S. 197–203.
8. Pavlyuk B.Ph. Osnovnye napravleniya v oblasti razrabotki polimernyh funktsionalnyh materialov [The main directions in the field of development of polymeric functional materials] // Aviacionnye materialy i tehnologii. 2017. №S. S. 388–392. DOI: 10.18577/2071-9140-2017-0-S-388-392.
9. Petrova A.P., Mukhametov R.R., Shishimirov M.V., Pavlyuk B.Ph., Starostina I.V. Metody ispytaniy i issledovaniy termoreaktivnykh svyazuyushchikh dlya polimernykh kompozitsionnykh materialov (obzor) [Test methods and researches thermosetting binding for polymeric composite materials (review)] // Trudy VIAM: elektron. nauch.-tekhnich. zhurnal. 2018. №12 (72). St. 07. Available at: http://viam-works.ru (accessed: March 25, 2019). DOI: 10.18577/2307-6046-2018-0-12-62-70.
10. Sokolov I.I. Sferoplastiki na osnove termoreaktivnykh svyazuyushchikh dlya izdeliy aviatsionnoy tekhniki: dis. …kand. tekhn. nauk [Spheroplastics based on thermosetting binders for aircraft products: thesis, Cand. Sc. (Tech.)]. M., 2013. 127 s.
11. Kirillov V.N., Vapirov Yu.M., Drozd E.A. Issledovanie atmosfernoj stojkosti polimernyh kompozicionnyh materialov v usloviyah atmosfery teplogo vlazhnogo i umerenno teplogo klimata [Research of atmospheric firmness of polymeric composite materials in the conditions of the atmosphere of warm wet and moderately warm climate] // Aviacionnye materialy i tehnologii. 2012. №4. S. 31–38.
12. Sokolov I.I., Minakov V.T. Sferoplastiki aviatsionnogo naznacheniya na osnove epoksidnykh kleyev i dispersnykh napolniteley [Spheroplastics for aviation purposes based on epoxy adhesives and dispersed fillers] // Klei. Germetiki. Tekhnologii. 2012. №5. S. 22–26.
13. Sokolov I.I., Kogan D.I., Raskutin A.E., Babin A.N., Filatov A.A., Morozov B.B. Mnogosloynyye konstruktsii so sferoplastikom dlya izdeliy aviatsionnoy tekhniki [Multilayer structures with spheroplastics for aircraft products] // Konstruktsii iz kompozitsionnykh materialov. 2014. №1 (133). S. 37–42.
14. Berlin A.A., Shutov F.A. Uprochnennyye gazonapolnennyye plastmassy. Sintaktnye penoplasty [Hardened gas-filled plastics. Syntactic foams]. M.: Khimiya, 1980. S. 158–215.
15. Panin V.F., Gladkikh Yu.A. Konstruktsii s zapolnitelem: spravochnik [Constructions with a placeholder: reference]. M.: Mashinostroyeniye, 1991. 272 s.
16. Kutsevich K.E., Tyumeneva T.Yu., Petrova A.P. Vliyaniye napolniteley na svoystva kleyevykh prepregov i PKM na ikh osnove [Influence of fillers on properties of adhesive prepregs and PCM on their basis] // Aviacionnye materialy i tehnologii. 2017. №4 (49). S. 51–55. DOI: 10.18577/2071-9140-2017-0-4-51-55.
17. Simonov-Emelyanov I.D., Trofimov A.N., Sokolov V.I., Zarubina A.Yu., Sinegayeva S.I., Trofimov D.A. Obobshchennyye parametry struktury i reologicheskiye svoystva dispersno-napolnennykh epoksidnykh oligomerov s inaktivnym rastvoritelem [Generalized structural parameters and rheological properties of dispersively-filled epoxy oligomers with an inactive solvent] // Klei. Germetiki. Tekhnologii. 2018. №5. S. 11–17.
18. Petrova A.P., Malysheva G.V. Klei, kleyevyye svyazuyushchiye i kleyevyye prepregi / pod red. E.N. Kablova. [Glues, adhesive binders and adhesive prepregs / ed. E.N. Kablov] M.: VIAM, 2017. 472 s.
The article is assigned at improving methods and technologies for the manufacture of composite with high technical characteristics. This is facilitated by the acquisition of new knowledge in the field of physicochemical processes, the mechanisms of chemical reactions and the causes of their occurrence, the reactivity of substances, the spatial structure of molecules by quantum chemical calculation of molecules. In literature, the process of pyrolysis of methylsilane to silicon carbide is described from the point of view of intramolecular interaction and the formation of intermediate compounds. However, there are many methylsilane molecules in the system that can also interact with each other.
The aim of this work was to estimate the possibility of intermolecular interaction of methylsilane molecules by the method of non-empirical quantum-chemical calculation and determine the most preferred reaction pathway. In the interaction of two methylsilane molecules in the gas phase, three main variants of intermolecular reactions with the evolution of molecular hydrogen and the formation of the following compounds can be considered: 1,2-dimethyldisilane, (2-silylethyl)silane, methyl(silylmethyl)silane.
For the proposed compounds, a quantum chemical calculation was performed non-empirically using the basic set 6-311+G (d) and the second-order Moller–Plesset perturbation theory, the geometry of molecular structures was optimized, and thermodynamic data were calculated.
Analyzing the calculated thermodynamic data of chemical reactions, it was found that the formation of 1,2-dimethyldisilane and (2-silylethyl) silane is endothermic. The formation of methyl (silylmethyl)silane by a chemical reaction is exothermic. According to the results of calculations of thermodynamic characteristics, we can
2. Kablov E.N. Materialy novogo pokoleniya – osnova innovatsiy, tekhnologicheskogo liderstva i natsionalnoy bezopasnosti Rossii [Materials of a new generation – the basis of innovation, technological leadership and national security of Russia] // Intellekt i tekhnologii. 2016. №2 (14). S. 16–21.
3. Grashchenkov D.V. Strategiya razvitiya nemetallicheskih materialov, metallicheskih kompozicionnyh materialov i teplozashhity [Strategy of development of non-metallic materials, metal composite materials and heat-shielding] // Aviacionnye materialy i tehnologii. 2017. №S. S. 264–271. DOI: 10.18577/2071-9140-2017-0-S-264-271.
4. Kablov E.N. VIAM: materialy novogo pokoleniya dlya PD-14 [VIAM: new generation materials for PD-14] // Krylya Rodiny. 2019. №7–8. S. 54–58.
5. Sidorov D.V., Serpova V.M., Shavnev A.A. Vzaimodeystviye titanovykh splavov i volokon karbida kremniya v metallicheskikh kompozitsionnykh materialakh sistemy Ti–SiCf [Interaction of titanium alloys and silicon carbide fibers in metal composite materials of the Ti – SiCf system] // Khimicheskaya tekhnologiya. 2018. T. 19. №8. S. 339–344.
6. Sidorov D.V., Serpova V.M., Shavnev A.A. Sposoby izgotovleniya i oblasti primeneniya vysokoprochnykh voloknistykh kompozitsionnykh materialov, armirovannykh kernovym voloknom karbida kremniya [Methods of manufacture and scope of high-strength fibrous composite materials reinforced with silicon carbide core fiber] // Vse materialy. Entsiklopedicheskiy spravochnik. 2018. №3. S. 15–22.
7. Evdokimov S.A., Shchegoleva N.E., Sorokin O.Yu. Keramicheskiye materialy v aviatsionnom dvigatelestroyenii (obzor) [Ceramic materials in aviation engineering (review)] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2018. №12 (72). St. 06. Available at: http://www.viam-works.ru (accessed: September 05, 2019). DOI: 10.18577/2307-6046-2018-0-12-54-61.
8. Johnson D.W., Evans A.G., Goettler R.W. Ceramic Fibers and Coatings: Advanced Materials for the Twenty-First Century. Committee on advanced fibers for high-temperature ceramic composites. Washington DC: Nat. Acad. Press, 1998. 112 p.
9. Sidorov D.V., Storozhenko P.A., Shutova O.G., Kozhevnikov B.E. Polucheniye alkilsilanov vysokoy chistoty [Obtaining high purity alkylsilanes] // Khimicheskaya tekhnologiya. 2006. №7. S. 22–24.
10. Ohshita Y. Reactants in SiC chemical vapor deposition using CH3SiH3 as a source gas [Reactants in SiC chemical vapor deposition using CH3SiH3 as a source gas] // Journal of Crystal Growth. 1995. Vol. 147. P. 111–116.
11. Minkin V.I., Simkin B.Ya., Minyayev R.M. Teoriya stroyeniya molekul [Theory of the structure of molecules]. Rostov n/D: Feniks, 1997. 560 s.
12. Gordon M., Truong T. Potential primary pyrolysis processes of methylsilane // Chemical Physics Letters. 1987. Vol. 142. P. 110–114.
13. Truong T., Gordon M., Pople J. Thermal decomposition pathways of ethane // Chemical Physics Letters. 1986. Vol. 130. P. 245–249.
14. Gordon M., Truong T., Bonderson E. Potential Primary Pyrolysis Processes for Disilane // Journal of the American Chemical Society. 1986. Vol. 108. P. 1421–1427.
15. Becerra R., Carpenter I., Gordon M. Gas phase kinetic and quantum chemical studies of the reaction of silylene with the methylsilanes. Absolute rate constants, temperature dependences, RRKM modeling and potential energy surfaces // Physical Chemistry Chemical Physics. 2007. Vol. 9. P. 2121–2129.
16. Gano R., Gordon M., Boatz J. Ab initio study of some methylene and silylene insertion reactions // Journal of the American Chemical Society. 1991. Vol. 113. P. 6711–6718.
17. Abyzov A.M., Smirnov E.P. Kinetika khimicheskogo osazhdeniya karbida kremniya iz gazovoy fazy metilsilana [Kinetics of the chemical deposition of silicon carbide from the gas phase of methylsilane] // Neorganicheskiye materialy. 2000. T. 36. №9. S. 1059–1066.
18. Lakhin A.V. Protsessy polucheniya kompozitsionnykh materialov i pokrytiy na osnove karbida kremniya khimicheskim gazofaznym osazhdeniyem iz metilsilana pri otnositelno nizkikh temperaturakh i davleniyakh: avtoref. dis. … kand. tekhn. nauk [Processes for producing composite materials and coatings based on silicon carbide by chemical vapor deposition from methylsilane at relatively low temperatures and pressures: thesis Cand. Sc. (Tech.)]. M., 2006. 25 s.
19. Prokofev V.A., Sorokin O.Yu., Vaganova M.L., Lebedeva Yu.E. Vysokotemperaturnyy material s gradiyentnoy strukturoy, poluchennyy metodom zhidkofaznoy infiltratsii rasplava [High-temperature functionally graded material fabricated via reactive alloy infiltration] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2018. №11 (71). St. 06. URL: http://www.viam-works.ru. (accessed: October 01, 2019). DOI: 10.18577/2307-6046-2018-0-11-45-53.
20. Gaussian-09: revision A.02 / Frisch M.J., Trucks G.W., Schlegel H.B. et al. Wallingford, CT: Gaussian Inc., 2009.
The work is devoted to the development of technology for the manufacture and research of thermal properties of samples of metal composite material based on aluminum casting alloy brand AK7 system Al-Mg-Cu-Si with a content of 64 to 66 percent volume of silicon carbide and different fractional composition of powders grades F60 (particle size 320–250 microns), F120 (particle size 125–100 microns) and F220 (particle size 63-50 microns). Measurements of the characteristics of thermal properties: heat capacity, thermal conductivity and thermal conductivity, in the temperature range from - 100 to 400 °C, a composite material with different fractional composition. The thermal conductivity of the composite material based on powder grade F60 190,4 W/(m·K) with a particle size of 320–250 microns, F120=184,2 W/(m·K) with a particle size of 125–100 microns and F220=150,0 W/(m·K) with a particle size of 63–50 microns. It is found that with increasing particle size fraction thermal conductivity increases by 15–20% at 20°C, due to the low content of interfacial boundaries heterogeneous structure of the composite and thus decreases the volume content of the pores. The increase in the specific weight of the workpiece can be achieved, as is known, due to the denser packaging of the briquette under a high pressure press, either using a polyphonic powder mixture, or using both of these methods. The dependence of the influence of the deformation effect on the formation of the workpiece of a given porosity depending on the size of the carbide phase particles, as well as the influence of the size of the carbide phase particles on the impregnation of the porous workpiece matrix alloy melt by vacuum-compression impregnation. Methods of determination of a complex of thermophysical properties are fulfilled: heat capacity, thermal conductivity and thermal conductivity, in a temperature range f
2. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
3. Kablov E.N., Shchetanov B.V., Shavnev A.A., Nyafkin A.N. i dr. Svoystva i primeneniye vysokonapolnennogo metallomatrichnogo kompozitsionnogo materiala Al–SiC [Properties and application of a highly filled metal matrix composite material Al – SiC] // Tekhnologiya mashinostroyeniya. 2011. №3 (105). S. 5–7.
4. Kablov E.N., Shchetanov B.V., Grashhenkov D.V., Shavnev A.A., Nyafkin A.N. Metallomatrichnye kompozicionnye materialy na osnove Al–SiC [Metalmatrix composite materials on the basis of Al–SiC] // Aviacionnye materialy i tehnologii. 2012. №S. S. 373–380.
5. Kablov E.N., Chibirkin V.V., Vdovin S.M. Izgotovlenie, svojstva i primenenie teplootvodyashchih osnovanij iz MMK Al–SiC v silovoj elektronike i preobrazovatelnoj tehnike [Manufacturing, properties and application of the heat-removing bases from Al–SiC MMK in power electronics and converting equipment] // Aviacionnye materialy i tehnologii. 2012. №2. S. 20–22.
6. Nyafkin A.N., Grishina O.I., Shavnev A.A., Loshchinin Yu.V., Pakhomkin S.I. Issledovaniye vliyaniya sostava geterogennykh sistem s vysokim soderzhaniyem karbidnoy fazy na teplofizicheskiye svoystva [The influence of composition of heterogeneous systems with a high of the carbide phase on thermo-physical properties] // Aviacionnye materialy i tehnologii. 2014. №S6. S. 28–34. DOI: 10.18577/2071-9140-2014-0-s6-28-34.
7. Goncharenko E.S., Trapeznikov A.V., Ogorodov D.V. Litejnye alyuminievye splavy (k 100-letiyu so dnya rozhdeniya M.B. Altmana) [Aluminium casting alloys] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №4. St. 02. Available at: http://www.viam-works.ru (accessed: October 03, 2019). DOI: 10.18577/2307-6046-2014-0-4-2-2.
8. Ustroystvo dlya polucheniya izdeliya iz metallomatrichnogo kompozitsionnogo materiala: pat. 110310 Ros. Federatsiya [A device for producing products from a metal matrix composite material: pat. 110310 Rus. Federation]; zayavl. 31.05.11; opubl. 20.11.11.
9. Sposob polucheniya izdeliya iz kompozitsionnogo materiala: pat. 2448808 Ros. Federatsiya [The method of obtaining products from composite material: pat. 2448808 Rus. Federation]; zayavl. 05.10.10; opubl. 27.04.12.
10. Parker W.J., Jenkins R.J., Butler S.R., Abbott G.L. Rash method of determining thermal diffusivity, heat capacity and thermal conductivity // Journal of Applied Physics. 1961. No. 32. P. 1679–1684.
11. ASTM E 1461-01. Standard test method for thermal diffusivity by the flash method. 2001. P. 11–13.
12. Chekhovskoy V.Ya., Peletskiy V.E. Teplofizicheskiye svoystva zharoprochnogo splava na nikelevoy osnove KhN55VMTKYu (EI929) [Thermophysical properties of heat-resistant nickel-based alloy KhN55VMTKYu (EI929)] // Teplofizika vysokikh temperatur. 2005. T. 43. №1. S. 51–56.
13. Xue J., Taylor R. An evaluation of specific heat measurement methods using the laser flash technique // International Journal of Thermophysics. 1993. Vol. 14. No. 2. P. 313–320.
14. GSSSD 65–84. Tablitsy standartnykh spravochnykh dannykh. Korund sinteticheskiy. Izobarnaya teployemkost v diapazone temperatur 4–2300 K [State Standard Reference Data Service 65–84. Tables of standard reference data. Synthetic corundum. Isobaric heat capacity in the temperature range 4–2300 K]. M.: Izd-vo standartov, 1985. 6 s.
15. Gurvich M.E., Larikov L.N., Nozar A.I. Optimizatsiya metoda skaniruyushchego adiabaticheskogo kalorimetra [Optimization of the method of scanning adiabatic calorimeter] // Inzhenerno-fizicheskiy zhurnal. 1981. T. 41. №7. S. 129–135.
16. GOST 18898–89 (ISO 2738–87). Izdeliya poroshkovyye. Metody opredeleniya plotnosti, soderzhaniya masla i poristosti [State Standard 18898–89 (ISO 2738–87). Powder products. Methods for determination of density, oil content and porosity]. M.: Izd-vo standartov, 1990. 10 s.
17. Beletskiy V.M., Krivov G.A. Alyuminiyevyye splavy. Sostav, svoystva, tekhnologii, primeneniye: spravochnik / pod obshch. red. I.N. Fridlyandera [Aluminum alloys. Composition, properties, technologies, application: reference book / gen. ed. I.N. Friedlander]. Kiev: Komintekh, 2005. 365 s.
Presents results of a study of magnetic properties of ferro-magnetic microwires a-Fe/(PrDy)(FeCo)B, which contains the core α-Fe and the surface layer of the amorphous phase (PrDy)(FeCo)B. extraction Method hanging drop of melt (PrDy)(FeCo)B was used to obtain microwires with a homogeneous surface and cylindrical geometry. The optimal values of the share of the amorphous magnetic phase and the length of the microwire are found that meet the conditions of magnetic bistability, which opens the possibility of their use as micromanipulators and polymer composites. In this paper, the rare earth alloy was used in the ultrafast cooling mode, when the phases are separated into a core of transition metals and an amorphous shell with almost zero coercive force. By doping Pr and Dy and forming an amorphous phase, fine-tuning of the maximum energy product becomes possible. Microwire, as a rule, contained a core of polycrystalline phase α-Fe (52% ) and amorphous alloy shell (PrDy) (FeCo)B (~48 vol. %). This distribution of the chemical composition of the phases in the microwire is caused by the high cooling rate of the melt ~106 К/c. micro-Dimensional structures, where the polymer matrix acts as a dielectric medium and the microwires as sensing elements, demonstrate excellent magnetic impedance characteristics and high microwave absorption. Local magnetic hysteresis loops obtained by Kerr microscopy show a symmetrical loop close in shape to the rectangular loop in the center of the microwire and an asymmetric loop similar to that obtained in the SQUID magnetometer when shortening the microwire of less than critical length. This confirms the applicability of the classical concepts of the domain structure of magnetic microwires as single-domain objects with multi-domain regions at the ends of the microwire.
2. Ivanov Yu.P., del Real R.P., Chubykalo-Fesenko O., Vázquez M. Magnetic reversal modes in cylindrical nanowires // Journal of Applied Physics. 2015. Vol. 115. P. 063909. DOI: 10.1088/0022-3727/46/48/485001/meta.
3. Velazquez J., Vazquez M. An analysis of interacting bistable magnetic microwires: from ordered to chaotic behaviours // Physica B: Condensed Matter. 2002. Vol. 320. P. 230–235.
4. Peng H., Qin F., Phan M. Ferromagnetic microwire composites. From Sensors to Microwire applications. Series: Engineering Materials and Processes. Springer, 2016. P. 245. DOI: 10.1007/978-3-319-29276-2.
5. Szary P., Luciu I., Duday D., Périgo E.A., Wirtz T., Choquet P., Michels A. Synthesis and magnetic properties of Ta/NdFeB-based composite microwires // Journal of Applied Physics. 2015. Vol. 117. P. 17D134. DOI: 10.1063/1.4917058.
6. Yamamoto K., Irie T., Takeuchi M. Influence of Cooling Rate on Constituent Phases and Distribution of Elements in (Nd,Dy)–Fe–B Magnet Alloys // Journal of Japan Society of Powder and Powder Metallurgy. 2016. Vol. 63. P. 630. DOI: 10.2497/jjspm.63.630.
7. Algarabel P.A., Del Moral A., Ibarra M.R., Marquina C. High field magnetostriction and magnetic thermal expansion of RE2Fe14B hard intermetallics // Journal of Magnetism and Magnetic Materials. 1992. Vol. 114. P. 161.
8. Kablov E.N., Ospennikova O.G., Piskorskij V.P., Valeev R.A. i dr. Fazovyj sostav spechennyh materialov sistemy Nd–Dy–Fe–Co–B [Phase composition of Nd–Dy–Fe–Co–B sintered materials] // Aviacionnye materialy i tehnologii. 2014. №S5. S. 95–100. DOI: 10.18577/2071-9140-2014-0-s5-95-100.
9. Kablov E.N., Ospennikova O.G., Piskorskij V.P., Rezchikova I.I., Valeev R.A., Davydova E.A. Fazovyj sostav spechennyh materialov sistemy Pr–Dy–Fe–Co–B [Phase composition of the Pr–Dy–Fe–Co–B sintered materials] // Aviacionnye materialy i tehnologii. 2015. №S2 (39). S. 5–10. DOI: 10.18577/2071-9140-2015-0-S2-5-10.
10. Kablov E.N., Ospennikova O.G., Cherednichenko I.V., Rezchikova I.I., Valeev R.A., Piskorskij V.P. Vliyanie soderzhaniya medi na fazovyj sostav i magnitnye svojstva termostabilnyh spechennyh magnitov sistem Nd–Dy–Fe–Co–B i Pr–Dy–Fe–Co–B [Influence of Cu content to phase structure and magnetic properties of thermostable sintered magnets of Nd–Dy–Fe–Co–B and Pr–Dy–Fe–Co–B systems] // Aviacionnye materialy i tehnologii. 2015. №S2 (39). S. 11–19. DOI: 10.18577/2071-9140-2015-0-S2-11-19.
11. Morgunov R.B., Koplak O.V., Talantsev A.D., Korolev D.V., Piskorskij V.P., Valeev R.A. Fenomenologiya petel magnitnogo gisterezisa v mnogoslojhykh mikroprovodakh α-Fe/DyPrFeCoB [The phenomenology of the magnetic hysteresis loops in multilayer microwires α-Fe/DyPrFeCoB] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2019. №7 (79). St. 08. Available at: http://www.viam-works.ru (accessed: September 23, 2019). DOI: 10.18577/2307-6046-2019-0-7-67-75.
12. Severino A.M., Gómez-Polo C., Marín P., Vázquez M. Influence of the sample length on the switching process of magnetostrictive amorphous wire // Journal of Magnetism and Magnetic Materials. 1992. Vol. 103. P. 117. DOI: 10.1016/0304-8853(92)90244-I.
13. Zhukov V., Zhukova A., Blancoc J.M., Cobeno A.F., Vazquez M., Gonzalez J. Magnetostriction of Co-Fe-Based Amorphous Soft Magnetic Microwires // Journal of Magnetism and Magnetic Materials. 2003. Vol. 151. P. 258–259. DOI: 10.1007/978-3-319-48220-0_29.
14. Gudoshnikov S.A., Grebenshchikov Yu.B., Ljubimov B.Ya. et al. Ground state magnetization distribution and characteristic width of head to head domain wall in Fe-rich amorphous microwire // Physica Status Solidi A. 2009. Vol. 206. No. 4. P. 613.
15. Ye J., del Real R.P., Infante G., Vazquez M. Local magnetization profile and geometry magnetization effects in microwires as determined by magneto-optical Kerr effect // Journal of Applied Physics. 2013. Vol. 113. P. 043904. DOI: 10.1063/1.4776730.
16. Varga R., Klein P., Jimenez A., Vazquez M. Study of the single domain-wall structure in glass-coated microwires // Physica Status Solidi A. 2015. Vol. 213. Issue 2. P. 356–362.
17. Sampaio L.C., Sinnecker E., Cernicchiaro G. et al. Magnetic microwires as macrospins in a long-range dipole-dipole interaction // Physical Review B. 2000. Vol. 61. P. 8976.
18. Korolev D.V., Rezchikova I.I., Piskorskij V.P., Valeev R.A., Morgunov R.B. Metod goryachej deformatsii dlya izgotovleniya postoyannykh magnitov sistemy RZM–Fe–B s ispolzovaniem ustanovok iskrovogo plazmennogo spekaniya (obzor) [The method of hot deformation for the manufacture of the permanent magnets of REM–Fe–B by the spark plasma sintering (review)] // Aviacionnye materialy i tehnologii. 2017. №4 (49). S. 11–18. DOI: 10.18577/2071-9140-2017-0-4-11-18.
To create carbon fibers, raw materials, polyacrylonitrile fibers, are needed. Fiber production is expensive and environmentally unsafe due to the use of a large amount of volatile organic solvents.
Polyacrylonitrile is obtained by polymerization of acrylonitrile or by copolymerization of acrylonitrile with unsaturated monomers (from 15 to 65% by weight).
There are several copolymerization methods: in solution, in emulsion, in suspension or melt. Each of the methods has its advantages and disadvantages.
It is advisable to carry out copolymerization in a solution in a solvent that dissolves both the polymer and the monomer; the production technology is continuous and simple.
During emulsion copolymerization, the polymer has a wide molecular weight distribution, the method is used to obtain copolymers.
With suspension - it is possible to vary the composition of the copolymers in a wide range, the polymer does not have low molecular weight residues.
The method for producing PAN in the melt is affordable, but limited due to the autocatalytic nature of the process and high viscosity.
The fibers are formed by three methods: wet, dry (and its type of electrospinning), dry-wet and melt. All of them (except for electroforming) are based on the production of polymer filaments by forcing liquid polymer through the holes of the die into a solution that causes the polymer to coagulate, after which the filaments solidify.
In the dry method, the filament is formed in a spinning mill, where, under the influence of temperatures, the solvent evaporates from the fibers. During electroforming, fibers are formed by electric forces.
<p style="text-align: j
2. Kondrashov S.V., Shashkeev K.A., Petrova G.N., Mekalina I.V. Polimernye kompozicionnye materialy konstrukcionnogo naznacheniya s funkcionalnymi svojstvami [Constructional polymer composites with functional properties] // Aviacionnye materialy i tehnologii. 2017. №S. S. 405–419. DOI: 10.18577/2071-9140-2017-0-S-405-419.
3. Gunyaev G.M., Gofin M.Ya. Uglerod-uglerodnye kompozicionnye materialy [Carbon-carbon composite materials] // Aviacionnye materialy i tehnologii. 2013. №S1. S. 62–90.
4. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
5. Kablov E.N. Rol khimii v sozdanii materialov novogo pokoleniya dlya slozhnykh tekhnicheskikh sistem [The role of chemistry in the creation of new generation materials for complex technical systems] // Tez. dokl. XX Mendeleyevskogo sezda po obshchey i prikladnoy khimii. Ekaterinburg: UrO RAN, 2016. S. 25–26.
6. Kablov E.N. Rossiya na rynke intellektualnykh resursov [Russia in the market of intellectual resources] // Ekspert. 2015. №28 (951). S. 48–51.
7. Bunsell A.R. Handbook of Properties of Textile and Technical Fibers. Elsevier, 2018. 1033 p.
8. Pakshver A.B., Geller B.E. Khimiya i tekhnologiya proizvodstva volokon nitron [Chemistry and technology for the production of nitron fibers]. M.: Goskhimizdat, 1960. 148 s.
9. Rogovin Z.A. Osnovy khimii i tekhnologii khimicheskikh volokon v 2 t. [Fundamentals of chemistry and technology of chemical fibers in 2 vol.]. M.: Khimiya. 1974. T. 2. 344 s.
10. Berkovich A.K., Sergeyev V.G., Medvedev V.A., Malakho A.P. Sintez polimerov na osnove akrilonitrila. Tekhnologiya polucheniya PAN i uglerodnykh volokon [Synthesis of Acrylonitrile-Based Polymers. Technology for producing PAN and carbon fibers]. M.: Izd-vo MGU, 2010. 63 s.
11. Khimicheskaya entsiklopediya v 5 t. / gl. red. N.S. Zefirov [Chemical encyclopedia in 5 vol. / gen. ed. N.S. Zefirov]. M.: Bolshaya Rossiyskaya entsiklopediya. T. 3: Med – Pol, 1998. 641 s.
12. Volokna iz sinteticheskikh polimerov / pod red. R.M. Khilla [ Fibers from synthetic polymers / ed. R.M. Hill]. M.: Izd-vo inostrannoy lit., 1957. 505 s.
13. Roskin E.S. Khimicheskiye volokna [Chemical fibers]. M.–L.: Khimiya, 1966. 135 s.
14. Pakshver A.B. Karbotsepnyye volokna [Carbochain fibers]. M.: Khimiya, 1966. 286 s.
15. Filatov Yu.N. Elektroformovaniye voloknistykh materialov [Electroforming of fibrous materials]. Available at: http://electrospinning.ru/elektrophormovanie-voloknistyh-materialov/ (accessed: October 22, 2019).
16. Papkov S.P. Polimernyye voloknistyye materialy. M.: Khimiya, 1986. 220 s.
17. Monkriff R.U. Khimicheskiye volokna [Chemical fibers]. M.: Izd-vo nauch.-tekhn. lit. RSFSR, 1961. 608 s.
18. Zlatoustova L.A. Polucheniye poliakrilonitrilnykh zhgutov dlya uglerodnykh volokon. avtoref. … kand. khim. nauk [Receiving polyacrylonitrile plaits for carbon fibers: thesis abstract, Cand. Sc. (Chem)]. M., 2006. 16 s.
19. Simamura S. Uglerodnyye volokna. Per. s yap. / pod red. S. Simamury [Carbon fibers. Lane form Jap. / ed. S. Simamura]. M.: Mir, 1987. 304 s.
20. ILA 2018: Cost-effective carbon fibers for light-weight construction. Available at: https://www.iap.fraunhofer.de/en/press_releases/2018/ILA_2018.html (accessed: May 22, 2019).
21. Continuous method for producing a thermally stabilized multifilament thread, multifilament thread, and fiber: pat. WO2018130268A1; filed 10.01.17; publ. 19.07.18.
22. Frushour B.G. Water as a melting point depressant for acrylic polymer // Polymer Bulletin. 1982. Vol. 7 (1). P. 1–8.
23. Gupta А.К., Chand N. Effect of copolymerization on the crystalline structure of polyacrylonitrile // European Polymer Journal. 1979. Vol. 15 (10). P. 899–902.
24. Atureliya S.K., Bashir Z. Continuous plasticized melt-extrusion of polyacrylonitrile homopolymer // Polymer. 1993. Vol. 34 (24). P. 5116–5122.
25. Peng W., Han N., Tang X. et al. Preparation and characterization of melt-spun poly(acrylonitrile-methylacrylate) hollow fiber // Advanced Materials Research. 2011. Vol. 332-334. P. 339–342.
26. Tian Y., Han K., Zhang W. et al. Influence of residence time on the structure of polyacrylonitrile in ionic liquids during melt spinning process // Materials Letters. 2013. Vol. 92. P. 119–121.
27. Process of melt-spinning polyacrylonitrile fiber: pat. US9644290B2; filed 31.03.09; publ. 09.05.17.
28. Liu S., Han K., Chen L., Zheng Y., Yu M. Structure and Properties of Partially Cyclized Polyacrylonitrile-Based Carbon Fiber-Precursor Fiber Prepared by Melt-Spun With Ionic Liquid as the Medium of Processing // Polymer Engineering and Science. 2015. Vol. 55 (12). P. 2722–2728.
29. Chae H.H., Kim B.-H., Lee S.H., Yang K.S. Preparation of carbon fiber from melt spinnable PAN copolymer // Journal of the Korean Chemical Society. 2013. Vol. 57 (2). P. 289–294.
30. Batchelor B.L., Mahmood S.F., Jung M. et al. Plasticization for melt viscosity reduction of melt processable carbon fiber precursor // Carbon. 2016. Vol. 98. P. 681–688.
31. Lee J.H., Jin J.-U., Park S. et al. Melt processable polyacrylonitrile copolymer precursors for carbon fibers: rheological, thermal and mechanical properties // Journal of Industrial and Engineering Chemistry. 2019. Vol. 71. P. 112–118.
In this work, we evaluated three methods for determining the hydrogen content in metallic materials: optical emission, heating in a carrier inert gas with a conductometric end and vacuum heating with a mass spectrometric end. Also, we consider the optimal field of application of each of the considered methods for solving specific tasks aimed at determining the hydrogen content with different binding energies (total, diffusion-mobile, strongly bonded) in metallic materials.
The optical emission method is sufficiently productive, but has the lowest accuracy and sensitivity of those considered. Another disadvantage of this method is that it is applicable only to the analysis of alloys based on titanium. The advantage of the method is the high locality and the ability to analyze the samples studied in layers. Therefore, it is indispensable in determining the degree of hydrogen absorption of the surface of the titanium alloy after the etching process.
The method of heating in a stream of inert gas carrier to determine the hydrogen content is the most productive in terms of the number of samples studied. It has a satisfactory level of accuracy. The disadvantages of the method include the high cost of consumables and mediocre sensitivity in the case of analysis, for example, aluminum alloys. It is recommended for the serial analysis of a large number of metal samples on one basis.
The most difficult to master is the method of vacuum heating with a mass spectrometric ending. At the same time, it has the highest accuracy and sensitivity, but the lowest performance. Allows you to analyze any inorganic materials and separate hydrogen by bond energy. This is important for the study of the dependences of the effect of different hydrogen contents with different binding energies on the structure o
2. Lutsenko A.N., Perov N.S., Chabina E.B. Novye etapy razvitiya Ispytatelnogo tsentra [The new stages of development of Testing Center] // Aviacionnye materialy i tehnologii 2017. №S. S. 460–468. DOI: 10.18577/2071-9140-2017-0-S-460-468.
3. Bazyleva O.A., Ospennikova O.G., Arginbaeva E.G., Letnikova E.Yu., Shestakov A.V. Tendencii razvitiya intermetallidnyh splavov na osnove nikelya [Development trends of nickel-based intermetallic alloys] // Aviacionnye materialy i tehnologii. 2017. №S. S. 104–115. DOI: 10.18577/2071-9140-2017-0-S-104-115.
4. Fridlyander I.N., Dobromyslov A.V., Tkachenko E.A., Senatorova O.G. Perspektivnyye vysokoprochnyye materialy na alyuminiyevoy osnove [Promising high-strength materials based on aluminum] // Metallovedeniye i termicheskaya obrabotka metallov. 2005. №7. S. 17–23.
5. Yoshioka M., Ueno A., Kishimoto H. Analysis of hydrogen behaviour in crack growth tests of g-TiAl by means of the hydrogen microprint technique // Journal of Intermetallics. 2004. Vol. 12. P. 23–31.
6. Kurs M.G., Laptev A.B., Kutyrev A.E., Morozova L.V. Issledovaniye korrozionnogo razrusheniya deformiruyemykh alyuminiyevykh splavov pri naturno-uskorennykh ispytaniyakh. Chast 1 [Investigation of corrosion failure of wrought aluminum alloys during field accelerated tests. Part 1] // Voprosy materialovedeniya. 2016. №1 (85). S. 116–126.
7. Kablov E.N., Startsev O.V., Medvedev I.M. Obzor zarubezhnogo opyta issledovanij korrozii i sredstv zashhity ot korrozii [Review of international experience on corrosion and corrosion protection] // Aviacionnye materialy i tehnologii. 2015. №2 (35). S. 76–87. DOI: 10.18577/2071-9140-2015-0-2-76-87.
8. Kablov E.N., Startsev O.V., Medvedev I.M., Panin S.V. Korrozionnaya agressivnost primorskoy atmosfery. Ch. 1. Faktory vliyaniya (obzor) [Corrosive aggressiveness of the coastal atmosphere. Part 1. Influence factors (review)] // Korroziya: materialy, zashchita. 2013. №12. S. 6–18.
9. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
10. Nochovnaya N.A., Bazyleva O.A., Kablov D.E., Panin P.V. Intermetallidnyye splavy na osnove titana i nikelya [Intermetallic alloys based on titanium and nickel]. M.: VIAM, 2018. 308 s.
11. Kablov E.N., Nochovnaya N.A., Panin P.V., Alekseev E.B., Novak A.V. Study of the structure and properties of heat-resistant alloys based on titanium aluminides with gadolinium microadditives // Inorganic Materials: Applied Research. 2017. Vol. 8. No. 4. P. 634–641.
12. Zhanga L.T., Itoa K., Vasudevanb V.K., Yamaguchi M. Beneficial effects of O-phase on the hydrogen absorption of Ti–Al–Nb alloys // Journal of Intermetallics. 2001. Vol. 9. P. 1045–1052.
13. Khadzhiyeva O.G., Grib S.V., Malevich Yu.A., Illarionov A.G. Vliyaniye vodoroda na prevrashcheniya v splave na osnove intermetallida Ti2AlNb [Beneficial effects of O-phase on the hydrogen absorption of Ti–Al–Nb alloys] // Sb. dokl. VIII Vseros. shkoly-konf. molodykh uchenykh «KoMU-2010». Izhevsk, 2010. S. 108–109.
14. Laptev A., Kurs M., Lonskaya N., Davydov D., Averina A. Investigation of corrosion damage of hydration aluminum alloys at full-scale accelerated tests // International Journal of Engineering and Technology. 2018. Vol. 7. No. 4. P. 5061–5066.
15. Knight S.P., Salsgaras M., Trueman A.R. The study of intergranular corrosion in aircraft aluminum alloys using X-ray tomography // Corrosion science. 2011. No. 53. P. 727–734.
16. Soltis J. Passivity breakdown, pit initiation and propagation of pits in metallic materials // Corrosion Science. 2015. No. 90. P. 5–22.
17. Zhilikov V.P., Karimova S.A., Leshko S.S., Chesnokov D.V. Issledovanie dinamiki korrozii alyuminievyh splavov pri ispytanii v kamere solevogo tumana (KST) [Research of dynamics of corrosion of aluminum alloys when testing in the salt spray chamber (SSC)] // Aviacionnye materialy i tehnologii. 2012. №4. S. 18–22.
Operation of structural elements made of aluminum alloys in an aggressive atmosphere, which are environments with a high content of chloride ions in combination with high humidity, is associated with the risk of corrosion damage, which, if invisible to the naked eye, can lead to loss structural bearing capacity and the occurrence of failures due to mechanical failure.
The most dangerous types of corrosion failure of aluminum alloys are intergranular corrosion (IGC), which develops along the grain boundaries (crystallites) deep into the metal. The center of intergranular corrosion is most often the center of failure upon application of mechanical stresses. Reducing the propensity for aluminum alloys to IGC is one of the priority tasks in the development of materials, and is achieved mainly due to the selection of the heat treatment mode, while maintaining a high level of mechanical properties is an indispensable condition.
The present work is devoted to summarizing the results of climatic tests under conditions of a moderately warm climate of aluminum alloys with the study of the influence of the degree and nature of the development of IGC on the change in the mechanical properties of sheet semi-finished products depending on the alloy system. Typical MKK images are given that are characteristic for alloys of Al-Cu-Li systems; Al-Cu-Mg; Al-Mg-Si; Al-Zn-Mg-Cu; Al-Mg. Based on the analysis of the available volume of the results of assessing the tendency to IGC and the corresponding loss of mechanical properties, the dependences of the change in the tensile strength and relative elongation depending on the depth of the IGC for sheets of aluminum alloys with a thickness of 2 mm are obtained. It is also shown that the depth of the IGC is directly dependent on the geometric dimensions of the grain, while the standard deviation characterizing the dispersion of grain siz
2. Antipov V.V. Strategiya razvitiya titanovyh, magnievyh, berillievyh i alyuminievyh splavov [Strategy of development of titanium, magnesium, beryllium and aluminum alloys] // Aviacionnye materialy i tehnologii. 2012. №S. S. 157–167.
3. Kablov E.N., Startsev O.V., Medvedev I.M. Obzor zarubezhnogo opyta issledovanij korrozii i sredstv zashhity ot korrozii [Review of international experience on corrosion and corrosion protection] // Aviacionnye materialy i tehnologii. 2015. №2 (35). S. 76–87. DOI: 10.18577/2071-9140-2015-0-2-76-87.
4. Kablov E.N., Startsev O.V., Medvedev I.M. Korrozionnaya agressivnost primorskoy atmosfery. Ch. 2. Novye podkhody k otsenke korrozivnosti primorskikh atmosfer [Corrosive aggressiveness of the coastal atmosphere. Part 2. New approaches to assessing the corrosivity of coastal atmospheres] // Korroziya: materialy, zashchita, 2016. №1. S. 1–15.
5. Zubarev A.P., Lapayev A.V., Lapayev V.P. Ispolzovaniye obobshchennogo parametra korrozionnogo porazheniya dlya otsenki dolgovechnosti elementov konstruktsiy s korrozionnymi porazheniyami [The use of a generalized parameter of corrosion damage to assess the durability of structural elements with corrosion damage] // Nauchnyy vestnik Mos. gos. tekhn. un-ta grazhdanskoy aviatsii. 2007. №119. S. 30–32.
6. Akopyan K.E., Lapaev A.V., Semin A.V. Analiz korrozionnogo sostoyaniya samoletov Tu-154m OAO Aviakompanii «AEROFLOT-RAL» po dannym materialov tekhnicheskogo obsluzhivaniya v obeme formy «2» [Analysis of the corrosion state of Tu-154m aircraft of AEROFLOT-RAL Airlines according to the data of maintenance materials in the form of «2»] // Nauchnyy vestnik Mos. gos. tekhn. un-ta grazhdanskoy aviatsii. 2007. №119. S. 24–29.
7. Kurs M.G., Antipov V.V., Lutsenko A.N., Kutyrev A.E. Integralnyj koeffitsient korrozionnogo razrusheniya deformiruemykh alyuminievykh splavov [Integral figure of corrosion damage of deformed aluminum alloys] // Aviacionnye materialy i tehnologii. 2016. №3 (42). S. 24–32. DOI: 10.18577/2071-9140-2016-0-3-24-32.
8. Kurs M.G. Prognozirovaniye prochnostnykh svoystv obshivki LA iz deformiruyemogo alyuminiyevogo splava V95o.ch.-T2 s primeneniyem integralnogo koeffitsiyenta korrozionnogo razrusheniya [Forecasting the strength properties of the skin cover of a deformable aluminum alloy В95о.ч.-Т2 with the use of the integrated corrosion reduction coefficient] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2018. №5. St. 11. Available at: http://www.viam-works.ru (accessed: August 03, 2018). DOI: 10.18577/2307-6046-2018-0-5-101-109.
9. Zhang X., Zhou X., Hashimoto T. et al. The influence of grain structure on the corrosion behaviour of 2A97-T3 Al–Cu–Li alloy // Corrosion Science. 2016. Vol. 116. P. 14–21. DOI: 10.1016/j.corsci.2016.12.005.
10. Liu Y., Pan Q., Li H. et al. Revealing the evolution of microstructure, mechanical property and corrosion behavior of 7A46 aluminum alloy with different ageing treatment // Journal of Alloys and Compounds. 2019. Vol. 792. P. 32–45.
11. De Bonfils-Lahovary M.-L., Laffont L. Characterization of intergranular corrosion defects in a 2024T351 aluminium alloy // Corrosion Science. 2017. No. 119. P. 60–67. DOI: 10.1016/j.corsci.2017.02.020.
12. Zhang X., Zhou X., Hashimoto T. et al. Localized corrosion in AA2024-T351 aluminium alloy: Transition from intergranular corrosion to crystallographic pitting // Materials Characterization. 2017. No. 130. P. 230–236. DOI: 10.1016/j.matchar.2017.06.022.
13. Xu Y., Wang X., Yan Z., Li J. Corrosion Properties of Light-weight and High-strength 2195 Al–Li Alloy // Chinese Journal of Aeronautics. 2011. Vol. 24. P. 681–686.
14. Roberge P.R., Trethewey K.R. The fractal dimension of corroded aluminium surfaces // Journal of Applied Electrochemistry. 1995. Vol. 25. Issue 10. P. 962–966.
15. Horvath V.K., Herrmann H.J. The fractal dimension of corrosion cracks // Chaos, Solitons & Fractals. 1991. No. 5. P. 395–400.
16. De Bonfils-Lahovary M.-L., Josse C., Laffont L., Blanc C. Influence of hydrogen on the propagation of intergranular corrosion defects in 2024 aluminium alloy // Corrosion Science. 2019. Vol. 148. P. 198–205.
17. Antipov V.V., Senatorova O.G., Tkachenko E.A., Vahromov R.O. Alyuminievye deformiruemye splavy [Aluminum deformable alloys] // Aviacionnye materialy i tehnologii. 2012. №S. S. 167–182.
18. Khokhlatova L.B., Kolobnev N.I., Oglodkov M.S., Mikhaylov E.D. Alyuminiylitiyevyye splavy dlya samoletostroyeniya [Aluminum-lithium alloys for aircraft construction] // Metallurg. 2012. №5. S. 31–35.
19. Akimov G.V. Teoriya i metody issledovaniya korrozii metallov [Theory and methods for the study of metal corrosion]. M.–L.: Izd-vo AN SSSR, 1945. 414 s.
20. Osnovnyye zakonomernosti korrozii alyuminiya [The main laws of corrosion of aluminum] // Tsentralny metallicheskiy portal RF. Available at: http://metallicheckiy-potal.ru/articles/zashita_ot_korrozii_ metalla/aluminii/osnovnie_zakonomernosti_korrozii_alyminia/3 (accessed: September 23, 2019).
21. Sinyavskiy V.S., Valkov V.D., Kalinin V.D. Korroziya i zashchita alyuminiyevykh splavov [Corrosion and protection of aluminum alloys]. M.: Metallurgiya, 1986. S. 37–43.
22. GOST 9.021–74. Edinaya sistema zashchity ot korrozii i stareniya (YESZKS). Alyuminiy i splavy alyuminiyevyye. Metody uskorennykh ispytaniy na mezhkristallitnuyu korroziyu [State Standard 9.021–74. Unified system of corrosion and ageing protection. Aluminium and aluminium alloys. Accelerated test methods for intercrystalline corrosion]. M.: Standartinform, 1974. 4 s.
23. Kurs M.G., Kutyrev A.E. Primeneniye integralnogo koeffitsiyenta korrozionnogo razrusheniya dlya prognozirovaniya izmeneniya prochnostnykh svoystv deformiruyemykh alyuminiyevykh splavov [The use of the integral coefficient of corrosion failure to predict changes in the strength properties of deformable aluminum alloys] // Sovremennoye materialovedeniye: traditsii otechestvennykh nauchnykh shkol i innovatsionnyy podkhod: sb. dokl. Vseros. molodezhnoy nauch.-tekhnich. konf. M.: VIAM, 2017. S. 132–142.
24. Kurs M.G., Goncharov A.A. Issledovaniye korrozionnogo razrusheniya deformiruyemykh alyuminiyevykh splavov pri naturno-uskorennykh ispytaniyakh. Chast 2. Pittingovaya korroziya [Investigation of corrosion failure of wrought aluminum alloys during field accelerated tests. Part 2. Pitting corrosion] // Voprosy materialovedeniya. 2019. №1 (97). S. 175–187.
25. GOST 9.908–85. Edinaya sistema zashchity ot korrozii i stareniya (ESZKS). Metally i splavy. Metody opredeleniya pokazateley korrozii i korrozionnoy stoykosti [State Standard 9.908–85. Unified system of corrosion and ageing protection. Metals and alloys. Methods for determining indicators of corrosion and corrosion resistance]. M.: Izd-vo standartov, 1985. 34 s.
26. Kurs M.G., Laptev A.B., Kutyrev A.Ye., Morozova L.V. Issledovaniye korrozionnogo razrusheniya deformiruyemykh alyuminiyevykh splavov pri naturno-uskorennykh ispytaniyakh. Chast 1 [Investigation of corrosion failure of wrought aluminum alloys during field accelerated tests. Part 1] // Voprosy materialovedeniya. 2016. №1 (85). S. 116–126.
Penetrant testing is one of the most common and sensitive methods of non-destructive testing of surfaces. The sensitivity of penetrant testing is conventionally determined by the smallest values of disclosure, depth and length reliably identify real or artificially initiated by defects in their flat track.
To assess the sensitivity of flaw detection materials in penetrant testing, test pieces are used, which are metal plates with a certain surface roughness and normalized artificial defects applied to them. The manufacturing technology of such pieces consists in obtaining surface cracks of a given depth, the width of which is close to the sensitivity threshold of the penetrant testing method used, while ensuring the stability of the crack sizes and material properties during the specified service life, the resistance of pieces to corrosion when exposed to flaw detection materials. On the basis of the analysis it is established that the most common are the pieces made of sheet alloy steel with cracks in nitrided layer.
Abroad, paired chromium-Nickel test panels are used to study and compare sensitivity. The panel is a brass plate with a Nickel-chrome coating of a given thickness, on which very small transverse cracks with a precisely specified depth are created.
According to the results of the review, it was found that checking the flaw detection kit for sensitivity using existing test pieces, it is impossible to say that the same sensitivity of penetrant testing will be guaranteed during the given technological process. As standards, it is advisable to use pieces of the same material as the test parts, taking into account the nature of the flaw formation, material and surface treatment of the test part (roughness), with defects whose disclosure value is close to the sensitivity threshold of the applied method of penetrant tes
2. Kablov E.N. Sovremennyye materialy – osnova innovatsionnoy modernizatsii Rossii [Modern materials – the basis of innovative modernization of Russia] // Metally Evrazii. 2012. №3. S. 10–15.
3. Kablov E.N. Rossiya na rynke intellektualnykh resursov [Russia in the market of intellectual resources] // Ekspert. 2015. №28 (951). S. 48–51.
4. Klyuyev V.V., Evlampiev A.I., Popov E.D. i dr. Nerazrushayushchiy kontrol i diagnostika: spravochnik [Nondestructive testing and diagnostics: reference]. M.: Mashinostroyeniye, 2003. 656 s.
5. Beda P.I., Vybornov B.I., Glazkov Yu.N. i dr. Nerazrushayushchiy kontrol metallov i izdeliy [Non-destructive testing of metals and products]. M.: Mashinostroyeniye, 1976. 456 s.
6. GOST 18442–80. Nerazrushayushchiy kontrol. Kapillyarnyye metody [Nondestructive testing. Capillary methods. General requirements]. M.: Izd-vo standartov, 1987. 24 s.
7. Kulichkova S.I., Golovkov A.N., Kudinov I.I., Laptev A.S. Sovremennyye defektoskopicheskiye materialy, oborudovaniye i avtomatizatsiya protsessa kapillyarnogo nerazrushayushchego kontrolya [Modern defectoscopic materials, equipment and automation of the process of capillary non-destructive testing] // Kontrol. Diagnostika. 2019. №2. S. 52–57. DOI: 10.14489/td.2019.02.pp 052-057.
8. Kadosov A.D., Lednev I.S., Pavlova T.D., Golovkov A.N. Kontrolnyye obraztsy dlya opredeleniya rabotosposobnosti magnitoporoshkovykh defektoskopov i magnitnykh indikatorov (obzor) [The test pieces to determine the performance of magnetic particle flaw detectors and magnetic media (review)] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2019. №5 (77). St. 09. Available at: http://www.viam-works.ru (accessed: September 04, 2019). DOI: 10.18577/2307-6046-2019-0-5-76-84.
9. OST1 90282–79. Kachestvo produktsii. Nerazrushayushchiy kontrol. Kapillyarnyye metody [Industry Standard 1 90282–79. Product quality. Unbrakable control. Capillary methods]. M.: VIAM, 1979. 50 s.
10. Lobanova I.S., Kalinichenko A.N., Kalinichenko N.P., Kamysheva E.N. Opredeleniye vozmozhnosti primeneniya nemetallicheskikh kontrolnykh obraztsov dlya otsenki rabotosposobnosti defektoskopicheskikh materialov i otsenki chuvstvitel'nosti kapillyarnogo kontrolya [Determining the possibility of using non-metallic control samples to assess the health of flaw detection materials and assess the sensitivity of capillary control] // Reference Materials. 2017. Vol. 13. No. 1. P. 37–42.
11. GOST R ISO 3452-3–2009. Kontrol nerazrushayushchiy. Pronikayushchiy kontrol. Chast 3. Ispytatelnye obraztsy [ISO 3452-3:1998. Non-destructive testing – Penetrant testing – Part 3: Reference test blocks, IDT]. M.: Standartinform, 2011. 12 s.
12. Caturano G., Cavaccini G., Ciliberto A., Pianese V. Probability of Detection for Penetrant Testing in Industrial Environment // Applied and Industrial Mathematics. 2010. Vol. 3. No. 3. P. 186–195.
13. Lively J.A. Fluorescent penetrant inspection probability of detection demonstrations performed for space propulsion // Review of Quantitative Nondestructive Evaluation. 2003. Vol. 22. P. 1891–1898.
14. Rummel W.D., Matzkanin G.A. Nondestructive evaluation: NDE capabilities data book. Texas Research Institute Austin, 1997. 598 p.
15. Rentala V.K., Mylavarapu P., Gautam J., Kumar V. NDE Reliability using Laboratory Induced Natural Fatigue Cracks // 7th European-American Workshop on Reliability of NDE. Germany, Potsdam, 2017. P. 1–8. Available at: https://www.ndt.net/search/docs.php3?showForm=off&id
=21793 (accessed: September 04, 2019).
16. Magnaflux. Magnitoporoshkovyy kontrol. Kapillyarnyy kontrol [Magnaflux. Magnetic particle control. Capillary control]. Available at: https:// docplayer.ru/63036394-Kapillyarnyy-kontrol-osnovna...lyarnyy-kontrol.html (accessed: September 04, 2019).
17. Filinov M.V., Prokhorenko P.P. Fizicheskiye osnovy i sredstva kapillyarnoy defektoskopii [Physical fundamentals and means of capillary defectoscopy]. M.: Fizmatlit, 2008. 306 s.
18. Lutsenko A.N., Slavin A.V., Erasov V.S., Khvackij K.K. Prochnostnye ispytaniya i issledovaniya aviacionnyh materialov [Strength tests and researches of aviation materials] // Aviacionnye materialy i tehnologii. 2017. №S. S. 527–546. DOI: 10.18577/2071-9140-2017-0-S-527-546.
19. Kalashnikov V.S., Kashapov O.S., Pavlova T.V., Istrakova A.R. Issledovanie svarnyh soedinenij splava VT41, poluchennyh metodom ELS [Investigation of VT41 alloy welded joints produced by EBW] // Aviacionnye materialy i tehnologii. 2014. №S5. S. 81–88. DOI: 10.18577/2071-9140-2014-0-S5-81-88.
20. Kemppainen M., Virkkunen I. Production of Real Flaws in Probability of Detection (POD-) Samples for Aerospace Applications // 4th International Symposium on NDT in Aerospace. 2012. P. 1–7. Available at: http://2012.ndt-aerospace.com/Proceedings/Th1A-POD-I (accessed: September 04, 2019.
21. Kudinov I.I., Tsykunov N.V., Yakubin S.P. Opredeleniye razmerov vyyavlyayemykh treshchin v diskakh turbiny aviatsionnogo dvigatelya pri provedenii kapillyarnogo kontrolya [Determining the size of detected cracks in the turbine discs of an aircraft engine during capillary control] // Sb. tez. dokl. Vseros. nauch.-tekhn. konf. «Aviadvigateli XXI veka» (Moskva, 24–27 noyab. 2015 g.). M.: TSIAM imeni P.I. Baranova, 2015. S. 502–503.
The species Hormoconis resinae or «kerosene fungus» is known for its ability to cause biodeterioration of aviation fuel and fuel system materials. Cultures of this fungus are actively used to test the fungal resistance of fuels and biocide additives to fuel according to State Standard 9.023–74 « Unified system of corrosion and ageing protection (USCAP). Fuel oil. Method of laboratory testing biostability of fuels protected by antimicrobial additive». The collection of FSUE «VIAM» contains 7 strains of the Hormoconis resinae species, isolated from different climatic zones and of interest for extended testing and comparative studies. Until recently, the method of subcultivation on nutrient media was used for their storage, the disadvantages of which include a rather high probability of losing the necessary physiological properties of the culture. The aim of this study was to test the physiological properties of «kerosene fungus» strains after years of storage on nutrient media for their transfer to a long-term duplicate collection of lyophilization and cryogenic freezing methods.
Physiological activity of micromycetes was assessed visually, according to the characteristic signs of growth described in State Standard 9.023. The results of inoculation of two types of aviation fuel RT and TC-1 by Hormoconis resinae 7strains (№viam44, viam57, viam58, viam59, viam79, viam179, viam180) for 3 months showed that all strains retained their ability to grow due to aviation fuel hydrocarbons. However, the lag phase increased significantly, or the time required to starting active growth in fuel, it ranged from 1 to 3 months. Re-isolated cultures showed signs of growth in the first two weeks, thus, the activity of the cultures was fully restored.
Since the fungal resistance tests duration according&
2. Hamme J.D.V., Singh A., Ward O.P. Recent advances in petroleum microbiology // Microbiology and molecular biology reviews. 2003. No. 67 (4). P. 503–549.
3. Rauch M.E., Graef H.W., Rozenzhak S.M. et al. Characterization of Microbial Contamination in United States Air Force Aviation Fuel Tanks // Journal of Industrial Microbiology and Biotechnology. 2006. No. 33 (1). P. 29–36.
4. Semenov S.A., Gumargalieva K.Z., Zaikov G.E. Biopovrezhdeniya materialov i izdeliy tekhniki // Gorenie, destruktsiya i stabilizatsiya polimerov [Biodeterioration of materials and products of technology]. SPb.: Nauchnyye osnovy i tekhnologii, 2008. C. 73–99.
5. Kablov E.N. Klyuchevaya problema – materialy [The key problem is materials] // Tendentsii i oriyentiry innovatsionnogo razvitiya Rossii. M.: VIAM, 2015. S. 458–464.
6. Kablov E.N., Erofeev V.T., Svetlov D.A., Smirnov V.F., Bogatov A.D. Biopovrezhdeniya v kosmicheskikh apparatakh [Biodeterioration in spacecraft] // Sb. dokl. Mezhdunar. nauch.-tekhn. konf. «Kompozitsionnyye materialy. Teoriya i praktika». Penza, 2015. S. 40–46.
7. Crous P.W., Braun U., Schubert K., Groenewald J.Z. Delimiting Cladosporium from morphologically similar genera. Studies in Mycology. 2007. No. 58. P. 33–56.
8. Kondratyuk T.A., Kharkevich E.S., Zakharchenkova V.A. i dr. Biopovrezhdeniye aviatsionnogo topliva TS-1 mikroskopicheskimi gribami [Biological damage to aviation fuel TS-1 by microscopic fungi] // Mikologiya i fitopatologiya. 2007. T. 41. №5. S. 442–448.
9. McVea G.G., Solly R.K. Control of fuel microorganisms with magnetic devices: laboratory investigation with Hormoconis resinae // Aircraft Materials Technical Memorandum. 1991. No. 408. P. 1–11.
10. Martin-Sanchez P.M., Gorbushina A.A., Kunte H.J., Toepel J. A novel QPCR protocol for the specific detection and quantification of the fuel-deteriorating fungus Hormoconis resinae. Biofouling. Taylor&Francis. 2016. Vol. 32. No. 6. P. 635–644.
11. GOST 9.023–74. ESZKS. Topliva neftyanyye. Metod laboratornykh ispytaniy biostoykosti topliv, zashchishchennykh protivomikrobnymi prisadkami. Zashchita ot korrozii. Chast 6. Zashchita ot biopovrezhdeniy [Unified system of corrosion and ageing protection. Oil fuels. Method of laboratory testing biostability of fuels protected by antimicrobe additives. Corrosion protection. Part 6. Protection against biodeterioration]. M.: Izd-vo standartov. 1994. 9 s.
12. Kablov E.N., Startsev V.O. Sistemnyj analiz vliyaniya klimata na mekhanicheskie svojstva polimernykh kompozitsionnykh materialov po dannym otechestvennykh i zarubezhnykh istochnikov (obzor) [Systematical analysis of the climatics influence on mechanical properties of the polymer composite materials based on domestic and foreign sources (review)] // Aviacionnye materialy i tehnologii. 2018. №2 (51). S. 47–58. DOI: 10.18577/2071-9140-2018-0-2-47-58.
13. Krivushina A.A., Goryashnik Yu.S. Sposoby zashchity materialov i izdeliy ot mikrobiologicheskogo porazheniya (obzor) [Ways of protection of materials and products from microbiological damage (review)] // Aviacionnye materialy i tehnologii. 2017. №2 (47). S. 80–86. DOI: 10.18577/2071-9140-2017-0-2-80-86.
14. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
15. Polyakova A.V., Krivushina A.A., Goryashnik Yu.S., Buharev G.M. Ispytaniya na mikrobiologicheskuyu stojkost v naturnyh usloviyah razlichnyh klimaticheskih zon [Microbiological resistance tests under nature conditions in variety of climatiс zones] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №4. St. 11. Available at: http://www.viam-works.ru (accessed: March 25, 2019). DOI: 10.18577/2307-6046-2016-0-4-11-11.
16. Vainio A.E.I. Amylolytic yeast: expression of Hormoconis resinae glucoamylase P in Saccharomyces cerevisiae. PhD Thesis. Turun Yliopisto Institute, Finland, 1996. Р. 3–8.
17. Morgan P., Watkinson R.J. Biodegradation of components of petroleum. Biochemistry of microbial degradation. 1994. P. 1–31.
18. Rafin C., Veignie E. Hormoconis resinae, the kerosene fungus: Handbook of hydrocarbon and lipid microbiology. Springer International Publishing AG, 2018. Р. 16–21.
19. Krivushina A.A., Chekunova L.N., Mokeyeva V.L. Morfologicheskiye osobennosti shtammov «kerosinovogo» griba Hormoconis resinae pri roste v aviatsionnom toplive i na pitatelnykh sredakh [Morphological features of strains of the «kerosene» fungus Hormoconis resinae when grown in aviation fuel and on nutrient media] // Mikologiya i fitopatologiya. 2019. №1. S. 23–32.
20. Domsch K.H., Gams W., Anderson T.H. Compendium of Soil Fungi (2nd ed.). Lubrecht & Cramer Ltd, 2007. 672 p.
21. Tsavkelova E.L., Klimova S.Yu., Cherdyntseva T.L., Netrusov L.I. Mikroorganizmy – produtsenty stimulyatorov rosta rasteniy i ikh prakticheskoye primeneniye (obzor) [Microorganisms - producers of plant growth stimulants and their practical application (review) ] // Prikladnaya biokhimiya i mikrobiologiya. 2006. T. 42. №2. S. 133–143.