Исследование полимерных конструкционных материалов при воздействии климатических факторов и нагрузок в лабораторных и натурных условиях

Статьи

 




УДК 678.8:620.1
В. А. Ефимов, А. К. Шведкова, Т. Г. Коренькова, В. Н. Кириллов
Исследование полимерных конструкционных материалов при воздействии климатических факторов и нагрузок в лабораторных и натурных условиях

На примере углепластика и стеклопластика на основе эпоксидного связующего ВСЭ-20 проведено исследование влияния климатических факторов в процессе ла-бораторных тепловлажностных и натурных климатических испытаний при статическом нагружении и в свободном состоянии на изменение остаточной прочности материала при изгибе, влагосодержания и структурных превращений в материале (области и температуры стеклования).

Ключевые слова: углепластик, тепловлажностные испытания, натурные климатические испытания, прочность при статическом

Обеспечение безопасной эксплуатации авиационной техники предъявляет высокие требования к надежности материалов, используемых в конструкциях, в которых с целью повышения энерговооруженности, снижения массы изделий все шире применяются современные полимерные композиционные материалы (ПКМ).

На полимерные композиционные материалы существенное влияние оказывают атмосферные факторы (температура, влажность, солнечная радиация, циклическое изменение температуры и др.), которые, являясь активаторами старения ПКМ, способствуют развитию физико-химических процессов в материалах и за время эксплуатации изделий (25‒30 лет) могут существенно снизить их прочностные свойства.

В частности, снижение деформационно-прочностных показателей материалов, в том числе вследствие пластификации влагой связующего, может достигать 30% и более, снижение температуры стеклования связующих: 25°С. Особенно остро проблема сохраняемости характеристик стоит при эксплуатации техники в районах с воздействием жестких климатических условий (тропический и морской климат).

Требования по надежности авиационной техники и обеспечению ресурса работоспособности конструкций отражены в Авиационных правилах (АП, Части 23, 25, параграфы 603, 613), согласно которым одним из важнейших критериев, по которым проводится выбор материалов, является их стойкость к воздействию климатических факторов.

Длительная работа материалов в конструкциях связана с накоплением в материалах необратимых повреждений [1]. Эти повреждения бывают как механического (воздействие механических нагрузок, накопление пластических деформаций, нарушение адгезии между наполнителем и полимерной матрицей, процессы растрескивания связующего и др.), так и физико-химического происхождения (адсорбция влаги, процессы доотверждения и деструкции полимерной матрицы и др.) [2].

Особый интерес представляет изучение закономерностей климатического старения материалов [3], особенно в напряженном состоянии. Опубликованные результаты работ в этом направлении имеют эпизодические и порой противоречивые данные.

Согласно работам [4, 5], воздействие эксплуатационных и климатических факторов снижает прочностные свойства ПКМ. Показано [6], что влияние растягивающей нагрузки на остаточную прочность стеклопластиков зависит от уровня нагрузки, условий экспонирования и от толщины нагруженных образцов. Экспериментально установлено [7], что в процессе климатического старения в теплом влажном климате происходит снижение прочности стеклотекстолита КАСТ-В в зависимости от уровня растягивающего напряжения и продолжительности экспонирования.

Синергизм, проявляющийся при воздействии влажной среды и механических нагрузок, обнаружен в работах [8, 9]. При моделировании совместного влияния климата и механических нагрузок было показано [10], что долговечность элементов конструкции из ПКМ при совместном воздействии климата и механических нагрузок существенно зависит от уровня нагружения. При уровнях нагрузки >80% от предельной, долговечность определяется только величиной нагрузки. Диапазон нагрузок от 60 до 80% является переходным, а при нагрузках <60% долговечность обусловлена замедляющимся во времени процессом накопления повреждений от воздействия агрессивных климатических факторов.

В работе [11] при испытании углепластика в среде воды при температурах от 25 до 80°С в свободном состоянии и при растягивающей нагрузке 0,25 от разрушающей σв установлено, что вследствие возрастания свободного объема в напряженном состоянии возрастают предельное влагонасыщение и коэффициент диффузии.

Циклические растягивающие нагрузки в процессе термовлажностного воздействия на углепластики приводят к увеличению максимального влагопоглощения Wmax и уменьшению коэффициента диффузии [12].

Во всех этих работах не проводилось исследование влияния нагружения на изменение температуры и области стеклования материалов – крайне важных характеристик, определяющих изменения структуры полимерной матрицы и области работоспособности материала. Известно, что если в процессе эксплуатации температура материала узла изделия попадает в температурную область стеклования, то величина прочности может существенно снижаться [13].

 

Исследование совместного влияния климатических факторов и нагрузок на температуру стеклования и механические свойства ПКМ в лабораторных и натурных условиях

Объектами исследований служили ПКМ на основе эпоксидного связующего марки ВСЭ-20 с повышенной деформативностью и прочностью, армированного углеродной лентой ЭЛУР-П (углепластик) и стеклотканью Т-10-80 (стеклопластик), предназначенные для изготовления деталей авиационного назначения, эксплуатирующихся при температурах до 120°С. Экспозиция образцов ПКМ осуществлялась в лабораторных условиях в климатической камере при повышенной температуре и относительной влажности в течение 60 сут, а также на атмосферном стенде в течение 1,5 лет в натурных условиях промышленной зоны умеренного климата в г. Москве. Образцы представляли собой плоские образцы размером 10×80×2 мм для испытаний на изгиб, которые экспонировались одновременно в свободном (ненагруженном) состоянии и под нагрузкой в приспособлении, реализующем нагрузку от трехточечного статического изгиба с уровнем нагружения, равным 50% от разрушающей нагрузки, а также стандартные образцы для определения прочности при сдвиге в свободном состоянии.

Предварительно были исследованы теплофизические свойства отвержденного связующего ВСЭ-20, температура стеклования (Тс) которого составила 169°С, область стеклования - в интервале 163-185°С (по данным термического механического анализа - ТМА). Температура стеклования определялась по положению максимума на кривой температурного коэффициента линейного расширения (ТКЛР) при нагревании образца в интервале температур 20-300°С со скоростью нагрева 5°С/мин. Исследования методами дифференциальной сканирующей калориметрии (ДСК) и термогравиметрии (ТГА) показали термическую устойчивость отвержденного связующего до температуры 308°С, потеря массы при которой составила 2,24%, интенсивная деструкция связующего начинается с температуры 368°С.

Проведены исследования механических и теплофизических свойств исследуемых ПКМ в исходном состоянии. Установлено, что у угле- и стеклопластика на связующем ВСЭ-20 прочность при статическом изгибе при комнатной (20°С) и рабочей температурах (120°С) практически не изменяется - сохранение свойств на уровне 95-98%; прочность при межслоевом сдвиге при 120°С у углепластика снижается на 23%, у стеклопластика - на 32% (по сравнению с прочностью при 20°С). У стеклопластика наблюдается более высокий разброс механических свойств. Методом ТМА показано, что для углепластика и стеклопластика Тс=160°С, при этом область стеклования у углепластика составляет 137-178°С (ширина интервала 41°С), у стеклопластика 128-178°С (ширина интервала 50°С). При нагревании у обоих материалов наблюдается усадка в области температуры стеклования. Полученные результаты могут свидетельствовать о различном характере отверждения связующего на поверхности углеродного и стеклянного наполнителей и различиях в структуре отвержденного связующего в межфазном слое.

 

Лабораторные тепловлажностные испытания ПКМ*

Для исследования стабильности свойств как отвержденного связующего ВСЭ-20, так и угле- и стеклопластика на его основе, проведены лабораторные испытания при воздействии повышенной температуры, влажности и механической нагрузки (статического изгиба). Объектами испытаний служили: для отвержденного связующего - отливка размером 5×5×40 мм, для ПКМ - стандартные образцы для испытаний на изгиб и межслоевой сдвиг.

Лабораторные испытания проводили в автоматической климатической камере при температуре (60±0,5)°С и относительной влажности (85±1)%. Отливки связующего ВСЭ-20 экспонировались в свободном состоянии, образцы ПКМ - в свободном состоянии и при изгибающей нагрузке. Нагружение образцов ПКМ осуществляли в специальных приспособлениях, реализующих трехточечный статический изгиб с заданным уровнем деформации, эквивалентным 50% разрушающей нагрузки при изгибе. Расчет деформаций проводился по величине модуля упругости при изгибе, измеренного в области упругой деформации.

Продолжительность лабораторных тепловлажностных испытаний устанавливалась в зависимости от времени достижения равновесного влагопоглощения образцами связующего и исследуемых ПКМ в свободном состоянии. Полученные результаты испытаний приведены в табл. 1-4.

 

 

Установлено, что в условиях испытаний влагопоглощение стеклопластика на основе связующего ВСЭ-20 на 10% ниже, чем у углепластика, что связано с большим содержанием связующего в углепластике. После увлажнения образцов углепластика в свободном состоянии их прочность при статическом изгибе при комнатной (20°С) и рабочей температурах (120°С) практически не изменялась (сохранение свойств на уровне 95%), у стеклопластика прочность при изгибе при 120°С снизилась на 35%. У обоих материалов прочность при сдвиге при 20°С не изменилась, а при 120°С - снизилась на 35%.

Температура стеклования пластиков после увлажнения практически не изменяется (составляет 155-159°С) по сравнению с исходным значением (160°С). При этом ненаполненная отвержденная матрица ВСЭ-20 чувствительна к воздействию влаги, при равновесном влагопоглощении 2,01% ее температура стеклования снижается со 169 до 132°С и расширяется интервал области стеклования с 23 до 39°С. Полученные результаты исследований показали, что для увлажненных ПКМ на связующем ВСЭ-20 снижение прочности при сдвиге при повышенной температуре (120°С) может быть связано с повышением структурной неоднородности матрицы и дефектности пограничного слоя связующее/наполнитель.

В табл. 3 и 4 показано совместное воздействие климатических факторов и статического механического (изгибающего) нагружения на прочность и структуру исследуемых ПКМ на основе связующего ВСЭ-20.

____________________

* Испытания выполнялись при участии Д.В. Абрамова.

 

Как видно из данных табл. 3 и 4, приложение изгибающей нагрузки снижает влагопоглощение угле- и стеклопластика на величину ~10% (по сравнению с ненагруженными образцами) и не оказывает влияния на прочность при изгибе и температуру стеклования исследуемых ПКМ.

Натурные климатические испытания ПКМ

Исследования совместного влияния климатических факторов и нагрузок в натурных условиях промышленной зоны умеренного климата (г. Москва, атмосферный стенд) проводили при экспозиции образцов в свободном и нагруженном состоянии в течение 6 мес, 1 и 1,5 лет.

Через 6 мес экспозиции (весна-лето) наблюдались трещины и разрушение нагруженных образцов стеклопластика, температура стеклования при этом повысилась на 12°С и интервал области стеклования расширился на 12°С. Общий вид образцов стеклопластика представлен на рис. 1 и 2.

 

Рис. 1. Трещинообразование и выветривание связующего на лицевой стороне образца стеклопластика на связующем ВСЭ-20

 Рис. 2. Совместное воздействие факторов климата и нагрузки при экспозиции  (показано поперечное сечение сломанного образца стеклопластика на связующем ВСЭ-20)

Повышение температуры стеклования стеклопластика с 160 до 172°С приводит к необратимому увеличению жесткости связующего и потере его деформационных свойств, что вызывает возникновение микротрещин и разрушение образцов стеклопластика под нагрузкой. По-видимому, в данном случае нагрузка в 50% от разрушающей является слишком большой.

Через 1 год экспозиции у углепластика произошло увеличение прочности при изгибе соответственно на 18% - для образцов в свободном состоянии и на 15% - под нагрузкой, увеличилась также прочность при межслоевом сдвиге; однако температура стеклования не изменилась по сравнению с исходной (160°С). Одной из причин этого эффекта может являться релаксация внутренних напряжений. Экспозиция образцов сопровождалась уносом массы и эрозией поверхности стекло- и углепластика.

После экспозиции исследуемых ПКМ в течение 1,5 лет установлено, что:

- для углепластика прочность при изгибе для образцов в свободном состоянии составила 116-120% (при 20 и 120°С) и под нагрузкой 108% (при 20°С) по сравнению с исходным значением. Прочность при сдвиге также выше исходной на 9-12% (при 20 и 120°С);

- для образцов стеклопластика в свободном состоянии прочность при изгибе составила 112‒118% при комнатной и рабочей температурах (20 и 120°С), прочность при сдвиге повысилась на 14-17% (при 20 и 120°С).

Температура стеклования углепластика в свободном и нагруженном состоянии практически не изменилась по сравнению с исходным значением, температура начала и конца области стеклования составила 144-171°С, для образцов стеклопластика в свободном состоянии температура стеклования понизилась на 10°С, температура начала и конца области стеклования составила 142-162°С.

Обобщенные результаты изменения прочностных характеристик исследуемых ПКМ после лабораторных и натурных испытаний приведены в табл. 5 и 6.

 

 Анализ и сопоставление результатов лабораторных тепловлажностных и натурных испытаний позволяет сделать вывод о том, что в указанных условиях испытаний процессы, протекающие в исследуемых ПКМ, различны. Совместное воздействие повышенной температуры, влажности и нагрузки в лабораторных условиях не вызвало трещинообразования образцов, в то время как после экспозиции в натурных условиях (на атмосферном стенде) наблюдались поверхностная эрозия и разрушение образцов стеклопластика.


ЛИТЕРАТУРА
1. Болотин В.В. Прогнозирование ресурса машин и конструкций. М.: Машинострое-ние. 1984. 312 с.
2. Вапиров Ю.М., Кириллов В.Н., Кривонос В.В. Закономерности изменения свойств полимерных композитов конструкционного назначения при длительном климатическом старении в свободном и нагруженном состояниях /В сб. докладов VI научной конференции по гидроавиации «Гидроавиасалон-2006». Ч. II. М. 2006. С. 103-108.
3. Кириллов В.Н., Старцев О.В., Ефимов В.А. Климатическая стойкость и повреждаемость полимерных композиционных материалов, проблемы и пути решения /В сб.: Авиационные материалы и технологии: Юбилейный науч.-технич. сб. (приложение к журналу «Авиационные материалы и технологии»). М.: ВИАМ. 2012. С. 412-423.
4. Кириллов В.Н., Ефимов В.А., Матвеенкова Т.Е., Коренькова Т.Г. Влияние после-довательного воздействия климатических и эксплуатационных факторов на свой-ства полимерных композиционных материалов /В сб. докладов 5-й научной кон-ференции по гидроавиации «Гидроавиасалон-2004». М. 2004. С. 155-158.
5. Кириллов В.Н., Ефимов В.А., Шведкова А.К., Николаев Е.В. Исследование влия-ния климатических факторов и механического нагружения на структуру и меха-нические свойства ПКМ //Авиационные материалы и технологии. 2011. №4. С. 41-45.
6. Панферов К.В., Романенков И.Г., Абашидзе Г.С., Никитин В.Н., Львов Б.С., Шпаловская Б.И. Атмосферостойкость стеклопластиков, находящихся под нагрузкой //Пластические массы. 1968. №6. С. 32-33.
7. Каблов Е.Н., Старцев О.В., Кротов А.С., Кириллов В.Н. Климатическое старение композиционных материалов авиационного назначения. III. Значимые факторы старения //Деформация и разрушение материалов. 2011. №1. С. 34-40.
8. Helbling C., Karbhari V.M., Durability Assesment of Combined Enviromental Eposur and Bending /In.: Proc. of 7-th Int. Symp. on Fiber Reinforsed Polym. Reinf. Concrete Structures (FRPRCS-7). New Orlean, Loisiana, USA. 2005. P. 1379-1418.
9. Roylance D., Roylance M. Weathering of Fiber-Reinforced Epoxy Composites //Polym. Eng. And Sci. 1978. V. 18. №4. P. 249-254.
10. Булманис В.Н., Ярцев В.А., Кривонос В.В. Работоспособность конструкций из полимерных композитов при воздействии статических нагрузок и климатических факторов //Механика композиционных материалов. 1987. №5. С. 915-920.
11. Kim R.H., Broutman L.J. Effect of Moisture and Stress on the Degradation of Graphite Fiber Reinforced Epoxies /In.: Deform. Yield and Fract. Polym., 4-th Imt. Conf., Cambridge. London. 1979. P. 231-235.
12. Edward R., Long Jr. Moisture Diffusion Parameter Characteristics for Epoxy Compo-sites and Neat Resins /In.: NASA Technical Paper 1474. 1979. 31 p.
13. Кириллов В.Н., Ефимов В.А., Вапиров Ю.М. Особенности влияния внешних факторов на свойства ПКМ при ускоренных и натурных климатических испытаниях /В сб. докладов 7-й научной конференции по гидроавиации «Гидроавиасалон-2008». Сентябрь 5-6, 2008 г. Ч. 1. М. 2008. С. 237-335.
Вы можете оставить комментарий к статье. Для этого необходимо зарегистрироваться на сайте.