Articles
The analysis of Russian and foreign literature in aluminum high-end corrosion resistant alloys area was made. Main tendencies of development of high-end Al alloys are:
– enhancement of mechanical protrerties by means of Cu, Mg, Zn, transition and rare earth metals addition.
– enhancement of plasticity properties by means of microalloying and intermetallic phases control and by improvement of technological process.
– enhancement of corrosion resistance by means of Zn addition.
– enhancement of machinability by means of addition of Mg and Si in estimated ratio.
Four experimental compositions of Al-Mg-Si alloy were chosen for investigations.
The investigations of phases chemical composition by means of electron probe analysis were made. All of the samples have a typical Al2Si phase of their structure. Inhomogenized samples have a AlCu-type phase in structure which is dissolving in homogenization process. A structure of homogenized ingot has a nonequilibrium AlFeMn-type phase in its structure.
A microstructure analysis shown that Ti and Zr are good grain refiners. Ti creates an additional crystallization centers and as a result a quantity of nucleation centers and grain size decreases. A Zr addition leads to a Al3Zr dispersoids formation in alloy, which decreases a speed of grain boundary migration, as they are a barrier for dislocation movement.
A Cr and Ti addition as a Zr and V addition allows to enhance a crack resistance properties. A formation of finely divided phases in heat treatment could be the reason of it.
2. Kablov E.N. Rossii nuzhny materialy novogo pokoleniya [Materials of new generation are necessary to Russia] // Redkie zemli. 2014. №3. S. 8–13.
3. Kablov E.N., Ospennikova O.G., Vershkov A.V. Redkie metally i redkozemelnye elementy – materialy sovremennyh i budushhih vysokih tehnologij [Rare metals and rare-earth elements are materials for modern and future high technologies] // Aviacionnye materialy i tehnologii. 2013. №S2. S. 3–10.
4. Kablov E.N., Startsev O.V., Medvedev I.M. Obzor zarubezhnogo opyta issledovanij korrozii i sredstv zashhity ot korrozii [Review of international experience on corrosion and corrosion protection] // Aviacionnye materialy i tehnologii. 2015. №2 (35). S. 76–87. DOI: 10.18577/2071-9140-2015-0-2-76-87.
5. Kablov E.N. Materialy novogo pokoleniya – osnova innovatsij, tekhnologicheskogo liderstva i natsionalnoj bezopasnosti Rossii [Materials of new generation – basis of innovations, technological leadership and national security of Russia] // Intellekt i tekhnologii. 2016. № 2 (14). S. 16–21.
6. Klochkov G.G., Grushko O.E., Popov V.I., Ovchinnikov V.V., Shamraj V.F. Struktura, tehnologicheskie svojstva i svarivaemost listov iz splava V-1341 sistemy Al–Mg–Si [Structure, technological properties and bondability of sheets from alloy V-1341 of Al–Mg–Si system] // Aviacionnye materialy i tehnologii. 2011. №1. S. 3–8.
7. Voronkov V.I., Potapenko K.E., Petrov P.A., Vydumkina S.V. Poluchenie utochnennykh dannykh po soprotivleniyu plasticheskoj deformatsii pri goryachej obemnoj shtampovke alyuminievykh splavov AD35 i AD31 [Obtaining specified data on plastic deformation resistance of aluminum alloys AD35 and AD31 at hot forging] // Aviacionnye materialy i tehnologii. 2017. №1 (46). S. 3–10. DOI: 10.18577/2071-9140-2017-0-1-3-10.
8. Splav na osnove alyuminiya i izdelie, vypolnennoe iz nego: pat. 2215055 Ros. Federatsiya. №2001133680 [Alloy on the basis of aluminum and the product which has been executed of it: pat. 2215055 Rus. Federation. No. 2001133680]; zayavl. 17.12.01; opubl. 27.10.03.
9. Deformiruemyj splav na osnove alyuminiya i izdelie, vypolnennoe iz etogo splava: pat. 2255133 Ros. Federatsiya. №2003136632 [Deformable alloy on the basis of aluminum and the product executed from this alloy: pat. 2255133 Rus. Federation. No. 2003136632]; zayavl. 19.12.03; opubl. 27.06.05.
10. Sposob proizvodstva pressovannykh izdelij iz alyuminievogo splava serii 6000: pat. 2542183 Ros. Federatsiya. №2013131745 [Way of production of the pressed products from aluminum alloy of series 6000: pat. 2542183 Rus. Federation. No. 2013131745]; zayavl. 09.07.13; opubl. 20.02.15.
11. Edwards G.A., Stiller K., Dunlop G.L., Couper M.J. The precipitation sequence in Al–Mg–Si alloys // Acta Materialia. 2010. Vol. 46. P. 3893–3904.
12. Pogatscher S., Antrekowitsch H., Leitner H. et al. Mechanisms controlling the artificial aging of Al–Mg–Si Alloys // Acta Materialia. 2011. Vol. 59. P. 3352–3363.
13. Chakrabarti D.J., Laughlin D.E. Phase relations and precipitation in Al–Mg–Si alloys with Cu additions // Progress in Materials Science. 2004. Vol. 49. P. 389–410.
14. Gupta A.K., Lloyd D.J., Court S.A. Precipitation hardening in Al–Mg–Si alloys with and without excess Si // Materials Science and Engineering. 2001. Vol. A316. P. 11–17.
15. Jacobs M.H. The structure of the metastable precipitates formed during ageing of an Al–Mg–Si alloy // Philosophical Magazine. 1972. Vol. 26 (1). P. 1–13.
16. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
The influence of methods and technological modes of preparation of the surface of the AMg2N alloy foil on the corrosion resistance of the foil in the salt fog chamber, including after its exposure at a temperature of minus 60°C and plus 185°C. It was found that the samples of aluminum foil with the studied coatings and chemical treatment have low corrosion resistance: corrosion damage occurs after 168 hours of exposure in the salt fog chamber. The most significant corrosion damage is observed on foil samples preheated at 185°C for 24 hours. The use of an additional polymer coating with a thickness of up to 3 microns can significantly increase the corrosion resistance of aluminum foil with the studied coatings and chemical treatment: 336 hours of exposure in the salt fog chamber no corrosion. It was found that all the methods and technological modes of preparation of the surface of aluminum foil for bonding provide satisfactory corrosion resistance of the foil in the fuel and oil, including after its exposure at temperatures of minus 60°C and plus 185°C (weight loss is 0.1 g/m2).
It was found that in some cases the thermal effect on the foil at temperatures of minus 60° and plus 185°C leads to a change in the morphology and structure of its surface. Exceptions are uncoated foil samples and with Pickling treatment. The use of microarc oxidation and chemical oxidation leads to a significant increase in the specific surface area in contact with the glue, which should have a positive impact on the adhesive strength of the adhesive compound. When using "Pickling" treatment and ion-plasma deposition of Al2O3, the specific surface area of aluminum foil varies slightly (not more than 10%).
The study of the influence of methods of preparing the surface of aluminum foil on the strength characteristics of the adhe
2. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period to 2030] // Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
3. Kablov E.N. Materialy novogo pokoleniya [Materials of new generation] // Zashchita i bezopasnost. 2014. №4. S. 28–29.
4. Kolobova Z.N., Pavlovskaya T.G., Anikhovskaya L.I., Karimova S.A. Razrabotka sposobov podgotovki poverkhnosti pri remonte kleenykh konstruktsij iz alyuminievykh splavov [Development of ways of surface preparation at repair of kleeny designs from aluminum alloys] // Aviacionnye materialy i tehnologii. M.: VIAM, 2002. Vyp.: Remontnye tekhnologii v aviastroenii. S. 73–76.
5. Antipov V.V. Strategiya razvitiya titanovyh, magnievyh, berillievyh i alyuminievyh splavov [Strategy of development of titanium, magnesium, beryllium and aluminum alloys] // Aviacionnye materialy i tehnologii. 2012. №S. S. 157–167.
6. Kablov E.N. Korroziya ili zhizn [Corrosion or life] // Nauka i zhizn. 2012. №11. S. 16–21.
7. Anikhovskaya L.I., Pavlovskaya T.G., Dementeva P.A., Petrova A.P. Podgotovka poverkhnosti pod skleivanie [Surface preparation under pasting] // Klei. Germetiki. Tekhnologii. 2008. №7. S. 32–35.
8. Pavlovskaya T.G., Volkov I.A., Kozlov I.A., Naprienko S.A. Ekologicheski uluchshennaya tehnologiya obrabotki poverhnosti alyuminievyh splavov [Ecologically improved technology of aluminum alloys surface treatment] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №7. St. 02 (accessed: June 25, 2018). DOI: 10.18577/2307-6046-2016-0-7-2-2.
9. Illarionov E.I., Kolobnev N.I., Gorbunov P.Z., Kablov E.N. Alyuminievye splavy v aviakosmicheskoj tekhnike [Aluminum alloys in aerospace equipment]. M.: Nauka, 2001. 192 s.
10. Kulyushina N.V., Kozlov I.A., Kutyrev A.E., Vagramyan T.A. Adhesive coatings on the basis of trialkoxysilanes for aluminum and steel // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №8. St. 05. Available at: http://viam-works.ru (accessed: June 25, 2018). DOI: 10.18577/2307-6046-2015-0-8-5-5.
11. Skopintsev V.D. Oksidirovanie alyuminiya i ego splavov [Oxidation of aluminum and its alloys]. M.: RKhTU im. D.I. Mendeleeva, 2015. 120 s.
12. Vojtovich V.A. Sposoby podgotovki poverkhnosti izdelij iz metallov i splavov [Ways of surface preparation of products from metals and alloys] // Klei. Germetiki. Tekhnologii. 2005. №9. S. 19–23.
13. Ebnesajjad S. Handbook of adhesives and surface preparation. Technology, Applications and Manufacturing. William Andrew Publishing, 2011. 450 p. DOI: 10.1016/C2010-0-65918-9.
14. Ufferman B., Abke T., Barker M. et al. Mechanical properties of joints in 5052 aluminum made with adhesive bonding and mechanical fasteners // International Journal of Adhesion and Adhesives. 2018. Vol. 83. P. 96–102.
15. Chuang Gao, Long Li, Xin Chen et al. The effect of surface preparation on the bond strength of Al–St strips in CRB process // Materials & Design. 2016. Vol. 107. P. 205–211.
16. Keisuke Nagato, Takumu Yamaguchi, Masayuki Nakao. Anchoring and chemical-bonding effects of anodic alumina microstructure on adhesion strength // CIRP Annals. Available at: http://www.cirp.net (accessed: June 25, 2018).
17. Karimova S.A., Kutyrev A.E., Pavlovskaya T.G., Zaharov K.E. Nizkotemperaturnoe uplotnenie anodno-oksidnyh pokrytij na detalyah iz alyuminievyh splavov [Low temperature sealing of anodic oxide coatings on parts of aluminum alloys] // Aviacionnye materialy i tehnologii. 2014. №4. S. 9–17. DOI: 10.18577/2071-9140-2014-0-4-9-17.
18. DeMejo L.P., Rimai D.S., Sharpe L.H. Fundamentals of Adhesion and Interfaces. London: Taylor & Francis, 1999. 201 p.
19. Kozlov I.A., Pavlovskaya T.G., Zakharov K.E., Volkov I.A. Ekologicheski uluchshennye tekhnologii podgotovki poverkhnosti alyuminievykh splavov [Ecologically improved technologies of surface preparation of aluminum alloys] // Adgezionnye materialy: sb. dokl. nauch.-tekhnich. konf. M.: VIAM. 2016. S. 13 (CD).
Investment casting is the process of making castings by pouring molten metal into a mold that is obtained using a wax model. This technology is a complex and time-consuming process that provides castings of complex configurations ranging in weight from a few grams to tens of kilograms, with a wall thickness of 0.5 mm, with a surface corresponding to the 4–6 grade of purity, and with high dimensional accuracy in comparison with other methods of casting. The dimensions of the castings obtained by the investment casting method are as close as possible to the dimensions of the finished part. By reducing the machining process, the cost of the finished product is reduced. In other words, the use of this technology allows you to get an accurate casting. So nowadays this technology is the most common for accurate casting.
In casting for investment models, accuracy is mainly determined by the parameters of their initial melting model (IM). In turn, the accuracy of any IM, the configuration features of the IM and rigging. The casting aluminum alloy АК7ч (AЛ9) was used as a material for the casting. This alloy refers to hermetic alloys of the Al–Si system (silumin).
The article contains data on the main requirements for the ceramic shell, as well as the method and materials used in its manufacture. An experiment was conducted to determine the required number of layers of ceramic coating for aluminum castings of various configurations.
It has also been revealed that the use of quartz sand as a supporting filler for castings made from aluminum alloys is unacceptable, due to a decrease in the heat transfer of the castings and, as a consequence, a deterioration in their mechanical properties, such as tensile strength and elongation.
2. Shklennik YA.I., Ozerov V.A. Lite po vyplavlyaemym modelyam. Inzhenernaya monografiya [Investment casting. Engineering monograph]. M.: Mashinostroenie, 1984. 408 s.
3. Spetsialnye sposoby litya: spravochnik / pod obshch. red. V.A. Efimova [Special ways of molding: directory / gen. ed. by V.A. Efimov]. M.: Mashinostroenie, 1991. 436 s.
4. Klyukvina T.D., Vlasova K.A., Leonov A.A., Yashina S.A. Izuchenie mekhanizma obrazovaniya prochnosti v samotverdeyushchikh smesyakh s fenolnym svyazuyushchim (obzor) [Study of the mechanism of formation of strength in self-hardening mixtures with a phenolic binder (review)] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2018. №3. St. 03. Available at: http://viam-works.ru (accessed: June 25, 2018). DOI: 10.18577/2307-6046-2018-0-3-3.
5. Garshin A.P., Gropyanov V.M., Zajtsev G.P. Keramika dlya mashinostroeniya [Ceramics for mechanical engineering]. M.: Nauchtekhlitizdat, 2003. 384 s.
6. Trukhov A.P., Sorokin A.Yu., Ershov M.Yu. i dr. Tekhnologiya litejnogo proizvodstva: lite v peschanye formy: ucheb. [Technology of foundry production: sand casting: textbook]. M.: Akademiya, 2005. 528 s.
7. Ozerov V.A., Garanin V.F. Lite povyshennoj tochnosti po razovym modelyam: ucheb. posobie [Enhanced accuracy molding on one-time models: manual]. M.: Vysshaya shkola, 1988. 87 s.
8. Ivanov V.N., Kazennov S.A., Kurchman B.S. i dr. Lite po vyplavlyaemym modelyam. 3-e izd., pererab. i dop. [Investment casting. 3rd ed., rev. and add.]. M.: Mashinostroenie, 1984. 408 s.
9. Ospennikova O.G. Issledovanie i razrabotka parametrov tehnologicheskogo processa izgotovleniya modelej iz modelnyh kompozicij na osnove sinteticheskih voskov [Research and working out of parametres of technological process of manufacturing of models from modelling compositions on the basis of synthetic waxes] // Aviacionnye materialy i tehnologii. 2014. №3. S. 18–21. DOI: 10.18577/2071-9140-2014-0-3-18-21.
10. Ivanov V.N. Slovar-spravochnik po litejnomu proizvodstvu [The dictionary reference on foundry production]. M.: Mashinostroenie, 1990. 384 s.
11. Lakedemonskij A.V., Kvasha F.S., Mendeleev Ya.I. i dr. Litejnye defekty i sposoby ikh ustraneniya [Foundry defects and ways of their elimination]. M.: Mashinostroenie, 1972. 152 s.
12. Mikheev S.V., Stroganov G.B., Romashin A.G. Keramicheskie i kompozitsionnye materialy v aviatsionnoj tekhnike [Ceramic and composite materials in aviation engineering]. M.: Alteks, 2002. 276 s.
13. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
14. Kablov E.N. Sovremennye materialy – osnova innovatsionnoj modernizatsii Rossii [Modern materials – basis of innovative modernization of Russia] // Metally Evrazii. 2012. №3. S. 10–15.
15. Duyunova V.A., Volkova E.F., Uridiya Z.P., Trapeznikov A.V. Dinamika razvitiya magnievyh i litejnyh alyuminievyh splavov [Dynamics of the development of magnesium and cast aluminum alloys] // Aviacionnye materialy i tehnologii. 2017. №S. S. 225–241. DOI: 10.18577/2071-9140-2017-0-S-225-241.
16. Kablov E.N. Aviakosmicheskoe materialovedenie [Aerospace materials science] // Vse materialy. Entsiklopedicheskij spravochnik. 2008. №3. S. 2–14.
17. Alyuminievye splavy v aviakosmicheskoj tekhnike / pod obshch. red. E.N. Kablova [Aluminum alloys in aerospace equipment / gen. ed. by E.N. Kablov]. M.: Nauka, 2001. 192 s.
In the article are presented an overview of aluminum alloys with different contents of magnesium and other alloying elements, such as titanium, beryllium, silicon, zinc and others. Aluminum casting alloys can be conditionally divided into three groups: corrosion-resistant, heat-resistant and high-strength. Aluminum corrosion-resistant alloys can be divided into various alloy systems, such as Al–Mg, Al–Mg-Si, Al-Zn-Mg. Aluminum corrosion-resistant alloys are divided into two subgroups: with magnesium content up to 6% – deformed alloys and more than 6% magnesium – cast alloys. The advantages and disadvantages of these alloys are described in the article, their mechanical characteristics and corrosion properties are presented.
The processes of interaction of metal of various aqueous media are related to the type of electrochemical corrosion. Local corrosion is formed by separate areas on the surface of the metal. Distinguish corrosion by stains, ulcers, point, and also intergranular.
All corrosion-resistant alloys of the Al–Mg system have a disadvantage – a relatively low operating temperature (usually up to 150°C). Preservation of mechanical properties and increase in operating temperature are the main directions in the development of aluminum cast corrosion-resistant alloys.
The work is executed within the implementation of the complex scientific direction 10.10. «Energy-efficient, resource-saving and additive technologies for manufacturing deformed semi-finished products and shaped castings from magnesium and aluminum alloys» («Strategic Directions for the Development of Materials and Technologies for Their Processing until 2030»).
2. Duyunova V.A., Volkova E.F., Uridiya Z.P., Trapeznikov A.V. Dinamika razvitiya magnievyh i litejnyh alyuminievyh splavov [Dynamics of the development of magnesium and cast aluminum alloys] // Aviacionnye materialy i tehnologii. 2017. №S. S. 225–241. DOI: 10.18577/2071-9140-2017-0-S-225-241.
3. Pobezhimov P.P., Nefedova L.P., Belov E.V. Metallurgiya korrozionnostojkikh alyuminievykh splavov i otlivok [Metallurgy of corrosion-resistant aluminum alloys and casts]. M.: Metallurgiya, 1989. 150 s.
4. Alyuminij. Metallovedenie, obrabotka i primenenie alyuminievykh splavov. Per. s angl. / pod red. A.T. Tumanova, F.I. Kvasova, I.N. Fridlyandera [Metallurgical science, processing and application of aluminum alloys. Trans. from Eng.]. M.: Metallurgiya, 1972. 664 s.
5. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
6. Tomashov N.D., Chernova G.P. Teoriya korrozii i korrozionnostojkie konstruktsionnye splavy [Theory of corrosion and corrosion-resistant structural alloys]. M.: Metallurgiya, 1986, 358 s.
7. Goncharenko E.S., Melnikov A.V., Cherkasov V.V., Vertogradskij V.A. Vliyanie rezhimov zakalki na strukturu i svojstva splava sistemy Al–Mg [Influence of modes of tempering on structure and property of alloy of Al-Mg system] // Metallovedenie i termicheskaya obrabotka metallov. 1997. №6. S. 13–16.
8. Illarionov E.I., Kolobnev N.I., Gorbunov P.Z., Kablov E.N. Alyuminievye splavy v aviakosmicheskoj tekhnike / pod obshch. red. E.N. Kablova [Aluminum alloys in aerospace equipment / gen. ed. by E.N. Kablov]. M.: Nauka, 2001. 192 s.
9. Kolobnev I.F. Zharoprochnost litejnykh alyuminievykh splavov [Thermal stability of cast aluminum alloys]. M.: Metallurgiya, 1973. 320 s.
10. Fridlyander I.N. Alyuminievye splavy [Aluminum alloys]. M.: Metallurgiya, 1971. T. 4: Promyshlennye alyuminievye splavy. 450 s.
11. Postnikov N.S. Korrozionnostojkie alyuminievye splavy [Corrosion-resistant aluminum alloys]. M.: Metallurgiya, 1976. 300 s.
12. Belousov N.N., Egorova V.A. Novoe v teorii i praktike litejnogo proizvodstva [New in the theory and practice of foundry production]. M.: Mashgiz, 1957. 55 s.
13. Lebedev V.M., Kornysheva I.S., Goncharenko E.S. i dr. Sovremennye litejnye alyuminievye splavy [Modern cast aluminum alloys] // Aviacionnye materialy i tehnologii. 2002. №2. S. 64–70.
14. Postnikov N.S., Cherkasov V.V. Progressivnye metody plavki i litya alyuminievykh splavov [Progressive methods of melting and molding of aluminum alloys]. M.: Metallurgiya, 1974. 224 s.
15. Goncharenko E.S., Trapeznikov A.V., Ogorodov D.V. Litejnye alyuminievye splavy (k 100-letiyu so dnya rozhdeniya M.B. Altmana) [Aluminium casting alloys] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №4. St. 02. Available at: http://www.viam-works.ru (accessed: June 20, 2018). DOI: 10.18577/2307-6046-2014-0-4-2-2.
16. Khokhlatova L.B., Kolobnev N.I., Antipov V.V. i dr. Vliyanie korrozionnoj sredy na skorost rosta treshhiny ustalosti v alyuminievyh splavah [Influence of the corrosion environment on the growth rate of crack of fatigue in aluminum alloys] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №3. St. 05. Available at: http://www.viam-works.ru (accessed: June 20, 2018).
17. Fridlyander I.N. Alyuminij i ego splavy [Aluminum and its alloys]. M.: Znanie, 1965. 620 s.
Magnesium alloys with increased strength and heat resistance characteristics are promising the lightest structural material, which has a number of advantages over other metal structural materials: low density, high specific strength and specific rigidity, good damping, fatigue characteristics and manufacturability. Abroad and in Russia - these alloys find application in various modern branches of technology: electronics, automotive industry, aviation industry, medicine, etc. This explains the growing interest of developers to magnesium alloys.
The purpose of thermal processing of products from magnesium alloys is to increase the strength properties, increase plasticity, relieve internal stresses and stabilize properties.
The technology of heat treatment of deformable magnesium alloys, used at present, mainly uses the achievements of the past years. Nevertheless, in this area, research is being conducted, and there are achievements.
At present, several main directions in the field of heat treatment of deformable magnesium alloys can be noted: increasing the characteristics of deformable magnesium alloys according to the scheme: theoretical premises–alloy composition–technology of its production (including application of certain heat treatment regimes); selection and optimization of alloying alloy elements; use of combined schemes of TMP (thermomechanical treatment). However, the prevailing tendency is the dependence of the selection of the optimum mode of heat treatment on the content of alloying elements, mainly the REE, in the alloy.
It is shown that simultaneous application of two or more REEs belonging to different subgroups is effective. As a result of the joint doping of the magnesium alloy of rare earth elements from different subgroups, the time to achieve the greatest e
2. Kablov E.N., Ospennikova O.G., Vershkov A.V. Redkie metally i redkozemelnye elementy – materialy sovremennyh i budushhih vysokih tehnologij [Rare metals and rare-earth elements are materials for modern and future high technologies] // Aviacionnye materialy i tehnologii. 2013. №S2. S. 3–10.
3. Kornysheva I.S., Volkova E.F., Goncharenko E.S., Muhina I.Yu. Perspektivy primeneniya magnievyh i litejnyh alyuminievyh splavov [Perspectives of application of magnesium and cast aluminum alloys] // Aviacionnye materialy i tehnologii. 2012. №S. S. 212–222.
4. Volkova E.F. Analiz i itogi Mezhdunarodnoj konferencii «Magnij–21. Novye gorizonty» (obzor) [The analysis and results of the International conference «Magnesium–21. Broad horizons» (review)] // Aviacionnye materialy i tehnologii. 2016. №1 (40). S. 86–94. DOI: 10.18577/2071-9140-2016-0-1-86-94.
5. Kablov E.N. Materialy i khimicheskie tekhnologii dlya aviatsionnoj tekhniki [Materials and chemical technologies for aviation engineering] // Vestnik Rossijskoj akademii nauk. 2012. T. 82. №6. S. 520–530.
6. Volkova E.F., Antipov V.V. Magnievye deformiruemye splavy [Magnesium deformable alloys] // Vse materialy. Entsiklopedicheskij spravochnik. 2012. №5. S. 20‒26.
7. Volkova E.F. Sovremennye deformiruemye splavy i kompozitsionnye materialy na osnove magniya [Modern deformable alloys and composite materials on the basis of magnesium] // Metallovedenie i termicheskaya obrabotka metallov. 2006. №11. S. 5–9.
8. Kablov E.N. Aviatsionnoe materialovedenie: itogi i perspektivy [Aviation materials science: results and perspectives] // Vestnik Rossijskoj akademii nauk. 2002. T. 72. №1. S. 3–12.
9. Duyunova V.A., Volkova E.F., Uridiya Z.P., Trapeznikov A.V. Dinamika razvitiya magnievyh i litejnyh alyuminievyh splavov [Dynamics of the development of magnesium and cast aluminum alloys] // Aviacionnye materialy i tehnologii. 2017. №S. S. 225–241. DOI: 10.18577/2071-9140-2017-0-S-225-241.
10. Volkova E.F., Duyunova V.A., Ioda E.N., Panteleev M.D. Osobennosti svarivaemosti novogo deformiruemogo magnievogo splava VMD16 [Features of bondability of new deformable VMD16 magnesium alloy] // Svarochnoe proizvodstvo. 2017. №6. S. 3–11.
11. Woo W., Feng Z., Wang X.-L., David S.A. Neutron diffraction measurements of residual stresses in friction stir welding: a review // Sci. Tech. Welding and Joining. 2011. Vol. 16 (1). P. 23–32.
12. Woo W., Choo H., Prime M.B. et al. Microstructure, texture, and residual stress in a friction stir processed AZ31B Mg alloy // Acta Materialia. 2008. Vol. 56 (8). P. 1701–1711.
13. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
14. Antonov E.G., Arbuzov B.A., Babkin V.M. i dr. Magnievye splavy: spravochnik [Magnesium alloys: directory]. M.: Metallurgiya, 1978. Ch. 2: Tekhnologiya proizvodstva i svojstva otlivok i deformirovannykh polufabrikatov. S. 208–216.
15. Elkin F.M. Deformiruemye magnievye splavy: sovremennoe sostoyanie i perspektivy [Deformable magnesium alloys: current state and perspectives] // Tekhnologiya legkikh splavov. 2009. №3. S. 9–20.
16. Yin D.D., Wang Q.D., Gao Y. et al. Effects of heat treatments on microstructure and mechanical properties of Mg–11Y–5Gd–2Zn–0,5Zr (wt. %) alloy // Alloys and Compounds. 2011. Vol. 509. No. 5. P. 1696–1704.
17. Process for manufacturing hot-forged parts made of a magnesium alloy: pat. FR2904005 (A1); field: 25.01. 08; publ. 25.03.08.
18. Mostyaev I.V. RZE – faktor kachestvennogo povysheniya svojstv magnievyh splavov (obzor) [REE – quality factor increase properties of magnesium alloy (review)] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №7. St. 02. Available at: http://www.viam-works.ru (accessed: June11, 2018). DOI: 10.18577/2307-6046-2015-0-7-2-2.
19. Rokhlin L.L., Dobatkina T.V., Nikitina N.I., Tarytina I.E. Issledovanie magnievykh splavov s dvumya redkozemelnymi metallami raznykh podgrupp, tserievoj i ittrievoj [Research of magnesium alloys with two rare earth metals of different subgroups, ceric and yttric] // Institut metallurgii i materialovedeniya im. A.A. Bajkova RAN – 70 let: sb. nauch. tr. M.: Interkontakt Nauka, 2008. S. 304–315.
20. Volkova E.F., Rokhlin L.L., Betsofen S.YA., Akinina M.V. Issledovanie vliyaniya RZE ittrievoj i tserievoj podgrupp na svojstva magnievykh splavov [Research of influence of RZE of yttric and ceric subgroups on properties of magnesium alloys] // Tekhnologiya legkikh splavov. 2014. №2. S. 42–48.
21. Rokhlin L.L., Dobatkina T.V., Nikitina N.I., Tarytina I.E., Lukyanova E.A. Povedenie pri otzhige vysokoprochnogo magnievogo splava IMV7-1 sistemy Mg–Y–Gd–Zr [Behavior when annealing high-strength IMV7-1 magnesium alloy of Mg-Y-Gd-Zr system] // Perspektivnye materialy. 2011. №6. S. 53–58.
22. Jian-Chang Xie, Quan-An Li, Xiao-Qiang Wang, Jian-Hong Li. Microstructure and mechanical properties of AZ81 magnesium alloy with Y and Nd elements // Transactions of Nonferrous Metals Society of China. 2008. Vol. 18. Issue 2. P. 303–308.
23. Volkova E.F., Sinebryukhov S.L., Gnedenkov S.V., Betsofen S.Ya. Vliyanie deformatsii i termicheskoj obrabotki na strukturu i svojstva magnievogo splava MA5 [Influence of deformation and thermal processing on structure and properties of MA5 magnesium alloy] // Metallovedenie i termicheskaya obrabotka metallov. 2012. №10. S. 55–59.
24. Pekguleryuz M.O. Magnesium alloy development for high-temperature automotive applications // Proceedings of the Second Russian International Conference «Magnesium – Broad Horizons». СПб., 2007 (CD).
25. Ovsyannikov B.V., Zamyatin V.M. Vliyanie tekhnologicheskikh faktorov na strukturu i mekhanicheskie svojstva slitkov i polufabrikatov iz magnievykh splavov [Influence of technology factors on structure and mechanical properties of ingots and semi-finished products from magnesium alloys] // Proceedings of the Second Russian International Conference «Magnesium – Broad Horizons» SPb., 2007 (CD).
26. Sasaki T.T., Ohkubo T., Hono K. Age Hardening Behavior of Mg–l.2Sn–l.7Zn Alloy Containing Al // Magnesium Technology. P. V: Alloy and Microstructural Design. 2012. P. 179–185.
27. Sposob temperaturnoj obrabotki splavov magniya: pat. 2454479 Ros. Federatsiya [Way of temperature processing of alloys of magnesium: pat. 2454479 Rus. Federation]; zayavl. 20.06.11; opubl. 27.06.12.
28. Merkulova G.A., Bogdanova T.A., Martynova YA.A. Poisk energosberegayushchej tekhnologii pri podgotovke zagotovok dlya shtampovki detalej iz magnievogo splava sistemy magnij-tsink-tsirkonij [Search of energy saving technology by preparation of preparations for punching of details from magnesium alloy of system magnesium-zinc-zirconium] // Materialy konf. «Nauchno-issledovatelskie problemy v oblasti energetiki i energosberezheniya». 2010. S. 114–116.
29. Elkin F.M. Osnovnye puti povysheniya plastichnosti deformiruemykh Mg-splavov [Main ways of increase of plasticity of deformable Mg-alloys] // Proceedings of the First Russian International Conference and Exhibition of «Magnesium – Broad Horizons», November 29– December 12, 2005 (CD).
30. Volkova E.F. Analiz sostoyaniya i perspektivy razvitiya deformiruemykh magnievykh splavov [Analysis of condition and perspective of development of deformable magnesium alloys] // Proceedings of the First Russian International Conference and Exhibition of «Magnesium – Broad Horizons», November 29 – December 12, 2005 (CD).
The influence of extra hydrogen doping on phase and structural transformations in high-strength VT23 alloy has been studied.
The samples of commercial sheet semi-products with 1.8 mm thickness have been chosen as research objects (chemical composition of the samples, % (wt.): Ti–4.5Al–4.0V–1.8Mo–0.86Cr–0.44Fe). Hydrogen doping has been accomplished in solid state by thermo-diffusion procedure with high-purity molecular hydrogen medium. A laboratory Siverts apparatus has been used for hydrogenation, the annealing process having been provided at temperatures of 650, 700, 750, and 800°С up to hydrogen concentrations 0.1–1.0% (wt.). After complete absorption of the desired amount of hydrogen the samples were cooled down to a room temperature with the rate ~1 K/s.
The volume ratios of a and b phases have been defined for room temperature state in dependence on hydrogen amount and hydrogenating annealing temperature. It has been shown that the alloy contains approximately 30 % (vol.) of b phase in annealed condition with initial hydrogen concentration of 0.006% (wt.). The increase of hydrogen content in the samples causes continuous increase of b phase volume fraction and decrease of primary aI phase content and particles size due to the a®b transformation initiated by hydrogen. It has been shown that doping with 0.1% (wt.) of hydrogen results in b phase volume fraction increase from 50 % after hydrogenation at 650°C to 80% after hydrogenation at 800°C. The dimensions of a particles within the mentioned conditions change from 0.6–1.2 to 1.8–2.2 mm.
It has been experimentally revealed that extra doping of the VT23 samples with hydrogen up to concentrations higher than 0.2% (wt.) at a temperature of 800°С, 0.3% (wt.) at 750°С, and 0.4% (wt.)&
2. Kablov E.N. Materialy novogo pokoleniya – osnova innovatsij, tekhnologicheskogo liderstva i natsionalnoj bezopasnosti Rossii [Materials of new generation – basis of innovations, technological leadership and national security of Russia] // Intellekt i tekhnologii. 2016. №2 (14). S. 16–21.
3. Kablov E.N. Materialy i khimicheskie tekhnologii dlya aviatsionnoj tekhniki [Materials and chemical technologies for aviation engineering] // Vestnik Rossijskoj akademii nauk. 2012. T. 82. №6. S. 520–530.
4. Bratukhin A.G. Sovremennye aviatsionnye materialy: tekhnologicheskie i funktsionalnye osobennosti [Modern aviation materials: technological and functional features]. M.: Aviatekhinform, 2003. 440 s.
5. Vozdvizhenskij V.M., Zhukov A.A., Postnova A.D., Vozdvizhenskaya M.V. Splavy tsvetnykh metallov dlya aviatsionnoj tekhniki [Non-ferrous alloys for aviation engineering]. Rybinsk: RGATA, 2002. 219 s.
6. Bratukhin A.G., Kolachev B.A., Sadkov V.V. i dr. Tekhnologiya proizvodstva titanovykh samoletnykh konstruktsij [Production technology of titanic aircraft designs]. M.: Mashinostroenie, 1995. 448 s.
7. Horev A.I. Fundamentalnye i prikladnye raboty po konstrukcionnym titanovym splavam i perspektivnye napravleniya ih razvitiya [Fundamental and applied works on structural titanium alloys and perspective directions of their development] //Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №2. St. 04. Available at: http://www.viam-works.ru (accessed: June 13, 2018).
8. Ilin A.A., Skvortsova S.V., Spektor V.S., Lukina E.A., Petrov L.M. Nizkotemperaturnoe vakuumnoe ionno-plazmennoe azotirovanie titanovykh splavov raznykh klassov [Low-temperature vacuum ion plasma nitriding of titanium alloys of different classes] // Tekhnologiya legkikh splavov. 2008. №3. S. 103–111.
9. Lyasotskaya V.S. Termicheskaya obrabotka svarnykh soedinenij titanovykh splavov [Thermal processing of welded compounds of titanium alloys]. M.: Ekomet, 2003. 352 s.
10. Kollerov M.Yu., Ilin A.A., Filatov A.A., Mamaev V.S. Uprochnyayushchaya termicheskaya obrabotka krupnogabaritnykh polufabrikatov i izdelij iz vysokoprochnykh titanovykh splavov [Strengthening thermal processing of large-size semi-finished products and products from high-strength titanium alloys] // Metallovedenie i termicheskaya obrabotka metallov. 2002. №5. S. 14–17. 11. Kolachev B.A., Polkin I.S., Talalaev V.D. Titanovye splavy raznykh stran [Titanium alloys of the different countries]. M.: VILS, 2000. 318 s.
12. Novikov I.I. Teoriya termicheskoj obrabotki metallov: uchebnik dlya vuzov. 3-e izd., ispr. i dop. [Theory of thermal processing of metals: the textbook for higher education institutions. 3rd ed., rev. and add.]. M.: Metallurgiya, 1978. 392 s.
13. Ilin A.A., Kolachev B.A., Nosov V.K., Mamonov A.M. Vodorodnaya tekhnologiya titanovykh splavov / pod obshch. red. A.A. Ilina [Hydrogen technology of titanium alloys / gen. ed. by .A. Ilin]. M: MISiS, 2002. 392 s.
14. Livanov V.A., Bukhanova A.A., Kolachev B.A. Vodorod v titane [Hydrogen in titanium]. M.: Metallurgiya, 1962. 246 s.
15. Kolachev B.A. Vodorodnaya khrupkost metallov [Hydrogen embrittlement of metals]. M.: Metallurgiya, 1985. 216 s.
16. Ilin A.A. Mekhanizm i kinetika fazovykh i strukturnykh prevrashchenij v titanovykh splavakh [The mechanism and kinetics of phase and structural transformations in titanium alloys]. M.: Nauka, 1994. 304 s.
17. Panin P.V., Manokhin S.S., Dzunovich D.A. Poluchenie i issledovanie submikrokristallicheskoj struktury v titanovykh splavakh pri obratimom legirovanii vodorodom i plasticheskoj deformatsii [Receiving and research of submicrocrystalline structure in titanium alloys at reversible alloying hydrogen and plastic strain] // Voprosy materialovedeniya. 2016. №4 (88). S. 7–17.
18. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
19. Aviatsionnye materialy: spravochnik v 13 t. 7-e izd., pererab. i dop. / pod obshch. red. E.N. Kablova [Aviation materials: the directory in 13 vol. 7th ed., rev. and add. / gen. ed. by E.N. Kablov]. M.: VIAM, 2010. T. 6: Titanovye splavy. 96 s.
20. Yakovlev A.L., Filatov A.A., Burkhanova A.A., Popova Yu.A., Nochovnaya N.A Effektivnost primeneniya titanovogo splava VT23 v novykh izdeliyakh «OKB Sukhogo» [Efficiency of application of VT23 titanium alloy in new products of «Sukhoi Design Bureau»] // Titan. 2013. №2 (40). S. 39–42.
21. Khorev A.I. Kompleksno-legipovannyj titanovyj splav VT23 universalnogo primeneniya [Complex alloyed VT23 titanium alloy of universal application] // Tekhnologiya mashinostpoeniya. 2007. №7. S. 5–11.
22. Khorev A.I. Titanovyj splav VT23 i ego sravnenie s luchshimi zarubezhnymi splavami [VT23 titanium alloy and its comparison with the best foreign alloys] // Titan. 2006. №1 (18). S. 47–52.
23. Ilin A.A., Kolachev B.A., Polkin I.S. Titanovye splavy. Sostav, struktura, svojstva: spravochnik [Titanium alloys. Structure, structure, properties: directory]. M.: VILS–MATI, 2009. 520 s.
24. Protsenko O.M., Karachevtsev F.N., Mekhanik E.A. Opyt razrabotki metodiki izmereniya soderzhaniya vodoroda v titanovyh splavah [Experience on development of measurement procedure for determination of hydrogen content in titanium alloys] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №12. St. 08. Available at: http://www.viam-works.ru (accessed: June 16, 2018). DOI: 10.18577/2307-6046-2014-0-12-8-8.
25. Kolachev B.A., Betsofen S.Ya., Bunin S.Ya., Volodin V.A. Fiziko-mekhanicheskie svojstva legkikh konstruktsionnykh materialov [Physicomechanical properties of easy constructional materials]. M.: Metallurgiya, 1995. 442 s.
26. Dzunovich D.A., Panin P.V., Lukina E.A., Shiryaev A.A. Vliyanie rezhimov termicheskoj obrabotki na strukturu i svojstva svarnykh krupnogabaritnykh polufabrikatov iz titanovogo splava VT23 [Heat treatment effect on structure and properties of welded large-dimensioned semi-finished products from VT23 titanium alloy] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2018. №1 (61). St. 07. Available at: http://www.viam-works.ru (accessed: June 13, 2018). DOI: 10.18577/2307-6046-2018-0-1-7-7.
27. Ilin A.A., Skvortsova S.V., Popova Yu.A., Kudelina I.M. Vliyanie termicheskoj obrabotki na formirovanie struktury i svojstv krupnogabaritnykh polufabrikatov iz splava VT23 [Influence of thermal processing on forming of structure and properties of large-size semi-finished products from alloy VT23] // Titan. 2010. №4. S. 48–53.
28. Skvortsova S.V., Popova Yu.A., Panin P.V., Grushin I.A., Kuryshev E.A. Vliyanie termicheskoj obrabotki na strukturu i svojstva svarnykh soedinenij iz titanovogo splava VT23 [Influence of thermal processing on structure and property of welded connections from VT23 titanium alloy] // Titan. 2011. №2. S. 16–21.
29. Panin P.V., Dzunovich D.A., Alekseev E.B. Sposoby opisaniya fazovogo sostava titanovyh splavov, dopolnitelno legirovannyh vodorodom (obzor) [Ways of phase areas representation in titanium alloys additionally doped with hydrogen (review)] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №3. St. 03. Available at: http://www.viam-works.ru (accessed: June 13, 2018). DOI: 10.18577/2307-6046-2015-0-3-3-3.
30. Panin P.V., Shiryaev A.A., Dzunovich D.A. Postroenie temperaturno-kontsentratsionnoj diagrammy fazovogo sostava titanovogo splava VT6, dopolnitelno legirovannogo vodorodom // Tekhnologiya mashinostroeniya. 2014. №3 (141). S. 5–9.
31. Ilin A.A., Mamonov A.M., Nosov V.K., Majstrov V.M. O vliyanii vodoroda na diffuzionnuyu podvizhnost atomov metallicheskoj podreshetki β-fazy titanovykh splavov [About influence of hydrogen on diffusion mobility of atoms of metal podreshetka β-фазы titanium alloys] // Metally. 1994. №5. S. 99–103.
32. Ilin A.A., Mikhajlov Yu.V., Nosov V.K., Majstrov V.M. Vliyanie vodoroda na raspredelenie legiruyushchikh elementov mezhdu α- i β-fazami v titanovom splave VT23 [Influence of hydrogen on distribution of doping elements between α-and β-фазами in BT23 titanium alloy] // Fiziko-khimicheskaya mekhanika materialov. 1987. №1. S. 112–114.
33. Nazimov O.P., Ilin A.A., Kollerov M.Yu. O sostoyanii vodoroda v titane [About condition of hydrogen in titanium] // Zhurnal fizicheskoj khimii. 1980. T. 54. S. 2774–2777.
The influence of extra hydrogen doping on processing ductility and crystallographic texture formation in high-strength VT23 alloy has been studied.
The plate-like samples of commercial sheet semi-products with the dimensions 1.8´10´70 mm have been chosen as research objects (chemical composition of the samples, % (wt.): Ti–4.5Al–4.0V–1.8Mo–0.86Cr–0.44Fe). Processing ductility evaluation has been accomplished by three-point bending tests of the samples being in contact with two carriers whereon localized loading (through the punches with diameters of 2 and 5 mm) is applied in the point of half-distance between the carriers.
It has been shown that doping of the samples with 0.1 % H (wt.) at a temperature of 750°C results in room temperature processing ductility increase in comparison to that in the initial state. These optimal hydrogenation parameters give the opportunity to provide after low-temperature (600°C) vacuum annealing the following ultimate tensile strength values: 1050 MPa for the rolling direction, and 1110 MPa for the transverse direction. It has been revealed that the higher strength values in the transverse direction are accounted for the preferred basal planes {00.2} location wherein sliding is activated at higher shear stresses, while increased elongation in comparison to that in the rolling direction is due to a phase grains repositioning upon deformation processes with prismatic {10.0}-type orientations formation which are favorable for plastic flow.
The research results have given the opportunity to develop recommendations on how to cut the sheets of 1,8–2,2 mm thickness: when bending is being accomplished by the punch with diameter less than 5 mm one should cut the sheet in such a way when a bending edge will be across the rolling direction.
2. Kablov E.N. Iz chego sdelat budushchee? Materialy novogo pokoleniya, tekhnologii ikh sozdaniya i pererabotki – osnova innovatsij [Of what to make the future? Materials of new generation, technology of their creation and processing – basis of innovations] // Krylya Rodiny. 2016. №5. S. 8–18.
3. Kablov E.N. Tendentsii i orientiry innovatsionnogo razvitiya Rossii: sb. nauchno-informatsionnykh materialov. 3-e izd., pererab. i dop. [Tendencies and reference points of innovative development of Russia: collection of scientific information materials. 3rd ed., rev. and add.]. M.: VIAM, 2015. 720 s.
4. Bratukhin A.G. Sovremennye aviatsionnye materialy: tekhnologicheskie i funktsionalnye osobennosti [Modern aviation materials: technological and functional features]. M.: Aviatekhinform, 2003. 440 s.
5. Vozdvizhenskij V.M., Zhukov A.A., Postnova A.D., Vozdvizhenskaya M.V. Splavy tsvetnykh metallov dlya aviatsionnoj tekhniki [Non-ferrous alloys for aviation engineering]. Rybinsk: RGATA, 2002. 219 s.
6. Bratukhin A.G., Kolachev B.A., Sadkov V.V. i dr. Tekhnologiya proizvodstva titanovykh samoletnykh konstruktsij [Production technology of titanic aircraft designs]. M.: Mashinostroenie, 1995. 448 s.
7.Lyasotskaya V.S. Termicheskaya obrabotka svarnykh soedinenij titanovykh splavov [Thermal processing of welded compounds of titanium alloys]. M.: Ekomet, 2003. 352 s.
8. Kollerov M.Yu., Ilin A.A., Filatov A.A., Mamaev V.S. Uprochnyayushchaya termicheskaya obrabotka krupnogabaritnykh polufabrikatov i izdelij iz vysokoprochnykh titanovykh splavov [Strengthening thermal processing of large-size semi-finished products and products from high-strength titanium alloys] // Metallovedenie i termicheskaya obrabotka metallov. 2002. №5. S. 14–17.
9. Novikov I.I. Teoriya termicheskoj obrabotki metallov: uchebnik dlya vuzov. 3-e izd., ispr. i dop. [Theory of thermal processing of metals: the textbook for higher education institutions. 3rd ed., rev. and add.]. M.: Metallurgiya, 1978. 392 s.
10. Kolachev B.A., Polkin I.S., Talalaev V.D. Titanovye splavy raznykh stran [Titanium alloys of the different countries]. M.: VILS, 2000. 318 s.
11. Ilin A.A., Kolachev B.A., Nosov V.K., Mamonov A.M. Vodorodnaya tekhnologiya titanovykh splavov / pod obshch. red. A.A. Ilina [Hydrogen technology of titanium alloys / gen. ed. by. A. Ilin]. M: MISiS, 2002. 392 s.
12. Kolachev B.A., Betsofen S.Ya., Bunin S.Ya., Volodin V.A. Fiziko-mekhanicheskie svojstva legkikh konstruktsionnykh materialov [Physicomechanical properties of easy constructional materials]. M.: Metallurgiya, 1995. 442 s.
13. Ilin A.A. Mekhanizm i kinetika fazovykh i strukturnykh prevrashchenij v titanovykh splavakh [The mechanism and kinetics of phase and structural transformations in titanium alloys]. M.: Nauka, 1994. 304 s.
14. Kolachev B.A. Vodorodnaya khrupkost metallov [Hydrogen embrittlement of metals]. M.: Metallurgiya, 1985. 216 s.
15. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
16. Aviatsionnye materialy: spravochnik v 13 t. 7-e izd., pererab. i dop. / pod obshch. red. E.N. Kablova [Aviation materials: the directory in 13 vol. 7th ed., rev. and add. / gen. ed. by E.N. Kablov]. M.: VIAM, 2010. T. 6: Titanovye splavy. 96 s.
17. Yakovlev A.L., Filatov A.A., Burkhanova A.A., Popova Yu.A., Nochovnaya N.A Effektivnost primeneniya titanovogo splava VT23 v novykh izdeliyakh «OKB Sukhogo» [Efficiency of application of VT23 titanium alloy in new products of «Sukhoi Design Bureau»] // Titan. 2013. №2 (40). S. 39–42.
18. Khorev A.I. Kompleksno-legipovannyj titanovyj splav VT23 universalnogo primeneniya [Complex alloyed VT23 titanium alloy of universal application] // Tekhnologiya mashinostpoeniya. 2007. №7. S. 5–11.
19. Khorev A.I. Titanovyj splav VT23 i ego sravnenie s luchshimi zarubezhnymi splavami [VT23 titanium alloy and its comparison with the best foreign alloys] // Titan. 2006. №1 (18). S. 47–52.
20. Ilin A.A., Kolachev B.A., Polkin I.S. Titanovye splavy. Sostav, struktura, svojstva: spravochnik [Titanium alloys. Structure, structure, properties: directory]. M.: VILS–MATI, 2009. 520 s.
21. Panin P.V., Shiryaev A.A., Dzunovich D.A. Postroenie temperaturno-kontsentratsionnoj diagrammy fazovogo sostava titanovogo splava VT6, dopolnitelno legirovannogo vodorodom // Tekhnologiya mashinostroeniya. 2014. №3 (141). S. 5–9.
22. Panin P.V., Lukina E.A., Alekseev E.B. Vliyanie legirovaniya vodorodom na strukturu i fazovyj sostav listovykh polufabrikatov iz titanovogo splava VT23 [Effect of hydrogen doping on structure and phase composition of sheet semi-products of VT23 titanium alloy] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2018. №7 (67). St. 06. Available at: http://www.viam-works.ru. DOI: 10.18577/2307-6046-2018-0-7-49-57.
23. Protsenko O.M., Karachevtsev F.N., Mekhanik E.A. Opyt razrabotki metodiki izmereniya soderzhaniya vodoroda v titanovyh splavah [Experience on development of measurement procedure for determination of hydrogen content in titanium alloys] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №12. St. 08. Available at: http://www.viam-works.ru (accessed: June 16, 2018). DOI: 10.18577/2307-6046-2014-0-12-8-8.
24. Ageev N.V., Babareko A.A., Betsofen S.Ya. Opisanie tekstury metodom obratnykh polyusnykh figur [Structure description method of return polar figures] // Izv. AN SSSR. Metally. 1974. №1. S. 94–103.
25. Vishnyakov Ya.D., Babareko A.A., Vladimirov S.A., Egiz I.V. Teoriya obrazovaniya tekstur v metallakh i splavakh [The theory of formation of structures in metals and alloys]. M.: Nauka, 1979. 343 s.
26. Borodkina M.M., Spektor E.N. Rentgenograficheskij analiz tekstury metallov i splavov [Radiographic analysis of structure of metals and alloys]. M.: Metallurgiya, 1981. 272 s.
27. Gorelik S.S., Skakov YU.A., Rastorguev L.N. Rentgenograficheskij i elektronno-opticheskij analiz: ucheb. posobie dlya vuzov. 3-e izd., pererab. i dop. [Radiographic and electron-optical analysis: the manual for higher education institutions. 3rd ed., rev and add.]. M.: MISiS, 1994. 328 s.
28. Betsofen S.YA., Smirnov V.G., Ashmarin A.A., Shaforostov A.A. Kolichestvennye metody opisaniya tekstury i anizotropii svojstv splavov na osnove titana i magniya [Quantitative methods of the description of structure and anisotropy of properties of titanium-based alloys and magnesium] // Titan. 2010. №2. S. 16–22.
29. Dzunovich D.A., Betsofen S.Ya., Panin P.V. Metodicheskie aspekty kolichestvennogo teksturnogo analiza listovykh polufabrikatov iz GPU-splavov (Ti, Zr) [Methodical aspects of the quantitative textural analysis of sheet semi-finished products from CPH-alloys (Ti, Zr)] // Deformatsiya i razrushenie materialov. 2016. №11. S. 8–16.
30. Panin P.V., Dzunovich D.A., Lukina E.A. Raschet etalonnykh integralnykh intensivnostej rentgenovskoj difraktsii dlya α- i β-faz v titanovykh splavakh [Calculation of benchmark X-ray diffraction intensities for α- and β-phases in titanium alloys] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2017. №12 (60). St. 04. Available: http://www.viam-works.ru (accessed June 26, 2018). DOI: 10.18577/2307-6046-2017-0-12-4-4.
31. Alekseev E.B., Nochovnaya N.A., Ivanov V.I., Panin P.V., Novak A.V. Issledovanie vliyaniya alyuminiya na fazovyj sostav i svojstva deformirovannykh polufabrikatov iz intermetallidnogo titanovogo splava VTI-4 [Research of influence of aluminum on phase structure and properties of the deformed semi-finished products from intermetallic VTI-4 titanium alloy] // Tekhnologiya legkikh splavov. 2015. №1. S. 57–61.
32. Kolachev B.A., Ilin A.A., Nosov V.K., Mamonov A.M. Dostizheniya vodorodnoj tekhnologii titanovykh splavov [Achievements of hydrogen technology of titanium alloys] // Tekhnologiya legkikh splavov. 2007. №3. S. 10–26.
33. Ilin A.A., Skvortsova S.V., Mamonov A.M., Kollerov M.Yu. Fazovye i strukturnye prevrashcheniya v titanovykh splavakh raznykh klassov pod dejstviem vodoroda [Phase and structural transformations in titanium alloys of different classes under the influence of hydrogen] // Titan. 2007. №1 (20). S. 32–37.
34. Dzunovich D.A., Panin P.V., Lukina E.A., Shiryaev A.A. Vliyanie rezhimov termicheskoj obrabotki na strukturu i svojstva svarnykh krupnogabaritnykh polufabrikatov iz titanovogo splava VT23 [Heat treatment effect on structure and properties of welded large-dimensioned semi-finished products from VT23 titanium alloy] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2018. №1 (61). St. 07. Available at: http://www.viam-works.ru (accessed: June 26, 2018). DOI: 10.18577/2307-6046-2018-0-1-7-7.
35. Ilin A.A., Skvortsova S.V., Popova Yu.A., Kudelina I.M. Vliyanie termicheskoj obrabotki na formirovanie struktury i svojstv krupnogabaritnykh polufabrikatov iz splava VT23 [Influence of thermal processing on forming of structure and properties of large-size semi-finished products from alloy VT23] // Titan. 2010. №4. S. 48–53.
36. Skvortsova S.V., Ilin A.A., Betsofen S.Ya., Filatov A.A., Dzunovich D.A., Panin P.V. Anizotropiya mekhanicheskikh svojstv i tekstura listovykh polufabrikatov iz titanovykh splavov [Anisotropy of mechanical properties and structure of sheet semi-finished products from titanium alloys] // Tekhnologiya legkikh splavov. 2006. №1–2. S. 81–87.
37. Skvortsova S.V. Zakonomernosti formirovaniya tekstury v titanovykh splavakh raznykh klassov [Patterns of forming of structure in titanium alloys of different classes] // Aviacionnye materialy i tehnologii. 2007. №1. S. 40–42.
38. Vodolozkin V.F., Zajtsev A.V., Illarionov A.G., Popov A.A. Proizvodstvo listov iz splava Ti–6Al–2Mo–4Cr–2Fe s zadannym kompleksom svojstv za schet upravleniya teksturnym sostoyaniem polufabrikatov // Titan. 2004. №1 (14). S. 34–38.
The article is devoted to the influence of graphite structure and its origin on tribotechnical properties in the composition of a copper-based composite material.
The research purpose is to establish tribotechnical properties of different graphite grades as solid lubricants in the composition of a copper-based metallic composite material.
Tribotechnical tests were carried out according to the finger-disk scheme with varying slip velocity and contact loading. For the tests, different crystalline structure graphite grades, dispersion and production method were chosen, such as colloid (C-1), fine-grained dense (PGM-7), coarse-grained (KK) and synthetic special purity State Standart 23463-79 (Especially Pure). Testing Specimens were produced by powder technology technics. The starting copper and graphite powders were spark plasma sintered.
Colloidal highly dispersed Graphite Grade possesses a fine-grained structure which allows it to be eventually highly distributed in the composite material matrix. The coarse-grained graphite and MPG-7 grade manufactured by sintering distinguish by the crystal structure. Synthetic graphite possesses a coarse-crystalline structure, high strength properties and chemical purity.
Tribotechnical tests have revealed the graphite grades effect on the friction coefficient and wear resistance of the composite material. The best antifriction properties showed by colloidal graphite.
The lowest resistance to antifriction (high friction coefficient and low anti-wear properties) was demonstrated by synthetic graphite.
Also tribotechnical tests have shown the increasing wear of the composite material in dependence of grain fineness of the graphite structure.
The tribotechnical properties of the sintered graphite depend on
2. Solomentseva A.V., Fadeeva V.M., Zhelezina G.F. Antifriktsionnye organoplastiki dlya tyazhelonagruzhennykh uzlov treniya skolzheniya aviatsionnykh konstruktsij [Antifriction organoplastics for heavy loaded sliding friction units of aircraft structures] // Aviacionnye materialy i tehnologii. 2016. №2 (41). S. 30–34. DOI: 10.18577/2071-9140-2016-0-2-30-34.
3. Farafonov D.P., Migunov V.P., Aleshina R.SH. Issledovanie tribotekhnicheskikh kharakteristik materialov, primenyaemykh dlya uprochneniya bandazhnykh polok rabochikh lopatok turbin GTD // Aviatsionnye materialy i tekhnologii. 2016. №S1 (43). S. 24–30. DOI: 10.18577/2071-9140-2016-0-S1-24-30.
4. Ivanov E.V. Sozdanie iznosostojkih i antifrikcionnyh materialov i pokrytij dlja kosmicheskogo korablja «Buran» [Creation of wearproof and antifriction materials and coverings for the «Buran» spacecraft] // Aviacionnye materialy i tehnologii. 2013. №S1. S. 142–151.
5. Frolov K.V. Metody sovershenstvovaniya mashin i sovremennye problemy mashinovedeniya [Methods of improvement of machines and modern problems of mashinovedeniye]. M.: Mashinostroenie, 1984. 224 s.
6. Kablov E.N. Materialy novogo pokoleniya – osnova innovatsij, tekhnologicheskogo liderstva i natsionalnoj bezopasnosti Rossii [Materials of new generation – basis of innovations, technological leadership and national security of Russia] // Intellekt i tekhnologii. 2016. №2 (14). S. 16–21.
7. Kablov E.N. Sovremennye materialy – osnova innovatsionnoj modernizatsii Rossii [Modern materials – basis of innovative modernization of Russia] // Materialy Evrazii. 2012. №3. S. 10–15.
8. Kablov E.N. Bez novykh materialov – net budushchego [Without new materials – there is no future] // Metallurg. 2013. №12. S. 4–8.
9. Braun E.D., Bushe N.A., Buyakovskij I.A. Osnovy tribologii (trenie, iznos, smazka) [Tribology bases (friction, wear, lubricant)]. M.: Nauka i tekhnika, 2001. 778 s.
10. Kragelskij I.V., Vinogradova I.E. Koeffitsienty treniya [Friction coefficients]. M.: Mashgiz, 1962. 219 s.
11. Fedorchenko I.M., Pugina L.I. Kompozitsionnye spechennye antifriktsionnye materialy [The composite sintered antifriction materials]. Kiev: Naukova dumka, 1980. 404 s.
12. Belogorskij V.D. Antifriktsionnyj grafit i ego primenenie v promyshlennosti [Antifriction graphite and its application in the industry]. M.: Znanie, 1974. 154 s.
13. Ostrovskij V.S. Iskusstvennyj grafit [Artificial graphite]. M.: Metallurgiya, 1986. 272 s.
14. Brejtuejt E.R. Tverdye smazochnye materialy i antifriktsionnye pokrytiya [Firm lubricants and anti friction coatings]. M.: Khimiya, 1967. 320 s.
15. Fialkov A.S. Uglegrafitovye materialy [Carbon graphite materials]. M.: Energiya, 1979. 319 s.
16. GOST 17022–81. Grafit. Tipy, marki i obshchie tekhnicheskie trebovaniya [State Standard 17022–81. Graphite. Types, brands and general technical requirements]. M.: Standartinform, 2010. 8 s.
17. Kuksenova L.I., Lapteva V.G., Kolmakov A.G., Rybakova L.M. Metody ispytaniya na trenie i iznos [Test methods on friction and wear]. M.: Intermet Inzhiniring, 2001. 152 s.
Giving to polymeric composites of constructional purpose of padding functional properties, such as electrical conductivity and screening of electromagnetic waves of a radio-frequency range, is one of priority problems of the modern materials science. One of optional versions of the solution of this task is development of the hybrid polymeric composites (HPC) in which along with traditional reinforcing fillers (glass – or carbon fiber) various functional excipients use: carbon nanotubes, including functionalize, carboniferous and metal-containing nanoparticles, metal fiber nanocomposites.
In work hybrid fibreglasses on the basis of epoxy binding, modified by carbon nanotubes with covalently attachment carboxyl groups are synthesized, the maintenance of nanotubes made from 1 to 8%. The structure of the synthesized materials and also their electrophysical properties, reflectivities, passings and absorption of an electromagnetic radiation in the centimetric range of lengths of waves are investigated.
It is established that various technological modes of receiving modified POUND allow to receive GPKM which in one case can be characterized as «the poor metal», and in another – as «the poor dielectric». Both options of the received HPC are demanded and perspective for application as constructional and functional radio engineering materials.
In work it is shown that hybrid polymeric materials of the functional purpose with a high degree of admission can be made by receiving the coverings containing carbon nanotubes functionalize carboxyl groups and epoxy composition, on layers of the reinforcing excipient with its subsequent molding. The specific conductivity of HPC received in such a way reaches the size 1,6∙10-2 Sm∙sm-1.
Use as a part of a matrix of mix of oli
2. Kablov E.N., Kondrashov S.V., Yurkov G.Y. Prospects of using carbonaceous nanoparticles in binders for polymer composites // Nanotechnologies in Russia. 2013. Vol. 8. No. 3–4. P. 163–185.
3. Kablov E.N. Konstrukcionnye i funkcionalnye materialy – osnova jekonomicheskogo i nauchno-tehnicheskogo razvitija Rossii [Constructional and functional materials – a basis of economic and scientific and technical development of Russia] // Voprosy materialovedenija. 2006. №1. S. 64–67.
4. Kraev I.D., Shuldeshov E.M., Platonov M.M., Yurkov G.Yu. Obzor kompozicionnyh materialov, sochetayushhih zvukozashhitnye i radiozashhitnye svojstva [Composite materials combining acoustic and radio shielding properties] // Aviacionnye materialy i tehnologii. 2016. №4 (45). S. 60–67. DOI: 10.18577/2071-9140-2016-0-4-60-67.
5. Kraev I.D., Govorov V.A., Shirokov V.V., Shashkeev K.A. Issledovanie vliyaniya dispersnosti funktsionalnykh chastits karbonilnogo zheleza а na radiopogloshchayushchie kharakteristiki kompozita na ikh osnove [Investigation of the effect of dispersion of the functional carbonyl iron particles on radio-absorbing characteristics of composites based on these particles] // Aviacionnye materialy i tehnologii. 2017. №1 (46). S. 51–60. DOI: 10.18577/2071-9140-2017-0-1-51-60.
6. Agafonova A.S., Belyaev A.A., Kondrashov E.K., Romanov A.M. Osobennosti formirovaniya monolitnyh konstrukcionnyh radiopogloshhayushhih materialov na osnove kompozitov, napolnennyh rezistivnym voloknom [Features of the formation of monolithic structural radio absorbing materials based on composites filled with resistive fibers] // Aviacionnye materialy i tehnologii. 2013. №3. S. 56–59.
7. Kraev I.D., Obraztsova E.P., Yurkov G.Yu. Vliyanie morfologii magnitnogo napolnitelya na radiopogloshhayushhie harakteristiki kompozicionnyh materialov [Influence of morphology of magnetic filler on radar-absorbing characteristics of composite materials] // Aviacionnye materialy i tehnologii. 2014. №S2. S. 10–14.
8. Lubineau G., Rahaman A. A review of strategies for improving the degradation properties of laminated continuous-fiber/epoxy composites with carbon-based nanoreinforcements // Carbon. 2012. Vol. 50. P. 2377–2395.
9. Chakravarthi D.K., Khabashesku V.N., Vaidyanathan R. et al. Carbon Fiber–Bismaleimide Composites Filled with Nickel-Coated Single-Walled Carbon Nanotubes for Lightning-Strike Protection // Advanced Functional Materials. 2011. Vol. 21. P. 2527–2533.
10. Gunyaev G.M., Chursova L.V., Komarova O.A., Gunyaeva A.G. Konstrukcionnye ugleplastiki, modificirovannye nanochasticami [Constructional carbon the plastics modified by nanoparticles] // Aviacionnye materialy i tehnologii. 2012. №S. S. 277–286.
11. Popkov O.V., Yurkov G.Yu., Fionov A.S. Stabilization of nanoparticles on the surface of detonation nanodiamond // Physics, chemistry and application of nanostructures Singapore: World Scientific, 2009. P. 369–372.
12. Fionov A.S., Yurkov G.Yu., Kolesov V.V. i dr. Kompozitsionnyj material na osnove zhelezosoderzhashchikh nanochastits dlya primeneniya v zadachakh elektromagnitnoj sovmestimosti [Composite material based on iron-containing nanoparticles for application in electromagnetic compatibility problems] // Radiotekhnika i elektronika. 2012. T. 57. №5. S. 597–608.
13. Taratanov N.A., Yurkov G.Yu., Fionov A.S. i dr. Molibdensoderzhashchie nanomaterialy na osnove polietilena: poluchenie i fizicheskie svojstva [Molybdenum-containing polyethylene-based nanomaterials: production and physical properties] // Radiotekhnika i elektronika. 2009. T. 54. №8. S. 986–995.
14. Taratanov N.A., Yurkov G.Yu., Fionov A.S. i dr. Svinetssoderzhashchie kompozitsionnye nanomaterialy na osnove polietilena [Lead-containing polyethylene-based composite nanomaterials] // Izvestiya vysshikh uchebnykh zavedenij. KHimiya i khimicheskaya tekhnologiya. 2009. T. 52. №7. S. 72–75.
15. Yurkov G.Yu., Fionov A.S., Kozinkin A.V. at al. Synthesis and physicochemical properties of composites for electromagnetic shielding applications: a polymeric matrix impregnated with iron- or cobalt-containing nanoparticles // Journal of nanophotonics. 2012. Vol. 6 (1). P. 061717-1-061717-21.
16. Reia da Costa E.F., Skordos A.A., Partridge I.K., Rezai A. RTM processing and electrical performance of carbon nanotube modified epoxy/fibre Composites // Composites Part A: Applied Science and Manufacturing. 2012. Vol. 43. Issue 4. P. 593–602.
17. Garcia E.J., Wardle B.L., Hart A.J., Yamamoto N. Fabrication and multifunctional properties of a hybrid laminate with aligned carbon nanotubes grown In Situ // Composites Science and Technology. 2008. Vol. 68. P. 2034–2041.
18. Singh B.P., Bharadwaj P., Choudhary V., Mathur R.B. Enhanced microwave shielding and mechanical properties of multiwall carbon nanotubes anchored carbon fiber felt reinforced epoxy multiscale composites // Applied Nanoscience. DOI: 10.1007/s13204-013-0214-0.
19. Bourlinos A.B., Georgakilas V., Boukos N. et al. Silicone-functionalized carbon nanotubes for the production of new carbon-based fluids // Carbon. 2007. Vol. 45. P. 1583–1595.
20. Gojny F.H., Nastalczyk J., Roslaniec Z., Schulte K. Surface modified multi-walled carbon nanotubes in CNT/epoxy-composites // Chemical Physics Letters. 2003. Vol. 370. P. 820–824.
21. Boehm H.P. Chemical identification of surface groups // Advances in catalysis and related subjects. 1996. No. 16. P. 179–274.
22. Von Hippel A.R. Dielectric Materials and Applications. N.Y.: The Technology Press of MIT and John Wiley and Sons, 1954. 361 p.
23. Al-Saleh M.H., Sundararaj U. Electromagnetic interference shielding mechanisms of CNT/polymer composites // Carbon. 2009. Vol. 47. 1738–1746.
24. Zeng Y., Liu P., Du J., Zhao L., Ajayan P.M., Cheng H.-M. Increasing the electrical conductivity of carbon nanotube/polymer composites by using weak nanotube–polymer interactions // Carbon. 2010. Vol. 48. P. 3551–3558.
In article results of research of tribologal properties of model systems of nonskid coatings where, as polymeric basis it is taken one-component alkyd binding are provided, and as abrasive filler sand and electrocorundum of different fractional structure was applied.
Definition of friction coefficient were carried out on the tribometer CETR UMT-3MT with use of drive of R33HE350 for reciprocating motion at temperature 20°С. As counterbody the cylinder from polyurethane has been taken.
In work values of friction coefficient of model systems of nonskid coating, as are given in dry condition, and «drowned» in water. The main patterns of the theory of friction of polymers are also given and attempt to explain the obtained experimental data is made.
The provided data show that model systems with coarse abrasive fillers are characterized by high heterogeneity. In the course of definition of friction coefficient chipping of particles of filler is observed, and, first of all the biggest ones. Reduction of dispersion of filler leads to improvement of uniformity of received coverings, and, application of such thickeners as glass microspheres make additional positive impact. Thus the friction coefficient remains at rather high level.
Values of friction coefficients in the presence of water above, than in dry condition have shown significant amount of the studied model systems. That confirms efficiency of application of abrasive fillers for creation of nonskid coatings. In their absence (for pure aluminum and polymeric binding without filler) considerable falling of friction coefficient in water presence is observed, that is the typical effect of lubricant takes place.
Submitted data can be used when developing nonskid coatings which are actively app
2. Kablov E.N. Rol khimii v sozdanii materialov novogo pokoleniya dlya slozhnykh tekhnicheskikh system [Chemistry role in creation of materials of new generation for complex technical systems] // XX Mendeleevskij sezd po obshchej i prikladnoj khimii: tez. dokl. v 5 t. Ekaterinburg: UrO RAN, 2016. S. 25–26.
3. Kablov E.N. Shestoj tekhnologicheskij uklad [Sixth technological way] // Nauka i zhizn. 2010. №4. S. 2–7.
4. Istoriya aviatsionnogo materialovedeniya. VIAM – 80 let: gody i lyudi / pod obshch. red. E.N. Kablova [History of aviation materials science. VIAM – 80 years: years and people / gen. ed. by E.N. Kablov]. M.: VIAM, 2012. S. 346–348.
5. Kablov E.N. Aviakosmicheskoe materialovedenie [Aerospace materials science] // Vse materialy. Entsiklopedicheskij spravochnik. 2008. №3. S. 2–14.
6. Alifanov E.V., Chajkun A.M., Gorlov D.S., Venediktova M.A. Osobennosti mehanizma treniya elastomernyh materialov razlichnyh tipov. Teoreticheskie i prakticheskie aspekty (obzor) [Features of the mechanism of friction of elastomeric materials of different types. Theoretical and practical aspects (review)] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2018. №1 (61). St. 08. Available at: http://www.viam-works.ru (accessed: June 19, 2018). DOI: 10.18577/2307-6046-2018-0-1-8-8.
7. Alifanov E.V., Chajkun A.M., Gorlov D.S., Venediktova M.A. Tribologicheskie kharakteristiki alkidnykh pokrytij s abrazivnymi napolnitelyami razlichnoj dispersnosti [Tribological characteristics of the alkyd coverings filled with abrasive fillers of different size] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2018. №4 (64). St. 10. St. 10. Available at: http://www.viam-works.ru (accessed: June 19, 2018). DOI: 10.18577/2307-6046-2018-0-4-10-10.
8. Moore D.F. Drainage Criteria for Runway Surfase Roughness// The Journal of Royal Aeronautical Society. 1965.Vol. 69. P. 337–342.
9. Slovar-spravochnik po treniyu, iznosu i smazke detalej mashin [Dictionary reference on friction, wear and lubricant of details of machines]. Kiev: Naukova dumka, 1979. 188 s.
10. Bowden F.P., Tabor D. The friction and lubrication of solids. Oxford: Clarendon Press. 1964. Part 2. 424 p.
11. Morozov A.V., Petrova N.N. Metodika otsenki koeffitsienta treniya uplotnitelnykh rezin [Technique of assessment of friction coefficient of sealing rubbers] // Trenie i iznos. 2016. T. 37. №2. S. 162–167.
12. Morozov A.V. Eksperimentalnoe opredelenie staticheskogo i dinamicheskogo koeffitsienta treniya skolzheniya epilamirovannykh materialov [Experimental definition of static and dynamic sliding friction coefficient of epilamirovanny materials] // Trenie i iznos. 2014. T. 35. №2. S. 114–119.
13. Morozov A.V., Muraveva T.I., Petrova N.N. i dr. Issledovanie tribologicheskikh i adgezionnykh svojstv morozostojkikh rezin [Research of tribological and adhesive properties of cold-resistant rubbers] // Kauchuk i rezina. 2015. №6. S. 22–26.
14. Williamson N., O’Donoghue M., Datta V.J. Overview of Anti-Slip Coatings for Structural Steel // Journal of Protective Coatings & Linings. 2003. P. 41–49. Available at: http://www.paintsquare.com/jpcl/ (accessed: June 19, 2018).
15. Mur D. Trenie i smazka elastomerov [Friction and lubricant of elastomer]. M.: Khimiya, 1977. 262 s.
16. Nouh S. Transition to elastohydrodynamic lubrication of rubber // M.S. Thesis. West Virginia University, 1970.
17. Murashov V.V. Ocenka stepeni nakopleniya mikropovrezhdenij struktury PKM v detalyah i konstrukciyah nerazrushayushhimi metodami [Assessment of accumulation degree of microdamages of PCM structure in structures determined by nondestructive methods] // Aviacionnye materialy i tehnologii. 2016. №3 (42). S. 73–81. DOI: 10.18577/2071-9140-2016-0-3-73-81.
Crevice corrosion, as one of the most significant types of local corrosion of metals and alloys, plays a significant role in the destruction of structures, pipelines, instruments, machines. Since local corrosion causes the entire material effect of the process to concentrate on a very limited area, its danger is exceptionally high. In addition, local corrosion often appears suddenly and it can not be recognized in time. In connection with this, local corrosion studies are of great practical interest. Equally important is the scientific side of the issue, since the mechanism of these processes is very poorly understood.
Particularly sensitive to crevice corrosion are certain metals, the passive state of which is due to the access of oxidants, which ensure their preservation in the passive state. These include, first of all, stainless steels and aluminum alloys. Crevice corrosion of these materials is most actively developed in an atmosphere with a high content of chloride ions. However, most of the work on the investigation of crevice corrosion of metallic materials is based on the results of laboratory studies in chloride-containing solutions and in salt fog. In addition, fouling of structures in the sea also creates a condition for the appearance of gaps in which intense corrosion develops. In the present work, the results of studies of the resistance of metallic materials to crevice corrosion in natural sea water with qualitative assessment of biofouling are presented.
The estimation of the external appearance of the samples, the metallographic analysis, the estimation of the degree of biofouling of aluminum alloys AMg6, D16T and stainless steel 08X17 during testing for 3, 6 and 12 months in the natural sea water of the Black Sea (Gelendzhik Bay water area)
2. Kablov E.N. Materialy i tekhnologii VIAM dlya «Aviadvigatelya» [Materials and VIAM technologies for «Aviadvigatel»] // Permskie aviatsionnye dvigateli: inform. byul. 2014. №S. S. 43–47.
3. Kablov E.N., Nikiforov A.A., Demin S.A., Chesnokov D.V., Vinogradov S.S. Perspektivnye pokrytiya dlya zashchity ot korrozii uglerodistykh stalej [Perspective coverings for corrosion protection of carbon steels] // Stal. 2016. №6. S. 70–81.
4. Kablov E.N., Shchetanov B.V., Grashhenkov D.V., Shavnev A.A., Nyafkin A.N. Metallomatrichnye kompozicionnye materialy na osnove Al–SiC [Metalmatrix composite materials on the basis of Al–SiC] // Aviacionnye materialy i tehnologii. 2012. №S. S. 373–380.
5. Rozenfeld I.L. Korroziya i zashchita metallov [Corrosion and protection of metals]. M.: Metallurgiya, 1969. 448 s.
6. Zajtsev A.N., Suzdaltseva E.V. K voprosu o korrozii trub goryachego vodosnabzheniya iz nerzhaveyushchej stali [To question of corrosion of pipes of hot water supply from stainless steel] // Sistemnye tekhnologii. 2017. №23. S. 4–14.
7. Kablov E.N., Startsev O.V., Krotov A.S., Kirillov V.N. Klimaticheskoe starenie kompozitsionnykh materialov aviatsionnogo naznacheniya. II. Relaksatsiya iskhodnoj strukturnoj neravnovesnosti i gradient svojstv po tolshchine [Climatic aging of composite materials of aviation assignment. II. Relaxation of initial structural non-equilibrium and gradient of properties on thickness] // Deformatsiya i razrushenie materialov. 2010. №12. S. 40–46.
8. Kirillov V.N., Efimov V.A. Problemy issledovaniya klimaticheskoj stojkosti aviatsionnykh nemetallicheskikh materialov [Problems of research of climatic firmness of aviation non-metallic materials] // 75 let. Aviatsionnye materialy. Izbrannye trudy «VIAM» 1932–2007: yubil. nauch.-tekhnich. sb. M.: VIAM, 2007. S. 379–388.
9. Kablov E.N., Grashchenkov D.V., Shchetanov B.V., Shavnev A.A., Nyafkin A.N. i dr. Metallicheskie kompozitsionnye materialy na osnove Al‒SiC dlya silovoj eletroniki [Problems of research of climatic firmness of aviation non-metallic materials] // Mekhanika kompozitsionnykh materialov i konstruktsij. 2012. T.18. №3. S. 359–368.
10. Kablov E.N., Startsev O.V., Medvedev I.M. Obzor zarubezhnogo opyta issledovanij korrozii i sredstv zashhity ot korrozii [Review of international experience on corrosion and corrosion protection] // Aviacionnye materialy i tehnologii. 2015. №2 (35). S. 76–87. DOI: 10.18577/2071-9140-2015-0-2-76-87.
11. Kurs M.G., Karimova S.A. Naturno-uskorennye ispytaniya: osobennosti metodiki i sposoby ocenki korrozionnyh harakteristik alyuminievyh splavov [Salt-accelerated outdoor corrosion testing: methodology and evaluation of corrosion susceptibility of aluminum alloy] // Aviacionnye materialy i tehnologii. 2014. №1. S. 51–57. DOI: 10.18577/2071-9140-2014-0-1-51-57.
12. Sinyavskij B.S., Kalinin V.D. Korroziya i sposoby zashchity alyuminievykh splavov v morskoj vode sootvetstvenno ikh sostavu i structure [Corrosion and ways of protection of aluminum alloys in sea water according to their structure and structure] // Zashchita metallov. 2005. T. 41. №4. S. 347–359.
13. Belous V.Ya., Gurvich L.Ya., Erofeeva V.L. i dr. Shchelevaya korroziya nerzhaveyushchikh stalej v atmosphere [Crevice corrosion of stainless steels in the atmosphere] // Zashchita metallov. 1995. T. 31. №2. S. 184–190.
14. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
15. Sinyavskij V.S., Valkov V.D., Kalinin V.D. Korroziya i zashchita alyuminievykh splavov. 2-e izd. [Corrosion and protection of aluminum alloys. 2nd ed.]. M.: Metallurgiya, 1986. 368 s.
16. Morskaya korroziya: spravochnik [Sea corrosion: directory]. M.: Metallurgiya, 1983. 512 s.
17. Syrkin A.M., Molyavko M.A., SHevlyakov F.B. Osnovy elektrokhimicheskikh protsessov: ucheb. posobie [Bases of electrochemical processes: manual]. Ufa: Izd-vo UGNTU, 2009. 127 s.
18. Feoktistova M.V. Vliyanie khimicheskogo sostava i strukturnykh faktorov na korrozionnuyu stojkost nizkolegirovannykh stalej v vodnykh sredakh: avtoref. diss. … kand. tekhn. nauk [Influence of chemical composition and structural factors on corrosion resistance of low-alloy steels in water environments: thesis, Cand. Sc. (Tech.)]. M., 2018. 28 s.
19. GOST 9.909–86. Metally, splavy, pokrytiya metallicheskie i nemetallicheskie neorganicheskie. Metody ispytanij na klimaticheskikh ispytatelnykh stantsiyakh [State Standard 9.909–86. Metals, alloys, coverings the metal and nonmetallic inorganic. Test methods on climatic test stations]. M.: Izd-vo standartov, 1986. 20 s.
20. ISO 8565:2011. Metally i splavy. Ispytanie na atmosfernuyu korroziyu. Obshchie trebovaniya [ISO 8565:2011. Metals and alloys. Testing for atmospheric corrosion. General requirements]. Shvejtsariya, Zheneva: ISO, 2011. 5 s.
21. ASTM G0078-01. Rukovodstvo po provedeniyu ispytanij na shchelevuyu korroziyu nerzhaveyushchikh splavov na osnove zheleza i nikelya v morskoj vode i drugikh khloridsoderzhashchikh vodnykh sredakh [ASTM G0078-01. The guide to carrying out tests for crevice corrosion of corrosion-proof ferrous alloys and nickel in sea water and others chloride containing water environments]. SShA: ASTM, 2001. 7 s.
22. ASTM G0048-03. Metody ispytanij dlya opredeleniya soprotivleniya tochechnoj i shchelevoj korrozii nerzhaveyushchikh stalej i splavov s ispolzovaniem rastvora khlorida zheleza [ASTM G0048-03. Test methods for determination of resistance of pitting and crevice corrosion of stainless steels and alloys with use of solution of ferric chloride]. SShA: ASTM, 2003. 11 s.
23. Garner A. Crevice Corrosion of stainless steels in seawater: correlation of field data with laboratory ferric chloride tests // Corrosion. 1981. Vol. 37. No. 3. Р. 178–184.
Despite the abundance of works related to the study of the term "corrosion cracking", to counteract the occurrence of corrosion lesions and ways to increase the corrosion resistance of metallic materials, the search for answers to these questions still remains in demand. This is due primarily to the fact that most of the structural elements in operation face a prolonged joint impact of loads and aggressive working environments. The use of metal products and structures in such conditions is associated with the appearance of corrosion lesions and, accordingly, adversely affects their short-term and long-term physico-mechanical characteristics, is the cause of the change in the stress-strain state and, as a result, greatly reduces their bearing capacity of durability. As a result, emergency situations can occur and mechanisms fail before the technical deadlines stated in the technical and technical specifications.
Before proceeding to the methods aimed at studying the resistance of metals to corrosion attack during testing for stress-corrosion cracking, it is worthwhile to understand the essence of the term "corrosion cracking". According to information published in the Journal of Combustion, stress corrosion cracking is the destruction of various metals and alloys during the prolonged simultaneous exposure to it of corrosion damage and static tensile stresses. The effect of cyclic stresses on the occurrence of fatigue state of the material, and compression does not cause destruction.
Corrosion cracking occurs only with the simultaneous continuous action of a number of external and internal factors: the composition of the corrosive medium, the chemical and phase composition of the alloy, the nature and magnitude of internal stresses, the uneven distribution of tensile stresses, and the like. At the same time, changing these factors can lead to an increase or decrea
2. Kablov E.N., Startsev O.V., Medvedev I.M. Obzor zarubezhnogo opyta issledovanij korrozii i sredstv zashhity ot korrozii [Review of international experience on corrosion and corrosion protection] // Aviacionnye materialy i tehnologii. 2015. №2 (35). S. 76–87. DOI: 10.18577/2071-9140-2015-0-2-76-87.
3. Antipov V.V. Strategiya razvitiya titanovyh, magnievyh, berillievyh i alyuminievyh splavov [Strategy of development of titanium, magnesium, beryllium and aluminum alloys] // Aviacionnye materialy i tehnologii. 2012. №S. S. 157–167.
4. Kablov E.N. Aviatsionnoe materialovedenie: itogi i perspektivy [Aviation materials science: results and perspectives] // Vestnik Rossijskoj akademii nauk. 2002. T. 72. №1. S. 3–12.
5. Kablov E.N. Aviatsionnoe materialovedenie v XXI veke. Perspektivy i zadachi [Aviation materials science in the XXI century. Perspectives and tasks] // Aviacionnye materialy. Izbrannye trudy VIAM 1932–2002. M.: MISIS–VIAM, 2002. S. 23–47.
6. Kablov E.N., Startsev O.V., Medvedev I.M., Panin S.V. Korrozionnaya agressivnost' primorskoj atmosfery. Ch. 1. Faktory vliyaniya (obzor) [Corrosion aggression of the seaside atmosphere. P.1. Factors of influence (overview)] // Korroziya: materialy, zashchita. 2013. №12. S. 6–18.
7. Kurs M.G., Kutyrev A.E., Fomina M.A. Issledovanie korrozionnogo razrusheniya deformiruemyh alyuminievyh splavov pri laboratornyh i naturnyh ispytaniyah [Research of corrosion damage of wrought aluminium alloys at laboratory and full-scale tests] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №8 (44). St. 10. Available at: http://www.viam-works.ru (accessed: May 3, 2018). DOI: 10.18577/2307-6046-2016-0-8-10-10.
8. Kurs M.G., Laptev A.B., Kutyrev A.E., Morozova L.V. Issledovanie korrozionnogo razrusheniya deformiruemykh alyuminievykh splavov pri naturno-uskorennykh ispytaniyakh. Chast 1 [Study of corrosion destruction of deformable aluminum alloys at full-scale accelerated tests. Part 1] // Voprosy materialovedeniya. 2016. №1 (85). S. 116–127.URL: http://www.crism-prometey.ru (data obrashcheniya: 03.05.2018).
9. Grinevich A.V., Lutsenko A.N., Karimova S.A. Raschetnye harakteristiki metallicheskih materialov s uchetom vlazhnosti [The design characteristic of metallic materials taking into account the humidity] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №7. St. 10. Available at: http://www.viam-works.ru (accessed: May 3, 2018). DOI: 10.18577/2307-6046-2014-0-7-10-10.
10. Sinyavskij S.V. Soprotivlenie titanovykh splavov razlichnym vidam korrozionnogo rastreskivaniya [Resistance of titanium alloys to various types of corrosion cracking] // Tekhnologiya legkikh splavov. 2010. №4. S. 80–85.
11. Ovchinnikov I.I. Issledovanie povedeniya obolochechnykh konstruktsij, ekspluatiruyushchikhsya v sredakh, vyzyvayushchikh korrozionnoe rastreskivanie [Investigation of the behavior of shell structures operating in environments causing corrosion cracking] // Naukovedenie: internet-zhurnal. 2012. №4 (13). S. 1–11. Available at: http://www.naukovedenie.ru(data obrashcheniya: 03.05.2018).
12. Gerasimov V.V., Gerasimova V.V. Korrozionnoe rastreskivanie austenitnykh nerzhaveyushchikh stalej [Corrosion cracking of austenitic stainless steels]. M.: Metallurgiya, 1976. 176 s.
13. Korchagin A.P. O vliyanii vodoroda na predel tekuchesti stali [On the effect of hydrogen on the yield strength of steel] // Izvestiya AN SSSR. Ser.: Metally. 1973. №5. S. 202–203.
14. Krivonogov G.S., Kablov E.N. Rol granits zeren v okhrupchivanii vysokoprochnykh korrozionnostojkikh stalej [The role of grain boundaries in embrittlement of high-strength corrosion-resistant steels] // Metally. 2002. №1. S. 35–41.
15. Kablov E.N., Krivonogov G.S. Effect of hydrogen on reliability of high-strength corrosion-resistant steels // Russian metallurgy (Metally). 2002. No. 1. P. 42–51.
16. Romanov V.V. Korrozionnoe rastreskivanie metallov [Corrosion cracking of metals]. M.: Mashgiz, 1960. S. 166–169.
17. Koch G.H. Tests for Stress-Corrosion Cracking // Advanced Materials & Processes. August, 2001. Available at: http://www.asminternational.org (accessed: May 3, 2018).
18. Zakharova L.V. Vliyanie khimicheskogo sostava, termicheskoj obrabotki i struktury na stojkost' titanovykh splavov k rastreskivaniyu ot goryachesolevoj korrozii [Influence of chemical composition, thermal treatment and structure on cracking sensitivity of titanium alloys to hot-salt stress corrosion] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №9 (45). St. 11. Available at: http://www.viam-works.ru (accessed: May 3, 2018). DOI: 10.18577/2307-6046-2016-0-9-11-11.
19. Zakharova L.V. Vliyanie kisloroda vozdukha i tolshchiny solevykh otlozheniy na korrozionnoe rastreskivanie titanovykh splavov pri vysokikh temperaturakh v kontakte s NaCl [Influence of oxygen of air and thickness of salt deposits on corrosion cracking of titanium alloys at high temperatures in contact with NaCl] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №10. St. 12. Available at: http://www.viam-works.ru (accessed: May 3, 2018). DOI: 10.18577/2307-6046-2014-0-10-12-12.