Статьи
Приведено описание исследований влияния наполнителей на свойства ранее разработанных клеев и новых разработок ВИАМ в области клеев резинотехнического назначения, предназначенных для авиационной техники. Изложены основные свойства клеев холодного отверждения и клеев, предназначенных для соединения резин с металлами в процессе вулканизации, содержащих различные наполнители. Показаны преимущества новых разработок по сравнению с существующими или применявшимися ранее.
Развитие и усовершенствование современной техники требуют создания новых полимерных материалов с улучшенными служебными характеристиками. Материалы, обладающие повышенными прочностными характеристиками и теплостойкостью, пониженными токсичностью и экологической опасностью, улучшенными технологическими параметрами, необходимы, в том числе для создания изделий авиационной техники. В ВИАМ создана широкая гамма клеев и материалов на их основе, отвечающих высоким требованиям авиационно-космической техники [1, 2].
Современные клеи являются многокомпонентными системами. Наполнитель является одним из основных компонентов клея, так как введение его в состав клеевой композиции оказывает существенное влияние на основные свойства клея и клеевых соединений, выполненных на его основе.
В состав клеев наполнители вводят с целью обеспечения необходимой вязкости, тиксотропных и антикоррозионных свойств, стойкости к атмосферному воздействию, с целью повышения когезионной прочности, электро- и теплопроводности, ударной прочности. Введение наполнителей влияет на внутренние напряжения в клеевых соединениях, как правило, снижая их, а также обеспечивает минимальную усадку отверждаемого клеевого шва [3, 4].
На комплекс свойств наполненных эластомеров влияют такие физические факторы, как форма (зернистая, пластинчатая или в виде измельченных волокон) и дисперсность частиц наполнителя, форма их поверхности (гладкая или пористая), условия и степень наполнения.
Дисперсность наполнителя характеризуется размером его частиц, их удельной поверхностью (суммарной поверхностью частиц, содержащихся в единице массы наполнителя) и удельным числом (числом частиц, приходящимся на единицу массы наполнителя).
По размерам частиц наполнители разделяются на изотропные, частицы которых имеют одинаковые размеры в трех направлениях, и анизотропные – размеры их частиц различны в трех направлениях. Чем больше показатель удельной поверхности наполнителя, тем выше его дисперсность. Наполнители с высокой степенью дисперсности отличаются большей активностью. Как правило, с повышением степени дисперсности наполнителя возрастает его удельная активность (активность 1 м2 поверхности наполнителя). Удельная активность наполнителя зависит от типа химических реакционноспособных групп на поверхности частиц наполнителя.
При выборе наполнителей, частицы которых имеют оптимальные размеры, необходимо учитывать их склонность к агломерации, возрастающей с ростом удельной поверхности наполнителя, и седиментации (осаждению) частиц, которая ускоряется с уменьшением удельной поверхности. Образование агломератов частиц наполнителя приводит к повышению вязкости клея. Также на вязкость клеевой композиции влияет форма частиц наполнителя [3, 4].
Наполнителями являются вещества неорганической или органической природы (твердые, жидкие или газообразные). Основными неорганическими наполнителями, применяемыми в клеевых составах, являются оксиды и соли металлов, мел, асбест, каолин и др. Важнейший органический наполнитель, применяемый в резиновых клеях, – технический углерод – высокодисперсный углеродный материал с формой частиц, близкой к шарообразной, который образуется при термическом или термоокислительном разложении углеводородов.
В табл. 1 представлены наполнители и свойства, которые они могут придавать полимерным материалам.
Таблица 1
Зависимость свойств полимерных материалов
от содержания в их составе различных наполнителей
Наполнитель |
Свойства*, придаваемые полимерным материалам |
||||
Легкость переработки |
Химическая стойкость |
Влагостойкость |
Твердость |
Теплостойкость |
|
Технический углерод |
+ |
- |
- |
- |
+ |
Диоксид кремния |
+ |
- |
- |
- |
+ |
Диоксид титана |
+ |
- |
- |
- |
+ |
Каолин |
+ |
+ |
+ |
+ |
+ |
Карбонат кальция |
+ |
- |
+ |
+ |
+ |
* +, - – свойство присутствует или отсутствует.
В последнее время в России и за рубежом все больше внимания уделяется вопросам пожарной безопасности во время полета.
Интерьер современного пассажирского лайнера чрезвычайно насыщен разнообразными полимерными материалами декоративно-отделочного и конструкционного назначения. Поиск материалов интерьера, начатый в ВИАМ, велся в широком диапазоне: декоративные, обшивочные, обивочные, напольные, облицовочные и многие другие материалы, при этом весьма важной и сложной задачей являлась пожаробезопасность [4–9].
Среди наполнителей негорючесть клеевым соединениям придают гидроксид алюминия, гипс и триоксид сурьмы.
Для приклеивания декоративно-облицовочных материалов к агрегатам и аппаратам бытового оборудования пассажирских самолетов, вертолетов, а также к различным аппаратам и приборам, в ВИАМ разработан и широко применяется в промышленности клей марки ВК-11с, содержащий в качестве наполнителя-антипирена оксид сурьмы. В качестве облицовочных материалов рекомендуются: винилискожа различных марок (на основе стеклянной или хлопчатобумажной ткани), полихлорвиниловые пленочные материалы, эластичный пенопласт типа «поролон», различные декоративные хлопчатобумажные ткани, декоративно-бумажный слоистый пластик и т. п., которые могут приклеиваться к алюминиевым и магниевым сплавам, фанере, декоративным пластикам, стеклотекстолитам и органопластикам [4–7].
Клей ВК-11с обеспечивает прочность при отслаивании клеевых соединений на уровне 1,0 Н/мм. Жизнеспособность клея составляет 6–8 ч после совмещения компонентов. Клеевые соединения работоспособны в интервале температур от -60 до +80°С в различных климатических условиях, отвечают требованиям по горючести: продолжительность остаточного горения 3 с; по классификации относятся к классу «самозатухающих», что удовлетворяет требованиям АП-25 по пожаробезопасности.
Анализ современных разработок новых негорючих материалов, в том числе клеевых составов, показал, что обеспечение негорючести материалов и стойкости к тепловому излучению реализуется путем использования специальных добавок в составе клея, введением в состав антипиренов. Чаще всего композиции содержат наполнители, содержащие бром, триоксид сурьмы и т. д. [4–14].
В связи с необходимостью замены импортного дорогостоящего клея марки LA5102 фирмы «Clifton Adhesive», применяемого для соединения полиуретановых материалов фирмы «Uretek» (США), в ВИАМ разработана рецептура клея холодного отверждения, представляющего собой двухкомпонентный раствор, для склеивания тканепленочных материалов спасательных надувных трапов самолетов гражданской авиации. В результате проведенных исследований определены влияние содержания наполнителей на прочностные свойства клеевых соединений и соответствие требованиям АП-25 по пожаробезопасности. Исследованы основные свойства клея и свойства клеевых соединений тканепленочных материалов. Разработан состав клея холодного отверждения с оптимальным соотношением полимерной основы и наполнителей (фосфорсодержащего наполнителя в комбинации с оксидом сурьмы). В результате проведенных исследований установлено, что разработанный клей холодного отверждения обеспечивает прочность при расслаивании не менее 1,3 кН/м (при Тисп=23±2°С через 24 ч после склеивания тканепленочных материалов для спасательных надувных трапов самолетов гражданской авиации) и превышает показатели импортного аналога – клея марки
LA5102 фирмы «Clifton Adhesive» (обеспечивает прочность на уровне 0,87 кН/м). Клеевые соединения работоспособны в интервале температур от -60 до +80°С, стойки к циклическому воздействию температур, воздействию гидролиза (+60°С при φ=98% – не менее 50 сут), отвечают требованиям по горючести: продолжительность остаточного горения 3 с; по классификации относятся к классу «самозатухающих», что удовлетворяет требованиям АП-25 по пожаробезопасности. В табл. 2 приведены прочностные свойства разработанного клея в сравнении с клеями аналогичного назначения.
Таблица 2
Сравнительные показатели прочности клеевых соединений тканепленочного материала на основе клеев холодного отверждения при Тисп=23±2°С
Материал |
Прочность при расслаивании, кН/м |
Прочность при сдвиге через 24 ч после склеивания, МПа |
|
через 24 ч после склеивания |
после выдержки |
||
Разработанный клей холодного отверждения |
1,3 |
1,4 |
3,1 |
Отечественный аналог 4НБ-ув |
0,6 |
Не влагостоек |
– |
Клей марки LA5102 фирмы «Clifton Adhesive» |
0,87 |
Влагостоек |
2,8 |
В настоящее время нанодисперсные алмазосодержащие материалы применяются в ряде отраслей науки и техники. Они используются для повышения эксплуатационных характеристик износостойких гальванических металлических покрытий, как добавки к смазочным маслам в качестве модификаторов трения, в качестве основы полировочных паст для супертонкой полировки поверхностей, при производстве автодорожных покрышек для повышения их износостойкости [15, 16].
Изучается возможность применения наноалмазов в медицине и еще ряде областей, например, для использования наноразмерных алмазоуглеродных материалов в качестве наполнителей или добавок в составе клеев для повышения прочностных характеристик резинометаллических изделий. Анализ эффективности применения алмазоуглеродных наноматериалов в различных областях и их свойства позволяют ожидать, что предложенное направление может оказаться перспективным и при разработке новых составов клеевых материалов [4, 11, 13, 15–17].
В ВИАМ разработан клей, предназначенный для склеивания с металлами в процессе вулканизации резин на основе СКН, и подслой, повышающий адгезию клея к резинам на основе неполярных каучуков (СКИ, СКИ+СКД и др.) [10, 11, 18–20]. В составе подслоя наряду с техническим углеродом в качестве наполнителя исследован алмазоуглеродный наноразмерный наполнитель. Разработанная клеевая система горячего отверждения обеспечивает прочностные характеристики клеевых резинометаллических соединений на уровне характеристик системы «Сhemosil» фирмы «Lord Germany GmbH» (Германия) и превышает свойства отечественного аналога – клея ВКР-85 (табл. 3).
Таблица 3
Сравнительные свойства клеев горячего отверждения для резинометаллических соединений (подложка – сталь 30ХГСА)
Клей |
Прочность при отрыве, МПа, при температуре, °С |
|||
20 |
130
|
20 (после выдержки в топливе ТС-1 при 100°С, 5 сут) |
20 |
|
Резина марки 3826 |
Резина марки 1078 |
|||
Разработанный в ВИАМ |
6,8 |
2,2 |
3,9 |
6,4 |
Отечественный аналог ВКР-85 |
5,4 |
1,9 |
3,6 |
5,0 |
Клеевая система «Сhemosil» |
6,8 |
– |
– |
6,4 |
Разработанная клеевая система (клей+подслой) работоспособна в интервале температур от -50 до +130°С на воздухе и в агрессивных средах. Клеевая композиция не содержит в своем составе дефицитных импортных, дорогостоящих материалов и разработана полностью на отечественном сырье.
2. Гращенков Д.В., Чурсова Л.В. Стратегия развития полимерных композиционных и функциональных материалов //Авиационные материалы и технологии. 2012. №S. С. 231–242.
3. Кардашов Д.А., Петрова А.П. Полимерные клеи. М.: Химия. 1983. 256 с.
4. Петрова А.П., Донской А.А., Чалых А.Е., Щербина А.А. Клеящие материалы. Герметики: Справочник. СПб.: НПО «Профессионал». 2008. 589 с.
5. Lukina N.F., Dement'eva L.A., Petrova A.P., Tyumeneva T.Y. Рroperties of adhesives and adhesive materials used in aviation industry //Polymer Science. Series D. 2009. Т. 2. №3. Р. 147–154.
6. Петрова А.П., Лукина Н.Ф., Дементьева Л.А., Тюменева Т.Ю., Авдонина И.А., Жадова Н.С. Клеи для авиационных материалов //Российский химический журнал. 2010. Т. IV. №1. С. 46–52.
7. Дементьева Л.А., Тюменева Т.Ю., Шарова И.Ю. Клеи с пониженной горючестью для авиационной техники /В сб. докладов VI Международной конф. «Полимерные материалы пониженной горючести». ВоГТУ. 2011. С. 127–128.
8. Сытый Ю.В., Сагомонова В.А., Кислякова В.И., Большаков В.А. Новые вибропоглощающие материалы //Авиационные материалы и технологии. 2012. №2. С. 51–54.
9. Петрова А.П. Основные этапы технологии склеивания //Клеи. Герметики. Технологии. 2014. №2. С. 24–30.
10. Лукина Н.Ф., Дементьева Л.А., Петрова А.П., Тюменева Т.Ю. Свойства клеев и клеящих материалов для изделий авиационной техники [Properties of adhesives and adhesives for aircraft products] //Клеи. Герметики. Технологии. 2009. №1. С. 14–24.
11. Petrova A.P., Lukina N.F., Dement'eva L.A., Tyumeneva T.Y., Avdonina I.A., Zhadova N.S. adhesives for aviation equipment //Russian Journal of General Chemistry. 2011. Т. 81. №5. Р. 1014–1021.
12. Петрова А.П., Лукина Н.Ф. Клеи для многоразовой космической системы //Труды ВИАМ. 2013. №4. Ст. 04 (viam-works.ru).
13. Шарова И.А., Петрова А.П. Обзор по материалам Международной конференции по клеям и герметикам WAC-2012 //Труды ВИАМ. 2013. №8. Ст. 06 (viam-works.ru).
14. Лукина Н.Ф., Дементьева Л.А., Петрова А.П., Сереженков А.А. Конструкционные и термостойкие клеи //Авиационные материалы и технологии. 2012. №S. С. 328–335.
15. Волков К.В., Даниленко В.В., Елин В.И. и др. Синтез алмаза из углерода продуктов детонации ВВ //Физика горения и взрыва.1990. Т. 3. №26. С. 123–125.
16. Sakovich G.V., Titov V.M., Brylyakov P.M. Synthesis of diamonds clusters by explosion /In: Proc. X Intern. Conf. «High Energy Rate Fabrication». Ljubliana. 1989. P. 179–188.
17. Tyumeneva T.Y., Lukina N.F. VKR-95 cold-setting adhesive with enhanced strength //Polymer Science. Series D. 2010. Т. 3. №2. С. 114–116.
18. Клеевая композиция: пат. 2471842 Рос. Федерация; опубл. 11.05.2011.
19. Тюменева Т.Ю., Когтёнков А.С., Лукина Н.Ф., Чурсова Л.В. Успехи в области разработки клеев и технологий для изготовления резинотехнических изделий авиационного назначения //Клеи. Герметики. Технологии. 2013. №10. С. 7–10.
20. Тюменева Т.Ю., Лукина Н.Ф. Клеи для склеивания резин между собой и с другими материалами /В сб. материалов докладов семинара. ЦРДЗ. 2008. С. 11–12.
2. Grashhenkov D.V., Chursova L.V. Strategija razvitija polimernyh kompozicionnyh i funkcional'nyh materialov [The development strategy of polymer composite and functional materials] //Aviacionnye materialy i tehnologii. 2012. №S. S. 231–242.
3. Kardashov D.A., Petrova A.P. Polimernye klei [Polymer adhesives]. M.: Himija. 1983. 256 s.
4. Petrova A.P., Donskoj A.A., Chalyh A.E., Shherbina A.A. Klejashhie materialy. Germetiki [Adhesives. Sealants]: Spravochnik. SPb.: NPO «Professional». 2008. 589 s.
5. Lukina N.F., Dement'eva L.A., Petrova A.P., Tyumeneva T.Y. Properties of adhesives and adhesive materials used in aviation industry //Polymer Science. Series D. 2009. T. 2. №3. P. 147–154.
6. Petrova A.P., Lukina N.F., Dement'eva L.A., Tjumeneva T.Ju., Avdonina I.A., Zhadova N.S. Klei dlja aviacionnyh materialov [Adhesives for aircraft materials] //Rossijskij himicheskij zhurnal. 2010. T. IV. №1. S. 46–52.
7. Dement'eva L.A., Tjumeneva T.Ju., Sharova I.Ju. Klei s ponizhennoj gorjuchest'ju dlja aviacionnoj tehniki [Adhesives with reduced flammability for aircraft] /V sb. dokladov VI Mezhdunarodnoj konf. «Polimernye materialy ponizhennoj gorjuchesti». VoGTU. 2011. S. 127–128.
8. Sytyj Ju.V., Sagomonova V.A., Kisljakova V.I., Bol'shakov V.A. Novye vibropogloshhajushhie materialy [New vibration-absorbing materials] //Aviacionnye materialy i tehnologii. 2012. №2. S. 51–54.
9. Petrova A.P. Osnovnye jetapy tehnologii skleivanija [Main stages of bonding technology] //Klei. Germetiki. Tehnologii. 2014. №2. S. 24–30.
10. Lukina N.F., Dement'eva L.A., Petrova A.P., Tjumeneva T.Ju. Svojstva kleev i klejashhih materialov dlja izdelij aviacionnoj tehniki [Properties of adhesives and adhesive materials for aircraft products] //Klei. Germetiki. Tehnologii. 2009. №1. S. 14–24.
11. Petrova A.P., Lukina N.F., Dement'eva L.A., Tyumeneva T.Y., Avdonina I.A., Zhadova N.S. Adhesives for aviation equipment //Russian Journal of General Chemistry. 2011. T. 81. №5. P. 1014–1021.
12. Petrova A.P., Lukina N.F. Klei dlja mnogorazovoj kosmicheskoj sistemy [Adhesives for reusable space system] //Trudy VIAM. 2013. №4. St. 04 (viam-works.ru).
13. Sharova I.A., Petrova A.P. Obzor po materialam Mezhdunarodnoj konferencii po klejam i germetikam WAC-2012 [Browse by materials of the International conference on adhesives and sealants WAC-2012] //Trudy VIAM. 2013. №8. St. 06 (viam-works.ru).
14. Lukina N.F., Dement'eva L.A., Petrova A.P., Serezhenkov A.A. Konstrukcionnye i termostojkie klei [Structural and heat-resistant adhesives] //Aviacionnye materialy i tehnologii. 2012. №S. S. 328–335.
15. Volkov K.V., Danilenko V.V., Elin V.I. i dr. Sintez almaza iz ugleroda produktov detonacii VV [Synthesis of diamond from carbon detonation products VV] //Fizika gorenija i vzryva.1990. T. 3. №26. S. 123–125.
16. Sakovich G.V., Titov V.M., Brylyakov P.M. Synthesis of diamonds clusters by explosion /In: Proc. X Intern. Conf. «High Energy Rate Fabrication». Ljubliana. 1989. P. 179–188.
17. Tyumeneva T.Y., Lukina N.F. VKR-95 cold-setting adhesive with enhanced strength //Polymer Science. Series D. 2010. T. 3. №2. S. 114–116.
18. Kleevaja kompozicija [The adhesive composition]: pat. 2471842 Ros. Federacija; opubl. 11.05.2011.
19. Tjumeneva T.Ju., Kogtjonkov A.S., Lukina N.F., Chursova L.V. Uspehi v oblasti razrabotki kleev i tehnologij dlja izgotovlenija rezinotehnicheskih izdelij aviacionnogo naznachenija [Progress in the development of adhesives and technologies for the manu-facture of rubber products aviation applications] //Klei. Germetiki. Tehnologii. 2013. №10. S. 7–10.
20. Tjumeneva T.Ju., Lukina N.F. Klei dlja skleivanija rezin mezhdu soboj i s drugimi materialami [Adhesives for bonding rubber between themselves and with other materials] /V sb. materialov dokladov seminara. CRDZ. 2008. S. 11–12.