Articles
In this article the inspection of technological characteristics in Si content brazing alloys: VPr27 and VPr50 in a cast form and a powder made by gas dispersion was carried out. . Structure and a phase composition of brazing alloy characteristics such as spreading area and melting uniformity were researched.
The reasons of unsatisfactory results of VPr27 spreading area tests are presence of large silicides of (WMo)5Si3 type in structure, that interference to a normal brazing alloy spreading. More over in brazing alloys with satisfactory spreading characteristic were also founded smaller particles of silicide types Me5Si3, that shows the general doping system instability. The factor that determines dimensional parameters of particles were not founded consequently as a spreading characteristic of brazing alloy.
In VPr50 brazing alloy, made with a technical purity Cr – «X99H4», were discovered the presence of phases based on Cr–Mo with cubic based or similar morphology cell with an accurate facet that conflict with formation in double diagramme Cr-Mo. The established phase chemical compounds are not allowed to refer it to one of the known type. In brazing alloy VPr50 that made from high purity materials in a laboratory arc furnace, revealed a Cr and Mo segregations with variable structure, that can be easily revealed by the composite contrast. Formation of Cr–Mo based phases revealed in metal after vacuum induction meting method, probably could be connected with such segregations and destabilized doping system by impurity intercalation, such as the oxygen, that can be imported during the melting with a technical purity Cr – «X99H4». As a result it forms a connections of various (at least two) lineage ratios based on Cr–Mo, that are not common for casting materials.
2. Kablov E.N. Iz chego sdelat budushcheye? Materialy novogo pokoleniya, tekhnologii ikh sozdaniya i pererabotki – osnova innovatsiy [What to make the future from? Materials of the new generation, technologies of their creation and processing - the basis of innovation] // Krylya Rodiny. 2016. №5. S. 8–18.
3. Afanasev-Khodykin A.N., Rylnikov V.S., Farafonov D.P. Tekhnologiya pajki poristo-voloknistogo materiala iz splava tipa «fekhral» dlya uplotneniya protochnoj chasti GTD [Technology soldering porous fibrous material of the alloy of the «fehral» to seal the flow part of GTE] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №1. St. 02. Available at: http://www.viam-works.ru (accessed: November 26, 2018). DOI: 10.18577/2307-6046-2014-0-1-2-2.
4. Rylnikov V.S., Afanasev-Hodykin A.N., Galushka I.A. Tehnologiya pajki konstrukcii tipa «blisk» iz raznoimennyh splavov [Technology of the soldering of design of the blisk type from heteronymic alloys] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №10. St. 02. URL: http://www.viam-works.ru (accessed: November 26, 2018).
5. Stolyankov Yu.V., Aleksashin V.M., Antyufeeva N.V., Shheglova T.M. Ocenka stekloobrazuyushhej sposobnosti metallicheskoj sistemy na osnove nikelya tipa «metall–metalloid» [Glass-forming ability evaluation of the nickel-based «metall–metalloid» system] // Aviacionnye materialy i tehnologii. 2016. №1 (40). S. 66–71. DOI: 10.185.77/2071-9140-2016-0-1-66-71.
6. Plotnikova M.R., Glezer A.M. Megaplasticheskaya deformaciya amorfnogo splava na osnove nikelya [Severe plastic deformation of amorphous nickel-based alloy] //Aviacionnye materialy i tehnologii. 2015. №2 (35). S. 10–13.
7. Maksimova S.V. Amorfnyye pripoi dlya payki nerzhaveyushchey stali i titana i struktura payanykh soyedineniy [Amorphous solders for brazing stainless steel and titanium and the structure of brazed joints] // Adgeziya rasplavov i payka materialov, 2007. Vyp. 40. S. 70–81.
8. Kablov E.N., Evgenov A.G., Rylnikov V.S., Afanasyev-Khodykin A.N. Issledovaniye melkodispersnykh metallicheskikh poroshkov pripoyev dlya diffuzionnoy vakuumnoy payki, poluchennykh metodom atomizatsii rasplava [Study of fine metal solder powders for diffusion vacuum soldering, obtained by the method of melt atomization] // Vestnik MGTU im. N.E. Baumana. Ser.: Mashinostroyeniye. 2011. №SP2. S. 79–87.
9. Ospennikova O.G., Lukin V.I., Afanasyev-Khodykin A.N., Galushka I.A., Shevchenko O.V. Perspektivnyye razrabotki v oblasti vysokotemperaturnoy payki zharoprochnykh splavov [Advanced developments in the field of the high-temperature soldering of heat resisting alloys] // Aviacionnyye materialy i tehnologii. 2017. №S. S. 144–158. DOI: 10.18577/2071-9140-2017-0-S-144-158.
10. Rylnikov V.S. Voprosy po pajke, reshennye v processe izgotovleniya izdeliya «Buran» [Some problems of brazing solved in the course of manufacture of «Buran» reusable spaceship] // Aviacionnye materialy i tehnologii. 2013. №S1. S. 33–34.
11. Chulkov E.I., Ivanov M.A., Belova E.A., Afanasyev-Khodykin A.N., Rylnikov V.S. Payka vysokotemperaturnym pripoyem truboprovodov iz stali 12Kh18N10T v zashchitnoy atmosfere s primeneniyem lokalnogo induktsionnogo nagreva [The soldering high-temperature solder of pipelines from steel 12Х18Н10Т in the protective atmosphere using local induction heating] // Novosti materialovedeniya. Nauka i tekhnika: elektron. nauch.-tekhnich zhurn. 2014. №5. St. 10. Available at: http://www.materialsnews.ru (accessed: November 26, 2018).
12. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
13. Gnesin I.B. Eksperimentalnoye issledovaniye struktury i svoystv tverdykh rastvorov silitsidov molibdena i volframa i ikh primeneniye: avtoref. dis. … kand. tekhn. nauk [Experimental study of the structure and properties of solid solutions of molybdenum and tungsten silicides and their application: thesis abstract … Cand. Sc. (Tech.)]. Chernogolovka, 2008. 24 s.
14. Tarasenko L.V., Titov V.I. Protsessy fazovoy nestabilnosti v zharoprochnykh stalyakh pri dlitelnykh nagrevakh [Phase instability processes in heat-resistant steels with prolonged heating] // Metallovedeniye i termicheskaya obrabotka metallov. 2005. №12. S. 10–15.
15. Tarasenko L.V., Titov V.I. Intermetallicheskaya R-faza v martensitnostareyushchikh stalyakh sistemy Fe–Cr–Ni–Co–Mo [Intermetallic R-phase in maraging steel of the Fe–Cr–Ni–Co–Mo system] // Metallovedeniye i termicheskaya obrabotka metallov. 2006. №8. S. 44–48.
16. Diagrammy sostoyaniya dvoynykh metallicheskikh sistem / pod red. N.P. Lyakisheva [Phase diagrams of double metallic systems / ed. by N.P. Lyakishev]. M.: Mashinostroyeniye, 1997. T. 2. 1023 s.
17. Pouranvari M. Diffuzion brazing of a nickel based superalloy. Part 1: Solidification behavior // Mediterranean Journal of Mathematics. 2010. Vol. 16 (4). P. 241–247.
The object of development is a new heat-resistant steel for bearings of aviation GTE gearboxes of airplanes and helicopters.
The aim of the work is to develop a new heat-resistant bearing steel, which is not inferior in performance characteristics to the foreign analogue M50 and is superior in domestic carbide uniformity and workability during hot plastic deformation to EI347 steel.
The paper discusses the principles of doping new heat-resistant bearing steel. The effect of the main carbide-forming elements Cr, Mo, W, V, providing the secondary hardness of steel during tempering, is shown. The influence of non-carbide-forming elements (Ni, Mn and Si) on the processes of hardening and processability of steel has been determined. An alloying system was selected that improves the processability of steel under plastic deformation by reducing carbide heterogeneity and providing heat resistance to new steel up to 500°C (hardness 61–63 HRC).
The effect of non-metallic inclusions in steel on the reduction of bearing performance is analyzed. As a result, the use of vacuum technologies in the smelting of new heat-resistant bearing steel achieved a significant reduction in metal contamination by non-metallic inclusions (up to 1 point according to State Standard 1778).
The carbide heterogeneity of rods of different sections of new steel for bearings is investigated. It is shown that with an increase in the diameter of rolled products, the carbide heterogeneity score increases, which is explained by a lower ingot reduction. Therefore, in addition to optimizing the composition of the bearing steel, one of the effective methods for reducing the carbide heterogeneity is the use of high weight ingots for the production of semi-finished products of bearing steel.
<p style="text-align: j
2. Kablov E.N. Iz chego sdelat budushcheye? Materialy novogo pokoleniya, tekhnologii ikh sozdaniya i pererabotki – osnova innovatsiy [What to make the future from? Materials of the new generation, technologies of their creation and processing - the basis of innovation] // Krylya Rodiny. 2016. №5. S. 8–18.
3. Kablov E.N. Rossii nuzhny materialy novogo pokoleniya [Russia needs new generation materials] // Redkiye zemli. 2014. №3. S. 8–13.
4. Kablov E.N. Tendentsii i oriyentiry innovatsionnogo razvitiya Rossii [Trends and benchmarks of innovative development of Russia] // Sb. nauchno-informatsionnykh materialov. 3-ye izd. M.: VIAM, 2015. 720 s.
5. Utkin V.M., Nikonov A.G., Proksha F.N. Sravneniye norm otechestvennykh i zarubezhnykh normativnykh dokumentov na kachestvo shariko- i rolikopodshipnikovoy stali [Comparison of norms of domestic and foreign regulatory documents on the quality of ball and roller bearing steel]. M.: Chermetinformatsiya, 1975. 56 s.
6. Zaytsev A.M., Korostashevskiy R.V. Ekspluatatsiya aviatsionnykh podshipnikov kacheniya [Operation of aircraft rolling bearings]. M.: Transport, 1968. 224 s.
7. Gromov V.I., Voznesenskaya N.M., Pokrovskaya N.G., Tonysheva O.A. Vysokoprochnye konstrukcionnye i korrozionnostojkie stali FGUP «VIAM» dlya izdelij aviacionnoj tehniki [High-strength constructional and corrosion-resistant steels developed by VIAM for aviation engineering] // Aviacionnye materialy i tehnologii. 2017. №S. S. 159–174. DOI: 10.18577/2071-9140-2017-0-S-159-174.
8. Spektor A.G., Zelbet B.M., Kiseleva S.A. Struktura i svoystva podshipnikovykh staley [Structure and properties of bearing steels]. M.: Metallurgiya, 1980. 264 s.
9. Geller Yu.A. Instrumentalnyye stali [Tool steel]. M.: Metallurgiya, 1983. 525 s.
10. Krylov S.A., Markova E.S., Shcherbakov A.I., Yakusheva N.A. Metallurgicheskiye osobennosti vyplavki vysokoprochnoy martensitostareyushchey stali VKS-180-ID [Metallurgical features of smelting process of high-strength maraging steel VKS180-ID microalloyed by REM] // Aviacionnye materialy i tehnologii. 2015. №4 (37). S. 14–20. DOI: 10.18577/2071-9140-2015-0-4-14-20.
11. Shpis Kh.I. Povedeniye nemetallicheskikh vklyucheniy v stali pri kristallizatsii i deformatsii [Behavior of non-metallic inclusions in steel during crystallization and deformation]. M.: Metallurgiya, 1971. 122 s.
12. Razuvaev E.I., Moiseev N.V., Kapitanenko D.V., Bubnov M.V. Sovremennye tehnologii obrabotki metallov davleniem [Modern technologies of plastic working of metals] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №2. St. 03. Available at: http://www.viam-works.ru (accessed: November 16, 2018). DOI: 10.18577/2307-6046-2015-0-2-3-3.
13. Korostashevskiy R.V., Zaytsev A.M. Aviatsionnyye podshipniki kacheniya [Aviation rolling bearings]. M.: Oborongiz, 1963. 340 s.
14. Konter L.Ya. Stali dlya teplostoykikh podshipnikov (obzor) [Steel for heat-resistant bearings (review)]. M.: NIINAvtoprom, 1978. Ser.: XII. 78 s.
15. Gromov V.I., Krotov V.N., Kurpyakova N.A., Sedov O.V., Doroshenko A.V. Vliyanie ostatochnogo austenita na strukturu i svojstva diffuzionnogo sloya stali martensitnogo klassa posle vakuumnoj cementacii [Influence of residual austenite on the structure and properties of diffusion layer of martensitic grade steel after vacuum carburization] // Aviacionnye materialy i tehnologii 2016. №4 (45) S. 3–8. DOI: 10.18577/2071-9140-2016-0-4-3-8.
16. Khenkin M.L., Lokshin I.Kh. Razmernaya stabilnost metallov i splavov v tochnom mashinostroyenii i priborostroyenii [Dimensional stability of metals and alloys in precision engineering and instrument making]. M.: Mashinostroyeniye, 1974. 255 s.
Three-layer honeycomb panels, which are still used in the interiors of airplanes, developed in the 1980s by FSUE “VIAM”, consist of claddings made of glass fiber laminates based on FP-520, FPR-520, EP-2MK binders, etc. and honeycomb core polymersotoplast PSP-1, on the binder BFOS. All of these binders contain organophosphorus flame retardants Fosdiol A or Fospoliol II.
In recent years due to the restriction of production methylphosphonic acid dichloride, which is a raw material for the flame retardants Phospoliol II and Fosdiol A, has a problem with their production.
In the course of this work, the effect of 15 samples of organophosphorus flame retardants provided by the FSUE “GosNIIOKHT” on the physicochemical and technological indicators of the FP-520 binder and BFOS and materials based on them was investigated.
The obtained experimental batches of the FP-520 binder with new fire retardants are storage-stable transparent solutions of red-brown color without mechanical inclusions with a density from 1,123 to 1,132 g / cm3, kinematic viscosity from 73.9 to 184 mm2 / s, and non-volatile content 67.2 - 70.3%.
The effect of flame retardants on the physicomechanical properties of the resulting glass fiber textolite ST-520-15 based on the modified binder FP-520 was investigated.
Introduction of new fire retardants allows to obtain glass fiber laminate with strength characteristics comparable to those of ST-520-15 on FP-520 binder with Fosdiol A. For fire safety, samples of two-layer fiberglass ST-520-15 and a three-layer panel based on FP-520 containing new flame retardants AP-25 requirements are self-extinguishing and low smoke.
The properties of the samples of phenolic binder BFOS containing new&
2. Kablov E.N. Materialy novogo pokoleniya – osnova innovatsiy, tekhnologicheskogo liderstva i natsionalnoy bezopasnosti Rossii [Materials of the new generation - the basis of innovation, technological leadership and national security of Russia] // Intellekt i tekhnologii. 2016. №2. S. 16–22.
3. Raskutin A.E. Strategiia razvitiia polimernykh kompozitsionnykh materialov [Development strategy of polymer composite materials] // Aviatsionnye materialy i tekhnologii. 2017. №S. S. 344–348. DOI: 10.18577/2071-9140-2017-0-S-344-348.
4. Barbotko S.L., Kirillov V.N., Shurkova E.N. Ocenka pozharnoj bezopasnosti polimernyh kompozicionnyh materialov aviacionnogo naznacheniya [Fire safety evolution for polymer composites of aeronautical application] // Aviacionnye materialy i tehnologii. 2012. №3. S. 56–63.
5. Kopylov V.V., Novikov S.N., Oksentyevich L.A. i dr. Polimernyye materialy ponizhennoy goryuchesti [Polymeric materials of low flammability]. M.: Khimiya, 1986. 224 s.
6. Aseyeva R.M., Zaikov G.E. Snizheniye goryuchesti polimernykh materialov [Decrease in combustibility of polymeric materials]. M.: Znaniye, 1981. Ser.: Khimiya. №10. 63 s.
7. Kodolov V.I. Zamedliteli goreniya polimernykh materialov [Flame retardants of polymeric materials]. M.: Khimiya, 1980. 274 s.
8. Chizhova M.A., Khayrullin R.Z. Toksichnost produktov goreniya polimernykh materialov pri vvedenii v ikh sostav antipirenov [Toxicity of combustion products of polymeric materials with the introduction of flame retardants into their composition] // Vestnik Kazanskogo tekhnologicheskogo universiteta. 2014. T. 17. №9. S. 144–145.
9. Lomakin S.M., Zaikov G.E., Mikitayev A.K. i dr. Zamedliteli goreniya dlya polimerov [Combustion retardants for polymers] // Vestnik Kazanskogo tekhnologicheskogo universiteta. 2012. T. 15. №7. S. 71–86.
10. Shaov A.Kh., Alarkhanova Z.Z. Posledniye dostizheniya v oblasti sozdaniya ognestoykikh polimernykh materialov [Recent advances in the creation of fire-resistant polymeric materials] // Plasticheskiye massy. 2005. №6. S. 7–20.
11. Zastrogina O.B., Shvets N.I., Serkova E.A., Veshkin E.A. Pozharobezopasnyye materialy na osnove fenoloformaldegidnykh svyazuyushchikh [Fireproof materials based on phenol-formaldehyde binders] // Klei. Germetiki. Tekhnologii. 2017. №7. S. 22–28.
12. Normy letnoy godnosti samoletov transportnoy kategorii [Airworthiness standards for airplanes of the transport category]: AP-25: utv. Postanovleniyem 28-y sessii Soveta po aviatsii i ispolzovaniyu vozdushnogo prostranstva 11.12.2008. 3-e izd. s popravkami 1–6. M.: Aviaizdat. 2009. 274 s.
13. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
14. Organizatsiya po zapreshcheniyu khimicheskogo oruzhiya [Organization for the Prohibition of Chemical Weapons] // Konventsiya o khimicheskom oruzhii. Available at: http://www.opcw.org/ru (accessed: November 26, 2018).
5. Berezkin M.Yu., Turygin V.V., Khudenko A.V. i dr. Elektrokhimicheskiy sintez raznozameshchennykh trialkilfosfatov [Electrochemical synthesis of differently substituted trialkylphosphates] // Elektrokhimiya. 2011. T. 47. №10. S. 1272–1275.
16. Barbotko S.L. Razvitie metodov ocenki pozharobezopasnosti materialov aviacionnogo naznacheniya [Development of the fire safety test methods for aviation materials] // Aviacionnye materialy i tehnologii. 2017. №S. S. 516–526. DOI: 10.18577/2071-9140-2017-0-S-516-526.
17. Antyufeeva N.V., Aleksashin V.M., Stolyankov Yu.V. Opredelenie stepeni otverzhdeniya PKM metodami termicheskogo analiza [Polymer composite curing degree evaluation by thermal analysis test methods] // Aviacionnye materialy i tehnologii. 2015. №3 (36). S. 79–83.
The effect of resorcinol modifying additive on technological and thermo-mechanical properties of epoxy resin system based on tetra-functional resin and its mixtures with DER-330 epoxy bisphenol A resin was studied. The effect of resorcinol additives on viscosity, flexural strength, dry and wet glass transition temperature of epoxy resin system cured with asymmetric urea is shown. The effect of the amount of asymmetric urea on the thermo-mechanical properties of modified and unmodified epoxy resin systems was also determined.
2. Terekhov I.V., Shlenskiy V.A., Kurshev E.V., Lonskiy S.L., Dyatlov V.A. Issledovaniye faktorov, vliyayushchikh na obrazovaniye epoksisoderzhashchikh mikrokapsul dlya samovosstanavlivayushchikhsya kompozitsiy [Researches of factors affecting the formation of epoxy-containing microcapsules for the self-healing compositions] // Aviatsionnyye materialy i tekhnologii. 2018. №3 (52). S. 27–34. DOI: 10.18577/2071-9140-2018-0-3-27-34.
3. Kablov E.N., Startsev V.O., Inozemtsev A.A. Vlagonasyshhenie konstruktivno-podobnyh elementov iz polimernyh kompozicionnyh materialov v otkrytyh klimaticheskih usloviyah s nalozheniem termociklov [The moisture absorption of structurally similar samples from polymer composite materials in open climatic conditions with application of thermal spikes] // Aviacionnye materialy i tehnologii. 2017. №2 (47). S. 56–68. DOI: 10.18577/2071-9140-2017-0-2-56-68.
4. Kablov E.N., Startsev V.O. Sistemnyj analiz vliyaniya klimata na mekhanicheskie svojstva polimernykh kompozitsionnykh materialov po dannym otechestvennykh i zarubezhnykh istochnikov (obzor) [Systematical analysis of the climatics influence on mechanical properties of the polymer composite materials based on domestic and foreign sources (review)] // Aviacionnye materialy i tehnologii. 2018. №2 (51). S. 47–58. DOI: 10.18577/2071-9140-2018-0-2-47-58.
5. Terekhov I.V., Chistyakov E.M., Filatov S.N., Deev I.S., Kurshev E.V., Lonskiy S.L. Faktory, vliyayushchiye na ognestoykost epoksidnykh kompozitsiy, modifitsirovannykh epoksidsoderzhashchimi fosfazenami [Factors affecting the fire resistance of epoxy compositions modified with epoxy-containing phosphazenes] // Voprosy materialovedeniya. 2018. №1 (93). S. 159–168.
6. Tkachuk A.I., Terekhov I.V., Kudryavtseva A.N., Grigoryeva K.N. Ispolzovaniye reologicheskikh metodov issledovaniya pri otverzhdenii epoksidnykh svyazuyushchikh [Using rheological research methods for curing epoxy binders] // Klei. Germetiki. Tekhnologii. 2018. №2. S. 15–20.
7. Petrova A.P., Mukhametov R.R. Svyazuyushchiye dlya polimernykh kompozitsionnykh materialov na osnove epoksidnykh oligomerov [Binders for polymeric composite materials based on epoxy oligomers] // Klei. Germetiki. Tekhnologii. 2018. №7. S. 21–27.
8. Startsev V.O., Molokov M.V., Grebeneva T.A., Tkachuk A.I. Dynamic mechanical and thermomechanical analysis of reversible plasticization of epoxy-diane resin-diaminodiphenylsulfon system by moisture // Polymer Science. Series A. 2017. Vol. 59. No. 5. P. 640–648.
9. Chursova L.V., Babin A.N., Grebeneva T.A., Tkachuk A.I. et al. Amine curing agents based on 4,4′-methylene bisaniline for epoxy binders // Polymer Science. Series D. 2017. Vol. 10. No. 1. P. 45–49.
10. Mohan P. A Critical Review: The Modification, Properties, and Applications of Epoxy Resins // Polymer-Plastics Technology and Engineering. 2013. Vol. 52. Is. 2. P. 107–125.
11. Unnikrishnan K.P., Thachil E.T. Toughening of epoxy resins // Designed Monomers and Polymers. 2006. Vol. 9. Is. 2. P. 129–152.
12. Dressler H. The Uses of Resorcinol/Derivatives in Polymers // Resorcinol. Topics in Applied Chemistry. Boston: Springer, 1994. P. 229–278.
13. Unnikrishnan K.P., Thachil E.T. Aging and Thermal Studies on Epoxy Resin Modified by Epoxidized Novolacs // Polymer-Plastics Technology and Engineering. 2006. Vol. 45. Is. 4. P. 469–474.
14. Li Kh., Nevill K. Spravochnoye rukovodstvo po epoksidnym smolam [Epoxy Resins Reference Guide]. M.: Energiya, 1973. S. 70–108.
15. Bobylev V.A. Spetsialnye epoksidnye smoly dlya kleev i germetikov [Special epoxy resins for adhesives and sealants] // Klei. Germetiki. Tekhnologii. 2005. №5. S. 8–12.
16. Kablov E.N. Innovatsionnyye razrabotki FGUP «VIAM» GNTS RF po realizatsii «Strategicheskikh napravleniy razvitiya materialov i tekhnologiy ikh pererabotki na period do 2030 goda» // Aviatsionnyye materialy i tekhnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
17. Raj M.M., Raj L.M., Dave P.N. Glass fiber reinforced composites of phenolic–urea–epoxy resin blends // Journal of Saudi Chemical Society. 2012. Vol. 16. Is. 3. P. 241–246.
18. Motawie A.M., Sadek E.M. Adhesives and coatings based on phenolic/epoxy resins // Polymers for Advanced Technologies. 1999. Vol. 10. P. 223–228.
Traditionally, epoxy resins occupy the leading positions in the field of high-performance thermosets. Characteristics of based on epoxy resins plastics have good performance, which is enough to solve most problems. However, often the heat resistance of epoxy binders is insufficient, so the development of polymers with improved characteristics remains relevant. Benzoxazines can be presented as the special type of aminobenzaldehyde resins. The strength of benzoxazinones system is comparable to epoxies, while the work temperature of benzoxazinones is at the level of work temperature of bismaleimides. This fact means that benzoxazines can provide high competitiveness to existing resins. The advantages of benzoxazine binders include: absence of volatile compounds during curing; excellent mechanical strength; high compressive strength and modulus of elasticity; low water absorption; almost zero volume shrinkage/expansion during curing; excellent resistance to chemically aggressive compounds and to the ultraviolet radiation; high glass transition temperature (Tg); high coke residue during decomposition; excellent fire safety performance; the possibility of copolymerization with other monomers.
Polymer benzoxazines are the class of polymers in the structure of which there are oxazine rings. Such compounds contain at least two oxazine groups and are able to harden (polymerize) under the influence of temperature to form a cross-linked spatial matrix. As a rule, high-molecular benzoxazines have difference in compares to low-molecular ones by better thermal and mechanical characteristics due to the formation of a more perfect polymer mesh with a greater degree of cross-linking. An important addition is the ability to process them as thermoplastics.
Oligometastasis could be allocated as a separate class that has the difference with monomers and polymers. From the point of vi
2. Kablov E.N. Rossii nuzhny materialy novogo pokoleniya [Materials of new generation are neces-sary to Russia] // Redkie zemli. 2014. №3. S. 8–13.
3. Composite Materials Handbook (CMH-17) Volume 3, Polymer Matrix Composites: Materials Usage, Design, and Analysis. SAE International, 2002. Vol. 3. 694 p.
4. Kondrashov S.V., Shashkeev K.A., Petrova G.N., Mekalina I.V. Polimernye kompozicionnye materialy konstrukcionnogo naznacheniya s funkcionalnymi svojstvami [Constructional polymer composites with functional properties] // Aviacionnye materialy i tehnologii. 2017. №S. S. 405–419. DOI: 10.18577/2071-9140-2017-0-S-405-419.
5. Raskutin A.E. Strategiia razvitiia polimernykh kompozitsionnykh materialov [Development strategy of polymer composite materials] // Aviatsionnye materialy i tekhnologii. 2017. №S. S. 344–348. DOI: 10.18577/2071-9140-2017-0-S-344-348.
6. Kablov E.N., Chursova L.V., Babin A.N., Mukhametov R.R., Panina N.N. Razrabotki FGUP «VIAM» v oblasti rasplavnykh svyazuyushchikh dlya polimernykh kompozitsionnykh materialov [Development of VIAM Federal State Unitary Enterprise in the field of molten binding for polymeric composite materials] // Polimernye materialy i tekhnologii. 2016. T. 2. №2. S. 37–42.
7. Ishida H., Froimowicz P. Advanced and Emerging Polybenzoxazine Science and Technology. Netherlands: Elsevier, 2017. 1126 p.
8. Zheleznyak V.G., Muhametov R.R., Chursova L.V. Issledovanie vozmozhnosti sozdaniya termoreaktivnogo svyazujushhego na rabochuju temperaturu do 400°C [Study of possibility of thermoset binder creation for operating temperature up to 400°C] // Aviacionnye materialy i tehnologii. 2013. №S2. S. 58–61.
9. Lin C.H., Chang S.L., Shen T.Y., Shih Y.S. Flexible polybenzoxazine thermosets with high glass transition temperatures and low surface free energies // Polymer Chemistry. 2012. Vol. 3. P. 935. DOI: 10.1039/C2PY00449F.
10. Brunovska Z., Liu J.P., Ishida H. 1,3,5-Triphenylhexahydro-1,3,5-triazine – active intermediate and precursor in the novel synthesis of benzoxazine monomers and oligomers // Macromolecular Chemistry and Physics. 1999. Vol. 200. Р. 1745–1752. DOI: 10.1002/(SICI)1521-3935(19990701)200:7<1745::AID-MACP1745>3.0.CO;2-D.
11. Lin C.H., Chang S.L., Hsieh C.W. Aromatic diamine-based benzoxazines and their high performance thermosets // Polymer. 2008. Vol. 49. P. 1220–1229. DOI: 10.1016/j.polymer.2007.12.042.
12. Demir K.D., Kiskan B., Aydogan B., Yagci Y. Thermally curable main-chain benzoxazine prepolymers via polycondensation route // Reactive & Functional Polymers. 2013. Vol. 73. P. 346–359.
13. Chao L., Shen D., Sebastián R.M., Marquet J. Mechanistic Studies on Ring-Opening Polymerization of Benzoxazines: A Mechanistically Based Catalyst Design // Macromolecules. 2011. Vol. 44. P. 4616–4622. DOI: 10.1021/ma2007893.
14. Yelda E., Tamer U. Main-chain polybenzoxazine nanofibers via electrospinning // Polymer. 2014. Vol. 55. P. 556–564. DOI: 10.1016/j.polymer.2013.12.018.
15. Rimdusit S., Hemvichian K., Kasemsiri P., Dueramae I. Shape memory polymers from benzoxazine-modified epoxy // Smart Materials Structures. 2013. Vol. 22. P. 12. DOI: 10.1088/0964-1726/22/7/075033.
16. Ishida H., Agag T. Handbook of Benzoxazine Resins. Amsterdam: Elsevier, 2011. 688 p. DOI: doi.org/10.1016/B978-0-444-53790-4.00063-1.
17. Aydogan B., Sureka D., Kiskan B., Yagci Y. Polysiloxane‐containing benzoxazine moieties in the main chain // Journal of Polymer Science. Part A: Polymer Chemistry. 2010. Vol. 48. P. 5156–5162.
18. Demir K.D., Kiskan B., Yagci Y. Thermally Curable Acetylene-Containing Main-Chain Benzoxazine Polymers via Sonogashira Coupling Reaction // Macromolecules. 2011. Vol. 44. P. 1801–1807.
19. Ghosh N., Kiskan B., Yagci Y. Polybenzoxazines – new high performance thermosetting resins: synthesis and properties // Progress in Polymer Science. 2007. Vol. 32. P. 1344–1391.
20. Lin C.H., Chang S.L., Shen T.Y. et al. Flexible polybenzoxazine thermosets with high glass transition temperatures and low surface free energies // Polymer Chemistry. 2012. Vol. 3. P. 935–945.
21. Wang M., Jeng R., Lin C. The robustness of a thermoset of a main-chain type polybenzoxazine precursor prepared through a strategy of A–A and B–B polycondensation // RSC Advances. 2016. Vol. 6. P. 18678–18684. DOI: 10.1039/C5RA25619D.
22. Allen D.J., Ishida H. Effect of phenol substitution on the network structure and properties of linear aliphatic diamine based benzoxazines // Polymer. 2009. Vol. 50. P. 613–626.
23. Sawaryn C., Landfester K., Taden A. Benzoxazine miniemulsions stabilized with multifunctional main-chain benzoxazine protective colloids // Macromolecules. 2011. Vol. 44. P. 5650–5658. DOI: /doi/10.1021/ma200973g.
24. Velez-Herrera P., Doyama K., Abe H., Ishida H. Synthesis and characterization of highly fluorinated polymer with the benzoxazine moiety in the main chain // Macromolecules. 2008. Vol. 41. P. 9704–9714.
25. Deliballi Z., Kiskan B., Yagci Y. Main-chain benzoxazine precursor block copolymers // Polymer Chemistry. 2018. Vol. 9. P. 178–183.
26. Ishida H., Lee Y. Infrared and thermal analyses of polybenzoxazine and polycarbonate blends // Application Polymer Science. 2001. Vol. 81. P. 1021–1034. DOI: 10.1002/app.1524.
27. Chernykh A., Agag T., Ishida H. Synthesis of linear polymers containing benzoxazine moieties in the main chain with high molecular design versatility via click reaction // Polymer. 2009. Vol. 50. P. 382–390. DOI: 10.1016/j.polymer.2008.11.017.
28. Chen N.H., Li H.Y., Lai J.-Y., Liu Y.-L. Synthesis and characterization of benzoxazine-containing, crosslinkable, and sulfonated polymer through Diels–Alder reaction for direct methanol fuel cells // Polymer. 2013. Vol. 54. P. 2096–2104.
29. Gacal B., Akat H., Balta D.K. et al. Synthesis and Characterization of Polymeric Thioxanthone Photoinitatiors via Double Click Reactions // Macromolecules. 2008. Vol. 41. P. 2401–2405.
30. Baqar M., Agag T., Ishida H. Poly(benzoxazine-co-urethane)s: A new concept for phenolic/urethane copolymers via one-pot method // Polymer. 2011. Vol. 52. P. 307–317. DOI: 10.1016/j.polymer.2010.11.052.
31. Aydogan B., Sureka D., Kiskan B., Yagci Y. Polysiloxane‐containing benzoxazine moieties in the main chain // Polymer Science Part A: Polymer Chemistry. 2010. Vol. 48. P. 5156–5162. DOI: 10.1002/pola.24313.
32. Kiskan B., Aydogan B., Yagci Y. Recent advancement on polybenzoxazine – A newly developed high performance thermoset // Polymer Science. Part A: Polymer Chemistry. 2010. Vol. 47. P. 804–811. DOI: 10.1002/pola.23597.
33. Takeichi T., Kano T., Agag T. Synthesis and thermal cure of high molecular weight polybenzoxazine precursors and the properties of the thermosets // Polymer. 2005. Vol. 46. P. 12172–12180. DOI: /10.1016/j.polymer.2005.10.088.
34. Barrett D.G., Yousaf M.N. Biocompatible multiblock aliphatic polyesters containing ether-linkages: influence of molecular architecture on solidstate properties and hydrolysis rate // Soft Matterials. 2010. Vol. 6. P. 5026–5036. DOI: 10.1039/C4RA04248D.
35. Chernykh A., Liu J.P., Ishida H. Synthesis and properties of a new cross linkable polymer containing benzoxazine moiety in the main chain // Polymer. 2006. Vol. 47. P. 7664–7669. DOI: /10.1016/j.polymer.2006.08.041.
36. Kiskan B., Yagci Y., Ishida H. Synthesis, characterization and properties of new thermally curable polyetheresters containing benzoxazine moieties in the main chain // Journal Polymer Science. Part A: Polymer Chemistry. 2008. Vol. 46. P. 414–420.
37. Binder W.H., Zirbs R. Encyclopedia of Polymer Science and Technology: «Click» Chemistry in Macromolecular Synthesis. New York: John Wiley&Sons, 2002. p. 45.
38. Zhang M., Feng C., Lin K., Lunn D. Modular Synthesis of Polyferrocenylsilane Block Copolymers by Cu-Catalyzed Alkyne/Azide «Click» Reactions // Macromolecules. 2013. Vol. 46. P. 1296–1304. DOI: 10.1021/ma302054q.
39. Nagai A., Kamei Y., Wang S. et al. Synthesis and crosslinking behavior of a novel linear polymer bearing 1,2,3-triazol the main chain by and benzoxazine groups in a step-growth click-coupling reaction // Journal Polymer Science. Part A: Polymer Chemistry. 2008. Vol. 46. P. 2316–2325.
40. Chernykh A., Agag T., Ishida H. Synthesis of linear polymers containing benzoxazine moieties in the main chain with high molecular design versatility via click reaction // Polymer. 2009. Vol. 50. P. 382–390.
41. Ye Y.S., Huang Y.J., Chang F.C., Xuea Z.G. Synthesis and characterization of thermally cured polytriazole polymers incorporating main or side chain benzoxazine crosslinking moieties // Polymer Chemistry. 2014. Vol. 5. P. 2863–2871. DOI: 10.1039/C3PY01432K.
42. Chou C.I., Liu Y.L. High performance thermosets from a curable Diels–Alder polymer possessing benzoxazine groups in the main chain // Polymer Science. Part A: Polymer Chemistry. 2008. Vol. 46. P. 6509–6517. DOI: https://doi.org/10.1002/pola.22960.
43. Kiskan B., Yagci Y., Ishida H. Synthesis, characterization, and properties of new thermally curable polyetheresters containing benzoxazine moieties in the main chain // Polymer Science. Part A: Polymer Chemistry. 2007. Vol. 46. P. 414–420. DOI: /10.1002/pola.22392.
44. Kiskan B., Colak D., Cianga I., Yagci Y. Synthesis and Characterization of Thermally Curable Benzoxazine‐Functionalized Polystyrene Macromonomers // Macromolecules Rapid Communication. 2005. Vol. 26. P. 819–824. DOI: /10.1002/marc.200500079.
45. Kiskan B., Yagci Y. Synthesis and characterization of naphthoxazine functional poly(ε-caprolactone) // Polymer. 2005. Vol. 46. P. 11690–11697. DOI: /10.1016/j.polymer.2005.09.061.
46. Tasdelen M.A., Kiskan B., Yagci Y. Photoinitiated Free Radical Polymerization Using Benzoxazines as Hydrogen Donors // Macromolcules Rapid Communication. 2006. Vol. 27. P. 1539–1544. DOI: 10.1002/marc.200600424.
47. Agag T., Vietmeier K., Chernykh A., Ishida H. Side-chain type benzoxazine-functional cellulose via click chemistry // Journal Application Polymer Science. 2012. Vol. 125. P. 1346–1351.
48. Takeichi T., Thongpradith S., Kawauchi T. Copolymers of Vinyl-Containing Benzoxazine with Vinyl Monomers as Precursors for High Performance Thermosets // Molecules. 2015. Vol. 20. P. 6488–6503. DOI: 10.3390/molecules20046488.
49. He-Ming M., Yun L., Ying-Xuan L., Jin-Jun Q. Vinyl benzoxazine: a novel heterobifunctional monomer that can undergo both free radical polymerization and cationic ring-opening polymerization // RSC Advances. 2015. Vol. 5. P. 102441–102447. DOI: 10.1039/C5RA18058A.
50. Brunovska Z., Lyon R., Ishida H. Thermal properties of phthalonitrile functional polybenzoxazines // Thermochim Acta. 2000. Vol. 357–358. P. 195–203. DOI: /10.1016/S0040-6031(00)00388-9.
51. Zou X., Yang X., Xu M. et al. Curing behaviors and properties of allyland benzoxazine-functional phthalonitrile with improved processability // Journal Polymer Research. 2016. Vol. 23. No. 2. P. 1–9. DOI: 10.1007/s10965-015-0891-3.
52. Koz B., Kiskan B., Yagci Y. A novel benzoxazine monomer with methacrylate functionality and its thermally curable (co)polymers // Polymer Bulletin. 2011. Vol. 66. P. 165–174.
53. Liu Y.X., Ma H.M., Liu Y. et al. A well-defined poly (vinyl benzoxazine) obtained by selective free radical polymerization of vinyl group in bifunctional benzoxazine monomer // Polymer. 2016. Vol. 82. P. 32–39.
54. Kiskan B., Demiray G.N., Yagci Y. Thermally Curable Polyvinylchloride via Click Chemistry // Journal of Polymer Science. Part A: Polymer Chemistry. 2008. Vol. 46. P. 3512–3518. DOI: 10.1002/pola.22685.
55. Thongpradith T., Hirai S., Takiguchi S., Kawauchi T., Takeichi T. Syntheses of novel benzoxazines having vinyl groups and thermal properties of the thermosets // High Performance Polymers. 2012. Vol. 24. No. 8. P. 765–774. DOI: 10.1177/0954008312451479.
56. Shilin L., Jianying Y. Synthesis and Characterization of New Benzoxazine-Based Phenolic Resins from Renewable Resources and the Properties of Their Polymers Shengfang // Journal of Applied Polymer Science. 2011. Vol. 122. P. 2843–2848.
57. Tsukahara Y., Adachi K. Encyclopedia of Polymeric Nanomaterials, Telechelic Polymer: Preparation and Application. Springer. Berlin/Heidelberg, 2015. P. 2491–2498.
58. Nakamura M., Ishida H. Synthesis and properties of new crosslinkable telechelics with benzoxazine moiety at the chain end // Polymer. 2009. Vol. 50. P. 2688–2695.
59. Li Y., Zhang C.Y., Zheng S.X. Microphase separation in polybenzoxazine thermosets containing benzoxazine-terminated poly(ethylene oxide) telechelics // European Polymer Journal. 2011. Vol. 47. P. 1550–1562.
60. Ates S., Dizman C., Aydogan B. et al. Synthesis, characterization and thermally activated curing of polysulfones with benzoxazine end groups // Polymer. 2011. Vol. 52. P. 1504–1509.
61. Orhana T., Atesb S., Hacaloglua J., Yagci Y. Thermal degradation characteristics of polysulfones with benzoxazine end groups // Journal Anallytical Applied Pyrolysis. 2012. Vol. 94. P. 146–152.
62. Liu J., Agag T., Ishida H. Main-chain benzoxazine oligomers: a new approach for resin transfer moldable neat benzoxazines for high performance applications // Polymer. 2010. Vol. 51. P. 5688–5694. DOI: /10.1016/j.polymer.2010.08.059.
63. Zhang K., Qiu J., Li S. et al. Remarkable improvement of thermal stability of main-chain benzoxazine oligomer by incorporating o-norborneneas terminal functionality // Journal Application Polymer Science. 2017. Vol. 134. P. 45408–45415. DOI: /10.1002/app.45408.
64. Qingyu X., Ming Z., Jiangbing C. et al. Synthesis, polymerization kinetics, and high-frequency dielectric properties of novel main-chain benzoxazine copolymers // Reactive and functional polymers. 2018. Vol. 122. P. 158–166.
Sealing materials (sealants) are used in various areas of technology, largely ensuring the performance of structural elements and assemblies of airplanes, helicopters, space technology, fuel compartments and the caisson - tanks, watertight partitions, pipelines, chemical devices, etc. The article examines changes in the technical characteristics of sealants after they are kept in a free state in various climatic zones: temperate climate of the MSCI; temperate warm climate of the seaside zone GCCI, desert (Arizona), subtropical (Florida) climate of the USA and tropical climate (climatic stations of Vietnam). Sealants of various chemical structures were studied: VITEF 1B polysulphide sealants, TU 1-595-53-633–2001 and VGM-L, TU 1-595-28-934–2009 – siloxane sealant WIKSINT U-20-99, TU 1-595-53-614–2000 and fuel resistant fluorsiloxane VGF-2M sealant TU 1-595-28-1099–2009. The nature of aging of sealing materials after exposure to climatic factors is determined. According to the results of the conducted research, it was established that - the nature of changes in the properties of sealants after exposure in the climatic zone of the MSCI and GCCI is identical. The clinical picture of the aging of sealants after aging in the climatic zones of the United States of America is similar for materials of close chemical aging. After aging of sealing materials in the climatic zones of Vietnam, the aging of sealants has a complex characteristics. An increase in surface hardness up to 42% of the initial value is observed; tensile strength increases to 43% for VGM-L and decreases to 36% for VGF-2M; elongation at break for VITEF-1B is reduced by up to 70 %. Thus, all of the selected sealing materials showed significant deterioration in properties after aging in a tropical climate in an open area.
Of all the climatic zones studied in this work, the greatest degree of degradation of seali
2. Kablov E.N. Materialy novogo pokoleniya – osnova innovatsiy, tekhnologicheskogo liderstva i natsional'noy bezopasnosti Rossii [Materials of the new generation - the basis of innovation, technological leadership and national security of Russia] // Intellekt i tekhnologiya. 2016. №2 (14) S. 16–21.
3. Nikolayev E.V., Pavlov M.R., Andreyeva N.P., Slavin A.V., Skirta A.A. Issledovaniye protsessov stareniya polimernykh kompozitsionnykh materialov v naturnykh usloviyakh tropicheskogo klimata Severnoy Ameriki [Investigation of the aging processes of polymeric composite materials in natural conditions of tropical climate of North America] // Novosti materialovedeniya. Nauka i tekhnika: elektron. nauch.-tekhnich. zhurn. 2018. №3–4 (30). St. 08. Available at: http://www.materialsnews.ru (accessed: December 12, 2018).
4. Valevin E.O., Andreyeva N.P., Pavlov M.R. Kompleksnyy podkhod k issledovaniyu protsessov polimernykh kompozitsionnykh materialov pri vozdeystvii klimaticheskikh faktorov [An integrated approach to the study of processes of polymer composite materials under the influence of climatic factors] // Problemy otsenki klimaticheskoy stoykosti materialov i slozhnykh tekhnicheskikh sistem: sb. dokl. II Vseros. nauch.-tekhn. konf. «Klimat-2017» (Gelendzhik, 3–4 avgusta 2017). M.: VIAM, 2017. S. 8–20 (CD).
5. Andreyeva N.P., Pavlov M.R., Nikolayev E.V., Slavin A.V. Vliyaniye klimaticheskikh faktorov tropicheskogo i umerennogo klimata na svoystva lakokrasochnykh pokrytiy na uretanovoy osnove [Influence of climatic factors of tropical and temperate climate on the properties of urethane-based paint and varnish coatings] // Lakokrasochnyye materialy i ikh primeneniye. 2018. №4. S. 24–28.
6. Filatov I.S. Prognozirovaniye klimaticheskoy ustoychivosti polimernykh i kompozitsionnykh materialov na ikh osnove: dis. … d-ra tekhn. nauk [Prediction of climatic stability of polymer and composite materials based on them: tesis, Doct. Sc. (Tech.)]. Yakutsk, 1984. 489 s.
7. Nikolaev E.V., Pavlov M.R., Laptev A.B., Ponomarenko S.A. K voprosu opredeleniya sorbi-rovannoj vlagi v polimernyh kompozitsionnyh materialah [To the problem of determining the moisture sorbed in polymeric composite materials] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2017. №8 (56). St. 07. Available at: http://www.viam-works.ru (accessed: December 12, 2018). DOI: 10.18577/2307-6046-2017-0-8-7-7.
8. Bolshoy spravochnik rezinshchika v 2 ch. [Great reference book of rubberman in 2 parts]. M.: Tekhinform, 2012. 1385 s.
9. Uplotneniya i uplotnitelnaya tekhnika: spravochnik / pod obshch. red. A.I. Golubeva, L.A. Kondakova [Seals and sealing technology: a handbook / gen. ed. by A.I. Golubev, L.A. Kondakov]. M.: Mashinostroyeniye, 1986. 464 s.
10. Eliseev O.A., Krasnov L.L., Zajceva E.I., Savenkova A.V. Razrabotka i modificirovanie elastomernyh materialov dlya primeneniya vo vseklimaticheskih usloviyah [Development and modifying of elastomeric materials for application in all weather conditions] // Aviacionnye materialy i tehnologii. 2012. №S. S. 309–314.
11. Mulrov O.A., Savchenko I.M., Shitov V.S. Spravochnik po elastomernym pokrytiyam i germetikam v sudostroyenii [Handbook of elastomeric coatings and sealants in shipbuilding]. L.: Sudostroyeniye, 1982. 184 s.
12. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period to 2030] // Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
13. Kablov E.N. Materialy i khimicheskiye tekhnologii dlya aviatsionnoy tekhniki [Materials and chemical technologies for aviation technology] // Vestnik Rossiyskoy akademii nauk. 2012. T. 82. №6. S. 520–530.
14. Kablov E.N. Rol khimii v sozdanii materialov novogo pokoleniya dlya slozhnykh tekhnicheskikh system [The role of chemistry in the creation of a new generation of materials for complex technical systems] // Tez. dokl. «XX Mendeleyevskogo syezda po obshchey i prikladnoy khimii». UrO RAN, 2016. S. 25–26.
15. Khakimulin Yu.N., Minkin V.S., Palyutin F.M., Derbedeyev T.R. Germetiki na osnove polisul'fidnykh oligomerov: sintez, svoystva, primeneniye [Sealants based on polysulfide oligomers: synthesis, properties, application]. M.: Nauka, 2007. 301 s.
16. Luke H. Aliphatic Polysulfide’s: Monograph of an elastomer. Htidelberg, New York: Publisher Huthig & Wepf Basel, 1994. 191 p.
17. Nikitina A.A., Solovey V.V. Toplivostoykiye germetiki [Fuel-resistant sealants] // Aviatsionnyye materialy na rubezhe XX–XXI vekov. M.: VIAM, 1994. S. 374–378.
18. Savenkova A.A., Tikhonova I.V., Trebukova E.A. Teplomorozostoykiye germetiki [Heat and frost-resistant sealants] // Aviacionnyye materialy na rubezhe XX–XXI vekov. M.: VIAM, 1994. S. 432–439.
19. Laptev A.B., Nikolayev E.V., Kolpachkov E.D. Termodinamicheskiye kharakteristiki stareniya polimernykh kompozitsionnykh materialov v usloviyakh realnoy ekspluatatsii [Thermodynamic characteristics of aging of polymeric composite materials under conditions of real exploitation] // Aviacionnye materialy i tehnologii. 2018. №3 (52). S. 80–88. DOI: 10.18577/2071-9140-2018-0-3-80-88.
Materials based on refractory metals (molybdenum, tungsten) are widely used in various fields of technology. However, the manufacture of blanks and products from them is not an easy task, since molybdenum and tungsten have high melting points, are easily oxidized in air, are low-plastic and hard-to-deform metals.
In this work, materials based on the Mo-W system obtained by powder metallurgy technology were investigated. To consolidate the powders, a promising method was chosen — electric-spark plasma sintering.
At the initial stage, the effect of mixing time in a ball mill on the homogeneity and properties of molybdenum-tungsten powder mixtures was investigated. To obtain a homogeneous molybdenum- tungsten powder mixture, the optimum mixing time of 10 hours was established using a drum mill. The selected mixing parameters (time and ball load) make it possible to destroy the agglomerates and to achieve good homogeneity of the powder mixture, without having a significant effect on the particle size distribution, bulk density.
Mechanical properties are directly dependent on the content of tungsten. Strength values increase with increasing sintering temperature. The fractures of the samples after mechanical tests were investigated and it was established that the material breaks down intercrystalline brittle, which is associated with the segregation of impurities along the grain boundaries. The analysis of the microstructure of materials was performed using optical and scanning electron microscopy. Energy dispersive microanalysis was used for the distribution of elements over the cross section of the samples also the chemical composition of nonmetallic inclusions and phases were determined.
Due to the diffusion of carbon from the graphite matrix into the material, the refining of the boun
2. Kablov E.N. Materialy novogo pokoleniya – osnova innovatsiy, tekhnologicheskogo liderstva i natsionalnoy bezopasnosti Rossii [Materials of the new generation - the basis of innovation, technological leadership and national security of Russia] // Intellekt i tekhnologii. 2016. №2 (14). S. 16–21.
3. Kablov E.N. Klyuchevaya problema – materialy [The key problem is materials] // Tendentsii i oriyentiry innovatsionnogo razvitiya Rossii. M: VIAM, 2015. S. 458–464.
4. Kablov E.N. Stanovleniye otechestvennogo kosmicheskogo materialovedeniya [The formation of domestic space materials science] // Vestnik Rossiyskogo fonda fundamentalnykh issledovaniy. 2017. №3 (95). S. 97–105.
5. Molibden / per. s angl. M.A. Maurakha; pod. red. A.K. Natansona [Molybdenum / trans. from Engl. by M.A. Maurah; ed. by A.K. Natanson]. M.: Izd-vo inost. lit., 1959. S. 304.
6. Savitskiy E.M., Burkhanov G.S., Povarova K.B. i dr. Tugoplavkiye metally i splavy [Refractory metals and alloys]. M.: Metallurgiya, 1986. 352 s
7. Korneyev N.I., Pevzner S.B., Razuvayev E.I., Emelyanov. V.B. Obrabotka davleniyem tugoplavkikh metallov i splavov. 2-ye izd. [Pressure treatment of refractory metals and alloys. 2nd ed.] M.: Metallurgiya, 1975. 440 s.
8. Trofimenko N.N., Efimochkin I.Yu., Bolshakova A.N. Problemy sozdaniya i perspektivy ispolzovaniya zharoprochnykh vysokoentropiynykh splavov [Problems of creation and prospects for the use of heat-resistant high-entropy alloys] // Aviatsionnyye materialy i tekhnologii. 2018. №2 (51). S. 3–8. DOI: 10.18577/2071-9140-2018-0-2-3-8.
9. Grashchenkov D.V., Efimochkin I.Yu., Bolshakova A.N. Vysokotemperaturnye metallomatrichnye kompozicionnye materialy, armirovannye chasticami i voloknami tugoplavkih soedinenij [High-temperature metal-matrix composite materials reinforced with particles and fibers of refractory compounds] // Aviacionnye materialy i tehnologii. 2017. №S. S. 318–328. DOI: 10.18577/2071-9140-2017-0-S-318-328.
10. Kablov E.N., Ospennikova O.G., Vershkov A.V. Redkie metally i redkozemelnye elementy – materialy sovremennyh i budushhih vysokih tehnologij [Rare metals and rare-earth elements are materials for modern and future high technologies] // Aviacionnye materialy i tehnologii. 2013. №S2. S. 3–10.
11. Trefilov V.I., Milman Yu.V., Firstov S.A. Fizicheskiye osnovy prochnosti tugoplavkikh metallov [Physical basis of the strength of refractory metals]. Kiyev: Naukova dumka, 1975. 315 s.
12. Batiyenkov R.V., Bolshakova A.N., Yefimochkin I.Yu. Problema nizkotemperaturnoy plastichnosti molibdena i splavov na yego osnove (obzor) [The problem of low-temperature plasticity of molybdenum and alloys based on it (review)] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2018. №3 (63). St. 02. Available at: http://www.viam-works.ru (accessed: December 17, 2018). DOI: 10.18577/2307-6046-2018-0-3-12-17.
13. Morgunova N.N., Klypin B.A., Boyarshinov V.A. i dr. Splavy molibdena [Alloys of molybdenum]. M.: Metallurgiya, 1975. 392 s.
14. Savitskiy E.M., Burkhanov G.S. Metallovedeniye splavov tugoplavkikh i redkikh metallov [Metal science alloys of refractory and rare metals]. M.: Nauka, 1971. 356 s.
15. Torresilyas San Millan R., Solis Pinargote N.V., Okunkova A.A., Peretyagin P.Yu. Osnovy protsessa iskrovogo plazmennogo spekaniya nanoporoshkov [Fundamentals of spark plasma sintering of nanopowders]. M.: Tekhnosfera, 2014. 96 s.
The article is devoted to the peculiarities of the technical standard basis for polymer composite material test methods. The large-scale work of the Technical Committee TC 497 is noted, under the authority of this TC over 450 standards have been developed in recent years, of which about 350 have already been put into effect.
This work considers such a particularity as a variety of standards with similar names in a single type of test, which is a consequence of harmonization simultaneously with ISO and ASTM standards. Comparative tables with lists of standards for tensile and compression testing of elementary specimens with indication of the scope, as well as equivalent standards and their names are given.
Also in this work shows nuances that cause difficulties when non-specialists choosing a standard for testing due to that in addition to the name, the scope of application in standards are similar. In many standards bright line fades between composites and plastics and even adhesives. However, it is noted that such an approach is acceptable, but these particularity must be taken into account when working with standards.
The problem of designation of national standards is shown on an example of ISO 6721 series for dynamic mechanical testing. A table of correspondence between the ISO standards of this series and GOST R is given.
It also presents one of the actual problems – disagreement in designations of determinable indicators of the polymer composites, a comparative analysis of the designations of the same indicators according to various standards is given.
The particularities noted in the article do not affect the quality of the tests results, but refer to the ease of use the standards, search process, relation between standards, etc.
&a
2. Raskutin A.E. Strategiia razvitiia polimernykh kompozitsionnykh materialov [Development strategy of polymer composite materials] // Aviatsionnye materialy i tekhnologii. 2017. №S. S. 344–348. DOI: 10.18577/2071-9140-2017-0-S-344-348.
3. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
4. Vetokhin S.Yu. Standartnoye resheniye [Standard Solution] // Kompozitnyy mir. 2012. №1 (40). S. 70–72.
5. Kablov E.N. Kontrol kachestva materialov – garantiya bezopasnosti ekspluatatsii aviatsionnoy tekhniki [Quality control of materials - a guarantee of the safety of the operation of aviation equipment] // Aviacionnye materialy i tehnologii. 2001. №1. S. 3–8.
6. Kablov E.N. Kompozity: segodnya i zavtra [Composites: today and tomorrow] // Metally Evrazii. 2015. №1. S. 36–39.
7. Zabulonov D.Yu., Myktybekov B.M., Ukhov P.A. Standartizatsiya metodov ispytaniy polimernykh kompozitsionnykh materialov [Standardization of test methods for polymer composite materials] // Kompozitnyy mir. 2010. №4. S. 16–19.
8. Adamov A.A., Laptev M.Yu., Gorshkova Ye.G. Analiz otechestvennoy i zarubezhnoy normativnoy bazy po mekhanicheskim ispytaniyam polimernykh kompozitsionnykh materialov [Analysis of the domestic and foreign regulatory framework for mechanical testing of polymer composite materials] // Konstruktsii iz kompozitsionnykh materialov. 2012. №3. S. 72–77.
9. Kablov E.N., Shevchenko Yu.N., Kozhevnikov A.N. Otraslevyye standarty – osnova kachestva aviatsionnoy tekhniki [Industry standards – the basis of the quality of aviation technology] // Stal. 2008. №8. S. 121–122.
10. Petrova A.P., Malysheva G.V. Klei, kleyevyye svyazuyushchiye i kleyevyye prepregi: uchebnoye posobiye / pod obshch. red. E.N. Kablova [Glues, adhesive binders and adhesive prepregs: a tutorial / gen. ed. by E.N. Kablov]. M.: VIAM, 2017. 472 s.
11. Ilichev A.V. Sravneniye standartov GOST i ASTM dlya provedeniya mekhanicheskikh ispytaniy PKM na rastyazheniye [Comparison of GOST and ASTM standards for mechanical testing of PCM tensile] // Vse materialy. Entsiklopedicheskiy spravochnik. 2015. №8. S. 2–9.
12. Fakhretdinov S.B. Innovatsionnyye zakupki v goskompaniyakh [Innovative procurement in state-owned companies] // Compositebook. 2018. №1. S. 30–31.
13. Melnikov D.A., Ilichev A.V., Vavilova M.I. Sravnenie standartov dlia provedeniia mekha-nicheskikh ispytanii stekloplastikov na szhatie [Comparison of standards for carrying out mechanical tests of GRP compression strength] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2017. №3 (51). St. 06. Available at: http://www.viam-works.ru (accessed: February 11, 2019). DOI: 10.18577/2307-6046-2017-0-3-6-6.
14. Ilichev A.V., Raskutin A.E., Gulyayev I.N. Sravneniye geometricheskikh razmerov obraztsov PKM, ispolzuyemykh v mezhdunarodnykh standartakh ASTM i otechestvennykh GOST [Comparison of the geometrical sizes polymer matrix composite materials samples which are using international ASTM standards and domestic GOST] // Novosti materialovedeniya. Nauka i tekhnika: elktron. nauch.-tekhnich. zhurn. 2015. №4 (16). S. 33–42. Available at: http://www.materialsnews.ru (accessed: February 11, 2019).
15. Erasov V.S., Krylov V.D., Panin S.V., Goncharov A.A. Ispytaniya polimernogo kompozitsionnogo materiala na udar padayushhim gruzom [Drop-weight impact testing of polymer composite material] // Aviacionnye materialy i tehnologii. 2013. №3. S. 60–64.
16. Bolshakov V.A., Aleksashin V.M. Povyshenie ostatochnoj prochnosti pri szhatii posle nizkoskorostnogo udara ugleplastikov, izgotovlyaemyh infuzionnym metodom formovaniya [A way to increase the residual compression strength after low-speed impact of CFRP produced by vacuum infusion technology] // Aviacionnye materialy i tehnologii. 2013. №4. S. 47–50.
17. Shershak P.V., Ryabovol D.Yu. Standarty po dinamicheskim mekhanicheskim ispytaniyam plastmass i polimernykh kompozitnykh materialov [Standards for dynamic mechanical testing of plastics and polymeric composite materials] // Aviatsionnaya promyshlennost. 2017. №4. S. 48–52.
18. Yakovlev N.O., Erasov V.S., Petrova A.P. Sravneniye normativnykh baz razlichnykh stran po ispytaniyu kleyevykh soyedineniy materialov [Comparison of regulatory bases in different countries for the testing of adhesive joints of materials] // Vse materialy. Entsiklopedicheskiy spravochnik. 2014. №7. S. 2–8.
The antifriction organoplastics Orgalon AF-1MR-260 and Orgalon AF-1MR-500 on the basis of reinforcing fillers, which are a combined fabric of two types of fibers - polyteh-rafluoroethylene and aramid fibers were developed and investigated. Aramid fibers play the role of a reinforcing component of a fabric filler, and polytetrafluoroethylene fibers give antifriction properties. The materials are intended to form a self-lubricating antifriction polymer coating on the metal surface of friction knots operating at high loads.
Organoplastics Orgalon AF-1MR are developed by analogy with serial materials Orgalon AF-1M, whose fabric filler contains polyimide and polytetrafluoroethylene fibers in its composition. The purpose of the development of new antifriction materials is to reduce their cost and increase the load capacity compared to the standard organoplastics Orgalon AF-1M.
It is shown that the use of aramid fibers instead of polyimide fibers in the reinforcing fabric allows reducing its cost by 30–40 %, increasing the strength properties by 30–50 %, and also improving the adhesive interaction of the antifriction coating with the metal. For organoplastics Orgalon AF-1MR the strength when exfoliate from structural steel is 25-30 % higher compared to organoplastics Orgalon AF-1M.
It has been established that the developed antifriction organoplastics Orgalon AF-1MR have a high load capacity - they resist pressure up to 250-300 MPa. The friction coefficient of organoplastics (with a contact pressure of 30 MPa and a speed of 0.2 m / s) is 0.10 in a friction pair with structural steel.
Thus, the developed antifriction materials are highly effective for use in the construction of high-loaded self-lubricating friction knots and can be used in many engineering areas, such as aircraft, engi
2. Voronkov B.D. Podshipniki sukhogo treniya [Bearings dry friction]. L.: Mashinostroyeniye, 1979. 224 s.
3. Adamenko N.A., Agafonova G.V. Tribotekhnicheskiye polimernyye materialy [Tribotechnical polymeric materials]. Volgograd: VolgGTU, 2013. 107 s.
4. Referativnyy byulleten nauchno-tekhnicheskoy i patentnoy informatsii po uglerodnym materialam: M.: NIIgrafit, 2017. №9. 46 s.
5. Yudin A.S. Razrabotka iznosostoykikh, antifriktsionnykh organotekstolitov na osnove polioksadiazolnykh tkaney i polimer-mineralnykh modifikatorov: avtoref. dis. ... kand. tekhn. nauk [Development of wear-resistant, antifriction organo-textolites based on polyoxadiazole fabrics and polymer-mineral modifiers: thesis abstract, Cand. Sc. (Tech.)]. M.: INEOS RAN, 2013. 20 s.
6. Anisimov A.V., Bakhareva V.E., Balyshko I.V., Ginzburg B.M. i dr. Kharakteristiki organoplastikov na osnove fenolnoy matritsy i oksolanovogo volokna [Characteristics of organoplastics on the basis of the phenolic matrix and oxolane fiber] // Voprosy materialovedeniya. 2006. №2. S. 113–118.
7. Kablov E.N. Materialy dlya aviakosmicheskoy tekhniki [Materials for aerospace] // Vse materialy. Entsiklopedicheskiy spravochnik. 2007. №5. S. 7–27.
8. Kablov E.N. Materialy i khimicheskiye tekhnologii dlya aviatsionnoy tekhniki [Materials and chemical technologies for aviation technology] // Vestnik Rossiyskoy akademii nauk. 2012. T. 82. №6. S. 520–530.
9. Kablov E.N. Aviakosmicheskoye materialovedeniye [Aerospace Materials] // Vse materialy. Entsiklopedicheskiy spravochnik. 2008. №3. S. 2–14.
10. Organoplastiki [Organoplastics] // Konstruktsionnyye kompozitsionnyye materialy [Elektronnyy resurs]. Available at: https://www.viam.ru/organoplastics (accessed: December 20, 2018).
11. Zhelezina G.F. Konstrukcionnye i funkcionalnye organoplastiki novogo pokoleniya [Constructional and functional organoplastics of new generation] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №4. St. 06. Available at: http://www.viam-works.ru (accessed: December 17, 2018).
12. Kulagina G.S., Korobova A.V., Zuev S.V., Zhelezina G.F. Issledovanie tribologicheskih svojstv organoplastikov na osnove tkanogo armiruyushhego napolnitelya [Study of tribological properties of organoplastics on the basis of reinforcing fabric filler] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №11. St. 06. Available at: http://www.viam-works.ru (accessed: December 17, 2018). DOI: 10.18577/2307-6046-2016-0-11-6-6.
13. Kulagina G.S., Korobova A.V., Ilichev A.V., Zhelezina G.F. Fizicheskiye i fiziko-mekhanicheskiye svoystva antifriktsionnogo organoplastika na osnove kombinirovannogo tkanogo napolnitelya i epoksidnogo svyazuyushchego [Physical and physico-mechanical properties of antifriction organoplastics based on combined fabric filler and epoxy binder] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2017. №10 (58). St. 08. Available at: http://www.viam-works.ru (accessed: December 18, 2018). DOI: 10.18577/2307-6046-2017-0-10-8-8.
14. Prepreg antifriktsionnogo organoplastika i izdeliye, vypolnennoye iz nego: pat. 2404202 Ros. Federatsiya. №2009111566/05 [The prepreg antifriction organoplasty and the product made from it: pat. 2404202 Rus. Federation. No. 2009111566/05]; zayavl. 31.03.09; opubl. 20.11.10, Byul. №32.
15. Solomentseva A.V., Fadeeva V.M., Zhelezina G.F. Antifriktsionnye organoplastiki dlya tyazhelonagruzhennykh uzlov treniya skolzheniya aviatsionnykh konstruktsij [Antifriction organoplastics for heavy loaded sliding friction units of aircraft structures] // Aviacionnye materialy i tehnologii. 2016. №2 (41). S. 30–34. DOI: 10.18577/2071-9140-2016-0-2-30-34.
16. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period to 2030] // Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
17. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
18. Kirillov V.N., Efimov V.A., Shvedkova A.K., Nikolaev E.V. Issledovanie vliyaniya klimaticheskih faktorov i mehanicheskogo nagruzheniya na strukturu i mehanicheskie svojstva PKM [Research of influence of climatic factors and mechanical loading on structure and the PCM mechanical properties] // Aviacionnye materialy i tehnologii. 2011. №4. S. 41–45.
Identification of damage and defects in the fiber reinforced plastics (FRPs) today are an integral part when building on-board monitoring systems. The need for practical implementation of such systems is associated with the importance of estimating the actual load, which, as a rule, is very different from that planned when determining the resource of an aircraft.
One of the important stages in the identification of detected defects in FRP is their classification and division into groups, which will allow you to make the most complete picture of the types of defects and apply general approaches to analysis, prevention, development control and repair of detectable damage for groups of defects.
From the gradual shift and broadening of the peak in the spectrum of the FBG response, it can be concluded how the stress concentration in FRP, which varies with increasing applied load, affects the strength and redistribution of the applied force in the material.
One of the ways to identify damage and determine the direction of the applied external action is the method of scanning a FRP structure with Lamb waves of ultrasonic frequency. As a rule, for a clearer separation of asymmetric and symmetric Lamb wave modes, the FBG integration is carried out in such a way that the axes of the FBG and the source of propagation of Lamb waves are angled to each other.
Studies of methods for identifying defects and damage in FRP to select the optimal method or a combination of them to study the causes, nature and development of damage FRP are used to accumulate experimental statistical knowledge about the state of a structure from FRP. In turn, the use of such data in the design, testing and operation of structures will make it possible to implement new approaches to the operation of aircraft, building structures
2. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
3. Kablov E.N. Stanovleniye otechestvennogo kosmicheskogo materialovedeniya [Formation of domestic space materials science] // Vestnik RFFI. 2017. №3. S. 97–105.
4. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
5. Sorokin K.V., Murashov V.V. Mirovye tendencii razvitiya raspredelennyh volokonno-opticheskih sensornyh sistem (obzor) [Global trends in development of distributed fiber-optic sensor systems (review)] // Aviacionnye materialy i tehnologii. 2015. №3 (36). S. 90–94. DOI: 10.18577/2071-9140-2015-0-3-90-94.
6. Kablov E.N., Sivakov D.V., Gulyayev I.N. i dr. Primeneniye opticheskogo volokna v kachestve datchikov defopmatsii v polimepnykh kompozitsionnykh matepialakh [The use of optical fibers as sensors of deformation in polymeric composite materials] // Vse materialy. Entsiklopedicheskiy spravochnik. 2010. №3. S. 10–15.
7. Kablov E.N., Startsev V.O. Sistemnyj analiz vliyaniya klimata na mekhanicheskie svojstva polimernykh kompozitsionnykh materialov po dannym otechestvennykh i zarubezhnykh istochnikov (obzor) [Systematical analysis of the climatics influence on mechanical properties of the polymer composite materials based on domestic and foreign sources (review)] // Aviacionnye materialy i tehnologii. 2018. №2 (51). S. 47–58. DOI: 10.18577/2071-9140-2018-0-2-47-58.
8. Svirskiy Yu.A., Trunin Yu.P., Pankov A.V. i dr. Bortovyye sistemy monitoringa (BSM) i perspektivy primeneniya v nikh volokonno-opticheskikh datchikov [On-board Monitoring Systems (BCM) and the Prospects for Using Fiber-Optic Sensors in them] // Kompozity i nanostruktury. 2017. №1. T. 9. S. 35–44.
9. Firsov L.L., Yurgenson S.A. Printsipy postroyeniya sistemy monitoringa tekhnicheskogo sostoyaniya konstruktsii dlya aviatsionnykh konstruktsiy [Principles of construction of a system for monitoring the technical condition of a structure for aircraft structures] // Prikladnaya fotonika. 2017. №4. T. 4. S. 279–295.
10. Fayazbakhsh K., Nik M.A., Pasini D., Lessard L. Defect layer method to capture effect of gaps and overlaps in variable stiffness laminates made by Automated Fiber Placement // Composite Structures. 2013. Vol. 97. P. 245–251.
11. Oromiehie E., Prusty B.G., Rajan G., Compston P. Optical fiber Bragg grating sensors for process monitoring in advanced composites // 2016 IEEE Sensors Applications Symposium. 2016. P. 222–226.
12. Oromiehie E., Prusty B.G., Rajan G., Compston P. Characterization of process-induced defects in automated fiber placement manufacturing of composites using fiber Bragg grating sensors // Structural health monitoring. URL: http://sagepub.cj.uk/journalsPermissions.nav (data obrashcheniya: 12.02.2019). DOI: 10.1177/1475921716685935.
13. Guo Z., Feng J., Wang H. et al. Fiber Bragg Grating Sensors for Fatigue Monitoring of Composite // Polymers and Polymer Composites. 2013. Vol. 21. No. 9. P. 553–560.
14. Pereira G.F., Mikkelsen L.P., McGugan M. Crack Detection in Fibre Reinforced Plastic Structures Using Embedded Fibre Bragg Grating Sensors: Theory, Model Development and Experimental Validation // PLoS ONE. 2015. Vol. 10 (10). P. 35–36. DOI: 10.1371/journal.pone.0141495.
15. Okabe Y., Yashiro S., Kosaka T., Takeda N. Detection of transverse crack in CFRP Composities using embedded fiber bragg grating sensors // Smart Materials Structure. 2000. No. 9. P. 832–838.
16. Takeda N., Minakuchi S. Recent development of structural health monitoring technologies for aircraft composite structures in japan // Smart Materials Structure. 2003. No. 6. P. 456–467.
17. Rajabzadeh A., Hendriks R., Heusdens R., Groves R. Classification of composite damage from FBG load monitoring signals // Sensors and Smart Structures Technologies for Civil, Mechanical and Aerospace Systems. 2017. Vol. 10168. P. 1016831-1–1016831-8.
18. Pereira G., Mikkelsen L., McGugan M. Crack Growth Monitoring by Embedded Optical Fibre Bragg Grating Sensors Fibre Reinforced Plastic Crack Growing Detection // Proceedings of the 3rd International Conference on Photonics, Optic sand Laser Technology (OSENS-2015). 2015. P. 133–139.
19. Pereira G.F., Mikkelsen L.P., McGugan M. Crack growth monitoring in composite materials using embedded optical Fiber Bragg Grating sensor // Proceedings of the 5th International Conference on Smart Materials and Nanotechnology in Engineering (SMN) in Conjunction with the International Conference on Smart Materials and Structures (Cansmart-2015). 2015. P. 156–165.
20. Kahandawa G.C., Epaarachchi J., Wang H., Lau K.T. Use of FBG Sensors for SHM in Aerospace Structures // Photonic Sensors. 2012. Vol. 2. No. 3. P. 203–214.
21. Budadin O.N., Kulkov A.A., Kutyurin V.Yu. Volokonno-opticheskiye datchiki s reshetkami Bregga dlya monitoringa napryazhenno-deformirovannogo sostoyaniya izdeliy iz kompozitsionnykh materialov [Fiber optic sensors with Bragg gratings for monitoring the stress-strain state of products made of composite materials] // Kontrol i ispytaniya konstruktsiy. 2018. №2. S. 60–67.
22. Takeda S., Yamamoto T., Okabe Y., Takeda N. Debonding monitoring of composite repair patches using embedded small-diameter FBG sensors // Smart materials structure. 2007. No. 16. Р. 763–770.
23. Udd E. Review of multi-parameter fiber grating sensors. // Fiber Optic Sensors and Applications V. 2007. Vol. 6770. P. 677002-1–677002-10. DOI: 10.1117/12.753525.
24. Lawrence C.M., Nelson D.V., Udd E., Bennet T. A fiber optic sensor for transverse strain measurement // Experimental mechanics. 1999. Vol. 39. No. 3. P. 202–209.
25. Matveenko V., Serovaev G., Takshkinov M. Numerical analysis of delamination in composite structures using strain measurements from fiber bragg gratings sensors // 2nd International Conference on Theoretical, Applied and Experimental Mechanics (ICTAEM 2018). 2019. SI 5. P. 62–67. DOI: 10.1007/978-3-319-91989-8_11.
26. Murashov V.V. Kontrol mnogosloynykh kleyenykh konstruktsiy iz polimernykh kompozitsionnykh materialov [Control of multilayer glued structures made of polymer composite materials] // Klei. Germetiki. Tekhnologii. 2011. №10. S. 4–19.
27. De Pauw B., Goossens S., Geernaert T. et al. Fibre Bragg Gratings in Embedded Microstructured Optical Fibres Allow Distinguishing between Symmetric and Anti-Symmetric Lamb Waves in Carbon Fibre Reinforced Composites // Sensors. 2017. Vol. 17. URL: http://mdpi.com/journal/sensors (дата обращения: 12.02.2019). DOI: 10.3390/s17091948.
28. Yu F., Wu Q., Okabe Y. et al. Identification of Damage Types in Carbon Fiber Reinforced Plastic Laminates by a Novel Optical Fiber Acoustic Emission Sensor // 7th European Workshop on Structural Health Monitoring. 2014. P. 1186–1193.
29. Takeda N., Okabe Y., Mizutani T. Damage detection in composites using optical fibre sensors // Proceedings IMechE. 2007. Vol. 221. Part G: J. Aerospace Engineering. P. 497–508.
Satisfactory adhesion of the metal layer (MS) and the ceramic layer (CL) was ensured by the formation of a thin (about 1 micron) bonding or «adhesive» layer of aluminum oxide at the metal-ceramic interface. To prevent spallation of TBC under conditions of intensive cyclic heating to operating temperatures at which significant thermal stresses occur at the metal-ceramics border due to the difference in thermal linear expansion coefficients (TCLE), the CS should preferably have a special column structure.
The splitting of a ceramic layer of a ceramic layer of a TBC with a columnar structure can occur in the following main cases:
- аs a result of the growth of the thickness of the oxide layer on the basis between the metal bonding coat (BC) and the ceramic thermal barrier coating (TBC). When the thickness is more than 10–15 microns, spalling of the CL BC occurs. This is the main mechanism of spallation of the CL of the TBC under normal operating conditions; The thickness of thermal growing oxide (TGO) grows continuously throughout the time the product develops a resource. Taking into account the fact that the increase in the thickness of the TGO is a result of a chemical reaction, the temperature has a significant influence on the rate of its flow. Thus, by the thickness of the TGO, one can indirectly judge the level of temperatures that acted on the boundary between the CL and BC.
– as a result of sintering the ceramic layer (ZrO2+(7–8)Y2O3) with the full or partial transformation of the columnar structure into a monolithic during long-term (more 50 hours) increase in surface temperature above 1250 °C. Further, under cyclic temperature effects on the blade, spalling of the CL of the BC occurs as a result of the thermal stresses that occur;
<p style="t
2. Kablov E.N. Razrabotki VIAM dlya gazoturbinnykh dvigateley i ustanovok [Development of VIAM for gas turbine engines and installations] // Krylya Rodiny. 2010. №4. S. 31–33.
3. Kablov E.N., Petrushin N.V., Svetlov I.L., Demonis I.M. Nikelevye litejnye zharoprochnye splavy novogo pokoleniya [Nickel foundry heat resisting alloys of new generation] // Aviacionnye materialy i tehnologii. 2012. №S. C. 36–52.
4. Chubarov D.A., Matveev P.V. Novye keramicheskie materialy dlya teplozashhitnyh pokrytij rabochih lopatok GTD [New ceramic materials for thermal barrier coating using in GTE turbine blades] // Aviacionnye materialy i tehnologii. 2013. №4. S. 43–46.
5. Kablov E.N., Muboyadzhyan S.A. Zharostojkie i teplozashhitnye pokrytiya dlya lopatok turbiny vysokogo davleniya perspektivnyh GTD [Heat resisting and heat-protective coverings for turbine blades of high pressure of perspective GTE] // Aviacionnye materialy i tehnologii. 2012. №S. S. 60–70.
6. Budinovskij S.A., Smirnov A.A., Matveev P.V., Chubarov D.A. Razrabotka teplozashhitnyh pokrytij dlja rabochih i soplovyh lopatok turbiny iz zharoprochnyh i intermetallidnyh splavov [Development of thermal barrier coatings for rotor and nozzle turbine blades made of nickel-base super- and intermetallic alloys] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №4. St. 05. Available at: http://www.viam-works.ru (accessed: December 11, 2018). DOI: 10.18577/2307-6046-2015-0-4-5-5.
7. Muboyadzhyan S.A., Budinovskij S.A., Gayamov A.M., Matveev P.V. Vysokotemperaturnye zharostojkie pokrytiya i zharostojkie sloi dlya teplozashhitnyh pokrytij [High-temperature heat resisting coverings and heat resisting layers for heat-protective coverings] // Aviacionnye materialy i tehnologii. 2013. №1. S. 17–20.
8. Terry S.G., Litty J.R., Levi C.G. Evolution of porosity and texture in thermal barrier coatings grown by EB-PVD // Elevated Temperature Coatings: Science and Technology III. The Minerals, Metals and Materials Society, 1999. P. 13–26.
9. Kashin D.S., Stekhov P.A. Sovremennyye teplozashchitnyye pokrytiya poluchennyye metodom elektronno-luchevogo napyleniya (obzor) [Modern thermal barrier coatings obtained by electron-beam physical vapor deposition (review)] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2018. №2. St. 10. Available at: http://www.viam-works.ru (accessed: December 21, 2018). DOI: 10.18577/2307-6046-2018-0-2-10-10.
10. Kablov E.N. Materialy novogo pokoleniya [New generation materials] // Zashchita i bezopasnost. 2014. №4. S. 28–29.
11. Avduyevskiy V.S., Galitseyskiy B.M., Glebov G.A. i dr. Osnovy teploperedachi v aviatsionnoy i raketno-kosmicheskoy tekhnike: ucheb. 2-ye izd., pererab. i dop. [Fundamentals of heat transfer in aviation and rocket and space technology: textbook. 2nd ed., rev. and add.]. M.: Mashinostroyeniye, 1992. 528 s.
12. Schlichting K.W., Padture N.P., Klemens P.G. Thermal conductivity of dense and porous yttria-stabilized zirconia // Journal of materials science. 2001. No. 36. P. 3003–3010.
13. Bychkov N.G., Klimov D.A., Myktybekov B., Nizovtsev V.Ye. Otsenka optimalnoy tolshchiny teplozashchitnykh pokrytiy stolbchatoy struktury na rabochikh lopatkakh turbin s uchetom deystviya tsentrobezhnykh nagruzok [Estimation of the optimal thickness of heat-shielding coatings of the columnar structure on turbine blades taking into account the effect of centrifugal loads] // Trudy MAI: elektron. zhurn. 2011. №46. Available at: http://trudymai.ru/published.php?ID=26030 (accessed: December 11, 2018).
14. Ilinkova T.A., Valiyev R.R., Tagirov A.T. Dolgovechnost plazmennykh teplozashchitnykh pokrytiy v usloviyakh termicheskogo nagruzheniya [Durability of plasma heat-shielding coatings under thermal loading] // Vestnik KGTU im. A.N. Tupoleva. 2010. №2. S. 24–29.
15. Ilinkova T.A., Ilinkov A.V., Valiyev R.R., Shigapov A.I. Issledovaniye teplozashchitnykh pokrytiy v usloviyakh termicheskogo udara [Study of heat-shielding coatings under thermal shock] // Tr. 8-y Mezhdunar. konf. «Plenki i pokrytiya». 2007. SPb.: Izd-vo Politekh. un-ta, 2007. S. 231–233.
16. Jung S.H., Jeon S.H., Park H. et al. Growth Behavior of Thermally Grown Oxide Layer with Bond Coat Species in Thermal Barrier Coatings // Journal of the Korean Ceramic Society. 2018. Vol. 55. No. 4. P. 344−351.
17. Karaoglanli A.C., Doleker K.M., Demire B. et al. Effect of shot peening on the oxidation behavior of thermal barrier coatings // Applied Surface Science. 2015. No. 354. P. 314–322.
18. Nirav V. Patel. Use of Thermally Grown Oxide Stress Measurements to Predict Remaining Life of Thermal Barrier Coatings under Realistic Turbine Engine Conditions: Master’s Theses. 2014. 700 p.
19. Hille T.S., Turteltaub S., Suiker A.S.J. Oxide growth and damage evolution in thermal barrier coatings // Engineering Fracture Mechanics. 2011. No. 78. P. 2139–2152.
20. Fahr A., Rogé B., Thornton J. Detection of Thermally Grown Oxides in Thermal Barrier Coatings by Nondestructive Evaluation // Journal of Thermal Spray Technology. 2006. Vol. 15. P. 46–52.
21. Song P. Influence of Material and Testing Parameters on the Lifetime of TBC Systems with MCrAlY and NiPtAl Bondcoats. Publikationsserver der RWTH Aachen University, 2012. 126 p.
22. Moskal G., Swadzba L., Mendala B. et al. Degradation of the TBC system during the static oxidation test // Journal of Microscopy. 2010. Vol. 237. Pt. 3. P. 450–455.
Studies of the formation of porosity at the boundary «of the ZhS26 heat-resistant alloy–a heat-resistant condensation-diffusion coating» – have been carried out. An ion-plasma heat-resistant condensation-diffusion coating of the NiCoCrAlY+AlNiY system (SDP-4+VSDP-16) with different thicknesses of the condensed layer made of SDP-4 alloy (19; 38 and 76 µm) with the same thickness of the layer of alloy VSDP-16 (17 µm). Part of the coated samples was subjected to vacuum thermal diffusion annealing according to standard technology.Investigations of samples in the initial state and samples after vacuum annealing were carried out, their microstructures were shown, and the results of micro X-ray analysis (MRCA) were given.It is shown that on samples of a heat-resistant alloy ZhS26 with a condensed coating SDP-4 with thicknesses of 19 and 38 μm in the vacuum annealing process at the boundary «of the heat-resistant alloy ZhS26–a heat-resistant condensation-diffusion coating» of the system SDP-4+VSDP-16 forms a pore chain. «On sample ZhS26 with a condensed coating SDP-4 76 μm thick, pores are not formed on the «alloy–coating» interface.
2. Kablov E.N. Sovremennyye materialy – osnova innovatsionnoy modernizatsii Rossii [Modern materials - the basis of innovative modernization of Russia] // Metally Evrazii. 2012. №3. S. 10–15.
3. Kablov E.N., Petrushin N.V., Svetlov I.L., Demonis I.M. Nikelevye litejnye zharoprochnye splavy novogo pokoleniya [Nickel foundry heat resisting alloys of new generation] // Aviacionnye materialy i tehnologii. 2012. №S. C. 36–52.
4. Muboyadzhyan S.A., Kablov E.N., Budinovskiy S.A. Vakuumno-plazmennaya tekhnologiya polucheniya zashchitnykh pokrytiy iz slozhnolegirovannykh splavov [acuum-plasma technology for producing protective coatings from complex alloyed alloys] // Metallovedeniye i termicheskaya obrabotka metallov. 1995. №2. S. 15–18.
5. Kolomytsev P.G. Gazovaya korroziya i prochnost nikelevykh splavov [Gas corrosion and strength of nickel alloys]. M.: Metallurgiya, 1984. 215 s.
6. Kashin D.S., Stehov P.A. Razrabotka kompleksnyh zharostojkih pokrytij dlya detalej iz estestvenno-kompozicionnogo materiala na osnove niobiya [Development of combined heat-resistant coatings for parts made of natural-composite material based on niobium] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2017. №6 (54). St. 4. Available at: http://www.viam-works.ru (accessed: December 11, 2018). DOI: 10.18577/2307-6046-2017-0-6-4-4.
7. Sposob obrabotki poverkhnosti metallicheskogo izdeliya: pat. 2368701 Ros. Federatsiya [The method of surface treatment of metal products: pat. 2368701 Rus. Federation]; opubl. 27.09.09.
8. Sposob naneseniya kombinirovannogo zharostoykogo pokrytiya: pat. 2402633 Ros. Federatsiya [Method of applying a combined heat-resistant coating: Pat. 2402633 Rus. Federation]; opubl. 27.10.10.
9. Budinovskiy S.A., Muboyadzhyan S.A. Effektivnost dvukhstadiynoy ionno-plazmennoy tekhnologii polucheniya legirovannykh diffuzionnykh alyuminidnykh pokrytiy na zharoprochnykh nikelevykh splavakh [Efficiency of two-stage ion-plasma technology for producing doped diffusion aluminide coatings on heat-resistant nickel alloys] // Metallovedeniye i termicheskaya obrabotka metallov. 2003. №5. S. 27–32.
10. Loshchinin Yu.V., Budinovskiy S.A., Razmakhov M.G. Teploprovodnost teplozashchitnykh legirovannykh oksidami RZM pokrytiy ZrO2–Y2O3, poluchennykh magnetronnym naneseniyem [Heat conductivity of heat-protective coatings ZrO2–Y2O3 alloyed by REM oxides obtained by magnetronny application] // Aviacionnye materialy i tehnologii. 2018. №3 (52). S. 42–49. DOI: 10.18577/2071-9140-2018-0-3-42-49.
11. Matveev P.V., Budinovskij S.A. Issledovanie svojstv zashhitnyh zharostojkih pokrytij dlya intermetallidnyh nikelevyh splavov tipa VKNA dlya rabochih temperatur do 1300°C [Research of the properties of protective heat-resistant coating for intermetallic nickel alloys operating at temperatures up to 1300°C] //Aviacionnye materialy i tehnologii. 2014. №3. S. 22–26.
12. Muboyadzhyan S.A., Budinovskij S.A. Ionno-plazmennaya tehnologiya: perspektivnye protsessy, pokrytiya, oborudovanie [Ion-plasma technology: prospective processes, coatings, equipment] // Aviacionnye materialy i tehnologii. 2017. №S. S. 39–54. DOI: 10.18577/2071-9140-2017-0-S-39-54.
13. Chubarov D.A., Matveev P.V. Novye keramicheskie materialy dlya teplozashhitnyh pokrytij rabochih lopatok GTD [New ceramic materials for thermal barrier coating using in GTE turbine blades] // Aviacionnye materialy i tehnologii. 2013. №4. S. 43–46.
14. Budinovskij S.A., Smirnov A.A., Matveev P.V., Chubarov D.A. Razrabotka teplozashhitnyh pokrytij dlja rabochih i soplovyh lopatok turbiny iz zharoprochnyh i intermetallidnyh splavov [Development of thermal barrier coatings for rotor and nozzle turbine blades made of nickel-base super- and intermetallic alloys] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №4. St. 05. Available at: http://www.viam-works.ru (accessed: December 11, 2018). DOI: 10.18577/2307-6046-2015-0-4-5-5.
15. Smirnov A.A., Budinovskij S.A., Matveev P.V., Chubarov D.A. Razrabotka teplozashhitnyh pokrytij dlya lopatok TVD iz nikelevyh monokristallicheskih splavov VZhM4, VZhM5U [The development of thermal barrier coatings for turbine blades of single-crystal nickel alloys VZHM4, VZHM5U] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №1. St. 03. Available at: http://www.viam-works.ru (accessed: September 23, 2016). DOI: 10.18577/2307-6046-2016-0-1-17-24.
16. Mokrov A.P., Zharkov V.M. Vzaimnaya diffuziya i effekt Kirkendalla v sisteme niobiy–vanadiy [Mutual diffusion and the Kirkendall effect in the niobium – vanadium system] // Diffuzionnyye protsessy v metallakh. Tula: TPI, 1974. Vyp. 2. S. 39–49.
17. Geguzin Ya.E. Ocherki o diffuzii v kristallakh [Essays on diffusion in crystals]. M: Nauka, 1974. 254 s.
18. Krishtal M.A., Vyboyshchik M.A., Levin D.M. Obrazovaniye dislokatsiy v diffuzionnoy zone i diffuziya po dislokatsiyam [Formation of dislocations in the diffusion zone and diffusion along dislocations] // Diffuzionnyye protsessy v metallakh. Tula: TPI, 1973. S. 184–210.
19. Kablov E.N. Materialy novogo pokoleniya – osnova innovatsiy, tekhnologicheskogo liderstva i natsionalnoy bezopasnosti Rossii [Materials of the new generation - the basis of innovation, technological leadership and national security of Russia] // Intellekt i tekhnologii. 2016. №2 (14). S. 16–21.
20. Budinovskiy C.A., Kablov E.N., Muboyadzhyan C.A. Primeneniye analiticheskoy modeli opredeleniya uprugikh napryazheniy v mnogosloynoy sisteme pri reshenii zadach po sozdaniyu vysokotemperaturnykh zharostoykikh pokrytiy dlya rabochikh lopatok aviatsionnykh turbin [Application of analytical model of determination of elastic stresses in multi-layer system at the solution of tasks on creation of high-temperature heat resisting coverings for working blades of aviation turbines] // Vestnik MGTU im. Baumana. Ser.: Mashinostroyeniye. 2011. №SP2. S. 26–37.