Articles
Magnesium alloys in a review article were examined. They are divided, depending on its application, as follows: high strength, heat resistant, corrosion resistant alloys. According to their purpose these alloys belong to different systems: Mg–Al–Zn, Mg–Zn–Zr, Mg–RE. The examples of alloys belonging to the above groups, their basic properties (tensile strength, yield strength, corrosion resistance, long-term strength, impact strength) and application fields were considered in the article. The work is executed within the implementation of the complex scientific direction 10.10. «Energy-efficient, resource-saving and additive technology of deformed semi-finished products and shaped castings from magnesium and aluminum alloys» («The strategic directions of development of materials and technologies of their processing for the period till 2030»)
2. Kablov E.N. Aviakosmicheskoe materialovedenie [Aerospace materials science] // Vse materialy. Enciklopedicheskij spravochnik. 2008. №3. S. 2–14.
3. Kablov E.N. VIAM: prodolzhenie puti [VIAM: way continuation] // Nauka v Rossii. 2012. №3. S. 36–44.
4. Kablov E.N. Sovremennye materialy – osnova innovacionnoj modernizacii Rossii [Modern materials – basis of innovative modernization of Russia] // Metally Evrazii. 2012. №3. S. 10–15.
5. Kablov E.N., Ospennikova O.G., Vershkov A.V. Redkie metally i redkozemelnye elementy – materialy sovremennyh i budushhih vysokih tehnologij [Rare metals and rare earth elements – materials of modern and future high technologies] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №2. St. 01. Available at: http://www.viam-works.ru (accessed: January 25, 2016).
6. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
7. Kornysheva I.S., Volkova E.F., Goncharenko E.S., Muhina I.Yu. Perspektivy primeneniya magnievyh i litejnyh alyuminievyh splavov [Perspectives of application of magnesium and cast aluminum alloys] // Aviacionnye materialy i tehnologii. 2012. №S. S. 212–222.
8. Goncharenko E.S., Alyabev I.P., Trapeznikov A.V., Ogorodov D.V. Tehnologiya polucheniya fasonnyh otlivok iz tehnologicheskogo germetichnogo splava AL4MS [Technology of receiving mold castings from technological tight alloy AL4MS] // Litejshhik Rossii. 2014. №7. S. 12–14.
9. Basargin O.V., Shheglova T.M., Nikitina V.Yu., Svistunov V.I. Sposob opredeleniya prochnosti pri rastyazhenii monokristallicheskih volokon Al2O3 pri temperature 1400°S [High-temperature tensile strength determination of single crystal alumina fibers] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №4. St. 03. Available at: http://www.viam-works.ru (accessed: January 25, 2016). DOI: 10.18577/2307-6046-2014-0-4-3-3.
10. Duyunova V.A., Goncharenko N.S., Muhina I.Yu., Uridiya Z.P., Volkova E.F. Nauchnoe nasledie akademika I.N. Fridlyandera. Sovremennye issledovaniya magnievyh i litejnyh alyuminievyh splavov v VIAM [Scientific heritage of academician I.N.Fridlyandera. Modern researches of magnesium and cast aluminum alloys in VIAM] // Tsvetnye metally. 2013. №9. S. 71–78.
11. Korchagina V.A. Radi kachestva magnievyh otlivok [For the sake of quality of magnesian casting] // Inzhenernaya gazeta. 2006. №33–34. S. 5.
12. Duyunova V.A. Magnievye splavy: nauchnye issledovaniya Centralnogo aerogidrodinamicheskogo instituta i Vsesoyuznogo instituta aviacionnyh materialov. 1930–1935 gg. [Magnesium alloys: scientific researches of the Central aero hydrodynamic institute and All-Union institute of aviation materials. 1930-1935.] // Istoriya nauki i tehniki. 2012. №10. S. 27–35.
13. Karimova S.A., Pavlovskaya T.G. Razrabotka sposobov zashhity ot korrozii konstrukcij, rabotajushhih v usloviyah kosmosa [Development of ways of corrosion protection of the designs working in the conditions of space] // Trudy VIAM: electron. nauch.-tehnich. zhurn. 2013. №4. St. 02. Available at: http://www.viam-works.ru (accessed: January 25, 2016).
14. Kozlov I.A., Karimova S.A. Korrozija magnievyh splavov i sovremennye metody ih zashhity [Corrosion of magnesium alloys and modern methods of their protection] // Aviacionnye materialy i tehnologii. 2014. №2. S. 15–20. DOI: 10.18577/2071-9140-2014-0-2-15-20.
15. Duyunova V.A. Metody zashhity magnievyh splavov v otechestvennom litejnom proizvodstve s 1930-h gg. do nastoyashhego vremeni [Methods of protection of magnesium alloys in domestic foundry production since the 1930th so far] // Litejshhik Rossii. 2010. №10. S. 35–37.
16. Duyunova V.A., Uridiya Z.P. Issledovanie vosplamenyaemosti litejnyh magnievyh splavov sistemy Mg–Zn–Zr [Research of inflammability of cast magnesium alloys of Mg-Zn-Zr system ] // Litejshhik Rossii. 2012. №11. S. 21–23.
17. Kablov E.N. Himiya v aviacionnom materialovedenii [Chemistry in aviation materials science] // Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 3–4.
18. Kablov E.N., Muhina I.Yu., Korchagina V.A. Prisadochnye materialy dlya formovochnyh smesej pri lite magnievyh splavov [Additives materials for forming mixes when molding magnesium alloys ] // Litejnoe proizvodstvo. 2007. №5. S. 15–18.
19. Duyunova V.A., Muhina I.Yu., Uridiya Z.P. Novye protivoprigarnye prisadochnye materialy dlya litejnyh form magnievyh otlivok [New nonstick additives materials for casting molds of magnesian casting] // Litejnoe proizvodstvo. 2009. №9. S. 18–21.
20. Duyunova V.A., Kozlov I.A. Holodnotverdeyushhie formovochnye smesi: perspektivy ispolzovaniya pri lite magnievyh splavov [Cold hardening forming mixes: use perspectives when molding magnesium alloys] // Vse materialy. Enciklopedicheskij spravochnik. 2011. №1. S. 41–43.
21. Muhina I.Yu., Duyunova V.A., Uridiya Z.P. Perspektivnye litejnye magnievye splavy [Perspective cast magnesium alloys] // Litejnoe proizvodstvo. 2013. №5. S. 2–5.
22. Frolov A.V., Muhina I.Yu., Duyunova V.A., Uridiya Z.P. Vliyanie tehnologicheskih parametrov plavki na strukturu i svojstva novyh magnievyh splavov [Influence of technological parameters of melting on structure and property of new magnesium alloys] // Metallurgiya mashinostroeniya. 2014. №2. S. 26–29.
23. Uridiya Z.P., Mukhina I.Y., Frolov A.V., Leonov A.A. Issledovanie mikrostruktury magnievo-cirko-nievoj ligatury i zharoprochnogo litejnogo magnievogo splava ML10 [Study of microstructure of magnesium-zirconium master alloy and heat-resistant magnesium alloy ML10] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №10. St. 06. Available at: http://www.viam-works.ru (accessed: January 28, 2016). DOI: 10.18577/2307-6046-2015-0-10-1-1.
24. Leonov A.A., Duyunova V.A., Stupak E.V., Trofimov N.V. Lite magnievyh splavov v razovye formy, poluchennye novymi metodami [Casting of magnesium alloys in disposable moulds produced by new methods] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №12. St. 01. Available at: http://www.viam-works.ru (accessed: January 28, 2016). DOI: 10.18577/2307-6046-2014-0-12-1-1.
The given article presents the results of the research of micro- and macrostructure of magnesium-zirconium additional alloy, preliminary alloy MTsr1N3 and alloy ML10 made of the listed batched materials. The alloying is hard for the elements melting points of which are higher than the melting point of magnesium. The zirconia alloying of magnesium alloys is processed through the preliminary magnesium-zirconium additional alloy melting points of which are lower than the melting point for zirconium. The zirconia alloying of light alloys is difficult not only because the melting points for zirconium are too high, but because of its activity as well: zirconium interacts with hydrogen, oxygen, nitrogen, aluminum, ferrum, silicon, carbon and other elements. The origins of contamination of magnesium alloy ML10 with the elements that are infusible with magnesium, such as intermetallides of zirconium and aluminum or ferrum or silicon and molecular entities of zirconium-oxygen and zirconium-hydr
2. Kornysheva I.S., Volkova E.F., Goncharenko E.S., Muhina I.Yu. Perspektivy primeneniya magnievyh i litejnyh alyuminievyh splavov [Perspectives of application of magnesium and cast aluminum alloys] // Aviacionnye materialy i tehnologii. 2012. №S. S. 212–222.
3. Kablov E.N. Osnovnye itogi i napravleniya razvitiya materialov dlya perspektivnoj aviacionnoj tehniki [The main results and the directions of development of materials for perspective aviation engineering] // 75 let. Aviacionnye materialy. Izbrannye trudy «VIAM» 1932–2007: yubilejnyj nauch.-tehnich. sb. M.: VIAM, 2007. S. 20–26.
4. Kablov E.N. Aviacionnoe materialovedenie: itogi i perspektivy [Aviation materials science: results and perspectives] // Vestnik Rossijskoj akademii nauk. 2002. T. 72. №1. S. 3–12.
5. Kablov E.N. VIAM: prodolzhenie puti [VIAM: way continuation] // Nauka v Rossii. 2012. №3. S. 36–44.
6. Kablov E.N. Sovremennye materialy – osnova innovacionnoj modernizacii Rossii [Modern materials – basis of innovative modernization of Russia] // Metally Evrazii. 2012. №3. S. 10–15.
7. Kablov E.N. Himiya v aviacionnom materialovedenii [Chemistry in aviation materials science] // Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. S. 3–4.
8. Kablov E.N. Aviakosmicheskoe materialovedenie [Aerospace materials science] // Vse materialy. Enciklopedicheskij spravochnik. 2008. №3. S. 2–14.
9. Korchagina V.A. Radi kachestva magnievyh otlivok [For the sake of quality of magnesian otlivka] // Inzhenernaya gazeta. 2006. №33–34. S. 5.
10. Sadkov V.V., Laponov Yu.L., Ageev A.P., i dr. Perspektivy i usloviya primeneniya magnievyh splavov v samoletah OAO «Tupolev» [Perspectives and conditions of application of magnesium alloys in JSC Tupolev airplanes] // Metallurgiya mashinostroeniya. 2007. №4. S. 19–23.
11. Antipov V.V., Vahromov R.O., Duyunova V.A., Nochovnaya N.A. Materialy s vysokoj udel'noj prochnost'yu na osnove alyuminiya, magniya, titana i tehnologii ih pererabotki [Materials with high specific strength on the basis of aluminum, magnesium, titanium and technology of their processing] // Boepripasy i spechimiya. 2013. №3. S. 51–55.
12. Muhina I.Yu., Uridiya Z.P. Magnij – osnova sverhlegkih materialov [Magnesium – basis of extralight materials] // Metallurgiya mashinostroeniya. 2005. №6. S. 29–31.
13. Duyunova V.A. Metody zashhity magnievyh splavov v otechestvennom litejnom proizvodstve s 1930-h gg. do nastoyashhego vremeni [Methods of protection of magnesium alloys in domestic foundry production since the 1930th till nowadays] // Litejshhik Rossii. 2010. №10. S. 35–37.
14. Duyunova V.A., Muhina I.Yu., Uridiya Z.P. Novye protivoprigarnye prisadochnye materialy dlya litejnyh form magnievyh otlivok [New nonstick welding materials for casting molds of magnesian casting] // Litejnoe proizvodstvo. 2009. №9. S. 18–21.
15. Muhina I.Yu., Duyunova V.A., Uridiya Z.P. Perspektivnye litejnye magnievye splavy [Perspective cast magnesium alloys] // Litejnoe proizvodstvo. 2013. №5. S. 2–5.
16. Duyunova V.A., Goncharenko N.S., Muhina I.Yu., Uridiya Z.P., Volkova E.F. Nauchnoe nasledie akademika I.N. Fridlyandera. Sovremennye issledovaniya magnievyh i litejnyh alyuminievyh splavov v VIAM [Scientific heritage of academician I.N.Fridlyandera. Modern researches of magnesium and cast aluminum alloys in VIAM] // Tsvetnye metally. 2013. №9. S. 71–78.
17. Frolov A.V., Muhina I.Yu., Duyunova V.A., Uridiya Z.P. Vliyanie tehnologicheskih parametrov plavki na strukturu i svojstva novyh magnievyh splavov [Influence of technological parameters of melting on structure and property of new magnesium alloys] // Metallurgiya mashinostroeniya. 2014. №2. S. 26–29.
18. Muhina I.Yu. Litejnye splavy i tehprocessy pri proizvodstve magnievyh otlivok [Cast alloys and technical processes by production of magnesian casting] // Litejnoe proizvodstvo. 2003. №4. S. 18–19.
19. Goncharenko E.S., Trapeznikov A.V., Ogorodov D.V. Litejnye alyuminievye splavy (k 100-letiyu so dnya rozhdeniya M.B. Altmana) [Aluminium casting alloys] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №4. St. 02. Available at: http://www.viam-works.ru (accessed: June 24, 2016). DOI: 10.18577/2307-6046-2014-0-4-2-2.
20. Altman M.B. i dr. Magnievye splavy: spravochnik [Magnesium alloys: directory]. M.: Metallurgiya, 1978. T. 2. 147 s.
21. Uridiya Z.P., Muhina I.Yu., Duyunova V.A., Kosarina E.I. Kontrol kachestva litya iz magnievyh splavov i sposoby vosstanovleniya germetichnosti otlivok [Quality control of magnesium alloy casting and methods of restoration of cast products impermeability] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №12. St. 04. Available at: http://www.viam-works.ru (accessed: June 27, 2016). DOI: 10.18577/2307-6046-2014-0-12-4-4.
22. Leonov A.A., Duyunova V.A., Stupak E.V., Trofimov N.V. Lite magnievyh splavov v razovye formy, poluchennye novymi metodami [Casting of magnesium alloys in disposable moulds produced by new methods] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №12. St. 01. Available at: http://www.viam-works.ru (accessed: June 28, 2016). DOI: 10.18577/2307-6046-2014-0-12-1-1.
23. Shishkareva L.M., Kuzmina N.A. Obzor metodik opredeleniya kachestva struktury monokristallicheskih otlivok zharoprochnyh splavov [Review of methods for determining the quality of the structure of single-crystal superalloy castings] // Trudy VIAM: elektron. nauch.-tehni. zhurn. 2014. №1. St. 06. Available at: http://www.viam-works.ru (accessed: June 29, 2016).
24. Postnov V.I., Burhan O.L., Rahmatullin A.E., Kachura S.M. Nerazrushayushhie metody kontrolya soderzhaniya svyazuyushhih v prepregah i PKM (obzor) [Nondestructive control methods of the content of binders in prepregs and PCM (review)] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №12. St. 06 Available at: http://www.viam-works.ru (accessed: June 27, 2016).
25. Murashov V.V. Nerazrushayushhij kontrol zagotovok i detalej iz uglerod-uglerodnogo kompozicionnogo materiala dlya mnogorazovogo kosmicheskogo korablya «Buran» [Non-destructive testing of preparations and details from carbon - carbon composite material for the reusable «Buran» spacecraft] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №4. St. 05. Available at: http://www.viam-works.ru (accessed: June 29, 2016).
26. OST1 90427–94. Kachestvo produkcii. Nerazrushayushhij kontrol lityh detalej i polufabrikatov aviacionnoj tehniki iz alyuminievyh i magnievyh splavov radiograficheskim metodom. Obshhie polozheniya [OCT1 90427-94. Quality of products. Non-destructive testing of cast details and semi-finished products of aviation engineering from aluminum and magnesium alloys radiographic method. General provisions]. M.: VIAM, 1994. S. 1–17.
27. OST1 90121–90. Magnievye litejnye splavy. Rezhimy termicheskoj obrabotki [OCT1 90121-90. Magnesium cast alloys. Modes of thermal processing]. M.: VIAM, 1990. S. 1–10.
28. Kablov E.N., Muhina I.Yu., Korchagina V.A. Prisadochnye materialy dlya formovochnyh smesej pri lite magnievyh splavov [Binders materials for forming mixes when molding magnesium alloys] // Litejnoe proizvodstvo. 2007. №5. S. 15–18.
29. Uridiya Z.P., Mukhina I.Y., Frolov A.V., Leonov A.A. Issledovanie mikrostruktury magnievo-cirko-nievoj ligatury i zharoprochnogo litejnogo magnievogo splava ML10 [Study of microstructure of magnesium-zirconium master alloy and heat-resistant magnesium alloy ML10] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №10. St. 06. Available at: http://www.viam-works.ru (accessed: June 29, 2016). DOI: 10.18577/2307-6046-2015-0-10-6-6.
The paper provides an overview of scientific and technical literature in the field of advanced technologies for the production of metal matrix composite based on aluminum alloys reinforced with continuous or discontinuous alumina fibers. The main processing methods of receiving this class of materials, their advantages and shortcomings are shown. The paper provides on physical-mechanical properties of metal composite materials on the basis of aluminum alloys reinforced by aluminum oxide fibers. All leading countries in the world are engaged in development of metal matrix composite based on aluminum alloy reinforced with continuous and discontinuous fibers of Al2O3. Space and military agencies demonstrate a particular interest in such developments Tendencies of development of technological approaches to production of metal matrix composite based on the aluminum alloys reinforced by aluminum oxide fibers are revealed.
2. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period to 2030] // Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
4. Kablov E.N., Ospennikova O.G., Bazyleva O.A. Materialy dlya vysokonagruzhennyh detalej gazoturbinnyh dvigatelej [Материалы для высоконагруженных деталей газотурбинных двигателей] // Vestnik MGTU im. N.E. Baumana. 2011. №SP2. S. 13–19.
5. Tarasov Yu.M., Antipov V.V. Novye materialy VIAM – dlya perspektivnoj aviacionnoj tehkniki proizvodstva OAO «OAK» [The VIAM new materials – for perspective aviation engineering of production of JSC «OAK»] // Aviacionnye materialy i tehnologii. 2012. №2. S. 5–6.
6. Sorokin O.Yu., Grashhenkov D.V., Solntsev S.St., Evdokimov S.A. Keramicheskie kompozicionnye materialy s vysokoj okislitelnoj stojkostyu dlya perspektivnyh letatelnyh apparatov (obzor) [Ceramic composite materials with high oxidation resistance for the novel aircrafts (review)] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №6. St. 08. Available at: http://www.viam-works.ru (accessed: March 18, 2016). DOI: 10.18577/2307-6046-2014-0-6-8-8.
7. Kablov E.N., Shchetanov B.V., Grashhenkov D.V., Shavnev A.A., Nyafkin A.N. Metallomatrichnye kompozicionnye materialy na osnove Al–SiC [Metalmatrix composite materials on the basis of Al–SiC] // Aviacionnye materialy i tehnologii. 2012. №S. S. 373–380.
8. Method of making fiber reinforced aluminum matrix composite: pat. 6460597 US; publ. 08.10.02. 13 p.
9. Metal matrix composite wires, cables, and method: pat. 6344270 US; publ. 05.02.02. 15 p.
10. Metal matrix composites, and methods for making the same: pat. 2006021729 US; publ. 02.02.06. 11 p.
11. Method of making metal matrix composites: pat. 6485796 US; publ. 26.11.02. 20 р.
12. Method for making metal cladded metal matrix composite wire: pat. 7131308 US. publ. 07.11.06. 20 р.
13. Aluminum matrix composite wire: pat. 6913838 US; publ. 05.07.05. 22 р.
14. Fiber reinforced aluminum matrix composite with improved interfacial bonding: pat. 5435374 US; publ. 25.07.95. 8 р.
15. In-situ strengthened metal matrix composite: pat. 2219169 CA; publ. 25.04.98. 8 р.
16. Methods of fabricating nozzle plates 2006026328 WO; publ. 09.03.2006. 10 р.
17. Faserformkoerper and process for its manufacture and use of formkoerpers to manufacture faserverstaerkter aluminum castings: pat. 4123677 DE; publ. 21.01.93. 8 р.
18. Preparation of yogurt containing confectionery pieces and product thereof: pat. 2006165844 US; publ. 27.07.06. 8 р.
19. Preparation method for light high-strength and high-tenacity aluminum-matrix composite material: pat. 102168214B CN; publ. 17.07.13. 13 р.
20. Brake facing made of magnesium borate crystal whisker and ceramic particle reinforced aluminium base composite material and its preparation process: pat. 1414132 CN; publ. 30.04.03. 11 р.
21. Lin GENG, Hong-yu XU, Kuai YU, Hong-lin WANG. Aging behavior of Al2O3 short fiber reinforced Al–Cu alloy composites // Transactions of Nonferrous Metals Society of China. 2007. V. 17. Issue 5. P. 1018–1021.
Influence of modes of annealing on tendency to fragile fracture during storage or when machining large-size forgings from high-strength corrosion-resistant steel 18kH13N4К4S2АМ3 is investigated. It is revealed that the reason of fragile fracture is violation of modes of annealing, bringing to existence in structure of not tempered martensite that in the presence of residual stress in a forging leads to cracking. It is shown that an optimum mode of annealing is the mode allowing to get structure of the high-tempered martensite with a small amount of stable retained austenite (4–10 %) and evenly distributed carbides (carbonitrides). Work is executed within implementation of the complex scientific direction 8.2. «High-strength constructional and corrosion-resistant welded steels with high fracture toughness» («The strategic directions of development of materials and technologies of their processing for the period till 2030»)
2. Kablov E.N., Ospennikova O.G., Lomberg B.S. Strategicheskie napravleniya razvitiya konstrukcionnyh materialov i tehnologij ih pererabotki dlya aviacionnyh dvigatelej nastoyashhego i budushhego [The strategic directions of development of constructional materials and technologies of their processing for aircraft engines of the present and the future] // Avtomaticheskaya svarka. 2013. №10. S. 23–32.
3. Bratuhin A.G., Demchenko O.F., Dolzhenkov N.N., Krivonogov G.S. Vysokoprochnye korrozionnostojkie stali sovremennoj aviacii [High-strength corrosion-resistant steels modern aircraft]. M.: MAI, 2006. 401 s.
4. Voznesenskaya N.M., Kablov E.N., Petrakov A.F., Shalkevich A.B. Vysokoprochnye korrozionnostojkie stali austenito-martensitnogo klassa [High-strength corrosion-resistant steel of the austenito-martensitic class] // Metallovedenie i termicheskaya obrabotka metallov. 2002. №7. S. 34–37.
5. Tonysheva O.A., Voznesenskaya N.M. Perspektivnye vysokoprochnye korrozionnostojkie stali, legirovannye azotom (sravnitelnyj analiz) [Perspective high-strength corrosion-resistant steels alloyed with nitrogen (comparative analysis] // Aviacionnye materialy i tehnologii. 2014. №3. S. 27–32.
6. Pevzner L.M., Kubyshkina T.D. Metody kontrolya i issledovaniya mashinostroitelnyh materialov: spravochnoe posobie [Control methods and researches of machine-building materials: handbook]. M.: Mashinostroenie, 1971. T. 1: Fizicheskie metody issledovaniya metallov. S. 446.
7. Potak Ya.M. Vysokoprochnye stali. Ser.: Uspehi sovremennogo metallovedeniya [High-strength became. Series: Successes of modern metallurgical science]. M.: Metallurgiya. 1972. 208 s.
8. Malinkina E.I. Obrazovanie treshhin pri termicheskoj obrabotke stalnyh izdelij [Formation of cracks at thermal processing of steel products]. M.: Mashinostroenie, 1965. 176 s.
9. Potak Ya.M. Hrupkie razrusheniya stali i stalnyh detalej [Brittle destructions became also steel details]. M.: Oborongiz, 1955. 390 s.
10. Kablov E.N., Krivonogov G.S., Petrakov A.F., Kozlovskaya V.I. Vysokoprochnye stali dlya raboty v kriogennyh toplivah [High-strength steels for work in cryogenic fuels] // Aviacionnye materialy i tehnologii. 2000. №2. S. 17–24.
11. Krivonogov G.S., Kablov E.N., Petrakov A.F., Birman S.I. Vyazkost vysokoprochnyh korrozionnostojkih stalej posle nagreva pri temperaturah 623–773 K [Viscosity high-strength corrosion-resistant steels after heating at temperatures of 623-773 K] // Aviacionnye materialy i tehnologii. 2000. №2. S. 9–16.
12. Kablov E.N., Krivonogov G.S. Rabotosposobnost' vysokoprochnyh korrozionnostojkih stalej pri vozdejstvii vodoroda [Working capacity high-strength corrosion-resistant staly at hydrogen influence] // Metally. 2002. №1. S. 42–51.
13. Kolachev B.A. Vodorodnaya hrupkost metallov [Hydrogen embrittlement of metals]. M.: Metallurgiya, 1985. 216 s.
14. Orlov M.R., Ospennikova O.G., Gromov V.I. Razvitie mehanizmov vodorodnoj i bejnitnoj hrupkosti konstrukcionnoj stali v processe ekspluatacii krupnogabaritnyh konstrukcij [Development of mechanisms of hydrogen and bainitic embrittlement of structural steel in use large-size designs] // Aviacionnye materialy i tehnologii. 2012. №S. S. 88–93.
15. Grigorenko V.B., Orlov M.R., Morozova L.V., Zhuravleva P.L. Issledovanie staticheskogo razrusheniya boltov iz stali 30HGSA v usloviyah ekspluatacii [Research of static fracture of bolts from 30KhGSА steel in operating conditions] // Aviacionnye materialy i tehnologii. 2014. №S4. S. 125–135. DOI: 10.18577/2071-9140-2014-0-s4-125-135.
16. Grigorenko V.B., Morozova L.V., Orlov M.R. Issledovanie prichin poyavleniya uchastkov s razlichnoj morfologiej izloma v kovanyh zagotovkah iz stali 38HN3MFA [Research of the reason of emergence of sites with different morphology of a break in shod preparation from steel 38HN3MFA] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №8. St. 11. Available at: http://www.viam-works.ru (accessed: September 01, 2016). DOI: 10.18577/2307-6046-2014-0-8-11-11.
The article introduces VIAM experience of work with copper-beryllium alloys: from production of copper-beryllium ligatures to obtaining beryllium bronze for special purposes. New Cu–Be–Ni-based composition of beryllium bronze as well as the technology of producing extruded bars with improved combination of strength and physical properties to increase service life of produced products has been developed. The research shows that the high resistance to rupture (1140–1210 MPa) and hardness index 42 HRC that beryllium bronze bars receive after heat treatment allow increasing durability of products. The high heat conductivity (144 W/(м•K)) provides better heat removal from friction couple thereby avoiding overheat of the products as well as increasing their resource. Work is executed within implementation of the complex scientific direction 8.6. «Elinvar, wear-resistant alloys and high-strength beryllium-bearing steels for devices and units» («The strategic directions of development of
2. Mashinostroenie: enciklopediya [Mechanical engineering: encyclopedia]. M.: Mashinostroenie, 2001. T. II-3. Cvetnye metally i splavy. Kompozicionnye metallicheskie materialy / pod red. I.N. Fridlyandera, E.N. Kablova. 880 s.
3. Papirov I.I. Berillij v splavah: spravochnik [Beryllium in alloys: directory]. M.: Energoatomizdat, 1986. S. 147.
4. Kaskov V.S. Berillij i materialy na ego osnove [Beryllium and materials on its basis] // Aviacionnye materialy i tehnologii. 2012. №S. S. 222–226.
5. Aviacionnye materialy i tehnologii: nauch.-tehnich. sb. / pod obshh. red. E.N. Kablova [Aviation materials and technologies: scientific and technical collection / gen ed. by E.N. Kablov]. M.: VIAM, 2000. Vyp.: Berillij – konstrukcionnyj material XXI veka. 136 s.
6. Istoriya aviacionnogo materialovedeniya. VIAM – 80 let: gody i lyudi / pod obshh. red. E.N. Kablova [History of aviation materials science. VIAM – 80 years: years and people / gen. ed. by E.N. Kablov]. M.: VIAM, 2012. S. 173–180.
7. Fokanov A.N., Kaskov V.S., Podurazhnaya V.F. Pajka berilliya so splavom monel pri izgotovlenii rentgenovskih okon [Beryllium brazing with monel alloy in production x-ray windows] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №8. St. 02. Available at: http://www.viam-works.ru (accessed: July 08, 2016). DOI: 10.18577/2307-6046-2014-0-8-2-2.
8. Pripoj na osnove medi: pat. 2279957 Ros. Federaciya [Solder on the basis of copper: stalemate. 2279957 Rus. Federation]; zayavl. 21.12.04; opubl. 20.07.06. Byul. №20.
9. Pastuhova Zh.P., Rahshtadt A.G. Pruzhinnye splavy cvetnyh metallov. 2-e izd. [Spring non-ferrous alloys. 2nd ed.]. M.: Metallurgiya, 1983. S. 15.
10. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period to 2030] // Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
11. Kaskov V.S., Zhirnov A.D. Izgotovlenie konstrukcionnyh izdelij iz berilliya v VETC VIAM i ih primenenie v razlichnyh otraslyah nauki i tehniki [Manufacturing of constructional products from beryllium in VETTs VIAM and their application in different branches of science and technicians] // Aviacionnye materialy i tehnologii: nauch.-tehnich. sb. M.: VIAM, 2000. Vyp. Berillij – konstrukcionnyj material XXΙ veka. S. 19–22.
12. Fridlyander I.N., Yacenko K.P., Terenteva T.E., Helkovskij-Sergeev N.A. Berillij – material sovremennoj tehniki [Beryllium – material of modern equipment]. M.: Metallurgiya, 1992. S. 115.
13. Antipov V.V. Strategiya razvitiya titanovyh, magnievyh, berillievyh i alyuminievyh splavov [Strategy of development of titanium, magnesium, beryllium and aluminum alloys] // Aviacionnye materialy i tehnologii. 2012. №S. S. 157–167.
14. Dvoretskov R.M., Volkova O.S., Radzikovskaya V.N., Burova V.N. Opredelenie berilliya v sovremennyh aviacionnyh materialah metodom atomno-emissionnoj spektrometrii s induktivno svyazannoj plazmoj [Determination of beryllium in modern aviation materials by atomic emission spectrometry with inductively coupled plasma] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №4. St. 05. Available at: http://www.viam-works.ru (accessed: July 08, 2016). DOI: 10.18577/2307-6046-2016-0-4-5-5.
15. Berman S.I. Mednoberillievye splavy [Copper beryllium alloys]. M.: Metallurgiya, 1966. S. 10.
Overview of the results of patent research in the field of development of materials and multilayered vandal-proof glazing compositions, nonshatterable, safety technical means of protection, designed for open installation in public places is presented. The main world trends are identified in the field of development of vandal-proof transparent composite materials provided reducing weight of products, improvement in performance and giving variable functional properties to the material . Work is executed in the framework of the integrated scientific direction 15.4. «Optical materials and glazing materials» («Strategic directions of development of materials and technologies for processing them for the period up to 2030»)
2. GOST R 51136–2008. Stekla zashhitnye mnogoslojnye. Obshhie tehnicheskie usloviya [GOST P 51136-2008. Glasses the protective multi-layer. General specifications]. M., 2008. 24 s.
3. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period to 2030] // Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
4. Kablov E.N. Konstrukcionnye i funkcionalnye materialy – osnova ekonomicheskogo i nauchno-tehnicheskogo razvitiya Rossii [Constructional and functional materials – basis of economic and scientific and technical development of Russia] // Voprosy materialovedeniya. 2006. №1. S. 64–67.
5. Kablov E.N. Aviakosmicheskoe materialovedenie [Aerospace materials science] // Vse materialy. Enciklopedicheskij spravochnik. 2008. №3. S. 2–14.
6. Sposob formovaniya izdelij iz organicheskogo stekla: pat. 2203804 Ros. Federaciya [Way of formation of products from organic glass: pat. 2203804 Rus. Federation]; zayavl. 19.12. 00; opubl.10.05.03.
7. Mekalina I.V., Trigub T.S., Bogatov V.A., Sentyurin E.G. Novoe vysokoteplostojkoe orientirovannoe orgsteklo marki VOS-2AO [The new high-heatresistant oriented organic glass of the VOS-2AO brand] // Aviacionnye materialy i tehnologii. 2010. №3. S. 14–19.
8. Mekalina I.V., Sentyurin E.G., Klimova S.F., Bogatov V.A. Novye «serebrostojkie» organicheskie stekla [New «silver resistant» organic glasses] // Aviacionnye materialy i tehnologii. 2012. №4. S. 45–48.
9. Petrov A.A., Mekalina I.V., Sentyurin E.G., Bogatov V.A. Issledovanie osobennostej izgotovleniya detalej ostekleniya iz chastichno sshityh organicheskih stekol [Features of manufacture of glazing parts from partially cross-linked organic glasses] // Aviacionnye materialy i tehnologii. 2013. №2. S. 32–34.
10. Mnogoslojnaya steklopolimernaya kompoziciya: pat. 2184093 Ros. Federaciya [The multi-layer glass polymeric composition: pat. 2184093 Rus. Federation]; zayavl. 20.06.20; opubl. 27.06.02.
11. Sposob izgotovleniya mnogoslojnogo stekla: pat. 2223240 Ros. Federaciya [Way of manufacturing of multi-layer glass: pat. 2223240 Rus. Federation]; zayavl. 26.12.01; opubl.10.02.04.
12. Sposob izgotovleniya mnogoslojnogo stekla: pat. 2228851 Ros. Federaciya [Way of manufacturing of multi-layer glass: pat. 2228851 Rus. Federation]; zayavl. 16.03.01; opubl. 20.05.04.
13. Prozrachnoe mnogoslojnoe stroitelnoe osteklenie: pat. 2396224 Ros. Federaciya [Transparent multi-layer construction glazing: pat. 2396224 Rus. Federation]; zayavl. 01.04.09; opubl. 10.08.10.
14. Krynin A.G., Hohlov Yu.A., Bogatov V.A., Kislyakov P.P. Prozrachnye interferencionnye pokrytiya dlya funkcionalnyh materialov ostekleniya [Transparent interferential coatings for functional materials of glazing] // Trudy VIAM : elektron. nauch.-tenhich. zhurn. 2013. №11. St. 05. Available at: http://viam-works.ru (accessed at: February, 24 2015).
15. Struktura udaroprochnogo ostekleniya: pat. 4312903 SShA [Structure of shock-resistant glazing: pat. 4312903 USA]; zayavl. 05.03.80; opubl. 26.01.82.
16. Sposob izgotovleniya mnogoslojnyh bezoskolochnyh stekol: pat. 81028318 Germaniya [Way of manufacturing of multi-layer shatter-proof glasses: stalemate. 81028318 Germany]; zayavl. 13.06.08; opubl. 17.12.09.
17. Mnogoslojnaya steklopolimernaya kompoziciya: pat. 2184093 Ros. Federaciya [Multi-layer glass polymer composition: pat. 2184093 Dews. Federation]; zayavl. 20.06.00; opubl. 27.06.02.
18. Struktura udaroprochnogo ostekleniya: pat. 4312903 SShA [Structure of shock-resistant glazing: pat. 4312903 USA]; zayavl. 05.03.80; opubl. 26.01.82.
19. Sposob laminirovaniya listov stekla s ispolzovaniem mikrovolnovogo izlucheniya: pat. 7063760 SShA [Way of lamination of sheets of glass with use of microwave radiation: pat. 7063760 USA]; zayavl. 13.01.04; opubl. 20.06.06.
20. Sposob laminirovaniya stekla s ispolzovaniem korotkovolnovoj radiacii: pat. 7063760 SShA [Way of lamination of glass with use of short-wave radiation: pat. 7063760 USA]; zayavl. 13.01.2004; opubl. 20.06.06.
21. Sposob laminirovaniya listov stekla s ispolzovaniem korotkovolnovogo izlucheniya: pat. 7344613 SShA [Way of lamination of sheets of glass with short wave radiation use: pat. 7344613 USA]; zayavl. 09.01.06; opubl. 18.03.08.
22. Prozrachnoe osteklenie s pokrytiem. Sposob izgotovleniya: pat. 4710433 SShA [Transparent glazing with covering. Way of manufacturing: pat. 4710433 USA]; zayavl. 09.07.86; opubl. 01.12.87.
23. Mnogoslojnoe osteklenie s zashhitoj ot elektromagnitnogo izlucheniya: pat. 2793106 Franciya [Multi-layer glazing with protection against electromagnetic radiation: pat. 2793106 France]; zayavl. 28.04.99; opubl. 03.11.00.
24. Prozrachnoe abrazivostojkoe osteklenie. Sposob izgotovleniya: pat. 4272587 SShA [Transparent abrasive resistant glazing. Way of manufacturing: pat. 4272587 USA]; zayavl. 17.12.79; opubl. 09.06.81.
Research on development of film-fabric material intended for manufacturing ballonets, survival equipment of helicopter crew are conducted. Frictioned fabric applied now for manufacturing ballonets has an insufficient bonding strength of coating with fabric and as a result short service life of ballonets. For carrying out research materials have been made of synthetic polyamide or polyester fabrics with double-sided polymer coating on the basis of polyurethane rubbers of brands SKU-8A and SKU-8TB, mix of ethylene-propylene rubber of SKEPT-40 brand with butyl rubber of BK-1675N brand and siloxane rubber of SKT brand. Their physical, physicomechanical and special properties are studied. It is shown that film-fabric material made on the basis of polyester fabric аrt. 208 and polyurethane SKU-8TB rubber is the most conformed to the requirements.
2. Kablov E.N. Materialy i himicheskie tehnologii dlya aviacionnoj tehniki [Materials and chemical technologies for aviation engineering] // Vestnik Rossijskoj akademii nauk. 2012. T. 82. №6. S. 520–530.
3. Kablov E.N. Aviakosmicheskoe materialovedenie [Aerospace materials science] // Vse materialy. Enciklopedicheskij spravochnik. 2008. №3. S. 2–14.
4. Savenkova A.V., Chursova L.V., Eliseev O.A., Glazov P.A. Germetiki aviacionnogo naznacheniya [Hermetics of aviation assignment] // Aviacionnye materialy i tehnologii. 2012. №3. S. 40–43.
5. Kablov E.N. Rossii nuzhny materialy novogo pokoleniya [Materials of new generation are necessary to Russia] // Redkie zemli. 2014. №3. S. 8–13.
6. TSO-C69с. Technical Standard Orbler: publ. 18.08.1999. Р. 1–20.
7. Normy letnoj godnosti samoletov transportnoj kategori: AP-25; 3-e izd., s popravkami 1–7: utv. Postanovleniem 28-j sessii Soveta po aviacii i ispolzovaniyu vozdushnogo prostranstva 11.12.2008 [Standards of the flight validity of airplanes of transport category: AP-25; 3rd ed., with corrections 1–7: are approved as the Resolution of the 28th session of Council for aircraft and use of air space November 12, 2008]. M.: Aviaizdat, 2014. 278 s.
8. Barbotko S.L. Pozharobezopasnost aviacionnyh materialov [Fire safety of aviation materials] // Aviacionnye materialy i tehnologii. 2012. №S. S. 431–439.
9. Nesterova T.A., Barbotko S.L., Nikolaeva M.F., Gerter Yu.A. Mnogoslojnyj zashhitno-dekorativnyj material dlya dekorirovaniya detalej v salonah samoletov i vertoletov [Multi-layer protective and decorative material for decorating details in the cabin of aircraft and helicopters] // Trudy VIAM: elektron. nauch.-tehni. zhurn. 2013. №8. St. 04. Available at: http://www.viam-works.ru (accessed: June 11, 2016).
10. Sytyj Yu.V., Sagomonova V.A., Kislyakova V.I., Bolshakov V.A. Vibropogloshhayushhie materialy na osnove termojelastoplastov [Vibro absorbing materials on the basis of thermoelastoplastics] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №3. St. 06. Available at: http://viam-works.ru (accessed: June 11, 2016).
11. Platonov M.M., Nesterova T.A., Nazarov I.A., Bejder E.Ya. Pozharobezopasnyj material na tekstilnoj osnove s poliuretanovym pokrytiem dlya naduvnoj obolochki spasatelnogo trapa [Fabric-based fireproof material with polyurethane coating for inflatable shell of rescue ladder] // Aviacionnye materialy i tehnologii. 2013. №2. S. 50–54.
12. Platonov M.M., Shuldeshov E.M., Nesterova T.A., Sagomonova V.A. Akusticheskie polimernye materialy novogo pokoleniya (obzor) [Acoustic polymeric materials of new generation (review)] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №4. St. 09. Available at: http://viam-works.ru (accessed: 30.06.2016). DOI: 10.18577/2307-6046-2016-0-4-9-9.
13 Kukin G.N., Solov'eva A.N. Tekstilnoe materialovedenie [Textile materials science]. M.: Lenprombytizdat, 1985. S. 163–202.
14 Reznichenko S.V. Bolshoj spravochnik rezinshhika [The large references book for specialist in rubbers]. M.: MAI, 2012. Ch. 1: Kauchuki i ingredienty. S. 340–346.
15. Alifanov E.V., Chaykun A.М., Venediktova M.A., Naumov I.S. Osobennosti receptur rezin na osnove etilenpropilenovyh kauchukov i ih primenenie v izdeliyah specialnogo naznacheniya (obzor) [Specialties of rubber compounds recipes based on ethylene-propylene rubbers and their application in the articles for special purpose (review)] // Aviacionnye materialy i tehnologii. 2015. №2 (35). S. 51–55. DOI: 10.18577/2071-9140-2015-0-2-51-55.
16. Venediktova M.A., Naumov I.S., Chajkun A.M., Eliseev O.A. Sovremennye tendencii v oblasti ftorsiloksanovyh i siloksanovyh kauchukov i rezin na ih osnove (obzor) [Investigation of properties changing of serial rubber compounds on the base of different rubbers in standardized working fluids] // Aviacionnye materialy i tehnologii. 2014. №S3. S. 17–24. DOI: 10.18577/2071-9140-2014-0-S3-17-24.
17. Andrianova G.P. Himiya i tehnologiya polimernyh plenochnyh materialov i iskusstvennoj kozhi [Chemistry and technology of polymeric film materials and imitation leather]. M.: Legkaya i pishhevaya promyshlennost, 1981. Ch. 2: Tehnologicheskie processy proizvodstva polimernyh plenochnyh materialov i iskusstvennoj kozhi. S. 160–211.
The influence of climatic factors and operating fluids on the properties of CFRP VKU-39 (on the basis of reinforcing carbon fabric and epoxy binder VSE-1212), manufactured by autoclave molding is investigated. It is shown that the CFRP VKU-39 has a high level of property preservation (not less than 80% of the initial value) when exposed to environmental factors (thermal and hydrothermal aging, resistance to the salt spray chamber, water, moisture, fuel, oil, anti-icing fluid and solvent ) and meets the aviation safety requirements for corrosion and flammability. The work is executed within the implementation of the complex scientific direction 13.2. «Constructional PСM» («The strategic directions of development of materials and technologies of their processing for the period till 2030»)
2. Kablov E.N. Sovremennye materialy – osnova innovacionnoj modernizacii Rossii [Modern materials – basis of innovative modernization of Russia] // Metally Evrazii. 2012. №3. S. 10–15.
3. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period to 2030] // Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
4. Gunyaev G.M., Krivonos V.V., Rumyancev A.F., Zhelezina G.F. Polimernye kompozicionnye materialy v konstrukciyah letatelnyh apparatov [Polymeric composite materials in designs of flight vehicles] // Konversiya v mashinostroenii. 2004. №4 (65). S. 65–69.
5. Kablov E.N. Materialy i himicheskie tehnologii dlya aviacionnoj tehniki [Materials and chemical technologies for aviation engineering] // Vestnik Rossijskoj akademii nauk. 2012. T. 82. №6. S. 520–530.
6. Hrulkov A.V., Dushin M.I., Popov Yu.O., Kogan D.I. Issledovaniya i razrabotka avtoklavnyh i bezavtoklavnyh tehnologij formovaniya PKM [Researches and development autoclave and out-of-autoclave technologies of formation of PCM] // Aviacionnye materialy i tehnologii. 2012. №S. S. 292–301.
7. Gulyaev I.N., Zelenina I.V., Raskutin A.E. Ugleplastiki na osnove uglerodnyh tkanej importnogo proizvodstva i rossijskih rastvornyh svyazuyushhih [Carbon plastics on the basis of carbon fabrics of import production and the Russian solution binding] // Voprosy materialovedeniya. 2014. №1 (77). S. 116–125.
8. Platonov A.A., Dushin M.I. Konstrukcionnyj ugleplastik VKU-25 na osnove odnonapravlennogo preprega [Carbon composites VKU-25 based on unidirectional prepregs] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №11. St. 06. Available at: http://www.viam-works.ru (accessed: April 29, 2016). DOI: 10.18577/2307-6046-2015-0-11-6-6.
9. Efimov V.A., Shvedkova A.K., Korenkova T.G., Kirillov V.N. Issledovanie polimernyh konstrukcionnyh materialov pri vozdejstvii klimaticheskih faktorov i nagruzok v laboratornyh i naturnyh usloviyah [Investigation of polymer composite materials under effect of climatic factors and loads in laboratory and environmental conditions] // Aviacionnye materialy i tehnologii. 2013. №S2. S. 68–73.
10. Kablov E.N., Startsev O.V., Krotov A.S., Kirillov V.N. Klimaticheskoe starenie kompozicionnyh materialov aviacionnogo naznacheniya. III. Znachimye faktory stareniya [Climatic aging of composite materials of aviation assignment. III. Significant factors of aging] // Deformaciya i razrushenie materialov. 2011. №1. S. 34–40.
11. Kablov E.N., Startsev O.V., Krotov A.S., Kirillov V.N. Klimaticheskoe starenie kompozicionnyh materialov aviacionnogo naznacheniya. I. Mehanizmy stareniya [Climatic aging of composite materials of aviation assignment. I. Aging mechanisms] // Deformaciya i razrushenie materialov. 2010. №11. S. 19–27.
12. Kirillov V.N., Startsev O.V., Efimov V.A. Klimaticheskaya stojkost i povrezhdaemost polimernyh kompozicionnyh materialov, problemy i puti resheniya [Climatic firmness and damageability of polymeric composite materials, problems and solutions] // Aviacionnye materialy i tehnologii. 2012. №S. S. 412–423.
13. Kablov E.N., Startsev O.V., Krotov A.S., Kirillov V.N. Klimaticheskoe starenie kompozicionnyh materialov aviacionnogo naznacheniya. II. Relaksaciya ishodnoj strukturnoj neravnovesnosti i gradient svojstv po tolshhine [Climatic aging of composite materials of aviation assignment. II. Relaxation of initial structural non-equilibrium and gradient of properties on thickness] // Deformaciya i razrushenie materialov. 2010. №12. S. 40–46.
14. Kablov E.N., Grashhenkov D.V., Erasov V.S., Anchevskij I.E., Il'in V.V., Valter R.S. Stend dlya ispytaniya na klimaticheskoj stancii GCKI krupnogabaritnyh konstrukcij iz PKM [The stand for testing for the GTsKI climatic stations of large-size designs from PCM] // Sb. dokl. IX Mezhdunarod. nauch. konf. po gidroaviacii. «Gidroaviasalon-2012» 2012. S. 122–123.
15. Kablov E.N., Startsev O.V., Medvedev I.M., Panin S.V. Korrozionnaya agressivnost primorskoj atmosfery. Ch. 1. Faktory vliyaniya (obzor) [Corrosion aggression of the seaside atmosphere. P.1. Factors of influence (review)] // Korroziya: materialy, zashhita. 2013. №12. S. 6–18
The results of research on development of finishing intermediate layer on carbon fiber under thermoflexible matrix (polysulphone) for the purpose of increase in characteristics of the fiber itself and improvement of physical-mechanical properties of carbon plastic on its basis are presented in the article. Properties of carbon plastics on the basis of carbon reinforcements – ELUR, UKN-2500 and UKN-5000 are given. The Influence of finishing carbon fibers on interlaminar strength and porosity of carbon plastics on the basis of the polysulfonic binding is shown. The assessment of efficiency of finishing compositions on the basis of polysulphone PSF-TP, polystyrene, bismaleinimides and oligoetherakrylates is given. It is shown that for finishing carbon fibers both polymers and oligomerous structures can be used. However the greatest effect is shown when using oligomerous or monomeric finishing compositions which are water-soluble, possess the increased thermal stability and have functio
2. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
3. Kablov E.N. Aviacionnoe materialovedenie: itogi i perspektivy [Aviation materials science: results and perspectives] // Vestnik Rossijskoj akademii nauk. 2002. T. 72. №1. S. 3–12.
4. Komarov G.A. Sostoyanie, perspektivy i problemy primeneniya PKM v tehnike [Condition, perspectives and problems of application of PCM in equipment] // Polimernye materialy. 2009. №2. S. 5–9.
5. Petrova G.N., Rumyantseva T.V., Perfilova D.N., Bejder E.Ya., Gryaznov V.I. Termoelastoplasty – novyj klass polimernyh materialov [Thermoelastoplastics – new class of polymeric materials] // Aviacionnye materialy i tehnologii. 2010. №4. S. 20–25.
6. Petrova G.N. Napravlennaya modifikaciya polisulfonov i sozdanie na ih osnove litevyh i kompozicionnyh materialov: avtoref. dis. … kand. tehn. nauk [The directed updating of polysulphones and creation on their basis of molding and composite materials: thesis, Dr. Sc. (Tech.)]. M.: VIAM, 2011. S. 10–27.
7. Mihajlin Yu.A. Termoustojchivye polimery i polimernye materialy na ih osnove [Thermoresistant polymers and polymeric materials on their basis] // Polimernye materialy. 2005. №4. S. 29–32.
8. Gryaznov V.I., Petrova G.N., Yurkov G.Yu., Buznik V.M. Smesevye termojelastoplasty so specialnymi svojstvami [Thermoplastic mixtures with special properties] // Aviacionnye materialy i tehnologii. 2014. №1. S. 25–29. DOI: 10.18577/2071-9140-2014-0-1-25-29.
9. Mihajlin Yu.A. Termoustojchivye polimery i polimernye materialy [Thermoresistant polymers and polymeric materials]. SPb.: Professiya, 2006. S. 29–30.
10. Petrova G.N., Bejder E.Ya., Starostina I.V. Litevye termoplasty dlya izdelij aviacionnoj tehniki [Molding thermoplastics for products of aviation engineering] // Vse materialy. Enciklopedicheskij spravochnik. 2016. №7. S. 21–29.
11. Polimernye kompozicionnye materialy. Svojstva. Struktura. Tehnologii / pod red. A.A. Berlina [Polymeric composite materials. Properties. Structure. Technologies / gen. ed. by A.A. Berlin]. SPb.: Professiya, 2009. 560 s.
12. Petrova G.N., Beider E.Yа. Construction materials based on reinforced thermoplastics Chemistry and Materials Science // Russian Journal of General Chemistry. 2011. Vol. 81. No. 5. Р. 1001–1007.
13. Richardson M. Promyshlennye polimernye kompozicionnye materialy [Industrial polymeric composite materials]. M.: Himiya, 1980. 472 s.
14. Brandshtetter F. Tendencii i perspektivy razvitiya polimernyh materialov [Tendencies and perspectives of development of polymeric materials] // Polimernye materialy: izdeliya, oborudovanie, tehnologii. 2005. №5. S. 2–4.
15. Termoplasty konstrukcionnogo naznacheniya / pod red. E.B. Trostyanskoj [Thermoplastics of constructional assignment / ed. by E.B. Trostyanskaya]. M.: Himiya, 1975. 240 s.
16. Berlin A.A., Pahomova L.K. Polimernye matricy dlya vysokoprochnyh armirovannyh kompozitov. Obzor [Polymeric matrixes for the high-strength reinforced composites. Overview] // Vysokomolekulyarnye soedineniya. 1990. T. (A) 32. №7. S. 1354–1370.
17. Kerber M.L., Vinogradov V.M., Golovkin G.S. i dr. Polimernye kompozicionnye materialy: struktura, svojstva, tehnologiya [Polymeric composite materials: structure, properties, technology]. SPb.: Professiya, 2011. S. 32–33.
18. Mihajlin Yu.A. Konstrukcionnye polimernye kompozicionnye materialy [Constructional polymeric composite materials]. SPb.: Nauchnye osnovy i tehnologii, 2010. 822 s.
19. Perepelkin K.E. Armiruyushhie volokna i voloknistye polimernye kompozity [Reinforcing fibers and fibrous polymeric composites]. M.: Nauchnye osnovy i tehnologii, 2009. 658 s.
20. Berlin A.A., Volfson S.A., Oshmyan V.G., Enikolopov N.S. Principy sozdaniya kompozicionnyh polimernyh materialov [Principles of creation of composite polymeric materials]. M: Himiya, 1990. 238 s.
21. Mihajlin Yu.A., Kerber M.L., Gorbunova I.Yu. Svyazuyushhie dlya polimernyh kompozicionnyh materialov [Binding for polymeric composite materials ] // Plasticheskie massy. 2002. №2. S. 14–21.
22. Gunyaev G.M. Struktura i svojstva polimernyh voloknistyh kompozitov [Structure and properties of polymeric fibrous composites]. M.: Himiya, 1981. 232 s.
23. Varshavskij V.A. Uglerodnye volokna [Carbon fibers]. M.: VNNITI, 2005. 498 s.
24. Fitcer E., Difendorf R. i dr. Uglerodnye volokna i uglekompozity. Per. s angl. [Carbon fibers and uglekompozity. Trans. from Engl.]. M.: Mir, 1988. 336 s.
25. Gunyaev G.M., Gofin M.Ya. Uglerod-uglerodnye kompozicionnye materialy [Carbon-carbon composite materials] // Aviacionnye materialy i tehnologii. 2013. №S1. S. 62–90.
26. Dai Z., Zhang B., Shi F., Li M., Zhang Z., Gu Y. Chemical interaction between carbon fibers and surface sizing // Journal of Applied Polymer Science. 2012. Vol. 124. P. 2127–2132.
27. Lazareva T.K., Ermakin S.N., Kostyagina V.A. Problemy sozdaniya kompozicionnyh materialov na osnove konstrukcionnyh termoplastov [Problems of creation of composite materials on the basis of constructional thermoplastics] // Uspehi v himii i himicheskoj tehnologii. 2010. T. 24. №4. S. 58–63.
28. Dovgyalo V.A., Zinovev S.N., Pomeranceva K.P., Yurkevich O.R. O vliyanii tehnologii prepregov na konstrukcionnye svojstva ugleplastikov [About influence of technology of prepregs on constructional properties carbonplastics] // Doklady AN BSSR. 1986. T. 30. №3. S. 237–239.
29. Zelenskij E.S., Kuperman A.M., Lebedeva O.V. Armirovannye plastiki na osnove termoplastichnyh svyazuyushhih [The reinforced plastics on the basis of the thermoflexible binding] // Tehnologiya. Ser.: Konstrukcii iz kompozicionnyh materialov. 1991. Vyp. 1. S. 10–21.
30. Peng Q., Xiaodong A. Chemically and uniformly grafting carbon nanotubes onto carbon fibers by poly(amidoamine) for enhancing interfacial strength in carbon fiber composites // Journal of Material Chemistry. 2012. Vol. 22. P. 5928–5931.
31. Beider E.Ya., Petrova G.N., Dykun M.I. Appretirovanie uglerodnyh volokon-napolnitelej termoplastichnyh karboplastikov [Dressing of carbon fibers – fillers of thermoplastic carbon reinforced plastics] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №10. St. 03. Available at: http://www.viam-works.ru (accessed: May 20, 2016). DOI: 10.18577/2307-6046-2014-0-10-3-3.
32. Bejder E.Ya., Malyshenok S.V., Petrova G.N. Kompozicionnye termoplastichnye materialy – svojstva i sposoby pererabotki [Composite thermoflexible materials – properties and ways of processing] // Plasticheskie massy. 2013. №7. S. 56–60.
33. Petrova G.N., Bejder E.Ya. Konstrukcionnye materialy na osnove armirovannyh termoplastov [Constructional materials on the basis of the reinforced thermoplastics] // Rossijskij himicheskij zhurnal. 2010. T. LIV. №1. C. 30–40.
34. Bejder E.Ya., Petrova G.N., Izotova T.F., Gureeva E.V. Kompozicionnye termoplastichnye materialy i penopoliimidy [Thermoplastic composite materials and foam polyimides] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №11. St. 01. Available at: http://www.viam-works.ru (accessed: June 16, 2016).
Physical bases of laser and ultrasonic method of echo-pulse technique for determination of porosity of CFRPs are considered. It is shown that diagnostics parameter under control is a normalized energy of the noise component of the backward scattered acoustic signal determined by spectral characteristics of the acoustic waves scattering by pores.
2. Kablov E.N. Aviakosmicheskoe materialovedenie [Aerospace materials science] // Vse materialy. Enciklopedicheskij spravochnik. 2008. №3. S. 2–14.
3. Kablov E.N. Kontrol kachestva materialov – garantiya bezopasnosti ekspluatacii aviacionnoj tehniki [Quality control of materials – security accreditation of operation of aviation engineering] // Aviacionnye materialy i tehnologii. M.: VIAM, 2001. Vyp. «Metody ispytanij i kontrolya kachestva metallicheskih i nemetallicheskih materialov». S. 3–8.
4. Kablov E.N., Startsev O.V., Krotov A.S., Kirillov V.N. Klimaticheskoe starenie kompozicionnyh materialov aviacionnogo naznacheniya. III. Znachimye faktory stareniya [Climatic aging of composite materials of aviation assignment. III. Significant factors of aging] // Deformaciya i razrushenie materialov. 2011. №1. S. 34–40.
5. Nerazrushayushhij kontrol: spravochnik / pod obshh. red. V.V. Klyueva [Non-destructive testing: the directory / gen. ed. V. V. Klyuyev]. M.: Mashinostroenie, 2008. T. 3.: Ultrazvukovoj kontrol / pod red. I.N. Ermolova, Yu.V. Lange. 864 s.
6. Murashov V.V. Kontrol i diagnostika mnogoslojnyh konstrukcij iz polimernyh kompozicionnyh materialov akusticheskimi metodami [Control and diagnostics of multi-layer designs from polymeric composite materials acoustic methods]. M.: Spektr, 2016. 244 s.
7. Kruglyanskij I.M., Alekseenko A.A. i dr. Klassifikator metodov i sredstv nerazrushayushhego kontrolya konstrukcij iz polimernyh kompozicionnyh materialov [The qualifier of methods and means of non-destructive testing of designs from polymeric composite materials] // Nauchnye trudy MATI im. K.E. Cialkovskogo. 2003. Vyp. 6 (78). S. 222–226.
8. Murashov V.V. K voprosu opredeleniya uprugih i prochnostnyh svojstv polimernyh kompozicionnyh materialov akusticheskim kompleksnym metodom [To question of determination of elastic and strength properties of polymeric composite materials acoustic complex method] // Deformaciya i razrushenie materialov. 2014. №11. S. 39–45.
9. Murashov V.V., Aleksashin V.M. Kontrol prochnosti zony soedineniya elementov integral'nyh konstrukcij iz polimernyh kompozitov ultrazvukovym metodom [Control of durability of zone of connection of elements of integral designs from polymeric composites ultrasonic method] // Klei. Germetiki. Tehnologii. 2014. №7. S. 15–19.
10. Murashov V.V., Laptev A.S. Kontaktnye zhidkosti dlya sozdaniya akusticheskogo kontakta pri ultrazvukovom kontrole mnogoslojnyh konstrukcij iz PKM [Contact liquids for creation of an acoustic contact at ultrasonic control of multi-layer structures from PCM] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №8. St. 10. Available at: http://viam-works.ru (accessed: May 30, 2015). DOI: 10.18577/2307-6046-2015-0-8-10-10.
11. Murashov V.V. Kontrol kleenyh konstrukcij [Control of glued designs] // Klei. Germetiki. Tehnologii. 2005. №1. S. 21–27.
12. Murashov V.V. Nerazrushayushhij kontrol kleevyh soedinenij [Non-destructive testing of glued joints] // Klei. Germetiki. Tehnologii. 2008. №7. S. 21–28.
13. Murashov V.V. Nondestructive Testing of Glued Joints // Polymer Science. Series D. Glues and Sealing Materials. 2009. Vol. 2. No. 1. Р. 58–63.
14. Murashov V.V. Attestation of Glued Articles by Acoustic Impedance Method // Polymer Science. Series D: Glues and Sealing Materials. 2010. Vol. 3. No. 4. Р. 267–273.
15. Murashov V.V. Control of Laminated Structures by the Acoustic Free Vibration Method // Polymer Science. Series D. Glues and Sealing Materials. 2012. Vol. 5. No. 4. Р. 341–345.
16. Murashov V.V., Generalov A.S. Kontrol mnogoslojnyh kleenyh konstrukcij nizkochastotnymi akusticheskimi metodami [Control of multilayer adhesive structures operating in severe climatic condition] // Aviacionnye materialy i tehnologii. 2014. №2. S. 59–67. DOI: 10.18577/2071-9140-2014-0-2-59-67.
17. Murashov V.V. Control of Glued Structures Made of Dissimilar Materials by Ultrasound Reverberation // Polymer Science. Series D. 2016. Vol. 9. No. 3. P. 303–306.
18. Murashov V.V. Kontrol kleenyh konstrukcij akusticheskim impedansnym metodom [Control of glued designs by acoustic impedance method] // Klei. Germetiki. Tehnologii. 2010. №3. S. 13–20.
19. Murashov V.V., Rumyancev A.F., Ivanova G.A., Fajzrahmanov N.G. Diagnostika struktury, sostava i svojstv polimernyh kompozicionnyh materialov [Diagnostics of structure, structure and properties of polymeric composite materials] // Aviacionnye materialy i tehnologii. 2008. №1. S. 17–24.
20. Murashov V.V., Rumyancev A.F. Diagnostika sostava i svojstv polimernyh kompozitov v detalyah i konstrukciyah [Diagnostics of structure and properties of polymeric composites in details and designs] // Kontrol. Diagnostika. 2008. №8. S. 13–17.
21. Murashov V.V. Kontrol monolitnyh i kleenyh konstrukcij iz polimernyh kompozicionnyh materialov akusticheskim impedansnym metodom [Control of monolithic and glued designs from polymeric composite materials acoustic impedance method] // Aviacionnaya promyshlennost. 2009. №3. S. 43–48.
22. Murashov V.V., Trifonova S.I. Kontrol kachestva polimernyh kompozicionnyh materialov ultrazvukovym vremennym sposobom velosimetricheskogo metoda [Quality control of polymer composite materials using ultrasonic time-of-flight velocimetric technique] // Aviacionnye materialy i tehnologii. 2015. №4. S. 86–90. DOI: 10.18577/2071-9140-2015-0-4-86-90.
23. Bakunov A.S., Murashov V.V., Sysoev A.M. Kontrol lopastej vozdushnogo vinta sredstvami nizkochastotnoj akustiki [Control of blades of air screw by means of low-frequency acoustics] // Kontrol. Diagnostika. 2012. №6. S. 72–74.
24. Murashov V.V., Rumyancev A.F. Defekty monolitnyh detalej i mnogoslojnyh konstrukcij iz polimernyh kompozicionnyh materialov i metody ih vyyavleniya. Chast 1. Defekty monolitnyh detalej i mnogoslojnyh konstrukcij iz polimernyh kompozicionnyh materialov [Defects of monolithic details and multi-layer designs from polymeric composite materials and methods of their identification. Part 1. Defects of monolithic details and multi-layer designs from polymeric composite materials] // Kontrol. Diagnostika. 2007. №4. S. 23–31.
25. Bar-Cohen Y., Lih S-S. Experimental enhancements of leaky Lamb wave dispersion data acquisition and implementation challenges to NDT of composites // Materials Evaluation. 2000. Vol. 58. No. 6. P. 801–806.
26. Cawley P., Adams R. Defect types and NDT for composites and bonded joints // Materials Science and Technology. 1989. Vol. 5. Р. 406–447.
27. Kablov E., Murashov V., Rumyantsev A. Diagnostics of Polymer Composites by Acoustic Methods // Ultrasound. Kaunas: Tecnologija. 2006. No. 2. Р. 7–10.
28. Sposob opredeleniya fiziko-mehanicheskih harakteristik polimernyh kompozicionnyh materialov i ustrojstvo dlya ego osushhestvleniya: pat. 2214590 Ros. Federaciya [Way of definition of physicomechanical characteristics of polymeric composite materials and the device for its implementation: pat. 2214590 Rus. Federation]; opubl. 20.10.03. Byul. №29.
29. Sposob opredeleniya fiziko-mehanicheskih harakteristik i sostava polimernyh kompozicionnyh materialov v konstrukciyah ultrazvukovym metodom: pat. 2196982 Ros. Federaciya [Way of definition of physicomechanical characteristics and composition of polymeric composite materials in designs ultrasonic method: pat. 2196982 Rus. Federation]; opubl. 20.01.03. Byul. №2.
30. Karabutov A.A., Murashov V.V., Oraevsky A.A., Podymova N.B. Nondestructive characterization of layered composite materials with a laser optoacoustic sensor // Nondestructive Evaluation of Materials and Composites II (San Antonio, Texas, march-april 1998). Published by SPIE – The International Society for Optical Engineering. 1998. Vol. 3396. P. 103–111.
31. Karabutov A.A., Murashov V.V., Podymova N.B. Diagnostika sloistyh kompozitov s pomoshh'yu lazernogo optiko-akusticheskogo preobrazovatelya [Diagnostics of layered composites by means of the laser optic-acoustic converter] // Mehanika kompozitnyh materialov. 1999. T. 35 (1). S. 125–134.
32. Mishurov K.S., Murashov V.V. Determination of the Composition and Density of Polymer Composite Materials in Details and Constructions by Nondestructive Methods // Polymer Science. Series D. 2016. Vol. 9. No. 2. P. 176–180.
33. Murashov V.V. Opredelenie sostava i plotnosti konstrukcionnyh ugleplastikov lazerno-akusticheskim sposobom ultrazvukovogo kontrolya [Definition of structure and density constructional carbon plastics in the laser and acoustic way of ultrasonic control] // Materialovedenie. 2014. №11. S. 24–29.
A theoretical selection of the optimal internal standard for ICP-AES determination of alloying components (Cr, Ti, Mo, W, Ta, Al, Co, Re, Ru) in the latest generation heat-resistant Ni-alloys (HRNA) was carried out by using the thermodynamic modeling method and software TERRA for different operating conditions of measurement. The results of modeling demonstrated the efficiency of internal standardization to compensate the instrumental drift on the analytical signal in the process of ICP-AES analysis of alloying components. Analytical line In II 230,606 nm was recognized as the best line among the investigated ones for internal standardization. Experimental testing confirmed its efficiency. Thus, the line In II 230,606 nm is recommended as an internal standard for ICP-AES analysis of HRNA alloying components. The work is performed within the framework of an integrated research area 2.1. «Fundamentally Oriented Research» («Strategic directions of development of materials and technologie
2. Petrushin N.V., Svetlov I.L., Ospennikova O.G. Litejnye zharoprochnye nikelevye splavy [Cast heat resisting nickel alloys] // Vse materialy. Enciklopedicheskij spravochnik. 2012. №5. S. 15–19.
3. Ospennikova O.G. Strategiya razvitiya zharoprochnyh splavov i stalej specialnogo naznacheniya, zashhitnyh i teplozashhitnyh pokrytij [Strategy of development of hot strength alloys and steels special purpose, protective and heat-protective coverings] // Aviacionnye materialy i tehnologii. 2012. №S. S. 19–36.
4. Wu S. Determination of Trace Mg in High Temperature Alloy by ICP-AES with MSF // Special Steel Technology. 2008. V. 4. P. 28–30.
5. ICP-AES measuring method for content of elemental hafnium in nickel-based high-temperature alloy: pat. 104034719 (A) CN; publ. 10.09.14.
6. Xiaoying Y., Tao S., Gang L. Determination of Platinum in Ni-Based High-Temperature Alloy by ICP-AES // Chemical Analysis and Meterage. 2013. V. 3. P. 88–90.
7. Dvoreckov R.M., Karachevcev F.N., Zagvozdkina T.N., Mehanik E.A. Opredelenie legiruyushhih elementov nikelevyh splavov aviacionnogo naznacheniya metodom ISP-AES v sochetanii s mikrovolnovoj probopodgotovkoj [Definition of doping elements of nickel alloys of aviation assignment by ISP-nuclear power plant method in combination to microwave probopodgotovka] // Zavodskaya laboratoriya. Diagnostika materialov. 2013. T. 79. №9. S. 6–9.
8. Trusov B.G. Programmnaya sistema modelirovaniya fazovyh i himicheskih ravnovesij pri vysokih temperaturah [Program system of modeling phase and chemical balance at high temperatures] // Vestnik MGTU im. N.E. Baumana. Ser.: Priborostroenie. 2012. S. 240–249.
9. Majorova A.V., Pechishheva N.V., Shunyaev K.Yu., Bunakov A.V. Razrabotka metodiki ISP-AES opredeleniya volframa v ferrovolframe s ispolzovaniem termodinamicheskogo modelirovaniya [Development of technique of the ISP-nuclear power plant of definition of tungsten in ferrovolframe with use of thermodynamic modeling] // Analitika i kontrol. 2014. T. 18. №2. S. 136–149.
10. Majorova A.V., Pechishheva N.V., Voroncova K.A., Shhepetkin A.A Ocenka effektivnosti primeneniya vnutrennej standartizacii pri analize zhelezorudnogo syrya i shlakov metodom atomnoj emissionnoj spektroskopii s induktivno svyazannoj plazmoj [Assessment of efficiency of application of internal standardization in the analysis of iron-ore raw material and slags method of atomic spectrum effect emission spectroscopy with inductively connected plasma] // Butlerovskie soobshheniya. 2013. T. 35. №9. S. 47–54.
11. Majorova A.V., Voroncova K.A., Pechishheva N.V., Ivleva A.S., Pupyshev A.A., Shunyaev K.Yu. Razrabotka metodiki opredeleniya oksida kremniya v rudnom syr'e metodom atomno-emissionnoj spektroskopii s induktivno svyazannoj plazmoj [Development of technique of definition of silicon oxide in ore raw materials atomic emission spectroscopy method with inductively connected plasma] // Zavodskaya laboratoriya. Diagnostika materialov. 2013. T. 79. №12. S. 9–15.
12. Evdokimova O.V., Majorova A.V., Pechishheva N.V., Karachevcev F.N., Shunyaev K.Yu. Teoreticheskij vybor vnutrennego standarta pri ISP-AES opredelenii legiruyushhih komponentov zharoprochnyh nikelevyh splavov [Theoretical choice of internal standard at the ISP-nuclear power plant definition of alloying components of heat resisting nickel alloys ] // Novosti materialovedeniya. Nauka i tehnika: elektron. nauch.-tehnich. zhurn. 2014. №2. St. 05. Available at: http://www.materialsnews.ru (accessed: 15.02.2016).
13. Pupyshev A.A., Danilova D.A. Termodinamicheskoe modelirovanie dlya atomno-emissionnoj spektroskopii s induktivno svyazannoj plazmoj: ucheb. posob. [Thermodynamic modeling for atomic emission spectroscopy with inductively connected plasma: manual]. Ekaterinburg: UGTU–UPI, 2005. 75 s.
14. Zajdel A.N. Tablicy spektralnyh linij: spravochnik. 4-e izd., ispr. i dop. [Tables of spectral lines: directory. 4 ed., corr. and add.]. M.: Nauka, 1977. 800 s.
15. Corliss C.H., Bozman W.R. Experimental transition probabilities for spectral lines of seventy elements. Washington: Nat. Bur. Stand., 1962. 562 p.
In sulfate-ammonium cadmium plating solution with additive TsКN-04 the concentration ranges of the components of the electrolyte are identified to allow obtaining light compact cadmium coatings on complex geometry parts. The electrolyte has a high scattering (50–94%) and covering (92–95%) power that are comparable and sometimes exceeding the same parameters from cyanide electrolytes. With carrying out preventive corrections the electrolyte shows high operational stability and it can be applied in mass production. Mechanical tests show that the technology of deposition of cadmium coating in the sulfate-ammonium bath with the additive TsKN-04 does not influence on mechanical properties of medium strength steels 30kHGSА. The work is executed within the implementation of the complex scientific direction 17.2. «Slip, gas-dynamic and combined coatings for details from carbon steels, including high-strength steels» («The strategic directions of development of materials and technologies of th
2. Kablov E.N. Materialy dlya izdeliya «Buran» – innovacionnye resheniya formirovaniya shestogo tehnologicheskogo uklada [Materials for «Buran» spaceship – innovative solutions of formation of the sixth technological mode] //Aviacionnye materialy i tehnologii. 2013. №S1. S. 3–9.
3. Markova E.S., Pokrovskaya N.G., Shalkevich A.B., Gromov V.I. Martensitostareyushhie stali – novye perspektivnye materialy dlya valov GTD // Aviacionnye materialy i tehnologii. 2012. №S. S. 81–84.
4 Ivanov E.V. Sozdanie iznosostojkih i antifrikcionnyh materialov i pokrytij dlja kosmicheskogo korablja «Buran» [Creation of wearproof and antifriction materials and coverings for the «Buran» spacecraft] //Aviacionnye materialy i tehnologii. 2013. №S1. S. 142–151.
5. Kablov E.N., Kirillov V.N., Zhirnov A.D., Starcev O.V., Vapirov Yu.M. Centry dlya klimaticheskih ispytanij aviacionnyh PKM [The centers for climatic tests of aviation PCM] // Aviacionnaya promyshlennost. 2009. №4. S. 36–46.
6. Kablov E.N., Starcev O.V., Medvedev I.M., Panin S.V. Korrozionnaya agressivnost primorskoj atmosfery. Ch. 1. Faktory vliyaniya (Obzor) [Corrosion aggression of the seaside atmosphere. P.1. Factors of influence (Overview)] // Korroziya: materialy, zashhita. 2013. №12. S. 6–18.
7. Kablov E.N., Startsev O.V., Medvedev I.M. Obzor zarubezhnogo opyta issledovanij korrozii i sredstv zashhity ot korrozii [Review of international experience on corrosion and corrosion protection] // Aviacionnye materialy i tehnologii. 2015. №2 (35). S. 76–87. DOI: 10.18577/2071-9140-2015-0-2-76-87
8. Vinogradov S.S. Ekologicheski bezopasnoe galvanicheskoe proizvodstvo. 2-e izd., pererab. i dop. [Ecologically safe galvanic production. 2nd ed., rev. and add.] . M.: Globus, 2002. 352 s.
9. Vyacheslavov P.M. Elektroliticheskoe osazhdenie splavov [Electrolytic deposition of alloys]. L.: Mashinostroenie, 1986. 112 s.
10. Taranceva K.R., Nikolotov A.D. Elektroosazhdenie splava olovo-cink iz stabilizirovannogo pirofosfatnogo elektrolita kak alternativa kadmievomu pokrytiyu [Alloy electrosedimentation tin-zinc from the stabilized pirofosfatny electrolit as alternative to cadmic covering] // Korroziya: materialy, zashhita. 2014. №3. S. 27–30.
11. Celujkin V.N., Koreshkova A.A. O korrozionnyh svojstvah kompozicionnyh pokrytij cink–uglerodnye nanotrubki [About corrosion properties of composition coverings zinc – carbon nanotubes] // Korroziya: materialy, zashhita. 2014. №3. S. 31–34.
12. Vinogradov S.S., Gubenkova O.A., Mamontova N.N., Nikiforov A.A., Balahonov S.V. Svojstva modificirovannogo cinkovogo pokrytiya [Properties of the modified zinc coating] // Korroziya: materialy, zashhita. 2015. №3.
S. 24–30.
13. Karimova S.A., Pavlovskaya T.G. Razrabotka sposobov zashhity ot korrozii konstrukcij, rabotajushhih v usloviyah kosmosa [Development of ways of corrosion protection of the designs working in the conditions of space] // Trudy VIAM: electron. nauch.-tehnich. zhurn. 2013. №4. St. 02. Available at: http://www.viam-works.ru (accessed: May 16, 2016).
14. S.S. Vinogradov, A.A. Nikiforov, S.V. Balakhonov Zamena kadmija. Etap 1. Povyshenie zashhitnoj sposobnosti cinkovyh pokrytij: termoimmersionnoe i modificirovannoe pokrytija
[Cadmium replacement. Part 1. Improving of protective property of zinc coatings: thermo-immersed and modified coatings] // Aviacionnye materialy i tehnologii. 2015. №4. S. 53–60. DOI: 10.18577/2071-9140-2015-0-4-53-60.
15. Vajner Ya.V., Dasoyan M.A. Tehnologiya elektrohimicheskih pokrytij [Technology of electrochemical coatings]. M.: Mashgiz, 1962. 468 s.
16. Maksimchuk V.N., Polovnikov S.P. Vodorodnoe rastreskivanie vysokoprochnyh stalej posle naneseniya galvanohimicheskih pokrytii [Hydrogen assisted cracking high-strength steel after drawing galvanic chemical covering]. M.: Energoatomizdat, 2002. 320 s.
17. Beloglazov S.M. Navodorozhivanie stali pri elektrohimicheskih processah [Steel hydrogen saturation at electrochemical processes]. L.: Izd-vo LGU, 1975. 412 s.
18. Maksimchuk V.N., Maksimchuk E.V. Proniknovenie vodoroda cherez stal pri kadmirovanii s podsloyami [Hydrogen penetration through steel at cadmium plating with intermediate layers] // Elektrohimiya. 1977. T. XIII. Vyp. II. S. 1646–1652.
19. Kudryavcev N.T. Elektrohimicheskie pokrytiya metallami [Electrochemical coatings metals]. M.: Himiya, 1979. 352 s.
20. Smirnov K.N., Arhipov E.A., Kravchenko D.V. K voprosu o kroyushhej sposobnosti elektrolitov [To question of covering ability of electrolits] // Galvanotehnika i obrabotka poverhnosti. 2015. T. 23. №3. S. 30–34.
21. Smirnov K.N., Kravchenko D.V., Arhipov E.A. Kroyushhaya sposobnost elektrolitov kadmirovaniya [Covering ability of electrolits of cadmium plating] // Galvanotehnika i obrabotka poverhnosti. 2013. T. 21. №4. S. 30–32.
22. Azhogin F.F. Korrozionnoe rastreskivanie i zashhita vysokoprochnyh stalej [Corrosion cracking and protection high-strength staly]. M.: Metallurgiya, 1974. 245 s.
23. Korrozionnoe rastreskivanie metallov / pod obshh. red. V.V. Romanova [Corrosion cracking of metals / gen. ed. by V.V. Romanov]. M.: Mashgiz, 1960. 186 s.