Articles
Discusses issues related to the development of technological process of production of casting blades of gas turbine engines from an alloy based on Nb–Si composite. Optimized extrusion parameters and the properties of high-refractory ceramic members consisting of yttrium oxide. Made of ceramic shell molds and investigated their basic characteristics. Held die-casting blades high temperature alloy based on Nb–Si directional solidification. Studied the nature of the interaction of the melt with the material and shape of the rod. Conclusions about efficiency of the developed technologies for producing ceramic cores and forms on the basis of yttrium oxide in the casting of blades from alloy on the basis of Nb–Si composite. The work is executed within the implementation of the complex scientific direction 9.1. «High-temperature single-crystal superalloys, including natural composites» («The strategic directions of development of materials and technologies of their processing for the period
2. Litye lopatki gazoturbinnyh dvigatelej: splavy, tehnologii, pokrytiya / pod obshh. red. E.N. Kablova. 2-e izd. [Cast blades of gas turbine engines: alloys, technologies, coverings / gen. ed. by E.N.Kablov. 2nd ed.]. M.: Nauka, 2006. 632 s.
3. Kablov E.N., Petrushin N.V., Svetlov I.L., Demonis I.M. Nikelevye litejnye zharoprochnye splavy novogo pokoleniya [Nickel foundry heat resisting alloys of new generation] // Aviacionnye materialy i tehnologii. 2012. №S. C. 36–52.
4. Kablov E.N., Bondarenko Yu.A., Echin A.B., Surova V.A. Razvitie processa napravlennoj kristallizacii lopatok GTD iz zharoprochnyh splavov s monokristallicheskoj i kompozicionnoj strukturoj [Development of process of the directed crystallization of blades of GTE from hot strength alloys with single-crystal and composition structure] // Aviacionnye materialy i tehnologii. 2012. №1. S. 3–8.
5. Bondarenko Yu.A., Bazyleva O.A., Echin A.B., Surova V.A., Narskij A.R. Vysokogradientnaya napravlennaya kristallizaciya detalej iz splava VKNA-1V [The high-gradient directed crystallization of details from alloy VKNA-1B] // Litejnoe proizvodstvo. 2012. №6. S. 12–16.
6. Bondarenko Yu.A., Echin A.B., Surova V.A., Narskij A.R. Vliyanie uslovij napravlennoj kristallizacii na strukturu detalej tipa lopatki GTD [Influence of conditions of the directed crystallization on structure of details like GTD blade] // Litejnoe proizvodstvo. 2012. №7. S. 14–16.
7. Echin A.B., Bondarenko Yu.A., Bityuckaya O.N., Narskij A.R. Vliyanie peremennogo temperaturnogo gradienta na dispersnost' struktury Re-soderzhashhego splava [Influence of variable temperature gradient on dispersion of structure of Re-containing alloy] // Litejnoe proizvodstvo. 2015. №10. S. 33–36.
8. Bondarenko Yu.A., Echin A.B., Surova V.A., Narskij A.R. O napravlennoj kristallizacii zharoprochnyh splavov s ispolzovaniem ohladitelya [About the directed crystallization of hot strength alloys with cooler use] // Litejnoe proizvodstvo. 2011. №5.
S. 36–39.
9. Kablov E.N., Tolorajya V.N. VIAM – osnovopolozhnik otechestvennoj tehnologii litya monokristallicheskih turbinnyh lopatok GTD i GTU [VIAM – the founder of domestic casting technology of single-crystal turbine blades of GTE and GTU] // Aviacionnye materialy i tehnologii. 2012. №S. S. 105–117.
10. Bondarenko Yu.A., Echin A.B., Surova V.A., Kolodyazhnyj M.Yu., Narskij A.R. Sovremennye issledovaniya v oblasti tehnologii vyplavki i napravlennoj kristallizacii, obespechivayushhie formirovanie estestvenno-kompozicionnoj struktury v vysokozharoprochnyh splavah na osnove niobij-kremniya dlya detalej goryachego trakta GTD [Modern research in the field of technology of melting and crystallization for the formation of the natural composite structure in a highly temperature-resistant alloys based on niobium-silicon for details of the hot path of gas turbine engines] // Novosti materialovedeniya. Nauka i tehnika: elektron. nauch.-tehnich. zhurn. 2015. №4. St. 01. Available at: http://www.maerialnews.ru (accessed: January 9, 2017).
11. Svetlov I.L., Kuzmina N.A., Nejman A.V. Mikrostruktura nikelevyh Ni/Ni3Al–NbC i niobievyh Nbтв.р–Nb5Si3 evtekticheskih kompozitov [Microstructure of nickel Ni/Ni3Al–NbC and niobic Nbтв.р–Nb5Si3 of eutectic composites] // Materialovedenie. 2015. №3. S. 50–56.
12. Timofeyeva O.B., Kolodochkina V.G., Shvanova N.F., Neiman A.V. Issledovanie mikrostruktury vysokotemperaturnogo estestvenno kompozicionnogo materiala na osnove niobija, uprochnennogo intermetallidami silicida niobiya [The microstructure analysis of niobium-based high-temperature natural composite material reinforced with niobium silicide intermetallics] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 60–64. DOI: 10.18577/2071-9140-2015-0-1-60-64.
13. Folomejkin Yu.I., Kablov E.N., Demonis I.M. Vysokoogneupornaya keramika sterzhnej i form dlya litya lopatok s napravlennoj i monokristallicheskoj strukturami [High-fire-resistant ceramics of rods and casting molds of blades with the directed and single-crystal structures] // Aviacionnaya promyshlennost. 2000. №2. S. 41–44.
14. Belov A.N., Semenov G.A. Termodinamika binarnyh tverdyh rastvorov oksidov cirkoniya, gafniya i ittriya po dannym vysokotemperaturnoj mass-spektrometrii [Thermodynamics of binary solid solutions of zirconium oxides, hafnium and yttrium according to high-temperature mass-spectrometry] // ZhFH. 1985. T. 59. №3. S. 589–592.
15. Kazenas E.K. Termodinamika ispareniya dvojnyh oksidov [Thermodynamics of evaporation of double oxides]. M.: Nauka, 2004. 551 s.
It is shown that impurity surface-active elements oxygen and sulfur contribute to the formation of misaligned (stray) grains and accelerate the diffusion at interfaces, growth of pores, cracks and coarsening of the hardening γ'-phase. Lanthanum is superior in refining capacity than the other rare-earth metals and magnesium, and the introduction of lanthanum addition allows to obtain ultrapure in the content of oxygen and sulfur alloy ZhS36, and to decrease misaligned grain defect formation. Segregating at interfaces, lanthanum replaces sulfur and decrease interface diffusion and mobility of interface dislocations. It is shown that lanthanum is a highly effective refining, microalloying and modifying addition that increase high temperature strength, cyclic strain life and heat resistance of ZhS36 single crystals. The work was performed with in the scope of complex scientific direction 10.1. realization: «The resourse saved technology of perspective cast and wrought supper alloy melting
2. Kablov D.E., Sidorov V.V., Min P.G. Povyshenie ekspluatacionnyh harakteristik monokristallov splava ZhS36-VI putem ego rafinirovaniya ot primesi sery // Rol' fundamental'nyh issledovanij pri realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda»: sb. dokl. III Vseros. nauch.-tehnich. konf. M.: VIAM, 2016. S. 13.
3. Sidorov V.V., Min P.G., Burcev V.T., Kablov D.E., Vadeev V.E. Kompyuternoe modelirovanie i eksperimentalnoe issledovanie reakcij rafinirovaniya v vakuume slozhnolegirovannyh renijsoderzhashhih nikelevyh rasplavov ot primesej sery i kremniya [Computer modeling and pilot study of reactions of refinement in vacuum complex-alloyed rhenium contain nickel melt from sulfur and silicon impurity] // Vestnik RFFI. 2015. №1 (85). S. 32–36.
4. Kablov E.N., Logunov A.V., Sidorov V.V. Obespechenie ultravysokoj chistoty metalla – garantiya kachestva litejnyh zharoprochnyh splavov [Ensuring ultrahigh purity of metal – quality assurance of foundry hot strength alloys] // Metally. 2000. №6. S. 40–46.
5. Kablov D.E., Sidorov V.V., Min P.G., Gerasimov V.V., Bondarenko Yu. A. Vliyanie primesej sery i fosfora na svojstva monokristallov zharoprochnogo splava ZhS36-VI i razrabotka effektivnyh sposobov ego rafinirovaniya [The sulfur and phosphorus influence on properties of single crystals GHS36-VI supperalloy and design of effective methods their refining] // Aviacionnye materialy i tehnologii. 2015. №3 (36). S. 3–9. DOI: 10.18577/2071-9140-2015-0-3-3-9.
6. Kablov D.E., Sidorov V.V., Min P.G., Puchkov Yu.A. Vliyanie lantana na kachestvo i ekspluatacionnye svojstva monokristallicheskogo zharoprochnogo nikelevogo splava ZhS36-VI [The lanthanum influence on quality and operational properties of single crystal nickel base ZhS36-VI superalloy] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №12. St. 02. Available at: http://www.viam-works.ru (accessed: February 2, 2016). DOI: 10.18577/2307-6046-2015-0-12-2-2.
7. Min P.G., Sidorov V.V., Kablov D.E., Vadeev V.E. Issledovanie sery i fosfora v litejnyh zharoprochnyh nikelevyh splavah i razrabotka effektivnyh sposobov ih rafinirovaniya [Sulfur and phosphorus research in cast heat resisting nickel alloys and development of effective ways of their refinement] // Tehnologiya metallov. 2015. №12. S. 2–9.
8. Burcev V.G., Sidorov V.V., Rigin V.E. Issledovanie poverhnostnogo natyazheniya i plotnosti rasplavov nikelya, soderzhashhego primesi sery, fosfora i azota [Research of surface tension and density rasplavov the nickel containing impurity of sulfur, phosphorus and nitrogen] // Fizika i himiya obrabotki materialov. 2013. №1. S. 52–56.
9. McLean D. Grain Boundaries in Metals. Oxford University Press, 1957. P. 347.
10. Kablov D.E., Sidorov V.V., Puchkov Yu.A. Osobennosti diffuzionnogo povedeniya primesej i rafiniruyushhih dobavok v nikele i monokristallicheskih zharoprochnyh splavah [Diffusion behavior features of impurities and microalloying additives in nickel and single crystal superalloys] // Aviacionnye materialy i tehnologii. 2016. №1 (40). S. 24–31. DOI: 10.18577/2071-9140-2016-0-1-24-31.
11. Kablov D.E., Sidorov V.V., Budinovskij S.A., Min P.G. Vliyanie primesi sery na zharostojkost monokristallov zharoprochnogo splava ZhS36-VI s zashhitnym pokrytiem [The influence of sulfur impurity on heat resistance of single crystals of ZhS36-VI alloy with protective coating] // Aviacionnye materialy i tehnologii. 2016. №1 (40). S. 20–23. DOI: 10.18577/2071-9140-2016-0-1-20-23.
12. Kablov D.E., Belyaev M.S., Sidorov V.V., Min P.G. Vliyanie primesej sery i fosfora na malociklovuyu ustalost monokristallov zharoprochnogo splava ZhS36-VI [The influence of sulfur and phosphorus impurities on low cycle fatigue of single crystals of ZhS36-VI alloy] // Aviacionnye materialy i tehnologii. 2015. №4 (37). S. 25–28. DOI: 10.18577/2071-9140-2015-0-4-25-28.
13. Sidorov V.V., Min P.G. Rafinirovanie slozhnolegirovannogo nikelevogo rasplava ot primesi sery pri plavke v vakuumnoj indukcionnoj pechi. Chast 1 [Refinement complex-alloyed nickel melt from sulfur impurity when melting in the vacuum induction furnace. Part 1] // Elektrometallurgiya. 2014. №3. S. 18–23.
14. Sidorov V.V., Min P.G. Rafinirovanie slozhnolegirovannogo nikelevogo rasplava ot primesi sery pri plavke v vakuumnoj indukcionnoj pechi. Chast 2 [Refinement complex-alloyed nickel melt from sulfur impurity when melting in the vacuum induction furnace. Part 2] // Elektrometallurgiya. 2014. №5. S. 26–30.
15. Sidorov V.V., Min P.G., Folomejkin Yu.I., Vadeev V.E. Vliyanie skorosti fil'tracii slozhnolegirovannogo nikelevogo rasplava cherez penokeramicheskij filtr na soderzhanie primesi sery v metalle [Influence of speed of filtering complex-alloyed nickel melt via the foamceramics filter on the content of impurity of sulfur in metal] // Elektrometallurgiya. 2015. №5. S. 12–15.
16. Sidorov V.V., Rigin V.E., Min P.G., Folomejkin Yu.I. Issledovanie processov rafinirovaniya v vakuume slozhnolegirovannyh nikelevyh rasplavov ot primesi sery [Research of refining processes in vacuum complex-alloyed nickel melt from sulfur impurity] // Metally. 2015. №6. S. 57–63.
17. Smirnov L.A., Rovnushkin V.A., Oryshhenko A.S., Kalinin G.Yu., Milyuc V.G. Modificirovanie stali i splavov redkozemelnymi elementami. Soobshhenie 1 [Modifying of steel and alloys rare earth elements. Message 1] // Metallurg. 2015. №11. S. 57–63.
18. Kablov D.E., Simonov V.N., Alekseeva M.S. Issledovanie stroeniya fil'tra i osobennostej filtracii primesej poristoj keramikoj iz oksida alyuminiya Al2O3 [Research of structure of the filter and features of impurity filtering by porous ceramics from Al2O3 aluminum oxide] // Aviacionnye materialy i tehnologii. 2016. №4 (45). S. 47–53. DOI: 10.18577/2071-9140-2016-0-4-47-53.
19. Goryunov A.V., Sidorov V.V., Rigin V.E., Zajcev V.E. Formirovanie nanostrukturirovannogo sostoyaniya v litejnom zharoprochnom splave VZhM4-VI pri mikrolegirovanii ego lantanom [Creation of nanostructure state in cast supperalloy due to microalloying with lanthanum] // Aviacionnye materialy i tehnologii. 2013. №3. S. 39–43.
20. Wang S., Nates R., Pasang T., Ramesany M. Modelling of gas tungsten arc welding under Maragony convection // Universal Journal of Mechanical Engineering. 2015. Vol. 3 (5). P. 185–201.
21. Kuang-Di Xu, Zhong-Ming Ren, Chuan-Jun Li. Progress in application of rare metals in superalloys // Rare Met. 2014. Vol. 33 (2). P. 111–126.
22. Seah M.P. Grain boundary segregation // Journal of Physics F: Metal Physics. 1980. Vol. 10. P. 1043–1064. DOI:10.1088/0305-4608/10/6/006.
23. Kaptay G. Partial Tension of components of a solution // Langmuir. 2015. Vol. 31. P. 5796–5804. DOI: 10.1021/acs.langmuir.5b00217.
24. Bokshtejn B., Epishin A., Esin V. i dr. Rost i zalechivanie por v monokristallah zharoprochnyh splavov na nikelevoj osnove [Growth and curing of time in monocrystals of hot strength alloys on nickel basis] // Zhurnal funkcional'nyh materialov. 2007. T. 1. №5. S. 162–169.
The silicon reduction from a ceramic mold on account of melt interaction in directional solidification of ZhS32-VI and VZhM5-VI single-crystal superalloys for gas turbine blades was studied. It is proved that saturation with silicon took place for a reason of interaction of carbon with free silicon oxide included in the composition of the ceramic mold. It is founded that saturation with silicon occurs of non-carbon single-crystal alloys 4 times slower than carbon-containing alloys. The possibility of form refractory compounds with sulfur and yttrium which remove from melt by filtration with different speed was confirmed. But low efficiency of this method waw founded.
2. Tigrova G.D., Korkka S.I., Grebcova T.M. Vliyanie kremniya na fazovyj sostav splavov na nikelevoj osnove [Influence of silicon on phase composition of nickel-based alloys] // MiTOM. 1980. №4. S. 38–41.
3. Sidorov V.V., Morozova G.I., Petrushin N.V. i dr. Fazovyj sostav i termostabilnost litejnogo zharoprochnogo nikelevogo splava s kremniem [Phase structure and thermostability of cast heat resisting nickel alloy with silicon] // Metally. 1990. №1. S. 94–98.
4. Sidorov V.V., Rigin V.E., Min P.G., Folomejkin Yu.I., Timofeeva O.B., Filonova E.V., Ishodzhanova I.V. Vliyanie primesej na strukturu i svojstva vysokozharoprochnyh litejnyh splavov i razrabotka effektivnyh metodov ustraneniya ih otricatelnogo vliyaniya [Influence of impurity on structure and property of high-heat resisting cast alloys and development of effective methods of elimination of their negative influence] // Novosti materialovedeniya. Nauka i tehnika: elektron. nauch.-tehnich. zhurn. 2014. №2. St. 03. Available at: http://www.materialsnews.ru (accessed: March 07, 2017).
5. Sidorov V.V., Rigin V.E., Min P.G., Folomejkin Yu.I. Vliyanie fosfora i kremniya na strukturu i svojstva vysokozharoprochnyh litejnyh splavov i razrabotka effektivnyh metodov ustraneniya ih otricatelnogo vliyaniya [Influence of phosphorus and silicon on structure and properties of high-heat resisting cast alloys and development of effective methods of elimination of their negative influence] // MiTOM. 2015. №6 (720). S. 55–59.
6. Sidorov V.V., Rigin V.E., Min P.G., Folomeikin Yu.I. Effect of phosphorus and silicon on structure and properties of highly refractory cast alloys and development of effective methods for eliminating their unfavorable effect // Metal Science and Heat Treatment. 2015. Vol. 57. No. 5–6. P. 364–368.
7. Sidorov V.V., Min P.G., Burcev V.T., Kablov D.E., Vadeev V.E. Komp'yuternoe modelirovanie i eksperimentalnoe issledovanie reakcij rafinirovaniya v vakuume slozhnolegirovannyh renijsoderzhashhih nikelevyh rasplavov ot primesej sery i kremniya [Computer modeling and pilot study of reactions of refinement in vacuum complex-alloyed rhenium containing nickel melt from sulfur and silicon impurity] // Vestnik RFFI. 2015. №1 (85). S. 32–36.
8. Sidorov V.V., Min P.G. Rafinirovanie slozhnolegirovannogo nikelevogo rasplava ot primesi sery pri plavke v vakuumnoj indukcionnoj pechi. Chast 1 [Refinement complex-alloyed nickel melt from sulfur impurity when melting in the vacuum induction furnace. Part 1] // Elektrometallurgiya. 2014. №3. S. 18–23.
9. Sidorov V.V., Min P.G. Rafinirovanie slozhnolegirovannogo nikelevogo rasplava ot primesi sery pri plavke v vakuumnoj indukcionnoj pechi. Chast 2 [Refinement complex-alloyed nickel melt from sulfur impurity when melting in the vacuum induction furnace. Part 2] // Elektrometallurgiya. 2014. №5. S. 26–30.
10. Sidorov V.V., Min P.G., Folomejkin Yu.I., Vadeev V.E. Vliyanie skorosti filtracii slozhnolegirovannogo nikelevogo rasplava cherez penokeramicheskij filtr na soderzhanie primesi sery v metalle [Influence of speed of filtering complex-alloyed nickel melt via the foamceramic filter on the content of impurity of sulfur in metal] // Elektrometallurgiya. 2015. №5. S. 12–15.
11. Sidorov V.V., Rigin V.E., Min P.G., Folomejkin Yu.I. Issledovanie processov rafinirovaniya v vakuume slozhnolegirovannyh nikelevyh rasplavov ot primesi sery [Research of refining processes in vacuum complex-alloyed nickel melt from sulfur impurity] // Metally. 2015. №6. S. 57–63.
12. Min P.G., Sidorov V.V., Kablov D.E., Rigin V.E., Vadeev V.E. Issledovanie sery i fosfora v litejnyh zharoprochnyh nikelevyh splavah i razrabotka effektivnyh sposobov ih rafinirovaniya [Sulfur and phosphorus research in cast heat resisting nickel alloys and development of effective ways of their refinement] // Tehnologiya metallov. 2015. №12. S. 2–9.
13. Min P.G., Sidorov V.V. Opyt pererabotki litejnyh othodov splava ZhS32-VI na nauchno-proizvodstvennom komplekse VIAM po izgotovleniyu lityh prutkovyh (shihtovyh) zagotovok [The experience of GS32-VI alloy scrap recycling at the VIAM scientific and production complex for cast bars production] // Aviacionnye materialy i tehnologii. 2013. №4. S. 20–25.
14. Kablov E.N., Ospennikova O.G., Sidorov V.V., Rigin V.E., Kablov D.E. Osobennosti tehnologii vyplavki sovremennyh litejnyh vysokozharoprochnyh nikelevyh splavov [Features of smelting technology of modern cast high-heat resisting nickel alloys] // Vestnik MGTU im. N.E. Baumana. Ser.: Mashinostroenie. 2011. №SP. C. 68–78.
15. Sidorov V.V., Rigin V.E., Goryunov A.V., Min P.G., Kablov D.E. Poluchenie Re–Ru soderzhashhego splava s ispolzovaniem nekondicionnyh othodov [Receiving Re–Ru of containing alloy with use of unconditioned waste] // Metallurgiya mashinostroeniya. 2012. №3. S.15–17.
16. Sidorov V.V., Rigin V.E., Goryunov A.V., Min P.G. Resursosberegayushhaya tehnologiya pererabotki nekondicionnyh othodov litejnyh zharoprochnyh splavov [Resource-saving refining technology of unconditioned waste of foundry hot strength alloys] // Metallurg. №5. 2014. S. 35–39.
17. Kablov E.N., Sidorov V.V., Kablov D.E., Rigin V.E., Goryunov A.V. Sovremennye tehnologii polucheniya prutkovyh zagotovok iz litejnyh zharoprochnyh splavov novogo pokoleniya [Modern technologies of receiving the bar stock preparations from foundry heat resisting alloys of new generation] // Aviacionnye materialy i tehnologii. 2012. №S. S. 97–105.
18. Sidorov V.V., Rigin V.E., Goryunov A.V., Min P.G. Opyt pererabotki v usloviyah FGUP «VIAM» litejnyh othodov zharoprochnyh splavov, obrazuyushhihsya na motorostroitelnyh i remontnyh zavodah [Experience of processing in the conditions of FSUE «VIAM» of foundry waste of the hot strength alloys which are forming at engine-building and repair plants] // Metallurg. 2014. №1. S. 86–90.
19. Sidorov V.V., Rigin V.E., Gorjunov A.V., Min P.G. Innovatsionnaya tehnologiya proizvodstva zharoprochnogo splava ZhS32-VI s uchetom pererabotki vseh vidov othodov v usloviyah sertificirovannogo serijnogo proizvodstva FGUP «VIAM» [The innovation technology of high temperature GS32-VI alloy production considering the recycling of all scrap appearance a certificated quantity production of FGUP «VIAM»] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №6. St. 01. Available at: http://www.viam-works.ru (accessed: March 07, 2017). DOI: 10.18577/2307-6046-2014-0-6-1-1.
20. Min P.G., Goryunov A.V., Vadeev V.E. Sovremennye zharoprochnye nikelevye splavy i effektivnye resursosberegayushhie tehnologii ih izgotovleniya [Modern heat resisting nickel alloys and effective resource-saving technologies of their manufacturing] // Tehnologiya metallov. 2014. №8. S. 12–23.
21. Kablov E.N., Sidorov V.V., Kablov D.E., Min P.G., Rigin V.E. Resursosberegayushhie tehnologii vyplavki perspektivnyh litejnyh i deformiruemyh superzharoprochnyh splavov s uchetom pererabotki vseh vidov othodov [Resource-saving smelting technologies of perspective cast and deformable superhot strength alloys taking into account processing of all types of waste] // Elektrometallurgiya. 2016. №9. S. 30–41.
22. Sidorov V.V., Rigin V.E., Goryunov A.V., Min P.G. Processing Superalloy Foundry Waste Generated at Engine Building and Repair Plants: Experience of the All-Russia Research Institute of Aviation Materials // Metallurgist. 2014. Vol. 58. No. 1–2. P. 69–74.
23. Sidorov V.V., Rigin V.E., Goryunov A.V., Min P.G. Resources-saving technology for recycling off-grade waste products cast from superalloys // Metallurgist. 2014. Vol. 58. No. 5–6. P. 360–366.
24. Min P.G., Goryunov A.V., Vadeev V.E. Modern Nickel Superalloys and the Efficient Resource-Saving Technologies of Their Production // Russian Metallurgy (Metally). 2015. No. 13. P. 1060–1068.
25. Kablov E.N., Sidorov V.V., Kablov D.E., Min P.G., Rigin V.E. Resource-Saving Technologies of Making Advanced Cast and Deformable Superalloys with Allowance for Processing All Types of Wastes // Russian Metallurgy (Metally). 2016. No. 12. P. 1187–1195.
26. Ospennikova O.G., Min P.G., Vadeev V.E., Kalitsev V.A., Kramer V.V. Resursosberegayushhaya tehnologiya pererabotki nekondicionnyh othodov deformiruemogo splava VZh175 dlya diskov GTD [Resource-saving processing technology of off-grade scrap of wrought superalloy VG175 for GTE disks production] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №2. St. 01. Available at: http://www.viam-works.ru (accessed: March 07, 2017). DOI: 10.18577/2307-6046-2016-0-2-1-1.
27. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
28. Yakimovich P.V., Alekseev A.V., Min P.G. Opredelenie nizkih soderzhanij fosfora v zharoprochnyh nikelevyh splavah metodom ISP-MS [Determination of low phosphorus content in heat-resistant nickel alloys by ICP-MS method] // Trudy VIAM : elektron. nauch.-tehnich. zhurn. 2014. №10. St. 02. Available at: http://viam-works.ru (accessed: March 07, 2017). DOI: 10.18577/2307-6046-2014-0-10-2-2.
29. Mehanik E.A., Min P.G., Gundobin N.V., Rastegaeva G.Yu. Opredelenie massovoj doli sery v zharoprochnyh nikelevyh splavah i stalyah v diapazone koncentracij ot 0,0001 do 0,0009% (po masse) [Determination of sulfur mass fraction in heat-resistant nickel alloy and steels within the concentration range from 0,0001 to 0,0009% wt.] // Trudy VIAM : elektron. nauch.-tehnich. zhurn. 2014. №9. St. 12. Available at: http://viam-works.ru (accessed: March 07, 2017). DOI: 10.18577/2307-6046-2014-0-9-12-12.
30. Lyakishev N.P., Alisova S.P., Bannyh O.A. i dr. Diagrammy sostoyaniya dvojnyh metallicheskih sistem: spravochnik [Charts of condition of double metal systems: directory]. M.: Mashinostroenie, 2000. T. III, kn. 1. 837 s.
A selection of deactivator elements for refining to remove a sulfur and silicon impurity and eliminating unfavorable effect of phosphorus in single-crystal superalloys during vacuum induction melting was made. High chemical affinity for impurities, cost, spreading in nature and physicochemical characteristics were the criteria of selection. The highest efficiency of RAE for forming refractory compounds was shown: lanthanum for phosphorus, yttrium for silicon, lanthanum and yttrium for sulfur.
The efficiency of single-crystal superalloys melts refining for forming refractory compounds with sulfur, phosphorus, silicon and RAE were tested experimentally. It is founded that the degree of sulfur removal was 89% maximally. The reducing of silicon contain have low efficiency (12%). In contrast to sulfur and silicon the phosphorus contain is not reducing, but his unfavorable effect to high temperature strength of single-crystals is eliminating because high melting temperature of lanthanum phosphide.
2. Kablov E.N., Ospennikova O.G., Petrushin N.V. Novyj monokristallicheskij intermetallidnyj (na osnove γʹ-fazy) zharoprochnyj splav dlya lopatok GTD [New single crystal heat-resistant intermetallic γʹ-based alloy for GTE blades] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 34–40. DOI: 10.18577/2071-9140-2015-0-1-34-40.
3. Holt R.T., Wallace W. Impurities and Trace Elements in Nickel-Base Superalloys // Intern. metals reviews. 1976. Vol. 21. No. 1. P. 1–24.
4. Min P.G., Sidorov V.V., Budinovskij S.A., Vadeev V.E. Vliyanie sery na zharostojkost monokristallov zharoprochnogo nikelevogo splava sistemy Ni–Al–Co–Re–Ta–Mo–W–Ru–Cr [Influence of sulfur on the heat resistance of monocrystals of heat resisting nickel alloy of Ni–Al–Co–Re–Ta–Mo–W–Ru–Cr system] // Materialovedenie. 2016. №7. S 9–12.
5. Kablov D.E., Sidorov V.V., Budinovskij S.A., Min P.G. Vliyanie primesi sery na zharostojkost monokristallov zharoprochnogo splava ZhS36-VI s zashhitnym pokrytiem [The influence of sulfur impurity on heat resistance of single crystals of ZhS36-VI alloy with protective coating] // Aviacionnye materialy i tehnologii. 2016. №1 (40). S. 20–23. DOI: 10.18577/2071-9140-2016-0-1-20-23.
6. Min P.G., Sidorov V.V., Budinovskiy S.A., Vadeev V.E. Influence of Sulfur on Heat Resistance of Single Crystals of Heat-Resistant Nickel Alloy of Ni–Al–Co–Re–Ta–Mo–W–Ru–Cr System // Inorganic Materials: Applied Research. 2017. Vol. 8. No. 1. P. 90–93.
7. Kablov D.E., Belyaev M.S., Sidorov V.V., Min P.G. Vliyanie primesej sery i fosfora na malociklovuyu ustalost' monokristallov zharoprochnogo splava ZhS36-VI [The influence of sulfur and phosphorus impurities on low cycle fatigue of GhS36-VI alloy single crystals] // Aviacionnye materialy i tehnologii. 2015. №4 (37). S. 25–28. DOI: 10.18577/2071-9140-2015-0-4-25-28.
8. Chao Yuan, Fengshi Yin. Effect of Phosphorus on Microstructure and High Temperature Properties of a cast Ni-base Superalloy // J. mater Sci. Technol. 2002. Vol. 18. No. 6. P. 555–557.
9. Yaoxiao Zhu, John Radavich et al. Development and Long-Time Structural Stability of a Low Segregation Hf Free Superalloys – DZ 125L // Superalloys-2000. 2000. P. 329–339.
10. Sidorov V.V., Rigin V.E., Timofeeva O.B., Min P.G. Vliyanie kremniya i fosfora na zharoprochnye svojstva i strukturno-fazovye prevrashheniya v monokristallah iz vysokozharoprochnogo splava VZhM4-VI [An effect of silicon and phosphorus on high temperature properties and structure-phase transformations of single crystals of VGM4-VI superalloy] //Aviacionnye materialy i tehnologii. 2013. №3. S. 32–38.
11. Sidorov V.V., Morozova G.I., Petrushin N.V. i dr. Fazovyj sostav i termostabilnost litejnogo zharoprochnogo nikelevogo splava s kremniem [Phase structure and thermostability of cast heat resisting nickel alloy with silicon] // Metally. 1990. №1. S. 94–98.
12. Tigrova G.D., Korkka S.I., Grebcova T.M. Vliyanie kremniya na fazovyj sostav splavov na nikelevoj osnove [Influence of silicon on phase composition of nickel-based alloys] // MiTOM. 1980. №4. S. 38–41.
13. Kablov D.E., Sidorov V.V., Min P.G. Vliyanie primesi azota na strukturu monokristallov zharoprochnogo nikelevogo splava ZhS30-VI i razrabotka effektivnyh sposobov ego rafinirovaniya [Influence of impurity of nitrogen on structure of monocrystals of heat resisting ZhS30-VI nickel alloy and development of effective ways of its refinement] //Aviacionnye materialy i tehnologii. 2012. №2. S. 32–36.
14. Sidorov V.V., Min P.G. Rafinirovanie slozhnolegirovannogo nikelevogo rasplava ot primesi sery pri plavke v vakuumnoj indukcionnoj pechi. Chast 1 [Refinement complex-alloyed nickel melt from sulfur impurity when melting in the vacuum induction furnace. Part 1] // Elektrometallurgiya. 2014. №3. S. 18–23.
15. Min P.G., Vadeev V.E., Kalicev V.A., Kramer V.V. Rafinirovanie nekondicionnyh othodov deformiruemyh nikelevyh splavov v vakuumnoj indukcionnoj pechi [Refinement of unconditioned waste of deformable nickel alloys in the vacuum induction furnace] // Tehnologiya metallov. 2015. №4. S. 8–13.
16. Ospennikova O.G., Min P.G., Vadeev V.E., Kalitsev V.A., Kramer V.V. Resursosberegayushhaya tehnologiya pererabotki nekondicionnyh othodov deformiruemogo splava VZh175 dlya diskov GTD [Resource-saving processing technology of off-grade scrap of wrought superalloy VG175 for GTE disks production] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №2. St. 01. Available at: http://www.viam-works.ru (accessed: March 23, 2017). DOI: 10.18577/2307-6046-2016-0-2-1-1.
17. Min P.G., Vadeev V.E., Kalicev V.A., Kramer V.V. Tehnologiya polucheniya deformiruemogo splava VZh175 dlya diskov GTD iz kondicionnyh othodov [Technology of receiving deformable alloy VZh175 for disks GTE from konditsionny waste] // Metallurg. 2015. №9. S. 76–80.
18. Min P.G., Sidorov V.V. Opyt pererabotki litejnyh othodov splava ZhS32-VI na nauchno-proizvodstvennom komplekse VIAM po izgotovleniyu lityh prutkovyh (shihtovyh) zagotovok [The experience of GS32-VI alloy scrap recycling at the VIAM scientific and production complex for cast bars production] // Aviacionnye materialy i tehnologii. 2013. №4. S. 20–25.
19. Min P.G., Goryunov A.V., Vadeev V.E. Sovremennye zharoprochnye nikelevye splavy i effektivnye resursosberegayushhie tehnologii ih izgotovleniya [Modern heat resisting nickel alloys and effective resource-saving technologies of their manufacturing] // Tehnologiya metallov. 2014. №8. S. 12–23.
20. Kablov E.N., Logunov A.V., Sidorov V.V. Mikrolegirovanie RZM – sovremennaya tehnologiya povysheniya svojstv litejnyh zharoprochnyh nikelevyh splavov [RZM microalloying – modern technology of increase of properties of cast heat resisting nickel alloys] // Perspektivnye materialy. 2001. №1. S. 23–34.
21. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
22. Yakimovich P.V., Alekseev A.V., Min P.G. Opredelenie nizkih soderzhanij fosfora v zharoprochnyh nikelevyh splavah metodom ISP-MS [Determination of low phosphorus content in heat-resistant nickel alloys by ICP-MS method] // Trudy VIAM : elektron. nauch.-tehnich. zhurn. 2014. №10. St. 02. Available at: http://viam-works.ru (accessed: March 23, 2017). DOI: 10.18577/2307-6046-2014-0-10-2-2.
23. Mehanik E.A., Min P.G., Gundobin N.V., Rastegaeva G.Yu. Opredelenie massovoj doli sery v zharoprochnyh nikelevyh splavah i stalyah v diapazone koncentracij ot 0,0001 do 0,0009% (po masse) [Determination of sulfur mass fraction in heat-resistant nickel alloy and steels within the concentration range from 0,0001 to 0,0009% wt.] // Trudy VIAM : elektron. nauch.-tehnich. zhurn. 2014. №9. St. 12. Available at: http://viam-works.ru (accessed: March 23, 2017). DOI: 10.18577/2307-6046-2014-0-9-12-12.
24. CRS Handbook of Chemistry and Phisics, 87th Edition / Ed. D.R. Lide. Taylor & Francis: CRC Press, 2007. P. 977.
25. Lyakishev N.P., Alisova S.P., Bannyh O.A. i dr. Diagrammy sostoyaniya dvojnyh metallicheskih sistem: spravochnik [Charts of condition of double metal systems: directory]. M.: Mashinostroenie, 2000. T. III, kn. 1. 837 s.
26. Samsonov G.V., Vinickij I.M. Tugoplavkie soedineniya [High-melting connections]. M: Metallurgiya, 1976. 240 s.
27. Gordienko S.P., Fenochka B.V., Viksman G.Sh. Termodinamika soedinenij lantanoidov: spravochnik [Thermodynamics of compounds of lanthanoids: directory]. Kiev: Naukova dumka, 1979. 376 s.
28. Filippov K.S., Burcev V.T., Sidorov V.V., Rigin V.E. Issledovanie poverhnostnogo natyazheniya i plotnosti rasplava nikelya, soderzhashhego primesi sery, fosfora i azota [Research of surface tension and density rasplava the nickel containing impurity of sulfur, phosphorus and nitrogen] // Fizika i himiya obrabotki materialov. 2013. №1. S. 52–56.
In this paper we propose a new approach to the preparation of the higly filled hibrid polyner composites, application of the modified carbon nanotubes are produced from the binder dispersion, wherein the dispersion used volatile solvent (acetone). The particles of the dispersed phase contains native CNTs, or CNTs modified functional groups, oxide resin, hardener. Cases of unauthorized use of CNTs in the dispersion includes a modifier. As the modifier used polymers ensure the covalent functionalization of nanotubes and regulatory interactions in the system CNTs/CNTs and CNTs/matrix.
2. Anisimov A.V., Strzhelinskij O.A. Zarubezhnyj opyt resheniya problemy molniestojkosti aviacionnoj tehniki [Foreign experience of solution of the problem of molniyestoykost of aviation engineering] // Tehnologii EMS. 2010. №1. S. 89–99.
3. Gulyaev I.N., Gunyaeva A.G., Raskutin A.E., Fedotov M.Yu., Sorokin K.V. Molniezashhita i vstroennyj kontrol dlya konstrukcij iz PKM [Lightning protection and the built-in control for designs from PCM] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №4. St. 10. Available at: http://www.viam-works.ru (accessed: December 10, 2016).
4. Burutin A.G., Komyagin S.I., Osolovskij V.S. Molniezashhita: elektromagnitnaya stojkost i molniestojkost voennyh obektov [Lightning protection: electromagnetic firmness and lightning stability of military facilities] // Tehnologiya EMS. 2010. №1. C. 99–107.
5. Gunyaev G.M., Chursova L.V., Komarova O.A., Gunyaeva A.G. Konstrukcionnye ugleplastiki, modificirovannye nanochasticami [Constructional carbon the plastics modified by nanoparticles] // Aviacionnye materialy i tehnologii. 2012. №S. S. 277–286.
6. Yukhanov A.Y., Andrianov V.I., Ostrovsky A.G., Los V.F. Peculiarities of video pulse Scanning Antenna Array Desing // Ultra wide band and Ultra short Impulse Signals. Sevastopol, Ukraine. September 18–22, 2006. P. 85–89.
7. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
8. Kablov E.N. Konstrukcionnye i funkcionalnye materialy – osnova ekonomicheskogo i nauchno-tehnicheskogo razvitiya Rossii [Constructional and functional materials – basis of economic and scientific and technical development of Russia] // Voprosy materialovedeniya. 2006. №1. S. 64–67.
9. Lubineau G., Rahaman A. A review of strategies for improving the degradation properties of laminated continuous-fiber/epoxy composites with carbon-based nanoreinforcements // CARBON. 2012. Vol. 50. P. 2377–2395.
10. Solovyanchik L.V., Kondrashov S.V., Yurkov G.Yu., Fionov A.S., Buznik V.M. Vliyanie processov samoorganizacii uglerodnyh nanotrubok na svojstva gibridnyh polimernyh kompozicionnyh materialov [Influence of processes of self-organization of carbon nanotubes on properties of hybrid polymeric composite materials] // Rol fundamentalnyh issledovanij pri realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda»: sb. dokl. II Vseros. nauch.-tehnich. konf. M.: VIAM, 2015. S. 17.
11. Kondrashov S.V., Shashkeev K.A., Popkov O.V., Solovyanchik L.V. Perspektivnye tehnologii polucheniya funkcionalnyh materialov konstrukcionnogo naznacheniya na osnove nanokompozitov s UNT (obzor) [Prospective producing methods for functional structural materials based on CNT-filled nanocomposites (review)] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №3. St. 07. Available at: http://www.viam-works.ru (accessed: December 10, 2016). DOI: 10.18577/2307-6046-2016-0-3-7-7.
12. Kondrashov S.V., Gunyaeva A.G., Shashkeev K.A., Barinov D.Ya., Soldatov M.A., Shevchenko V.G., Muzafarov A.M. Elektroprovodyashhie gibridnye polimernye kompozicionnye materialy na osnove nekovalentno funkcionalizirovannyh uglerodnyh nanotrubok [Electrically-conductive hybrid polymer composite materials on the basis of noncovalent functional carbon nanotubes] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №2. St. 10. Available at: http://www.viam-works.ru (accessed: December 10, 2016). DOI: 10.18577/2307-6046-2016-0-2-10-10.
13. Chakravarthi D.K., Khabashesku V.N., Vaidyanathan R. еt al. Carbon Fiber–Bismaleimide Composites Filled with Nickel-Coated Single-Walled Carbon Nanotubes for Lightning-Strike Protection // Adv. Funct. Mater. 2011. Vol. 21. P. 2527–2533.
14. Popkov O.V., Yurkov G.Yu., Fionov A.S. Stabilization of nanoparticles on the surface of detonation nanodiamond // Physics, chemistry and application of nanostructures Singapore: World Scientific, 2009. P. 369–372.
15. Fionov A.S., Yurkov G.Yu., Kolesov V.V. i dr. Kompozicionnyj material na osnove zhelezosoderzhashhih nanochastic dlya primeneniya v zadachah elektromagnitnoj sovmestimosti [Composite material on the basis of ferriferous nanoparticles for application in problems of electromagnetic compatibility] // Radiotehnika i elektronika. 2012. T. 57. №5. S. 597–608.
16. Yurkov G.Yu., Fionov A.S., Koksharov Yu.A., Kolesov V.V., Gubin S.P. Elektrofizicheskie i magnitnye svojstva nanomaterialov, soderzhashhih nanochasticy zheleza i kobalta [Electrophysical and magnetic properties of the nanomaterials containing nanoparticles of iron and cobalt] // Neorganicheskie materialy. 2007. T. 43. №8. C. 936–947.
17. Fionov A.S., Yurkov G.Yu., Kolesov V.V., Taratanov N.A., Petrova N.G. Poglotiteli elektromagnitnyh voln na osnove zhelezo- i kobaltsoderzhashhih nanochastic [Absorbers of electromagnetic waves on the basis of iron- and cobalt containing nanoparticles] // Perspektivnye materialy. 2008. №6 (1). S. 192–196.
18. Costa E.F.R., Skordos A.A., Partridge I.K., Rezai A. RTM processing and electrical performance of carbon nanotube modified epoxy/fibre // Composites. Part A: Applied Science and Manufacturing. 2012. Vol. 43. Issue 4. P. 593–602..
19. Garcia E.J., Wardle B.L., Hart A.J., Yamamoto N. Fabrication and multifunctional properties of a hybrid laminate with aligned carbon nanotubes grown In Situ // Composites Science and Technology. 2008. Vol. 68. P. 2034–2041.
20. Singh B.P., Bharadwaj P., Choudhary V., Mathur R.B. Enhanced microwave shielding and mechanical properties of multiwall carbon nanotubes anchored carbon fiber felt reinforced epoxy multiscale composites // Appl. Nanosci. 2014. Vol. 4. No. 4. Р. 421–428.
21. Bekyarova E., Thostenson E.T., Kim A.Yu.H. еt al. Multiscale Carbon Nanotube-Carbon Fiber Reinforcement for Advanced Epoxy Composites // Langmuir. 2007. Vol. 23. P. 3970–3974.
22. Garcia E.J., Saito D.S., Megalini L. еt al. Fabrication and Multifunctional Properties of High Volume Fraction Aligned Carbon Nanotube Thermoset Composites // Journal of Nano Systems &Technology. 2009. Vol. 1. No. 1. P. 1–11.
23. Cheng Q., Wang J., Jiang K., Li Q., Fan S. Fabrication and properties of aligned multiwalled carbon nanotube-reinforced epoxy composites // J. Mater. Res. 2008. Vol. 23. No. 11. P. 2975–2983.
24. Wang X., Yong Z.Z., Li Q.W. еt al. Ultrastrong, Stiff and Multifunctional Carbon Nanotube Composites // Mater. Res. Lett. 2012. No. 1. P. 1–7.
25. Kulinich S.A., Farzaneh M. Onice-releasing properties of rough hydrophobic coatings // Cold Regions Science and Technology. 2011. Vol. 65. P. 60–64.
26. Hejazi V., Sobolev K., Nosonovsky M. From superhydrophobicity to icephobicity: forces and interaction analysis // Nature Scientific Reports. 2013. Vol. 3. DOI: 10.1038/srep02194.
27. Bojnovich L.B., Emelyanenko A.M. Gidrofobnye materialy i pokrytiya: principy sozdaniya, svojstva i primenenie [Waterproof materials and coverings: principles of creation, property and application] // Uspehi himii. 2008. T. 77. Vyp. 7. S. 619–638.
The article discusses opportunity of application corrosion inhibitors in the layered metal-polymer composite material based on aluminum alloy sheets and layers of carbon fiber. The influence of corrosion inhibitors on corrosion processes, that occur when aluminum alloy sheet contacts with layer of carbon fiber, was investigated. Layered composite «aluminum–carbon fiber reinforced plastic» with separation layer, witch is contented corrosion inhibitors, has high corrosion resistance, which allows to consider layered composite «aluminum-carbon fiber reinforced plastic» as perspective material for application in aviation technology. This work was done as part of the complex scientific direction 6.2. «Layered crack resistance, high strength metal-polymer materials» («The strategic directions of development of materials and technologies of their processing for the period till 2030»)
2. Kablov E.N. Sovremennye materialy – osnova innovacionnoj modernizacii Rossii [Modern materials – basis of innovative modernization of Russia] // Metally Evrazii. 2012. №3. S. 10–15.
3. Kablov E.N. Materialy i himicheskie tehnologii dlya aviacionnoj tehniki [Materials and chemical technologies for aviation engineering] // Vestnik Rossijskoj akademii nauk. 2012. T. 82. №6. S. 520–530.
4. Gunyaev G.M., Krivonos V.V., Rumyancev A.F., Zhelezina G.F. Polimernye kompozicionnye materialy v konstrukciyah letatelnyh apparatov [Polymeric composite materials in designs of flight vehicles] // Konversiya v mashinostroenii. 2004. №4 (65). S. 65–69.
5. Grashhenkov D.V., Chursova L.V. Strategiya razvitiya kompozicionnyh i funkcionalnyh materialov [Strategy of development of composite and functional materials] // Aviacionnye materialy i tehnologii. 2012. №S. S. 231–242.
6. Kablov E.N. Materialy i tehnologii VIAM dlya «Aviadvigatelya» [Materials and VIAM technologies for «Aircraft engine»] // Permskie aviacionnye dvigateli: inform. byul. 2014. №31. S. 43–47.
7. Grabilnikov A.S., Mashinskaya G.P., Zhelezina G.F., Zinevich O.M., Deev I.S. Mezhslojnaya treshhinostojkost' gibridnogo kompozitnogo materiala ALOR [Interlaminar crack resistance of hybrid composite material ALOR] // Mehanika kompozitnyh materialov. 1994. T. 30. №2. S. 136–145.
8. Mashinskaya G.P., Zhelezina G.F., Senatorova O.G. Laminated Fibrous Metal – Polymer Composites Soviet Advanced Composites Technology Series // Chapman & Hall. 1995. Р. 487–570.
9. Postnov V.I., Senatorova O.G., Karimova S.A. i dr. Osobennosti formovaniya krupnogabaritnyh listov metallopolimernyh KM, ih struktura i svojstva [Features of formation of large-size sheets of metalpolymeric CM, their structure and properties] // Aviacionnye materialy i tehnologii. 2009. №4. S. 23–32.
10. Kompozicionnyj sloistyj material i sposob ego polucheniya: pat. 2565186 Ros. Federaciya [Composite layered material and way of its receiving: pat. 2565186 Russ. Federation]; opubl. 15.09.15.
11. Postnov V.I., Senatorova O.G., Zhelezina G.F. i dr. Opyt primeneniya MPKM ALOR D16/41 v nosovoj chasti kryla samoleta AN-124-100 [Experience of application of MPKM ALOR D16/41 in nasal part of airplane wing AN-124-100] // Aviacionnye materialy i tehnologii. 2009. №4. S. 8–17.
12. Zhelezina G.F. Konstrukcionnye i funkcionalnye organoplastiki novogo pokoleniya [Constructional and functional organoplastics of new generation] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №4. St. 06. Available at: http://www.viam-works.ru (accessed: November 1, 2016).
13. Deev I.S., Zhelezina G.F. Fraktograficheskij analiz sloistogo metallopolimernogo kompozita alor posle ispytanij na treshhinostojkost [The fractographic analysis of layered metalpolymeric composite Alor after tests for crack resistance] // Kompozity i nanostruktury. 2015. T. 7. №3. S. 162–176.
14. Laurens B.V. Development of a new hybrid material (ARALL) for aircraft structures // Industrial & Engineering Chemistry. 1983. Vol. 22 (3). P. 492–496.
15. Gunnink J.W., Vlot A., De Vries T.J., Van Der Hoeven W. Glare technology development 1997–2000 // Applied Composite Materials. 2002. No. 9. P. 201–219.
16. Antipov V.V., Senatorova O.G., Lukina N.F. i dr. Sloistye metallopolimernye kompozicionnye materialy [Layered metalpolymeric composite materials] // Aviacionnye materialy i tehnologii. 2012. №S. S. 226–230.
17. Botelho E.C., Campos A.N., de Barros E. et al. Damping behavior of continuous fiber/metal composite materials by the free vibration method // Composites. Part B. 2006. Vol. 37. P. 255–263.
18. Freischmidt G., Coults R.S.P., Janardhana M.N. Aluminium/lithium alloy-CFRP hybrid laminate – fabrication and properties // Advanced composites ’93: proceedings of ICACM. 1993. С. 491–494.
19. Karimova S.A., Pavlovskaya T.G. Razrabotka sposobov zashhity ot korrozii konstrukcij, rabotajushhih v usloviyah kosmosa [Development of ways of corrosion protection of the designs working in the conditions of space] // Trudy VIAM: electron. nauch.-tehnich. zhurn. 2013. №4. St. 02. Available at: http://www.viam-works.ru (accessed: November 1, 2016).
20. Pavlovskaya T.G., Kozlov I.A., Volkov I.A., Zakharov К.Е. Formation of hard wear-resistant anodic oxide coatings on parts made of casting aluminium alloys // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №8. St. 04. Available at: http://viam-works.ru (accessed: November 1, 2016). DOI: 10.18577/2307-6046-2015-0-8-4-4.
21. Pavlovskaya T.G., Volkov I.A., Kozlov I.A., Naprienko S.A. Ekologicheski uluchshennaya tehnologiya obrabotki poverhnosti alyuminievyh splavov [Ecologically improved technology of aluminum alloys surface treatment] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №7. St. 02 (accessed: November 1, 2016). DOI: 10.18577/2307-6046-2016-0-7-2-2.
22. Kablov E.N., Karimova S.A., Semenova L.V. Korrozionnaya aktivnost ugleplastikov i zashhita metallicheskih silovyh konstrukcij v kontakte s ugleplastikom [Corrosion activity carbon plastics and protection of metal load bearing structures in contact with the carbon plastics] // Korroziya: materialy, zashhita. 2011. №12. S. 1–7.
23. Ostapiuka M., Surowskaa B., Bienias J. Interface analysis of fiber metal laminates //Composite Interfaces. 2014. Vol. 21. No. 4. P. 309–318.
24. Almeida R.S., Damato C.A., Botelho E.C., Pardini L.C., Rezende M.C. Effect of surface treatment on fatigue behavior of metal/carbon fiber laminates // J. Mater. Sci. 2008. No. 43. Р. 3173–3179.
25. Kablov E.N., Startsev O.V., Medvedev I.M. Obzor zarubezhnogo opyta issledovanij korrozii i sredstv zashhity ot korrozii [Review of international experience on corrosion and corrosion protection] // Aviacionnye materialy i tehnologii. 2015. №2 (35). S. 76–87. DOI: 10.18577/2071-9140-2015-0-2-76-87.
26. Wang W.X., Takao Y., Kashima I., Matsubara T. CFRP/Al-FRML based on nano-composite coating and its mechanical properties // Proceedings of International Conference 48th AIAA/ASME/ASCE/AHS/ASC Structures. 2007. Р. 1–10.
27. Wang W.X., Takao Y., Matsubara T. Galvanic corrosion-resistant carbon fiber metal laminates // // Proceedings of 16th International Conference on Composite Materials. 2007. Р. 1–10.
28. Vojnov S.I., Zhelezina G.F., Pavlovskaya T.G., Volkov I.A. Problema kontaktnoj korrozii pri sozdanii sloistyh metallopolimernyh kompozicionnyh materialov na osnove alyuminiya i ugleplastika [Problem of contact corrosion at creation of layered metalpolymeric composite materials on the basis of aluminum and carbon plastics] // Voprosy materialovedeniya. 2016. №1 (85). S. 127–133.
29. Kozlova L.S., Sibileva S.V., Chesnokov D.V., Kutyrev A.E. Ingibitory korrozii (obzor) [Corrosion inhibitors (review)] //Aviacionnye materialy i tehnologii. 2015. №2 (35). S. 67–75.
The approach of the blowing polyimide resins and thereof compositions under reduced pressure is considered in the article. A comparison of the properties of foams obtained by foaming in air and under reduced pressure has been made. It was shown that the foaming under vacuum allows to obtain material possessing more stable strength properties and high thermal stability. A comparison of the properties of the material obtained from imported developments has been made. The technology of their production, properties and processing of different geometries products have been shown. The work was performed as part of the strategic direction number 16. «Ultra-light foam» («The strategic directions of development of materials and technologies of their processing for the period till 2030»)
2. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
3. Kablov E.N. Aviacionnoe materialovedenie: itogi i perspektivy [Aviation materials science: results and perspectives] // Vestnik Rossijskoj akademii nauk. 2002. T. 72. №1. S. 3–12.
4. Kablov E.N. Kompozity: segodnya i zavtra [Composites: today and tomorrow] // Metally Evrazii. 2015. №1. S. 36–39.
5. Kompoziciya dlya polucheniya penoplasta: pat. 2213752. Ros. Federaciya [Composition for receiving polyfoam: pat. 2213752. Rus. Federation]; opubl. 10.10.03.
6. Parahin I.V., Tumanov A.S. Fenolokauchukovyj penoplast povyshennoj plastichnosti [Phenolic-rubber foamed plastic of higher plasticity] // Aviacionnye materialy i tehnologii. 2014. №4 (33). C. 65–67. DOI: 10.18577/2071-9140-2014-0-4-65-67.
7. Parahin I.V., Tumanov A.S. Fenolno-kauchukovyj penoplast marki VRP-4 [Phenolic-rubber foam the grade of VPP-4] // Aviacionnye materialy i tehnologii. 2014. №1 (30). C. 42–46. DOI: 10.18577/2071-9140-2014-0-1-42-46.
8. Samatadze A.I., Parahin I.V., Troshkin I.V., Porosova N.F., Tumanov A.S. Fenolno-kauchukovyj penoplast s ponizhennoj goryuchestyu [Phenolic and rubber polyfoam with the lowered combustibility] // Vse materialy. Enciklopedicheskij spravochnik. 2013. №2. C. 14–17.
9. Shivakumar K.N., Argade S.D., Sadler R.L., Sharpe M.M., Dunn L., Swaminathan G. Processing and properties of a lightweight fire resistant core material for sandwich structures // Journal of Advanced Materials. 2006. Vol. 38. No. 1. P. 1–17.
10. Kablov E.N., Bejder E.Ya., Petrova G.N., Stolyankov Yu.V., Rumyanceva T.V. Penopoliimidy [Foamed polyimides] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №4. St. 09. Available at: http://viam-works.ru (accessed: January 09, 2017). DOI: 10.18577/2307-6046-2015-0-4-9-9.
11. Beider E.Ya., Petrova G.N., Izotova T.F., Gureeva E.V. Kompozicionnye termoplastichnye materialy i penopoliimidy [Thermoplastic composite materials and foam polyimides] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №11. St. 01. Available at: http://www.viam-works.ru (accessed: January 11, 2017).
12. Poliimidnaya pena i metod ee polucheniya: pat. 101812232 Kitaj [Polyimide foam and method of its receiving: pat. 101812232 China]; zayavl. 9.04.10; opubl. 25.08.10.
13. Kompoziciya dlya polucheniya penopoliimida: pat. 2024562 Ros. Federaciya [Composition for receiving penopoliimida: pat. 2024562 Rus. Federation]; zayavl. 30.04.92; opubl. 15.12.94.
14. Zhestkij konstrukcionnyj penopoliimidnyj material i sposob ego polucheniya: pat. 102127225 Kitaj [Rigid constructional foam polyimide material and way of its receiving: pat. 102127225 China]; zayavl. 8.12.10; opubl. 20.07.11.
15. Forming a foamed polyimide article: pat. 3249561 USA; filed 18.03.63; publ. 3.05.66.
16. Ambient cure polyimide foam: pat. 4263410 USA; filed 19.02.80; publ. 21.04.81.
17. Process of preparing polyimides from isocyanates and polycarboxylic acids: pat. 3489696 USA; filed. 6.10.66; publ. 13.06.70.
18. Sposob i oborudovanie dlya nepreryvnogo vspenivaniya poliimidnogo poroshka: pat. 5338765 SShA [Way and the equipment for continuous foaming of polyimide powder: pat. 5338765 USA]; zayavl. 23.11.93; opubl. 16.08.94.
19. Vspenennyj poliimidnyj blok i sposob ego polucheniya: zayavka 20040229969 SShA [Frothed polyimide block and way of its receiving: request 20040229969 USA]; zayavl. 21.04.04; opubl. 18.11.04.
20. Sposob polucheniya teplostojkogo i teploizolyacionnogo baka: zayavka 2004256561 Yaponiya [Way of receiving heatresistant and heatinsulating tank: request 2004256561 Japan]; zayavl. 16.09.04; opubl. 16.03.06.
21. Ahn M.-K., Moon Y.-W., Koh Y.-H., Kim H.-E. Production of highly porous triphasic calcium phosphates caffolds with excellent in vitro bioactivity using vacuum-assisted foaming of ceramic suspension (VFC) technique // Ceramics International. 2013. No. 39. P. 5879–5885.
22. Vogt U.F., Gorbar M., Dimopoulos-Eggenschwiler P., Broenstrup A., Wagner G., Colombo P. Improving the properties of ceramic foams by a vacuum infiltration process // Journal of the European Ceramic Society. 2010. No. 30. Р. 3005–3011.
23. Ahn M.-K., Jo I.-H., Koh Y.-H., Kim H.-E. Production of highly porous titanium (Ti) scaffolds by vacuum-assisted foaming of titanium hydride (TiH2) suspension // Materials Letters. 2014. No. 120. Р. 228–231.
24. Qu Y.-N., Su Z.-G., Xu J., Huo W.-L., Song K.-C., Wang Y.-L., Yang J.-L. Preparation of ultralight glass foams via vacuum-assisted foaming // Materials Letters. 2016. No. 166. Р. 35–38.
25. Vacuum refining of glassy materials with controlled foaming: pat. 0257238 France; filed 29.06.87, publ. 04.10.89.
26. Vacuum refining of glass or the like with enhanced foaming: pat. 0297405 France; filed 22.06.88; publ. 04.01.89.
27. Method and apparatus for vacuum foaming of panels: pat. 1048429 Spain; filed 27.03.00; publ. 08.10.03.
28. Method and apparatus for vacuum foaming refrigerator cabinets: pat. 1781457 Spain; filed 27.03.00; publ. 30.07.10.
29. Apparatus and method for vacuum foaming a refrigerator cabinet: pat. 2012099379 Korea, China; filed 17.01.12; publ. 17.01.11.
30. Vacuum-assisted foaming method and apparatus for moulding insulation of refregiration containers: pat. 2011260351 USA; filed 17.02.10; publ. 27.10.11.
31. Method and rotary drum installation for vacuum foaming of refrigerators: pat. 2006013002 Spain; filed 17.02.10; publ. 09.02.06.
This article describes the results of experimental work to clarify the formulation of paste-like sealant brand VIKSINT U-2-28 replacement part hydrophobic and the structuring of the liquid GKZh 136-41 on the hydrophobic liquid Penta 808А or Penta 804. The reason for this replacement is due to the problem of getting liquid polyethylsiloxane GKZh 136-41 due to the lack of raw materials – product ethyldichlorosilane. The results of comparative analysis of technological, physical, mechanical properties of band sealers are fabricated using a variety of waterproofing fluids.
2. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period to 2030] // Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
3. Erasov V.S., Kotova E.A. Erozionnaya stojkost aviacionnyh materialov k vozdejstviyu tverdyh (pylevyh) chastic [Erosion resistance of aviation materials to influence of solid (dust) particles] // Aviacionnye materialy i tehnologii. 2011. №3. S. 30–36.
4. Naumov I.S., Petrova A.P., Chajkun A.M. Reziny uplotnitel'nogo naznacheniya i snizhenie ih goryuchesti [Rubbers of sealing assignment and decrease in their combustibility] // Vse materialy Enciklopedicheskij sbornik. 2013. №5. S. 28–35.
5. Kablov E.N. Himiya v aviacionnom materialovedenii [Chemistry in aviation materials science] // Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 3–4.
6. Pinchuk L.S., Neverov A.S. Germetiziruyushhie polimernye materialy [Pressurizing polymeric materials]. M.: Mashinostroenie, 1995. 159 s.
7. Smyslova R.A., Shvec V.M., Sarishvili I.G. Primenenie otverzhdayushhihsya germetikov v stroitel'noj tehnike [Application of hardening hermetics in construction equipment] // Obzor informacii VNIINTIEPSM. M., 1991. Ser. 6. №2. S. 1–50.
8. Valeev R.R., Bylev V.A., Hakimulin Yu.N., Liakumovich A.G. Tehnicheskie svojstva germetikov na osnove TPM-2 polimera [Engineering properties of hermetics on basis TPM-2 of polymer] // Sb. statej 9-j Vseros. konf. «Struktura i dinamika molekulyarnyh sistem». Yal'chik, 2002. S. 84–87.
9. Gerasimov D.M., Eliseev O.A., Smirnov D.N. Sovremennye tendencii razvitiya kremnijorganicheskih germetikov i kompaundov za rubezhom [Current trends of development of organic silicon hermetics and compounds abroad ] // Sb. tr. konf. «Materialy i tehnologii germetizacii». M.: VIAM, 2005. St. 12 (CD).
10. Istoriya aviacionnogo materialovedeniya. VIAM – 80 let: gody i lyudi / pod obshh. red. E.N. Kablova [History of aviation materials science. VIAM is 80: years and people / gen. ed. by E.N. Kablov]. M.: VIAM, 2012. S. 349–355.
11. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
12. Eliseev O.A., Krasnov L.L., Zajceva E.I., Savenkova A.V. Razrabotka i modificirovanie elastomernyh materialov dlya primeneniya vo vseklimaticheskih usloviyah [Development and modifying of elastomeric materials for application in all weather conditions] // Aviacionnye materialy i tehnologii. 2012. №S. S. 309–314.
13. Gladkih S.N., Barashina E.N., Troickaya O.L. Novye polimernye materialy dlya germetizacii elektroradioizdelij bortovoj apparatury [New polymeric materials for sealing of electroradio products of onboard equipment] // Sb. tr. konf. «Materialy i tehnologii germetizacii». M.: VIAM, 2005. St. 11 (CD).
14. Grashhenkov D.V., Chursova L.V. Strategiya razvitiya kompozicionnyh i funkcionalnyh materialov [Strategy of development of composite and functional materials] // Aviacionnye materialy i tehnologii. 2012. №S. S. 231–242.
15. Nizkovyazkaya siloksanovaya kompoziciya: pat. 2356117 Ros. Federaciya. №2007122941/09 [Low-viscous siloxane composition: pat. 2356117 Rus. Federation. No. 2007122941/09]; zayavl. 20.06.07; opubl. 20.05.09, Byul. №14. 8 s.
16. Kulichihin S.G., Reutov A.S., Miroshnikova I.I. i dr. Reologicheskie zakonomernosti geleobrazovaniya kremnijorganicheskih oligomerov [Rheological patterns of gelation of organic silicon oligomers] // Vysokomolekulyarnye soedineniya. 1992. №5. S. 57–62.
17. Suzdalcev E.I., Mironova E.V. Poisk alternativy gidrofobiziruyushhej zhidkosti 136-41 pri ee ispolzovanii v kleevom soedinenii «metall–keramika» [Search of alternative of waterproof liquid 136-41 at its use in glued joint «metal–ceramics»] // Vse materialy. 2013. №7. S. 28–31.
18. Shah V. Spravochnoe rukovodstvo po ispytaniyam i analizu prichin ih razrusheniya [Reference guide on tests and the analysis of the reasons of their destruction]. SPb.: NAT, 2009. S. 178–191.
The article presents the results of studies on the dependence of the rheological properties developed by FSUE «VIAM» thermoplastic composition based on modified polycarbonate compared to ABS-plastic and polyamide Nylon-618, widely used nowadays for 3D-printing. It is shown that increase in data processing temperatures of the materials leads to a reduction of melt viscosity. It is found that the modified polycarbonate has a large value of melt viscosity, which determines its higher processing temperature than ABS-plastic. The optimum processing temperature of the materials. It is shown that in the selected temperature range processing strength and deformation properties are maximal, and shrinkage – minimum value. The results will significantly reduce the time to perfect the mode of 3D-printing and to improve the quality of manufactured products.
2. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
3. Kablov E.N. Aviakosmicheskoe materialovedenie [Aerospace materials science] // Vse materialy. Enciklopedicheskij spravochnik. 2008. №3. S. 2–14.
4. Petrova G.N., Bejder E.Ya., Starostina I.V. Litevye termoplasty dlya izdelij aviacionnoj tehniki [Injection molding thermoplastics for products of aviation engineering] // Vse materialy. Enciklopedicheskij spravochnik. 2016. №6. S. 10–15.
5. Kryzhanovskij V.K., Burlov V.V., Panimatchenko A.D., Kryzhanovskaya Yu.V. Tehnicheskie svojstva polimernyh materialov [Engineering properties of polymeric materials]. SPb.: Professiya, 2005. 240 s.
6. Petrova G.N., Barbotko S.L., Bejder E.Ya. i dr. Pozharobezopasnye litevye termoplasty [Fireproof injection molding thermoplastics] // Plasticheskie massy. 2006. №1. S. 46–48.
7. Petrova G.N., Beider E.Ya., Perfilova D.N., Rumyantseva T.V. Pozharobezopasnye litevye termoplasty i termojelastoplastyv [Fire safety of injection molding thermoplastics and TPE materials] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №11. St. 02. Available at: http://www.viam-works.ru (accessed: February 07, 2017).
8. Mihajlin Yu.A. Termoustojchivye polimery i polimernye materialy na ih osnove [Thermosteady polymers and polymeric materials on their basis] // Polimernye materialy. 2005. №4. S. 29–32
9. Petrova G.N., Beider E.Yа. Construction materials based on reinforced thermoplastics Chemistry and Materials Science // Russian Journal of General Chemistry. 2011. Vol. 81. No. 5. Р. 1001–1007.
10. Gryaznov V.I., Petrova G.N., Yurkov G.Yu., Buznik V.M. Smesevye termojelastoplasty so specialnymi svojstvami [Thermoplastic mixtures with special properties] // Aviacionnye materialy i tehnologii. 2014. №1. S. 25–29. DOI: 10.18577/2071-9140-2014-0-1-25-29.
11. Komarov G.A. Sostoyanie, perspektivy i problemy primeneniya PKM v tehnike [Condition, perspectives and problems of application of PCM in equipment] // Polimernye materialy. 2009. №2. S. 5–9.
12. Postnov V.I., Pletin I.I., Veshkin E.A., Starostina I.V., Strelnikov S.V. Tehnologicheskie osobennosti proizvodstva tonkolistovyh obshivok lopastej vertoleta iz konstrukcionnogo stekloplastika VPS-53K [Technological features of production of thin sheet coverings of blades of the helicopter from constructional VPS-53K fibreglass] // Izvestiya Samarskogo nauchnogo centra Rossijskoj akademii nauk. 2016. T. 18. №4 (3). S. 619–627.
13. Petrova G.N., Zhuravleva P.L., Iskhodzhanova I.V., Beider E.Ya. Influence of Carbon Fillers on Properties and Structure of Polyethylene-Based Polymer Composites // Nanotechnologies in Russia. 2014. Vol. 9. No. 5–6. Р. 305–310.
14. Kablov E.N., Semenova L.V., Petrova G.N., Larionov S.A., Perfilova D.N. Polimernye kompozicionnye materialy na termoplastichnoj matrice [Polymeric composite materials on thermoflexible matrix] // Izvestiya vuzov. Ser.: Himiya i himicheskaya tehnologiya. 2016. T. 59. №10. S. 61–71.
15. Kerber M.L., Vinogradov V.M., Golovkin G.S. i dr. Polimernye kompozicionnye materialy: struktura, svojstva, tehnologiya [Polymeric composite materials: structure, properties, technology]. SPb.: Professiya, 2011. S. 32–33.
16. Petrova G.N., Starostina I.V., Rumyanceva T.V. Issledovanie vozmozhnosti markirovki detalej iz polikarbonata [Study of the possibility of marking parts of polycarbonate] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №10. St. 11. Available at: http://www.viam-works.ru (accessed: February 08, 2017). DOI: 10.18577/2307-6046-2016-0-10-11-11.
17. Petrova G.N., Beyder E.Ya. Povyshenie ognestojkosti polibutilentereftalata (obzor) [Increasing of fire resistance of polybutylene terephthalate (review)] // Aviacionnye materialy i tehnologii. 2014. №4. S. 58–64. DOI: 10.18577/2071-9140-2014-0-4-58-64.
18. Mihajlin Yu.A. Termoustojchivye polimery i polimernye materialy [Thermosteady polymers and polymeric materials]. SPb.: Professiya, 2006. S. 29–30.
19. Sudarushkin Yu.K., Gudimov M.M., Romanov D.S., Sokolov M.Yu. Primenenie lit'evyh polikarbonatov v aviapriborostroenii [Application of injection molding polycarbonates in avionics] // Aviacionnaya promyshlennost. 2003. №2. S. 48–52.
20. Smirnov O.I., Skorodumov S.V. Modelirovanie tehnologii poslojnogo sinteza pri razrabotke izdelij slozhnoj formy [Modeling of technology of level-by-level synthesis when developing products of difficult form] // Sovremennye naukoemkie tehnologii. 2010. №4. S. 83–87.
21. Bikas H., Stavropoulos P., Chryssolouris G. Additive manufacturing methods and modeling approaches: a critical review // International Journal of Advanced Manufacturing Technology. 2016. Vol. 83. C. 389–405. DOI: 10.1007/s00170-015-7576-2.
22. Platonov M.M., Petrova G.N., Larionov S.A., Barbotko S.L. Polimernaya kompoziciya na osnove polidodekalaktama dlya tehnologii 3D-pechati rasplavlennoj polimernoj nityu [Polymer composition on the basis of polydodecanolactam for 3D-printing technology by melted polymer string] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №10. St. 09. Available at: http://www.viam-works.ru (accessed: February 08, 2017). DOI: 10.18577/2307-6046-2016-0-10-9-9.
23. Novakova-Marcincinova L., Kuric I. Basic and Advanced Materials for Fused Deposition Modeling Rapid Prototyping Technology // Manufacturing and Industrial Engineering. 2012. Vol. 11(1). P. 24–27.
24. Croccolo D., De Agostinis M., Olmi G. Experimental characterization and analytical modelling of the mechanical behavior of fused deposition processed parts made of ABS-M30 // Computational Materials Science. 2013. Vol. 79. P. 506–518. DOI: 10.1016/j.commatsci.2013.06.041.
25. Turner B., Strong R., Gold S. A review of melt extrusion additive manufacturing processes: I. Process design and modeling // Rapid Prototyping Journal. 2014. No. 20/3. P. 192–204. DOI: 10.1108/RPJ-01-2013-0012.
26. Durgun I., Ertan R. Experimental investigation of FDM process for improvement of mechanical properties and production cost // Ibid. P. 228–235. DOI: 10.1108/RPJ-10-2012-0091.
27. Petrova G.N., Platonov M.M., Bolshakov V.A., Ponomarenko S.A. Issledovanie kompleksa harakteristik bazovyh materialov dlya FDM-tehnologii additivnogo sinteza. Fiziko-mehanicheskie i teplofizicheskie svojstva [Research of complex of characteristics of base materials for FDM technology of the additive synthesis. Physicomechanical and heatphysical properties] // Plasticheskie massy. 2016. №5–6. S. 53–59.
28. Normy letnoj godnosti samoletov transportnoj kategorii [Standards of the flight validity of airplanes of transport category]: AP-25: utv. Postanovleniem 28-j Sessii po aviacii i ispolzovaniyu vozdushnogo prostranstva 11.12.2008. 3-e izd. s popravkami 1–7. M.: Aviaizdat, 2014. 278 s.
29. Barbotko S.L. Pozharobezopasnost aviacionnyh materialov [Fire safety of aviation materials] // Aviacionnye materialy i tehnologii. 2012. №S. S. 431–439.
30. Petrova G.N., Rumyanceva T.V., Beyder E.Ya. Vliyanie modificiruyushhih dobavok na pozharobezopasnye svojstva i tehnologichnost polikarbonata [Influence of modifying additives on fireproof properties and technological effectiveness of polycarbonate] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №6. St. 06. Available at: http://www.viam-works.ru (accessed: February 08, 2017).
31. Mikulenok I.O. Opredelenie reologicheskih svojstv termoplastichnyh kompozicionnyh materialov [Definition of rheological properties of thermoflexible composite materials] // Plasticheskie massy. 2011. №7. S. 26–30.
32. Golovkin G.S. Sistematizaciya tehnologicheskih svojstv polimerov i materialov na ih osnove [Ordering of technological properties of polymers and materials on their basis] // Polimernye materialy: izdeliya, oborudovanie, tehnologii. 2012. №7. S. 20–31.
33. Shah V. Spravochnoe rukovodstvo po ispytaniyam plastmass i analizu prichin ih razrusheniya [Reference guide on tests of plastic and the analysis of the reasons of their destruction]. SPb.: NOT, 2009. S. 229–230.
34. Bortnikov V.G. Raschet reologicheskih harakteristik rasplavov polimerov s ispol'zovaniem pokazatelya tekuchesti [Calculation of rheological characteristics rasplavov polymers with use of indicator of flowability] // Vserossijskaya Molodezhnaya nauchnaya shkola, posvyashhennaya laureatam nobelevskih premij po himii. Kazan, 2011. S. 23–25.
35. Rao Natti S., Shot Nik R. Tehnologicheskie raschety i pererabotka plastmass: Prakticheskoe rukovodstvo. Per. s angl. [Technological calculations and processing of plastic: Practical guidance. trans from Engl.]. SPb.: Professiya, 2013. S. 198.
36. Dul S., Fambri L., Pegoretti A. Fused deposition modelling with ABS-graphenenanocomposites // Composites: Part A. 2016. Vol. 85. P. 181–191. DOI: 10.1016/j.compositesa.2016.03.013.
37. Riddick J.C., Haile M.A., Wahlde R.V. et al. Fractographic analysis of tensile failure of acrylonitrile-butadiene-styrene fabricated by fused deposition modeling // Additive Manufacturing. 2016. Vol. 11. P. 49–59. DOI: 10.1016/j.addma.2016.03.007.
38. Kablov E.N. Osnovnye itogi i napravleniya razvitiya materialov dlya perspektivnoj aviacionnoj tehniki [The main results and the directions of development of materials for perspective aviation engineering] // Aviacionnye materialy. 75 let. Izbrannye trudy «VIAM» 1932–2007: yubil. nauch.-tehnich. sb. M.: VIAM, 2007. S. 20–26.
39. Kablov E.N. Rossii nuzhny materialy novogo pokoleniya [Materials of new generation are necessary to Russia] // Redkie zemli. 2014. №3. S. 8–13.
The result of this work it is shown that the photometric determination of calcium main alloying elements (Al, Zn, Mn), present in the casting of magnesium alloys of the Mg–Al–Zn–Mn, no effect on the magnitude of optical density for determining the content of calcium in the alloy. To obtain reproducible results, the experiment should be carried out in a quartz dish.
Determination of calcium in magnesium alloys by atomic-emission spectrometry with inductively coupled plasma and simultaneously allows to define other alloying elements comprising the alloy. It was found that they do not adversely affect the quantitative determination of calcium. For the studied calcium concentration range selected the most sensitive and the least susceptible to interference of analytic line Ca.
To control the correctness and reliability of the determination by analyzing the results of calcium magnesium alloys used in model solutions. The content items are within tolerances.
Procedures for photometric and atomic-emission determination of calcium in casting magnesium alloys of the Mg–Al–Zn–Mn.
The work is executed within the implementation of the complex scientific direction 2.1. «Fundamental Oriented Research» («The strategic directions of development of materials and technologies of their processing for the period till 2030»)
2. Kablov E.N. Materialy dlya izdeliya «Buran» – innovacionnye resheniya formirovaniya shestogo tehnologicheskogo uklada [Materials for «Buran» spaceship – innovative solutions of formation of the sixth technological mode] //Aviacionnye materialy i tehnologii. 2013. №S1. S. 3–9.
3. Kablov E.N. Iz chego sdelat budushhee? Materialy novogo pokoleniya, tehnologii ih sozdaniya i pererabotki – osnova innovacij [What the future to make of? Materials of new generation, technology of their creation and processing – basis of innovations] // Krylya Rodiny. 2016. №5. S. 8–18.
4. Kablov E.N. Kontrol kachestva materialov – garantiya bezopasnosti ekspluatacii aviacionnoj tehniki [Quality control of materials – security accreditation of operation of aviation engineering] // Aviacionnye materialy i tehnologii. 2001. №1. S. 3–8.
5. Kablov E.N. Aviacionnoe materialovedenie v XXI veke. Perspektivy i zadachi [Aviation materials science in the XXI century. Perspectives and tasks] // Aviacionnye materialy. Izbrannye trudy VIAM 1932–2002. M.: MISIS–VIAM, 2002. S. 23–47.
6. Kornysheva I.S., Volkova E.F., Goncharenko E.S., Muhina I.Yu. Perspektivy primeneniya magnievyh i litejnyh alyuminievyh splavov [Perspectives of application of magnesium and cast aluminum alloys] // Aviacionnye materialy i tehnologii. 2012. №S. S. 212–222.
7. Antipov V.V. Strategiya razvitiya titanovyh, magnievyh, berillievyh i alyuminievyh splavov [Strategy of development of titanium, magnesium, beryllium and aluminum alloys] // Aviacionnye materialy i tehnologii. 2012. №S. S. 157–167.
8. Muhina I.Yu., Duyunova V.A., Uridiya Z.P. Perspektivnye litejnye magnievye splavy [] // Novosti materialovedeniya. Nauka i tehnika: elektron. nauch.-tehnich. zhurn. 2013. №6. St. 05. Available at: http://www.materialsnews.ru (accessed: December 12, 2016).
9. Koltygin A.V., Pliseckaya I.V. Perspektivy razvitiya magnievyh litejnyh splavov, svyazannye s primeneniem kal'ciya v kachestve legiruyushhej dobavki [Perspectives of development of the magnesium cast alloys, connected using calcium as alloying additive] // Litejshhik Rossii. 2012. №1. S. 38–41.
10. Koltygin A.V., Pliseckaya I.V. O povedenii kalciya v litejnyh magnievyh splavah sistemy Mg–Al–Zn–Mn [About behavior of calcium in cast magnesium alloys of Mg-Al-Zn-Mn system] // Litejnoe proizvodstvo. 2010. №8. S. 2–6.
11. Belov V.D., Koltygin A.V., Belov N.A., Pliseckaya I.V. Innovacii v oblasti litejnyh magnievyh splavov [Innovations in the field of cast magnesium alloys] // Metallurg. 2010. №5. S. 67–70.
12. Koltygin A.V., Bazlova T.A., Pliseckaya I.V. Vliyanie kalciya na process polucheniya i strukturu magniya, vyplavlennogo v usloviyah besflyusovoj plavki [Influence of calcium on process of receiving and structure of the magnesium melted in the conditions of fluxless melting] // Metallovedenie i termicheskaya obrabotka metallov. 2012. №10 (688). S. 50–54.
13. Koltygin A.V., Pliseckaya I.V. Uluchshenie svojstv magnievyh splavov tipa ML5 s pomoshhyu dobavok kalciya [Improvement of properties of magnesium alloys of the ML5 type by means of calcium additives] // Sb. mater. konf. «Progressivnye litejnye tehnologii». M.: MISiS, 2011. S. 38–40.
14. Koltygin A.V., Pliseckaya I.V. Osobennosti plavki magnievyh splavov, legirovannyh kalciem v zashhitnoj gazovoj srede, soderzhashhej elegaz [Features of melting of the magnesium alloys alloyed by calcium in the protective gas environment, containing elegas] // Ibid. S. 40–42.
15. Karpov Yu.A., Baranovskaya V.B. Rol i vozmozhnosti analiticheskogo kontrolya v metallurgii [Role and possibilities of analytical control in metallurgy] // Tsvetnye metally. 2016. №8 (884). S. 63–67. DOI:10.17580/tsm.2016.08.09.
16. Karpov Yu.A., Baranovskaya V.B. Vozmozhnosti i problemy sovremennoj analiticheskoj himii neorganicheskih materialov [Opportunities and problems of modern analytical chemistry of inorganic materials] // Izvestiya Akademii nauk. Ser.: Himicheskaya. 2015. №8. S. 1989.
17. Tormysheva E.A., Smirnova E.V., Ermolaeva T.N. Opredeleniya oksidov zheleza, kal'ciya i alyuminiya v magnezialnyh ogneuporah metodom AES s ISP v usloviyah mikrovolnovogo razlozheniya proby [Definitions of iron oxides, calcium and aluminum in magnezialny refractory materials nuclear power plant method with ISP in the conditions of microwave decomposition of test] // Vestnik Voronezhskogo Gosudarstvennogo universiteta. Ser.: Himiya. Biologiya. Farmaciya. 2010. №1. S. 51–55.
18. Pupyshev A.A., Danilova D.A. Ispolzovanie atomno-emissionnoj spektrometrii s induktivno-svyazannoj plazmoj dlya analiza materialov i produktov chernoj metallurgii [Use of nuclear and emission spectrometry with the inductive and connected plasma for the analysis of materials and products of ferrous metallurgy] // Analitika i kontrol. 2007. T. 11. №2–3. S. 131–181.
19. Zagvozdkina T.N., Karachevtsev F.N., Dvoretskov R.M. Primenenie modelnyh rastvorov v atomno-absorbcionnom analize [Application of model solutions for ICP-AES procedures] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №3. St. 10. Available at: http://www.viam-works.ru (accessed: December 12, 2016). DOI: 10.18577/2307-6046-2015-0-3-10-10.
This paper analyzes the standards GOST 25.505–85 «Calculations and strength tests. Methods of mechanical testing of metals. Test method for thermomechanical low-cycle fatigue» and ASTME 2368-10 «Practice for Strain Controlled Thermomechanical fatigue testing» to get an idea about specifics of carrying out tests for thermomechanical fatigue and identify differences between these standards.
There are no significant differences between the samples of cylindrical forms and sizes of the working parts. Russian standard specifies necessary requirements for manufacturing precision of working part of sample. Standard ASTME 2368-10 contains more stringent requirements to the accuracy of loading and a more detailed description of the test procedure than GOST 25.505–85. The US standard provides guidance and refers to the practical guidance on calibration of measuring systems.
The existing state standard GOST 25.505–85 needs substantial improvement in accordance with modern requirements.
Work is performed within realization of the complex scientific 2.2. «Qualifications and research of materials» («The strategic directions of development of materials and technologies of their processing for the period till 2030»)
2. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period to 2030] // Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
3. Kablov E.N. Sovremennye materialy – osnova innovacionnoj modernizacii Rossii [Modern materials is the base of innovative modernization of Russia] // Metally Evrazii. 2012. №3. S. 10–15.
4. Kablov E.N. Bez novyh materialov – net budushhego [There is no future without new materials] // Metallurg. 2013. №12. S. 4–8.
5. Petuhov A.N. Soprotivlenie ustalosti detalej GTD [Resistance of fatigue of details of GTE]. M.: Mashinostroenie, 1993. 240 s.
6. Kablov E.N. Materialy i tehnologii VIAM dlya «Aviadvigatelya» [Materials and technologies by VIAM for « Aviadvigatel»] // Permskie aviacionnye dvigateli: inform. byul. 2014. №31. S. 43–47.
7. Belyaev M.S., Terentev V.F., Gorbovec M.A., Bakradze M.M., Goldberg M.A. Malociklovaya ustalost pri zadannoj deformacii i parametry uprugoplasticheskogo deformirovaniya zharoprochnogo splava VZh175 [Low-cycle fatigue for a given deformation and parameters of elastic-plastic deformation of superalloy VZh175] // Aviacionnye materialy i tehnologii. 2014. №S4. S. 87–92. DOI: 10.18577/2071-9140-2014-0-s4-87-92.
8. Terentev V.F., Petuhov A.N. Ustalost vysokoprochnyh metallicheskih materialov [Fatigue of high-strength metal materials]. M.: IMET RAN–CIAM, 2013. 515 s.
9. Erasov V.S., Nuzhnyj G.A. Zhestkij cikl nagruzheniya pri ustalostnyh ispytaniyah [Rigid cycle of loading at fatigue tests] // Aviacionnye materialy i tehnologii. 2011. №4. S. 35–40.
10. Schijve J. Fatigue of structures and materials. Berlin-Heidelberg: Springer-Verlag. 2009. 185 p.
11. Erasov V.S., Yakovlev N.O., Nuzhnyj G.A. Kvalifikatsionnye ispytaniya i issledovaniya prochnosti aviatsionnyh materialov [Qualification tests and researches of durability of aviation materials] // Aviacionnye materialy i tehnologii. 2012. №S. S. 440–448.
12. Beck T., Rau K. Temperature measurement and control methods in TMF testing – a comparison and evaluation// International journal of fatigue. 2008. Vol. 30 (2). P. 226–233.
13. Lebedev A.A., Kovalchuk B.I., Giginyak F.F., Lamashevskij V.P. Mehanicheskie svojstva konstrukcionnyh materialov pri slozhnom napryazhennom sostoyanii: spravochnik. 3-e izd., pererab. i dop. [Mechanical properties of constructional materials at multi-axial stress: directory. 3rd prod., rev. and add.]. Kiev: In Yure, 2003. 539 s.
14. Nagesha A., Goyal Sunil, Nandagopal M. еt al. Dynamic strain ageing in Inconel Alloy 783 under tension and low cycle fatigue // Material Science and Engineering A. 2012. Vol. 546. P. 34–39.
15. Inozemcev A.A., Ratchiev A.M., Nihamkin M.Sh. i dr. Malociklovaya ustalost i ciklicheskaya treshhinostojkost nikelevogo splava pri nagruzhenii, harakternom dlya diskov turbin [Low-cyclic fatigue and cyclic cracks resistance of nickel alloy when loading, characteristic for disks of turbines] // Tyazheloe mashinostroenie. 2011. №4. S. 30–33.
Single-polymer composites (i.e. polymer-polymer composites in which both the matrix and reinforcement are of the same thermoplastic polymer) were surveyed. Methods for the preparation of such composites were presented. Analysis of mechanical properties for single-polymer composites as compared to conventional glass fiber-reinforced polymer composites was performed. Prospects for application of single-polymer composites in various industrial fields were discussed.
2. Kablov E.N. Kompozity: segodnya i zavtra [Composites: today and tomorrow] // Metally Evrazii. 2015. №1. S. 36–39.
3. Petrov A.V., Doriomedov M.S., Skripachev S.Yu. Tehnologii utilizacii polimernyh kompozicionnyh materialov (obzor) [Recycling technologies of polymer composite materials (review)] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №8. St. 09. Available at: http://viam-works.ru (accessed: March 2, 2017). DOI: 10.18577/2307-6046-2015-0-8-9-9.
4. Daskovskij M.I., Doriomedov M.S., Skripachev S.Yu. Sistematizaciya bazisnyh faktorov, prepyatstvuyushhih vnedreniyu polimernyh kompozicionnyh materialov v Rossii (obzor) [Underlying factors preventing the introduction of polymer composite materials in Russia (review)] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №5 St. 06. Available at: http://www.viam-works.ru (accessed: March 2, 2017). DOI: 10.18577/2307-6046-2016-0-5-6-6.
5. Doriomedov M.S., Petrov A.V., Daskovskiy M.I., Skripachev S.Yu. Pererabotka armiruyushchikh napolniteley pri utilizatsii izdeliy iz PKM [Processing of reinforcing fillers at utilization of products from PCM] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2016. №8. St. 12. Available at: http://www.viam-works.ru (accessed: March 2, 2017). DOI: 10.18577/2307-6046-2016-0-8-12-12.
6. Petrov A.V., Doriomedov M.S., Skripachev S.Yu. Zarubezhnyj opyt razvitiya proizvodstva izdelij s ispolzovaniem vtorichno pererabotannyh polimernyh kompozicionnyh materialov (obzor) [Foreign experience of manufacturing products using recycled polymer composites (review)] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №12. St. 12. Available at: http://www.viam-works.ru (accessed: March 2, 2017). DOI: 10.18577/2307-6046-2015-0-12-12-12.
7. Fakirov S. Nano- and microfibrillar single-polymer composites: a review // Macromolecular Materials and Engineering. 2013. Vol. 298. P. 9–32.
8. Synthetic polymer-polymer composites / ed. by D. Bhattacharyya, S. Fakirov. Munich: Hanser Publishers, 2012. 819 p.
9. Karger-Kocsis J., Barany T. Single-polymer composites (SPCs): Status and future trends // Composite Science and Technology. 2014. Vol. 92. P. 77–94.
10. Karger-Kocsis J., Siengchin S. Single-polymer composites: Concepts, realization and outlook: Review // KMUTNB: IJAST. 2014. Vol. 7. No. 1. P. 1–9.
11. Capiati N.J., Porter R.S. The concept of one polymer composites modelled with high-density polyethylene // Journal of Materials Science. 1975. Vol. 10. No. 10. P. 1671–1677.
12. Smirnov F.S. Struktura i svojstva samoarmirovannogo kompozita na osnove orientirovannyh plenok SVMPE [Structure and properties of the self-reinforced composite on the basis of oriented films SVMPE] // Tez. konf. «70-e dni nauki studentov NITU «MISiS». M., 2015.
13. Polimernye smesi [Polymeric mixes]. SPb: NOT, 2009. Tom II: Funkcionalnye svojstva / pod red. D.R. Pola, K.B. Baknella; per. s angl. pod red. V.N. Kulezneva. 606 s.
14. Available at: http://www.polymerbranch.com/gloss.html (accessed: March 1, 2017).
15. Kosenko N.F., Filatova N.V., Sabanashvili M.G. Samoarmirovannyj kompozicionnyj material na osnove mehanoaktivirovannogo gipsa [The self-reinforced composite material on the basis of mechanic activated gypsum] // Sb. tez. dokl. IX Vseros. nauch. konf. «Keramika i kompozicionnye materialy» (23–26 maya 2016 goda). Syktyvkar, 2016. S. 105–108.
16. Mihajlin Yu.A. Konstrukcionnye polimernye kompozicionnye materialy. 2-e izd. [Constructional polymeric composite materials. 2nd ed.]. SPb.: NOT, 2010. 822 s.
17. Shibaev V.P. Zhidkokristallicheskie polimery – proshloe, nastoyashhee i budushhee [Liquid crystal polymers – the past, the present and the future] // Vysokomolekulyarnye soedineniya. 2009. T. 51. №11. S. 1863–1929.
18. Polymeric Materials: pat. 6277773 B1 USA; publ. 21.08.01.
19. Ward I.M. Developments in oriented polymers, 1970–2004 // Plastics, Rubber and Composites: Macromolecular Engineering. 2004. Vol. 33. No. 5. P. 189–194.
20. Matabola K.P., De Vries A.R., Moolman F.S., Luyt A.S. Single polymer composites: a review // Journal of Materials Science. 2009. Vol. 44. No. 23. P. 6213–6222.
21. Abraham T.N., Siengchin S., Karger-Kocsis J. Dynamic mechanical thermal analysis of all-PP composites based on β and α polymorphic forms // Journal of Materials Science. 2008. Vol. 43. No. 10. P. 3697–3703.
22. Alcock B., Cabrera N.O., Barkoula N.-M., Loos J., Peijs T. The mechanical properties of unidirectional all-polypropylene composites // Composites: Part A. 2006. Vol. 37. P. 716–726.
23. Alcock B., Cabrera N.O., Barkoula N.-M., Spoelstra A.B., Loos J., Peijs T. The mechanical properties of woven tape all-propylene composites // Composites: Part A. 2007. Vol. 38. No. 1. P. 147–161.
24. Liu Q., Li H., Yan S. Structure and properties of β-polypropylene reinforced by polypropylene fiber and polyamide fiber // Chinese Journal of Polymer Science. 2014. Vol. 32. No. 4. P. 509–518.
25. Dai P., Zhang W., Pan Y. et al. Processing of single polymer composites with undercooled polymer melt // Composites: Part B. 2011. Vol. 42. No. 5. P. 1144–1150.
26. Barany T., Karger-Kocsis J., Czigany T. Development and characterization of self-reinforced poly(propylene) composites: carded mat reinforcement // Polymers for Advanced Technologies. 2006. Vol. 17. No. 9–10. P. 818–824.
27. Alcock B., Cabrera N.O., Barkoula N.-M., Peijs T. Low velocity impact performance of recyclable all-polypropylene composites // Composite Science and Technology. 2006. Vol. 66. P. 1724–1737.
28. Hine P.J., Ward I.M. Hot compaction of woven poly(ethylene terephthalate) multifilaments // Journal of Applied Polymer Science. 2004. Vol. 91. No. 4. P. 2223–2233.
29. Schneider C., Kazemahvazi S., Akermo M., Zenkert D. Compression and tensile properties of self-reinforced poly(ethylene terephthalate)-composites // Polymer Testing. 2013. Vol. 32. No. 2. P. 221–230.
30. Rasburn J., Hine P.J., Ward I.M. et al. The hot compaction of polyethylene terephthalate // Journal of Materials Science. 1995. Vol. 30. No. 3. P. 615–622.
31. Rojanapitayakorn P., Mather P.T., Goldberg A.J., Weiss R.A. Optically transparent self-reinforced poly(ethylene terephthalate) composites: molecular orientation and mechanical properties // Polymer. 2005. Vol. 46. No. 3. P. 761–773.
32. Yao D., Li R., Nagarajan P. Single-polymer composites based on slowly crystallizing polymers // Polymer Engineering and Science. 2006. Vol. 46. No. 9. P. 1223–1230.
33. Duhovic M., Bhattacharyya D., Fakirov S. Nanofibrillar single polymer composites of poly(ethylene terephthalate) // Macromolecular Materials and Engineering. 2010. Vol. 295. No. 2. P. 95–99.
34. Fakirov S., Duhovic M., Maitrot P., Bhattacharyya D. From PET nanofibrils to nanofibrillar single-polymer composites // Macromolecular Materials and Engineering. 2010. Vol. 296. No. 6. P. 515–518.
35. Kolesov I.S., Radusch H.-J. Multiple shape-memory behavior and thermal-mechanical properties of peroxide cross-linked blends of linear and short-chain branched polyethylenes // eXPRESS Polymer Letters. 2008. Vol. 2. No. 7. P. 461–473.
36. Gucma M., Bryll K. et al. Technology of single polymer polyester composites and proposals for their recycling // Scientific Journals of the Maritime University of Szczecin. 2015. Vol. 44. P. 14–18.
37. Cabrera N.O., Alcock B., Peijs T. Design and manufacture of all-PP sandwich panels based on co-extruded polypropylene tapes // Composites: Part B. 2008. Vol. 39. P. 1183–1195.
38. Bocz K., Barany T., Tody A. et al. Self-extinguishing polypropylene with a mass fraction of 9% intumescent additive – A new physical way for enhancing the fire retardant efficiency // Polymer Degradation and Stability. 2013. Vol. 98. No. 1. P. 79–86.
39. Li R., Yao D. Preparation of single poly(lactic acid) composites // Journal of Applied Polymer Science. 2008. Vol. 107. No. 5. P. 2909–2916.
40. Jia W., Gong R.H., Hogg P.J. Poly(lactic acid) fibre reinforced biodegradable composites // Composites: Part B. 2014. Vol. 62. P. 104–112.
41. Gao C., Meng L., Yu L. et al. Preparation and characterization of uniaxial poly(lactic acid)-based self-reinforced composites // Composite Science and Technology. 2015. Vol. 117. P. 392–397.
42. Dorigato A., Pegoretti A. Biodegradable single-polymer composites from polyvinyl alcohol // Colloid and Polymer Science. 2012. Vol. 290. No. 4. P. 359–370.
43. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.