Статьи

 




dx.doi.org/ 10.18577/2307-6046-2017-0-6-7-7
УДК 678.8:629.331
П. Н. Тимошков, А. В. Хрульков, Л. Н. Язвенко
КОМПОЗИЦИОННЫЕ МАТЕРИАЛЫ В АВТОМОБИЛЬНОЙ ПРОМЫШЛЕННОСТИ (обзор)

Применение композиционных материалов осуществляется во все более широких масштабах. В автомобилестроении композиционные материалы используются уже много лет, и с каждым годом объем их применения растет. Если раньше ПКМ использовались в основном в качестве отделки салона и в деталях, не несущих значительных нагрузок, то в настоящее время полимеры стали применяться в крупногабаритных корпусных деталях, а зарубежные компании, такие как BMW, Ford, Mercedes, Audi, и вовсе изготавливают автомобили, кузов которых полностью состоит из композитов.

Ключевые слова: полимерные композиционные материалы (ПКМ), препреги, углепластики, стеклопластики, автомобильная промышленность, автомобили, polymer composite materials (PCM), prepreg, carbon plastic, fiberglass, automotive industry, cars.

Введение

В последние годы функции полимерных материалов в любой отрасли промышленности несколько изменились. Еще в 60-х годах прошлого столетия, благодаря предложению начальника ВИАМ, члена-корреспондента Академии наук СССР Алексея Тихоновича Туманова, в Советском Союзе началось создание полноценного производства композиционных материалов [1]. Полимеры стали применять для все более и более ответственных деталей. Так, из них изготавливают все больше относительно мелких, но конструктивно сложных и ответственных деталей машин и механизмов, в то же время все чаще полимеры применяются для изготовления крупногабаритных корпусных деталей, несущих значительные нагрузки. В настоящее время полимерные композиционные материалы (ПКМ) стали одними из основных конструкционных материалов [2] – перечень деталей автомобиля, которые в тех или иных моделях изготавливают из полимеров, занял бы не одну страницу: кузова и кабины, инструменты и электроизоляция, отделка салона и бамперы, радиаторы и подлокотники, шланги, сиденья, дверцы, капот. Более того, несколько разных фирм за рубежом уже объявили о начале производства цельнопластмассовых автомобилей.

Композиционные материалы можно без сомнения отнести к наиболее перспективным продуктам как современного, так и будущего промышленного производства. Во ФГУП «ВИАМ» разработаны «Стратегические направления развития материалов и технологий их переработки на период до 2030 года», аналитический обзор выполнен в рамках реализации комплексного научного направления 13. «Полимерные композиционные материалы», раздел 13.2. «Конструкционные ПКМ» [3].

 

Материалы и методы в автомобилестроении

Композиционные материалы – это в первую очередь продукция из углеродного волокна, которая используется, например, в автомобилестроении уже много лет, и с каждым годом объем применения таких материалов растет. Наиболее важное преимущество углеволокна – небольшая плотность и высокая прочность. Углепластик в 5 раз легче стали и в 1,8 раза легче алюминия. Использование композитов в автомобилестроении позволяет снизить массу транспортного средства на 20–25%, за счет этого заметно повышается эффективность работы двигателя и снижается расход горючего.

Углеродные волокна производят из синтетических и природных волокон на основе полимеров. В зависимости от режима обработки и исходного сырья получают материалы разной структуры и с разными свойствами. В этом заключается главное преимущество композиционных материалов, которые можно создавать с изначально заданными свойствами под определенные цели [4–12].

Признанными лидерами в промышленном освоении композиционных материалов в автомобилестроении стали Япония и США.

Первое, что позаимствовали конструкторы и разработчики у легкомоторной авиации – это возможность формировать кузовные панели из композитов практически любой формы и размеров. Неудивительно, что стеклопластики и углепластики моментально нашли свое применение в строительстве болидов «Формулы-1».

Значительное снижение массы кузова (почти вдвое) давало немалые преимущества, но за рекордные показатели пришлось платить значительным удорожанием и усложнением технологии изготовления. Кузов из стеклопластика или углепластика приходилось формовать практически вручную, с постоянным и непрерывным контролем всех технологических операций. Брак не допускался, каждая из панелей была штучным товаром, что-либо восстановить или исправить после формовки уже невозможно. Конвейерная сборка, даже самых элитных моделей, была основой любого автомобильного завода, иначе затраты на производство не покрывались доходами от реализации автомобилей. Даже такие неоспоримые преимущества, как экономия топлива, улучшение динамических свойств машин, гарантия на отсутствие коррозии на 50 лет, не были настолько привлекательными в глазах покупателей, чтобы платить за новинку двойную цену.

Анализ и испытания армированных стекловолокном композиционных силовых элементов неожиданно показали, что в роли несущих элементов конструкции, призванных поглотить основную энергию удара, композиты значительно уступают металлу – как минимум в 2 раза. Можно было бы подвести итог – внедрение пластиков и пластмасс в конструкцию автомобиля не принесло желаемого эффекта и оставило основные доминирующие позиции за высококачественной сталью и легкими сплавами.

Возвращение разработчиков к применению композиционных материалов отмечено экспертами совсем недавно и совпало с появлением на рынке гибридных автомобилей и «чистых» электромобилей. Электрический привод в большинстве перспективных моделей подразумевает наличие значительной дополнительной массы электробатарей или топливных элементов. Ресурс, пробег и динамические качества электромобилей жестко зависят от массы машины. При этом модели, рассчитанные на эксплуатацию в городских условиях, выполнены с высоко поднятым центром тяжести и маленьким расстоянием между осями. Небольшие габариты машины позволяют легко находить место для парковки и протискиваться в автомобильных пробках. Высокий центр тяжести приводит к склонности автомобиля к повышенной опрокидываемости. Композиционные материалы снижают массу конструкции практически до 30%, а тяжелые батареи, расположенные в максимально низком положении, смещают положение центра тяжести машины до гарантированно безопасного. В этом случае применение композиционных материалов дает ощутимый экономический эффект.

Изменились также технологии производства деталей из композитов. В настоящее время они изготавливаются (как и металлические узлы) на роботизированных линиях. Для упрощения монтажа в точках сопряжения с другими деталями при формовке узла запрессовываются металлические элементы крепежа. Такой способ позволяет применять сварку, болтовое и клепаное соединения. Любые колебания и знакопеременные нагрузки воспринимаются такими изделиями (так же как металлическими) без риска развития усталостных трещин и расслоения панелей [13].

Наблюдая технический прогресс в области развития и применения композиционных материалов, можно уверенно констатировать, что в ближайшем будущем появятся серийные автомобили с полностью композитным кузовом и многими узлами и агрегатами.

Рассмотрим каков прогноз развития применения ПКМ в автомобильной промышленности. Специалисты компании IHS (штат Колорадо, США) прогнозируют, что применение полимеров в автомобилестроении будет расти (рис. 1).

 

 

Рис. 1. Прогноз применения углеродных композитов до 2030 г.

 

В настоящее время в среднестатистическом автомобиле содержится ~200 кг того или иного вида пластических масс, но уже к 2020 г. этот показатель превысит отметку в 350 кг. Такие данные приводит аналитическая компания IHS. Но еще больший прогресс ожидается в сегменте углепластиков – их применение к 2030 г. вырастет в 3 раза – с 3,4 до 9,8 тыс. тонн.

Специалисты компании IHS также отмечают, что индустрия автомобилестроения является быстрорастущей и очень привлекательной отраслью для химической промышленности. Если в 2003 г. производство автомобилей составляло 56,9 млн автомобилей в год, то к 2020 г. этот показатель вырастет до 104,1 млн. Как и во многих других отраслях, рост данного рынка в основной своей массе будет обеспечен Китаем [14].

Применение в автомобилестроении деталей и узлов, производимых на основе полимерных и композиционных материалов, с каждым годом расширяется. В настоящее время в структуре сырья для автокомпонентов доля полимеров (в % от стоимости среднестатистического автомобиля) находится на третьем месте после металлов (рис. 2).

Применение пластиков при производстве технических изделий обеспечивает: снижение массы конструкции при ее высокой прочности; высокий уровень безопасности по электрической прочности – трекингостойкости и дугостойкости; высокий уровень стойкости к УФ излучению; возможность использования красителей для создания цветовой гаммы изделий.

 

Рис. 2. Материалы, используемые в автомобилестроении

 

Использование ПКМ в автомобиле позволяет снизить его массу на 15–30%, а снижение массы на 100 кг приводит к снижению расхода топлива на 0,5 л на каждые 100 км. Конечно, высокотехнологичные конструкционные полимеры не экономичнее стали или алюминиевого сплава и процесс формования деталей из полимеров длительнее, чем штамповка стального листа, однако им не требуется защита от коррозии.

По сравнению с американскими производителями автомобилей, у которых доля полимеров в общей массе среднего легкового автомобиля составляет 11–13%, в легковых автомобилях российского производства эта цифра всего 4–9% (рис. 3).

 

Рис. 3. Весовое содержание полимеров в различных моделях автомобилей

Как утверждают эксперты, это обстоятельство обусловлено двумя основными факторами. С одной стороны, низкую долю полимерных комплектующих в условно современных моделях отечественных марок (Lada Kalina, Lada Priora) можно объяснить достаточно консервативным подходом при разработке этих моделей. При разработке новых отечественных автомобилей дизайнеры и инженеры вынуждены учитывать как реальное состояние локального рынка автокомпонентов, так и технические возможности существующих автозаводов: не рекомендуется закладывать в проект нового крупносерийного автомобиля использование деталей и материалов, которые невозможно изготовить даже в будущем. Так, на небольшую долю полимеров в отечественных моделях косвенно влияет низкий технологический уровень развития индустрии пластиковых автокомпонентов. С другой стороны, производителям автокомпонентов невыгодно брать в серийное производство те или иные полимерные детали, если партия таких деталей будет ниже некоего экономически оправданного минимума, т. е. индустрия локальных автокомпонентов не получает должного стимула для развития в том числе и потому, что отечественный автопром не производит достаточно много автомобилей [15].

По сравнению с работниками отечественного автопрома зарубежные коллеги чувствуют себя более уверенно в этой области.

Компания BMW инвестировала 533 млн долл. в освоение промышленного производства модели электромобиля i3. Кузов нового электромобиля BMW i3 в значительной степени выполнен из углепластика, что дало возможность увеличить массу электрической батареи на 250–350 кг. Фактически кузов сделан из синтетического материала, усиленного углеволокном. Кузов из такого материала на 50% легче стального и на 30% – алюминиевого. Структурные элементы из нового материала могут легко комбинироваться с алюминиевыми кузовными панелями или металлизироваться (рис. 4) [16].

 

 

 

Рис. 4. Автомобиль марки BMW

 

В 2013 г. компания Ford представила легковую модель Fusion, которая оказалась на 25% легче своего серийного предшественника за счет применения углеволокна для силовых конструкций сидений, панели приборов и картера. В настоящее время концерн Ford совместно с химической компанией DowAksa и американским центром инноваций реализует крупный проект по созданию принципиально нового средства передвижения с улучшенными эксплуатационными характеристиками. Идея основана на широком использовании в автомобиле углеродных волоконных композитов.

Первые позитивные результаты уже нашли отражение в модели Ford GT. Эксперты отмечают улучшенную управляемость и быстрый разгон машины, чего трудно добиться без придания отдельным компонентам повышенной гибкости и жесткости. Из углепластика изготовлен кузов. Колесные диски представлены специальными алюминиевыми сплавами. Это дало возможность снизить массу болида на 12%. Всего же концерн предполагает уменьшить массу крупногабаритных кроссоверов на 300 кг. Наноматериалы использованы в автомобильной краске, что предотвращает порчу поверхности от царапин и мелких сколов.

Углеродное волокно также применяет концерн Mercedes, детали из которого внедряются для замены стальных компонентов. Из них изготавливают корпуса моторов и несущей системы балочной конструкции. В обновленной серии модели SL65 Black Series благодаря нововведениям масса кара снизилась на ~170 кг, что позволило повысить эффективность автомобиля в целом.

Специалисты автомобильного гиганта Audi также много внимания уделяют расширенному применению в своей продукции ПКМ. Так, в концерне намерены все пружины выполнять из особо прочных стекловолоконных полимеров. Новые разработки только этих компонентов приведут к снижению массы пружин на 40%, а машины – на 5 кг, соответственно уменьшится расход топлива. Помимо стекловолокна в изделиях будут применяться углеродные пластики и алюминиевые сплавы. В настоящее время новые конструкционные материалы проходят апробацию в деталях для средних седанов, но в скором времени из них предполагается изготавливать пружины для тяжелых грузовиков, работающих в условиях повышенных нагрузок. Такие материалы нуждаются в особой прочности, эластичности и жесткости. С этой задачей можно справиться с помощью скрученных стекловолокон, усиленных эпоксидной смолой и другими компонентами. Пружины из сложных высокотехнологичных ПКМ в отличие от стальных не подвержены коррозии, нейтральны к реагентам и химикатам, используемым на автомойках. Помимо этого, такие пружины экономичнее при изготовлении, так как процесс менее энергетически затратный. Для их выпуска не нужны большие мощности со сталеплавильными печами, а достаточно небольших цехов [17].

Научно-производственное объединение «Урал» (г. Челябинск, Россия) для завода «КамАЗ» поставляет 20 наименований деталей, выполненных из углепластика (рис. 5). Например, одной такой деталью является баллон высокого давления для автомобилей, работающий на газовом топливе. Таких баллонов на каждой машине шесть штук, они используются в системе торможения. В настоящее время основной проблемой при применении стальных экземпляров является то, что они ржавеют, а детали, изготовленные из композитов, будут по сути «вечными» [18].

 

Рис. 5. Композиционные материалы в автомобилестроении

 

В России выпускаются многоосные колесные машины высокой проходимости, такие как ЗИЛ-БАЗ-135 с кабиной, мотоотсеком и облицовкой из композиционных материалов и плавающая колесная машина ЗИЛ-1Э5П с несущим (безрамным) корпусом из композитов. Опыт создания из ПКМ многочисленных деталей: корпусов, кузовов, рам, кабин, рессор, топливных баков, ободьев колес и т. д. – доказывает широкие возможности применения композитов в колесных машинах [19].

В автомобиле нового поколения «Урал NEXT», производство которого началось в 2015 г., применены современные литьевые полимеры, имеющие высокие механические свойства и обеспечивающие технологичность производства, – полиамид (PA) и полидициклопентадиен (PDCPD) – см. таблицу. Применены пластики в основном российского производства. На организованном автозаводом «Урал» летом 2016 г. тест-драйве в условиях, максимально приближенных к реальным, его участники, помимо прочего, испытывали полимерный капот грузовика на прочность – ударяли по нему тяжелыми молотками несколько десятков раз, при этом ни малейшего следа деформации на капоте не возникло [20].

 

Доля ПКМ в отечественных автомобилях

Марка автомобиля

Доля композитов в автомобилях, кг

Lada

94–98

Кировец К-744Р

150–160

КаМаЗ

40

Урал

40

 

Во ФГУП «ВИАМ» разработан углепластик ВКУ-45/3692 на основе равнопрочной углеродной ткани (арт. 3692) и стеклопластик ВПС-53/Т-25 на основе ткани типа Т-25 и эпоксидного связующего ВСЭ-34. Материалы предназначены для применения в конструкциях скоростной несущей системы вертолетов, а также могут использоваться для изготовления нагруженных частей автомобиля (корпус, кузов, рамы, рессоры).

 

Заключение

Композиционные материалы – самый интенсивно развивающийся сегмент на рынке материалов. Повышенная прочность, пластичность, термостойкость, малая плотность – эти преимущества позволяют композитам все больше и больше вытеснять классические материалы – дерево, металлы, камень. Композиты интенсивно входят в привычный мир каждого человека, их применение в автомобилестроении, авиастроении и других отраслях экономики с каждым годом увеличивается.

Таким образом, можно сделать вывод, что для продолжения дальнейшего успешного внедрения композиционных материалов в автомобилестроении необходимо решить несколько задач. Во-первых, сократить цикл изготовления деталей до нескольких минут, что позволит осуществлять их массовое производство и снизить количество необходимого оборудования. Во-вторых обеспечить их приемлемую рыночную стоимость, что связано как с решением первой задачи, так и со снижением стоимости исходных материалов. И наконец, необходимо создать современные автоматизированные производства, на которых будут работать специалисты по проектированию и разработке современных технологических процессов, а также по сопровождению конструкций из полимерных композитов на протяжении всего жизненного цикла – вплоть до утилизации.


ЛИТЕРАТУРА REFERENCE LIST
1. Каблов Е.Н. В истории ВИАМ Петр Дементьев занимает особое место // Крылья Родины. 2017. №1. С.1–2.
2. Каблов Е.Н. Инновационные разработки ФГУП «ВИАМ» ГНЦ РФ по реализации «Стратегических направлений развития материалов и технологий их переработки на период до 2030 года» // Авиационные материалы и технологии. 2015. №1 (34). С. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
3. Каблов Е.Н. Стратегические направления развития материалов и технологий их переработки на период до 2030 года // Авиационные материалы и технологии. 2012. №S. С. 7–17.
4. Каблов Е.Н. Материалы нового поколения – основа инноваций, технологического лидерства и национальной безопасности России // Интеллект & Технологии. 2016. №4. С. 41–46.
5. Каблов Е.Н. Материалы и технологии ВИАМ для «Авиадвигатель» // Пермские авиационные двигатели: информ. бюл. 2014. №31. С. 43–47.
6. Каблов Е.Н. О настоящем и будущем ВИАМ и отечественного материаловедения: интервью // Российская академия наук. 2015. 19 янв.
7. Каблов Е.Н. Композиты: сегодня и завтра // Металлы Евразии. 2015. №1. С. 36–39.
8. Каблов Е.Н., Чурсова Л.В., Бабин А.Н., Мухаметов Р.Р., Панина Н.Н. Разработки ФГУП «ВИАМ» в области расплавных связующих для полимерных композиционных материалов // Полимерные материалы и технологии. 2016. Т. 2. №2. С. 37–42.
9. Душин М.И., Хрульков А.В., Мухаметов Р.Р. Выбор технологических параметров автоклавного формования деталей из полимерных композиционных материалов // Авиационные материалы и технологии. 2011. №3. С. 20–26.
10. Чурсова Л.В., Душин М.И., Хрульков А.В., Мухаметов Р.Р. Особенности технологии изготовления деталей из композиционных материалов методом пропитки под давлением // Композиционные материалы в авиакосмическом материаловедении: сб. тез. докл. межотрас. науч.-технич. конф. М.: ВИАМ, 2009. С. 17.
11. Хрульков А.В., Душин М.И., Попов Ю.О., Коган Д.И. Исследования и разработка автоклавных и безавтоклавных технологий формования ПКМ // Авиационные материалы и технологии. 2012. №S. С. 292–301.
12. Тимошков П.Н., Коган Д.И. Современные технологии производства полимерных композиционных материалов нового поколения // Труды ВИАМ: электрон. науч.-технич. журн. 2013. №4. Ст. 7. URL:http://www.viam-works.ru (дата обращения: 03.04.2017).
13. Vicari A. Will Carbon Fiber Find Widespread Use in the Automotive Industry? // Composites today. 2015. №3. Р. 3–10.
14. Мирный М.М. Автомобили будущего будут на 75% из пластика // Композитный мир. 2015. №3. С. 5–10.
15. Мирный М.М. Автомобилестроение как драйвер спроса на полимерную продукцию // Информационно-аналитический справочник. 2014. С. 15–18.
16. BMW оригинальным образом оказались впереди по конструкции новой 7-серии. Хитрый ход Баварии // 1gai.ru: информационное издание [Электронный ресурс]. URL: http://www.1gai.ru/techno-cars/514689-bmw-originalnym-obrazom-okazalis-vperedi-po-konstrukcii-novoy-7-serii.html (дата обращения: 17.04.2017).
17. Новые композитные материалы в автомобиле – применение конструкции // Ремонт Пежо: ремонт Пежо своими руками [Электронный ресурс]. URL: http://remontpeugeot.ru/avtozhizn/ novye-kompozitnye-materialy-v-avtomobile-primenenie-konstrukcii.html (дата обращения: 18.04.2017).
18. Кичигин А.С. Пластмассовая эволюция // Нефтехимия РФ. 2016. №2. С. 1–4.
19. Сабитов А.А. Применение в автомобилестроении композиционных материалов. Иркутск: Иркутский техникум машиностроения, 2016. С. 5–6.
20. Фурсова И. Кувалдой по капоту //Российская газета: офиц. сайт [Электронный ресурс]. URL: https://rg.ru/2016/05/26/avtoprom-budushchee-rynka-za-avtomobiliami-iz-polimerov.html (дата обращения: 18.04.2017).
1. Kablov E.N. V istorii VIAM Petr Dementev zanimaet osoboe mesto [In the history of VIAM Peter Dementyev takes special place] // Krylya Rodiny. 2017. №1. S. 1–2.
2. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
3. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period to 2030] // Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
4. Kablov E.N. Materialy novogo pokoleniya – osnova innovacij, tehnologicheskogo liderstva i nacionalnoj bezopasnosti Rossii [Materials of new generation are the base of innovations, technological leadership and national security of Russia] // Intellekt & Tehnologii. 2016. №4. S. 41–46.
5. Kablov E.N. Materialy i tehnologii VIAM dlya «Aviadvigatel» [Materials and VIAM technologies for «Aircraft engine»] // Permskie aviacionnye dvigateli: inform. byul. 2014. №31. S. 43–47.
6. Kablov E.N. O nastoyashhem i budushhem VIAM i otechestvennogo materialovedeniya: intervyu [About the real and future VIAM and domestic materials science: interview] // Rossijskaya akademiya nauk. 2015. 19 yanvarya.
7. Kablov E.N. Kompozity: segodnya i zavtra [Composites: today and tomorrow] // Metally Evrazii. 2015. №1. S. 36–39.
8. Kablov E.N., Chursova L.V., Babin A.N., Muhametov R.R., Panina N.N. Razrabotki FGUP «VIAM» v oblasti rasplavnyh svyazuyushhih dlya polimernyh kompozicionnyh materialov [Development of FSUE «VIAM» in the field of molten binding for polymeric composite materials] // Polimernye materialy i tehnologii. 2016. T. 2. №2. S. 37–42.
9. Dushin M.I., Hrulkov A.V., Muhametov R.R. Vybor tehnologicheskih parametrov avtoklavnogo formovaniya detalej iz polimernyh kompozicionnyh materialov [A choice of technological parameters of autoclave formation of details from polymeric composite materials] // Aviacionnye materialy i tehnologii. 2011. №3. S. 20–26.
10. Chursova L.V., Dushin M.I., Hrulkov A.V., Muhametov R.R. Osobennosti tehnologii izgotovleniya detalej iz kompozicionnyh materialov metodom propitki pod davleniem [Researches and development of autoclave and autoclave-free technologies of formation of PCM] // Kompozicionnye materialy v aviakosmicheskom materialovedenii: sb. tez. dokl. mezhotras. nauch.-tehnich. konf. M.: VIAM, 2009. S. 17.
11. Hrulkov A.V., Dushin M.I., Popov Yu.O., Kogan D.I. Issledovaniya i razrabotka avtoklavnyh i bezavtoklavnyh tehnologij formovaniya PKM [Researches and development autoclave and out-of-autoclave technologies of formation of PCM] // Aviacionnye materialy i tehnologii. 2012. №S. S. 292–301.
12. Timoshkov P.N., Kogan D.I. Sovremennye tehnologii proizvodstva polimernyh kompozicionnyh materialov novogo pokoleniya [Modern production technologies of polymeric composite materials of new generation] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №4. St. 07. Available at: http://www.viam-works.ru (accessed: April 03, 2017).
13. Vicari A. Will Carbon Fiber Find Widespread Use in the Automotive Industry? // Composites today. 2015. №3. Р. 3–10.
14. Mirnyj M.M. Avtomobili budushhego budut na 75% iz plastika [Cars of the future will be for 75 % from plastic] // Kompozitnyj mir. 2015. №3. S. 5–10.
15. Mirnyj M.M. Avtomobilestroenie kak drajver sprosa na polimernuyu produkciyu [Automotive industry as driver of demand for polymeric products] // Informacionno-analiticheskij spravochnik. 2014. S. 15–18.
16. Available at: http://www.1gai.ru/techno-cars/514689-bmw-originalnym-obrazom-okazalis-vperedi-po-konstrukcii-novoy-7-serii.html (accessed: April 17, 2017).
17. Available at: http://remontpeugeot.ru/avtozhizn/ novye-kompozitnye-materialy-v-avtomobile-primenenie-konstrukcii.html (accessed: April 18, 2017).
18. Kichigin A.S. Plastmassovaya evolyuciya [Plastic evolution] // Neftehimiya RF. 2016. №2. S. 1–4.
19. Sabitov A.A. Primenenie v avtomobilestroenii kompozicionnyh materialov [Application in automotive industry of composite materials]. Irkutsk: Irkutskij tehnikum mashinostroeniya, 2016. S. 5–6.
20. Available at: https://rg.ru/2016/05/26/avtoprom-budushchee-rynka-za-avtomobiliami-iz-polimerov.html (accessed: April 18, 2017).
Вы можете оставить комментарий к статье. Для этого необходимо зарегистрироваться на сайте.