Статьи
Новые композиционные материалы требуют создания связующих с уникальным комплексом свойств и функций, которые можно перерабатывать различными технологиями. Получение материалов должно проводиться по экологически безопасным и энергоэффективным технологиям. Связующие создаются на основе широкого класса полимерных систем, используя всестороннюю оценку самих связующих и материалов на их основе.
Перспективный путь развития машиностроения – использование конструкционных полимерных композиционных материалов (ПКМ). Важнейшей частью ПКМ является полимерная матрица, обеспечивающая многие характеристики материала: теплостойкость, механические свойства, стойкость к воздействию климатических факторов и агрессивных сред и другие [1,2]. Современные материалы требуют высококачественных связующих, обеспечивающих самые высокие характеристики при снижении затрат на производство изделия и соблюдении требований экологических стандартов и принципов «Зеленой химии». ФГУП «ВИАМ» создавая программу стратегических направлений, учитывало растущий интерес к этому виду материалов, поэтому проблема создания современных связующих для ПКМ выделено в отдельное направление [3,4]. Один из принципов используемых при разработке связующих – это отказ от использования органических растворителей в связующих и переход на расплавные технологии. Такой подход требует использования специализированого оборудования при изготовлении связующих и производстве полуфабрикатов из них, что позволяет получать связующие с большим содержанием термопластичных компонентов, увеличивающих стойкость к ударным воздействиям, а также минимизировать работу с опасными растворителями в процессе производства связующих и препрегов.
Созданные ФГУП «ВИАМ» связующие охватывают все используемые и перспективные технологии получения композиционных материалов: автоклавное формование, вакуумное формование препрегов, пропитка под давлением (RTM, Resin transfer molding), вакуумно-инфузионный метод (VaRTM, Vacuum assisted resin injection) и пропитка с использованием пленочного связующего(RFI, Resin film infusion) [5-7]. Полимерные основы для разработанных связующих включают классы эпоксидных, кремнийорганических, фенольных, поликарбосилановых, цианэфирных и тетранитрильных олигомеров и мономеров. Использование такого широкого класса полимерных систем позволяет создавать материалы различного назначения от радиотехнических до материалов интерьера самолетов. Рабочие температуры конструкционных материалов на основе этих связующих достигают 350°С при длительной эксплуатации и 800°С при кратковременном воздействии. Композиционные материалы на основе керамообразующих полимеров реализуют температуру эксплуатации до 1200°С [8-10]. Отличительной особенностью эпоксидных связующих для высоконагруженных композиционных материалов, разработанных ФГУП «ВИАМ», является высокая сдвиговая прочность и значения прочности сжатия после удара углепластика выше 220 МПа.
Разработка современных полимерных связующих и композиционных материалов требует привлечения значительного количества методов исследований и испытаний. Создание связующих требует исследований химических свойств исходных компонентов, процессов их взаимодействия, структурообразования на различных масштабных уровнях. Для этого привлекаются методы аналитической химии, хроматографии, термического анализа, ИК-спектроскопии, различных видов микроскопии, механические испытания. Удовлетворение технологических требований обеспечивается реологическими исследованиями, исследованиями процессов гелеобразования и опробованием экспериментальных составов на образцах композиционных материалов. Таким образом, всесторонняя оценка материала не только в части связующего но и в составе композиционного материала позволяет разрабатывать ПКМ, перерабатываемые по перспективным технологиям с уникальным набором характеристик.
Дальнейшее развитие полимерных связующих для конструкционных материалов требует снижения издержек при производстве материалов и получения материалов с дополнительными функциями. Путями снижения затрат на изготовление изделий из ПКМ может являться: снижение температур полимеризации без потери теплостойкости и механических характеристик, использование альтернативных способов отверждения, создание связующих для безавтоклавных технологий. Важным направлением регулирования свойств полимерных матриц является использование наночастиц в качестве микроармирующих компонентов и агентов структурирующих полимерную матрицу [11]. Одним из направлений функционального развития полимерных матриц является приданием им способности к самозалечиванию [12-14]. Перспективные работы необходимо проводить во взаимосвязи с фундаментальными работами институтов Российской академии наук, а также в непосредственном контакте с разработчиками изделий из композиционных материалов. Такой подход позволит связать воедино научные подходы и требования конечного пользователя, что обеспечит создание востребованных материалов и технологий.
2. Кербер М.Л., Виноградов В.М. Полимерные композиционные материалы: структура, свойства, технология. СПб.: Профессия. 2009. 560 с.
3. Каблов Е.Н. Стратегические направления развития материалов и технологий их переработки на период до 2030 года // В сб.: «Авиационные материалы и технологии» Юбилейный науч.-техн. сб. (приложение к ж-лу «Авиационные материалы и технологии»). М.: ВИАМ. 2012. С. 231–242.
4. Гращенков Д.В., Чурсова Л.В. Стратегия развития композиционных материалов и функциональных материалов // В сб.: «Авиационные материалы и технологии» Юбилейный науч.-техн. сб. (приложение к ж-лу «Авиационные материалы и технологии»). М.: ВИАМ. 2012. С. 7–18.
5. Чурсова Л.В., Душин М.И., Коган Д.И., Панина Н.Н., Ким М.А., Гуревич Я.М., Платонов А.А. Пленочные связующие для RFI-технологии //Российский химический журнал. 2010. Т. LIV. С. 63–67.
6. Мухаметов Р.Р., Ахмадиева К.Р., Чурсова Л.В. //Российский химический журнал. 2010. Т. LIV. №1. С. 57–62.
7. Мухаметов Р.Р., Ахмадиева К.Р., Ким М.А., Бабин А.Н. Расплавные связующие для перспективных методов изготовления ПКМ нового поколения /В сб.: «Авиационные материалы и технологии» Юбилейный науч.-техн. сб. (приложение к ж-лу «Авиационные материалы и технологии»). М.: ВИАМ. 2012. С. 260–265.
8. Минаков В.Т., Швец Н.И. Модифицированные кремнийоранические полимеры для теплостойких композиционных материалов /В сб.: «Авиационные материалы, 1938-2002, избранные труды» науч.-техн. сб. М.: ВИАМ. 2002. С. 362–376
9. Керамикообразующая композиция, керамический композиционный материал на ее основе и способ его получения: пат. 2190582 Рос. Федерация. №2001100305/03; заявл. 09.01.01; опубл. 10.10.02 Бюл. №28.
10. Солнцев С.С., Миронова Н.А., Швец Н.И., Ямщикова Г.А., Деев И.С. Нанокомпозиты на основе керамообразующих полимеров //Авиационные материалы и технологии. 2005. №1. С. 60–64.
11. Акатенков Р.В., Алексашин В.Н., Аношкин И.В., Бабин А.Н., Богатов В.А., Грачев В.П., Кондрашов С.В., Минаков В.Т., Раков Э.Г. Влияние малых количеств функционализированных нанотрубок на физико-механические свойства и структуру эпоксидных композиций //Деформация и разрушение материалов. 2011. №11. С. 35–39.
12. Jay A. Syrett, C. Remzi Becer and David M. Haddleton. Self-healing and self-mendable polymers //Polym. Chem. 2010. С. 978–987.
13. B.J. Blaiszik, S.L.B. Kramer, S.C. Olugebefola, J.S. Moore, N.R. Sottos, and S.R.White. Self-Healing Polymers and Composites //Annu. Rev. Mater. Res. 2010. 40:179–211
14. Wu DY, Meure S, Solomon D. 2008. Self-healing polymeric materials: a review of recent developments //Prog. Polym. Sci. 33(5):479–522