Статьи
Представлены результаты исследований реологических характеристик шликерных суспензий на основе оксида алюминия, предназначенных для изготовления керамических фильтров. Показано, что замена в шликерах воды, используемой в качестве технологической связки, на водный раствор карбамида и оксихлорида алюминия приводит к увеличению текучести суспензий, что способствует улучшению формуемости заготовок и увеличению механических характеристик керамических материалов. Определены диапазоны соотношений твердой (спекаемые порошки) и жидкой (технологическая связка) фаз, при которых в шликерах между частицами твердой фазы происходит образование коагуляционных и непосредственных контактов.
Введение
С развитием цветной металлургии возрастают требования к качеству выпускаемых металлов и изделий из них. Одной из самых распространенных причин брака в изделиях из алюминия и его сплавов являются включения примесей (шлак, дросс, оксиды исходных материалов, а также фрагменты огнеупорных материалов), поэтому в ходе процесса производства алюминия присутствующие в расплаве примеси необходимо удалять [1, 2]. Удаление таких включений фильтрацией позволяет создавать однородный расплав и, таким образом, повышает качество выпускаемой продукции [3]. Керамические ячеистые материалы (пенокерамические материалы) на основе оксида алюминия находят применение в качестве носителей катализаторов и фильтров для расплавов металлов. Получение таких материалов основано на пропитке шликером пенополиуретановых (ППУ) губок-каркасов с последующим их обжигом при температурах порядка 1400–1700°С [4–7].
В производстве пенокерамики очень большое значение имеет равномерное распределение шликера в пенополиуретане. Шликерные суспензии должны обладать, с одной стороны, достаточной вязкостью для хорошей пропитки ППУ-губок, с другой – высоким содержанием твердой фазы (спекаемых порошков) для обеспечения образования прочных контактов между частицами в обожженном материале [8–11].
В проведенной ранее работе [12] показано, что наиболее оптимальными для изготовления керамических изделий методом пропитки ППУ-губок являются суспензии с соотношением твердой и жидкой фаз (т/ж), при котором образуются коагуляционно-тиксотропные структуры, т. е. происходит как сцепление частиц через прослойки жидкой фазы (коагуляционные контакты), так и их непосредственное соприкосновение с образованием каркаса из частиц порошка, находящегося в жидкой среде [13, 14]. Поскольку коагуляционно-тиксотропные структуры возникают в результате взаимного притяжения частиц твердой фазы под действием Ван-дер-Ваальсовых сил, пространственный каркас, образованный ими, способен к обратимому разрушению и восстановлению при приложении и снятии нагрузок соответственно, что способствует текучести шликерных суспензий при сохранении неразрывности дисперсной системы [15–18].
В работе [12] установлено, что суспензии на основе порошков электрокорунда с размерами частиц 10–40 мкм, а также воды и водного раствора оксихлорида алюминия в области содержания жидкой фазы до 63% (объемн.) имеют непосредственные контакты между частицами твердой фазы, что приводит к резкому снижению текучести шликеров; а ˃70% (объемн.) – изолированные скопления частиц твердой фазы, что затрудняет образование между частицами прочных контактов при спекании. Оптимальными в качестве шликеров для пропитки ППУ-губок являются суспензии с концентрациями технологической связки 63–70% (объемн.), для которых характерно наличие коагуляционных контактов между частицами. Полученные из данных суспензий керамические материалы обладают открытой пористостью до 80% и прочностью при сжатии – до 0,5 МПа.
На прочность материалов оказывает влияние не только уровень их ячеистой пористости, но и прочность межъячеистых перегородок, которая определяется прочностью контактов между частицами в обожженном материале, поэтому прочность материала напрямую зависит от числа контактов между частицами в обожженном материале и, как следствие, доли частиц твердой фазы в шликере [19–22]. Данная работа посвящена оптимизации состава шликерных суспензий путем подбора электролитов, позволяющих увеличить объемную долю спекаемых порошков при сохранении приемлемых характеристик вязкости.
Материалы и методы
Для приготовления шликеров использовали порошки электрокорунда марок М10, М20 и М40 (ГОСТ 3647–80) со средним размером частиц 10, 20 и 40 мкм соответственно. В качестве спекающей добавки в шликерные суспензии вводили помол стекла марки ХЛ №23 [23] с размерами частиц 5–30 мкм. Характеристики исходных порошков представлены в работе [12], проведенной ранее. Для достижения в шликерах плотности упаковки частиц твердой фазы, близкой к максимальной, и реализации между частицами большого числа контактов, использовали следующее соотношение порошков (% по массе): 65 электрокорунда М40; 20 электрокорунда М20; 10 электрокорунда М10; 5 стекла ХЛ №23.
В качестве технологических связок использовали дистиллированную воду, 16%-ный (по массе) водный раствор оксихлорида алюминия (ОХА) с плотностью 1250 кг/м3, 16%-ный (по массе) водный раствор оксихлорида циркония (ОХЦ) с плотностью 1260 кг/м3, а также модифицированный карбамидом (3%-ный по массе) раствор оксихлорида алюминия (7%-ный по массе) с плотностью 1100 кг/м3.
Исследования эффективной вязкости шликерных суспензий при заданных скоростях деформации проводили на ротационном вискозиметре Anton Paar MCR-501. Определение дифференциальной (пластической) вязкости осуществляли из экспериментальных кривых зависимости скорости деформации суспензий от напряжения сдвига (рис. 1) [15, 16].
Рис. 1. Влияние напряжения сдвига на скорость деформации суспензий при соотношении порошок/технологическая связка, равным 37:63% (объемн.), с технологической связкой в виде водных растворов оксихлорида алюминия (○) и то же+карбамид (□)
Для изготовления керамических пеноматериалов использовали ППУ-губки с размерами 30×30×15 мм и размерами пор 0,2–1 мм. Заготовки получали пропитыванием ППУ-губок в избытке шликера. Обжиг заготовок осуществляли в электрической печи Nabertherm HT 16/18 при температуре 1650°С в течение 1 ч. Прочность материалов при сжатии определяли на разрывной машине Instron 5965. Оптическую микроскопию проводили на микроскопе Olympus BX51 с цифровой камерой Olympus DP73.
Результаты
Для приготовления шликеров использовали следующие технологические связки: воду, водный раствор оксихлорида алюминия, а также водный раствор оксихлорида циркония. Выбор в пользу указанных растворов был сделан по причине того, что при обжиге заготовок оксихлориды алюминия и циркония выступают в качестве спекающих добавок.
На основании данных по реологическому поведению шликерных суспензий установлено, что образование дисперсных систем с коагуляционными контактами происходит в диапазоне содержания жидкой фазы в шликерах от 63 до 70% (объемн.) независимо от вида используемой в качестве технологической связки жидкости (рис. 2). Из полученных данных видно, что наименьшими значениями дифференциальной вязкости (т. е. наибольшей текучестью) обладают шликеры, затворенные в воде, и следовало ожидать, что данными шликерами ППУ-губки будут пропитываться легче всего. Однако в шликерах, затворенных в воде, частицы корунда склонны к седиментации, и при пропитке ППУ-губок такими шликерами во всем диапазоне соотношений воды к порошку происходит осаждение частиц корунда на поверхности губок, что делает невозможным дальнейшее получение материалов из данных шликерных суспензий.
Рис. 2. Влияние объемной доли жидкой фазы в шликерных суспензиях на их дифференциальную вязкость с технологической связкой в виде водных растворов ОХЦ (Δ) и ОХА (○), а также воды (●)
В шликерах, затворенных в растворах ОХА и ОХЦ, частицы порошка корунда не склонны к седиментации, и такие шликеры пропитывают ППУ-губки с образованием заготовок с равномерно распределенной по всему объему керамической массой. Обожженные керамические материалы, полученные с применением раствора оксихлорида алюминия, обладают прочностью при сжатии 0,5 МПа при пористости 85% (объемн.), тогда как материалы, полученные с применением оксихлорида циркония, не набирают прочность при обжиге, поэтому для дальнейших исследований реологических характеристик шликеров и оптимизации их состава использовали только растворы оксихлорида алюминия.
Разбавление 16%-ного (по массе) раствора ОХА водой с целью получения агрегативно устойчивых шликерных суспензий с высокой текучестью не привело к ожидаемым результатам – даже при умеренном разбавлении до концентрации ОХА 10% (по массе) частицы корунда в суспензиях склонны к седиментации. Добавление к раствору ОХА сильных электролитов (нитратов и хлоридов калия, натрия и аммония) также не привело к снижению их склонности к седиментации. Заметной седиментационной устойчивости удалось достичь при добавлении карбамида к раствору ОХА.
Проведенные исследования реологии шликерных суспензий, приготовленных на растворах ОХА и ОХА+карбамид с различным соотношением т/ж, свидетельствуют о различиях в реологических характеристиках данных дисперсных систем. Так, в выбранных диапазонах соотношений т/ж системы на основе раствора оксихлорида алюминия ведут себя как неньютоновские бингамовские жидкости (рис. 1, рис. 3, а), для которых значения эффективной вязкости практически не зависят от доли твердой фазы в шликерах, а определяющим фактором является скорость деформации шликера, с увеличением которой происходит резкое снижение эффективной вязкости. В выбранных диапазонах соотношений т/ж предел текучести для данных дисперсных систем находится в пределах 40–70 Па. Поведение дисперсных систем на основе раствора ОХА+карбамид ближе к идеальным ньютоновским жидкостям (рис. 1, рис. 3, б). Так, предел текучести для них в выбранных диапазонах соотношений т/ж составляет 1–10 Па и увеличивается с увеличением содержания твердой фазы.
Рис. 3. Зависимость эффективной вязкости шликерных суспензий от скорости деформации при объемном содержании технологической связки в шликере 60 (◊), 65 (□) и 69% (○): а – шликеры на водном растворе ОХА; б – то же+карбамид
Дифференциальная вязкость шликерных суспензий закономерно уменьшается с увеличением в них доли жидкой фазы (рис. 4). Значения дифференциальной вязкости шликеров в растворе оксихлорида алюминия ниже, чем шликеров в растворе ОХА+карбамид: 0,06–0,5 и 0,4–1,1 Па·с соответственно. При этом в шликерах в растворе ОХА+карбамид диапазон содержания технологической связки для образования коагуляционно-тиксотропных структур ниже, чем в растворе ОХА, и составляет 59–67% объемн. (ОХА+карбамид) против 63–70% объемн. (ОХА).
Рис. 4. Влияние объемной доли жидкой фазы в шликерных суспензиях на их дифференциальную вязкость с технологической связкой в виде водных растворов ОХА (○) и ОХА+карбамид (□)
Рис. 5. Поровая структура керамических материалов (оптическая микроскопия, отраженный свет, темное поле)
На основании полученных данных о шликерных суспензях, в водном растворе ОХА+карбамид, имеющих преимущественно коагуляционные контакты между частицами твердой фазы, получены образцы ячеистых керамических материалов с диаметрами сообщающихся пор 0,2–1 мм (рис. 5). Образцы обладают пористостью на уровне 75–85% (объемн.) и пределом прочности при сжатии в пределах 1 МПа, что значительно выше, чем у материалов, полученных ранее [12] из шликеров, затворенных в растворе ОХА. Это свидетельствует о возможности использования разработанных шликерных суспензий для получения ячеистых керамических материалов.
Обсуждение и заключения
Кривые зависимости эффективной вязкости суспензий от скорости их деформации показывают, что между частицами твердой фазы возникают силы притяжения, приводящие к образованию пространственного каркаса из самих частиц, находящихся в жидкой среде [16]. В таких системах каркас способен к обратимому разрушению и восстановлению при приложении и снятии нагрузок, что, с одной стороны, способствует текучести шликера и равномерности пропитки, а с другой – удержанию шликера на пенополиуретановых губках [9].
Задачей работы являлось получение шликерных суспензий с высокой долей в них частиц твердой фазы, при этом имеющих коагуляционные контакты между частицами. Проведенные исследования показали, что такими характеристиками обладают шликеры, затворенные в водном растворе ОХА+карбамид. Данные шликеры обладают седиментационной устойчивостью, равномерно пропитывают ППУ-губки, а пенокерамические материалы, полученные из них, обладают прочностью при сжатии на уровне 1 МПа. Однако эти шликеры в диапазоне соотношений т/ж, соответствующем коагуляционным контактам между частицами твердой фазы, обладают наибольшей дифференциальной (пластической) вязкостью: 0,4–1,0 Па·с (см. рис. 4) и близки по реологическому поведению к ньютоновским жидкостям – предел текучести для них составляет 1–10 Па (см. рис. 1). Шликеры, затворенные в воде и растворе оксихлорида алюминия, хотя и обладают меньшими значениями дифференциальной вязкости, однако более склонны к седиментации частиц, поэтому при пропитывании ППУ-губок образуют осадок из порошка корунда в виде корки на поверхности губок.
Суммируя полученные данные по реологии шликерных суспензий можно заключить, что добавление в технологическую связку карбамида приводит к уменьшению толщины двойного электрического слоя частиц твердой фазы [18, 24]. Это снижает вероятность образования коагуляционных контактов между частицами корунда, что приводит к уменьшению общего числа таких контактов в дисперсных системах. Следовательно, не происходит образования прочного каркаса из частиц твердой фазы, поэтому реологическое поведение дисперсных систем приближается к ньютоновским жидкостям. Уменьшение толщины двойного электрического слоя также приводит к тому, что для образования коагуляционно-тиксотропных структур в дисперсных системах требуется большее количество частиц твердой фазы, что, в свою очередь, способствует снижению диапазона содержания технологической связки для образования коагуляционно-тиксотропных структур. Это приводит к увеличению дифференциальной вязкости системы по причине возникновения большего числа контактов между частицами твердой фазы.
Таким образом, установлено, что суспензии на основе порошков электрокорунда и водного раствора оксихлорида алюминия, модифицированного карбамидом, в области содержания жидкой фазы до 59% (объемн.) имеют непосредственные контакты между частицами твердой фазы; в пределах содержания жидкой фазы 59–67% (объемн.) – преимущественно коагуляционные контакты; ˃67% (объемн.) – изолированные скопления частиц твердой фазы. Оптимальными в качестве шликеров являются суспензии с концентрациями технологической связки 59–67% (объемн.), для которых характерно наличие коагуляционных контактов между частицами. Полученные из данных суспензий керамические материалы обладают открытой пористостью до 85% (объемн.) и пределом прочности при сжатии 1 МПа. Для достижения в материалах наибольших значений прочности требуется дальнейшая оптимизация состава шликерных суспензий путем подбора электролитов, позволяющих увеличить в шликере объемную долю спекаемых порошков при сохранении приемлемых вязкостных характеристик.
2. Бунтушкин В.П., Каблов Е.Н., Базылева О.А., Морозова Г.И. Сплавы на основе алюминидов никеля //МиТОМ. 1999. №1. С. 32–34.
3. Каблов Е.Н., Петрушин Н.В., Светлов И.Л., Демонис И.М. Никелевые литейные жаропрочные сплавы нового поколения //Авиационные материалы и технологии. 2012. №S. С. 36–52.
4. Aminzare M., Mazaheri M., Golestanifard F., Rezaie H.R., Ajeian R. Sintering behavior of nano alumina powder shaped by pressure filtration //Ceramics International. 2011. №37. P. 9–14.
5. Керамический фильтр, содержащий углеродное покрытие, и способ его изготовления: пат. 2456056 Рос. Федерация; заявл. 28.01.2008; опубл. 20.07.2012 Бюл. №20. 15 с.
6. Yang W., Jiang B., Wang A., Shi H. Effect of Negatively Charged Ions on the Formation of Microarc Oxidation Coating on 2024 Aluminium Alloy //Journal of Material Science and Technology. 2012. №28 (8). P. 707–712.
7. Vogt U.F., Gorbar M., Dimopoulos-Eggenschwiler P., Broenstrup A., Wagner G., Colombod P. Improving the properties of ceramic foams by a vacuum infiltration process //Journal of the European Ceramic Society. 2010. №30. P. 3005–3011.
8. Химическая технология керамики: Уч. пособие для вузов /Под ред. И.Я. Гузмана. М.: ООО РИФ Стройматериалы. 2003. 496 с.
9. Анциферов В.Н. Проблемы порошкового материаловедения. Часть II. Екатеринбург: УрО РАН. 2002. 263 с.
10. Каблов Е.Н. Коррозия или жизнь //Наука и жизнь. 2012. №11. С. 16–21.
11. Каблов Е.Н., Щетанов Б.В., Ивахненко Ю.А., Балинова Ю.А. Перспективные армирующие высокотемпературные волокна для металлических и керамических композиционных материалов //Труды ВИАМ. 2013. №2. Ст. 05 (viam-works.ru).
12. Бучилин Н.В., Прагер Е.П. Реологические характеристики шликерных суспензий на основе оксида алюминия //Труды ВИАМ. 2015. №5. Ст. 06 (viam-works.ru).
13. Sandoval M.L., Camerucci M.A. Foaming performance of aqueous albumin and mullite-albumin systems used in cellular ceramic processing //Ceramics International. 2014. №40. P. 1675–1686.
14. Magnani G., Brentari A., Burresi E., Raiteri G. Pressureless sintered silicon carbide with enhanced mechanical properties obtained by the two-step sintering method //Ceramics International. 2014. №40. P. 1759–1763.
15. Щукин Е.Д., Перцов А.В., Амелина Е.А. Коллоидная химия. 3-е изд., перераб. и доп. М.: Высшая школа. 2004. 445 с.
16. Практикум и задачник по коллоидной химии /Под ред. В.В. Назарова, А.С. Гродского. М.: Академкнига. 2007. 374 с.
17. Отто М. Современные методы аналитической химии. 2-е изд. М.: Техносфера. 2006. 416 с.
18. Фролов Ю.Г. Курс коллоидной химии. Поверхностные явления и дисперсные системы. 2-е изд. М.: Химия. 1989. 464 с.
19. Кириенко Т.А., Балинова Ю.А. Влияние атмосферной влажности на реологию тонких слоев концентрированных водных растворов системы «неорганические соли–органический полимер» //Авиационные материалы и технологии. 2014. №2. С. 56–58.
20. Щетанов Б.В., Балинова Ю.А., Люлюкина Г.Ю., Соловьева Е.П. Структура и свойства непрерывных поликристаллических волокон α-Al2O3 //Авиационные материалы и технологии. 2012. №1. С. 13–17.
21. Кириенко Т.А., Балинова Ю.А. Физико-химические свойства многокомпонентных растворов для керамических материалов, содержащих поливиниловый спирт //Авиационные материалы и технологии. 2014. №1. С. 34–38.
22. Уварова Н.Е., Гращенков Д.В., Исаева Н.В., Орлова Л.А., Саркисов П.Д. Высокотемпературные радиопрозрачные материалы: сегодня и завтра //Авиационные материалы и технологии. 2010. №1. С. 16–21.
23. Технология стекла /Под ред. И.И. Китайгородского. 3-е изд. М.: Государственное издательство литературы по строительству, архитектуре и строительным материалам. 1961. С. 517.
24. Малкин А.Я., Исаев А.И. Реология: концепции, методы, приложения. СПб: Профессия. 2007. 560 с.
2. Buntushkin V.P., Kablov E.N., Bazyleva O.A., Morozova G.I. Splavy na osnove aljuminidov nikelja [Alloys on the basis of nickel aluminides] //MiTOM. 1999. №1. S. 32–34.
3. Kablov E.N., Petrushin N.V., Svetlov I.L., Demonis I.M. Nikelevye litejnye zharoprochnye splavy novogo pokolenija [Nickel foundry hot strength alloys of new generation] //Aviacionnye materialy i tehnologii. 2012. №S. S. 36–52.
4. Aminzare M., Mazaheri M., Golestanifard F., Rezaie H.R., Ajeian R. Sintering behavior of nano alumina powder shaped by pressure filtration //Ceramics International. 2011. №37. P. 9–14.
5. Keramicheskij fil'tr, soderzhashhij uglerodnoe pokrytie, i sposob ego izgotovlenija [The ceramic filter containing carbon covering, and way of its manufacturing]: pat. 2456056 Ros. Federacija; zajavl. 28.01.2008; opubl. 20.07.2012 Bjul. №20. 15 s.
6. Yang W., Jiang B., Wang A., Shi H. Effect of Negatively Charged Ions on the Formation of Microarc Oxidation Coating on 2024 Aluminium Alloy //Journal of Material Science and Technology. 2012. №28 (8). P. 707–712.
7. Vogt U.F., Gorbar M., Dimopoulos-Eggenschwiler P., Broenstrup A., Wagner G., Colombod P. Improving the properties of ceramic foams by a vacuum infiltration process //Journal of the European Ceramic Society. 2010. №30. P. 3005–3011.
8. Himicheskaja tehnologija keramiki [Chemical technology of ceramics]: Uch. posobie dlja vuzov /Pod red. I.Ja. Guzmana. M.: OOO RIF Strojmaterialy. 2003. 496 s.
9. Anciferov V.N. Problemy poroshkovogo materialovedenija [Problems of powder materials science]. Chast' II. Ekaterinburg: UrO RAN. 2002. 263 s.
10. Kablov E.N. Korrozija ili zhizn' [Corrosion or life] //Nauka i zhizn'. 2012. №11. S. 16–21.
11. Kablov E.N., Shhetanov B.V., Ivahnenko Ju.A., Balinova Ju.A. Perspektivnye armirujushhie vysokotemperaturnye volokna dlja metallicheskih i keramicheskih kompozicionnyh materialov [Perspective reinforcing high-temperature fibers for metal and ceramic composite materials] //Trudy VIAM. 2013. №2. St. 05 (viam-works.ru).
12. Buchilin N.V., Prager E.P. Reologicheskie harakteristiki shlikernyh suspenzij na osnove oksida aljuminija [Rheological characteristics of slip suspensions on the basis of aluminum oxide] //Trudy VIAM. 2015. №5. St. 06 (viam-works.ru).
13. Sandoval M.L., Camerucci M.A. Foaming performance of aqueous albumin and mullite-albumin systems used in cellular ceramic processing //Ceramics International. 2014. №40. P. 1675–1686.
14. Magnani G., Brentari A., Burresi E., Raiteri G. Pressureless sintered silicon carbide with enhanced mechanical properties obtained by the two-step sintering method //Ceramics International. 2014. №40. P. 1759–1763.
15. Shhukin E.D., Percov A.V., Amelina E.A. Kolloidnaja himija [Colloid chemistry]. 3-e izd., pererab. i dop. M.: Vysshaja shkola. 2004. 445 s.
16. Praktikum i zadachnik po kolloidnoj himii [Workshop and the book of problems on colloid chemistry] /Pod red. V.V. Nazarova, A.S. Grodskogo. M.: Akademkniga. 2007. 374 s.
17. Otto M. Sovremennye metody analiticheskoj himii [Modern methods of analytical chemistry]. 2-e izd. M.: Tehnosfera. 2006. 416 s.
18. Frolov Ju.G. Kurs kolloidnoj himii. Poverhnostnye javlenija i dispersnye sistemy [Course of colloid chemistry. Surface phenomena and disperse systems]. 2-e izd. M.: Himija. 1989. 464 s.
19. Kirienko T.A., Balinova Ju.A. Vlijanie atmosfernoj vlazhnosti na reologiju tonkih sloev koncentrirovannyh vodnyh rastvorov sistemy «neorganicheskie soli–organicheskij polimer» [Influence of atmospheric humidity on rheology of thin coats of the concentrated aqueous solutions of system «inorganic salts-organic polymers»] //Aviacionnye materialy i tehnologii. 2014. №2. S. 56–58.
20. Shhetanov B.V., Balinova Ju.A., Ljuljukina G.Ju., Solov'eva E.P. Struktura i svojstva nepreryvnyh polikristallicheskih volokon α-Al2O3 [Structure and properties of continuous polycrystalline fibers α-Al2O3] //Aviacionnye materialy i tehnologii. 2012. №1. S. 13–17.
21. Kirienko T.A., Balinova Ju.A. Fiziko-himicheskie svojstva mnogokomponentnyh rastvorov dlja keramicheskih materialov, soderzhashhih polivinilovyj spirt [Physical and chemical properties of multicomponent solutions for the ceramic materials containing polyvinyl alcohol] //Aviacionnye materialy i tehnologii. 2014. №1. S. 34–38.
22. Uvarova N.E., Grashhenkov D.V., Isaeva N.V., Orlova L.A., Sarkisov P.D. Vysokotemperaturnye radioprozrachnye materialy: segodnja i zavtra [High-temperature radio transparent materials: today and tomorrow] //Aviacionnye materialy i tehnologii. 2010. №1. S. 16–21.
23. Tehnologija stekla [The technology has flown down] /Pod red. I.I. Kitajgorodskogo. 3-e izd. M.: Gosudarstvennoe izdatel'stvo literatury po stroitel'stvu, arhitekture i stroitel'nym materialam. 1961. S. 517.
24. Malkin A.Ja., Isaev A.I. Reologija: koncepcii, metody, prilozhenija [Rheology: concepts, methods, appendices]. SPb: Professija. 2007. 560 s.