Articles
The object of investigation is the intermetallic dispersion-hardening nickel-beryllium alloy 97NL-VI. The purpose of this work is to analyze the changes in the structure and properties of the intermetallic dispersion-hardening nickel-beryllium alloy 97NL-VI, depending on the type and temperature of the heat treatment. The paper considers the change in structure and properties as a function of the heat treatment of the 97NL-VI intermetallic alloy. With electron microscopy a strengthening phase of NiBe is determined, which forms throughout the volume of the solid solution. The effect of beryllium content on the content of the intermetallic phase of NiBe in the structure of the alloy and further dissolution in the matrix with a change in the quenching temperature is analyzed. It is shown that at the quenching temperature above the eutectic transformation it almost completely dissolves the intermetallic phase, but forms an undesirable eutectic. In this regard, the best is hardening with
2. Kablov E.N. Shestoj tekhnologicheskij uklad [Sixth technological way] // Nauka i zhizn. 2010. №4. S. 2–7.
3. Kablov E.N. Materialy i khimicheskie tekhnologii dlya aviatsionnoj tekhniki [Materials and chemical technologies for aviation engineering] // Vestnik Rossijskoj akademii nauk. 2012. T. 82. №6. S. 520–530.
4. Kablov E.N., Ospennikova O.G., Petrushin N.V. Novyj monokristallicheskij intermetallidnyj (na osnove γʹ-fazy) zharoprochnyj splav dlya lopatok GTD [New single crystal heat-resistant intermetallic γʹ-based alloy for GTE blades] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 34–40. DOI: 10.18577/2071-9140-2015-0-1-34-40.
5. Khimushin F.F. Zharoprochnye stali i splavy. 2-e izd., pererab. i dop. [Heat resisting there were also alloys. 2nd ed., rev. and add.]. M.: Metallurgiya, 1969. 752 s.
6. Arginbaeva E.G., Bazyleva O.A. Issledovanie struktury i fiziko-mehanicheskih svojstv intermetallidnyh nikelevyh splavov [The research the structure, physical and mechanical properties of the intermetallic nickel alloys] // Aviacionnye materialy i tehnologii. 2013. №4. S. 14–19.
7. Bazyleva O.A., Arginbaeva E.G. Vliyanie termicheskoj obrabotki na strukturu i zharoprochnost renijsoderzhashhego intermetallidnogo splava na osnove nikelya [Effect of heat treatment on the structure and heat resistance rhenium containing intermetallic nickel-based alloy] // Aviacionnye materialy i tehnologii. 2014. №2. S. 21–26. DOI: 10.18577/2071-9140-2014-0-2-21-26.
8. Bazyleva O.A., Ospennikova O.G., Arginbaeva E.G., Letnikova E.Yu., Shestakov A.V. Tendencii razvitiya intermetallidnyh splavov na osnove nikelya [Development trends of nickel-based intermetallic alloys] // Aviacionnye materialy i tehnologii. 2017. №S. S. 104–115. DOI: 10.18577/2071-9140-2017-0-S-104-115.
9. Arginbaeva E.G., Nazarkin R.M., Shestakov A.V., Karachevtsev F.N. Issledovanie vliyaniya termicheskoj obrabotki na strukturno-fazovye parametry intermetallidnykh splavov na osnove nikelya [Research of heat treatment influence on structural-phase parameters of intermetallic nickel based alloys] // Aviacionnye materialy i tehnologii. 2017. №3 (48). S. 8–13. DOI: 10.18577/2071-9140-2017-0-3-8-13.
10. Pretsizionnye splavy: spravochnik / pod red. B.V. Molotilova [Precision alloys: directory / ed. by B.V. Molotilov]. M.: Metallurgiya, 1983. 438 c.
11. Nickel, Cobalt and Their Alloys / ed. by J.R. Davis. ASM International, 2000. 442 p.
12. Arzamasov B.N. Materialovedenie: ucheb. dlya vuzov [Materials science: the textbook for higher education institutions]. M.: Izd-vo MGTU im. N.E. Baumana, 2008. 648 s.
13. Rakhshtadt A.G. Pruzhinnye splavy tsvetnykh metallov. 2-e izd. [Spring non-ferrous alloys. 2nd ed.]. M.: Metallurgiya, 1983. 364 s.
14. Borisov V.A., Rakhshtadt A.G., Shpitsberg A.L. Svojstva legirovannykh splavov nikel-berillij [Properties of doped alloys nickel-beryllium] // Metallovedenie i termicheskaya obrabotka metallov. 1966. №6. S. 12–16.
15. Livshits B.G., Kraposhin V.S., Linetskij YA.L. Fizicheskie svojstva metallov i splavov [Physical properties of metals and alloys]. M.: Metallurgiya, 1980. 320 s.
16. Elmanov G.N., Isaenkova M.G., Smirnov A.E. Fizicheskie svojstva metallov i splavov. Laboratornyj praktikum [Physical properties of metals and alloys. Laboratory practical work]. M.: MIFI, 2014. 136 s.
17. Bondarenko G.G. Osnovy materialovedeniya. 2-e izd. [Materials science bases. 2nd ed.]. M.: Binom, 2015. 762 s.
18. Fetisov G.P., Garifullin F.A. Materialovedenie i tekhnologiya metallov [Materials science and technology of metals]. M.: Oniks, 2007. 624 s.
The article contains the results of microstructure investigations in the nular inhomogeneity which forms during the ingot crystallization. Intensified precipitation of α2 phase particles occurs in interdendritic spaces, the spaces being enriched by easily-melted elements (in this case – aluminum). Thermal analysis has been performed with differential scanning calorimetry (DSC) curves plotting which help to specify phase transformation temperatures of the yttrium doped ortho alloy. It has been observed that the transition from a three-phase (О+β/В2+α2)-area into a two-phase (β/В2+α2)-area takes place at a temperature of 922°С, while the transition from a two-phase (β/В2+α2)-area into a single-phase β/В2-area occurs at 1068°С. Rheological curves for the upset cylindrical samples have been plotted which revealed the deformation strain level reduction from 740 to 84 MPa with an increase of the test tempercross section of an ingot from wrought intermetallic titanium ortho alloy doped with yttrium. It has been shown that microstructure along the generatrix of the ingot surface doesn’t differ greatly depending on the site of samples cutting and is introduced by elongated β-grains with occasional fine precipitates of α2 phase located both inside and along β-grain boundaries. In this case, an increased amount of dispersed α2 phase particles is observed in the central part of the ingot. The effect of heat treatment in a two-phase (β/В2+α2)-area on microstructure of the yttrium doped ortho alloy ingot has been studied. Heat treatment results in appearance of zones enriched and depleted with dispersed α2 phase particles in the form of disoriented plates which are observed in the central part of the ingot. The presence of such zones indicates ab
2. Titanium and Titanium Alloys: Fundamental Applications / ed. by С. Leyens, M. Peters. KGaA, Weinheim: Wiley-VCH Verlag GmbH&Co., 2003. 513 p.
3. Chen W., Li J.W., Xu L., Lu B. Development of Ti2AlNb Alloys: Opportunities and Challenges // Advanced Materials and Processes. 2014. Vol. 172. No. 5. P. 23–27.
4. Antipov V.V. Perspektivy razvitiya alyuminievyh, magnievyh i titanovyh splavov dlya izdelij aviacionno-kosmicheskoj tehniki [Prospects for development of aluminium, magnesium and titanium alloys for aerospace engineering] // Aviacionnye materialy i tehnologii. 2017. №S. S. 186–194. DOI: 10.18577/2107-9140-2017-0-S-186-194.
5. Splav na osnove titana i izdelie, vypolnennoe iz nego: pat. 2210612 Ros. Federaciya [Titanium-based alloy and the product which has been executed of it: pat. 2210612 Rus. Federation]; zayavl. 24.09.01; opubl. 20.08.03.
6. Intermetallidnyj splav na osnove titana: pat. 2405849 Ros. Federaciya [Intermetallic titanium-based alloy: pat. 2405849 Rus. Federation]; zayavl. 28.10.09; opubl. 10.12.10.
7. Novak A.V., Alekseev E.B., Ivanov V.I., Dzunovich D.A. Izuchenie vliyaniya parametrov zakalki na strukturu i tverdost intermetallidnogo titanovogo orto-splava VTI-4 [The study of the quenching parameters influence on structure and hardness of orthorhombic titanium aluminide alloy VТI-4] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2018. №2. St. 05. Available at: http://www.viam-works.ru (accessed: May 4, 2018). DOI: 10.18577/2307-6046-2018-0-2-5-5.
8. Alekseev E.B., Nochovnaya N.A., Ivanov V.I., Panin P.V., Novak A.V. Issledovanie vliyaniya alyuminiya na fazovyj sostav i termomekhanicheskij rezhim izotermicheskoj shtampovki intermetallidnogo splava VTI-4 [Research of influence of aluminum on phase structure and thermomechanical mode of isothermal punching of intermetallic alloy VTI-4] // Tekhnologiya legkikh splavov. 2015. №1. S. 57–61.
9. Zhang S.Z. et al. Phase transformation and microstructure evolution of differently processed Ti–45Al–9Nb–Y alloy // Intermetallics. 2012. Vol. 31. P. 208–216.
10. Liu Z.G., Chai L.H., Chen Y. Microstructure evolution in rapidly solidified Y added TiAl ribbons // Intermetallic. 2011. Vol. 19. P. 160–164.
11. Zhao L.L., Li G.Y., Zhang L.Q. Influence of Y addition on the long time oxidation behaviors of high Nb containing TiAl alloys at 900°C // Intermetallics. 2010. Vol. 18. P. 1586–1596.
12. Chen Y., Si Y., Kong F. Effects of yttrium on microstructures and properties of Ti–17Al–27Nb alloy // Transactions of Nonferrous Metals Society of China. 2006. Vol. 16. Issue 2. P. 316–320.
13. Li B., Kong F., Chen Y. Effect of yttrium addition on microstructures and room temperature tensile properties of Ti–47 Al alloy // Journal of Rare Earths. 2006. Vol. 24. Issue 3. P. 352–356.
14. Chen Y., Li B., Kong F. Microstructural refinement and mechanical properties of Y-bearing TiAl alloys // Journal of Alloys and Compounds. 2008. Vol. 457. Issues 1–2. P. 265–269.
15. Chen Y., Li B., Kong F. Effects of minor yttrium addition on hot deformability of lamellar Ti–45Al–5Nb alloy // Transactions of Nonferrous Metals Society of China. 2007. Vol. 17. P. 58–63.
16. Si Y., Chen Y., Liu Z., Kong F. Influence of yttrium on microstructure and properties of Ti–23Al–25Nb alloy after heat treatment // Transactions of Nonferrous Metals Society of China. 2006. Vol. 16. P. 849–853.
17. Chang X., Si J., Gao F., Jing Y., Zhang J. Effect of Gd аddition on heat treatment microstructure of wrought TiAl // Journal of Iron and Steel Research, International. 2007. Vol. 14. P. 26–29.
18. Lia W., Inksonb B., Horitac Z., Xiaa K. Microstructure observations in rare earth element Gd-modified Ti–44 at% Al // Intermetallics. 2000. Vol. 8. P. 519–523.
19. Shiriaev A.A., Antashev V.G. Osobennosti razrabotki vysokoprochnogo samozakalivaiushchegosia vysokotekhnologichnogo psevdo-β-titanovogo splava [Peculiarities of development of advanced high-strength self-hardening high-processable pseudo-β-titanium alloys] // Aviatsionnye materialy i tekhnologii. 2014. №4. S. 23–30. DOI: 10.18577/2071-9140-2014-0-4-23-30.
20. Nochovnaya N.A., Alekseev E.B., Panin P.V., Novak A.V. Issledovanie struktury i mekhanicheskikh svojstv deformiruemogo intermetallidnogo titanovogo splava VIT5, legirovannogo gadoliniem [Research of structure and mechanical properties of the deformable intermetallic VIT5 titanium alloy alloyed by gadolinium] // Titan. 2017. №2. S. 21–29.
21. Kablov E.N., Nochovnaya N.A., Panin P.V., Alekseev E.B., Novak A.V. Issledovanie struktury i svojstv zharoprochnykh splavov na osnove alyuminidov titana s mikrodobavkami gadoliniya [Research of structure and properties of hot strength alloys on the basis of titanium aluminides with gadolinium microadditives] // Materialovedenie. 2017. №3. S. 3–10.
22. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskikh napravlenij razvitiya materialov i tekhnologij ikh pererabotki na period do 2030 goda» // Aviacionnye materialy i tekhnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
23. Antipov V.V. Strategiya razvitiya titanovykh, magnievykh, berillievykh i alyuminievykh splavov // Aviacionnye materialy i tekhnologii. 2012. №S. S. 157–167.
24. Kablov E.N. Bez novykh materialov – net budushchego // Metallurg. 2013. №12. S. 4–8.
25. Bazyleva O.A., Arginbaeva E.G., Fesenko T.V., Kolodochkina V.G. Issledovanie vliyaniya likvacionnoj neodnorodnosti na strukturu i dolgovechnost intermetallidnykh splavov na osnove nikelya // Materialy budushchego. 2014. №6. S. 7–12.
26. Bazyleva O.A., Arginbaeva E.G., Fesenko T.V., Kolodochkina V.G. Study of the effect of liquation on structure and durability of intermetallic alloys based on nickel // Inorganic Materials: Applied Research. 2015. Vol. 6. No. 1. P. 5–10.
27. Bazyleva O.A., Bondarenko Yu.A., Morozova G.I., Timofeeva O.B. Struktura, khimicheskij i fazovyj sostavy intermetallidnogo splava VKNA-1V posle vysokotemperaturnykh obrabotok i tekhnologicheskikh nagrevov // Zharoprochnye splavy. 2014. №5. S. 3–6.
28. Povarova K.B., Drozdov A.A., Bazyleva O.A., Bondarenko Yu.A., Bulakhtina M.A., Arginbaeva E.G., Antonova A.V., Morozov A.E., Nefedov D.G. Vliyanie sposobov polucheniya monokristallov splavov na osnove Ni3Al na makro- i mikroodnorodnost raspredeleniya komponentov, strukturu, svojstva // Metally. 2014. №3. S. 40–51.
Information is given concerning commercial use of the best-known foreign and domestic metastable b-titanium alloys in industry. The role of research in the field of hardening heat treatment for providing a high complex of physical and mechanical properties of semi-finished products and items from the mentioned class of alloys is considered. The main world tendencies in heat treatment of high-alloyed titanium alloys have been summarized.
The modes of hardening heat treatment have been chosen and the effect of various modes and technological parameters thereof on mechanical properties and structure of sheets from an experimental composition of a high-strength metastable b-titanium alloy doped with rare-earth element (REE) yttrium have been studied.
It has been shown the possibility of wide variation within mechanical properties (ultimate tensile strength (UTS) from 820 до 1510 MPa, elongation from 21,0 to 2,6%) as well as in structural constituents parameters and morphology of the experimental alloy composition.
The research results have revealed that the experimental alloy composition can be more efficiently hardened by means of low-temperature thermo-mechanical treatment (LTMT) in comparison to conventional heat treatment.
Long-term low-temperature ageing makes it possible to provide high level of strength characteristics (UTS≈1500 MPa) while maintaining the elongation level in the range of 2–4% and satisfactory values of impact toughness. Variation in the quenching temperature (b- or (α+β)-area) didn’t have a significant effect on strength level. The quenching from (α+β)-area provided a higher level of elongation.
The application of the experimental multistage heat treatment mode gave the opportunity t
2. Boyer R.R., Briggs R.D. The Use of β Titanium Alloys in the Aerospace Industry // Journal of Materials Engineering and Performance. 2005. Vol. 14 (6). P. 681–685.
3. Nyakana S.L., Fanning J.C., Boyer R.R. Quick Reference Guide for β Titanium Alloys in the 00s // Journal of Materials Engineering and Performance. 2005. Vol. 14 (6). P. 799–811.
4. Titanium and titanium alloys. Fundamentals and applications / Ed. by C. Leyens, M. Peters. Wiley–VCH, Germany. 2003. 513 p.
5. Ilin A.A., Kolachev B.A., Polkin I.S. Titanovye splavy. Sostav, struktura, svojstva: spravochnik [Titanium alloys. Structure, structure, properties: directory]. M.: VILS–MATI. 2009. 520 s.
6. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
7. Vysokoprochnyj splav na osnove titana i izdelie, vypolnennoe iz vysokoprochnogo splava na osnove titana: pat. 2569285 Ros. Federaciya. №2014153690/02 [High-strength alloy on the basis of titanium and the product executed from high-strength alloy on the basis of titanium: pat. 2569285 Rus. Federation. No. 2014153690/02]; zayavl. 29.12.2014; opubl. 20.11.2015, Byul. №32.
8. Shiriaev A.A., Antashev V.G. Osobennosti razrabotki vysokoprochnogo samozakalivaiushchegosia vysokotekhnologichnogo psevdo-β-titanovogo splava [Peculiarities of development of advanced high-strength self-hardening high-processable pseudo-β-titanium alloys] // Aviatsionnye materialy i tekhnologii. 2014. №4. S. 23–30. DOI: 10.18577/2071-9140-2014-0-4-23-30.
9. Kablov E.N., Ospennikova O.G., Vershkov A.V. Redkie metally i redkozemelnye elementy – materialy sovremennyh i budushhih vysokih tehnologij [Rare metals and rare-earth elements are materials for modern and future high technologies] // Aviacionnye materialy i tehnologii. 2013. №S2. S. 3–10.
10. Kablov E.N., Volkova E.F., Filonova E.V. Vliyanie RZE na fazovyj sostav i svojstva novogo zharoprochnogo magnievogo splava sistemy Mg–Zn–Zr–RZE [Influence of RZE on phase structure and property of new heat resisting magnesium alloy of Mg-Zn-Zr-RZE system] // Metallovedenie i termicheskaya obrabotka metallov. 2017. №7 (745). S. 19–26.
11. Kashapov O.S., Pavlova T.V., Kalashnikov V.S., Kondrateva A.R. Issledovanie vliyaniya rezhimov termicheskoj obrabotki na strukturu i svojstva opytnykh pokovok iz splava VT41 s melkozernistoj strukturoj [The influence of heat treatment conditions on structure and properties of pilot forgings from VT41 alloy with fine grained structure] // Aviacionnye materialy i tehnologii. 2017. №3. S. 3–7. DOI: 10.18577/2071-9140-2017-0-3-3-7.
12. El-Chaikh A., Schmidt P., Christ H.-J. Study on the Beneficial Effects of Duplex Aging on Microstructure Phenomena Determining the Fatigue life of the Metastable β-titanium Alloy Ti 38-644 // Ti-2011 Science and Technology: Proceedings of the 12th World Conference on Titanium. Beijing: Science Press Beijing, 2011. Vol. 1. P. 745–749.
13. Santhosh R., Geetha M., Nageswara Rao M. Recent developments in heat treatment of beta titanium alloys for aerospace applications // Transactions Indian Institute of Metals. 2017. Vol. 70 (7). P. 1681–1688.
14. Khorev A.I. Kompleksnoe legirovanie i termomekhanicheskaya obrabotka titanovykh splavov: ucheb. posobie [Complex alloying and thermomechanical processing of titanium alloys]. M.: Mashinostroenie, 1979. 228 s.
15. Suzuki T., Niwa N., Goto K., Kobayashi M. et al. Effect of aging on the mechanical properties of beta titanium alloys of Ti–13V–11Cr–3Al, Ti–15V–3Cr–3Sn–3Al and Ti–3Al–8V–6Cr–4Mo–4Zr // Titanium 95: Science and technology. 1995. P. 1294–1301.
In the article the differences in the two methods of casting are described - in cold-hardening mixtures and in the case of melted models using the example of thin-walled casting "Housing" with overall dimensions 490×90×90 mm and wall thickness of 3 mm.
Shaped details with long thin walls are most rational to receive by casting with the subsequent machining. Other ways of production and production of parts – stamping, welding, cutting, additive technology – at a cost more expensive than casting. Casting in cold box process and waxed models is one of the most common methods of casting. Thus, the task of obtaining such a detail is topical.
The work involved the use of plastic equipment, obtained by 3D printing technology. The use of plastic tooling reduces casting time, but severely limits the ability of casting for investment models. It is difficult to use such a tool when machine is pressed, and when free casting, there are problems with the choice of the model mass because of its strong adhesion to the mold.
The mechanical properties of the alloy were tested on separately cast specimens in cold box process and on cut samples from cast billets over the fusible models. According to the test results, it was revealed that the properties of the AK7h alloy depend on the thickness of the billet on the cut samples. When the thickness of the workpiece is more than 12 mm, the properties are unsatisfactory. With a workpiece thickness of 10 mm, the properties of the alloy on the cut specimens are approximately equal to each separately cast.
Thus, it turned out that in order to obtain a quality casting «Housing» the most rational method of casting is casting in cold-hardening mixtures.
10.10. «Energy-efficient, resource-savi
2. Mogilev V.K., Lev O.I. Spravochnik litejshchika [Directory of the founder]. M.: Mashinostroenie, 1988. 272 s.
3. Fasonnoe lite alyuminievykh splavov: ucheb. posobie / G.B. Stroganov, M.B. Altman, A.V. Melnikov i dr. [Shaped casting of aluminum alloys: studies. grant/G B. Stroganov, M. B. Altman, A.V.Melnikov et al.]. M.: Mashinostroenie, 1980. 296 s.
4. Tekhnologiya litejnogo proizvodstva: lite v peschanye formy: ucheb. dlya vuzov / pod red. A.P. Trukhova, Yu.A. Sorokina, M.Yu. Ershova i dr. [Technology of foundry production: sand casting: studies. for higher education institutions / ed. by A.P. Trukhov, Yu.A. Sorokin, M.Yu. Ershov]. M.: Akademiya, 2005. 582 s.
5. Kablov E.N. Aviakosmicheskoe materialovedenie [Aerospace materials science] // Vse materialy. Enciklopedicheskij spravochnik. 2008. №3. S. 2–14.
6. Proizvodstvo tochnykh otlivok / I. Doshkarzh, YA. Gabriel, M. Gousht, M. Pavelka [Production of exact molding / I. Doshkarzh, YA. Gabriel, M. Gousht, M. Pavelka. M.: Mashinostroenie, 1979. 296 s.
7. Balabin V.V. Izgotovlenie derevyannykh modelnykh komplektov v litejnom proizvodstve [Manufacturing of wooden model sets in foundry production]. M.: Vysshaya shkola, 1971. 285 s.
8. Metally i splavy: spravochnik / pod red. Yu.P. Solnceva [Metals and alloys: the directory / ed. Yu.P. Solntsev]. SPb.: Professional, Mir i semya. 2003. 1066 s.
9. Ivanov V.N. Slovar-spravochnik po litejnomu proizvodstvu [The dictionary reference on foundry production]. M.: Mashinostroenie, 1990. 384 s.
10. Vlasova K.A., Klyukvina T.D., Leonov A.A., Larionov S.A. Vzaimodejstvie modelnykh sostavov s plastikovoj osnastkoj, izgotovlennoj s pomoshchyu tekhnologii 3D-pechati [Interaction of model compositions with plastic equipment made using 3D printing technology] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2018. №2. St. 07. URL: http://www.viam-works.ru (accessed: March 26, 2018). DOI: 10.18577/2307-6046-2018-0-2-7-7.
11. Petrova G.N., Sapego Yu.A., Larionov S.A., Platonov M.M., Laptev A.B. Pozharobezopasnye termoplastichnye materialy dlya 3D-tehnologii [Fireproof thermoplastic materials for 3D-technologies] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2017. №9 (57). St. 07. Available at: http://www.viam-works.ru (accessed: March 26, 2018). DOI: 10.18577/2307-6046-2017-0-9-7-7.
12. Kablov E.N. Additivnye tekhnologii – dominanta nacionalnoj tekhnologicheskoj iniciativy [The dictionary reference on foundry production] // Intellekt i tekhnologii. 2015. №2 (11). S. 52–55.
13. Ospennikova O.G. Issledovanie i razrabotka parametrov tehnologicheskogo processa izgotovleniya modelej iz modelnyh kompozicij na osnove sinteticheskih voskov [Research and working out of parametres of technological process of manufacturing of models from modelling compositions on the basis of synthetic waxes] // Aviacionnye materialy i tehnologii. 2014. №3. S. 18–21. DOI: 10.18577/2071-9140-2014-0-3-18-21.
14. Duyunova V.A., Volkova E.F., Uridiya Z.P., Trapeznikov A.V. Dinamika razvitiya magnievyh i litejnyh alyuminievyh splavov [Dynamics of the development of magnesium and cast aluminum alloys] // Aviacionnye materialy i tehnologii. 2017. №S. S. 225–241. DOI: 10.18577/2071-9140-2017-0-S-225-241.
15. Duyunova V.A., Kozlov I.A. Kholodnotverdeyushchie formovochnye smesi: perspektivy ispolzovaniya pri lite magnievykh splavov [Cold-hardering forming mixes: use perspectives when molding magnesium alloys] // Vse materialy. Enciklopedicheskij spravochnik. 2011. №1. S. 41–43.
Until recently in elements of designs of blades of helicopters the three-layered panels consisting of two thinwalled panels from glass - or carbon fiber-reinforced plastic and cellular filler were used.
But cellular filler has number of technological and operational shortcomings (labor input of manufacturing; difficulties at formation of details of difficult configuration; high moisture absorption of three-layered panels, etc.) which can be eliminated at its replacement by alternative filler – frothed rigid plastic.
However for this purpose industrially let out foam plastics on the basis of PS, by PE, software, PU, phenolic, epoxies cannot be used, etc.: their mechanical properties strongly depend on specific weight, they are combustible, possess low warm and frost resistance.
Abroad find broad application cellular foam on the basis of thermoplastics of new generation – the polyimide possessing unique operational properties thanks to rigid structure: fire safety, high strength properties, corrosion inertness, funginertness, working capacity in the range of temperatures from -196 to 250÷350°C, etc.
Results of researches on impact assessment of large-scale factor are given in article on level of the physicist – mechanical properties rigid foamed polyacrylimide sheet VPP-5 brands.
Relevance of the conducted researches is that possibility of this or that use cellular foam in three-layered panels of constructional assignment for elements of designs of blades of helicopters is defined not only compounding of initial semi-finished product – prepolymer and structure of the foam received from it, but also stability, and size of such indicators as the apparent density and durability at compression.
<p style="text-alig
2. Popov Yu.O., Kolokol’tseva T.V., Khrulkov A.V. Novoe pokolenie materialov i tehnologij dlya izgotovleniya lonzheronov lopastej vertoleta [The new generation of materials and technologies for helicopter blade spars] // Aviacionnye materialy i tehnologii. 2014. №S2. S. 5–9.
3. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period to 2030] // Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
4. Beider E.Ya., Petrova G.N., Izotova T.F., Gureeva E.V. Kompozicionnye termoplastichnye materialy i penopoliimidy [Thermoplastic composite materials and foam polyimides] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №11. St. 01. Available at: http://www.viam-works.ru (accessed: May 17, 2018).
5. Doroshenko N.I., Chursova L.V. Evolyuciya materialov dlya lopastej vertoletov [Evolution of materials for blades of helicopters] // Aviacionnye materialy i tehnologii. 2012. №2. S. 16–18.
6. Bejder E.Ya., Gureeva E.V., Petrova G.N. Penopoliimidy [Foamed ployimidies] // Vse materialy. Entsiklopedicheskij spravochnik. 2012. №6. S. 2–8.
7. Poliimidnye kompozitsionnye materialy: struktura, svojstva, tekhnologii / pod obshch. red. A.A. Berlina [Polyimide composite materials: structure, properties, technologies / gen. ed. by A.A. Berlin]. SPb.: Professiya, 2008. 512 s.
8. Shuldeshov E.M., Kraev I.D., Platonov M.M. Polimernaya kompozicionnaya zvukopogloshhayushhaya panel [Polymeric composition sound absorbing panel] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2017. №5 (53). St. 07. Available at: http://www.viam-works.ru (accessed: May 17, 2018). DOI: 10.18577/2307-6046-2017-0-5-7-7.
9. Shuldeshov E.M., Kraev I.D., Petrova A.P. Polimernyj zvukopogloshchayushchij material-konstruktsiya dlya snizheniya shuma na mestnosti aviatsionnykh dvigatelej [Polymeric sound-absorbing material design for environmental noise abatement of aircraft engines] // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2018. №2 (62). St. 06. Available at: http://www.viam-works.ru (accessed: May 17, 2018). DOI: 10.18577/2307-6046-2018-0-2-6-6.
10. Shashkeev K.A., Shuldeshov E.M., Popkov O.V., Kraev I.D., Yurkov G.Yu. Poristye zvukopogloshhayushhie materialy (obzor) [Porous sound-absorbing materials (review)] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №6. St. 06. Available at: http://www.viam-works.ru (accessed: May 17, 2018). DOI: 10.18577/2307-6046-2016-0-6-6-6.
11. PMI – peny s isklyuchitelnymi kharakteristikami [PMI – foams with exclusive characteristics] // Plastiks. 2007. №10. S. 1–2.
12. Mikhajlin Yu.A. Termoustojchivye polimery i polimernye materialy [Thermo resistance polymers and polymeric materials]. SPb.: Professiya, 2006. 623 s.
13. Kablov E.N. Sovremennye materialy – osnova innovatsionnoj modernizatsii Rossii [Modern materials – basis of innovative modernization of Russia] // Metally Evrazii. 2012. №3. S. 10–15.
14. Kablov E.N. Khimiya v aviatsionnom materialovedenii [Chemistry in aviation materials science] // Rossijskij khimicheskij zhurnal. 2010. T. LIV. №1. S. 3–4.
15. Gryaznov V.I., Petrova G.N., Yurkov G.Yu., Buznik V.M. Smesevye termojelastoplasty so specialnymi svojstvami [Thermoplastic mixtures with special properties] // Aviacionnye materialy i tehnologii. 2014. №1. S. 25–29. DOI: 10.18577/2071-9140-2014-0-1-25-29.
16. Kravchenko T.P., Ermakov S.N., Kerber M.L., Kostyagina V.A. Nauchno-tekhnicheskie problemy polucheniya kompozitsionnykh materialov na osnove konstruktsionnykh termoplastov [Scientific and technical problems of receiving composite materials on the basis of constructional thermoplastics] // Plasticheskie massy. №10. 2010. S. 32–34
17. Kerber M.L., Vinogradov V.M., Golovkin G.S. i dr. Polimernye kompozitsionnye materialy: struktura, svojstva, tekhnologiya [Polymeric composite materials: structure, properties, technology]. SPb.: Professiya, 2011. S. 32–33.
18. Kryzhanovskij V.K., Burlov V.V., Panimatchenko A.D., Kryzhanovskaya YU.V. Tekhnicheskie svojstva polimernykh materialov [Engineering properties of polymeric materials]. SPb.: Professiya, 2005. 240 c.
19. Petrova G.N., Bejder E.YA., Starostina I.V. Lit'evye termoplasty dlya izdelij aviatsionnoj tekhniki [Molding thermoplastics for products of aviation engineering] // Vse materialy. Entsiklopedicheskij spravochnik. 2016. №6. S. 10–15.
20. Petrova G.N., Starostina I.V., Rumyantseva T.V, Sapego YU.A. Effektivnost' povysheniya kachestva izdelij iz polikarbonata termoobrabotkoj // Trudy VIAM: elektron. nauch.-tekhnich. zhurn. 2017. №9. St. 06. URL: http://www.viam-works.ru (data obrashcheniya: 17.05.2018). DOI: 10.18577/2307-6046-2017-0-9-6-6.
21. Trostyanskaya E.B., Stepanova M.I., Rassokhin G.I. Teplostojkie linejnye polimery. Rostov n/D: RGASKHM, 2002. S. 3–22.
22. Petrova G.N., Starostina I.V., Rumyanceva T.V., Sapego Yu.A. Effektivnost povysheniya kachestva izdelij iz polikarbonata termoobrabotkoj [Efficiency of improvement of quality of products from polycarbonate heat treatment] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2017. №9 (57). St. 06. Available at: http://www.viam-works.ru (accessed: May 17, 2018). DOI: 10.18577/2307-6046-2017-0-9-6-6.
23. Berlin A.A., Shutov F.A. Khimiya i tekhnologiya gazonapolnennykh vysokopolimerov [Chemistry and technology of gas-filled high polymers]. M.: Nauka, 1980. 504 s.
24. Parahin I.V., Tumanov A.S. Fenolokauchukovyj penoplast povyshennoj plastichnosti [Phenolic-rubber foamed plastic of higher plasticity] // Aviacionnye materialy i tehnologii. 2014. №4 (33). C. 65–67. DOI: 10.18577/2071-9140-2014-0-4-65-67.
25. Parahin I.V., Tumanov A.S. Fenolno-kauchukovyj penoplast marki VRP-4 [Phenolic-rubber foam the grade of VPP-4] // Aviacionnye materialy i tehnologii. 2014. №1 (30). C. 42–46. DOI: 10.18577/2071-9140-2014-0-1-42-46.
26. Klempner D., Sedzharevich V. Polimernye peny i tekhnologii vspenivaniya [Polymeric foams and technologies of foaming]. SPb.: Professiya, 2009. 604 s.
27. Krutko E.T., Prokopchuk N.R. Perspektivnye puti sozdaniya novykh termostojkikh materialov na osnove poliimidov [Perspective ways of creation of new heat-resistant materials on the basis of polyimide] // Trudy BGTU. 2013. №4. Khimiya, tekhnologiya organicheskikh veshchestv i biotekhnologii. S. 145–149.
28. Dobrokhotova M.L. i dr. Poliimidy: spravochnik po plasticheskim massam [Polyimide: directory on plastics]. M.: Khimiya, 1969. S. 317–325.
29. Kornienko P.V., Gorelov YU.P., Shirshin K.V. Poluchenie i svojstva vspenennykh materialov na osnove sopolimerov akrilonitrila i metakrilovoj kisloty [Receiving and properties of frothed materials on the basis of copolymers acryl nitrile and methacrylic acid] // Zhurnal prikladnoj khimii. 2013. T. 86. №1. S. 96–100.
30. Kornienko P.V., Gorelov Yu.P., Shirshin K.V. Poluchenie konstruktsionnykh penopolimetakrilimidov na osnove sshitykh sopolimerov akrilonitrila i metakrilovoj kisloty [Receiving constructional penopolimetakrilimidov on the basis of the sewed copolymers acryl nitrile and methacrylic acid] // Zhurnal prikladnoj khimii. 2012. T. 85. №11. S. 1842–1846.
31. Kornienko P.V., Shirshin K.V. i dr. Poluchenie vspenennykh poliimidnykh materialov na osnove akrilonitrila i metakrilovoj kisloty [Receiving frothed polyimide materials on basis acryl nitrile and methacrylic acid] // Plasticheskie massy. 2013. №6. S. 4–17.
32. Sorokin A.E., Platonov M.M., Malyshenok S.V. Osobennosti vspenivaniya poliimidnykh smol pri ponizhennom davlenii [Features of foaming of polyimide pitches with reduced pressure] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2017. №4. St. 07. Available at: http://www.viam-works.ru (accessed: May 17, 2018). DOI: 10.18577/2307-6046-2017-0-4-7-7.
33. Davydova I.F., Kavun N.S. Poliimidnyj steklotekstolit s ponizhennoj temperaturoj otverzhdeniya [Polyimide fiberglass plastic with lower curing temperature] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №2. St. 09. Available at: http://www.viam-works.ru (accessed: May 17, 2018). DOI: 10.18577/2307-6046-2015-0-2-8-8.
34. Yontz D.J., Hsu S.L. A Mass Spectrometry Analysis of Hard Segment Length Distribution in Polyurethanes // Macromolecules. 2000. Vol. 33. P. 8415–8420.
35. Velankar S., Cooper S.L. Microphase Separation and Rheological Properties of Polyurethane Melts. 3. Effect of Block Incompatibility on the Viscoelastic Properties // Ibid. I. 395–403.
36. Artemeva V.N., Kudryavtsev V.V. i dr. Elastichnye penomaterialy na osnove poliimidov [Elastic foam materials on the basis of polyimide] // Plasticheskie massy. 1990. №4. S. 32–34.
37. Manzer L.E. North American Catalysis Society, Toronto // Chem. and Eng. News. 200m. September 03. P. 39.
38. Artemeva V.N., Kudryavtsev V.V. Ob osobennostyakh mekhanizma polucheniya poliimidov pri termicheskoj imidizatsii razlichnykh forpolimerov [About features of the mechanism of receiving polyimide at thermal imidization of different prepolymers] // Zhurnal prikladnoj khimii. 2000. T. 73. №4. S. 639–647.
39 Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
40. Stolyankov Yu.V., Bejder E.Ya., Platonov M.M., Petrova G.N. Ustrojstvo dlya mehanicheskoj obrabotki vspenennyh polimernyh materialov [A device for machining of foamed polymer materials] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2015. №5. St. 08. Available at: http://www.viam-works.ru (accessed: May 17, 2018). DOI: 10.18577/2307-6046-2015-0-5-8-8.
In the article the authors show the results of studies of the formation of a matrix of metal composite materials based on Nickel intermetallic, reinforced with single-crystal aluminum oxide plates.
The article consists of four parts.
The introduction shows the need to create heat-resistant composite materials for use in gas turbine engines of the new generation. In the framework of the comprehensive directions 12 and polimetrica metal-matrix composite materials investigated the samples the microstructure of the metal composite material, carried out x-ray diffraction and microstructure analysis.
Materials and methods are described in detail. In this work, samples for research were obtained by the method of reaction impregnation. The matrix of the composite material was synthesized by impregnating the frame consisting of monocrystalline aluminum oxide plates with matrix-like nickel powder containing 10, 15 and 20% of the buffer material by melting aluminum.
Microstructure studies, x-ray phase analysis and microhardness determination were carried out to identify intermetallic phases. It was found that all samples have phases NiAl, Al3Ni, Al3Ni2, AlNi3. Free Ni is not detected, which indicates a complete reaction in the preparation of the composite material.
In the discussion and conclusion, the general conclusions of the research are given. It is established that with increasing content of buffer material decreases the amount of low-melting phases and the stoichiometry shifted in the direction of NiAl, which is confirmed by studies to determine the percentage of each phase in the volume of the matrix. It is also noted in the work that with an increase in the matrix of Nickel nanoparticles, the number of fusible p
2. Letnikov M.N., Lomberg B.S., Ovsepyan S.V. Issledovanie kompozicij sistemy Ni–Al–Co pri razrabotke novogo zharoprochnogo deformiruemogo intermetallidnogo splava [Investigation experimental alloys based on Ni–Al–Co ternary system for development a new high-temperature intermetallic alloy for disk application] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. № 10. St. 01. Available at: http://www.viam-works.ru (accessed: May 28, 2018).
3. Kablov E.N., Lomberg B.S., Ospennikova O.G. Sozdanie sovremennykh zharoprochnykh materialov i tekhnologij ikh proizvodstva dlya aviatsionnogo dvigatelestroeniya [Creation of modern heat resisting materials and technologies of their production for aviation engine building] // Krylya Rodiny. 2012. №3–4. S. 34–38.
4. Bazyleva O.A., Arginbaeva E.G., Turenko E.Yu. Zharoprochnye litejnye intermetallidnye splavy [Heat resisting cast intermetallic alloys] // Aviacionnye materialy i tehnologii. 2012. №S. S. 57–60.
5. Buntushkin V.P., Kablov E.N., Bazyleva O.A., Morozova G.I. Splavy na osnove alyuminidov nikelya [Alloys on the basis of nickel aluminides] // Metallovedenie i termicheskaya obrabotka metallov. 1999. №1. S. 32–34.
6. Kablov E.N., Petrushin N.V., Svetlov I.L., Demonis I.M. Nikelevye litejnye zharoprochnye splavy novogo pokoleniya [Nickel foundry heat resisting alloys of new generation] // Aviacionnye materialy i tehnologii. 2012. №S. C. 36–52.
7. Intermetallic Alloy Development. Publ. NMAB-487-1. Washington: National Academy Press., 1997. 51 p.
8. Kablov E.N., Buntushkin V.P., Bazyleva O.A. Litye lopatki iz intermetallida nikelya (Ni3Al) dlya vysokotemperaturnykh gazovykh turbin [Cast blades from intermetallic compound of nickel (Ni3Al) for high-temperature gas turbines] // Konversiya v mashinostroenii. 2004. №4. S. 57–59.
9. Kablov E.N. Osnovnye itogi i napravleniya razvitiya materialov dlya perspektivnoj aviatsionnoj tekhniki [The main results and the directions of development of materials for perspective aviation engineering] // 75 let. Aviatsionnye materialy. Izbrannye trudy «VIAM» 1932–2007. M.: VIAM, 2007. S. 20–26.
10. Goryunov A.V., Rigin V.E. Sovremennaya tehnologiya polucheniya litejnyh zharoprochnyh nikelevyh splavov [The modern technology of cast nickel base superalloys production] // Aviacionnye materialy i tehnologii. 2014. №2. S. 3–7. DOI: 10.18577/2071-9140-2014-0-2-3-7.
11. Grashchenkov D.V. Strategiya razvitiya nemetallicheskih materialov, metallicheskih kompozicionnyh materialov i teplozashhity [Strategy of development of non-metallic materials, metal composite materials and heat-shielding] // Aviacionnye materialy i tehnologii. 2017. №S. S. 264–271. DOI: 10.18577/2071-9140-2017-0-S-264-271.
12. Grashchenkov D.V., Efimochkin I.Yu., Bolshakova A.N. Vysokotemperaturnye metallomatrichnye kompozicionnye materialy, armirovannye chasticami i voloknami tugoplavkih soedinenij [High-temperature metal-matrix composite materials reinforced with particles and fibers of refractory compounds] // Aviacionnye materialy i tehnologii. 2017. №S. S. 318–328. DOI: 10.18577/2071-9140-2017-0-S-318-328.
13. Bolshakova A.N., Najmushin A.I., Efimochkin I.Yu. Issledovanie struktury intermetallidno-oksidnykh vysokotemperaturnykh kompozitsionnykh materialov na osnove nikelya i titana, armirovannykh monokristallicheskimi plastinami oksida alyuminiya [Research of structure of intermetallic oxide high-temperature composite materials on the basis of nickel and the titanium reinforced by single-crystal plates of aluminum oxide] // Vse materialy. Entsiklopedicheskij spravochnik. 2015. №6. S. 8–12.
14. Ospennikova O.G. Itogi realizacii strategicheskih napravlenij po sozdaniyu novogo pokoleniya zharoprochnyh litejnyh i deformiruemyh splavov i stalej za 2012–2016 gg. [Implementation results of the strategic directions on creation of new generation of heat-resisting cast and wrought alloys and steels for 2012–2016] // Aviacionnye materialy i tehnologii. 2017. №S. S. 17–23. DOI: 10.18577/2071-9140-2017-0-S-17-23.
15. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
16. Bekkert M., Klemm Kh. Sposoby metallograficheskogo travleniya: spravochnik [Ways of metallographic etching: directory]. M.: Metallurgiya, 1988. 400 s.
To develope the system of coverings intended for protection of products of aviation engineering from erosive damages in addition to directly erosion resistant disperse reinforced covering special attention is necessary to be given to properties of priming coverings as durability of operation of coating system is provided by adhesion interaction of first coat with material of substrate and subsequent coat.
Results of research of influence of mechanical characteristics of different priming coverings on resistance of systems of paint coatings to erosive influence and cyclic deformation tests are given in this work. As objects of research the serial first coats which are widely applied at coloring of aviation engineering – EP-0214, VG-28, EP-076, EP-0215, have been chosen; as the erosion resistant disperse reinforced covering the paint and varnish material on the basis of the epoxy oligomer modified by rubber than cured by organic silicon ammine and filamentary crystals of ZnO as disperse reinforcing filler has been chosen.
Mechanical characteristics have been defined (εр, σр) for free films of first coats. It was revealed that the primer EP-0214 is the most elastic. Investigated the adhesive durability and erosion resistance of systems of coverings on the basis of the specified materials. Results have shown that the greatest adhesive durability and erosion resistance of coating systems with the most elastic first coat EP-0214 is possess. Data analisis received at research of adhesive durability of coating systems with different first coats after cyclic bending tests, have revealed considerable superiority of systems of coverings with more elastic first coats over systems of coverings with more rigid first coats.
We assumed that mechanical properties of priming coverings influence operati
2. Kablov E.N. Materialy i khimicheskie tekhnologii dlya aviacionnoj tekhniki [Materials and chemical technologies for aviation engineering] // Vestnik Rossijskoj akademii nauk. 2012. T. 82. №6. S. 520–530.
3. Kablov E.N. Rol khimii v sozdanii materialov novogo pokoleniya dlya slozhnykh tekhnicheskikh sistem // XX Mendeleevskij ezd po obshchej i prikladnoj khimii: tez. dokl. v 5 t. [Chemistry role in creation of materials of new generation for complex technical systems]. Ekaterinburg: UrO RAN, 2016. S. 25–26.
4. Kablov E.N. Khimiya v aviacionnom materialovedenii [Chemistry in aviation materials science] // Rossijskij khimicheskij zhurnal. 2010. T. LIV. №1. S. 3–4.
5. Kablov E.N. Materialy novogo pokoleniya – osnova innovacij, tekhnologicheskogo liderstva i nacionalnoj bezopasnosti Rossii [Materials of new generation – basis of innovations, technological leadership and national security of Russia] // Intellekt i tekhnologii. 2016. №2 (14). S. 16–21.
6. Kondrashov EH.K., Kuznecova V.A., Semenova L.V., Lebedeva T.A., Malova N.E. Razvitie aviacionnykh lakokrasochnykh materialov [Development of aviation paint and varnish materials] // Vse materialy. Enciklopedicheskij spravochnik. 2012. №5. S. 49–54.
7. Kuznecova V.A., Kondrashov EH.K., Semenova L.V., Kuznecov G.V. O vliyanii formy chastic oksida cinka na ehkspluatacionnye svojstva polimernykh pokrytij [About influence of particle shape of zinc oxide on operational properties of polymer coatings] // Materialovedenie. 2012. №12. S. 12–14.
8. Kondrashov E.K., Kuznecova V.A., Semenova L.V., Lebedeva T.A. Osnovnye napravleniya povysheniya ehkspluatacionnykh, tekhnologicheskikh i ehkologicheskikh kharakteristik lakokrasochnykh pokrytij dlya aviacionnoj tekhniki [The main directions of increase of utilization, technical and ecological properties of paint coatings for aviation engineering] // Rossijskij khimicheskij zhurnal. 2010. T. LIV. №1. S. 96–102.
9. Kuznecova V.A., Kondrashov EH.K., Vladimirskij V.N., Kuznecov G.V. Dispersno-armirovannye ehrozionnostojkie pokrytiya [The disperse reinforced erosion resistance coverings] // Aviacionnye materialy i tehnologii. 2003. Vyp.: Lakokrasochnye materialy i pokrytiya. S. 53–56.
10. Kablov E.N. Aviacionnoe materialovedenie: itogi i perspektivy [Aviation materials science: results and perspectives] // Vestnik Rossijskoj akademii nauk. 2002. T. 72. №1. S. 3–12.
11. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
12. Hong-Qi Yang, Qi Zhang San-Shan, Tu You Wang et al. A study on effects of elastic stress on protective properties of marine coatings on mild steel in artificial seawater // Progress in Organic Coatings. 2016. Vol. 99. P. 61–71.
13. Yu-Hsuan Huang, Jyhwen Wang. Prediction of coating adhesion loss due to stretching // International Journal of Adhesion and Adhesives. 2013. Vol. 40. P. 49–55.
14. Grundwürmer M., Nuyken O., Meyer M. Sol-gel derived erosion protection coatings against damage caused by liquid impact // Wear. 2007. Vol. 263. Issues 1–6. P. 318–329.
15. Zhilikov V.P., Karimova S.A., Leshko S.S., Chesnokov D.V. Issledovanie dinamiki korrozii alyuminievyh splavov pri ispytanii v kamere solevogo tumana (KST) [Research of dynamics of corrosion of aluminum alloys when testing in the salt spray chamber (SSC)] // Aviacionnye materialy i tehnologii. 2012. №4. S. 18–22.
16. Frejdin A.S. Prochnost i nadezhnost kleevykh soedinenij [Durability and reliability of glued joints]. M.: Khimiya, 1981. 270 s.
17. Kondrashov E.K., Bejder E.Ya., Vladimirskij V.N. Erozionnostojkie lakokrasochnye pokrytiya [Erosion resistance paint coatings]. M.: Khimiya, 1989. 135 s.
18. Erasov V.S., Makarycheva A.I. Opredelenie modulya uprugosti mezhfaznoj zony v sloistom polimernom kompozicionnom material [Determination of the elastic modulus of the interphase zone in a layered polymer composite material] // Aviacionnye materialy i tehnologii. 2014. №2. S. 53–55. DOI: 10.18577/2071-9140-2014-0-2-53-55.
19. Lavrov A.V., Erasov V.S., Landik D.N. Ob odnom podhode k traktovke obedinennoj teorii prochnosti Ya.B. Fridmana [One of the approaches to interpretation of the united strength theory of Ya.B. Fridman] // Aviacionnye materialy i tehnologii. 2017. №2 (47). S. 87–94. DOI: 10.18577/2071-9140-2017-0-2-87-94.
20. Platonov A.A. Polimernye kompozicionnye materialy na osnove proshitogo napolnitelya s povyshennoj udarostojkostyu [Polymer composite materials on a base of stitched preforms with high impact resistance] // Aviacionnye materialy i tehnologii. 2014. №4. S. 43–47. DOI: 10.18577/2071-9140-2014-0-4-43-47.
For protection of functional assemblies of radio-electronic equipment and printed circuit boards use paint and varnish materials. Coatings on the basis of such materials have to show the increased values of moisture resistance and certain electric insulation characteristics. Among such materials in Russia the greatest distribution have polyurethane coverings, in particular epoxy urethane varnish UR-231.
This varnish represents two-packaging paint cured by polyisocyanate hardener with trademark diethylene glycol urethane (DGU). One of shortcomings of this varnish is the long time of forming of covering after drawing – 19 hours at 65°C Decrease in time of drying of paint coatings is desirable as leads to considerable power saving, manpower and to reduction of technological process. It is possible to solve this technological problem using hardener with the increased functionality, without changing thus basis material. In this work possibility of application as hardener interaction product toluiolendiisocyanate with OS-17 trimethylolpropane is considered. Exploiting properties of paint polymer coating can be defined substantially by properties and hardener structure, moreover at increase in functionality of hardener, degree of cross-linking of polymer in coating can increase that can be reflected in the physicomechanical properties of coating. Authors have carried out tests of operational properties of coverings and have carried out the comparative analysis of the received results.
Authors assumed reduction of technological stage of drying of varnish UR-231 with use OS-17. For research of process of drying of coverings determined the hardness of varnish and have established that the maximum hardness of varnish with hardener OS-17 is reached in 4 days while for varnish with DGU hardener in 5 days, it has thus appeared that varnish hardness with OS-17&
2. Kablov E.N. Materialy i khimicheskie tekhnologii dlya aviatsionnoj tekhniki [Materials and chemical technologies for aviation engineering] // Vestnik Rossijskoj akademii nauk. 2012. T. 82. №6. S. 520–530.
3. Kablov E.N. Rol khimii v sozdanii materialov novogo pokoleniya dlya slozhnykh tekhnicheskikh system [Chemistry role in creation of materials of new generation for complex technical systems] // XX Mendeleevskij szd po obshchej i prikladnoj khimii: tez. dokl. v 5 t. UrO RAN, 2016. S. 25–26.
4. Kablov E.N. Khimiya v aviatsionnom materialovedenii [Chemistry in aviation materials science] // Rossijskij khimicheskij zhurnal. 2010. T. LIV. №1. S. 3–4.
5. Kablov E.N. Materialy novogo pokoleniya – osnova innovatsij, tekhnologicheskogo liderstva i natsionalnoj bezopasnosti Rossii [Materials of new generation – basis of innovations, technological leadership and national security of Russia] // Intellekt i tekhnologii. 2016. №2 (14). S. 16–21.
6. Kondrashov E.K., Kuznetsova V.A., Semenova L.V., Lebedeva T.A., Malova N.E. Razvitie aviatsionnykh lakokrasochnykh materialov [Development of aviation paint and varnish materials] // Vse materialy. Entsiklopedicheskij spravochnik. 2012. №5. S. 49–54.
7. Kiping D. Otsenka effektivnosti i stoimosti novykh vidov vlagozashchitnykh pokrytij (iz materialov simpoziuma SMTA Pan Pac, yanvar 2008 g.) [Assessment of efficiency and cost of new types of vlagozashchitny coverings (from materials of symposium of SMTA Pan Pac, January, 2008)] // Tekhnologii v elektronnoj promyshlennosti. 2008. №6. S. 66–71.
8. Urazaev V. Vlagozashchitnye polimernye pokrytiya: kakie byvayut [Vlagozashchitnye polymer coatings: which being] // Tekhnologii v elektronnoj promyshlennosti. 2005. №5. S. 52–55.
9. Kuznetsova V.A., Semenova L.V., Kondrashov E.K., Lebedeva T.A. Lakokrasochnye materialy s ponizhennym soderzhaniem vrednyh i toksichnyh komponentov dlya okraski agregatov i konstrukcij iz PKM [Paint-and-lacquer materials with a low content of harmful and design of polymer composite materials] // Trudy VIAM: elektron. nauch-tehnich. zhurn. 2013. №8. St. 05. Available at: http://www.viam-works.ru (accessed: June 09, 2018).
10. Kondrashov E.K., Kuznetsova V.A., Lebedeva T.A., Semenova L.V. Osnovnye napravleniya povysheniya ekspluatatsionnykh, tekhnologicheskikh i ekologicheskikh kharakteristik lakokrasochnykh pokrytij dlya aviatsionnoj tekhniki [The main directions of increase of utilization, technical and ecological properties of paint coatings for aviation engineering] // Rossijskij khimicheskij zhurnal. 2010. T. LIV. №1. S. 96–102.
11. Nefyodov N.I., Semyonova L.V. Tendencii razvitiya v oblasti konformnyh pokrytij dlya vlagozashhity i elektroizolyacii plat pechatnogo montazha i jelementov radiojelektronnoj apparatury [Development tendencies in the field on conformal coating for the moisture protection and electrical insulation of printed-circuit boards and electronic elements] // Aviacionnye materialy i tehnologii. 2013. №1. S. 50–52.
12. Medgyes B.K., Ripka G. Qualifying methods of conformal coatings used on assembled printed circuit boards Electronics Technology Journal // 30-th International Spring Seminar, 9–13 May. 2007. Budapest Univ. of technol. & Econ. Budapest, 2007. P. 429–433.
13. Solntsev S.St., Soloveva G.A., Denisova V.S. Elektroizolyatsionnye emalevye pokrytiya dlya sovremennoj elektronnoj tekhniki [Insulating enamel coatings for modern electronics] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №9. St. 08. Available at: http://www.viam-works.ru (accessed: June 09, 2018). DOI: 10.18577/2307-6046-2014-0-9-8-8.
14. Nefedov N.I., Salikhov T.R., Melnikov D.A. Issledovanie protsessov otverzhdeniya elektroizolyatsionnykh lakov [Study of the curing processes of electroinsulating varnishes] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2016. №6. St. 09. Available at: http://www.viam-works.ru (accessed: June 09, 2018). DOI: 10.18577/2307-6046-2016-0-6-9-9.
15. Papaj Douglas E.A., Mills Sina J., Jamali S. Effect of hardener variation on protective properties of polyurethane coating // Progress in Organic Coatings. 2014. Vol. 77. Part B. P. 2086–2090.
16. Avar G., Meier-Westhues U., Casselmann H., Achten D. Polyurethanes // Polymer Science: A Comprehensive Reference. 2012. Vol. 10. P. 411–441.
Recently, an intense research to create new functional materials is carried out. In aircraft constructing area, special attention is paid to anti-icing surfaces.
It is known that icing is a non-stationary process that occurs when an aircraft enters the clouds with tiny drops of supercooled water that rapidly crystallizes on the surface of the aircraft. Currently used de-icing methods require additional energy and increase in the weight characteristics of the aircrat by 1–1,5%. Therefore, anti-icing coatings are extremely promising.
In a number of cases, superhydrophobic coatings are used as passive anti-icing coatings. Such coatings possess high mobility of liquid droplets on the surface and low ice adhesion. Main disadvantages of superhydrophobic coatings are an increase of wettability with decreasing temperature and humidity and low icing-deicing cycles’ and operational sustainability.
Low ice adhesion and high icing resistance and hydrophobic properties may be obtained by the impregnation of a structured surface with a layer of a lubricant that forms a thin smooth film repelling water («SLIP»). The disadvantage of this approach is the need for continuous renewal of the lubricant layer during operation.
Smooth coatings based on elastomeric compositions also provide anti-icing properties. Ice adhesion in such coatings is influenced not only by low surface energy provided by a structure of a polymer matrix, but also by elastic properties of the compositions that change the ice removal mechanism from the surface of the coating. The main disadvantage of such coatings is their low abrasion resistance.
A promising approach to produce anti-icing coatings is the use of organogels and surfaces that contain a layer of water that do
2. Kablov E.N., Kondrashov S.V., Yurkov G.Y. Prospects of using carbonaceous nanoparticles in binders for polymer composites // Nanotechnologies in Russia. 2013. Vol. 8. No. 3–4. P. 163–185.
3. Kablov E.N. Konstruktsionnye i funktsionalnye materialy – osnova ekonomicheskogo i nauchno-tekhnicheskogo razvitiya Rossii [Constructional and functional materials – basis of economic and scientific and technical development of Russia] // Voprosy materialovedeniya. 2006. №1. S. 64–67.
4. Yurkov G.Yu., Kondrashov S.V., Kraev I.D. Nanokompozity na osnove polijetilena vysokogo davleniya i nanochastic kobalta: sintez, struktura i svojstva [Nanocomposites based on high-density polyethylene and cobalt nanoparticles: synthesis, structure and properties] // Aviacionnye materialy i tehnologii. 2014. №S2. S. 29–33.
5. Chajnikova A.S., Orlova L.A., Popovich N.V., Lebedeva Yu.E., Colncev S.St. Funkcionalnye kompozity na osnove steklo/steklokristallicheskih matric i diskretnyh napolnitelej: svojstva i oblasti primeneniya (obzor) [Functional composites based on glass/glass-ceramics matrixes and discrete fillers: properties and possible applications] // Aviacionnye materialy i tehnologii. 2014. №S6. S. 52–58. DOI: 10.18577/2071-9140-2014-0-s6-52-58.
6. Kondrashov S.V., Shashkeev K.A., Petrova G.N., Mekalina I.V. Polimernye kompozicionnye materialy konstrukcionnogo naznacheniya s funkcionalnymi svojstvami [Constructional polymer composites with functional properties] // Aviacionnye materialy i tehnologii. 2017. №S. S. 405–419. DOI: 10.18577/2071-9140-2017-0-S-405-419.
7. Kirillov V.N., Efimov V.A., Shvedkova A.K., Nikolaev E.V. Issledovanie vliyaniya klimaticheskih faktorov i mehanicheskogo nagruzheniya na strukturu i mehanicheskie svojstva PKM [Research of influence of climatic factors and mechanical loading on structure and the PCM mechanical properties] //Aviacionnye materialy i tehnologii. 2011. №4. S. 41–45.
8. Klemenkov G.P., Prikhodko Yu.M., Puzyrev L.N., KHaritonov A.M. Modelirovanie protsessov obledeneniya letatelnykh apparatov v aeroklimaticheskikh trubakh [Modeling of processes of icing of flight vehicles in aero climatic pipes] // Teplofizika i aeromekhanika. 2008. T. 15. №4. S. 563–572.
9. Grinats E.S., Miller A.B., Potapov YU.F., Stasenko A.L. Eksperimental'nye i teoreticheskie issledovaniya protsessov obledeneniya nanomodifitsirovannykh supergidrofobnykh i obychnykh poverkhnostej [Pilot and theoretical studies of processes of icing of the nanomodified superwaterproof and normal surfaces] // Vestnik MGOU. Ser.: Fizika – Matematika. 2013. №3. S. 84–92.
10. Bojnovich L.B., Emelyanenko A.M. Gidrofobnye materialy i pokrytiya: printsipy sozdaniya, svojstva, primenenie [Waterproof materials and coverings: principles of creation, property, application] // Uspekhi khimii. 2008. T. 77. №7. S. 619–638.
11. Summ B.D. Fiziko-khimicheskie osnovy smachivaniya [Physical and chemical bases of wetting]. M.: Khimiya, 1976. 232 s.
12. Schutzius T.M., Jung S., Maitra T. et al. Physics of icing and rational design of surfaces with extraordinary icephobicity // Langmuir. 2014. Vol. 31. No. 17. P. 4807–4821.
13. Kreder M.J., Alvarenga J., Kim P., Aizenberg J. Design of anti-icing surfaces: smooth, textured or slippery? // Nature Reviews Materials. 2016. Vol. 1. No. 1. P. 15003.
14. Khedir K.R., Kannarpady G.K., Ryerson C., Birisa A.S. An outlook on tunable superhydrophobic nanostructural surfaces and their possible impact on ice mitigation // Progress in Organic Coatings. 2017. Vol. 112. P. 304–318.
15. Boinovich L., Emelyanenko A.M., Korolev V.V., Pashinin A.S. Effect of wettability on sessile drop freezing: when superhydrophobicity stimulates an extreme freezing delay // Langmuir. 2014. Vol. 30. No. 6. P. 1659–1668.
16. Boreyko J.B., Collier C.P. Delayed frost growth on jumping-drop superhydrophobic surfaces // ACS nano. 2013. Vol. 7. No. 2. P. 1618–1627.
17. Mishchenko L., Yatton B., Bahadur V. et al. Design of ice-free nanostructured surfaces based on repulsion of impacting water droplets // ACS nano. 2010. Vol. 4. No. 12. P. 7699–7707.
18. Kulinich S.A., Farzaneh M. How wetting hysteresis influences ice adhesion strength on superhydrophobic surfaces // Langmuir. 2009. Vol. 25. No. 16. P. 8854–8856.
19. Momen G., Jafari R., Farzaneh M. Ice repellency behaviour of superhydrophobic surfaces: Effects of atmospheric icing conditions and surface roughness // Applied Surface Science. 2015. Vol. 349. P. 211–218.
20. Zheng S., Fu Q., Hu W. et al. Development of stable superhydrophobic coatings on aluminum surface for corrosion-resistant, self-cleaning, and anti-icing applications // Materials & Design. 2016. Vol. 93. P. 261–270.
21. Boinovich L.B., Emelyanenko A.M., Ivanov V.K., Pashinin A.S. Durable icephobic coating for stainless steel // ACS Applied Materials & Interfaces. 2013. Vol. 5. No. 7. P. 2549–2554.
22. Cao L., Jones A.K., Sikka V.K. et al. Anti-icing superhydrophobic coatings // Langmuir. 2009. Vol. 25. No. 21. P. 12444–12448.
23. Antonini C., Innocenti M., Horn T. et al. Understanding the effect of superhydrophobic coatings on energy reduction in anti-icing systems // Cold Regions Science and Technology. 2011. Vol. 67. No. 1–2. P. 58–67.
24. Varanasi K.K., Deng T., Smith J.D. et al. Frost formation and ice adhesion on superhydrophobic surfaces // Applied Physics Letters. 2010. Vol. 97. No. 23. P. 234102.
25. Heydari G., Thormann E., Jarn M. et al. Hydrophobic surfaces: topography effects on wetting by supercooled water and freezing delay // The Journal of Physical Chemistry C. 2013. Vol. 117. No. 42. P. 21752–21762.
26. Momen G., Farzaneh M., Jafari R. Wettability behaviour of RTV silicone rubber coated on nanostructured aluminium surface // Applied Surface Science. 2011. Vol. 257. No. 15. P. 6489–6493.
27. Heydari G., Moghaddam M.S., Tuominen M. et al. Wetting hysteresis induced by temperature changes: Supercooled water on hydrophobic surfaces // Journal of Colloid and Interface Science. 2016. Vol. 468. P. 21–33.
28. Han Yeong Y., Steele A., Loth E. et al. Temperature and humidity effects on superhydrophobicity of nanocomposite coatings // Applied Physics Letters. 2012. Vol. 100. No. 5. P. 053112.
29. Furuta T., Sakai M., Isobe T., Nakajima A. Effect of dew condensation on the wettability of rough hydrophobic surfaces coated with two different silanes // Langmuir. 2010. Vol. 26. No. 16.
P. 13305–13309.
30. Zheng L., Li Z., Bourdo S. et al. Exceptional superhydrophobicity and low velocity impact icephobicity of acetone-functionalized carbon nanotube films // Langmuir. 2011. Vol. 27. No. 16. P. 9936–9943.
31. Alizadeh A., Yamada M., Li Ri et al. Dynamics of ice nucleation on water repellent surfaces // Langmuir. 2012. Vol. 28. No. 6. P. 3180–3186.
32. Mezger M., Schder S., Reichert H. et al. Water and ice in contact with octadecyl-trichlorosilane functionalized surfaces: A high resolution x-ray reflectivity study // The Journal of chemical physics. 2008. Vol. 128. No. 24. P. 244705.
33. Engemann S., Reichert H., Dosch H. et al. Interfacial melting of ice in contact with SiO2 // Physical review letters. 2004. Vol. 92. No. 20. P. 205701.
34. Hu J. The freezing process of continuously sprayed water droplets on the superhydrophobic silicone acrylate resin coating surface // Applied Surface Science. 2014. Vol. 317. P. 534–544.
35. Nguyen T.B., Park S., Lim H. Effects of morphology parameters on anti-icing performance in superhydrophobic surfaces // Applied Surface Science. 2018. Vol. 435. P. 585–591.
36. Arianpour F., Farzaneh M., Kulinich S.A. Hydrophobic and ice-retarding properties of doped silicone rubber coatings // Applied Surface Science. 2013. Vol. 265. P. 546–552.
37. Zhang Q., He M., Zeng X. et al. Condensation mode determines the freezing of condensed water on solid surfaces // Soft Matter. 2012. Vol. 8. No. 32. P. 8285–8288.
38. Van Dyke A.S., Collard D., Derby M.V., Betz A.R. Droplet coalescence and freezing on hydrophilic, hydrophobic, and biphilic surfaces // Applied Physics Letters. 2015. Vol. 107. No. 14. P. 141602.
39. Oberli L., Caruso D., Hall C. et al. Condensation and freezing of droplets on superhydrophobic surfaces // Advances in colloid and interface science. 2014. Vol. 210. P. 47–57.
40. Zou M., Beckford S., Wei R. et al. Effects of surface roughness and energy on ice adhesion strength // Applied Surface Science. 2011. Vol. 257. No. 8. P. 3786–3792.
41. Kulinich S.A., Farhadi S., Nose K., Du X.W. Superhydrophobic surfaces: are they really ice-repellent? // Langmuir. 2010. Vol. 27. No. 1. P. 25–29.
42. Fu Q., Wu X., Kumar D. et al. Development of sol-gel icephobic coatings: effect of surface roughness and surface energy // ACS applied materials & interfaces. 2014. Vol. 6. No. 23. P. 20685–20692.
43. Wang Y., Mingzhen J.L., Qingjun L., Chen W.Q. The icephobicity comparison of polysiloxane modified hydrophobic and superhydrophobic surfaces under condensing environments // Applied Surface Science. 2016. Vol. 385. P. 472–480.
44. Janjua Z.A., Turnbull B., Choy K.-L. et al. Performance and durability tests of smart icephobic coatings to reduce ice adhesion // Applied Surface Science. 2017. Vol. 407. P. 555–564.
45. Emelyanenko A.M., Shagieva F.M., Domantovsky A.G., Boinovich L.B. Nanosecond laser micro- and nanotexturing for the design of a superhydrophobic coating robust against long-term contact with water, cavitation, and abrasion // Applied Surface Science. 2015. Vol. 332. P. 513–517.
46. Brassard J.D., Sarkar D.K., Perron J. et al. Nano-micro structured superhydrophobic zinc coating on steel for prevention of corrosion and ice adhesion // Journal of colloid and interface science. 2015. Vol. 447. P. 240–247.
47. Kim P., Wong T.-S., Alvarenga J. et al. Liquid-infused nanostructured surfaces with extreme anti-ice and anti-frost performance // ACS nano. 2012. Vol. 6. No. 8. P. 6569–6577.
48. Anand S., Reza-Garduno E., Cohen R.E. et al. Enhanced condensation on lubricant-impregnated nanotextured surfaces // ACS nano. 2012. Vol. 6. No. 11. P. 10122–10129.
49. Wilson P.W., Lu W., Xu H. et. al. Inhibition of ice nucleation by slippery liquid-infused porous surfaces (SLIPS) // Physical Chemistry Chemical Physics. 2013. Vol. 15. No. 2. P. 581–585.
50. Smith J.D., Dhiman R., Anand S. et al. Droplet mobility on lubricant-impregnated surfaces // Soft Matter. 2013. Vol. 9. No. 6. P. 1772–1780.
51. Subramanyam S.B., Rykaczewski K., Varanasi K.K. Ice adhesion on lubricant-impregnated textured surfaces // Langmuir. 2013. Vol. 29. No. 44. P. 13414–13418.
52. Vogel N., Belisle R.A., Hatton B. et al. Transparency and damage tolerance of patternable omniphobic lubricated surfaces based on inverse colloidal monolayers // Nature communications. 2013. Vol. 4. P. 2176.
53. Rykaczewski K., Kripa K. Mechanism of frost formation on lubricant-impregnated surfaces // Langmuir. 2013. Vol. 29. No. 17. P. 5230–5238.
54. Bharathidasan T., Kumar S.V., Bobji M.S. et al. Effect of wettability and surface roughness on ice-adhesion strength of hydrophilic, hydrophobic and superhydrophobic surfaces // Applied Surface Science. 2014. Vol. 314. P. 241–250.
55. Нарисава И.И. Прочность полимерных материалов. М.: Химия, 1987. 400 с.
56. Golovin K., Kobaku S.R.P., Lee D.H. et al. Designing durable icephobic surfaces // Science advances. 2016. Vol. 2. No. 3. P. e1501496.
57. Wang Y., Yao X., Chen Z. et al. Organogel as durable anti-icing coatings // Science China Materials. 2015. Vol. 58. No. 7. P. 559–565.
58. Urata C., Dunderdale G.J., England M.W., Hozumi A. Self-lubricating organogels (SLUGs) with exceptional syneresis-induced anti-sticking properties against viscous emulsions and ices // Journal of Materials Chemistry A. 2015. Vol. 3. No. 24. P. 12626–12630.
59. Chen J., Zhang Y., Wang X. et al. Robust prototypical anti-icing coatings with a self-lubricating liquid water layer between ice and substrate // ACS Applied Materials & Interfaces. 2013. Vol. 5. No. 10. P. 4026–4030.
60. Chen J., Luo Z., Fan Q. et al. Anti-Ice Coating Inspired by Ice Skating // Small. 2014. Vol. 10. No. 22. Р. 4693–4699.
61. Li C., Li X., Tao C. et al. Amphiphilic antifogging/Anti-Icing Coatings Containing POSS-PDMAEMA-b-PSBMA // ACS Applied Materials & Interfaces. 2017. Vol. 9. No. 27. Р. 22959–22969.
Within FTsP «Development of civil aviation engineering of Russia for 2002-2010 and for the period till 2015» the PCM (Polymeric Composite Materials) complex on the basis of epoxy molten binding is developed for application in design of motor-engine nacelle of aviation gas turbine engines.
There are become widely used structural composite materials in the elements of the nacelles of modern aircraft engines. But they have strongly marked properties anisotropy of the orientation-dependent reinforcements. In the paper, the question of the change character of localization area of maximum shear strain during testing of samples of carbon-fiber plastic in four planes according to standard ASTM D5379 (GOST R 56799) was considered. In the frames of this research two brands of structural carbon fiber based on carbon equivalent fabric and carbon rowing were considered.
Measurements of strain field were made with optical DIC (Digital Image Correlation) system Vic 3D. Also the question of influence of measured area length on veracity was considered as well for DIC meters and for pasted strain gauges. During the testing process specimens were brought up to maximum load corresponds to fault or strain limit achievement. The strain field at the maximum stress, preceded by the failure or attainment of a 5% shear strain is shown in the figure 1. The strain fields are in the tangential stress plane xy, with respect to the optical view of the sample. So, based on the results of the research, a local zone of maximal shear strains, caused by a complex stress, has been defined. It was found that the localization area of shear strain has a different character depending on the direction of the plane subjected to the shear to reinforcement plane of the material.
The values obtained were compared with the results of strain gauges on the&
2. Kablov E.N. Kontrol kachestva materialov – garantiya bezopasnosti ekspluatatsii aviatsionnoj tekhniki [Quality control of materials – security accreditation of operation of aviation engineering] // Aviacionnye materialy i tehnologii. 2001. №1. S. 3–8.
3. Kablov E.N. Materialy novogo pokoleniya [Materials of new generation] // Zashchita i bezopasnost'. 2014. №4. S. 28–29.
4. Xavier J.C., Garrido N.M., Oliveira M. et al. A comparison between the Iosipescu and off-axis shear test methods for the characterization of Pinus Pinaster Ait // Composites. Part A: Applied Science and Manufacturing. 2004. Vol. 35 (7–8). P. 827–840.
5. He J., Chiang M.Y., Hunston D.L., Han C.C. Application of the V-notch Shear Test for Unidirectional Hybrid Composites // Journal of Composite Materials. 2002. Vol. 36. No. 23. P. 2653–2666.
6. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.
7. Lee S., Munro М. Evaluation of in-plane shear test methods for advanced composite materials by the decision analysis technique // Composite. 1986. Vol. 17. No. 1. P. 13–22.
8. Ilichev A.V., Raskutin A.E., Gulyaev I.N. Sravnenie geometricheskikh razmerov obraztsov PKM, ispolzuemykh v mezhdunarodnykh standartakh ASTM i otechestvennykh GOST [Comparison of the geometrical sizes of samples of PKM used in the international ASTM standards and domestic State Stan] // Novosti materialovedeniya. Nauka i tekhnika: elektron. nauch.-tehnich. zhurn. 2015. №4. St. 05. Available at: http://www.materialsnews.ru (accessed: June 5, 2018).
9. GOST R 56799–2015. Kompozity polimernye. Metod opredeleniya mekhanicheskikh kharakteristik pri sdvige na obraztsakh s V-obraznymi nadrezami [Sate Standard P 56799-2015. Composites polymeric. Method of definition of mechanical characteristics at shift on samples with V-shaped cuts]. M.: Standartinform, 2016. 23 s.
10. ASTM D5379/D5379M-05. Standard Test Method for Shear Properties of Composite Materials by the V-Notched Beam Method. West Conshohocken: ASTM International, 2012. DOI: 10.1520/D5379_D5379-12. 13 p.
11. Sutton M.A., Orteu J.-J., Schreier H. Image Correlation for Shape, Motion and Deformation Measurements. Columbia: University of South Carolina, 2009. 364 p.
12. Ilichev A.V., Raskutin A.E. Issledovanie vliyaniya koncentratora napryazhenij na napryazhenno-deformacionnoe sostoyanie ugleplastika metodom korrelyacii cifrovyh izobrazhenij [Research of stress concentrator influence on stress-strain state of carbon by digital images correlation method] // Aviacionnye materialy i tehnologii. 2014. №3. S. 62–66. DOI: 10.18577/2071-9140-2014-0-3-61-62.
13. Lutsenko A.N., Odintsev I.N., Grinevich A.V. i dr. Issledovanie protsessa deformatsii materiala optiko-korrelyatsionnymi metodami [Study of material deformation by optical-correlation methods] // Aviacionnye materialy i tehnologii. 2014. №S4. S. 70–86. DOI: 10.18577/2071-9140-2014-0-s4-70-86.
14. Tretyakova T.V., Tretyakov M.P., Vildeman V.E. Otsenka tochnosti izmerenij s ispolzovaniem videosistemy analiza polej peremeshchenij i deformatsij [Assessment of accuracy of measurements with use of videosystem of the analysis of fields of movements and deformations] // Vestnik PNIPU. Ser.: Mekhanika. 2011. №4. S. 15–28.
15. Raskutin A.E. Strategiia razvitiia polimernykh kompozitsionnykh materialov [Development strategy of polymer composite materials] // Aviatsionnye materialy i tekhnologii. 2017. №S. S. 344–348. DOI: 10.18577/2071-9140-2017-0-S-344-348.
16. Raskutin A.E. Rossiiskie polimernye kompozitsionnye materialy novogo pokoleniia, ikh osvoenie i vnedrenie v perspektivnykh razrabatyvaemykh konstruktsiiakh [Russian polymer composite materials of new generation, their exploitation and implementation in advanced developed constructions] // Aviatsionnye ma-terialy i tekhnologii. 2017. №S. S. 349–367. DOI: 10.18577/2071-9140-2017-0-S-349-367.
17. Muhametov R.R., Ahmadieva K.R., Chursova L.V., Kogan D.I. Novye polimernye svyazujushhie dlya perspektivnyh metodov izgotovleniya konstrukcionnyh voloknistyh PKM [New polymeric binding for perspective methods of manufacturing of constructional fibrous PCM] // Aviacionnye materialy i tehnologii. 2011. №2. S. 38–42.
18. Muhametov R.R., Ahmadieva K.R., Kim M.A., Babin A.N. Rasplavnye svyazujushhie dlya perspektivnyh metodov izgotovleniya PKM novogo pokoleniya [Melt binding for perspective methods of production of PCM of new generation] // Aviacionnye materialy i tehnologii. 2012. №S. S. 260–265.
19. Mukhametov R.R., Merkulova Yu.I., CHursova L.V. Termoreaktivnye polimernye svyazuyushchie s prognoziruemym urovnem reologicheskikh deformatsionnykh svojstv [Thermosetting polymeric binding with predicted level of rheological deformation properties] // Klei. Germetiki. Tekhnologii. 2012. №5. S. 19–21.
20. Vildeman V.E., Tretyakova T.V., Tretyakov M.P. Eksperimentalnoe issledovanie zakonomernostej deformirovaniya i razrusheniya materialov pri ploskom napryazhennom sostoyanii [Pilot study of patterns of deformation and destruction of materials at flat tension] // Problemy mashinostroeniya i nadezhnosti mashin. 2010. №5. S. 106–111.
Sand casting is the most widely used process to manufacture castings. It is used to produce different configuration castings from various alloys. But castings producing with sand casting have low accuracy and surface finish.
At present no-bake processes become more used. These processes have following advantages:
– flexibility to produce different configuration castings from various alloy;
– simplicity to regulate properties of sand molds and cores;
– availability of materials;
– possibility to use simple molding equipment;
– simplicity of knocking out castings.
The mixture consists of sand, binder and catalytic agent.
Resin is the most widely used binder in no-bake processes.
In the article resin of acidic, alkaline molding processes and resins with urethane bonding are analyzed. Advantages, disadvantages and features of work with these resins are given. Understanding of relation between composition and sand mold properties is important for successful work with self-hardening mixtures.
One of the most significant properties of molding mixtures: the friability is discussed in this article. Friability is the tendency of the surface layer of mold to fracture during abrasion. It is found to depend on composition, moisture, water absorption and vitality.
Friability is found to have to be lower than 0,1–0,2%.
The purpose of further investigation is searching for optimal mixture composition to using this composition in Russian foundries.
<p style="text-align:
2. Global Casting Production Growth Salls // Modern Casting Journal. December, 2017. P. 25–28. Available at: https://www.moderncasting.com/issues/december-2017 (accessed: May 15, 2018).
3. Leonov A.A., Duyunova V.A., Stupak E.V., Trofimov N.V. Lite magnievyh splavov v razovye formy, poluchennye novymi metodami [Casting of magnesium alloys in disposable moulds produced by new methods] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2014. №12. St. 01. Available at: http://www.viam-works.ru (accessed: May 28, 2018). DOI: 10.18577/2307-6046-2014-0-12-1-1.
4. The U.S. Portreit By the Nummers // Modern Casting Journal. January, 2016. P. 35–38. Available at: https://www.moderncasting.com/issues/january-2016 (accessed: May 15, 2018).
5. Kablov E.N. Aviakosmicheskoe materialovedenie [Aerospace materials science] // Vse materialy. Entsiklopedicheskij spravochnik. 2008. №3. S. 2–14.
6. Kablov E.N. Strategicheskie napravleniya razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda [The strategic directions of development of materials and technologies of their processing for the period to 2030] // Aviacionnye materialy i tehnologii. 2012. №S. S. 7–17.
7. Kablov E.N. Osnovnye itogi i napravleniya razvitiya materialov dlya perspektivnoj aviatsionnoj tekhniki [The main results and the directions of development of materials for perspective aviation engineering ] // 75 let. Aviacionnye materialy. Izbrannye trudy «VIAM» 1932–2007: yubil. nauch.-tehnich. sb. M.: VIAM, 2007. S. 20–26.
8. Zhukovskij S.S. Kholodnotverdeyushchie svyazuyushchie i smesi dlya litejnykh sterzhnej i form: spravochnik [Cold-hardering binding and mixes for foundry rods and forms: directory]. M.: Mashinostroenie, 2010. 256 s.
9. Tekhnologicheskie protsessy i oborudovanie dlya modernizatsii proizvodstva v mashinostroenii (formy, sterzhni): sbornik rukovodyashchikh tekhnicheskikh materialov [Technological processes and the equipment for production modernization in mechanical engineering (forms, rods): collection of leading engineering materials]. M.: Metallurg, 2009. 289 s.
10. Duyunova V.A., Mukhina I.YU., Uridiya Z.P. Novye protivoprigarnye prisadochnye materialy dlya litejnykh form magnievykh otlivok [New parting filler materials materials for casting molds of magnesian casting] // Litejnoe proizvodstvo. 2009. №9. S. 18–21.
11. Galante G. Formovka s primeneniem KhTS. Nash vzglyad [Molding using CHM. Our look]. Italiya: IMF Luino, 1997. Ch. 2. 343 s.
12. Galante G. Formovka s primeneniem KhTS [Molding using CHM. Our look]. Nash vzglyad. Italiya: IMF Luino, 1997. Ch. 1. 161 s.
13. Klyukvina T.D., Vlasova K.A., Leonov A.A., Yashina S.A. Izuchenie mekhanizma obrazovaniya prochnosti v samotverdeyushchikh smesyakh s fenolnym svyazuyushchim (obzor) [Study of the mechanism of formation of strength in self-hardening mixtures with a phenolic binder (review)] // Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2018. №3. St. 03. Available at: http://viam-works.ru (accessed: May 28, 2018). DOI: 10.18577/2307-6046-2018-0-3-3.
14. Tekhnologiya litejnogo proizvodstva: Formovochnye i sterzhnevye smesi / pod red. S.S. Zhukovskogo, A.N. Boldina, A.I. Yakovleva i dr. [Technology of foundry production: Forming and rod mixes / ed. by S.S. Zhukovskiy, A.N. Boldin, A.I. Yakovlev et al.]. Bryansk: Izd-vo BGTU, 2003. 470 s.
15. Zhukovskij S.S. Prochnost litejnoj formy [Durability of casting mold]. M.: Mashinostroenie, 1989. 288 s.
16. Khandewal H., Ravi B. Effect of molding parameters on chemically bonded sand mold properties // Journal of Manufacturing Processes. 2016. Vol. 22. P. 127–133. Available at: https://www.sciencedirect.com/science/article/pii/S1526612516300093 (accessed: May 15, 2018).
17. Boldin A.N., Davydov N.I., Zhukovskij S.S. Litejnye formovochnye materialy. Formovochnye, sterzhnevye smesi i pokrytiya: spravochnik [Foundry molding materials. Forming, rod mixes and coverings: directory]. M.: Mashinostroenie, 2006. 507 s.
18. Kablov E.N. Sovremennye materialy – osnova innovatsionnoj modernizatsii Rossii [Modern materials – basis of innovative modernization of Russia] // Metally Evrazii. 2012. №3. S. 10–15.
19. Kaftannikov A.S., Nuraliev F.A., Stepashkin Yu.A. Svojstva zhidkostekolnykh KhTS s ponizhennym soderzhaniem svyazuyushchego [Properties of liquivitreous y CHM with the lowered maintenance of the binding] // Litejnoe proizvodstvo. 2015. №1. S. 31–33.
20. Duyunova V.A., Volkova E.F., Uridiya Z.P., Trapeznikov A.V. Dinamika razvitiya magnievyh i litejnyh alyuminievyh splavov [Dynamics of the development of magnesium and cast aluminum alloys] // Aviacionnye materialy i tehnologii. 2017. №S. S. 225–241. DOI: 10.18577/2071-9140-2017-0-S-225-241.
21. Duyunova V.A., Kozlov I.A. Kholodnotverdeyushchie formovochnye smesi: perspektivy ispolzovaniya pri lite magnievykh splavov [Cold-hardening mixture: use perspectives when molding magnesium alloys] // Vse materialy. Entsiklopedicheskij spravochnik. 2011. №1. S. 41–43.
22. Volkova E.F. Analiz i itogi Mezhdunarodnoj konferencii «Magnij–21. Novye gorizonty» (obzor) [The analysis and results of the International conference «Magnesium–21. Broad horizons» (review)] // Aviacionnye materialy i tehnologii. 2016. №1 (40). S. 86–94. DOI: 10.18577/2071-9140-2016-0-1-86-94.
The article presents the results of a complex study of two cases of operational destruction of parts of a complex configuration of AK4-1 alloy (impeller and fan wheel). Macro- and microstructures were evaluated to determine the causes of failure by optical and electron microscopy, chemical analysis and mechanical testing, and the chemical composition, mechanical properties, and the nature of fracture of the parts were studied. It is established that the chemical composition of the impeller material and the fan wheel meets the requirements of regulatory documentation, defects of metallurgical origin, both in the metal parts and in the fractures are absent. When analyzing the macrostructure of the impeller, a structural heterogeneity is revealed in the form of heterogeneity, while in the fan wheel the macrostructure is relatively homogeneous, the grain size does not differ significantly. Analysis of the microstructure of both parts revealed no defects and traces of burns. The microstructure of the parts corresponds to the AK4-1 alloy in the quenched and aged state. The mechanical properties of the samples made from the fan wheel meet the requirements of the regulatory documentation, and in the samples cut from the coarse-grained region of the impeller, the mechanical properties are reduced and their compliance with the requirements of the specification at the lower limit. The hub breaks of the fan impeller and the fan wheel blades have a fatigue structure. Fatigue destruction of the impeller developed from a surface on which rough risks from machining are located. The presence of zones with a relief of overload fatigue indicates the development of a crack under the action of high cyclic loads. The destruction of the fan wheel blade occurred at the transition point to the hub, from the side of the trough. Destruction occurred under the action of cyclic loading and has a multi-focal, fatigue character. Foci of failure are associated with&
2. Kablov E.N. Aviatsionnoe materialovedenie v XXI veke. Perspektivy i zadachi [Aviation materials science in the XXI century. Perspectives and tasks] // Vse materialy. Entsiklopedicheskij spravochnik. 2007. №1. S. 2–10.
3. Kablov E.N. Aviakosmicheskoe materialovedenie [Aerospace materials science] // Vse materialy. Entsiklopedicheskij spravochnik. 2008. №3. S. 2–14.
4. Duyunova V.A., Volkova E.F., Uridiya Z.P., Trapeznikov A.V. Dinamika razvitiya magnievyh i litejnyh alyuminievyh splavov [Dynamics of the development of magnesium and cast aluminum alloys] // Aviacionnye materialy i tehnologii. 2017. №S. S. 225–241. DOI: 10.18577/2071-9140-2017-0-S-225-241.
5. Antipov V.V., Klochkova Yu.Yu., Romanenko V.A. Sovremennye alyuminievye i alyuminij-litievye splavy [Modern aluminum and aluminum-lithium alloys] // Aviacionnye materialy i tehnologii. 2017. №S. S. 195–211.
6. Fridlyander I.N., Kornysheva I.S., Volkova E.F., Goncharenko E.S., Mukhina I.YU. Magnievye i litejnye alyuminievye splavy [Magnesium and cast aluminum alloys] // 75 let. Aviatsionnye materialy. Izbrannye trudy «VIAM» 1982–2007. M.: VIAM, 2007. S. 180–188.
7. Promyshlennye alyuminievye splavy / S.G. Alieva, M.B. Altman, S.M. Ambartsumyan i dr. 2-e izd., pererab. i dop. [Industrial aluminum alloys / ed. by S.G. Aliyev, M.B. Altman, S.M. Ambartsumyan et al. 2nd ed., rev and add.]. M.: Metallurgiya, 1984. 528 s.
8. Alyuminievye splavy. Metallovedenie alyuminiya i ego splavov: spravochnoe rukovodstvo [Aluminum alloys. Metallurgical science of aluminum and its alloys: reference guide]. M.: Metallurgiya, 1971. 352 s.
9. Alyuminievye splavy. Sostav, svojstva, tekhnologiya, primenenie: spravochnik / pod obshch. red. I.N. Fridlyandera [Aluminum alloys. Structure, properties, technology, application: the directory / gen. ed. by I.N.Fridlyander]. Kiev: Komintekh, 2005. 365 s.
10. Zolotorevskij V.S., Belov N.A. Metallovedenie litejnykh alyuminievykh splavov [Metallurgical science of cast aluminum alloys]. M.: MISIS, 2005. 376 s.
11. Bytsenko O.A., Grigorenko V.B., Lukina E.A., Morozova L.V. Razvitie metodov metallofizicheskih issledovanij: metodologicheskie voprosy i prakticheskaya znachimost [Development of methods for metal-physical research: methodological issues
and practical significance] // Aviacionnye materialy i tehnologii. 2017. №S. S. 498–515. DOI: 10.18577/2071-9140-2017-0-S-498-515.
12. Chabina E.B., Alekseev A.A., Filonova E.V., Lukina E.A. Primenenie metodov analiticheskoj mikroskopii i rentgenostrukturnogo analiza dlya issledovaniya strukturno-fazovogo sostoyaniya materialov [Application of methods of analytical microscopy and X-ray of the structural analysis for research of structural and phase condition of materials] //Trudy VIAM: elektron. nauch.-tehnich. zhurn. 2013. №5. St. 06. Available at: http://www.viam-works.ru (accessed: June 14, 2018).
13. Bronfin M.B., Alekseev A.A., Chabina E.B. Metallofizicheskie issledovaniya. Vozmozhnosti i perspektivy [Metalphysical researches. Opportunities and perspectives] // 75 let. Aviatsionnye materialy. Izbrannye trudy «VIAM» 1982–2007. M.: VIAM, 2007. S. 353–365.
14. Turchenkov V.A., Baranov D.E., Gagarin M.V., Shishkin M.D. Metodicheskij podhod k provedeniju jekspertizy materialov [Methodical approach to carrying out examination of materials] // Aviacionnye materialy i tehnologii. 2012. №1. S. 47–53.
15. Kablov E.N. Innovacionnye razrabotki FGUP «VIAM» GNC RF po realizacii «Strategicheskih napravlenij razvitiya materialov i tehnologij ih pererabotki na period do 2030 goda» [Innovative developments of FSUE «VIAM» SSC of RF on realization of «Strategic directions of the development of materials and technologies of their processing for the period until 2030»] // Aviacionnye materialy i tehnologii. 2015. №1 (34). S. 3–33. DOI: 10.18577/2071-9140-2015-0-1-3-33.