Articles
Аdditive manufacturing allows to obtain complex parts with improved material efficiency. Powders of AlSi10Mg alloy are the most widely used for production of various structural elements by selective laser melting (SLM) technology. For the expansion of application and improving service characteristics it is necessary to add small amount of transition metals into the alloys. This paper describes the efficiency of copper, cerium and zirconium additives for improving mechanical properties of AlSi10Mg type alloy.
2. Ryabov D.K., Antipov V.V., Korolev V.A., Medvedev P.N. Vliyanie tehnologicheskih faktorov na strukturu i svojstva silumina, poluchennogo s ispolzovaniem tehnologii selektivnogo lazernogo sinteza [Effect of technological factors on structure and properties of Al–Si alloy obtained by selective laser melting] // Aviacionnye materialy i tehnologii. 2016. №S1. S. 44–51. DOI: 10.18577/2071-9140-2016-0-S1-44-51.
3. Ryabov D.K., Morozova L.V., Korolev V.A., Ivanova A.O. Izmenenie mehanicheskih svojstv splava AK9ch., poluchennogo po tehnologii selektivnogo lazernogo splavleniya [Alternation of mechanical features of alloy AK9ch manufactured by selective laser melting] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №9 (45). St. 02. Available at: http://www.viam-works.ru (accessed: May 25, 2017). DOI: 10.18577/2307-6046-2016-0-9-2-2.
4. Ryabov D.K., Zajcev D.V., Dynin N.V., Ivanova A.O. Izmenenie struktury splava AK9ch., poluchennogo selektivnym lazernym spekaniem, v processe termicheskoj obrabotki [Alternation of structure of selective laser melted aluminum alloy AK9ch during heat treatment] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №9. St. 03. Available at: http://www.viam-works.ru (accessed: May 25, 2017). DOI: 10.18557/2307-6046-2016-0-9-3-3.
5. Sercombe T., Schaffer G. Rapid manufacturing of aluminum components // Science, 2003. Vol. 301 (5637). Р. 1225–1227.
6. Bremen S., Meiners W., Diatlov A. Selective Laser Melting // Laser Technik Journal. 2012. Vol. 9 (2). P. 33–38.
7. Kablov E.N. Iz chego sdelat budushhee? Materialy novogo pokoleniya, tehnologii ih sozdaniya i pererabotki – osnova innovacij [What is the future to make of? Materials of new generation, technology of their creation and processing are the base of innovations] // Krylya Rodiny. 2016. №5. S. 8–18.
8. Ivanova A.O., Ryabov D.K., Antipov V.V., Pahomkin S.I. Vozmozhnost' primeneniya programmnogo kompleksa Thermo-Calc dlya opredeleniya parametrov termicheskoj obrabotki splava 1913 i temperatur atomizacii alyuminievyh splavov [Application of Thermo-Calc software for determination of parameters of heat treatment 1913 alloy and temperatures of gas atomization for aluminium alloys] // Aviacionnye materialy i tehnologii. 2016. №S1. S. 52–59. DOI: 10.18577/2071-9140-2016-0-S1-52-59.
9. Akopyan T.K., Zolotorevskij V.S., Hvan A.V. Raschet fazovyh diagramm sistem Al–Cu–Zn–Mg i Al–Cu–Zn–Mg–Fe–Si [Calculation of phase charts of Al-Cu-Zn-Mg and Al-Cu-Zn-Mg-Fe-Si systems] // Cvetnaya metallurgiya. 2013. №3. S. 44–51.
10. Ivanova A.O., Vahromov R.O., Grigor'ev M.V., Senatorova O.G. Issledovanie vliyaniya malyh dobavok serebra na strukturu i svojstva resursnyh splavov sistemy Al–Cu–Mg [Effect of small additive of silver on structure and properties of Al–Cu–Mg alloys] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №10. St. 01. Available at: http://www.viam-works.ru (accessed: May 25, 2017). DOI: 10.18577/2307-6046-2014-0-10-1-1.
11. Kablov E.N. Shestoj tehnologicheskij uklad [Sixth technological way] // Nauka i zhizn. 2010. №4. S. 2–7.
12. Kolobnev N.I., Mahsidov V.V., Samohvalov S.V., Ryabov D.K. Vliyanie soderzhaniya antirekristallizatorov na strukturu i svojstva listov iz splava 1370 sistemy Al–Mg–Si–Cu–Zn [Influence of the contents anti recrystallizers on structure and properties of sheets from alloy 1370 Al-Mg-Si-Cu-Zn system] // Tehnologiya legkih splavov. 2012. №1. S. 18–24.
13. Ryabov D.K., Kolobnev N.I., Kochubej A.Ya., Zavodov A.V. Izmenenie mehanicheskih svojstv listov iz splava 1913 pri vvedenii skandiya [Changing of mechanical properties of 1913 alloy sheets after scandium addition] // Aviacionnye materialy i tehnologii. 2014. №4. S. 3–8.
14. Elagin V.I. Legirovanie deformirovannyh alyuminievyh splavov perehodnymi metallami [Alloying of the deformed aluminum alloys transition metals]. M.: Metallurgiya, 1975. 321 s.
15. Ryabov D.K., Vakhromov R.O., Ivanova A.O. [An effect of small additions of elements with high solubility in aluminium on microstructure of ingots and cold-rolled sheets made of Al–Mg–Sc alloy] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №9. St. 05. Available at: http://www.viam-works.ru (accessed: May 25, 2017). DOI: 10.18577/2307-6046-2015-0-9-5-5
16. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
17. Belov N.A., Savchenko S.V., Hvan A.V. Fazovyj sostav i struktura siluminov [Phase structure and structure of silumins]. M.: MISiS, 2008. S. 10–12.
18. Galdin N.M., Cherenega D.F. Cvetnoe lite [Non-ferrous molding]. M.: Mashinostroenie, 1989. S. 20.
19. Yali Li, Dongdong Gu. Parametric analysis of thermal behavior during selective laser smelting additive manufacturing of aluminum alloy powder // Materials and Design, 2014. Vol. 63. P. 856–867.
20. Prashanth K.G., Scudino S., Klauss H.J. Microstructure and mechanical properties of Al–12Si produced by selective laser melting: Effect of heat treatment // Materials Science and Engineering, 2014. Vol. 590. P. 153–160.
In the article, a comparative analysis of traditional methods of surface polishing (mechanical, chemical and electrochemical methods) with the electrolytic-plasma treatment method was carried out. Electrolytic-plasma polishing of the surface of samples from titanium alloys VT6 and VT8M-1 in a two-component electrolyte on the basis of hydrofluoric acid salts with a total concentration of no more than 5% by weight was carried out. The polishing rates of titanium alloys VT6 and VT8M-1 in the proposed electrolyte are determined. The influence of the duration of electrolytic-plasma polishing of the surface of samples from titanium alloys VT6 and VT8M-1 on the surface roughness parameter Ra was studied. The qualitative dependences of the polishing rates of the surface of titanium alloys VT6 and VT8M-1 on the concentration of electrolyte, its temperature and operating voltage are established.
2. Kablov E.N., Muboyadzhyan S.A., Budinovskij S.A., Pomelov Ya.A. Ionno-plazmennye zashhitnye pokrytiya dlya lopatok gazoturbinnyh dvigatelej [Ion-plasma protecting covers for blades of gas turbine engines] // Konversiya v mashinostroenii. 1999. №2. S. 42–47.
3. Kablov E.N., Muboyadzhyan S.A. Ionno-plazmennye zashhitnye pokrytiya dlya lopatok GTD // Litye lopatki gazoturbinnyh dvigatelej: splavy, tehnologii, pokrytiya [Ion-plasma protecting covers for GTE blades]. M.: Nauka, 2006. S. 531–608.
4. Kablov E.N., Muboyadzhyan S.A., Budinovskij S.A., Lucenko A.N. Ionno-plazmennye zashhitnye pokrytiya dlya lopatok gazoturbinnyh dvigatelej [Ion-plasma protecting covers for blades of gas turbine engines] // Metally. 2007. №5. S. 23–34.
5. Muboyadzhyan S.A., Aleksandrov D.A., Gorlov D.S., Egorova L.P., Bulavinceva E.E. Zashhitnye i uprochnyayushhie ionno-plazmennye pokrytiya dlya lopatok i drugih otvetstvennyh detalej kompressora GTD [Protective and strengthening ion-plasma coverings for blades and other responsible details of the GTE compressor] // Aviacionnye materialy i tehnologii. 2012. №S. S. 71–81.
6. Matveev P.V., Budinovskij S.A., Chubarov D.A. Tehnologiya polucheniya ionno-plazmennyh zharostojkih podsloev s povyshennym soderzhaniem alyuminiya dlya perspektivnyh TZP [Technology for production of ion-plasma heat-resistant bonding sub-layers with increased aluminum content for advanced TBCs] // Aviacionnye materialy i tehnologii. 2014. №S5. S. 56–60. DOI: 10.18577/2071-9140-2014-0-s5-56-60.
7. Muboyadzhjan S.A., Galoyan A.G. Kompleksnye termodiffuzionnye zharostojkie pokrytiya dlya bezuglerodistyh zharoprochnyh splavov na nikelevoj osnove [Complex thermodiffusion heat resisting coatings for carbon-free hot strength alloys on nickel basis] // Aviacionnye materialy i tehnologii. 2012. №3. S. 25–30.
8. Kablov E.N., Muboyadzhyan S.A. Zharostojkie i teplozashhitnye pokrytiya dlya lopatok turbiny vysokogo davleniya perspektivnyh GTD [Heat resisting and heat-protective coverings for turbine blades of high pressure of perspective GTE] // Aviacionnye materialy i tehnologii. 2012. №S. S. 60–70.
9. Kablov E.N., Muboyadzhyan S.A., Budinovskij S.A., Yagodkin Yu.D. Perspektivy primeneniya ionno-plazmennoj tehnologii vysokih energij dlya mezhresursnogo remonta lopatok turbin [Perspectives of application of ion-plasma technology of high energy for interresource repair of blades of turbines] // Aviacionnye materialy i tehnologii. 2002. №1. S. 6–13.
10. Galvanicheskie pokrytiya v mashinostroenii: spravochnik v 2 t. / pod red. M.A. Shlugera [Galvanic coverings in mechanical engineering: directory in 2 vol. / ed. by M.A. Shluger]. M.: Mashinostroenie, 1985. T. 1. 240 s.
11. Kulikov I.S., Vashhenko S.V., Kamenev A.Ya. Elektrolitno-plazmennaya obrabotka materialov [Electrolit-plasma processing of materials]. Minsk: Belarus. navuka, 2010. 232 s.
12. Grilihes S.Ya. Obezzhirivanie, travlenie i polirovanie metallov. 5-e izd., pererab. i dop. [Degreasing, etching and polishing of metals. 5th ed., rev. and add.]. L.: Mashinostroenie, 1983. 101 s.
13. Pogrebnyak A.D., Tyurin Yu.N., Bojko A.G. i dr. Elektrolitno-plazmennaya obrabotka i nanesenie pokrytij na metally i splavy Electrolit-plasma processing and drawing coverings on metals and alloys] // Uspehi fiz. met. 2005. T. 6. S. 273–344.
14. Volenko A.P., Bojchenko O.V., Chirkunova N.V. Elektrolitno-plazmennaya obrabotka metallicheskih izdelij [Electrolit-plasma processing of metal products] // Vektor nauki TGU. 2012. №4 (22). C. 144–147.
15. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
The distribution of phosphorus and sulfur impurities in γ and γ'-phases of single-crystals was investigated by high-resolution transmission electron microscopy and micro X-ray spectral analysis. It is proved that impurities concentrates principally in γ-solid solution, and there are local areas of increased content in there. The nature of this distribution remains after high temperature long-term strength tests at that heterogeneity of sulfur content between (γ/γ')-phases becomes more pronounced, especially for alloy with high sulfur content. A mechanism for destruction of coherent coupling between γ- and γ'-phases at high impurities content and reducing of single-crystals high temperature strength was suggested.
2. Litye lopatki gazoturbinnyh dvigatelej: splavy, tehnologii, pokrytiya /pod red. E.N. Kablova [Cast blades of gas turbine engines: alloys, technologies, coverings / ed. by E.N. Kablov]. M.: Hauka, 2006. 632 s.
3. Holt R.T., Wallace W. Impurities and Trace Elements in Nickel-Base Superalloys // Intern. metals reviews. 1976. Vol. 21. No. 1. P. 1–24.
4. Kablov D.E., Sidorov V.V., Min P.G., Gerasimov V.V., Bondarenko Yu. A. Vliyanie primesej sery i fosfora na svojstva monokristallov zharoprochnogo splava ZhS36-VI i razrabotka effektivnyh sposobov ego rafinirovaniya [The sulfur and phosphorus influence on properties of single crystals GHS36-VI supperalloy and design of effective methods their refining] // Aviacionnye materialy i tehnologii. 2015. №3 (36). S. 3–9. DOI: 10.18577/2071-9140-2015-0-3-3-9.
5. Sidorov V.V., Rigin V.E., Min P.G., Folomejkin Yu.I., Timofeeva O.B., Filonova E.V., Ishodzhanova I.V. Vliyanie primesej na strukturu i svojstva vysokozharoprochnyh litejnyh splavov i razrabotka effektivnyh metodov ustraneniya ih otricatelnogo vliyaniya [Influence of impurity on structure and property of high-heat resisting cast alloys and development of effective methods of elimination of their negative influence] // Novosti materialovedeniya. Nauka i tehnika: elektron. nauch.-tehnich. zhurn. 2014. №2. St. 03. Available at: http://www.materialsnews.ru (accessed: March 07, 2017).
6. Min P.G., Sidorov V.V., Kablov D.E., Rigin V.E., Vadeev V.E. Issledovanie sery i fosfora v litejnyh zharoprochnyh nikelevyh splavah i razrabotka effektivnyh sposobov ih rafinirovaniya [Sulfur and phosphorus research in cast heat resisting nickel alloys and development of effective ways of their refinement] // Tehnologiya metallov. 2015. №12. S. 2–9.
7. Min P.G., Sidorov V.V., Budinovskij S.A., Vadeev V.E. Vliyanie sery na zharostojkost monokristallov zharoprochnogo nikelevogo splava sistemy Ni–Al–Co–Re–Ta–Mo–W–Ru–Cr [Influence of sulfur on the heat resistance of monocrystals of heat resisting nickel alloy of Ni–Al–Co–Re–Ta–Mo–W–Ru–Cr system] // Materialovedenie. 2016. №7. S. 9–12.
8. Kablov D.E., Sidorov V.V., Budinovskij S.A., Min P.G. Vliyanie primesi sery na zharostojkost monokristallov zharoprochnogo splava ZhS36-VI s zashhitnym pokrytiem [The influence of sulfur impurity on heat resistance of single crystals of ZhS36-VI alloy with protective coating] // Aviacionnye materialy i tehnologii. 2016. №1 (40). S. 20–23. DOI: 10.18577/2071-9140-2016-0-1-20-23.
9. Min P.G., Sidorov V.V., Budinovskiy S.A., Vadeev V.E. Influence of Sulfur on Heat Resistance of Single Crystals of Heat-Resistant Nickel Alloy of Ni–Al–Co–Re–Ta–Mo–W–Ru–Cr System // Inorganic Materials: Applied Research. 2017. Vol. 8. No. 1. Р. 90–93.
10. Sidorov V.V., Rigin V.E., Min P.G., Folomejkin Yu.I. Vliyanie fosfora i kremniya na strukturu i svojstva vysokozharoprochnyh litejnyh splavov i razrabotka effektivnyh metodov ustraneniya ih otricatelnogo vliyaniya [Influence of phosphorus and silicon on structure and properties of high-heat resisting cast alloys and development of effective methods of elimination of their negative influence] // MiTOM. 2015. №6 (720). S. 55–59.
11. Kablov D.E., Belyaev M.S., Sidorov V.V., Min P.G. Vliyanie primesej sery i fosfora na malociklovuyu ustalost' monokristallov zharoprochnogo splava ZhS36-VI [The influence of sulfur and phosphorus impurities on low cycle fatigue of GhS36-VI alloy single crystals] // Aviacionnye materialy i tehnologii. 2015. №4 (37). S. 25–28. DOI: 10.18577/2071-9140-2015-0-4-25-28.
12. Sidorov V.V., Rigin V.E., Timofeeva O.B., Min P.G. Vliyanie kremniya i fosfora na zharoprochnye svojstva i strukturno-fazovye prevrashheniya v monokristallah iz vysokozharoprochnogo splava VZhM4-VI [An effect of silicon and phosphorus on high temperature properties and structure-phase transformations of single crystals of VGM4-VI superalloy] // Aviacionnye materialy i tehnologii. 2013. №3. S. 32–38.
13. Chao Yuan, Fengshi Yin. Effect of Phosphorus on Microstructure and High Temperature Properties of a cast Ni-base Superalloy // J. mater Sci. Technol. 2002. Vol. 18. No. 6. P. 555–557.
14. Yaoxiao Zhu, John Radavich et al. Development and Long-Time Structural Stability of a Low Segregation Hf Free Superalloys – DZ 125L // Superalloys-2000. 2000. P. 329–339.
15. Sidorov V.V., Min P.G., Burcev V.T., Kablov D.E., Vadeev V.E. Kompyuternoe modelirovanie i eksperimentalnoe issledovanie reakcij rafinirovaniya v vakuume slozhnolegirovannyh renijsoderzhashhih nikelevyh rasplavov ot primesej sery i kremniya [Computer modeling and pilot study of reactions of refinement in vacuum of complex-alloyed rhenium containing nickel melt from sulfur and silicon impurity] // Vestnik RFFI. 2015. №1 (85). S. 32–36.
16. Kablov E.N., Sidorov V.V., Kablov D.E., Min P.G., Rigin V.E. Resursosberegayushhie tehnologii vyplavki perspektivnyh litejnyh i deformiruemyh superzharoprochnyh splavov s uchetom pererabotki vseh vidov othodov [Resource-saving smelting technologies of perspective cast and deformable superhot strength alloys taking into account processing of all types of waste] // Elektrometallurgiya. 2016. №9. S. 30–41.
17. Min P.G., Vadeev V.E., Kalicev V.A., Kramer V.V. Rafinirovanie nekondicionnyh othodov deformiruemyh nikelevyh splavov v vakuumnoj indukcionnoj pechi [Refinement of unconditioned waste of deformable nickel alloys in the vacuum induction furnace] // Tehnologiya metallov. 2015. №4. S. 8–13.
18. Ospennikova O.G., Min P.G., Vadeev V.E., Kalitsev V.A., Kramer V.V. Resursosberegayushhaya tehnologiya pererabotki nekondicionnyh othodov deformiruemogo splava VZh175 dlya diskov GTD [Resource-saving processing technology of off-grade scrap of wrought superalloy VG175 for GTE disks production] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №2. St. 01. Available at: http://www.viam-works.ru (accessed: May 25, 2017). DOI: 10.18577/2307-6046-2016-0-2-1-1.
19. Sidorov V.V., Min P.G. Rafinirovanie slozhnolegirovannogo nikelevogo rasplava ot primesi sery pri plavke v vakuumnoj indukcionnoj pechi. Chast 1 [Refinement complex-alloyed nickel melt from sulfur impurity when melting in the vacuum induction furnace. Part 1] // Elektrometallurgiya. 2014. №3. S. 18–23.
20. Sidorov V.V., Min P.G. Rafinirovanie slozhnolegirovannogo nikelevogo rasplava ot primesi sery pri plavke v vakuumnoj indukcionnoj pechi. Chast 2 [Refinement complex-alloyed nickel melt from sulfur impurity when melting in the vacuum induction furnace. Part 2] // Elektrometallurgiya. 2014. №5. S. 26–30.
21. Sidorov V.V., Min P.G., Folomejkin Yu.I., Vadeev V.E. Vliyanie skorosti filtracii slozhnolegirovannogo nikelevogo rasplava cherez penokeramicheskij filtr na soderzhanie primesi sery v metalle [Influence of speed of filtering complex-alloyed nickel melt via the foam ceramic filter on the content of impurity of sulfur in metal] // Elektrometallurgiya. 2015. №5. S. 12–15.
22. Min P.G., Sidorov V.V., Kablov D.E., Vadeev V.E. Rafinirovanie monokristallicheskih zharoprochnyh nikelevyh splavov ot primesej sery i kremniya i nejtralizaciya vrednogo vliyaniya fosfora [Refining of single-crystal superalloys to remove a sulfur and silicon impurity and eliminating unfavorable effect of phosphorus] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2017. №4. St. 04. Available at: http://www.viam-works.ru (accessed: May 25, 2017). DOI: 10.18577/2307-6046-2017- 0-4-4-4.
23. Filippov K.S., Burcev V.T., Sidorov V.V., Rigin V.E. Issledovanie poverhnostnogo natyazheniya i plotnosti rasplava nikelya, soderzhashhego primesi sery, fosfora i azota [Research of surface tension and density melt the nickel containing impurity of sulfur, phosphorus and nitrogen] // Fizika i himiya obrabotki materialov. 2013. №1. S. 52–56.
24. Kablov D.E., Sidorov V.V., Min P.G., Puchkov Yu.A. Vliyanie lantana na kachestvo i ekspluatacionnye svojstva monokristallicheskogo zharoprochnogo nikelevogo splava ZhS36-VI [The lanthanum influence on quality and operational properties of single crystal nickel base ZhS36-VI superalloy] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №12. St. 02. Available at: http://www.viam-works.ru (accessed: May 25, 2017). DOI: 10.18577/2307-6046-2015-0-12-2-2.
25. Sidorov V.V., Rigin V.E., Min P.G., Folomeikin Yu.I. Effect of phosphorus and silicon on structure and properties of highly refractory cast alloys and development of effective methods for eliminating their unfavorable effect // Metal Science and Heat Treatment. 2015. Vol. 57. No. 5–6. Р. 364–368.
26. Sidorov V.V., Rigin V.E., Min P.G., Folomejkin Yu.I. Issledovanie processov rafinirovaniya v vakuume slozhnolegirovannyh nikelevyh rasplavov ot primesi sery [Research of refining processes in vacuum complex-alloyed nickel melt from sulfur impurity] // Metally. 2015. №6. S. 57–63.
27. Kablov D.E., Sidorov V.V., Min P.G., Vadeev V.E. Vliyanie primesej i lantana na ekspluatacionnye svojstva splava ZhS36-VI [Influence of impurity and lanthanum on operational properties of alloy ZhS36-VI] // Metallurgiya mashinostroeniya. 2015. №6. S. 19–23.
28. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
29. Yakimovich P.V., Alekseev A.V., Min P.G. Opredelenie nizkih soderzhanij fosfora v zharoprochnyh nikelevyh splavah metodom ISP-MS [Determination of low phosphorus content in heat-resistant nickel alloys by ICP-MS method] // Trudy VIAM : elektron. nauch.-tehnich. zhurn. 2014. №10. St. 02. Available at: http://viam-works.ru (accessed: March 07, 2017). DOI: 10.18577/2307-6046-2014-0-10-2-2.
30. Mehanik E.A., Min P.G., Gundobin N.V., Rastegaeva G.Yu. Opredelenie massovoj doli sery v zharoprochnyh nikelevyh splavah i stalyah v diapazone koncentracij ot 0,0001 do 0,0009% (po masse) [Determination of sulfur mass fraction in heat-resistant nickel alloy and steels within the concentration range from 0,0001 to 0,0009% wt.] // Trudy VIAM : elektron. nauch.-tehnich. zhurn. 2014. №9. St. 12. Available at: http://viam-works.ru (accessed: March 23, 2017). DOI: 10.18577/2307-6046-2014-0-9-12-12.
31. Bokshtejn S.Z., Ginzburg S.S., Kishkin S.T., Razumovskij I.M., Stroganov G.B. Avtoradiografiya poverhnostej razdela i strukturnaya stabilnost splavov [Autoradiography of interfaces and structural stability of alloys]. M.: Metallurgiya, 1987. 272 s.
32. Min P.G., Sidorov V.V., Vadeev V.E. Povedenie primesej i lantana pri napravlennoj kristallizacii monokristallov nikelevyh zharoprochnyh splavov [The impurities and lanthanum behavior at directional solidification of single-crystal superalloys] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2017. №7. URL: http://www.viam-works.ru (v pechati).
The silicon, phosphorus and lanthanum behavior during directional solidification of single-crystals ZhS32-VI and VZhM5-VI superalloys for gas turbine blades was studied.
It is proved that saturation with silicon during directional solidification of single-crystals took place for a reason of interaction of carbon with free silicon oxide included in the composition of the ceramic mold. It is founded that saturation with silicon of non-carbon single-crystal alloys occurs four times slower than carbon-containing alloys. The utilization of non-carbon nickel-based superalloys is recommended for high pure provision from silicon impurity and guaranteed high properties of casts.
Experimentally established that lanthanum microalloying of nickel-based superalloys with high phosphorus contain (0,014 wt. %) allows to increase high temperature strength of single-crystals on account strong, refractory compound (lanthanum phosphide) and neutralization harmful phosphorus influence. It is shown that repeated remelting leads to a change in the content of macro- and microalloying elements and consequently reduction in the amount of γ¢-phase and single-crystals service life.
It is recommended to remelt nickel-based superalloys in vacuum induction furnace with optimal composition control by chemical express analysis for provision guaranteed high operational of single-crystals.
2. Sidorov V.V., Morozova G.I., Petrushin N.V. i dr. Fazovyj sostav i termostabilnost litejnogo zharoprochnogo nikelevogo splava s kremniem [Phase structure and thermostability of cast heat resisting nickel alloy with silicon] // Metally. 1990. №1. S. 94–98.
3. Sidorov V.V., Rigin V.E., Min P.G., Folomejkin Yu.I., Timofeeva O.B., Filonova E.V., Ishodzhanova I.V. Vliyanie primesej na strukturu i svojstva vysokozharoprochnyh litejnyh splavov i razrabotka effektivnyh metodov ustraneniya ih otricatelnogo vliyaniya [Influence of impurity on structure and property of high-heat resisting cast alloys and development of effective methods of elimination of their negative influence] // Novosti materialovedeniya. Nauka i tehnika: elektron. nauch.-tehnich. zhurn. 2014. №2. St. 03. Available at: http://www.materialsnews.ru (accessed: March 07, 2017).
4. Sidorov V.V., Rigin V.E., Min P.G., Folomejkin Yu.I. Vliyanie fosfora i kremniya na strukturu i svojstva vysokozharoprochnyh litejnyh splavov i razrabotka effektivnyh metodov ustraneniya ih otricatelnogo vliyaniya [Influence of phosphorus and silicon on structure and properties of high-heat resisting cast alloys and development of effective methods of elimination of their negative influence] // Metallovedenie i termicheskaya obrabotka metallov. 2015. №6 (720). S. 55–59.
5. Sidorov V.V., Rigin V.E., Min P.G., Folomeikin Yu.I. Effect of phosphorus and silicon on structure and properties of highly refractory cast alloys and development of effective methods for eliminating their unfavorable effect // Metal Science and Heat Treatment. 2015. Vol. 57. No. 5–6. P. 364–368.
6. Chao Yuan, Fengshi Yin. Effect of Phosphorus on Microstructure and High Temperature Properties of a cast Ni-base Superalloy // J. mater Sci. Technol. 2002. Vol. 18. No. 6. P. 555–557.
7. Kablov E.N., Ospennikova O.G., Sidorov V.V., Rigin V.E. Proizvodstvo lityh prutkovyh (shihtovyh) zagotovok iz sovremennyh litejnyh vysokozharoprochnyh nikelevyh splavov [Production of cast bar (blend) preparations from modern cast high-heat resisting nickel alloys] // Problemy i perspektivy razvitiya metallurgii i mashinostroeniya s ispolzovaniem zavershennyh fundamentalnyh issledovanij i NIOKR: Tr. Vseros. nauch.-tehnich. konf. k 310-letiyu Uralskoj metallurgii. 2011. S. 31–38.
8. Sidorov V.V., Rigin V.E., Timofeeva O.B., Min P.G. Vliyanie kremniya i fosfora na zharoprochnye svojstva i strukturno-fazovye prevrashheniya v monokristallah iz vysokozharoprochnogo splava VZhM4-VI [An effect of silicon and phosphorus on high temperature properties and structure-phase transformations of single crystals of VGM4-VI superalloy] // Aviacionnye materialy i tehnologii. 2013. №3. S. 32–38.
9. Litye lopatki gazoturbinnyh dvigatelej: splavy, tehnologii, pokrytiya /pod red. E.N. Kablova [Cast blades of gas turbine engines: alloys, technologies, coverings / ed. by E.N. Kablov]. M.: Hauka, 2006. 632 s.
10. Sidorov V.V., Min P.G., Burcev V.T., Kablov D.E., Vadeev V.E. Kompyuternoe modelirovanie i eksperimentalnoe issledovanie reakcij rafinirovaniya v vakuume slozhnolegirovannyh renijsoderzhashhih nikelevyh rasplavov ot primesej sery i kremniya [Computer modeling and pilot study of reactions of refinement in vacuum of complex-alloyed rhenium containing nickel melt from sulfur and silicon impurity] // Vestnik RFFI. 2015. №1 (85). S. 32–36.
11. Min P.G., Sidorov V.V., Kablov D.E., Vadeev V.E. Rafinirovanie monokristallicheskih zharoprochnyh nikelevyh splavov ot primesej sery i kremniya i nejtralizaciya vrednogo vliyaniya fosfora [Refining of single-crystal superalloys to remove a sulfur and silicon impurity and eliminating unfavorable effect of phosphorus] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2017. №4 (52). St. 04. Available at: http://www.viam-works.ru (accessed: May 25, 2017). DOI: 10.18577/2307-6046-2017- 0-4-4-4.
12. Sidorov V.V., Kablov D.E., Min P.G., Vadeev V.E. Rafinirovanie slozhnolegirovannogo nikelevogo splava ZhS32-VI ot primesi kremniya i fosfora putem odnonapravlennogo zatverdevaniya rasplava pri malyh skorostyah peremeshheniya fronta kristallizacii [Refinement of complex-alloyed ZhS32-VI nickel alloy from silicon and phosphorus impurity by unidirectional hardening melt with small traverse speeds of the front of crystallization] // Tehnologiya metallov. 2016. №3. S. 2–7.
13. Min P.G., Sidorov V.V., Vadeev V.E. Rafinirovanie monokristallicheskih nikelevyh zharoprochnyh splavov ot primesej kremniya, fosfora i sery metodom napravlennoj kristallizacii rasplava s vesma nizkoj skorostyu peremeshheniya fronta [The refining of nickel base single-crystal alloys from silicon, phosphorus and sulfur impurities by directed melt solidification with very slowed-up moving rate of the crystallization] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2017. №3 (51). St. 02. Available at: http://www.viam-works.ru (accessed: May 25, 2017). DOI: 10.18577/2307-6046-2017-0-3-2-2.
14. Min P.G., Sidorov V.V., Kablov D.E., Rigin V.E., Vadeev V.E. Issledovanie sery i fosfora v litejnyh zharoprochnyh nikelevyh splavah i razrabotka effektivnyh sposobov ih rafinirovaniya [Sulfur and phosphorus research in cast heat resisting nickel alloys and development of effective ways of their refinement] // Tehnologiya metallov. 2015. №12. S. 2–9.
15. Min P.G., Sidorov V.V. Opyt pererabotki litejnyh othodov splava ZhS32-VI na nauchno-proizvodstvennom komplekse VIAM po izgotovleniyu lityh prutkovyh (shihtovyh) zagotovok [The experience of GS32-VI alloy scrap recycling at the VIAM scientific and production complex for cast bars production] // Aviacionnye materialy i tehnologii. 2013. №4. S. 20–25.
16. Kablov E.N., Ospennikova O.G., Sidorov V.V., Rigin V.E., Kablov D.E. Osobennosti tehnologii vyplavki sovremennyh litejnyh vysokozharoprochnyh nikelevyh splavov [Features of smelting technology of modern cast high-heat resisting nickel alloys] // Vestnik MGTU im. N.E. Baumana. Ser.: Mashinostroenie. 2011. №SP. C. 68–78.
17. Sidorov V.V., Rigin V.E., Goryunov A.V., Min P.G., Kablov D.E. Poluchenie Re–Ru soderzhashhego splava s ispolzovaniem nekondicionnyh othodov [Receiving Re–Ru of containing alloy with use of unconditioned waste] // Metallurgiya mashinostroeniya. 2012. №3. S. 15–17.
18. Min P.G., Vadeev V.E., Kramer V.V. Resursosberegayushhaya tehnologiya polucheniya deformiruemogo nikelevogo zharoprochnogo splava VZh175 s primeneniem nekondicionnyh othodov [Resource-saving technology of receiving deformable nickel VZh175 hot strength alloy using unconditioned waste] // Metallurg. 2016. №9. S. 88–94.
19. Min P.G., Vadeev V.E., Kalicev V.A., Kramer V.V. Tehnologiya polucheniya deformiruemogo splava VZh175 dlya diskov GTD iz kondicionnyh othodov [Technology of receiving deformable alloy VZh 175 for disks GTE from conditioned waste] // Metallurg. 2015. №9. S. 76–80.
20. Sidorov V.V., Rigin V.E., Goryunov A.V., Min P.G. Opyt pererabotki v usloviyah FGUP «VIAM» litejnyh othodov zharoprochnyh splavov, obrazuyushhihsya na motorostroitelnyh i remontnyh zavodah [Experience of processing in the conditions of FSUE «VIAM» of foundry waste of the hot strength alloys which are forming at engine-building and repair plants] // Metallurg. 2014. №1. S. 86–90.
21. Min P.G., Vadeev V.E., Kalicev V.A., Kramer V.V. Rafinirovanie nekondicionnyh othodov deformiruemyh nikelevyh splavov v vakuumnoj indukcionnoj pechi [Refinement of unconditioned waste of deformable nickel alloys in the vacuum induction furnace] // Tehnologiya metallov. 2015. №4. S. 8–13.
22. Min P.G., Goryunov A.V., Vadeev V.E. Sovremennye zharoprochnye nikelevye splavy i effektivnye resursosberegayushhie tehnologii ih izgotovleniya [Modern heat resisting nickel alloys and effective resource-saving technologies of their manufacturing] // Tehnologiya metallov. 2014. №8. S. 12–23.
23. Kablov E.N., Sidorov V.V., Kablov D.E., Min P.G., Rigin V.E. Resursosberegayushhie tehnologii vyplavki perspektivnyh litejnyh i deformiruemyh superzharoprochnyh splavov s uchetom pererabotki vseh vidov othodov [Resource-saving smelting technologies of perspective cast and deformable superhot strength alloys taking into account processing of all types of waste] // Elektrometallurgiya. 2016. №9. S. 30–41.
24. Sidorov V.V., Rigin V.E., Goryunov A.V., Min P.G. Processing Superalloy Foundry Waste Generated at Engine Building and Repair Plants: Experience of the All-Russia Research Institute of Aviation Materials // Metallurgist. 2014. Vol. 58. No. 1–2. P. 69–74.
25. Sidorov V.V., Rigin V.E., Goryunov A.V., Min P.G. Resources-saving technology for recycling off-grade waste products cast from superalloys // Metallurgist. 2014. Vol. 58. No. 5–6. P. 360–366.
26. Min P.G., Goryunov A.V., Vadeev V.E. Modern Nickel Superalloys and the Efficient Resource-Saving Technologies of Their Production // Russian Metallurgy (Metally). 2015. Vol. 2015. No. 13. P. 1060–1068.
27. Kablov E.N., Sidorov V.V., Kablov D.E., Min P.G., Rigin V.E. Resource-Saving Technologies of Making Advanced Cast and Deformable Superalloys with Allowance for Processing All Types of Wastes // Russian Metallurgy (Metally). 2016. Vol. 2016. No. 12. P. 1187–1195.
28. Ospennikova O.G., Min P.G., Vadeev V.E., Kalitsev V.A., Kramer V.V. Resursosberegayushhaya tehnologiya pererabotki nekondicionnyh othodov deformiruemogo splava VZh175 dlya diskov GTD [Resource-saving processing technology of off-grade scrap of wrought superalloy VG175 for GTE disks production] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №2. St. 01. Available at: http://www.viam-works.ru (accessed: May 25, 2017). DOI: 10.18577/2307-6046-2016-0-2-1-1.
29. Min P.G., Sidorov V.V., Kablov D.E., Rigin V.E., Vadeev V.E. Vliyanie primesi na strukturu I mehanicheskie svoistva liteinyh nikelevyh zharoprochnih splavov I razrabotka effektivnyh sposobov ih rafinirovaniya [Influence of impurity on structure and mechanical properties of cast nickel hot strength alloys and development of effective ways of their refinement] // Klimovskie chteniya-2015. Perspektivnie napravleniya razvitiya aviadvigatelestroeniya. SPb.: Skifia-print, 2015. S. 275–283.
30. Kablov D.E., Sidorov V.V., Min P.G., Vadeev V.E. Vliyanie primesej i lantana na ekspluatacionnye svojstva splava ZhS36-VI [Influence of impurity and lanthanum on operational properties of alloy ZhS36-VI] // Metallurgiya mashinostroeniya. 2015. №6. S. 19–23.
31. Kablov D.E., Sidorov V.V., Min P.G., Puchkov Yu.A. Vliyanie lantana na kachestvo i ekspluatacionnye svojstva monokristallicheskogo zharoprochnogo nikelevogo splava ZhS36-VI [The lanthanum influence on quality and operational properties of single crystal nickel base ZhS36-VI superalloy] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №12. St. 02. Available at: http://www.viam-works.ru (accessed: May 25, 2017). DOI: 10.18577/2307-6046-2015-0-12-2-2.
32. Kablov D.E., Sidorov V.V., Min P.G., Gerasimov V.V., Bondarenko Yu. A. Vliyanie primesej sery i fosfora na svojstva monokristallov zharoprochnogo splava ZhS36-VI i razrabotka effektivnyh sposobov ego rafinirovaniya [The sulfur and phosphorus influence on properties of single crystals GHS36-VI supperalloy and design of effective methods their refining] // Aviacionnye materialy i tehnologii. 2015. №3 (36). S. 3–9. DOI: 10.18577/2071-9140-2015-0-3-3-9.
33. Kablov D.E., Belyaev M.S., Sidorov V.V., Min P.G. Vliyanie primesej sery i fosfora na malociklovuyu ustalost' monokristallov zharoprochnogo splava ZhS36-VI [The influence of sulfur and phosphorus impurities on low cycle fatigue of GhS36-VI alloy single crystals] // Aviacionnye materialy i tehnologii. 2015. №4 (37). S. 25–28. DOI: 10.18577/2071-9140-2015-0-4-25-28.
34. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
35. Yakimovich P.V., Alekseev A.V., Min P.G. Opredelenie nizkih soderzhanij fosfora v zharoprochnyh nikelevyh splavah metodom ISP-MS [Determination of low phosphorus content in heat-resistant nickel alloys by ICP-MS method] // Trudy VIAM : elektron. nauch.-tehnich. zhurn. 2014. №10. St. 02. Available at: http://viam-works.ru (accessed: March 07, 2017). DOI: 10.18577/2307-6046-2014-0-10-2-2.
The changes of microstructure and phase composition of disks for gas turbine engines made of superalloy VJ175 after heat treatment and imitation of operating at working temperature (long-term exposure at maximal operating temperature 750°С) are investigated. Mechanical properties are defined, fractography investigations are carried out in initial (heat treated) condition and after long-term for 1000 and 2000 hours heating up to operating temperature.
2. Kablov E.N. Tendencii i orientiry innovacionnogo razvitiya Rossii: sb. nauch.-inform. mater. 2-e izd. [Tendencies and reference points of innovative development of Russia: collection of scientific information materials]. M.: VIAM, 2013. 544 s.
3. Kablov E.N., Ospennikova O.G., Lomberg B.S. Sozdanie sovremennyh zharoprochnyh materialov i tehnologij ih proizvodstva dlya aviacionnogo dvigatelestroeniya [Creation of modern heat resisting materials and technologies of their production for aviation engine building] // Krylya Rodiny. 2012. №3–4. S. 34–38.
4. Kablov E.N. Osnovnye itogi i napravleniya razvitiya materialov dlya perspektivnoj aviacionnoj tehniki [The main results and the directions of development of materials for perspective aviation engineering] // 75 let. Aviacionnye materialy. Izbrannye trudy «VIAM» 1932–2007. M.: VIAM, 2007. S. 20–26.
5. Lomberg B.S., Ovsepyan S.V., Bakradze M.M., Mazalov I.S. Vysokotemperaturnye zharo-prochnye nikelevye splavy dlya detalej gazoturbinnyh dvigatelej [High-temperature heat resisting nickel alloys for details of gas turbine engines] // Aviacionnye materialy i tehnologii. 2012. №S. S. 52–57.
6. Locq D., Caron (Onera) P. On Some Advanced Nickel-Based Superalloys for Disk Applications // High Temperature Materials AL03-01. 2011. Issue 3. P. 1–9.
7. Gabb T.P., Gayda J., Telesman J. Thermal and Mechanical Property Characterization of the Advanced Disk Alloy // NASA / TM–2005-213645. June, 2005.
8. Lomberg B.S., Ovsepjan S.V., Bakradze M.M. Osobennosti legirovaniya i termicheskoj obrabotki zharoprochnyh nikelevyh splavov dlja diskov gazoturbinnyh dvigatelej no-vogo pokolenija [Features of alloying and thermal processing of heat resisting nickel alloys for disks of gas turbine engines of new generation] // Aviacionnye materialy i tehnologii. 2010. №2. S. 3–8.
9. Filonova E.V., Bakradze M.M., Kochubey A.Ya., Vavilin N.L. Issledovanie izmenenij strukturno-fazovogo sostoyaniya splava VZh175 v processe goryachej deformacii i termicheskoj obrabotki [Structural-phase evolution of VZH175-alloy during hot deformation and heat treatment] // Aviacionnye materialy i tehnologii. 2014. №3. S. 10–13. DOI: 10.18577/2071-9140-2014-0-3-10-13.
10. Chabina E.B., Lomberg B.S., Filonova E.V., Ovsepyan S.V., Bakradze M.M. [Change of structural and phase condition of heat resisting deformable nickel alloy at alloying tantalum and rhenium] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №9. St. 03. Available at: http://www.viam-works.ru (accessed: February 01, 2017). DOI: 10.18577/2307-6046-2015-0-9-3-3.
11. Sharpe H.J., Saxena A. Effect of Microstructure on High-Temperature Mechanical Behavior of Nickel-Base Superalloys for Turbine Disc Applications // EuroSuperalloys 2010: Advanced Materials Research. 2011. Vol. 278. P. 259–264. URL: http://www.scientific.net (дата обращения: 02.02.2017).
12. Gabb T.P., Gayda J., Kantzos P. The Grain Size-Temperature Response of Advanced Nickel-Base Disk Superalloys During Solution Heat Treatments // NASA / TM–2007-214912. December, 2007.
13. Ponomarenko D.A., Moiseev N.V., Skugorev A.V. Proizvodstvo diskov GTD iz zharoprochnyh splavov na izotermicheskih pressah // Aviacionnye materialy i tehnologii. 2013. №1.
S. 13–16.
14. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
15. Orlov M.R., Ospennikova O.G., Avtaev V.V., Terehin A.M., Filonova E.V. Fraktograficheskij analiz ekspluatacionnogo razrusheniya diska rotora vysokogo davleniya aviacionnogo gazoturbinnogo dvigatelya iz zharoprochnogo splava EP741-NP [Fractography analysis of operational distructure of the gas-turbine engine high pressure rotor disk made of EP741-NP superalloy] // Aviacionnye materialy i tehnologii. 2015. №S1. S. 5–12. DOI: 10.18577/2071-9140-2015-0-S1-5-12.
16. Chabina E.B., Alekseev A.A., Filonova E.V., Lukina E.A. Primenenie metodov analiticheskoj mikroskopii i rentgenostrukturnogo analiza dlya issledovaniya strukturno-fazovogo sostoyaniya materialov [Application of methods of analytical microscopy and X-ray of the structural analysis for research of structural and phase condition of materials] // TestMat-2013: sb. dokl. Vseros. konf. po ispytaniyam i issledovaniyam svojstv materialov. M., 2013. S. 32.
Theoretical and experimental studies of the stress-strain, chemical and structural-phase state of martensitic aging steel after electron beam welding and subsequent heat treatment are carried out. It is established that the chemical, phase composition, structure, and stress-strain state of the martensitic-aging steel seam depend on the speed of electron beam welding. From the analysis of stressed states of the welded seam, it follows that with a higher welding speed, the residual stresses in the weld seam are greater. Thermocyclic treatment of the seam in a jammed state leads to its hardening and reduction of residual stresses.
2. Kablov E.N. Konstrukcionnye i funkcionalnye materialy – osnova ekonomicheskogo i nauchno-tehnicheskogo razvitiya Rossii [Constructional and functional materials is the base of economic and scientific and technical development of Russia] // Voprosy materialovedeniya. 2006. №1. S. 64–67.
3. Kablov E.N., Petrushin N.V., Svetlov I.L., Demonis I.M. Nikelevye litejnye zharoprochnye splavy novogo pokoleniya [Nickel foundry heat resisting alloys of new generation] // Aviacionnye materialy i tehnologii. 2012. №S. C. 36–52.
4. Markova E.S., Yakusheva N.A., Pokrovskaja N.G., Shalkevich A.B. Tehnologicheskie osobennosti proizvodstva martensitostareyushhej stali VKS-180 [Technological features of the production of maraging steel VKS-180] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №7. St. 01. Available at: http://www.viam-works.ru (accessed: March 21, 2017).
5. Vylezhnev V.P., Kokovyakina S.A., Simonov Yu.N., Suhih A.A. Povyshenie harakteristik nadezhnosti martensitostareyushhej stali 03N18K9M5T putem sozdaniya struktury tipa «nanotripleks» [Increase of characteristics of reliability of maraging steel 03N18K9M5T by creation of structure of the nanotriplex type] // Metallovedenie i termicheskaya obrabotka metallov. 2010. №11. S. 20–24.
6. Petrakov A.F., Shalkevich A.B. Vysokoprochnye stali v aviastroenii [High-strength became in aircraft industry] // Aviacionnye materialy. Izbrannye trudy «VIAM» 1932–2002: yubil. nauch.-tehnich. sb. M.: VIAM, 2002. S. 180–191.
7. Ospennikova O.G. Strategiya razvitiya zharoprochnyh splavov i stalej specialnogo naznacheniya, zashhitnyh i teplozashhitnyh pokrytij [Strategy of development of hot strength alloys and steels special purpose, protective and heat-protective coverings] // Aviacionnye materialy i tehnologii. 2012. №S. S. 19–36.
8. Shalkevich A.B., Voznesenskaya N.M., Pokrovskaya N.G., Markova E.S. Vysokoprochnye konstrukcionnye i korrozionnostojkie stali dlya samoletov novogo pokoleniya [High-strength constructional and corrosion-resistant became for airplanes of new generation] // 75 let. Aviacionnye materialy. Izbrannye trudy «VIAM» 1932–2007: yubil. nauch.-tehnich. sb. M.: VIAM, 2007. S. 142–150.
9. Markova E.S., Pokrovskaya N.G., Shalkevich A.B., Gromov V.I. Martensitostareyushhie stali ‒ novye perspektivnye materialy dlya valov GTD [Maraging became ‒ new perspective materials for GTE shaft] // Aviacionnye materialy i tehnologii. 2012. №S. S. 81–84.
10. Krylov S.A., Markova E.S., Shcherbakov A.I., Yakusheva N.A. Metallurgicheskie osobennosti vyplavki vysokoprochnoj martensitostarejushhej stali VKS-180-ID [Development of technology for smelting high-strength maraging steel VKS180-ID microalloyed REM] // Aviacionnye materialy i tehnologii. 2015. №4. S. 14–20. DOI: 10.18577/2071-9140-2015-0-4-14-20.
11. Kablov E.N. Materialy dlya izdeliya «Buran» – innovacionnye resheniya formirovaniya shestogo tehnologicheskogo uklada [Materials for the product «Buran» are the innovative solutions of forming of the sixth technological way] // Aviacionnye materialy i tehnologii. 2013. №S1. S 3–9.
12. Kablov E.N., Lukin V.I., Ospennikova O.G. Svarka i pajka v aviakosmicheskoj promyshlennosti [Welding and the soldering in the aerospace industry] // Mater. Vseros. nauch.-praktich. konf. «Svarka i bezopasnost». 2012. T. 1. S. 21–30.
13. Lukin V.I., Banas I.P., Kovalchuk V.G., Golev E.V. Argono-dugovaya svarka vysokoprochnoj cementuemoj stali VNS-63 [TIG welding of high-strengthened cemented steel VNS-63] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №8. St. 01. Available at: http://www.viam-works.ru (accessed: December 10, 2016).
14. Lukin V.I., Ioda E.N., Panteleev M.D., Skupov A.A. Svarka plavleniem titanovogo splava VT18U [Fusion welding of VT18U titanium alloy] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №5. St. 03. Available at: http://www.viam-works.ru (accessed: December 10, 2016). DOI: 10.18577/2307-6046-2015-0-5-3-3.
15. Lukin V.I., Voznesenskaya N.M., Kovalchuk V.G. Svarka vysokoprochnoj korrozionnostojkoj stali VNS-72 [Welding of high-strength VNS-72 corrosion-resistant steel] // Svarochnoe proizvodstvo. 2012. №10. S. 31–35.
16. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period to 2030] // Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
17. Lihachev V.A., Malinin V.G. Strukturno-analiticheskaya teoriya prochnosti [Structural and analytical failure theory]. L.: Nauka, 1992. 400 s.
The structure formation special features of new V-1579(Al–Mg–Sc) and V-1481(Al–Cu–Li)-alloys laser welds (without filler material) was investigated. The laser welding parameters were carried out to provide V-1481 welds strength level about 0,6 and about 0,9 for V-1579. It was also investigated that increasing of welding speed can improve V-1579 welds strength value, but low-cycle fatigue value decreased. As for V-1481 alloy, it is more sensitive to welding thermal cycle: increasing of welding speed for can improve loss of strength and low-cycle fatigue value.
2. Antipov V.V. Strategiya razvitiya titanovyh, magnievyh, berillievyh i alyuminievyh splavov [Strategy of development of titanium, magnesium, beryllium and aluminum alloys] // Aviacionnye materialy i tehnologii. 2012. №S. S. 157–167.
3. Kablov E.N. Materialy dlya izdeliya «Buran» – innovacionnye resheniya formirovaniya shestogo tehnologicheskogo uklada [Materials for «Buran» spaceship – innovative solutions of formation of the sixth technological mode] // Aviacionnye materialy i tehnologii. 2013. №S1. S. 3–9.
4. Welding and joining of aerospace materials / ed. by M.C. Chaturvedi. Woodhead publishing limited, 2012. 430 p.
5. Grushko O.E., Ovsyannikov B.V., Ovchinnikov V.V. Alyuminievo-litievye splavy: metallurgiya, svarka, metallovedenie [Aluminum-lithium alloys: metallurgy, welding, metallurgical science]. M.: Nauka, 2014. 296 s.
6. Kablov E.N., Lukin V.I., Zhegina I.P., Ioda E.N., Loskutov V.M. Osobennosti i perspektivy svarki alyuminijlitievyh splavov [Features and perspectives of welding of alyuminiylitiyevy alloys] // Aviacionnye materialy i tehnologii. 2002. №4. S. 3–12.
7. Kablov E.N., Lukin V.I., Ospennikova O.G. Svarka i pajka v aviakosmicheskoj promyshlennosti [Welding and the soldering in the aerospace industry] // Mater. Vseros. nauch.-praktich. konf. «Svarka i bezopasnost». M., 2012. T. 1. S. 21–30.
8. Lukin V.I., Ospennikova O.G., Ioda E.N., Panteleev M.D. Svarka alyuminievyh splavov v aviakosmicheskoj promyshlennosti [Welding of aluminum alloys in the aerospace industry] // Svarka i diagnostika 2013. №2. S. 47–52.
9. Shiganov I.N., Holopov A.A., Trushnikov A.V., Ioda E.N., Panteleev M.D., Skupov A.A. Lazernaya svarka vysokoprochnyh alyuminij-litievyh splavov s prisadochnoj provolokoj [Laser bonding high-strength aluminum-lithium alloys with filler wire] // Svarochnoe proizvodstvo. 2016. №6. S. 44–50.
10. Skupov A.A., Panteleev M.D., Ioda E.N., Movenko D.A. Effektivnost primeneniya redkozemelnyh metallov dlya legirovaniya prisadochnyh materialov [The efficiency of rare earth metals for filler materials alloying] // Aviacionnye materialy i tehnologii. 2017. №3 (v pechati).
11. Grigoryanc A.G. Lazernaya svarka metallov [Laser bonding of metals]. M.: Vysshaya shkola, 1988. 207 s.
12. Spravochnik po lazernoj svarke / pod red. S. Katayama [Directory on laser bonding / ed. by S. Katayam]. M.: Tehnosfera, 2015. 704 s.
13. Flemming Ove Olsen. Hybrid laser–arc welding. Woodhead Publishing Limited, 2009. 323 p.
14. Grigoryanc A.G. Osnovy lazernoj obrabotki materialov [Bases of laser processing of materials]. M.: Mashinostroenie, 1989. 304 s.
15. Shiganov I.N., Shahov S.V., Holopov A.A. Lazernaya svarka alyuminievyh splavov aviacionnogo naznacheniya [Laser bonding of aluminum alloys of aviation assignment] // Vestnik MGTU im. N.E. Baumana. Ser.: Mashinostroenie. 2012. №5. S. 34–50.
16. Grigoryanc A.G., Shiganov I.N., Misyurov A.I. Tehnologicheskie processy lazernoj obrabotki [Technological processes of laser processing]. M.: Izd-vo MGTU im. N. E. Baumana, 2008. 650 s.
17. Shiganov I.N., Holopov A.A. Lazernaya svarka alyuminievyh splavov [Laser bonding of aluminum alloys] // Fotonika. 2010. №3. S. 6–10.
18. Kablov E.N., Lukin V.I., Antipov V.V., Ioda E.N., Panteleev M.D., Skupov A.A. Effektivnost primeneniya prisadochnyh materialov pri lazernoj svarke vysokoprochnyh alyuminij-litievyh splavov [Efficiency of application of additive materials at laser bonding high-strength aluminum - lithium alloys] // Svarochnoe proizvodstvo. 2016. №10. C. 17–21.
19. Martukanitz R.P. A critical review of laser beam welding // Proc. SPIE 5706. Critical Review: Industrial Lasers and Applications. 2005. P. 11–24.
20. Matsunawa A., Mizutani M., Katayama S. and Seto N. Porosity formation mechanism and its prevention in laser welding // Welding International. 2003. Vol.17 (6). P. 431–437.
21. Grigoryanc A.G., Grezev V.A. Otlichitelnye osobennosti lazernoj svarki s primeneniem optovolokonnyh i CO2-lazerov [Distinctive features of laser bonding using fiber optic and CO2 lasers] // Svarochnoe proizvodstvo. 2014. №12. S. 17–23.
22. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
23. Kolobnev N.I. Istoriya razvitiya, fazovyj sostav i svojstva splavov sistemy Al–Cu–Li [Development history, phase structure and properties of alloys of Al–Cu–Li system] // Tehnologiya legkih splavov. 2015. №2. S. 46–52.
24. Ryabova E.N., Kolobnev N.I., Hohlatova L.B., Oglodkov M.S. Osobennosti struktury i svojstv listov iz splavov sistemy Al–Cu–Li–Mg [Features of structure and properties of sheets from Al–Cu–Li–Mg system alloys] // Metallurgiya mashinostroeniya. 2015. №1. S. 17–19.
25. Ryabov D.K., Vakhromov R.O., Ivanova A.O. [An effect of small additions of elements with high solubility in aluminium on microstructure of ingots and cold-rolled sheets made of Al–Mg–Sc alloy] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №9. St. 05. Available at: http://www.viam-works.ru (accessed: May 15, 2017). DOI: 10.18577/2307-6046-2015-0-9-5-5.
The implementation of new projects in various industries requires the solution of new tasks, one of which is the creation of new materials with higher performance. To one of such materials belong fiber reinforced metal matrix composite materials. An integral step in the creation of which is the development of technologies for their production. The technological scheme of producing fiber reinforced metal matrix composites influences the formation of their structure and properties. Therefore, it is necessary to choose the method of forming semi-finished products for their manufacture, which ensures the insulation of the fibers between each other by a layer of matrix material, the absence of their mechanical damage and chemical interaction with the matrix material, and also promotes uniform distribution of fibers in the material. The article presents an overview of methods for forming semi-finished products for the producing fiber metal matrix composite materials. It is shown that the mo
2. Kablov E.N. Sovremennye materialy – osnova innovacionnoj modernizacii Rossii [Modern materials are the base of innovative modernization of Russia] // Metally Evrazii. 2012. №3. S. 10–15.
3. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period to 2030] // Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
4. Grishina O.I., Shavnev A.A., Serpova V.M. Osobennosti vliyaniya strukturnyh parametrov na mehanicheskie harakteristiki metallicheskogo kompozicionnogo materiala na osnove alyuminievyh splavov, uprochnennyh chasticami karbida kremniya (obzor) [Features of influence of structural parameters on mechanical properties of metallic composite material based on particle-reinforced aluminum alloys by silicon carbide] // Aviacionnye materialy i tehnologii. 2014. №S6. S. 24–27. DOI: 10.18577/2071-9140-2014-0-s6-24-27.
5. Kablov E.N., Shchetanov B.V., Grashhenkov D.V., Shavnev A.A., Nyafkin A.N. Metallomatrichnye kompozicionnye materialy na osnove Al–SiC [Metalmatrix composite materials on the basis of Al–SiC] // Aviacionnye materialy i tehnologii. 2012. №S. S. 373–380.
6. Chawla N., Chawla K.K. Metal Matrix Composites. New York: Springer Sience+Business Media Inc., 2006. P. 2–107.
7. Portnoj K.I., Salibekov S.E., Svetlov I.L., Chubarov V.M. Struktura i svojstva kompozicionnyh materialov [Structure and properties of composite materials]. M.: Mashinostroenie, 1979. 255 c.
8. Shorohov M.H., Kolpashnikov A.I., Kostikov V.I. i dr. Voloknistye kompozicionnye materialy s metallicheskoj matricej [Fibrous composite materials with metal matrix]. M.: Mashinostroenie, 1981. 272 s.
9. Valente T., Bartuli C. A plasma spray process for the manufacture of long-fiber reinforced Ti–6Al–4V composite monotapes // Journal of Thermal Spray Technology. 1994. Vol. 3 (1). P. 63–68.
10. Beddoes J., Koul A.K., Saxena P. Processing & properties of continuous fiber reinforced titanium matrix axi-symmetric composites // ICCM-12. 1999. P. 284.
11. Method to manufacture reinforced axi-symmetric metal matrix composite shapes: pat. 5897922 US. No. 08/826672; filed 07.04.97; publ. 27.24.99.
12. Procédé d’enduction métallique de fibres par voie liquid: pat. 0931846 EP. No. 99400129.5; filed 21.01.99; publ. 28.07.99.
13. Procédé d’enduction métallique de fibres par voie liquid: pat. 0931846 EP. No. 99400129.5; filed 21.01.99; publ. 28.07.99.
14. Sposob i ustrojstvo zhidkostnogo naneseniya metallicheskogo pokrytiya volokna: pat. 2469123 Ros. Federaciya [Way and device of liquid drawing metallic coating of fiber: pat. 2469123 Rus. Federation]; zayavl. 21.05.2008; opubl. 10.12.2012, Byul. №34. 13 c.
15. Sposob naneseniya metallicheskogo pokrytiya na volokna zhidkim metodom: pat. 2422554 Ros. Federaciya [Way of drawing metallic coating on fibers liquid method: pat. 2422554 Rus. Federation]; zayavl. 04.10.2006, opubl. 27.06.2011 Byul. №18. 11 s.
16. Wood M., Ward-Close M. Fiber-reinforced intermetallic compounds by physical vapor deposition // Materials Science and Engineering. 1995. Vol. A192/193. P. 590–596.
17. Matrix-coated reinforcement for production of metal matrix composites: pat. 2268192 GB. No. 9315647.9; filed 10.02.92; publ. 05.01.94.
18. Serpova V.M., Shavnev A.A., Grishina O.I. i dr. Smachivaemost i mezhfaznoe vzaimodejstvie v metallicheskom kompozicionnom materiale na alyuminievoj matrice, armirovannoj oksidom alyuminiya [Wettability and interphase interaction in metal composite material on the aluminum matrix reinforced by aluminum oxide] // Materialovedenie. 2014. №12. S. 29–35.
19. Kuzmichev A.I. Magnetronnye raspylitelnye sistemy [Magnetronnye spraying systems]. Kiev: Avers, 2008. Kn. 1: Vvedenie v fiziku i tehniku magnetronnogo raspyleniya. 244 s.
20. Danilin B.S., Syrchin V.K. Magnetronnye raspylitelnye sistemy [Magnetron spraying systems]. M.: Radio i svyaz, 1982. 72 s.
21. Upadhyaya D., Wood M. et al. Coating and Fiber Effects on SiC-Reinforced Titanium // TMC. 1994. November. P. 62–67.
22. Semifinished product made of a composite material and method for producing a semifinished product from a composite material: pat. WO 2005/066382; filed 22.12.04; publ. 21.07.05.
In the Russian Federation aircraft component parts and units are usually manufactured by an autoclave solvent polymer impregnation processing technique. However foreign companies used nonsolvent processing technique. Molding without autoclave (for example infusion molding or vacuum and pressure impregnation) sufficiently decreases the FRP production costs. Vacuum impregnation is the matter of the particular interest because there is no need to use sophisticated equipment. For ensuring operability of a material modification by its modified carbon nanotubes is represented especially interesting.
2. Grigorev M.M., Kogan D.I., Tverdaya O.N., Panina N.N. Osobennosti izgotovleniya PKM metodom RFI [Features of manufacturing of PCM RFI method] // Trudy VIAM: electron. nauch.-tehnich. zhurn. 2013. №4. St. 03. Available at: http://www.viam-works.ru (accessed: September, 22 2016).
3. Sokolov I.I., Raskutin A.E. Ugleplastiki i stekloplastiki novogo pokoleniya [Coalplastics and fibreglasses of new generation] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №4. St. 09. Available at: http://www.viam-works.ru (accessed: September, 22 2016).
4. Muhametov R.R., Ahmadieva K.R., Kim M.A., Babin A.N. Rasplavnye svyazujushhie dlya perspektivnyh metodov izgotovleniya PKM novogo pokoleniya [Melt binding for perspective methods of production of PCM of new generation] // Aviacionnye materialy i tehnologii. 2012. №S. S. 260–265.
5. Gunyaev G.M., Kablov E.N., Aleksashin V.M. Modificirovanie konstrukcionnyh ugleplastikov uglerodnymi nanochasticami [Modifying constructional carbon plastics carbon nanoparticles] // Rossijskij himicheskij zhurnal. 2010. T. 54. №1. S. 3–11.
6. Kablov E.N., Kondrashov S.V., Yurkov G.Yu. Perspektivy ispolzovaniya uglerodsoderzhashhih nanochastic v svyazuyushhih dlya polimernyh kompozicionnyh materialov [Perspectives of use of carbon-containing nanoparticles in binding for polymeric composite materials] // Rossijskie nanotehnologii. 2013. T. 8. №3–4. S. 24–42.
7. Aldoshin S.M., Badamshina E.R., Kablov E.N. Polimernye nanokompozity – novoe pokolenie polimernyh materialov s povyshennymi ekspluatacionnymi harakteristikami [Polymeric nanocomposites are the new generation of polymeric materials with the increased utilization properties] // Sb. tez. dokl. I Mezhdunar. foruma po nanotehnologiyam «Rosnanoteh 08». M., 2008. S. 385–387.
8. Kablov E.N. Konstrukcionnye i funkcionalnye materialy – osnova ekonomicheskogo i nauchno-tehnicheskogo razvitiya Rossii [Constructional and functional materials – basis of economic and scientific and technical development of Russia] // Voprosy materialovedeniya. 2006. №1. S. 64–67.
9. Kablov E.N. Kompozity: segodnya i zavtra [Composites: today and tomorrow] // Metally Evrazii. 2015. №1. S. 36–39.
10. Bekyarova E., Thostenson E.T., Yu A. et al. Functionalized single-walled carbon nanotubes for carbon fiber-epoxy composites // J. Phys. Chem. C. 2007. Vol. 111. P. 17865–17871.
11. Gojny F.H., Wichmann M.H.G., Fiedler B., Bauhofer W., Schulte K. Influence of nano-modification on the mechanical and electrical properties of conventional fiber-reinforced composites // Composites: Part A. 2005. Vol. 36. P. 1525–1535.
12. Yokozeki T., Iwahori Y., Ishiwata S., Enomoto K. Mechanical properties of CFRP laminates manufactured from unidirectional prepregs using CSCNT-dispersed epoxy // Composites: Part A. 2007. Vol. 38. P. 2121–2130.
13. Davis D.C., Whelan B.D. An experimental study of interlaminar shear fracture toughness of a nanotube reinforced composite // Composites: Part B. 2011. Vol. 42. P. 105–116.
14. Almuhammadi K., Alfano M., Yang Y., Lubineau G. Analysis of interlaminar fracture toughness and damage mechanisms in composite laminates reinforced with sprayed multi-walled carbon nanotubes // Materials and Design. 2014. Vol. 53. P. 921–927B.
15. Guan A.J., Mirjalili V., Zhang Y. et al. Enhancement of mechanical performance of epoxy/carbon fiber laminate composites using single-walled carbon nanotubes // Composites Science and Technology. 2011. Vol. 71. P. 1569–1578.
16. Mujika F., Vargas G., Ibarretxe J. et al. Influence of the modification with MWCNT on the interlaminar fracture properties of long carbon fiber composites // Composites: Part B. 2012. Vol. 43. P. 1336–1340.
17. Mirjalili V., Ramachandramoorthy R., Hubert P. Enhancement of fracture toughness of carbon fiber laminated composites using multi wall carbon nanotubes // CARBON. 2014. Vol. 79. P. 413–423.
18. Fenner J.S., Daniel I.M. Hybrid Nanoreinforced Carbon/Epoxy Composites for Enhanced Damage Tolerance and Fatigue Life // Composites: Part A. 2014. DOI: 10.1016/j.compositesa 2014.05.02315.
19. Yokozeki T., Iwahori Y., Ishibashi M. et al. Fracture toughness improvement of CFRP laminates by dispersion of cup-stacked carbon nanotubes // Composites Science and Technology. 2009. Vol. 69. P. 2268–2273.
20. White K.L., Sue H.J. Delamination toughness of fiber-reinforced composites containing a carbon nanotube/polyamide-12 epoxy thin film interlayer // Polymer. 2012. Vol. 53. P. 37–4215.
21. Zhu Ye, Bakis C.E., Adair J.H. Effects of carbon nanofiller functionalization and distribution on interlaminar fracture toughness of multi-scale reinforced polymer composites // CARBON. 2012. Vol. 50. P. 1316–1331.
22. Muhametov R.R., Merkulova Yu.I., Chursova L.V. Termoreaktivnye polimernye svyazuyushhie s prognoziruemym urovnem reologicheskih i deformativnyh svojstv [Thermosetting polymeric binding with predicted level of rheological and deformativny properties] // Klei. Germetiki. Tehnologii. 2012. №5. S. 19–24.
23. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
24. Merkulova Yu.I., Kondrashov S.V., Dyachkova T.P., Marahovskij P.S., Yurkov G.Yu. Vliyanie dispergirovannyh v svyazuyushhem uglerodnyh nanotrubok na svojstva epoksinanokompozita [Influence dispersed in binding carbon nanotubes on properties epoksinanokompozita] // Zhurnal prikladnoj himii. 2015. T. 88. №11. S. 1636–1642.
25. Babaevskij P.G., Kulik S.G. Treshhinostojkost otverzhdennyh polimernyh kompozicij [Crack firmness of the hardened polymeric compositions]. M.: Himiya, 1991. 336 s.
26. Marahovskij P.S., Kondrashov S.V., Akatenkov R.V., Aleksashin V.M., Anoshkin I.V., Mansurova I.A. O modifikacii teplostojkih epoksidnyh svyazuyushhih uglerodnymi nanotrubkami [About updating heatresistant epoxy binding carbon nanotubes] // Vestnik Moskovskogo gosudarstvennogo tehnicheskogo universiteta im. N.E. Baumana. Ser.: Mashinostroenie. 2015. №2 (101). S. 118–127.
27. Akatenkov R.V., Aleksashin V.N., Anoshkin I.V., Babin A.N., Bogatov V.A., Grachev V.P., Kondrashov S.V., Minakov V.T., Rakov E.G. Vliyanie malyh kolichestv funkcionalizirovannyh nanotrubok na fiziko-mehanicheskie svojstva i strukturu epoksidnyh kompozicij [Influence of trace amounts of functional nanotubes on physicomechanical properties and structure of epoxy compositions] // Deformaciya i razrushenie materialov. 2011. №11. S. 35–39.
28. Solodilov V.I., Korohin R.A., Gorbatkina Yu.A., Kuperman A.M. Sravnenie energij razrusheniya epoksisulfonovyh matric i odnonapravlennyh namotochnyh kompozitov na ih osnove [Comparison of energy of destruction of epoksisulfonovy matrixes and unidirectional winding composites on their basis] // Mehanika kompozitnyh materialov. 2015. T. 51. №2. S. 253–272.
Polymeric composite materials (PKM) find the application in different areas of the industry and equipment. In the aviation industry use of new and advanced materials, such as PKM, leads to increase of efficiency of flight vehicles, namely decrease in weight of design. However, with increase in application of PKM in designs of flight vehicles (LA) there was question of their protection against accumulation of static electricity in and lightning strike protection in the conditions of the storm front when flying. In article process of carrying out tests of experimental samples and constructive and similar samples is described – fragments of prototype of the panel covered from CFRP with the lightning strike protection coating (MZP) of the VKU-53MZ developed in FGUP «VIAM», order and methods of carrying out tests, the assessment of firmness of the developed material VKU-52MZ to influence of the electric discharge simulating impulse of lightning current is given.
2. Gunyaev G.M., Chursova L.V., Raskutin A.E., Komarova O.A., Gunyaeva A.G. Konstrukcionnye polimernye uglenanokompozity – novoe napravlenie materialovedeniya [Constructional polymeric carbon nanocomposites are the new direction of materials science] // Vse materialy. Enciklopedicheskij spravochnik. 2011. №12. S. 2–9.
3. Kablov E.N. Kompozity: segodnya i zavtra [Composites: today and tomorrow] // Metally Evrazii. 2015. №1. S. 36–39.
4. Sidorina A.I., Gunyaeva A.G. Rynok uglerodnyh volokon i kompozitov na ih osnove (obzor) [The market of carbon fibers and composites on their basis (overview)] // Himicheskie volokna. 2016. №4. S.48–53.
5. Kurnosov A.O., Melnikov D.A. Harakteristiki stekloplastikov na osnove vysokodeformativnyh rasplavnyh svyazuyushhih v usloviyah vozdejstviya ekspluatacionnyh faktorov [Characteristics of fibreglasses on the basis of highly deformation molten operational factors binding in the conditions of influence] // Vse materialy. Enciklopedicheskij spravochnik. 2015. №11. S. 14–18.
6. Gunyaev G.M., Chursova L.V., Raskutin A.E., Nachinkina G.V., Gunyaeva A.G., Kuprienko V.M. Molniezashhitnye pokrytiya dlya konstrukcionnyh ugleplastikov, soderzhashhie nanochasticy [Lightning protecting covers for constructional carbon plastics, containing nanoparticles] // Vse materialy. Enciklopedicheskij spravochnik. 2012. №3. S. 24–35.
7. Gunyaeva A.G., Chursova L.V., Komarova O.A., Cherfas L.V. Molniestojkie uglenanokompozity, modificirovannye nanochasticami, izgotovlennye sposobom infuzionnogo formovaniya [Lightning the carbon nanocomposites resistant modified by nanoparticles, made in the way of infusional formation] // Vse materialy. Enciklopedicheskij spravochnik. 2015. №10. C. 25–32.
8. Gunyaev G.M., Chursova L.V., Raskutin A.E., Gunyaeva A.G. Molniestojkost sovremennyh polimernyh kompozitov [Lightning firmness of modern polymeric composites] // Aviacionnye materialy i tehnologii. 2012. №2. S. 36–42.
9. Gunyaev G.M., Chursova L.V., Komarova O.A., Gunyaeva A.G. Konstrukcionnye ugleplastiki, modificirovannye nanochasticami [Constructional carbon the plastics modified by nanoparticles] // Aviacionnye materialy i tehnologii. 2012. №S. S. 277–286.
10. Gunyaeva A.G., Cherfas L.V., Komarova O.A., Fedotov M.Yu. Izyskanie putej sozdaniya molniezashhitnogo pokrytiya na osnove uglerodnoj tkani s metallicheskimi vklyucheniyami i vozmozhnosti ego primeneniya v elemente konstrukcii kryla LA, vypolnennogo iz ugleplastika [Research of ways of creation of lightning protecting cover on the basis of carbon fabric with metal inclusions and possibilities of its application in element of design of wing of LA executed from carbon plastic] // Fundamentalnye nauchnye osnovy sovremennyh kompleksnyh metodov issledovanij i ispytanij materialov, a takzhe elementov konstrukcij: sb. mater. molodezh. konf. M.: VIAM, 2015. S. 6.
11. Zheleznyak V.G., Chursova L.V. Modifikaciya svyazujushhih i matric na ih osnove s celyu povysheniya vyazkosti razrusheniya [Modification of binders and matrixes based on them to increase fracture toughness] // Aviacionnye materialy i tehnologii. 2014. №1. S. 47–50. DOI: 10.18577/2071-9140-2014-0-1-47-50.
12. Gulyaev I.N., Gunyaeva A.G., Raskutin A.E., Fedotov M.Yu., Sorokin K.V. Molniezashhita i vstroennyj kontrol dlya konstrukcij iz PKM [Lightning protection and the built-in control for designs from PCM] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №4. St. 10. Available at: http://www.viam-works.ru (accessed: April 10, 2017).
13. Panel iz polimernogo kompozicionnogo materiala s molniezashhitnym pokrytiem: pat. 2588552 Ros. Federaciya [The panel from polymeric composite material from lightning protecting cover: pat. 2588552 Rus. Federation]; zayavl. 03.06.15; opubl. 27.06.16, Byul. №18. 10 s.
14. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
15. Normy letnoj godnosti samoletov transportnoj kategorii: AP-25 [Standards of the flight validity of airplanes of transport category]: utv. Postanovleniem 28-j Sessii po aviacii i ispolzovaniyu vozdushnogo prostranstva 11.12.2008. 3-e izd. s popravkami 1–7. M.: Aviaizdat. 2014. S. 71–72.
16. Kvalifikacionnye trebovaniya KT 160D. Usloviya ekspluatacii i okruzhayushhej sredy dlya bortovogo aviacionnogo oborudovaniya. Razdel 23. Pryamoe vozdejstvie molnii. Aviacionnyj reestr mezhgosudarstvennogo aviacionnogo komiteta [Qualifying requirements of KT 160Д. Operating conditions and environment for aircraft air equipment. Section 23. Direct influence of lightning. Aviation register of interstate aviation committee]. Armak, 2004. 324 s.
17. Buharov S.V., Gunyaeva A.G., Raskutin A.E. Issledovaniya zony porazheniya molniezashhitnogo pokrytiya iz ugleplastikov vysokovoltnymi razryadami, imitiruyushhimi toki molnii [Researches of zone of defeat of lightning protective covering from carbon plastic the high-voltage discharges simulating lightning currents] // Nauchnye trudy (Vestnik «MATI»). 2014. №22 (94). S. 4–14.
18. Gunyaeva A.G., Chursova L.V., Fedotov M.Yu., Cherfas L.V. Issledovanie vliyaniya molnievogo razryada na ugleplastik s nanomodificirovannym molniezashhitnym pokrytiem i sistemoj vstroennogo kontrolya na osnove volokonnyh breggovskih reshetok [Research of influence of lightning discharge on carbon plastic with the nanomodified lightning protective covering and system of the built-in control on the basis of fiber Bragg grids] // Voprosy materialovedeniya. 2016. №1 (85). C. 80–91.
19. Murashov V.V., Generalov A.S. Kontrol izdelij iz PKM i mnogoslojnyh kleenyh konstrukcij ultrazvukovymi metodami otrazheniya [PCM products and multilayer glued structures testing by ultrasonic reflection methods] // Aviacionnye materialy i tehnologii. 2017. №1. S. 69–74. DOI: 10.18577/2071-9140-2017-0-1-69-74.
20. Boychuk A.S., Generalov A.S., Stepanov A.V. Nerazrushayushhij kontrol ugleplastikov na nalichie nesploshnostej s ispolzovaniem ultrazvukovyh fazirovannyh reshetok [NDT monitoring of CFRP structural health by ultrasonic phased array technique] // Aviacionnye materialy i tehnologii. 2015. №3 (36). S. 84–89. DOI: 10.18577/2071-9140-2015-0-3-84-89.
21. Melnikov D.A., Gromova A.A., Raskutin A.E., Kurnosov A.O. Teoreticheskij raschet i eksperimentalnoe opredelenie modulya uprugosti i prochnosti stekloplastika VPS-53/120 [Theoretical calculation and experimental determination of modulus of elasticity and strength of GRP VPS-53/120] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2017. №1 (49). St. 08. Available at: http://www.viam-works.ru (accessed: April 17, 2017). DOI: 10.18577/2307-6046-2017-0-1-8-8.
22. Cherfas L.V., Gunyaeva A.G., Komarova O.A., Antyufeeva N.V. Analiz sroka godnosti nanomodificirovannogo preprega pri hranenii po ego reakcionnoj sposobnosti [The analysis of nanomodified prepreg shelf life by its reactivity at storage] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №1 (37). St. 12. Available at: http://www.viam-works.ru (accessed: April 19, 2017). DOI: 10.18577/2307-6046-2016-0-1-12-12.
Fiber reinforced plastics (FRP) especially carbon-based plastics (CFRP) is widely used in aircraft structures at present time. Porosity determination of parts and structures full area by nondestructive testing technique is one of the difficulties for specialists in production process. For that purpose the results of ultrasonic through transmission method application are given in this paper. The researches of CFRP specimens without porosity and with 4–5% level of volume porosity were carried out. The results are shown correlation of the level of volume porosity vs. through transmitted pulse amplitude and the response spectrum center frequency. Consequently ultrasonic through transmission method can be useful for the CFRP porosity estimation.
2. Kablov E.N. Konstrukcionnye i funkcionalnye materialy – osnova ekonomicheskogo i nauchno-tehnicheskogo razvitiya Rossii [Constructional and functional materials – basis of economic and scientific and technical development of Russia] // Voprosy materialovedeniya. 2006. №1. S. 64–67.
3. Platonov A.A., Dushin M.I. Konstrukcionnyj ugleplastik VKU-25 na osnove odnonapravlennogo preprega [Carbon composites VKU-25 based on unidirectional prepregs] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №11. St. 06. Available at: http://www.viam-works.ru (accessed: May 12, 2017). DOI: 10.18577/2307-6046-2015-0-11-6-6.
4. Aldoshin S.M., Badamshina E.R., Kablov E.N. Polimernye nanokompozity – novoe pokolenie polimernyh materialov s povyshennymi ekspluatacionnymi harakteristikami [Polymeric nanocomposites – new generation of polymeric materials with the increased utilization properties] // Sb. tez. dokl. nauch.-tehnologich. sekcij I Mezhdunar. foruma po nanotehnologiyam «Rosnanoteh 08», 2008. S. 385–387.
5. Muhametov R.R., Ahmadieva K.R., Chursova L.V., Kogan D.I. Novye polimernye svyazujushhie dlya perspektivnyh metodov izgotovleniya konstrukcionnyh voloknistyh PKM [New polymeric binding for perspective methods of manufacturing of constructional fibrous PCM] // Aviacionnye materialy i tehnologii. 2011. №2. S. 38–42.
6. Bojchuk A.S., Chertishhev V.Yu., Dikov I.A. Izgotovlenie test-obrazcov iz ugleplastika s razlichnoj poristostyu dlya razrabotki metodik ocenki poristosti nerazrushayushhim metodom [Manufacturing of CFRP test samples with different porosity for its evaluation by non-destructive testing] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2017. №1 (49). St. 11. Available at: http://viam-works.ru (accessed: May 17, 2017). DOI: 10.18577/2307-6046-2017-0-1-11-11.
7. Lin L., Luo M., Tian H.T. et al. Experimental investigation on porosity of carbon fiber-reinforced composite using ultrasonic attenuation coefficient // 17th World Conference on Nondestructive Testing (China, Shanghai. October 25–28, 2008). Available at: http://www.ndt.net/article/wcndt2008/ papers/222.pdf (accessed: August 01, 2016).
8. Daniel I.M., Wooh S.C. and Komsky I. Quantitative Porosity Characterization of Composite Materials by Means of Ultrasonic Attenuation Measurements // Journal of Nondestructive Evaluation. 1992. Vol. 11. No. 1. P. 1–8.
9. Ding S., Jin S. et al. Investigations on relationship between porosity and ultrasonic attenuation coefficient in CFRP laminates based on RMVM // 7th International Symposium on NDT in Aerospace. Mo.5.A.1. Available at: https://www.ndt-aerospace.com/Portals/aerospace2015/BB/mo5a1.pdf (accessed: August 01, 2016).
10. Dominguez N., Mascaro B. Ultrasonic Non-Destructive Inspection of Localised Porosity in Composite Materials // ECNDT 2006-9th European Conference on NDT 2006. Germany, Berlin. Available at: http://www.ndt.net/article/ecndt2006/doc/Tu.2.1.4.pdf (accessed: August 01, 2016).
11. Hillger W., Elze S. Determination of porosity in aerospace structures by ultrasonic pulse echo technique // 8th ECNDT Barcelona, 2002. Available at: http://www.dlr.de/fa/Portaldata/17/Resources/ dokumente/institut/2002/u2002_2.pdf (accessed: May 15, 2017).
12. Dikov I.A., Bojchuk A.S. Sposoby opredeleniya obemnoj doli por v polimernyh kompozicionnyh materialah s pomoshhyu ultrazvukovyh metodov nerazrushayushhego kontrolya (obzor) [The review of FRP volume porosity definition with ultrasonic non-destructive technique (review)] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2017. №2. St. 10. Available at: http://viam-works.ru (accessed: May 18, 2017). DOI: 10.18577/2307-6046-2017-0-2-10-10.
13. Bojchuk A.S., Generalov A.S., Dikov I.A. Kontrol detalej i konstrukcij iz polimernyh kompozicionnyh materialov s primeneniem tehnologii ultrazvukovyh fazirovannyh reshetok [FRP parts and structures testing by phased array technique] // Aviacionnye materialy i tehnologii. 2017. №1 (46). S. 45–50. DOI: 10.18577/2071-9140-2017-0-1-45-50.
14. Bojchuk A.S., Generalov A.S., Dalin M.A., Stepanov A.V. Nerazrushayushhij kontrol tehnologicheskih narushenij sploshnosti T-obraznoj zony integralnoj konstrukcii iz PKM s ispolzovaniem ultrazvukovyh fazirovannyh reshetok [Non-destructive testing of technological violations of continuity of the Tee zone of integral design from PCM with use of the ultrasonic phased grids] // Vse materialy. Enciklopedicheskij spravochnik. 2012. №10. S. 38–44.
15. Boychuk A.S., Generalov A.S., Stepanov A.V. Nerazrushayushhij kontrol ugleplastikov na nalichie nesploshnostej s ispolzovaniem ultrazvukovyh fazirovannyh reshetok [NDT monitoring of CFRP structural health by ultrasonic phased array technique] // Aviacionnye materialy i tehnologii. 2015. №3 (36). S. 84–89. DOI: 10.18577/2071-9140-2015-0-3-84-89.
16. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
One of the major characteristics in ensuring fire safety of aviation engineering are fire resistance and fireproof of materials and constructive elements on their basis. Fire resistance characteristics, except the thermal stability of material of fireproof partition are defined also by the size of transmitted heat flux and temperature of not warmed surface. On these characteristics are influence as properties of the tested material, and condition of carrying out testing, therefore development of mathematical model allowing to evaluate influence of different factors on normed characteristics is required. The mathematical model describing heat transfer from flame on monolithic wall and from wall in surrounding space is constructed. Calculation for influence the different factors of material and environmental conditions on specimen fireproof partition temperature are executed.
2. Normy letnoj godnosti dvigatelej vozdushnyh sudov: AP-33 [Standards of the flight validity of engines of air vehicles]; 3-e izd., s popravkami 33-1 i 33-2: utv. Postanovleniem 32-j sessii Soveta po aviacii i ispolzovaniyu vozdushnogo prostranstva 17.02.2012. M.: Aviaizdat, 2012. 86 s.
3. Barbotko S.L. Trebovaniya aviacionnyh norm i metody ocenki pozharnoj bezopasnosti aviacionnyh materialov: istoriya, sovremennoe sostoyanie i perspektivy razvitiya [Requirements of aviation norms and methods of assessment of fire safety of aviation materials: history, current state and development perspectives] // Vestnik Voronezhskogo instituta GPS MChS Rossii, 2014. №3. S. 23–33.
4. Barbotko S.L., Volnyj O.S., Kirienko O.A., Lucenko A.N., Shurkova E.N. 1) Sopostavlenie metodov ocenki pozharnoj opasnosti polimernyh materialov v razlichnyh otraslyah transporta i promyshlennosti [Comparison of methods of assessment of fire danger of polymeric materials in the different industries of transport and the industry] // Vse materialy. Enciklopedicheskij spravochnik. 2015. №1. S. 2–9. 2) Sopostavlenie metodov ocenki pozharnoj opasnosti polimernyh materialov v razlichnyh otraslyah transporta i promyshlennosti [Comparison of methods of assessment of fire danger of polymeric materials in the different industries of transport and the industry] // Vse materialy. Enciklopedicheskij spravochnik. 2015. №2. S. 2–9.
5. Barbotko S.L. Pozharnaya opasnost, metody ocenki i trebovaniya k materialam dlya izgotovleniya vneshnego kontura aviacionnoj tehniki [Fire danger, assessment and requirement methods to materials for manufacturing of external circuit of aviation engineering] // Vestnik Voronezhskogo instituta GPS MChS Rossii, 2014. №4. S. 6–15.
6. Barbotko S.L., Kirienko O.A., Volnyj O.S., Lucenko A.N. Analiz pozharnoj opasnosti motogondol aviacionnyh dvigatelej i drugih pozharoopasnyh zon; ispolzuemye metody ognevyh ispytanij materialov i konstruktivnyh elementov na sootvetstvie trebovaniyam aviacionnyh norm [Analysis of fire danger of motor-gondolas of aircraft engines and other fire hazardous zones; used methods of fire tests of materials and constructive elements on compliance to requirements of aviation norms] // Problemy bezopasnosti poletov, 2017. №5. S. 3–24.
7. Powerplant Installation and Propulsion System Component Fire Protection Test Methods, Standards, and Criteria // Advisory Circular. 1990. No. 20-135. 18 p.
8. Certification Specifications and Acceptable Means of Compliance for Large Aeroplanes: CS-25, Amendment 15 / EASA. July 21, 2014. 921 p.
9. Standard Fire Apparatus and Procedure (For Flexible Hose Assemblies) // Powerplant Engineering Report No. 3A (revised) / U.S. Department of Transportation, Federal Aviation Administration, Flight Standard Service. Washington, 1978. 35 p.
10. Aircraft Materials Fire Test Handbook / U.S. Department of Transportation, Federal Aviation Administration, William J. Hughes Technical Center. New Jersey, 2000. No. DOT/FAA/AR-00/12. URL: http://www.fire.tc.faa.gov/handbook.stm (Available at: June 06, 2017).
11. Sokolov I.I., Raskutin A.E. Ugleplastiki i stekloplastiki novogo pokoleniya [Coalplastics and fibreglasses of new generation] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №4. St. 09. Available at: http://www.viam-works.ru (accessed: May, 18 2017).
12. Beider E.Ya., Petrova G.N., Izotova T.F., Barbotko S.L. Stekloplastiki na termoplastichnoj matrice [Glass reinforced plastics on the basis of thermoplastic matrix] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №7. St. 03. Available at: http://www.viam-works.ru (accessed: May, 18 2017).
13. Veshkin E.A. Osobennosti bezavtoklavnogo formovaniya nizkoporistykh PKM [Features of out-of-autoclave forming of poor-porous PCM] // Trudy VIAM elektron. nauch.-tekhnich. zhurn. 2016. №2. St. 07. Available at: http://www.viam-works.ru (accessed: May, 18 2017). DOI 10.1857/2307-6046-2016-0-2-7-7
14. Veshkin E.A., Postnov V.I., Abramov P.A. Puti povysheniya kachestva detalej iz PKM pri vakuumnom formovanii [Ways of improvement of quality of details from PCM at vacuum formation] // Izvestiya Samarskogo nauchnogo centra Rossijskoj akademii nauk. T. 14. №4 (3). 2012. S. 834–839.
15. Lukina N.F., Dementeva L.A., Kutsevich K.E. Kleevye prepregi na osnove tkanej Porcher – perspektivnye materialy dlya detalej i agregatov iz PKM [Adhesive prepregs based on tissue Porsher – perspective materials for parts and units out of polymeric composite materials] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №6. St. 10. Available at: http://www.viam-works.ru (accessed: May, 18 2017). DOI: 10.18577/2307-6046-2014-0-6-10-10.
16. Kurnosov A.O., Melnikov D.A., Sokolov I.I. Structural glass-reinforced plastics purposed for aviation industry // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №8. St. 08. Available at: http://viam-works.ru (accessed: May, 18 2017). DOI: 10.18577/2307-6046-2015-0-8-8-8.
17. Shurkova E.N., Volnyj O.S., Lucenko A.N., Barbotko S.L. Sravnitelnaya ocenka pozharobezopasnosti PKM dlya izgotovleniya konstruktivnyh elementov letatelnyh apparatov [Comparative assessment of fire safety of PCM for manufacturing of constructive elements of flight vehicles] // Pozharovzryvobezopasnost. 2014. №2. C. 20–27.
18. Shurkova E.N., Barbotko S.L., Dementeva L.A., Serezhenkov A.A. Sopostavlenie pozharobezopasnosti PKM na osnove kleevyh prepregov, ispolzuemyh dlya izgotovleniya konstrukcij vneshnego kontura aviacionnoj tehniki [Comparison of fire safety of PCM on the basis of the glue prepregs used for manufacturing of designs of external circuit of aviation engineering] // Klei. Germetiki. Tehnologii. 2013. №8. C. 13–17.
19. Barbotko S.L., Shurkova E.N. O pozharnoj bezopasnosti materialov, ispolzuemyh dlya izgotovleniya vneshnego kontura samoletov [About fire safety of the materials used for manufacturing of external circuit of airplanes] // Pozharovzryvobezopasnost. 2011. T. 20. №10. C. 19–24.
20. Barbotko S.L., Shurkova E.N., Volny O.S., Skrylyov N.S. Ocenka pozharnoj bezopasnosti polimernyh kompozicionnyh materialov dlya vneshnego kontura aviacionnoj tehniki [Evolution of polymer composite fire-safety for the outer contour of aeronautical engineering] // Aviacionnye materialy i tehnologii. 2013. №1. S. 56–59.
21. Mishurov K.S., Mishkin S.I. Vliyanie vneshnej sredy na svojstva ugleplastika VKU-39 [Environmental effect on properties of CFRP (Carbon Fiber Reinforced Plastic) VKU-39] // Trudy VIAM: elektron.-nauch. tehnich. zhurn. 2016. №12 (48). St. 08. Available at: http://www.viam-works.ru (accessed: May, 18 2017). DOI: 10.18577/2307-6046-2016-0-12-8-8.
22. Shurkova E.N., Volny O.S., Izotova T.F., Barbotko S.L. Issledovanie vozmozhnosti snizheniya teplovydeleniya pri gorenii kompozicionnogo materiala putem izmeneniya ego struktury [Research of possibility of decrease in heat release when burning composite material by change of its structure] // Aviacionnye materialy i tehnologii. 2012. №1. S. 27–30.
23. Kablov E.N. Kontrol kachestva materialov – garantiya bezopasnosti ekspluatacii aviacionnoj tehniki [Quality control of materials – security accreditation of operation of aviation engineering] // Aviacionnye materialy i tehnologii. 2001. №1. S. 3–8.
24. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period to 2030] // Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
25. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
26. Pavlov K.F., Romankov P.G., Noskov A.A. Primery i zadachi po kursu processov i apparatov himicheskoj tehnologii: ucheb. posobie dlya vuzov, 9-e izd. / pod red. P.G. Romankova [Examples and tasks of course of processes and devices of chemical technology: the manual for higher education institutions, the 9th ed. / ed. P.G. Romankov]. L.: Himiya, 1981. 560 s.
27. Krasnoshhekov E.A., Sukomel A.S. Zadachnik po teploperedache. 3-e izd. [The book of problems on heat transfer. 3rd ed.]. M.: Energiya, 1975. 280 s.
28. Dubrovkin N.F., Malanicheva V.G., Massur Yu.P., Fedorov E.P. Fiziko-himicheskie i ekspluatacionnye svojstva reaktivnyh topliv: spravochnik [Physical and chemical and operational properties of reactive fuels: directory]. M.: Himiya, 1985. S. 145–149.
29. Balajka B., Sikora K. Processy teploobmena v apparatah himicheskoj promyshlennosti / perevod G.M. Goldenberga; pod red. V.A. Grigoreva [Heat exchanging processes in offices of the chemical industry / trans. by G. M. Goldenberg; ed. V.A. Grigoriev]. M.: Mashgiz, 1962. S. 141–153.
30. Miheev M.A., Miheeva I.M. Osnovy teploperedachi [Heat transfer bases]. M.: Energiya, 1977. 344 s.